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Introduction

This thesis has been developed during a 6 months internship at Sompo International, a
leading global specialty provider of property and casualty insurance and reinsurance
with headquarter in Bermuda. Sompo International Reinsurance operates with
experienced underwriting teams worldwide providing a broad range of reinsurance
products. The main purpose of this essay is to analyze the structure and methods
that characterize a reinsurance pricing process, to present a client case to have
a deeper look into the company’s methodologies and to introduce an alternative
method to the company’s standard approach. The above mentioned description and
analysis are done in line with the Actuarial Team’s work in the Zurich office. The
data we have been working on come from a cedant that provided its submission in
September and that we priced by the end of October. The central part of this thesis
focuses on transposing on Python the pricing done within the company, followed
by the implementation of a method well known in the literature but not available
yet in the company’s Excel pricing tool: the Panjer recursion. This work will most
likely be useful for the Zurich Actuarial Team since it presents a method that can
be easily implemented and that can be used as an alternative or comparison with
the widely used and known Monte Carlo simulation. The first Chapter is a wide
introduction to reinsurance where we present its origins, its forms and its types
and methods. The second Chapter contains all the things we need to know when
dealing with a pricing such as the basics of pricing, the ground up loss models
that lie behind a pricing and the different possible approaches to it. The third
Chapter deals with treaty features, both proportional and non-proportional, and
their evaluation through different methods such as the Monte Carlo simulation and
the Panjer recursion. Finally, the fourth and last Chapter walks us through the
implementation in Python of the theory and methods above presented on real client
data provided by the company.
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Chapter 1

Introduction to reinsurance

1.1 The origins of reinsurance and its current role

1.1.1 Historical background

Just as individuals and businesses have an interest in protecting themselves against
certain risks, insurance companies need to buy cover against risks they accept under
primary insurance contracts.
Nowadays reinsurance, commonly referred to as "insurance for insurers", is defined
as the transfer from one insurer (the primary insurer) to another (the reinsurer) of
some or all of the financial consequences of certain liabilities and premium covered
by the primary insurer’s policies.
It is said that the oldest known treaty of a reinsurance nature was concluded in
1370 in Genoa. However, at that time reinsurance was not the usual method of risk
sharing, coinsurance was: indeed, insurers, having risk beyond their means to pay,
insured these risks by sharing them with other insurers. But coinsurance had a lot of
disadvantages for companies, mostly related to the fact that a company could gain
an insight into another company’s business and misuse this information to gain an
unfair advantage both on the other company and, eventually, on the market itself.
During the last century though, thanks to the increased number of risks arising from
industrialization, a greater need for reinsurance cover was needed and consequently
more professional reinsurance companies were established leading to the gradual
elimination of disadvantages and injustices.
The first professional reinsurance company, Cologne Re, was founded following a
devastating fire in Hamburg in 1842: the loss from this event reached 18 million
marks, whereas the local Hamburg Fire Fund only had 500 000 marks in reserve.
This event assisted the final breakthrough of the need to share the risks of whole
portfolios amongst several risk-carriers.
Thus, by establishing more and more professional reinsurance companies, the dis-
advantages of coinsurance were eliminated. In addition, specialization allowed the
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Introduction to reinsurance

development of new forms of reinsurance and worldwide multi-line activity allowed
for a better distribution of the risks. Furthermore, by providing better reinsurance
protection, direct insurers were also able to offer their clients better conditions.

1.1.2 Role of reinsurance
The primary role attributed to reinsurance is that it helps a primary insurer to
achieve several practical business goals, such as insuring large exposures and financing
its growth. Indeed, by purchasing reinsurance a primary insurer transfers a share of
the underlying risk onto the reinsurer: therefore, the former safeguards its solvency
and at the same time increases the volume or size of risk it can accept.
The primary insurer may obtain different types of reinsurance, mostly depending on
its needs. In general, primary insurers have some principal functions available:

• Increase large-line capacity
This allows a primary insurer to assume more significant risks than its financial
condition and regulations would otherwise permit: reinsurers provide primary
insurers with large-line capacity by accepting liability for loss exposures that
the primary insurer is unwilling or unable to retain. Thus this function allows a
primary insurer to fully participate in the insurance marketplace by allowing an
increase in its market share while limiting the financial consequences of potential
losses.

• Provide catastrophe protection
Catastrophes (such as fire, windstorm, earthquakes) could greatly reduce the
primary insurer earnings or even threaten its solvency when a large number
of the insured loss exposures are concentrated in an area that experiences a
catastrophe. That’s why this function of reinsurance aims at protecting the
primary insurer against the financial consequences of a single catastrophic event
that cause multiple losses in a concentrated area.

• Stabilize loss experience
Demographic, economic, social and natural forces cause a primary insurer’s
loss experience to fluctuate widely and this creates variability in its financial
results. Reinsurance can smooth the resulting peaks and valleys in a primary
insurer’s loss experience curve and can encourage capital investment since capital
investors are more likely to invest in companies with stable results.

• Provide surplus relief
Some reinsurance agreements facilitate primary insurers premium growth by
allowing them to deduct a ceding commission on loss exposures and to cede it to
the reinsurer. Thus the ceding commission is an amount paid by the reinsurer to
the primary insurer to cover part or all of a primary insurer’s policy acquisition
expenses.
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• Facilitate withdrawal from a market segment
A primary insurer may want to withdraw from a market segment that is
unprofitable, undesirable or incompatible with its strategic plans. There are
some options that the primary insurer has in order to withdraw from a market
segment: it can either stop writing new insurance policies and continue in-force
insurance until all policies expire, cancel all policies and refund the unearned
premiums to insureds or withdraw from the market by purchasing portfolio
reinsurance. Reinsurance can help with all of these processes, facilitating the
primary insurer with the procedures while protecting him from undesirable
outcomes.

• Provide underwriting guidance
Reinsurers work with a wide variety of insurers in the domestic and global
markets under many circumstances and consequently they accumulate a great
deal of underwriting expertise. Thus reinsurers can assist other insurers, in
particular inexperienced primary insurers entering new markets and offering
new products. However it is important to state that reinsurers that provide
underwriting assistance to primary insurers must respect the confidentiality of
their clients’ proprietary information.

1.2 Forms of reinsurance
In general, there is not a single reinsurance agreement that performs all the reinsur-
ance functions. Instead, reinsurers have developed various forms of reinsurance (more
generally reinsurance contracts) in order to be effective in helping primary insurers
meet one or more of their goals. Indeed, a primary insurer often combines several
agreements to meet its particular needs and each of these agreements is tailored to
the specific needs of both the primary insurer and the reinsurer.
Reinsurance contracts are generally divided into two forms: treaty reinsurance and
facultative reinsurance. The distinction between the two categories lies in the fact
that while the former covers a whole portfolio of risks, the latter covers specific
selected risks.
This difference essentially determines the design and, hence, the form of the rein-
surance contract. However, many hybrid forms of reinsurance contracts exist so
that it may be too simplistic to regard there to be a dichotomy between treaty and
facultative reinsurance.

1.2.1 Treaty reinsurance
A reinsurance treaty is a contract for reinsurance rather than a contract of reinsur-
ance: indeed, this contract is not used to transfer a portion of the primary insurer’s
risk to the reinsurer by itself but it is the parties that agree that the primary insurer
cedes and the reinsurer accepts specified risks to the extent that they are underwritten
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by the primary insurer.
This is the reason why treaty reinsurance is also referred to as obligatory reinsurance:
the primary insurer is obliged to cede to the reinsurer a contractually agreed share
of the risks defined in the treaty and the reinsurer is obliged to accept that share.
Of course the primary insurer is generally free to decide whether to accept the
business, but where it chooses to, it is obliged to cede a certain amount or proportion
of the risks to the reinsurer while the latter is bound to accept such amount or
proportion of the risk if it is within the scope of the treaty.
Treaty reinsurance is efficient because the primary insurer does not have to apply
for reinsurance cover in respect of each policy underwritten by it: instead, it has
certainty that it will obtain appropriate reinsurance cover for a risk that it wishes
to accept. Moreover, in most cases it does not have to provide the reinsurer with
detailed information regarding each and every ceded risk and at the same time the
reinsurer does not access each and every ceded risk. In this way the parties reduce
their administrative costs of business.
Treaty reinsurance contracts can terminate on an annual basis or they can be multi
year deals.

1.2.2 Facultative reinsurance
In the case of facultative reinsurance, a primary insurer decides whether it wishes to
reinsure a specific risk. It is up to them to choose the right reinsurer for the deal
and the reinsurer is equally free to either accept the risk or to decline it: hence the
term facultative.
A primary insurer who elects to reinsure a risk must present the reinsurer with a
precisely defined offer containing all pertinent information on the risk in question:
this might result in quite high administrative costs. The reinsurer, after detailed
examination, will decide whether or not to accept it: this liberty can be seen as an
advantage for the latter.
Facultative reinsurance is very often used as a complement for treaty reinsurance:
for example, a prospective primary insurer may seek facultative reinsurance where a
risk exceeds the available treaty capacity or where it is not covered by the treaty.
Some other cases in which a primary insurer will most often turn to this form of
reinsurance are the following:

• when it is left with a sum it still needs to reinsure after it has exhausted both
its retention (ie. portion of a risk which a primary insurer is willing and able
to carry itself) and the reinsurance capacity provided by its treaty reinsurance
contract

• when it has sold a policy containing risks that are excluded from its treaty
reinsurance cover

In general, there exist a known hybrid between the facultative versus treaty approach:
the facultative obligatory treaty. This is a treaty under which the primary insurer
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has the option to cede or not cede individual risks. However, the reinsurer must
accept any risks that are ceded.

1.3 Types and methods of reinsurance
Reinsurance contracts can be further divided into two types, proportional and non-
proportional, and both forms of reinsurance previously introduced may be either one
of them.
In both cases a certain part of the risk is transferred from the primary insurer to the
reinsurer. The distinction between proportional and non-proportional reinsurance lies
in the definition of the part of risk to be ceded as well as the way in which premiums
are shared. Furthermore, each of these two types of reinsurance is characterized by
specific agreements. Thus let’s introduce each type and proceed to a more detailed
consideration of the characteristics of each.

1.3.1 Proportional reinsurance
In proportional reinsurance the primary insurer and the reinsurer divide premiums
and losses between them at a contractually defined ratio. According to the type of
treaty, this ratio may be the same for all risks covered by the contract (quota share
reinsurance) or it may vary from risk to risk (all other proportional reinsurance types).
In all cases, however, the reinsurer’s share of the premiums is directly proportional
to its obligation to pay any losses. For example, if the reinsurer accepts 90% of a
particular risk and the primary insurer retains 10%, the premium is apportioned at
a ratio of 90:10.
The terms ’risk’ and ’risks’ in this context refer to the risk of incurring liability
resulting from reinsurance cover under an underlying policy or multiple underlying
policies respectively.
The price of proportional reinsurance cover is expressed in the reinsurance commission:
originally, this commission was intended to compensate the primary insurer for its
agents’ commissions, internal administration expenditures and loss adjustment costs.
However, in today’s highly competitive environment, the market often puts the
primary insurer in a difficult position regarding the balance between costs and
premiums. For this reason, there is a growing trend for reinsurers to return to the
primary insurer as reinsurance commission only that part of the original premium
not paid out for losses. Thus, the reinsurance commission is increasingly defined by
commercial considerations rather than the primary insurer’s actual operating costs.
In order to clarify the concept of reinsurance commissions under a proportional
reinsurance contract, we now introduce a toy example:
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Example 1.3.1. A primary insurer expects losses of 60 million, operating costs of
30 million and a profit of 10 million from a portfolio. The required original premium
whould therefore be 100 million (ie. the sum of the three quantities above).
He now decides to cede 25% to a reinsurer under a quota share reinsurance treaty
(QS): this means that the contractually defined ratio for the division of premiums
and losses is the same for all risks covered by the contract (we will deal with quota
share more specifically later on). Thus, the reinsurer receives 25% of the original
premium (or 25 million) of which he must pay the 25% of losses (15 million). The
reinsurer expects a profit of 10% too, that is 2.5 million on his premium volume of 25
million. The remainder, 7.5 million, given by 25 original premium minus 15 million
loss minus 2.5 million profit, is returned to the primary insurer as his commission
(see Table 1.1). This fully defrays the primary insurer’s operating costs (for the
primary insurer, the cost to operate 25% of the risks is 25% of 30 million: that is
exactly 7.5 million).

Table 1.1: Example 1.3.1 of proportional reinsurance and reinsurance commissions

Primary insurer expectations

Premium: 100 million
Losses: 60 million

Operating costs: 30 million
Profit: 10 million

QS: 25% ceded to reinsurer

Premium: 25 million
Losses: 15 million
Profit : 2.5 million

Commission: 7.5 million

QS: primary insurer’s 75%

Premium: 75 million
Losses: 45 million
Profit : 7.5 million

Operating costs for 25% QS: 7.5 million

Assume, however, that due to competition the primary insurer must reduce his
original premium by 2% (ie. 98 million). The quota share reinsurer’s 25% would be
only 24.5 million in this case but his losses would remain the same, at 15 million, and
he would still like to realise his expected profit of 2.5 million. Thus now 7 million
would remain as the commission and the primary insurer’s operating costs would
not be fully defrayed (see Table 1.2).
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Table 1.2: Example 1.3.1 of proportional reinsurance and reinsurance commission
with reduction of premium due to competition

Primary insurer’s expectations

Premium: 98 million
Losses: 60 million

Operating costs: 30 million
Profit: 8 million

QS: 25% ceded to reinsurer

Premium: 24.5 million
Losses: 15 million

Profit : 2.5 million (fixed)
Commission: 7 million

QS: primary insurer’s 75%

Premium: 73.5 million
Losses: 45 million
Profit : 5.5 million

Operating costs for 25% QS: 7.5 million

After a general introduction on proportional reinsurance, we go further into details
by distinguishing the main three different types of proportional reinsurance contracts:
quota share reinsurance, surplus reinsurance and proportional facultative reinsurance.

Quota Share Treaty

Quota share reinsurance is the simplest form of proportional reinsurance: the reinsurer
assumes an agreed-upon, fixed quota (percentage) of all the insurance policies written
by a primary insurer within the particular branch or branches defined in the treaty.
This quota determines how liability, premiums and losses are distributed between
the primary insurer and the reinsurer. Let’s see a toy example:

Example 1.3.2. In the following example the sum insured equals 10 000 000 and
the percentage of the quota share treaty is 30%. Libaility, premium and losses are
distributed between the primary insurer and the reinsurer as follows:

The parties often agree to limit the reinsurer’s liability per risk, thus they limit the
reinsurer’s liability to a maximum monetary amount for losses arising under one
single risk. In this scenario, the reinsurer is only bound to pay his percentage of a
loss up until the per risk limit is exceeded, ie. until the limit for losses under one
single policy is beat.
However, particularly in case of a natural catastrophe, multiple policies in the port-
folio may be triggered: this may lead to a large-scale liability on the part of the
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Table 1.3: Example 1.3.2 of quota share treaty

Primary insurer (PI) ’s retention 70%
Reinsurance quota share 30%

Sum insured (SI) of the insured object 10 million
PI retains 70% of the exposure 7 million
Reinsurer assumes 30% of the exposure 3 million
Premium rate 2‰of the SI 20 000
PI retains 70% 14 000
Reinsurer receives 30% 6 000
Loss 6 million
PI pays 70% 4.2 million
Reinsurer pays 30% 1.8 million

reinsurer under the quota share treaty. This is why the parties regularly agree on a
limit per event to ease the situation for the reinsurer.
The quota share agreement is simple as well as cost-effective. Its disadvantage lies in
the fact that it does not sufficiently address the primary insurer’s various reinsurance
requirements since it measures everything by the same yardstick. In particular, quota
share reinsurance treaties do not help to balance a portfolio: indeed, they do not
limit the exposure posed by peak risks (for example, those with very high sums
insured). At the same time, such a treaty may also provide reinsurance cover where
none is needed: this can unnecessarily restrict the primary insurance company’s
profit-making options.
By the above statements it could seem like this type of reinsurance treaty is inconve-
nient in most cases but it actually have its uses in different scenarios. Quota share
treaties are especially suited for young, developing companies or companies which are
new to a certain class of business. As their loss experience is limited, they often have
difficulties in defining the correct premium: with a quota share treaty, the reinsurer
takes the risk of any incorrect estimates.
Quota share reinsurance is also well suited to limiting the risk of random fluctuation
and risk of change across an entire portfolio.

Surplus Treaty

Surplus reinsurance is a more sophisticated form of proportional reinsurance. With
this kind of treaty, the reinsurer does not participate in all risks as for the quota share
treaty: instead, the primary insurer itself retains all risks up to a certain amount of
liability (its retention). This retention may be defined differently for each type or
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class of risk. The reinsurer, for his part, it is obliged to accept the surplus, ie. the
amount that exceeds the primary insurer’s retention.
Of course, there must also be an upper limit to the reinsurer’s obligation to accept
risk. This limit is usually defined as a certain multiple of the primary insurer’s
retention, known as line. For each reinsured risk, the ratio that results between the
risk retained and the risk ceded is the criterion for distributing liability, premiums
and losses between the primary insurer and the reinsurer.
Also in this type of treaty, the parties regularly agree on a limit per event to ease
the situation for the reinsurer in case of natural catastrophes or events that trigger
multiple policies in the portfolio.
We now consider some toy examples in order to clarify the concept of surplus treaty:
in all the following examples the cedent’s retention is 300 000 and the reinsurer’s
liability (ie. the surplus) is limited to 9 lines.

Example 1.3.3. The cedent’s original liability (ie. the primary insurer’s liability to
the policyholder) from his share in a given risk amounts to 3 million. The premium
is 1.50‰of the sum insured and the loss is 1.5 million.
The risk is shared by the cedent and the reinsurer as follows:

Total
Cendent’s
retention

Reinsurer’s
surplus

Sum insured/liability 3 000 000 300 000 = 10% 2 700 000 = 90% (9 lines)

Premium 4 500 450 = 10% 4 050 = 90%

Loss 1 500 000 150 000 = 10% 1 350 000 = 90%

Example 1.3.4. The cedent’s original liability amounts to 130 000. The premium
is 1.50‰of the sum insured and the loss is 80 000.
The risk is shared by the cedent and the reinsurer as follows:

Total
Cendent’s
retention

Reinsurer’s
surplus

Sum insured/liability 130 000 130 000 = 100% 0 = 0%

Premium 195 195 = 100% 0 = 0%

Loss 80 000 80 000 = 100% 0 = 0%

9
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This toy example shows that, in contrast to quota share reinsurance, the reinsurer
receives no share of a risk if it does not exceed the amount defined as the primary
insurer’s retention.

Example 1.3.5. The cedent’s original liability amounts to 3 500 000. The premium
is 1.50‰of the sum insured and the loss is 2 000 000.
The risk is shared by the cedent and the reinsurer as follows:

Total
Cendent’s
retention

Reinsurer’s
surplus

Sum insured/liability 3 500 000 800 000[1] = 22.86%
2 700 000 = 77.14%

(9 lines)

Premium 5250 1200 = 22.86% 4050 = 77.14%

Loss 2 000 000 457 200 = 22.86% 1 542 800 = 77.14%

Notice that 800 000[1] in the table comes from

800 000 = 300 000 + 500 000

22.86% = 8.57% + 14.29%

where 500 000 is the portion of the risk in excess of the primary insurer’s maximum
retention (300 000, 1 line) plus his reinsurance surplus (2 700 000, 9 lines). The same
reasoning holds for premium and losses.
Thus this toy example shows that when the sum insured exceeds the surplus, the
primary insurer must either carry the risk himself (as he does in this example) or else
arrange suitable facultative reinsurance cover (this is the most frequent scenario).

In contrast to the quota share treaty, the surplus treaty is an excellent mean of
balancing the primary insurer’s portfolio and thus of limiting the heaviest exposures.
As the retention can be set at various levels according to the type of risk (or class
of business) and the expected loss, this type of treaty allows the primary insurer to
adjust the amount of risk it accepts to fit its company’s financial situation at any
time. The disadvantage though is that it is complicated, and therefore expensive, to
manage since it creates additional work on the accounting side.

Proportional Facultative

Under a proportional facultative reinsurance contract, the reinsurer reinsures a single
risk. Whenever the primary insurer is liable under the contract, it is entitled to
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be reimbursed for the relevant portion of the liability by the reinsurer under the
reinsurance contract. In return, the reinsurer has a right to be paid the relevant
portion of the premium as a reinsurance premium. It is presumed that both the
underlying and the reinsurance policies are designed to provide for identical or closely
matching cover.

1.3.2 Non-proportional reinsurance
With non-proportional reinsurance there is no set, pre-determined ratio for dividing
premiums and losses between the primary insurer and the reinsurer: the share of
losses that each pays will vary depending on the actual amount of loss incurred. The
treaty defines an amount up to which the primary insurer will pay all losses, the
deductible, while the reinsurer obliges himself to pay all losses above the deductible
amount, up to a contractually defined cover limit. This means that, in contrast
to surplus reinsurance, the reinsurer’s liability is triggered only if the reinsured’s
liability exceedes the deductible agreed in the non-proportional reinsurance contract.
As the price for this cover, the reinsurer charges a suitable portion of the original
premium: thus, in contrast with proportional reinsurance, treaty wordings do not
explicitly define the way premiums are to be shared by the primary insurance
company and the reinsurer. Rather, from the very beginning, the reinsurer must
estimate what future loss burden it can expect to pay under such a treaty. It has
two methods available to do this:

• Experience rating
This method is based on past loss experience: suitably adjusted, past loss
statistics can give a good picture of the loss burden to be expected in the future.

• Exposure rating
If no adequate loss statistics are available, the reinsurer will use the company’s
own risk profile and attempt to fit an exposure curve on it in order to be able
to quantify the differences between the portfolio it is rating and the one it is
using for comparison.

We will deal with exposure curves in a more detailed way in Chapter 2 section 3.
As for proportional reinsurance, also for non-proportional reinsurance we can identify
different types of contracts or covers.

Excess of loss treaty (XoL)

Excess of loss (or XoL) reinsurance is structured quite differently from the pro-
portional types of treaty discussed above. With proportional treaties, cessions are
linked to the sums insured: with XoL reinsurance, in contrast, it is the loss that is
important. Here, no matter what the sum insured, the primary insurer carries for
its own account all losses incurred in the line of business named in the treaty, up to
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a certain limit that we already mentioned: the deductible. The reinsurer pays the
entire loss in excess of this amount, up to the agreed cover limit.
XoL insurance can be divided into covers per risk and covers per catastrophic event.

• Per risk XoL treaty
For this kind of reinsurance, the primary insurer’s deductible is applied on a
per risk basis. This is to say that reinsurance cover is taken out for single losses
which exceed the primary insurer’s deductible on any one risk. Notice that a
risk may refer to a single primary insurance risk or to an asset, such as a vehicle
or a building. Thus for per risk XoL treaties multiple policies are aggregated
only when they cover the same risk.

• Per event XoL treaty (CatXoL)
Per event XoL reinsurance protects the primary insurer when multiple single
losses on multiple different risks arise out of one single event, a catastrophe.
Thus the primary insurer’s deductible and the reinsurer’s cover limit are both
evaluated against the aggregate of any individual losses that result from any
single event.

Such treaties meet the needs of those primary insurers who want reinsurance protec-
tion (at least against large losses) while retaining as much of their gross premium
as possible. However, these insurers are also taking a risk that is greater than with
proportional insurance, for the reinsurer provides no relief from losses below the
deductible amount. Thus, in general non-proportional insurance greatly increase
the odd that the primary insurer will actually have to pay in full, and for its own
account, any losses near or at the agreed deductible amount.
We now present some toy examples in order to clarify the concepts of XoL reinsur-
ance and per risk/per catastrophe treaties. For all examples, we consider a primary
insurer’s retention at 8 million: to further protect his retention from major losses,
the primary insurer also buys a per risk XoL cover of 6 million xs 2 million. In
academical notation this would be written as 6xs2 (ie. 6 million in excess of 2 million:
the primary insurer pays up to 2 million while the reinsurer covers from 2 million to
8 million). As additional protection from catastrophic events, he decides to buy as
well a CatXoL with the limits 9 million xs 4 million (9xs4).

Example 1.3.6. A fire leaves the primary insurer with a loss of 1 million for his
own account.

Net losses
Primary insurer: 1 000 000

Per risk XoL reinsurer: 0 (2 million deductible not exceeded)
CatXoL reinsurer: 0 (4 million deductible not exceeded)

12



Introduction to reinsurance

This loss amount does not trigger any of the two reinsurance contracts, since the
per risk XoL is 6xs2 and the CatXoL is 9xs4. Thus the primary insurer will pay the
whole amount, while the two reinsurers do not have to cover any cost.
Example 1.3.7. A major fire leaves the primary insurer with a loss of 7 million for
his own account.
Since the per risk XoL is 6xs2, the primary insurer pays 2 million while the remaining
5 million are fully covered by the per risk XoL reinsurer. Notice that in this case,
since the primary insurer ends up paying just 2 million, the CatXoL reinsurance
contract (ie. 9xs4) is not triggered, though the CatXoL reinsurer does not have to
cover any cost.

Net losses
Primary insurer: 2 000 000 (ie. per risk XoL deductible)

Per risk XoL reinsurer: 5 000 000
CatXoL reinsurer: 0

Example 1.3.8. A single earthquake leaves the primary insurer with losses for his
own account as follows:

riskA riskB riskC riskD riskE
1 million 1 million 1 million 2 million 4 million

for a total loss of 9 million.
In this scenario, since the per risk XoL is 6xs2, the primary insurer has to pay in
full the risks A, B, C and D and half of the riskE while the other half will be paid
by the per risk XoL reinsurer (ie. 2 million). But by paying the first 4 risks in full
and half of the last one, the primary insurer exceeds the CatXoL deductible (ie. 7
million), thus he just pays 4 million and the remaining amount is covered by the
CatXoL reinsurer. Note tht this happens just in the case where the per risk XoLL
inures to the benefit of the CatXoL.

Net losses
Primary insurer: 4 000 000 (ie. CatXoL deductible)

Per risk XoL reinsurer: 2 000 000
CatXoL reinsurer: 3 000 000

Stop loss treaty

The stop loss treaty is designed for primary insurers who are seeking comprehensive
protection against fluctuations in their annual loss experience in a given class of
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business. In this somewhat rare form of reinsurance, the reinsurer is obliged to cover
any part of the total annual loss burden that exceeds the agreed deductible: usually,
this deductible is defined as a percentage of annual premium income, but it may
also be a fixed sum. It is irrelevant whether the deductible is exceeded by one single
large loss or an accumulation of small and medium-sized losses.
As it is not the purpose of the stop loss treaty to relieve the primary insurer of all
entrepreneurial risk, the reinsurer understandably requires the primary insurer to
incur a technical loss (ie. a loss in which losses + costs > premiums) before his duty
to pay is triggered.
The stop loss treaty is actually the most comprehensive form of reinsurance protection.
However, reinsurers have reservations towards this type of treaty, which is the reason
why it is not more widely used. There are several reasons for their restraint:

• A large amount of risk is transferred to the reinsurer while its means of influencing
the exposure remain limited

• The reinsurer loses premium volume, and hence influence

• The composition of most portfolios is becoming less transparent as the insurance
business becomes increasingly internationalised

Indeed, stop loss reinsurance is used to protect the primary insurer’s solvency, but
the reinsurer cannot increase the volume or size of primary insurance risks it is able
to accept by entering into this kind of treaty.
Stop loss reinsurance comes in two different types, excess of loss ratio and aggregate
excess of loss: the difference lies in the way the primary insurer’s deductible and the
reinsurer’s cover limit are defined.
Where an excess of loss ratio applies, the parties to the reinsurance treaty agree on a
certain percentage as the primary insurer’s deductible and the reinsurer’s cover limit.
Then the ratio between the annual losses and the net retained premium is expressed
in a percentage and tested against the percentages previously agreed upon.
Under an aggregate excess of loss treaty, the primary insurer is covered for the
aggregate of any loss that occurs within a defined period of time. Where this kind
of stop loss applies, the parties agree on the primary insurer’s deductible and the
reinsurer’s cover limit and express them in monetary amount. The aggregate of the
annual losses under the primary insurer’s portfolio is then tested against these figures
and with respect to those the treaty is or isn’t triggered.
Stop loss treaties are most frequently used for storm and hail insurance.

Facultative excess of loss

In facultative excess of loss reinsurance, the primary insurer has the option to cede or
not cede individual risks while the reinsurance company reviews individual risks and
determines whether to accept or reject them. As the reinsurance is non-proportional,
the parties agree that the primary insurer is liable for any loss that does not exceed
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its deductible. Once the amount of a loss exceeds it, the reinsurer’s liability up to a
specified cover limit will be triggered.
Also in this case there’s the possibility for a hybrid, known as facultative obligatory
XoL: the primary insurer has the option to cede or not cede individual risks while
the reinsurer must accept any risks that are ceded.
A facultative reinsurance contract may provide for a per event excess of loss mecha-
nism.
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Chapter 2

Ground up loss modelling

After a brief general introduction to reinsurance, we would like now to present all
the steps, observations and decisions an actuary has to make in order to build a
complete pricing model. In particular, the presentation will be done in line with
Sompo International’s work during contract renewal process and with respect to
what, as an actuarial intern in the company, I am doing on a daily basis.
In order to do so, we will start by introducing some generic guidelines known
throughout the industry. Then, we will go into further details with some of the
methods and choices that lie behind the pricing tool used by the company.
Later on, in section 2.2 we will start to analyze in a more detailed way the models
that lie behind each pricing. In particular, for non-proportional modelling the
frequency/severity models will be introduced.
However, pricings do not only rely on historical experience. For this reason, in the last
section the experience and exposure ratings approaches to pricing XoL reinsurance
will be presented.

2.1 Basics of pricing
Like primary insurance, reinsurance is a mechanism for spreading risk. But there
exists a major difference between the two: a reinsurance program is generally tailored
more closely to the buyer. Indeed, each contract must be individually priced to meet
the particular needs and risk level of the reinsured.
While the pricing process is the same for every client, the pricing methodology is
specific to each cedent. For this reason the basic pricing tools are usually only a
starting point in determining an adequate premium. It is the actuary that has to
know when the assumptions in these tools are not met and how to supplement the
results with additional adjustments and judgment.
In spite of that, some basic steps and modifications always need to be made in order
to have reliable information. We will then introduce the methods used by most of
the companies, thus also Sompo International, to correctly forecast future losses.
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2.1.1 Data "as-if "
As we stated in the previous chapter, there are two different types of reinsurance,
proportional and non-proportional, and for each of these there are standard steps
that should be included in the pricing analysis and that follow standard ratemaking
procedures.
One of the most important things to remember when it comes to pricing is the need
to consider the historical data "as-if ": this means that we should adjust data that are
prior to the reinsurance treaty "as if" they would correspond to the treaty year. This
must be done in order to forecast future information while considering the effects of
inflation or market changes.
When receiving a submission from cedents, historical premiums and general losses
are usually gathered in cumulative triangles with respect to the origin period and
the development years. The large losses instead (usually above a specified threshold)
are given separately and we often have other information, such as the date of loss
and some notes concerning the loss.
What we need to do is to adjust experience to ultimate level in order to project to
future periods of time. The historical losses need to be developed to an ultimate
basis and if the treaty experience is insufficient to estimate loss development factors,
data from other sources may need to be used. Depending on the source of these
factors, adjustments for the reporting lag to the reinsurer may need to be made.
We should also adjust historical premiums to the future level. The starting point
to do that is historical changes in rates and average pricing factors (ie. changes in
schedule rating credits). Also the impact of rate changes anticipated during the treaty
period should be taken into account. Notice that if the premium base is inflation
sensitive then an exposure inflation factor should be included in the adjustment of
historical premium.
Finally, the losses need to be adjusted: various sources are available for this adjust-
ment, including the amounts used in the ceding company’s own rate filings. Within
the company, we dealt with this issue before renewal time. Indeed, we computed the
inflation parameter over all cedents large losses in order to have it fixed over all the
pricings made along the year.

2.1.2 Loss development methods
Forecasting future claims is an important part of the business of a reinsurance
company. Indeed, the published profits of these companies depend not only on the
actual claims paid, but on the forecasts of the claims which will have to be paid.
Therefore, it is essential that a reliable estimate is available in order to ensure the
financial stability of the company and its profit and loss account.
There are a number of methods which have proved useful in practice and all of these
depend on finding some pattern in the way that claims have been settled in the past
so that it can be applied to the future.
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The actuary will select the method only after the most thorough analysis of the data
at hand, which will involve:

• Checking the accuracy of all the data used

• Taking care of special features, such as large losses, cat events or other excep-
tional claims, since they will need careful treatment

• Selecting what type of data to use since some methods have particular data
requirements

• Evaluating the result in the light of the knowledge of the business and, eventually,
comparing with available external brenchmarks

There are many methods that are in use today, but we will introduce just the two
methods used within the actuarial team in Zurich during the pricing process: the
Chain Ladder method and the Bornhuetter-Ferguson method (BF).
These two classic methods involve grouping the claims data in a triangle. In our
case the data is shown as cumulative across the columns and classified in a row of
the triangle according to when it originated and into a column according to when it
emerged, but in some other companies the opposite convention is used. This is why,
when dealing with data, an actuary must pay attention to be consistent with the
convention in order not to mismatch information.
Another aspect that an actuary must take into account while analyzing the data is
to check in which origin period the data are given. We have two options:

• Accident year (AY): claims are grouped according to the year in which they
occurred

• Policy year (PY) or underwriting year (UY): claims are grouped according to
the year the insurance policy incepts

Indeed, the treaty can be either on a losses occurring basis, for which earned premium
and accident year losses should be used, or on a risk attaching basis, where written
premium and the losses covered by policies incepting during this year are used.
Table 2.1 shows a left aligned triangle based on accident year: the data are fictitious
and we assume it relates to claims incurred (ie. claims paid plus any outstanding
case estimates).
It is important to know the attachment basis because calculations have different
implications with the two different bases. Indeed, projecting on an AY basis gives a
forecast of the cost of all claims arising from events occurring in the period covered
by the data, whether they have been notified or not. If, on the other hand, the data
is on a PY basis, then the results will be an estimate corresponding to all policies
that have been written during the period of insurance.
Now we introduce the two methods in order to understand better how the claims
reserves projection works in practice.
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Table 2.1: Example of a left aligned triangle

Development year
AY 1 2 3 4 5 6
2015 1 900 000 2 700 000 3 600 000 4 000 000 4 200 000 4 200 000
2016 1 000 000 1 800 000 2 900 000 3 700 000 4 600 000
2017 2 500 000 4 000 000 5 200 000 5 400 000
2018 1 500 000 2 500 000 2 700 000
2019 2 000 000 2 900 000
2020 2 300 000

Chain Ladder

The Chain Ladder method is probably one of the oldest methods of paid/incurred
claims projection and still one of the most popular ones.
This method works by calculating an average factor for estimating the cumulative
amount in each year starting from the cumulative amount in the previous year.
This average can be formed by averaging the loss development factors (commonly
referred to as LDFs), obtained by dividing the cumulative amount in one year over
the cumulative amount in the previous year.
Let Cik denote the cumulative loss amount of accident year i = 1, . . . , n at the end
of development year (age) k = 1, . . . , n. The amounts Cik have been observed for
k ≤ n + 1− i whereas the other amounts have to be predicted.
The Chain Ladder algorithm consists of the stepwise prediction rule

Ĉi,k+1 = Ĉikf̂k

starting with Ĉi,n+1−i = Ci,n+1−i. Here the age-to-age factor f̂k is defined by

f̂k =
qn−k
i=1 wikC

α
ikFikqn−k

i=1 wikCα
ik

, α ∈ {0, 1, 2}

where

Fik = Ci,k+1

Cik

, 1 ≤ i ≤ n , 1 ≤ k ≤ n− 1

are the individual development factors and where wik ∈ [0, 1] are arbitrary weights
which can be used by the actuary to downweight any outlying Fik. Normally, wik = 1
for all i, k. If this is the case, then α = 1 gives the historical chain ladder age-to-age
factors, α = 0 gives the straight average of the observed individual development
factors and α = 2 is the result of an ordinary regression of Ci,k+1 against Cik with
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intercept 0.
The above stepwise rule finally leads to the prediction of the trended/developed loss:

Ĉin = Ci,n+1−if̂n+1−i · ... · f̂n−1 (2.1)

where the product of the f̂j , j = n + 1− i, . . . , n− 1 is referred to as the age-to-
ultimate factor.
Notice that we reached the prediction of Cin but, because of limited data, the loss
development of accident year i does not need to be finished at age n. Therefore, the
actuary often uses a tail factor f̂ult > 1 in order to estimate the ultimate loss amount
Ci,ult by

Ĉi,ult = Ĉinf̂ult.

A possible way to arrive at an estimate for the tail factor is a linear extrapolation of
ln(f̂k − 1) by a straight line a · k + b, a < 0, together with

f̂ult =
∞Ù
k=n

f̂k.

However, the tail factor used must be plausible and, therefore, the final tail factor is
the result of the personal assessment of the future development by the actuary.

The Chain Ladder method is intuitively appealing and simple to approach, but it
may present some problems:

• Since the estimate for each origin period is formed by multiplying the most
recent value in each origin period by a LDF, if the most recent value is very
large then the factor may overestimate the eventual losses for this period

• The LDFs must be stable across the origin periods for the method to produce
sensible results and such stability is rare

For this reason, when applying the method an actuary must pay attention to the
development pattern and to the LDFs: indeed, if the development pattern has
changed a lot over the years, then it may be better to use only data from the most
recent calendar periods in order to reflect better the current conditions.
Also, if the results affected by the LDFs appear to be highly unusual then it may be
of interest to rearrange the factors. It is important to underline though that this
should be done only after fully investigating the reasons: indeed, special adjustments
to data using available information can help to deal with changes or adaptations.

Bornhuetter-Ferguson (BF)

The Bornhuetter-Ferguson method (or BF for short) requires some additional in-
formation with respect to the Chain Ladder method, namely the corresponding
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premiums for each origin period. Remember that if we are dealing with accident
years the premiums chosen should be earned premiums, whereas for policy years the
premiums chosen should be written premiums.
The thrust of this method is, for each origin period, to balance the proportion of the
eventual claims outgo we currently know about against a similar proportion of the
premium. In order to know the proportion, we rely upon the approximation deriving
from the Chain Ladder method.
The BF estimate of the reserve is achieved by the following computation:

res = On level premium x (1 - Lag factor) x Initial loss ratio (2.2)

where the lag factor is the reciprocal of the age-to-ultimate factor estimated with
the Chain Ladder method. The first step, therefore, is to find these lag factors.
The second step is to determine the initial loss ratio to use. Indeed, if the initial loss
ratio can be estimated with sufficient accuracy, then it is likely that this method will
be more accurate than the Chain Ladder method.
There are different choices that can be made. However, we will just consider the
method used here in the Zurich team, where, by referring to the same notation used
in the Chain Ladder method, the choice of the initial loss ratio is given by

r =
nØ
i=1

Ciwi

Pi
, wi = Pi

P

with Ci = q
k Cik being the cumulative trended/developed loss for accident year i,

Pi the respective on level premium and P = qn
i=1 Pi the total on level premium.

Indeed, the loss ratio estimate used for the BF method is nothing but the average of
the results obtained for each accident year from the Chain Ladder method.

2.2 Ground up loss models
The purpose of this section is to develop models of aggregate losses, ie. the total
amount paid on all claims occurring in a fixed time period on a define set of contracts.
Indeed, we may need a model for the aggregate amount of losses, while in other
situations a model for individual losses that exceeds a specific threshold is needed.
There are two main types of models: the individual risk model and the collective
risk model.

Individual risk model

The individual risk model represents the aggregate loss as the sum of the amounts
paid on each component of the portfolio of risks. That is,

S = X1 + X2 + ... + Xn (2.3)
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where Xi is the amount paid on the i-th contract and n is a fixed number. Furthermore,
unless stated otherwise, it is assumed that X1, . . . , Xn are independent.

Collective risk model

The collective risk model represents the aggregate losses as a sum S of a random
number N of individual loss amounts (X1, ..., XN). Hence,

S = X1 + X2 + ... + XN , N = 0, 1, 2, ... (2.4)

where the Xi, i = 1, ..., N are independent and identically distributed (iid) ran-
dom variables (rvs), unless otherwise specified. More formally, the independence
assumptions are:

- Conditional on N = n, the rvs X1, ..., Xn are iid

- Conditional on N = n, the common distribution of the rvs X1, ..., Xn does not
depend on n

- The distribution of N does not depend in any way on the values of X1, X2, ...

Individual risk models, also referred to as aggregate loss models, are used for quota
share and surplus treaties while collective risk models are mainly related to XoL
pricings.
However, before proceeding with the introduction of the models, we briefly introduce
the method used for parameters estimation by the actuaries in the Zurich team and,
in general, in this field of interest: the maximum likelihood method.

Maximum likelihood method

The principle of maximum likelihood is relatively straightforward. It is a method
that determines values for the parameters of a model. The parameter values are
found such that they maximize the likelihood that the process described by the
model produced the data that were actually observed.
We start with a sample of observable data X = (X1, . . . , Xn) that has a specified
model, ie. a collection of distribution functions {Fθ : θ ∈ Θ} indexed by the
parameter space Θ. Data is observed, but we don’t know which of the models Fθ it
came from. We are assuming though that the model is correct, ie. that there is a θ
value such that X ∼ Fθ. The goal then is to identify the model that explains the
data the best. This amounts to identifying the true but unknown θ value. Hence,
our goal is to estimate the unknown θ.
So let’s suppose X ∼ Fθ, where the Xj are iid and the parameter θ is unknown.
We further suppose that for each θ Fθ(x) admits a probability function f(x|θ).
Thus, f(x|θ), with x = (x1, . . . , xn), is the probability density function of the joint
distribution and it measures the probability of observing the data given a model
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parameter θ. Notice that since we assumed independence, the joint distribution is
nothing but the product of all the individual probability distributions:

f(x1, . . . , xn|θ) =
nÙ
i=1

f(xi|θ)

Then, the principle of maximum likelihood yields a choice of the estimator θ̂ as the
value for the parameter that makes the observed data most probable.
The likelihood function is the density function regarded as a function of θ:

L(θ|x) = f(x|θ), θ ∈ Θ
It is important to underline the differences between the likelihood function and the
probability density function:

• The probability density function expresses the probability of observing our data
given the underlying distribution parameters and it assumes that the parameters
are known

• The likelihood function expresses the likelihood of parameters values occurring
given the observed data and it assumes that the parameters are unknown

If L(θ1) > L(θ2) then θ1 is more likely to have been responsible for producing the
observed data. In other words, Fθ1 is a better model than Fθ2 in terms of how well it
fits the observed data.
Finally, the maximum likelihood estimator (MLE) of the parameter θ is the
value that maximizes the likelihood function:

θ̂(x) = arg max
θ

L(θ|x).

Typically, we will maximize the score function, ie. the logarithm of the likelihood
function lnL(θ|x), because it it simpler.
This class of estimators has an important property:
If θ̂ is a maximum likelihood estimate for θ, then η̂ = g(θ̂) is a maximum likelihood
estimate for η = g(θ).

Proof. If g is invertible the likelihood function written as a function of η is simply
given by

L(g−1(η)) = L(g−1(g(θ)) = L(θ).

But we know that θ̂ is the MLE of θ, thus the largest this function can be is L(θ̂).
Therefore, in order to maximize, it is enough to choose η̂ such that g−1(η̂) = θ̂, ie.
take η̂ = g(θ̂).
If g is not invertible there is not a unique θ corresponding to each η anymore, thus
in order to define L(η) we need to make a choice for θ. Define
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L(η) = max
θ:g(θ)=η

L(θ)

then again the largest value for L(η) occurs at g(θ̂) since θ̂ maximizes L, thus η̂ = g(θ̂)
will be chosen.

This whole discussion can be extended to cases in which more than one parameter
has to be estimated (as for the Normal distribution for example).

2.2.1 Individual risk models
As we already know, a proportional treaty is an agreement between a reinsurer and
a ceding company in which the reinsurer assumes a given percentage of losses and
premium.
The following steps should be included in the pricing analysis for proportional treaties:

1. Compile the historical experience on the treaty
Assemble the historical premium and incurred losses on the treaty for five or
more years. If this is not available, the whole environment should be adjusted
"as-if" the treaty terms had been in place.

2. Exclude catastrophe and shock losses
Cat losses are due to a single event, such as a hurricane or earthquake, which
may affect a large number of risks. Shock losses are any other losses, usually
affecting a single policy, which may distort the overall result. However, for
different types of contracts (ie. property, casualty, ...) we can have different
kinds of situations.

3. Adjust experience to ultimate level and project to future period
The historical losses need to be developed on an ultimate basis, the historical
premium has to be adjusted to the future level and the losses need to be trended
to the future period.

4. Select the expected non-cat loss ratio for the treaty
If the data used in point 3. is reliable, the expected loss ratio is simply equal to
the average of the historical loss ratios adjusted to the future level. It may be
worthwhile comparing this amount to the ceding company’s gross experience if
available.

5. Load the expected non-cat loss ratio for cat
Even if typically there is insufficient credibility in the historical loss experience
to price a loading for cat potential, this amount is critical for some treaties
evaluations. Furthermore, it is important to take it into consideration.
However, for some line of businesses cat models are available. These models
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can be used by the actuaries in order to have an estimate of cats based on the
client’s exposure.

6. Estimate the combined ratio given ceding commission and other expenses
After the total expected loss ratio is estimated, other features must be evaluated
such as ceding commissions, reinsurer’s expenses or brokerage. This will be
discussed in Chapter 3.

In this section we will focus instead on the third point.
There are three basic approaches to derive the loss distribution: empirical, analytical
and moment based. The empirical method can be used only when large data
sets are available and in such cases a quite accurate estimate of the cumulative
distribution function (cdf) is obtained. The analytical approach reduces to finding a
suitable analytical expression which fits the observed data well and which is easy to
handle. Finally, the moment based approach consists of estimating only the lowest
characteristics of the distribution, therefore since these information do not fully
define the shape of a distribution the fit to the observed data may be poor.
For proportional treaties the log-normal distribution parameterized by µ and σ
is used. Indeed, the single distribution approach, in contrast with the collective
risk models, assumes that the aggregate of all losses to the treaty follows a known
cumulative distribution function form.

Lognormal distribution

A positive random variable Z is lognormally distributed if the logarithm of the random
variable is normally distributed. Hence Z follows a lognormal(µ,σ2) distribution if
its density function is given by

fZ(z; µ, σ2) = (2πσ2)− 1
2

z
exp

;
− 1

2σ2 (log z − µ)2
<

for z > 0, −∞ < µ < +∞ and σ > 0.
The moments of the lognormal distribution can be calculated from the moment
generating function of the normal distribution. Indeed, considering Y to be a random
variable normally distributed, the k-th moment mk is defined as

mk = E[Zk] = E[eY k] = MY (k) = exp
3

µk + σ2k2

2

4
where MX(z) is the moment generating function of the normal distribution.
Thus, the mean of the lognormal distribution is given by

E[Z] = exp
3

µ + 1
2σ2

4
and the variance is given by
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Var[Z] = E[Z2]− E2[Z] = exp(2µ + 2σ2)− exp(2µ + σ2).

We now estimate the parameters with the maximum likelihood method.
If z = (z1, . . . , zn) are randomly selected from independent observations which follow
the lognormal distribution, from (2.2.1) the function of the likelihood can be written
as

L(µ, σ2) =
nÙ
i=1

fZ(z; µ, σ2) = (2πσ2)−n
2 exp

;
−

nØ
i=1

1
2σ2 (log zi − µ)2

< nÙ
i=1

1
zi

The function of loglikelihood of µ and σ2 is the following:

l = −n

2 log σ2 − n

2 log 2π −
nØ
i=1

1
2σ2 (log zi − µ)2 −

nØ
i=1

log zi

= −n

2 log σ2 − n

2 log 2π −
nØ
i=1

(log zi)2

2σ2 −
nØ
i=1

2 log ziµ

2σ2 − nµ2

2σ2 −
nØ
i=1

log zi

We now use the first form of the loglikelihood function to compute the partial
derivative with respect to σ2 and the second one to compute the one with respect to
µ:

∂l

∂µ
=

nØ
i=1

log zi
σ2 − 2nµ

2σ2

∂l

∂σ2 = − n

2σ2 +
nØ
i=1

(log zi − µ)2

2σ4

By setting these quantities equal to zero, we obtain the the following maximum
likelihood estimators:

µ̂ = 1
n

nØ
i=1

log zi

σ̂2 = 1
n

nØ
i=1

(log zi − µ̂)2

Once we have the estimation of our parameters, we can retrieve the mean and the
variance of Z.

2.2.2 Collective risk models
Collective risk models differ from individual risk models because of the number of
losses. In fact, this time the number of losses is a random variable that needs to
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be modeled too. Consequently, the distribution of S in (2.4) is obtained from the
distribution of N and the distribution of the Xj, j = 1, ..., N : this is the reason
why we refer to this model as collective model. Using this approach, the frequency
and severity of claims are modelled separately and the information about these
distributions are used to obtain information about S.
Modelling the distribution of N and the distribution of each Xj separately has some
advantages:

• The expected number of claims changes as the business changes: growth in
volume needs to be accounted for in forecasting the number of claims in future
years

• The effects of general economic inflation is reflected in the losses incurred by
insured parties and the claims paid by reinsurance companies

• The impact on changing individual deductibles and limits is more easily studied

• The shape of the distribution of S depends on the shapes of both distributions
of N and X and this can be very useful when modifying policy details

In summary, a more accurate and flexible model can be constructed by examining
frequency and severity separately.
In constructing the model (2.3) for S, N represents the actual number of losses to
be insured while the Xjs are the individual loss random variables. Indeed, S is the
aggregate loss random variable.
In many cases of fitting frequency or severity distributions to data, several distri-
butions may be good candidates for models. However, some distributions may be
preferable for a variety of practical reasons. In general, it is useful for the severity
distribution to be from a scale family (ie. if a rv X is in the scale family, then also
Y = cX is a member of that family) since the choice of currency should not affect
the result. Also, scale families are easy to adjust for inflationary effects over time.
In fact, when forecasting the costs of a future year, the anticipated rate of inflation
can be factored in easily by adjusting the parameters.
A similar consideration applies to frequency distributions. Indeed, as a block of an
insurance company’s business grows, the number of claims can be expected to grow,
all other things being equal. In the meantime, though, ideally the model selected
should not depend on the length of the time period used in the study of claims
frequency. This is why the expected frequency should be proportional to the length
of the time period, after any adjustment for growth in business.
The derivation of distributions is not an easy task. Reinsurers normally keep data
files containing detailed information about policies and claims, which are used for
accounting and rate-making purposes. However, claim size distributions and other
data needed for risk-theoretical analyzes can be obtained usually only after a tedious
data preprocessing. Moreover, the claim statistics are often limited since files con-
taining detailed information about some policies and claims may be missing.
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There may also be situations where prior data or experience are not available at all,
for example when a new type of insurance is introduced or when very large special
risks are insured. Then the distribution has to be based on knowledge of similar
risks or on extrapolation of some of them.
Despite the differences that lie in each scenario, there are some basic approaches
that the reinsurers follow. We will not introduce all the available procedures, but
just the ones that actuaries in my team use on a daily basis.

Frequency distributions
The purpose of studying counting distributions in a reinsurance context is simple.
Counting distributions describe the number of losses, thus with an understanding of
both the number of losses and the size of losses, one can have a deeper understanding
of a variety of issues surrounding reinsurance than if one has only information about
total losses.
We will focus on parametric models of loss numbers since they summarize the
information about a distribution in terms of the form of the distribution and its
parameter values. In particular, we will consider the Poisson distribution and the
Negative binomial distribution.

Poisson distribution

As known, the Poisson distribution has probability function given by

pk = e−λλk

k! , k = 0, 1, 2, ...

and the mean is equal to the variance and is λ.
The Poisson distribution has two useful properties. The first is given in the following
theorem:
Theorem 2.2.1. Let N1, ..., Nn be independent Poisson variables with parameters
λ1, ..., λn. Then N = N1 + ... + Nn has a Poisson distribution with parameter
λ1 + ... + λn.

Proof. The probability generating function of the Poisson variable N with parameter
λ is given by

PN(z) = E[zN ] =
∞Ø
k=0

pkz
k =

∞Ø
k=0

(zλ)ke−λ−λz+λz

k! = eλz−λ
∞Ø
k=0

(zλ)ke−λz

k! = eλ(z−1)

The pgf of the sum of independent random variables is the product of the individual
pgfs. Thus for the sum of Poisson random variables N = N1 + ... + Nn we have

PN(z) =
nÙ
j=1

PNj(z) =
nÙ
j=1

exp[λj(z − 1)] = exp
 nØ
j=1

λj(z − 1)
 = eλ(z−1)
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where λ = λ1 + ... + λn. Since the pgf is unique, N must have a Poisson distribution
with parameter λ.

The second property of the Poisson distribution is particularly useful in reinsurance
modelling. Suppose that the number of losses in a fixed time period follows a Poisson
distribution. Further suppose that the losses can be classified into m different types
(for example, losses could be classified by size as those who are below a fixed limit
and those above that limit). It turns out that if one is interested in studying the
number of losses above the limit, that distribution is also Poisson but with a new
Poisson parameter.
It is also interesting to note that in the scenario presented above the number of losses
of different types will not only be Poisson distributed, but also be independent of
each other; that is, the distributions of the number of losses above the limit and the
number below the limit will be independent.
Before proceeding with the theorem that formalize these ideas, we prove the following
statements:

Theorem 2.2.2. If X and Y are independent Poisson random variables with re-
spective parameters λ1 and λ2, then the conditional joint distribution of X, given
X + Y = n, is binomially distributed.

Proof. Let Z = X + Y . For k = 0, 1, . . . , n we have that

pX(k|Z = n) = P (X = k, Z = n)
P (Z = n)

= P (X = k, Y = n− k)
P (Z = n)

= P (X = k)P (Y = n− k)
P (Z = n) .

Since we know that Z is also a Poisson with mean λ1 + λ2, we get

pX(k|Z = n) =
e−λ1 · λ

k
1
k! · e

−λ2 · λ
n−k
2

(n−k)!

e−(λ1+λ2) · (λ1+λ2)n
n!

=
A

n

k

B
·

 λ1

λ1 + λ2

k ·
 λ2

λ1 + λ2

n−k

hence it is a binomial distribution with parameters n and λ1
λ!+λ2

.

Theorem 2.2.3. If X1, ..., Xn is a random sample from a Poisson distribution with
parameter λ, then the conditional joint distribution of X1, ..., Xn, given Y = qn

i=1 Xi,
is multinomial with parameters (n, p), where p = (p1, . . . , pn) and pi = λ

nλ
= 1

n
.

Proof. The joint probability mass function of the Xi is
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pX(x) =
nÙ
i=1

e−λλxi

xi!
= e−nλ λ

q
i
xi

x1! · · · xn! .

Y = qn
i=1 Xi is a Poisson random variable with parameter nλ and so

P{Y = N} = e−nλ (nλ)N
N ! .

Now we have that

P{(X1 = x1, ..., Xn = xn) ∩ (Y = N)} =


e−nλ λ

q
i
xi

x1!···xn! , if
q
i xi = N

0, if qi xi /= N

and so

pX(x|Y = N) = P{(X1 = x1, . . . , Xn = xn) ∩ (Y = N)}
P{Y = N}

= N !
nNx1! · · · xn! if

Ø
i

xi = N

= N !
x1! · · · xn!

 1
n

x1

· · ·

 1
n

xn where Ø
i

xi = N

which is a multinomial distribution with parameters n and p, where p = (p1, . . . , pn)
and pi = 1

n
..

We assumed the each Xi to have parameter λ for the sake of simplicity, but nothing
changes if we consider each Xi with λi as parameter.
We now formalize the Poisson property we nominated before:

Theorem 2.2.4. Suppose that the number of events N is a Poisson random variable
with mean λ. Further suppose that each event can be classified into one of m types
with probabilities p1, ..., pm independent of all other events. Then the number of
events N1, ..., Nm corresponding to event types 1, ..., m respectively, are mutually
independent Poisson random variables with means λp1, ..., λpm respectively.

Proof. For fixed N = n, the conditional joint distribution of (N1, ..., Nm) is multi-
nomial with parameters (n, p), where p = (p1, ..., pm). Also for fixed N = n, the
conditional marginal distribution of Nj is binomial with parameters (n, pj).
The joint probability function of (N1, . . . , Nm) is given by
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P (N1 = n1, . . . , Nm = nm) = P (N1 = n1, . . . , Nm = nm|N = n) · P (N = n)

= n!
n1! · · · nm!p

n1
1 · · · pnmm

e−λλn

n!

=
mÙ
j=1

e−λpj (λpj)nj
nj!

where n = n1 + · · ·+ nm. Similarly, the marginal probability function of Nj is given
by

P (Nj = nj) =
∞Ø

n=nj
P (Nj = nj|N = n)P (N = n)

=
∞Ø

n=nj

A
n

nj

B
p
nj
j (1− pj)n−nj e−λλn

n!

= e−λ (λpj)nj
nj!

∞Ø
n=nj

[λ(1− pj)]n−nj

(n− nj)!

= e−λ (λpj)nj
nj!

eλ(1−pj)

= e−λpj (λpj)nj
nj!

Hence the joint probability function is the product of the marginal probability
functions, establishing mutual independence.

After a general introduction to Poisson distribution and some of its useful properties,
we will now illustrate the method of estimation by fitting a Poisson model.
Let nk denote the number of years in which a frequency of exactly k losses occurred.
If the likelihood contribution of an observation of k is pk, then the likelihood for the
entire set of observations is

L =
∞Ù
k=0

pnkk (2.5)

and the loglikelihood is

l =
∞Ø
k=0

nk log pk.

The likelihood and loglikelihood functions are functions of the unknown parameters.
In this case, with the Poisson distribution there is only one parameter, making the
maximization easier.
For the Poisson distribution we obtain
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pk = e−λλk

k!
thus we have

log pk = −λ + k log λ− log k!.

The loglikelihood is

l = −λn +
∞Ø
k=0

k nk log λ−
∞Ø
k=0

nk log k!.

Differentiating the loglikelihood with respect to λ, we obtain

dl

dλ
= −n +

∞Ø
k=0

k nk
1
λ

and by setting the derivative of the loglikelihood to zero, the maximum likelihood
estimate is obtained as the solution of the resulting equation. The estimator is then

λ̂ =
q∞
k=0 knk

n
.

Thus the estimator has mean and variance respectively equal to

E[λ̂] = λ and Var[λ̂] = λ

n

Negative binomial distribution

The negative binomial distribution is often used as an alternative to the Poisson
distribution. Because it has two parameters, it has more flexibility in shape than the
Poisson. However, this distribution does not possess the properties that make the
Poisson very versatile. In particular, Theorem 2.2.4 does not hold for the negative
binomial distribution.
The probability function of the negative binomial distribution is given by

pk =
A

k + r − 1
k

B 1
1 + β

r β

1 + β

k, k = 0, 1, . . . , r > 0, β > 0

where the binomial coefficient is to be evaluated asA
x

k

B
= x(x− 1) · · · (x− k + 1)

k! , k ∈ Z, x ∈ R.

The mean and variance of the negative binomial distribution are

E[N ] = rβ and Var[N ] = rβ(1 + β)
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Because β is positive, it can be seen that the variance in this case exceeds the mean.
This is in contrast to the Poisson distribution for which the variance is equal to the
mean. This suggests that for a particular set of data, if the observed variance is
larger than the observed mean, the negative binomial might be a better candidate
than the Poisson distribution as a model to be fitted.
We now examine the maximum likelihood estimation for this distribution. Since the
structure of the maximum likelihoood function for the entire set of observations is
again (2.5), the loglikelihood for the negative binomial is

l =
∞Ø
k=0

nk log pk

=
∞Ø
k=0

nk

C
log

A
r + k − 1

k

B
− r log(1 + β) + k log β − k log(1 + β)

D
.

The loglikelihood is a function of the two parameters β and r. In order to find
the maximum of the loglikelihood we now differentiate with respect to each of the
parameters, set the derivatives equal to zero, and solve the system for the parameters.
The derivatives of the loglikelihood are

∂l

∂β
=

∞Ø
k=0

nk

A
k

β
− r + k

1 + β

B
and

∂l

∂r
= −

∞Ø
k=0

nk log(1 + β) +
∞Ø
k=0

nk
∂

∂r
log (r + k − 1) · · · r

k!

= −n log(1 + β) +
∞Ø
k=0

nk
∂

∂r
log

k−1Ù
m=0

(r + m)

= −n log(1 + β) +
∞Ø
k=0

nk
∂

∂r

k−1Ø
m=0

log(r + m)

= −n log(1 + β) +
∞Ø
k=1

nk
k−1Ø
m=0

1
r + m

Setting these equations to zero yields

r̂β̂ =
q∞
k=0 knk

n
= µ̂

and

n log(1 + β̂) =
∞Ø
k=1

nk

A
k−1Ø
m=0

1
r̂ + m

B
.

Note that we did not solve the full system in order to underline the fact that the
maximum likelihood estimator of the mean is the sample mean.
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Finally, these last two equations can be solved either analytically, for example by
solving the first equation for r̂ and substituting it in the second equation, or with
numerical methods (such as the Newton’s method).

Severity distributions

As previously mentioned, to derive the loss distributions we can either use the
empirical, analytical or moment based approach. Following the company’s approach
for non-proportional pricing, we will focus on the analytical methods.
It is often desirable to find an explicit analytical expression for a loss distribution.
This is particularly the case if the claims statistics are too sparse to use the empirical
approach. It should be stated, however, that many standard models in statistics
are unsuitable for fitting the claim size distribution. The main reason for this is the
strongly skewed nature of loss distributions.
For this reason, a smaller number of distributions is commonly used and, furthermore,
each reinsurance company has its own approach towards modelling.
There are different possible choices made by the actuaries when it comes to distri-
butions. This is due to the fact that non-proportional reinsurance contracts are in
general more complex than the proportional ones, thus a wider variety of distributions
may be needed in order to make the right choice when it comes to modeling different
scenarios.
For this reason, we will introduce here just some of the basic distributions used in
the company. However, before proceeding please note that one of the distributions
used for modelling is once again the lognormal distribution but we will not present
it again here.

Exponential distribution

The exponential distribution is the best option if we want to adopt a lighter approach.
This means that, since it is a thin tailed distribution, it will tend to lead to a lower
average cost per loss with respect to the data we have.
Suppose we observe the first n terms of a sample x = (x1, . . . , xn) of random variables
X, having an exponential distribution. Thus a generic term of the sequence Xj has
probability density function

fX(xj) =

λe−λxj ifxj ∈ [0,∞)
0 otherwise

where the parameter λ is what needs to be estimated.
As usual we consider the likelihood and log-likelihood functions respectively:
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L(λ;x) =
nÙ
j=1

λe−λxj = λne−λ
qn

j=1 xj

l(λ;x) = n log λ− λ
nØ
j=1

xj

and by differentiating with respect to λ and setting the result equal to zero we obtain
the following estimator:

dl

dλ
= n

λ
−

nØ
j=1

xj = 0 =⇒ λ̂ = nqn
j=1 xj

Thus the estimator is nothing but the reciprocal of the sample mean.

Gamma distribution

Suppose we observe the first n terms of a sample x = (x1, . . . , xn) of random variables
X, this time having a Gamma distribution:

f(x; α, β) = βαxα−1e−βx

Γ(α) forx > 0, α, β > 0

Notice that if the shape parameter α = 1, the exponential distribution results. The
loglikelihood function is given by

l(x; α, β) = (α− 1)
nØ
i=1

xi − n log Γ(α) + nα log β − β
nØ
i=1

xi (2.6)

By computing the partial derivative of the loglikelihood function with respect to β
we obtain

∂l

∂β
= −

nØ
i=1

xi + nα

β
= 0 =⇒ β̂ = α

x̄

where x̄ is the sample mean.
The next step is to substitute this estimate into (2.6) in order to retrieve α̂:

l(x; α, β̂) = (α− 1)
nØ
i=1

xi − n log Γ(α) + nα log α− nα log x̄− nα

There are different ways in order to maximize this function since there is no closed
form solution for this equation with respect to α. We would need to use an approxi-
mation algorithm or some iterative strategy in order to find a good approximation.
The same holds for the initial guess α0.
However, we will not go into further details of the above mentioned strategies since
it is not the scope of this section. However, it is good to observe that the Gamma
distribution is very useful in creating other distributions.
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Pareto distribution

The Pareto distribution is widely used and it is usually fitted to large losses, ie. losses
above a threshold. Its cumulative distribution function and probability distribution
function are respectively

F (x; α, k) =

1−
1
k
x

2α
k ≤ x <∞ ; α, k > 0

0 otherwise

f(x; α, k) =


αkα

xα+1 k ≤ x <∞ ; α, k > 0

0 otherwise

The parameter k marks a lower bound on the possible values that a Pareto distributed
random variable can take on. Indeed, this is the threshold that we rely upon when
dealing with large losses.
The mean and variance of a Pareto distribution are given by

E[X] = αk

(α− 1) , α > 1 ; Var[X] = αk2

[(α− 1)2(α− 2)] , α > 2

We are interested in estimating the parameters of the Pareto distribution, so let’s
consider a sample x = (x1, . . . , xn) of random variables X having the above mentioned
distribution. The likelihood function has the following form:

L(k, α;x) =
nÙ
i=1

αkα

xα+1
i

, 0 < k ≤ min{xi} , α > 0

In general, we maximize functions with calculus. However, we need no calculus to
see that L gets larger beyond bound for increases of k. But since k can be no larger
than the smallest value of x in our data, the best we can do in maximizing L is to
adjust k as

k̂ = min{xi}

Now we just have to find the maximum likelihood estimate for α. Thus we consider
the loglikelihood function

l(k, α;x) =
nØ
i=1

log
1 αkα

xα+1
i

2
= n log α + αn log k − (α + 1)

nØ
i=1

log xi

By setting its derivative with respect to α to 0 we get the following:

n

α
+ l log k −

nØ
i=1

log xi = 0

thus our final estimator is given by
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α̂ = nqn
i=1 log

1
xi
k̂

2
The Pareto distribution has a very useful property: the memoryless property.
Consider

F̄ (x|X > k) =
1k

x

2α
to be the so called survival function. Then, if we consider an higher thershold d > k
we obtain

F̄ (x|X > d) =

1
k
x

2α1
k
d

2α =
1d

x

2α
ie. when we model larger losses, the model forgets the original threshold k, which is
not needed anymore, and considers the new threshold d.
That implies:

• If a function has a Pareto tail and we only need to work with quite large losses,
we do not need to know exactly where that tail starts. As long as we are in the
tail we always have the same parameter α, whatever the threshold be

• If we have two different portfolio with different thresholds, we can still judge
whether they have similar tail behavior or not, according to whether they have
similar Pareto αs. Such comparison is very useful in reinsurance, where typically
to get an overview per line of business one assembles data from several reinsured
portfolios, all possibly having different reporting thresholds

• this comparability can lead to market values for Pareto αs, being applicable as
benchmarks.

Generalized Pareto distribution

The generalized Pareto distribution (GPD) is part of the generalized extreme value
distribution (GEVD) family and it is generally used to model excess over thresholds
instead of maxima (indeed, the GEVD are usually used to model maxima).
The GPD is a two-parameter distribution with cumulative probability distribution
given by

F (x; k, α) =

1−
1
1− kx

α

2 1
k , k /= 0

1− e− x
α , k = 0

where k is the shape parameter and α is the scale parameter. Notice that both
the Pareto and the exponential are special cases of the GPD (for k < 0 and k = 0
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respectively).
Let x = (x1, . . . , xn) be a sample from the generalized Pareto distribution with
parameters k and α. Then, the GPD log-likelihood function is given by

l(b, k;x) = n log( b

k
)− (k−1 + 1)

nØ
i=1

log(1 + bxi)

where b = k
α
. Consequently, the maximum likelihood estimators are taken to be the

vales which yield a local maximum of the above equation under the constraint that
α > 0 and 1 + bxi > 0 for each i = 1, . . . , n.
The GPD is one of the main distributional models for exceedances over thresholds.
These models have been introduced in order to analyze just the useful information
without considering all data even when it’s not needed.

Weibull distribution

The Weibull distribution is a specific case of the generalized extreme value (GEV)
distribution

Hξ(x) =

exp(−(1 + ξx)− 1
ξ )), ξ /= 0

exp(−e−x), ξ = 0

where 1 + ξx > 0. In thec case of the Weibull distribution we have that ξ < 0.
In the GEV family of distributions there are the only possible non-degenerate
limiting distributions for normalized bloch maxima, ie. normalized maxima Mm =
max(X1, . . . , Xn) of iid random variables.
The Weibull distribution is a short-tailed distribution with a so called finite right
endpoint. The right endpoint of a distribution is xF = sup{x ∈ R : F (x) < 1}.

Collective model

Now that we know which models to develop for both the number of losses and the
amount of a single loss, we can work on the distribution of S, where S is the aggregate
loss variable defined in equation (2.4).
The random sum

S = X1 + · · ·+ XN

has a distribution function
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FS(x) = P (S ≤ x)

=
∞Ø
n=0

P (S ≤ x|N = n)P (N = n)

=
∞Ø
n=0

F ∗n
X (x)pn (2.7)

where FX(x) = P (X ≤ x) is the common distribution function of the Xjs, pn =
P (N = n) and F ∗n

X (x) is the "n-fold convolution" of the cumulative distribution
function of X. It can be obtained as

F ∗0
X (x) =

0, x < 0
1, x ≥ 0

and

F ∗k
X (x) =

Ú ∞

−∞
F

∗(k−1)
X (x− y)dFX(y). (2.8)

If X is a continuous random variable with no probability on negative values, the
equation (2.8) reduces to

F ∗k
X (x) =

Ú x

0
F

∗(k−1)
X (x− y)fX(y)dy

and, by differentiating, the probability distribution function is

f ∗k
X (x) =

Ú x

0
f

∗(k−1)
X (x− y)fX(y)dy.

Note that in the case of discrete random variables equation (2.8) is the same but
with the summation instead of the integral.
The distribution (2.7) is called a compound distribution and the probability function
for the distribution of aggregate losses is

fS(x) =
∞Ø
n=0

pnf ∗n
X (x).

The probability generating function is given by
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PS(z) = E[zS]

=
∞Ø
n=0

E[zX1+···+XN |N = n]P (N = n)

=
∞Ø
n=0

E

 nÙ
j=1

zXj

P (N = n)

=
∞Ø
n=0

P (N = n)[PX(z)]n

= E[PX(z)N ] = PN [PX(z)] (2.9)

due to the independence of X1, . . . , Xn for fixed n.
A similar relationship exists for the other generating functions. It is sometimes more
convenient to use the characteristic function

φS(z) = E(eizS) = PN [φX(z)]

which always exists. The same holds for the moment generating function.
From (2.9) the moments of S can be obtained in terms of the moments of N and
the Xjs. The first two moments, ie. the mean and variance, are

E[S] = E[X] · E[N ]
Var[S] = Var[X] · E[N ] + (E[X])2 · Var[N ]

These directly follow from the definitions and expressions of the probability generating
and characteristic functions.

Stop-loss case

As we already know, it is common for reinsurance to be offered with a deductible
applied to the aggregate losses for the period. In this scenario we would have

E[(S − d)+] =
Ú ∞

d
[1− FS(x)]dx

where d is the deductible and the notation (·)+ means to use the value in parentheses
if it is positive, but to use zero otherwise.
If the distribution is continuous, the net stop-loss premium can be computed directly
from the definition as

E[(S − d)+] =
Ú ∞

d
(x− d)fS(x)dx.

The following theorem holds:
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Theorem 2.2.5. Suppose P (a < S < b) = 0. Then, for a ≤ d ≤ b,

E[(S − d)+] = b− d

b− a
E[(S − a)+] + d− a

b− a
E[(S − b)+].

That is, when there is an interval with no aggregate probability, the net stop-loss
premium can be calculated via linear interpolation.

Proof. From the assumption, FS(x) = FS(a), a ≤ x < b. Then,

E[(S − d)+] =
Ú ∞

d
[1− FS(x)]dx

=
Ú ∞

a
[1− FS(x)]dx−

Ú d

a
[1− FS(x)]dx

= E[(S − a)+]−
Ú d

a
[1− FS(x)]dx

= E[(S − a)+]− (d− a)[1− FS(a)]. (2.10)

Then, by setting d = b in (2.10),

E[(S − b)+] = E[(S − a)+]− (b− a)[1− FS(a)]

and therefore

1− FS(a) = E[(S − a)+]− E[(S − b)+]
b− a

.

Substituting this in (2.10) produces the desired result.

2.3 Experience and exposure ratings
Experience and exposure ratings are the two most prevalent and widely documented
approaches to pricing XoL reinsurance contracts. Each of the two methods has its
own strengths and weaknesses in any given situation and frequently these methods
are used in tandem to price a contract.
Assume that for accident year t ∈ {1, . . . , T − 1}, the reinsurer receives the his-
torical losses above a certain threshold At. Let the losses in year t be denoted by
C1,t, . . . , Cnt,t, where nt denotes the number of losses in year t. Assume that for each
accident year t we dispose of a profile with a structure as presented in Table 2.2,
where LB = Lower Bound, UB = Upper Bound, TSI = Total Sum Insured and Rt is
the number of rows in the profile in year t.
It is quite common to refer to the rows in the profile as "bands". The average insured
value in a band is equal to the ratio between TSIbt,t and Nrt,t, where rt ∈ {1, . . . , Rt}.
Quite often cedents do not only give one profile for their entire portfolio. Often, the
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Table 2.2: Risk profiles

Lower Bound Upper Bound Number of Risks Premium TSI
LB1 = 0 UB1,t N1,t P1,t SI1,t

LB2,t = UB1,t UB2,t N2,t P2,t SI2,t

LB3,t = UB2,t UB3,t N3,t P3,t SI3,t

. . . . . . . . . . . . . . .
LBRt,t = UBRt−1,t UBRt,t NRt,t PRt,t SIRt,t

reinsurer receives profiles for different risk types, such as simple risks or commercial
risks. In particular, depending from the line of business the actuary can expect to
receive the individual risk bordereau instead of bands. Here we assume for simplicity
that we dispose only of one profile for the entire portfolio but of course all results
can be generalized.
Suppose we want to price an XoL reinsurance program covering fire on a per risk
basis in year T with the structure as given in Table 2.3.

Table 2.3: XoL program

Layer Limit Retention
XL1 D2 D1

XL2 D3 D2

XL3 D4 D3

What we want to do is to adapt the claim severity and frequency which was observed
in the past to the current economic conditions and exposure.

2.3.1 Experience rating
The burning cost is probably the most widely known tool for pricing XoL reinsurance.
It simply compares the trended/developed reinsured losses on a given portfolio with
the corresponding cedent’s on level premium.
The reported burning cost of layer XLj in year t is calculated as

bjt =
qnt
kt=1 min(Dj+1; max(0; Ckt,t −Dj))

Pt

where in the argument of the summation we are considering the minimum value
between the limit of the layer and the amount of loss that exceeds the retention for
that layer.
However, past claims are under current conditions and we usually expect them to be
more expensive due to the expected increase in costs during time. Therefore, if the
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same portfolio is underwritten, we should expect the frequency of the losses exceeding
a certain threshold to increase with time. Furthermore, when the composition of a
portfolio changes, this may have an impact on the losses distribution above a given
threshold. This is why we have to take into account changes in costs.
In the pricing tool of the company, this is done with the loss development methods
introduced in Section 2.1.2. Indeed, for each layer two on level burns are computed,
one with the Chain Ladder method and the other one with the BF method:

• Chain Ladder method:

bjt = Ĉjt

P̂jt

where Ĉjt is the trended/developed loss for layer j in year t derived from
equation (2.1) and Pjt is the on level premium. The on level premium is given
by the original premium multiplied by two factors: the on level factor and the
exposure trend. Concerning the former, it is derived from the rate changes.
These rate changes are either given by the cedent or, if not provided, the default
ones are considered. The default rates are specific for each line of business and
they derive from market analyses done by the company teams over the years.
Furthermore, the default rates are different if the treaty is based on accident
year or policy year. Regarding the latter, it is once again derived from default
rates computed over the years for each specific line of business.
In general, it is possible for the actuary to modify these rates within the pricing
tool if different directives are given, either from the cedent or by the underwriters.
Note that with respect to equation (2.1) the indexing changed. In the Chain
Ladder method we considered the accident year and the development year as
indexes since we needed to make a prediction over the development years, while
here we are considering the accident year and the layer since the prediction has
already been made.

• BF method:

bjt = res + Cjt

Pjt

where res is the residual obtained from (2.2) in the BF method, Ct is the
trended but not developed loss and Pjt is once again the on level premium.

Once both the burning costs are computed, for each year a different selection can be
made. Indeed, for each year the age-to-ultimate factor is considered and if its value
is greater than 2, then the burning cost from the BF method is selected. Otherwise,
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the Chain Ladder burning cost is used.
Once the burning costs are selected for each year, a weighted average is made. In
particular, the weights are computed with respect to the on level premiums and it is
possible to choose how many years to consider for the average. The actuary can also
choose to set specific weights for the burning cost average if other specific selections
need to be made.
The selection depends on the "trend" that has been observed, if any. However, it is
important to mention that burning costs do not give an expected loss for unused
capacity, but rather for used capacity.

2.3.2 Exposure rating
The exposure rating method relies on the risk profiles with the current available
portfolio information. Its objective is to estimate the proportion of the loss for the
underlying policy that is expected in the excess layer.
The basic idea is, given the risks grouped as in Table 2.2, to apply a single claim
distribution per risk band. But since this distribution is not known, we apply exposure
curves. The exposure curves are constructed for loss history and they allow direct
sharing of risk premium between the reinsurer and insurer, where the risk premium
is a function of the deductible.
Let Y be the random variable describing the loss for a risk with insured value M ,
given that there is a loss. The degree of damage X is defined as Y

M
. Let D be a

deductible and define d as D
M
. Let L(d) = E[min(d, X)] denote the limited expected

value function for the risk. If the cedent buys non-proportional reinsurance with a
deductible D, then the average retained loss for the risk with insured value M is
equal to L(d)M . The exposure curve associated with this risk is then denoted and
defined by

G(d) = L(d)
L(1) =

s d
0 (1− FX(x))dxs 1
0 (1− FX(x))dx

where FX(x) denotes the distribution function of X.
The exposure curve has a very simple interpretation: G(d) represents the portion
of the premium which is needed to cover the portion of all losses truncated to a
degree of damage d. Indeed, if the exposure curve for a risk is given, its distribution
function can be derived from

FX(d) =

1 if d = 1
1− GÍ(d)

GÍ(0) if 0 ≤ d < 1

where FX(0) = 0 and GÍ(0) = 1
E[X] . This means that the distribution function of a

risk and its exposure curve are equivalent representations.
Let’s now consider the exposure rating based on a profile. Assume we want to price
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a layer with deductible Dj and limit Dj+1 for a portfolio with a profile in year T as
described in Table 2.2. In all bands bT ∈ {1, . . . , BT}, calculate the ratios

rbT ,j = Dj

ASIbT ,T

sbT ,j = Dj+1

ASIbT ,T

where ASIbT ,T = SIbT ,T
NbT ,T

is the average limit value in band bT .
Denote for all bT ∈ {1, . . . , BT} the exposure curve corresponding to the risks of
band bT as GbT (d). We assume that GbT (d) = 1 if d > 1. Then GbT (rbT ,j)PbT ,T
corresponds to the part of the gross premium for band bT needed to cover all losses
arising from risks in band bT for which the degree of damage is limited to rbT ,j.
The part of the gross premium needed to cover all losses between a degree of damage
rbT ,j and sbT ,j, arising from risks with an insured value of ASIbT ,T , is equal to
(GbT (sbT ,j) − GbT (rbT ,j))PbT ,T . The total gross premium needed to cover all losses
between Dj and Dj+1 for the portfolio in year T is given by

TPj =
BTØ
bT=1

(GbT (sbT ,j)−GbT (rbT ,j))PbT ,T

There are different types of exposure curves that can be used for this rating process
and each type of curve is mostly chosen with respect to the line of business and some
factors, such as the class and size of risks. Some of the most used ones are the Swiss
Re Mbbefd for property EU, the PSOLD for property US and the ILF curves for
casualty.

Selection

Once both experience and exposure ratings are performed, a selection has to be made.
This selection is based on the two methods and it is related to the given submission.
If within the historical data provided by the cedent we have a significant number of
losses, ie. good information on loss experience, we may want to select experience.
The same holds if we are dealing with a portfolio that is stable over the years.
On the other hand, if we are in possession of a high number of risk profiles, either
bands or single risks, and we have good knowledge of the fitting curves for the
affected line of businesses, then the exposure fitting may be preferred.
In general, the selection is done with respect to the credibility. Credibility theory
helps actuaries understand the risks and it allows reinsurance companies to limit
its exposure to claims and losses. Thus the models are built by taking into account
a number of assumptions that have been previously statistically tested in order to
determine how credible they are. So once the selections for both experience and
exposure are done, a final burn is computed by weighting the experience and exposure
values with respect to the credibility assumptions.
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A first measure of credibility is the number of claims expected during the historical
period. Note that this is not the same as the actual number observed during the
period. If credibility is based solely on the historical number, then more credibility
will be assigned to experience rating projections that are worse than average.
As a second measure of credibility, we could look at the year-to-year variation in
the projected loss cost from each of the historical periods for each line of business.
Stability in this rate should add credibility even if the number of claims is relatively
small.
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Chapter 3

Evaluation of treaty features

As we already mentioned in the previous Chapter, after the ground up loss distribution
is estimated, other features of the treaty must be evaluated. This is due to the fact
that quite often some disagreements remain between the ceding company and the
reinsurer about the appropriate ceding commission. For this reason, a negotiation to
solve these differences usually takes place so that adjustable agreed upon features can
be built into the treaty. These are different for proportional and non-proportional
treaties so we are going to analyze them separately.

3.1 Proportional features
In proportional treaties the cedents receive commissions of the premiums ceded
to reinsurers. This is due to the fact that they have to compensate the cost of
acquiring business, the portfolio performance maintenance and monitoring and, thus,
the claims handling.
There are six main features for proportional pricing: provisional commission, sliding
scale commission, profit commission, loss corridor, brokerage and general taxes.
The brokerage fee is charged by the broker to execute transactions or provide
intermediary specialized services such as purchases, sales, consultations, negotiations.
Regarding the other features, we will now introduce them in more details.

Sliding scale commission

A common adjustable feature is the sliding scale commission. This is a percentage of
premium paid by the reinsurer to the ceding company which slides with the actual
loss experience, subject to set minimum and maximum amounts.
To clarify the concept, suppose we have the commission terms given in Table 3.1,
where the provisional commission is an interim payable commission and it is generally
fixed between the minimum and maximum payable commissions.
Then the results are as in Table 3.2.
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Table 3.1: Commission terms

Provisional commission: 30%
Minimum commission 25% at a 65% loss ratio
Sliding 1:1 to 35% at a 55% loss ratio
Sliding 0.5:1 to a Maximum 45% at a 35% loss ratio

Table 3.2: Sliding scale commission

Commission Loss Ratio
45% 30% or below
45% 35%
42,5% 40%
40% 45%
37,5% 50%
35% 55%
30% 60%
25% 65% or above

In a balanced plan, it is fair to simply calculate the ultimate commission for the
expected loss ratio. However, this may not be appropriate if the expected loss ratio
is towards one end of the slide. For example, if the expected loss ratio is 65%, the
commission from a simple calculation would be 25%, producing a 90% technical ratio
including reinsurance acquisition costs (ie. the sum of the two). If the actual loss
ratio is worse than 65% the reinsurer suffers the full amount, but if the actual loss
ratio is better than 65% the reinsurer must pay additional commission.
It is actually more correct to see the loss ratio as a random variable and the expected
loss ratio as the probability-weighted average of all possible outcomes. The expected
ultimate commission ratio is then the average of all possible outcomes based on the
loss ratio. This should be done by using an aggregate loss distribution model.

Profit commission

Profit commissions are a type of contingent commission whereby the commission paid
from the reinsurer to the insured depends on the defined profitability of a specific
book of business over a fixed period of time.
In contrast with straightforward flat commissions, which are based on the premium
collected or the renewal of a single policy, the profit commission is calculated based
on the financial outcomes of a group of policies. This can be useful in order to create
a better alignment of interests and risk/return balance between the two parts.
Although calculations can take a number of forms, a basic formula to find the profit
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commission follows this pattern:

(Reinsurance Premiums - Expenses - Incurred Claims) · Profit Percentage

where the expenses could include all expense types, such as taxes or capital charges.
The insurance and reinsurance companies must find mutually acceptable terms.
Note that many contracts include sliding scales for losses that lower or increase the
profit commissions.

Loss corridor

A loss corridor provides that the ceding company will assume again a portion of
the reinsurer’s liability if the loss ratio exceeds a certain amount. For example, the
corridor may be 75% of the layer from an 80% to a 90% loss ratio. If the reinsurer’s
loss raito is 100% before the application of the loss corridor, then it will have a net
ratio of 92.5% after its application:

Table 3.3: Before and after loss corridor

Before corridor After corridor
Below corridor 80% 80% 100% capped at 80%
Within corridor 10% 2.5% 10% - 75% · (90% - 80%)
Above corridor 10% 10% 100% - 90%

Total loss ratio 100% 92.5%

As above, the proper estimate of the impact of the loss corridor should be made
using an aggregate distribution. The probability and expected values for the ranges
below, within and above the corridor can then be evaluated.

3.2 Non-proportional features
For non-proportional treaties there are five main features taken into account while
pricing: annual aggregate deductible (AAD), aggregate annual limit (AAL), no-claim
bonus (NCB), swing rate and reinstatements.

Annual Aggregate Deductible (AAD)

The AAD is a deductible-type program under which the insured agrees to pay
for its own losses during the policy year up to the agreed upon annual aggregate
amount. Once the reinsured has paid losses up to that amount, the reinsurer pays
the remainder of losses for the annual period. This means that the reinsured is
responsible for the deductible amount while the reinsurer pays the reduced amount
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(from which the deductible is subtracted).
In order to clarify, let’s see the following example:

Example 3.2.1. Suppose we have a XoL treaty 900 000 xs 100 000 with AAD of 1
million.

Table 3.4: AAD on a series of five cases in chronological order

Loss Retention AAD AAD to date Reinsurance
500 000 100 000 400 000 400 000 0
50 000 50 000 0 400 000 0
200 000 100 000 100 000 500 000 0
900 000 100 000 500 000 1 000 000 300 000
400 000 100 000 0 1 000 000 300 000

Total 2 050 000 450 000 1 000 000 1 000 000 600 000

Aggregate Annual Limit (AAL)

The aggregate annual limit is the maximum amount of coverage that a reinsurance
company provides over a treaty year. Once the covered expenses reach the annual
aggregate, the reinsurer stops paying out benefits even if subsequent legitimate claims
are filed.
Typically rensurance companies set limits both on individual claims and on aggregate
claims. The AAL is usually introduced because it would simply be too expensive
not to limit coverage. Let us consider an example:

Example 3.2.2. A policy has a 2 500 000 per claim limit and an aggregate limit of
10 000 000. If the cedent makes a single claim for 5 000 000, the reinsurer company
pays only 2 500 000, ie. the per claim limit, even though it is under the aggregate
limit. The aggregate limit is now 7 500 000.
A second claim of 6 000 000 in the same period results in another 2 500 000 payout
and a reduced aggregate limit of 5 000 000.
Three claims incur and their amounts are respectively 7 000 000, 3 000 000 and 4
000 000. At this point the reinsurer will cover 2 500 000 for the first two losses, but
the third loss will be fully paid by the insurer since the aggregate annual limit of 10
000 000 has been reached.

No-Claim Bonus (NCB)

In Motor reinsurance, the NCB is a reward provided by reinsurance companies to
insurance companies for making no claims during the policy term. Indeed, for every
claim-free year, the reinsured receives a discount on his premium. The discount
percentage increases with every passing, claim-free year.
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Note that the key feature of NCB is that it is associated with the company and not
the single vehicle. However, NCB cannot be claimed on the first motor reinsurance
policy since there is not a claim record yet. Starting from the first renewal of the
policy provided there can be a discount on the premium paid if there has been
no claim during the past year and this discount will increase steadily with every
claim-free year up to a maximum discount.
For the NCB feature we assume that the cedent will not claim losses if their net
benefit is less than the payable NCB.

Swing rate

The swing rate offers the reinsured a target premium rate which can then be adjusted
up or down depending upon the actual claim experience for the treaty for the given
year. For example, if experience is good, the final rate is adjusted downward of
a specific percentage. If claim experience is poor, then an additional percentage
increase in premium is assumed.
A swing rate is used where the reinsured’s perception of new or emerging claim
experience is significantly below the reinsurer’s evaluation of the experience. In
essence, they are willing to bet on favorable experience. A swing rate would also be
used on newer blocks of business with little experience. In this case, one sets the
swing rate to give the treaty the opportunity for an "experience refund" in exchange
for upside protection to the reinsurer.
This is an arrangement that allows the two parties to modify the conventional risk
arrangement so that the treaty still has coverage in excess of a certain additional
premium corridor as well as for very favorable experience.

Reinstatement

When the original limit of cover is all used, the reinsured will have no cover left for
any further loss. In order to manage this situation, reinsurers allow the reinsured
to have the original limit reinstated once it is fully or partially used up by a loss.
Reinstatement can either be limited or unlimited and it can come either free or at a
cost. This mostly depend on the line of business. If it is not free, then the additional
premium paid is known as reinstatement premium.
The reinstatement premium can be calculated in two different ways:

- As to amount, where the reinstatement premium is calculated based on the size
of the loss. The treaty will usually state the percentage of additional premium
on which the reinstatement premium should be calculated.

Reinstatement Premium = Loss to the reinsurer
Cover Limit · Reinsurance Premium
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- As to time, where the reinstatement premium is calculated based on the size of
the loss and prorated for the number of days from the occurrence of the loss to
the expiry of the treaty. Thus it is computed as before, but the result is then
multiplied by the ratio between the number of days passed from the date of loss
and 365.

Let us consider the following example, where we suppose the reinstatement premium
to be as to amount at 100% additional premium:

Example 3.2.3. An insurance company has an 80 000 000 xs 20 000 000 per risk
XoL reinsurance program. It incurs some losses as shown in Table 3.5.

Table 3.5: 80 000 000 xs 20 000 000 per risk XoL reinsurance program

Loss Amount Deductible Reinsurance Total reinsurance
1 40 000 000 20 000 000 20 000 000 20 000 000
2 30 000 000 20 000 000 10 000 000 30 000 000
3 50 000 000 20 000 000 30 000 000 60 000 000
4 45 000 000 20 000 000 20 000 000 80 000 000
5 35 000 000 20 000 000 0 80 000 000

Since the reinsurance limit has been hit after four losses, the reinsured would have
to bear the deductible of 20 000 000 and an additional 5 000 000 for the fourth loss
and it would have to cover the last loss in full.

To avoid these scenarios reinsurers include a provision to reinstate the initial cover
purchased each time it is used up by a loss. The treaty will state the number
of reinstatements that the reinsurer offers with respect to the cedent’s needs and
specifies the percentage of additional premium related to each reinstatement.
Let us consider again Example 3.2.3, but this time with one reinstatement at
additional premium. The situation is presented in Table 3.6, where in the second
column (ie. "Remaining") we considered the loss amount minus the deductible.

Table 3.6: 80 000 000 xs 20 000 000 per risk XoL reinsurance program with one
reinstatement

Loss Remaining Reinstatement Reinsurance
1 20 000 000 20 000 000 0
2 10 000 000 10 000 000 0
3 30 000 000 30 000 000 0
4 25 000 000 20 000 000 5 000 000
5 15 000 000 0 15 000 000

Total 80 000 000 20 000 000
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The insurance company has an additional cover of 80 000 000 that can use to bring
back the original cover limit to its full amount when it is either partially or fully
used by a loss. As we can see, the reinstatement covers everything for the first three
losses, up to 20 000 000 for the fourth loss and nothing for the last one. This is due
to the fact that the cover limit of 80 000 000 has been reached. The amount not
covered by the reinstatement is covered by the XoL reinsurance program.

3.3 Evaluation
As we know from the previous chapter, the distribution function of the aggregate
loss is given by

S(x) =
∞Ø
n=0

F ∗n
X (x)pn

where pn = P (N = n) and F ∗n
X (x) is the "n-fold convolution" of the cumulative

distribution function of X.
This expression cannot be exactly evaluated for most distributions so it is necessary
to rely on numerical methods. We will introduce here two of the most used methods:
the Monte Carlo simulation and the Panjer recursion.

3.3.1 Monte Carlo simulation
The Monte Carlo (MC) method is one of the easiest numerical methods used to
calculate the aggregate loss distribution. The logical steps are the following:

1. For k = 1, . . . , K

(a) Simulate the number of losses N from the frequency distribution
(b) Simulate independent X1, . . . , XN from the severity distribution
(c) Calculate Sk = qN

i=1 Xi

2. Do an increment k = k + 1 and return to step 1

All random numbers simulated in the above are independent.
Thus the obtained S1, . . . , SK are samples from an aggregate distribution S(·).
However, some problems may arise concerning the MC simulation, mostly related to
the fact that the simulated portfolio may be subject to high variability, unless the
number of simulations is very large.
There are different teqniques that allow for variance reduction. We will describe
here one of the most used, known as importance sampling. This variance reduction
method will be explained and introduced here since it is good knowledge to be aware
of its existence, but it is not actually performed during the pricing process.
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Importance sampling

Consider a random variable X and assume that it has an absolutely continuous
distribution function with density f . The problem considered is the computation of
the expected value

θ = E[h(X)] =
Ú ∞

−∞
h(x)f(x)dx (3.1)

for some known function h. Where the analytical evaluation of this integral is
difficult, mostly due to the complexity of the distribution of X, we can resort to a
MC approach where we only have to be able to simulate variates from the distribution
with density f .
What we do is to generate X1, . . . , Xn independently form the density f and then
compute the standard MC estimate

θ̂MC
n = 1

n

nØ
i=1

h(Xi).

The MC estimator converges to θ by the strong law of large numbers, but the speed
of convergence may not be particularly fast.
Importance sampling is based on an alternative representation of the integral in
(3.1). Consider a second probability density g whose support should contain that of
f and define the likelihood ratio r(x) as the ratio between f(x) and g(x) whenever
g(x) > 0, and r(x) = 0 otherwise. The integral (3.1) may be written in terms of the
likelihood ratio as

θ =
Ú ∞

−∞
h(x)r(x)g(x)dx = Eg[h(X)r(X)],

where Eg denotes expectation with respect to the density g. Hence we can approxi-
mate the integral in the following way:

1. Generate X1, . . . , Xn independently from the density g

2. Compute the importance sampling estimate

θ̂ISn = 1
n

nØ
i=1

h(Xi)r(Xi).

The main point of importance sampling lies in choosing a density g such that, for
fixed n, the variance of the importance sampling estimator is considerably smaller
than that of the standard MC estimator. In this way we can hope to obtain a
prescribed accuracy in evaluating the integral of interest using far fewer random
draws than are required in standard MC simulation.
The variances of the estimators are given by
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Var(θ̂MC
n ) = 1

n
(E[h(X)2]− θ2)

Varg(θ̂ISn ) = 1
n

(Eg[h(X)2r(X)2]− θ2)

so that the aim is to make Eg[h(X)2r(X)2] small compared with E[h(X)2]. In theory,
the variance of θ̂IS can be reduced to zero by choosing an optimal g. To see this,
suppose for the moment that h is non-negative and set

g∗(x) = f(x)h(x)
E[h(X)] (3.2)

With this choice, the likelihood ratio becomes

r(x) = E[h(X)]
h(x)

Hence, θ̂IS1 = h(X1)r(X1) = E[h(X)] and the importance sampling estimator gives
the correct answer in a single draw. In practice, it is of course impossible to choose a
g of the form (3.2) as this requires knowledge of the quantity E[h(X)] that one wants
to compute. However, (3.2) can provide useful guidance in choosing a importance
sampling density.

3.3.2 Panjer recursion
The Panjer method is widely used for the computation of the aggregate loss distribu-
tion since it appears that for some class of frequency distributions this calculation
can be reduced to a simple recursion.

Panjer recursion

If the frequency probability mass function P(N = n), n = 0, 1, . . . , satisfies

P(N = n) =
A

a + b

n

B
P(N = n− 1), for n ≥ 1 and a, b ∈ R,

then it is said to be in Panjer class (a, b, 0). Furthermore, if the claim size distribution
is discrete, then for m ∈ N the aggregate distribution S satisfies the recursion

P(S = m) = 1
1− a P(X = 0)

mØ
j=1

A
a + bj

m

B
P(X = j) P(S = m− j),

P(S = 0) = PN(P(X = 0))
(3.3)
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where PN is the probability generating function of N .
Note that if P(X = 0) = 0, then P(S = 0) = P(N = 0).

It is important to observe that in the above theorem we are making two strong
assumptions: we need the frequency distribution to be in the Panjer class (a, b, 0)
and we require the claim size distribution to be discrete.
In the following we prove that both the Poisson and the Negative Binomial belong
to the Panjer class (a, b, 0) and we introduce the idea behind the discretization of
the claim size distribution.

Poisson

If N ∼ Poisson(λ), then for k ∈ N

P(N = k) = λke−λ

k! = λ

k

λk−1e−λ

(k − 1)! = λ

k
P(N = k − 1)

thus N belongs to the Panjer class (a, b, 0) with a = 0 and b = λ.

Negative Binomial

If N ∼ NB(r, p), where r ∈ N is the number of successes and 0 ≤ p ≤ 1 is the
probability of success, then for k ∈ N (number of failures) we have

P(N = k) =
A

k + r − 1
r − 1

B
(1− p)k pr = (k + r − 1)!

(r − 1)! k! (1− p)k pr

= k + r − 1
k

(1− p) (k + r − 2)!
(r − 1)! (k − 1)! (1− p)(k−1) pr

thus N belongs to the Panjer class (a, b, 0) with a = 0 and b = (k + r − 1) (1− p).

Discretization

Assume the claim size distribution is continuous with cumulative distribution function
FX . By discretizing the domain of X we define

hj = FX(j)− FX(j − 1),∀j = 1, 2, . . . , n

H(x) =
Ø
j≤x

hj

and therefore FX(0) = 0, so H(x) ≤ FX(x). We define then

h̃j = FX(j + 1)− FX(j),∀j = 0, 1, . . . , n− 1
H̃(x) =

Ø
j≤x

h̃j

58



Evaluation of treaty features

and therefore H̃(x) ≥ FX(x). Thus we have

H(x) ≤ FX(x) ≤ H̃(x) (3.4)

where both H(x) and H̃(x) are discrete. Hence for the distribution of the aggregate
claim we can apply the Panjer recursion and obtain lower and upper bound for
P(S ≤ x):

PL(S ≤ x) ≤ P(S ≤ x) ≤ PU(S ≤ x)

where PL(S ≤ x) and PU (S ≤ x) are obtained by the Panjer recursion by using H(x)
and ˜H(x) respectively.
The number of operations to calculate the aggregate loss distribution explicitly is of
the order of n3. If the maximum value for which the aggregate loss distribution should
be calculated is large, the number of computations become prohibitive due to O(n3)
operations. The Panjer recursion instead requires O(n2) operations to calculate
it. The Panjer recursion formula (3.3) can be extended to a class of frequency
distributions (a, b, 1).

Extended Panjer recursion

If the frequency probability mass function P(N = n), n = 2, 3, . . . , satisfies

P(N = n) =
A

a + b

n

B
P(N = n− 1), for n ≥ 2 and a, b ∈ R,

then it is said to be in Panjer class (a, b, 1). Furthermore, if the claim size distribution
is discrete, then for m ∈ N the aggregate distribution S satisfies the recursion

P(S = m) = 1
1− a P(X = 0) (P(N = 1)− (a + b) P(N = 0)) P(X = m)

+
mØ
j=1

1a + bj

m

2
P(X = j) P(S = m− j),

P(S = 0) = PN(P(X = 0))

where PN is the probability generating function of N .
Note that if P(X = 0) = 0, then P(S = 0) = P(N = 0).

The distributions of (a, b, 0) class are special cases of (a, b, 1) class.
Note that this generalization of the Panjer recursion can be extended to the (a, b, l)
class.
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Chapter 4

Application on client data

The challenge with reinsurance treaties is that we usually have a low number of
reported losses. This is the reason why we will try to estimate the frequency and
severity distributions of the data submission provided by the client. Indeed, our main
goal is to simulate a higher number of random values following the data distribution
in order to be as close as possible to the actual distribution.
The aim of this Chapter is to present a pricing model with the main scope of
implementing the aggregate loss model from scratch. Indeed, after selecting a cedant
within all the ones that provided their submissions so far, we will introduce the
full pricing process by starting from the client submission and concluding with the
final terms. However, the goal will be to create, step by step, the compound model
by translating in Python’s language the procedures used in the Excel company’s
pricing tool. This will be a good validation for the company since it will allow for a
parallelism with the pricing tool. Finally, we will implement the Panjer recursion and
compare the results obtained with Monte Carlo in order to see if some improvements
can be made in terms of time and efficiency.

4.1 Data submission
After choosing the cedant’s submission for the analysis, we start by having a look at
the folder provided.
The treaty we are looking at is a renewal contract whose package was submitted at
the end of September. In the submission folder we find:

• Excel files containing the actual data, such as triangles, historical figures, risk
profiles, risk listings, information on cat events..

• Slip, containing the treaty information and the final terms

• Submission email, always included in the submission folder in order to keep
track of the deadlines and of the data provided
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Before proceeding into the submission analysis, there are some generalities about
submissions that are worth mentioning.
We are not always provided with slip, wording and/or final terms. If that is the case,
ie. if we do not know which is the structure that the client wants us to price, we
usually price the expiring structure unless some specifics are stated in the submission
email. Indeed, the submission email is often used as an efficient and fast way for
the client to underline the main changes in the structure/data with respect to the
previous year’s submission. However, if the treaty is new, ie. if we do not have
previous submissions or pricings to refer to, we expect to have the structure provided.
If that is not the case, we need to ask the underwriters for more information.
This brings us to the second main issue we may encounter in these first steps. If the
submission is not complete enough for us to price the treaty or if while proceeding
with the analyses we see some inconsistencies in the data, we should always ask for
clarification to the underwriters. This may take a while since most of the times they
have to go back to the client and ask for information. That is the reason why this is
done just when strictly necessary and not for every small inconvenient or doubt.
Finally, the Excel submission can be very straightforward to analyze or quite dirty.
This is why we always have to pay attention to what the client provides us and the
structure we are dealing with. Indeed, most of the times we will not need all the
information provided but just a part of it.
After a quick overview on the possible scenarios we might encounter when dealing
with a submission, we can get started with our analysis.

4.1.1 Structure

The treaty we are dealing with is an excess of loss reinsurance contract and we know
its cover and structure. We did some transformation thus the data and structure
will not directly refer or correspond to any actual cedant.
The structure has four layers and we will not specify which line of business this
treaty covers. The layering we will consider is the following: 2 million xs 3 million, 5
million xs 5 million, 15 million xs 10 million and 25 million xs 25 million.
From the Excel files provided in our submission we just retrieve the information we
need to build the aggregate loss model in order to maintain anonymity. Indeed, we
will just consider the triangles containing the development of claims along the years
and the exposure amounts for each year. With "exposure amounts" we may refer to
whatever exposure information is provided, such as number of insured, premiums,
vehicle years and so on. The provided information depends on the line of business
we are pricing. However, nothing changes if we use one or the other thus we will
not go into further details regarding our submission data. Furthermore, we will also
change the numbers in order to hide the true values provided in the submission.
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4.1.2 Imported data
Since the exposure amounts will just be considered later on in the analysis process
we will now focus on the claims information. There are 287 reported losses: these are
the claims that at least once in their historical development have exceeded 3 million,
which is the threshold specified by the cedant. Each row corresponds to a loss and
for each loss the following information is provided:

• Section key, an integer number mapping the line of business. In general this is
a useful information since each line of business has to be dealt with differently

• Claim ID, a text variable that contains the identification code for each loss

• Date of loss, a data type variable stating the date in which the loss occurred.
The year of occurrence goes from 1989 to 2021

• Comment, a text variable providing information about the loss. These comments
may or may not be provided and they can be useful for us to identify whether a
loss is catastrophe/event related or not. This may be important because if we
have cat/event losses we need to deal with them separately

• Cat Loss, a text variable assuming the values "Yes" or "No" if the loss is cat
related or not respectively

• Per Event Loss, a text variable assuming the values "Yes" or "No" if the loss is
event related or not respectively

• The development of losses, 20 columns of our dataset where each column contains
the loss evaluated at 31/12 for each year from 2002 to 2020 and at 30/06 for
2021. Thus each row of this triangle represents the development of a single loss
from 2002 to 2021

Concerning this last point, note that the client provides the single losses with their
respective development thus our goal in reinsurance will be to build an aggregate
development triangle to analyze the client’s overall loss state.
Before proceeding with the actual data analysis, some cleansing can me made. Indeed,
we can just retrieve the information we need in order to proceed with our study.
First of all, by looking at the Section key column we can notice that it just assumes
one value: this means that we are dealing with just one line of business thus we
do not have to make distinctions when it comes to dealing with losses and for this
reason we can disregard this column.
The same holds for the catastrophe and event related columns since all the entries are
equal to "No". Indeed, we can disregard these columns by keeping in mind that all
the claims we are dealing with are not either cat or event related. Furthermore, we
can specify once again that if these columns are not provided we can build them by
checking if some information is available within the losses comments. If no comments
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are available, we will just suppose that all the losses are not cat/event related and
we will probably include a load for all those losses that are covered by the treaty but
not present in the submission (cat load per risk, cat load per event, ...).
Regarding the claim ID, we will not really use it since it is just a loss identifier thus
it is unique for each loss. However, usually it is provided because it can be useful to
find a loss that may have a strange behavior in the model or that may have been
updated by the client at a later point with respect to the submission. Indeed, it
can happen that a loss has a relevant change occurred after the last evaluation date
provided in the data and that the client wants us to know. If that is the case it is
important for us to be aware of that and to update that loss according with the most
recent information provided.

4.2 Data analysis
Let’s now proceed with the analysis of the dataset in our possess. As we know
already, we have reported losses from 1989 to 2021 thus it might be interesting to
have an overall look on how many losses evaluated at 30/06/2021 are above the
threshold for each year:
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Figure 4.1: Count of losses from 1989 to 2021 at 30/06/2021 that are above the
threshold.

Note that the loss count seems to increase over the years. This might be due to the
increasing size of the book over time or the inflation over the years.
It can be also important to have a look at the smallest and biggest losses in order for
us to have an overall idea of the situation we find ourselves in. The smallest incurred
developed loss at 30/06/2021 occurred in 2014 and it is of 129 while the biggest
one is of 31.9 million and it occurred in 2020. As we can notice, the gap between
the smallest and biggest incurred losses is quite big. However, the cedant gave us a
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threshold of 3 million. This means that in the submitted triangle we have all the
losses that at least once in their historical development have exceeded 3 million.
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Figure 4.2: Losses that at the last evaluation date are above the client’s threshold.

In Figure 4.2 we reported all the losses that at the latest evaluation date (ie.
30/06/2021) are above 3 million. The threshold is a very useful information since it
allows us to build a severity model for losses above the given threshold by keeping
in mind that both the threshold and the losses are subject to indexation. This is
important since it can take years before a claim is settled and as we already know
inflation can have a quite strong impact on claims overtime. If there is not indexation
inflation could cause a loss to reach the threshold amount sooner and more frequently
than expected.
Furthermore, it is relevant to know the threshold since it would not make too much
sense to simulate losses that are not significant in terms of loss amount or that are
not very frequent within the client submission. Also, if we consider the modeling
theory introduced in Chapter 2 we know that a lot of distributions (for example the
Pareto distribution) are usually used to model the severity over a specific threshold.
Another thing we should look at when it comes to the development triangle is the
presence of relevant jumps in loss developments. This may be important since,
whenever possible, a comparison with last year’s pricing is done and it is of interest
to keep track of big changes in the history of claims.
In Figure 4.3 we reported three losses, from 2007, 2008 and 2009, that have interesting
changes in their historical development. For example, the 2008 loss hit the third
layer’s retention in 2010 but in 2013 decreased again going below 10 million. More
interesting is the 2009 loss that hit the fourth layer’s retention just in 2020 since it
jumped over 25 million decreasing right after in 2021. This might be relevant to
observe since we are dealing with a quite old loss having very recent development
with a quite big increase thus it could have an impact on the pricing and, if that is
the case, it is important for us to know where that impact might come from. For
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example, if we are dealing with bodily injury claims we could have loss changes
related to the victim’s physical condition or if we are dealing with court trials both
the judge and the time needed to deal with the bureaucracy might influence a lot
the loss amount.
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Figure 4.3: Three losses with some jumps in their development.

After a few quick observations on the dataset provided we can now have a deeper
look into the claims by trying to evaluate the respective severity and frequency
distributions.

4.2.1 Severity distribution
The first thing we would like to do is to have a look at the univariate distribution
of claim severity in order to guess which distribution within the ones mentioned in
Chapter 2 could potentially fit better our data.
For the severity modelling we will just consider the losses at their last evaluation date
(ie. 30/06/2021) and we will work just with the ones above the provided threshold.
Indeed, we end up having 197 losses over the 287 we had in the beginning and their
distribution is reported in Figure 4.4. As we can see the distribution seems to be
heavy tailed thus maybe a Pareto or Gamma distribution could fit well our claims
severity. However, even if it can be helpful to have a graphical idea, that is not
enough to draw conclusions. Thus we perform a Kolmogorov-Smirnov test to check
which distribution could better fit our data. We chose the KS test because on Python
we have the possibility to set the parameters that we want to use in order to fit our
data and then compare them with a specific distribution.
In order to estimate the parameters of the distribution we use the Maximum Likeli-
hood Method and then we perform a KS test that compares our data distribution
with MLE estimated parameters and the standard distributions.
The null hypothesis states that the two distributions considered are the same, thus
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Figure 4.4: Univariate distribution of data.

if our p-value is higher than a specified alpha (in our case 0.05 since it is the value
that it is usually considered) we cannot reject the null hypothesis.
The Pareto, Gamma, Exponential, Normal, LogGamma and LogNormal distributions
were used for comparison. This is the output we obtained:

The Gamma distribution appears to be by far the best one to fit our data, followed
by the Pareto distribution. Thus we will simulate 10000 random numbers from a
Gamma distribution with estimated parameters:

where α is the shape parameter. As we can see the location parameter is quite close
to 3 million. This is a reasonable result since we are just considering the claims
above the given threshold. The same holds for the scale parameter: we are dealing
with quite big losses thus we expected a quite big number for scaling.
To have a clearer overview on the situation, we performed a two-sample KS test since
it allows us to compare two distributions of two independent samples. Indeed, we
compared our data distribution and the Gamma with the above estimated parameters.
We obtain a p-value of 0.172 thus we do not have enough evidence to reject the null
hypothesis that our data distribution and the distribution obtained by generating
random numbers from a Gamma with MLE estimated parameters are the same.
By plotting our simulated data distribution against the empirical one we obtain the
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graph presented in Figure 4.5(a). We also reported in Figure 4.5(b) a QQ-plot to
have another term of comparison.
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Figure 4.5: Gamma distribution: CDFs and QQ-plot.

Note that our biggest loss is at 31.9 million thus it is reasonable to see our data
cumulative distribution function stopping earlier than the empirical one.
From the QQ-plot we can see that the graph is "right skewed", meaning that most of
the data is distributed on the left side with a long tail of data extending out to the
right. This seems reasonable since we are dealing with a Gamma distribution.
We did the same analysis for the Pareto distribution too in order to have a term of
comparison. Here we report the cumulative distribution functions and the QQ-plot
obtained:
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Figure 4.6: Pareto distribution: CDFs and QQ-plot.

As we can see from a graphical point of view the outcome is definitely worse with
respect to the Gamma distribution. That is probably due to the fact that the Pareto
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distribution is quite heavy tailed with respect to our sample thus even if we include
a scaling and a locating parameter in our estimation we will not obtain a result that
is close to our claims.
The p-value obtained from the two-sample KS test is in this case equal to 0.084
but even if we do not have enough evidence to reject the null hypothesis that our
data distribution follows a Pareto distribution the p-value is lower than the one we
obtained before and the graphs are a lot worse than the ones obtained with the
Gamma distribution.
Consequently, given all the above considerations we assume that the claim severity
follows a Gamma distribution with parameters estimated by the Maximum Likelihood
Method applied on our data.

4.2.2 Frequency distribution

When it comes to the frequency distribution we cannot proceed in the same way as
we did in the previous section because we do not have enough historical information
about the frequency of losses. Thus we implement in Python the same process that
lies behind the company pricing tool by keeping in mind that there are not many
count distributions available for this purpose and that the standard one is the Poisson
distribution. We want to find the expected number of claims occurring in 2022 in
order to use it as the parameter needed to simulate the Poisson distribution.
We will consider a count triangle of claims exceeding 3 million. Note that we will
consider it starting from 2007 on because we are just interested in the last 15 years
of development since the older the years the more uncertainty we have (due to
indexation or inflation for example). Then the loss to the layer for each year is
nothing but the number of claims exceeding the threshold that occurred in that year.
The reason why we do this on the claims development triangle and not just on the
claim final evaluation is because we want to keep track of the history of each loss in
order to be aware of when a loss is above or below the threshold during time.
In the following table we report the loss count triangle obtained by counting all losses
above 3 million and then aggregating for each year, where each column corresponds
to each development year:

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2007 10 10 12 13 12 9 8 8 8 8 8 8 8 9 9
2008 5 5 6 5 6 6 8 7 7 6 6 6 6 5 -        
2009 9 11 12 10 10 10 10 9 9 9 10 10 10 -        -        
2010 17 14 14 14 12 11 12 11 11 11 11 11 -        -        -        
2011 11 13 11 11 13 12 13 13 13 14 14 -        -        -        -        
2012 6 8 7 7 10 11 11 11 10 10 -        -        -        -        -        
2013 7 11 12 12 11 12 12 11 9 -        -        -        -        -        -        
2014 10 10 9 8 9 10 9 10 -        -        -        -        -        -        -        
2015 16 20 18 16 15 13 13 -        -        -        -        -        -        -        -        
2016 11 14 16 16 13 14 -        -        -        -        -        -        -        -        -        
2017 8 11 10 10 9 -        -        -        -        -        -        -        -        -        -        
2018 7 12 11 10 -        -        -        -        -        -        -        -        -        -        -        
2019 13 19 18 -        -        -        -        -        -        -        -        -        -        -        -        
2020 10 10 -        -        -        -        -        -        -        -        -        -        -        -        -        
2021 3 -        -        -        -        -        -        -        -        -        -        -        -        -        -        

Development year
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By reading the first row we know that 2007 losses over 3 million during the first
development year (ie. 31/12/2007) were 10 while at the last one (ie. 30/06/2021)
decreased to 9 with some ups and downs along the years in the middle. This gives a
way to track 2007 losses development over time.
However, in order to properly keep track of the claims historical development we
need to develop the values with the LDFs, computed from the loss count triangle as
mentioned in Chapter 2.

Development year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Age to Age LDFs -     1,215 0,993 0,961 0,991 0,959 1,025 0,946 0,983 1,000 1,029 1,000 1,000 1,125 1,000 

Age to Ultimate LDFs 1,216 1,001 1,008 1,049 1,058 1,103 1,076 1,138 1,158 1,158 1,125 1,125 1,125 1,000 1,000 

In order to develop the values we consider the main diagonal of the above aggregate
loss count triangle and we multiply it by the correspondent age to ultimate LDF.
Note that the LDF for 2007 is the one that corresponds to the 15th development
year, for 2008 the one for the 14th development year and so on thus when we develop
values we should read the age to ultimate LDFs in reverse order.
Note that we will disregard 2021 from this computation since this year is incomplete
(our last evaluation is at 30/06/2021). In general we could decide to make some
assumptions on the last 6 months of 2021 in order to include 2021 too, for example
by making assumptions on the age to ultimate LDF for the first development year,
but it is also possible to just disregard it in order to maintain more consistency with
the client’s data submission.
Once the developed values are found we compute the burning cost for each year. As
previously explained in the Experience rating section, the burning costs are obtained
by computing the ratio between the developed count and the exposure amount for
each year.

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Developed values 9 5 11 12 16 12 10 11 14 15 10 10 18 10

Burning costs 3,51E-06 1,82E-06 3,86E-06 3,72E-06 4,44E-06 3,09E-06 2,69E-06 2,80E-06 3,28E-06 3,42E-06 1,99E-06 2,08E-06 3,48E-06 1,86E-06

Once we have the burning cost for each year from 2007 to 2020 we compute the
expected burning cost for 2022 that in our case is given by the average of all the
burning costs for each year. By multiplying this value for the expected exposure
amount for 2022 provided by the cedant we finally obtain the number of claims that
we expect to be greater than the threshold at the ultimate position for year 2022.
The expected number of losses for 2022 is 17.24 thus we roughly expect to have 17
losses above 3 million occurring in the upcoming year. We will use this value as the
parameter needed to simulate the Poisson distribution.
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4.3 Aggregate loss model
Now that we have simulated both the frequency and severity distributions we can
implement the aggregate loss model. Our goal is to implement both Monte Carlo
simulation and Panjer recursion with aggregate terms (AAD, AAL). We will then
compare the results both in terms of precision and time elapsed.

4.3.1 Monte Carlo simulation
We will perform 10000 simulations and, as previously mentioned, we will consider 4
layers: 2m xs 3m, 5m xs 5m, 15m xs 10m and 25m xs 25m.
Here we present the algorithm implemented on Python for a generic layer k:

Algorithm 1 Monte Carlo simulation
1: numreps ← 10000
2: Sk ← empty list ó Overall distribution of the expected loss to layer k
3: for j ← 1 to numreps do
4: Simulate N ∼ Poi(λ) ó λ← Expected number of losses for 2022
5: Skj ← 0 ó Skj will be equal to qN

i=0 Xi

6: for i← 1 to N do
7: Simulate Xi ∼ Γ(shape, loc, scale) ó MLE for parameters estimation
8: expLossLayerik ← MIN(limitk, MAX(0, Xi - retentionk))
9: Skj ← Skj + expLossLayerik

10: end for
11: Sk[j]← Skj
12: end for
13: return Sk

Note that to summarize efficiently the pseudocode we considered the algorithm for a
generic layer k but in the actual Python code we did this work explicitly for each
layer. For instance we initialized four empty lists named respectively S1, S2, S3 and
S4 and instead of limitk and retentionk we directly inserted the limit and retention
of each layer (we will do the same for the Panjer recursion).
The time elapsed to run the above algorithm is 16.66 seconds. This value alone does
not give much information about the model but once it will be compared with the
time elapsed for the Panjer recursion it will be an interesting term of comparison for
evaluation purposes.
We are now interested in visualizing for each layer the distribution Sk obtained from
the MC simulation, ie. the distribution of the expected loss to the layer k. In Figure
4.7 we reported the four distributions. We will highlight in the graphs a specific
value for each distribution: the Value-at-Risk (VaR).
The VaR of a random variable X at level α is the 100α percentile of the random
variable. For a continuous random variable it is x such that P(X ≤ x) = α. For
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aggregate reinsurance losses, where the risk is that X is high, α is usually picked
high, with values usually from 0.95 on. We will pick α euqal to 0.95 in order to stay
in line with the general picks.
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((c)) Layer 3: VaR 68.5 million
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Figure 4.7: Monte Carlo simulation: distributions and VaR of all four layers.

The Value-at-Risk is a statistic that allows us to focus on the right tail of the
distribution we are looking at. For example, by looking at the graph on the top left
we know that for the first layer we have a 5% probability to have an expected loss to
the layer over 39.6 million. However, note that the VaR is not a risk measure. It
is a quantile mostly used in risk management and capital loading since it allows to
quantify the extent of possible financial losses within a firm, portfolio or position
over a specific time frame.
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Let’s now focus a bit more on the layers distributions. By looking at the four graphs
reported above it is possible to note that the higher the layer retention is, the more
the frequency drops. Indeed, in Figures 4.7(c) and 4.7(d) we can see that the mass
in zero is quite higher with respect to the first two layers. This is due to the fact
that while the retention increases fewer and fewer losses touch the layer thus the
probability to have zero losses to the layer is higher.
By having a look at the densities and respective mean and VaR for each layer we
obtain the following:
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Mean VaR
L1 27.365.544   39.660.722   
L2 39.202.731   61.844.601   
L3 33.513.424   67.428.648   
L4 5.291.199    25.000.000   

Figure 4.8: Densities comparison with reported mean and VaR for each layer.

The table above confirms what we already stated: while the retention increases few
and few losses fall into the layer thus the frequency drops while the limit conditions
the loss to the layer. For instance, the fourth layer has mean distribution at 5.29
million since the retention is very high thus a lot of losses do not touch the layer
and the very few ones that fall in just slightly touch the layer (note that our biggest
loss is at 31.9 million). This means that we have low frequency and low severity, as
expected, and this is the reason why the VaR is at the limit (25 million). Indeed, in
order to reach the limit we would need either a high frequency or a high severity but
both scenarios are quite unlikely because of the high retention of the layer.

4.3.2 Panjer recursion
In the above section we simulated for each layer the expected loss to the layer and we
analyzed the four distributions obtained. In this section we will try to reach the same
results by implementing the Panjer recursion in order to have a clear comparison of
the methods used to simulate the aggregate loss model.
We will perform once again 10000 simulations and we will consider the same structure
used for the Monte Carlo simulation. We kept the same dimension (ie. number of
steps) for all layers and we used 100 as a value. Note also that every time a Gamma
distribution will be mentioned in the pseudocode, it will be considered with the MLE
parameters above estimated as it was done for the Monte Carlo simulation.
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Before presenting the Panjer recursion we would like to describe the discretization
process performed on the severity distribution since it is the central hypothesis
needed in order to apply the above mentioned recursion. The discretization algorithm
implemented on Python for a generic layer k is reported below (Algorithm 2).

Algorithm 2 Discretization process for Panjer recursion
1: dimension ← 100
2: epsk ← limitk/dimension ó Step
3: lowerprobk ← ΓCDF (retentionk) ó Probability below layer k
4: upperprobk ← ΓCDF (retentionk+limitk) ó Probability above layer k
5: xk ← empty list ó Step vector
6: xk[1]← retentionk ó Starts at retention
7: for i← 2 to dimension do
8: xk[i]← retentionk+(i+1)*epsk
9: end for

10: CDFktoscale ← ΓCDF (xk) ó CDF to scale
11: CDFkbelow ← (CDFktoscale-lowerprobk)/(1-lowerprobk)
12: CDFkbelow.append(1) ó Add final element
13: CDFkabove ← CDFkbelow[1:]
14: CDFkabove.append(1) ó Add final element
15: densitykbelow ← empty list ó Density below
16: for i← 1 to len(CDFkbelow) do
17: if i← 0 then
18: di ← CDFkbelow[i]
19: else
20: di ← CDFkbelow[i] - CDFkbelow[i-1]
21: end if
22: densitykbelow[i] ← di
23: end for
24: densitykabove ← empty list ó Density above
25: for i← 1 to len(CDFkabove) do
26: if i← 0 then
27: di ← CDFkabove[i]
28: else
29: di ← CDFkabove[i] - CDFkabove[i-1]
30: end if
31: densitykabove[i] ← di
32: end for

Once the severity distribution is discretized we can proceed by presenting the
pseudocode describing the implementation in Python of the Panjer recursion for a
generic layer k (Algorithm 3).
The starting points for the below and above recursions come from some observations
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Algorithm 3 Panjer recursion
1: rangepanjer ← 10000
2: h0belowk ← e−(1−lowerprobk)∗λ ó Starting point for below recursion
3: h0abovek ← e−(1−lowerprobk)∗λ∗(CDFkabove[1]−1) ó Starting point for above recursion
4: ak ← 0
5: bk ← (1-lowerprobk)∗λ
6: Sbk ← empty list ó Aggregate density below
7: Sbk[1]← h0belowk

8: for n← 2 to rangepanjer do
9: h ← 0

10: lim ← min(n, len(xk))
11: for j ← 2 to lim do
12: h← h+ densitykbelow[j]*Sbk[n-j]*(ak + bk*j/n) ó Panjer recursion
13: end for
14: Sbk[n]← h
15: end for
16: Sak ← empty list ó Aggregate density above
17: Sak[1]← h0abovek
18: for n← 2 to rangepanjer do
19: h ← 0
20: lim ← min(n, len(xk))
21: for j ← 2 to lim do
22: h← h+ densitykabove[j]*Sak[n-j]*(ak + bk*j/n) ó Panjer recursion
23: end for
24: Sak[n]← h
25: end for
26: CDFpbk ← empty list ó Aggregate CDF below
27: CDFpbk[1]← Sbk[1]
28: for i← 2 to len(Sbk) do
29: CDFpbk[i]← Sbk[i]+CDFpbk[i− 1]
30: end for
31: CDFpak ← empty list ó Aggregate CDF above
32: CDFpak[1]← Sak[1]
33: for i← 2 to len(Sak) do
34: CDFpak[i]← Sak[i]+CDFpak[i− 1]
35: end for

done on the expected number of losses for each layer k. By remembering that if N
is a Poisson distributed random variable its probability generating function PN is
given by

PN(x) = eλ(x−1)
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and by knowing from section 3.3.2 that P(S = 0) = PN(P(X = 0)) we have that

P(S = 0) = eλ(P(X=0)−1)

For how we constructed the below recursion we have that P(X = 0) = 0 (because it
is the first value of the below cumulative distribution function built in algorithm 2)
thus the starting point is given by

P(S = 0) = P(N = 0) = e−λ

For the above recursion instead we have that P(X = 0) is the first value of the above
cumulative distribution function built in algorithm 2 thus the starting point is

P(S = 0) = eλ(CDFkabove[1]−1)

However, since we are dealing with four layers we cannot use the overall expected
number of losses estimated in the frequency analysis. Indeed, λ needs to be adapted
for each layer thus we will have a λk for each layer k. These four values are obtained
in the following way:

λk = E
C

NØ
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✶{Xi>retentionk}

D
= EN

C
E
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NØ
i=1
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DD
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E[✶{Xi>retentionk}]
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P(Xi > retentionk)
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1
D

= P(Xi > retentionk)E[N ]

= (1− FXi(retentionk))λ
Indeed, we start by computing the expected value of those losses that fall into the
layer. The first row equality holds by applying the law of total expectation. It states
that if X and Y are two random variables and E[X] is defined then:

E[X] = EY [E[X|Y ]]

In our case Y is N thus N is now given and we can swap expected value and
summation. At this point we know that the expected value of the indicator function is
nothing but the probability that Xi is bigger than the layer’s retention. However, the
Xi, for i = 1, . . . , N are independent and identically distributed thus this probability
is a constant value and we can move it outside of the summation.
From the above described Panjer recursion algorithm we obtained the graphs reported
in Figure 4.9.
Note that these plots do not represent neither continuous or discrete densities but
an intermediate scenario. Indeed, we have a continuous density a part from the
visible bumps in the graphs which are discrete mass points. These bumps are in
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Figure 4.9: Panjer recursion: above and below densities of all four layers.

correspondence to the multiples of the limit characterizing the distributions and
this happens because we are layering the aggregate loss distribution. Indeed, if we
consider the first layer we have a 2 million limit with 3 million retention. This means
that all the losses that are bigger or equal to 5 million will be a 2 million loss for the
layer thus the limit and all its multiples will have a much higher mass. Note that 2
million itself does not have a high density because we are dealing with the aggregate
distribution thus with our order of magnitude it is very rare to have an aggregate
loss to the layer that is that small.
Another interesting thing we can observe by looking at layer 3 and layer 4 densities
(Figures 4.9(c) and 4.9(d)) is that the mass in 0 is quite high, in particular in layer 4.
This is due to the fact that the higher the retention is the higher is the probability
to have no losses to the layer.
The time elapsed to run the above algorithm is 14.69 seconds. This is not significantly
smaller that the time needed to perform the Monte Carlo simulation but it is
worth mentioning that while with MC we obtain for each layer just one simulated
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distribution, with the Panjer recursion we obtain two distributions that delimit
the actual one. Indeed, this last method gives us a clear idea of where the true
distribution should be. Furthermore, the smaller it is the gap between the below
and above distribution the more precision we obtain. However, there is a trade off
between precision and elapsed time. To require more precision means to increase the
dimension (ie. to reduce epsilon) thus it also means to increase the time needed to
run the algorithm (see next paragraph).
Finally, we present here the CDFs obtained from both the Monte Carlo simulation
and the Panjer recursion in order to compare the results obtained from the two
methods.
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Figure 4.10: Monte Carlo simulation and Panjer recursion: CDFs comparison.

By looking at the CDFs comparison (Figure 4.10) we can see that the Monte Carlo
simulation and the Panjer recursion hold quite the same results. Note that the jump
in Figure 4.10(d) at 25 million is nothing but the result of the discrete mass points
we observed in the Panjer densities reported in Figure 4.9. Indeed, even if these
jumps are not always clearly visible they are present in all four CDFs and they are
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due to the fact that in correspondence to the discrete mass points there is a big mass
gathering thus they provoke a relevant increase in the cumulative distribution.
Overall, our goal is to have the distribution obtained from the MC simulation falling
within the Panjer interval for all layers.

4.3.3 Parameters effect on results and methods comparison
By zooming on the graphs reported in Figure 4.10 and by having a look at the
first values of each distribution we can observe that with 10000 simulations the MC
simulation already is in between the below and above Panjer recursions (see Figure
4.11).
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Figure 4.11: Monte Carlo simulation and Panjer recursion: zoom of CDFs compar-
ison.

Of course, by increasing the number of simulations of the MC distribution it will
be more precise and it will surely fall within the interval. However, there is a trade
off between precision and time elapsed. In Figure 4.12 we reported the summary of
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elapsed time in relation to the number of simulations.

Number of simulations 10.000 15.000 20.000 
Elapsed time 16,66 s 25,36 s 35,21 s

Monte Carlo

Figure 4.12: Output table reporting the trade off between number of simulations
and elapsed time for Monte Carlo simulation.

If we perform 15000 simulations we need 25.36 seconds to run the algorithm, almost
10 seconds more than for 10000 simulations. By increasing the number of simulations
to 20000 the algorithm would require 35.21 seconds to run.
The same reasoning holds for the Panjer recursion. By increasing the dimension (ie.
reducing epsilon thus having more steps) we will obtain a tighter interval but we
need more time to run the algorithm (see Figure 4.13).

Dimension 100 200 500
Elapsed time 14,69 s 27,97 s 68,61 s

Panjer

Figure 4.13: Output table reporting the trade off between dimension and elapsed
time for Panjer recursion.

In order to have a significant comparison within the two methods we ran the Monte
Carlo method with 100000 simulations and we assumed this distribution to be the
actual distribution of data. Note that we tried different number of simulations to
determine which distribution could be the best one to represent the actual distribution
of data and we chose 100000 since by increasing the number thereafter we did not
obtain significant differences in the obtained distributions. Afterwards, we compared
the CDFs obtained from the Monte Carlo method with 10000 simulations and Panjer
recursion with dimension 100 with the CDFs of the actual distribution (Figure 4.14
left). We chose 10000 and 100 respectively since with these two parameters the
methods are comparable in terms of elapsed time thus we can discuss their efficiency
by keeping fixed the computational effort needed to run the algorithms. Finally,
for completeness we did the same comparison but doubling both the number of
simulations for MC and the dimension for Panjer (Figure 4.14 right).

Elapsed time MSE
Monte Carlo 16,66 s 1,020E-06

Panjer 14,69 s 7,029E-07

Elapsed time MSE
Monte Carlo 35,21 s 1,014E-06

Panjer 27,97 s 6,320E-07

Elapsed time MSE
Monte Carlo 16,66 s 1,020E-06

Panjer 14,69 s 7,029E-07

Elapsed time MSE
Monte Carlo 35,21 s 1,014E-06

Panjer 27,97 s 6,320E-07

Figure 4.14: Methods comparison. Left: MC with 10000 simulations and Panjer
with dimension 100. Right: MC with 20000 simulations and Panjer with dimension
200.
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Note that in order to determine which model performs better we computed the Mean
Squared Error (MSE), a risk function that measures the average of the errors squares,
ie. the average squared difference between the estimated values and the actual ones.
Since we have a structure with layering we obtained an MSE for each layer. However,
we are interested into an overall comparison of the two methods thus we computed
the average of the four layers MSEs. Another thing that might be worth mentioning
is that for the Panjer recursion we have for each layer the below and above CDFs.
However, in order to have a clear comparison with the Monte Carlo simulation we
considered for each layer the average CDF where the i-th element is nothing but the
average between the i-th elements of the below and above CDFs respectively.
By looking at the left table of Figure 4.14 we can see that with the same computational
effort needed to run the algorithms the Panjer recursion performs better than the
Monte Carlo simulation. Indeed, the MSE is lower thus the precision is higher.
Furthermore, by doubling both the number of simulations and the dimension (see
right table of Figure 4.14) the Panjer recursion is still better with respect to the
Monte Carlo simulation and it requires less time to run. In conclusion, it might
seem that the Panjer recursion is in general more accurate than the Monte Carlo
simulation. However, it is still up to the actuary to decide how to proceed. We may
want to use just one of the two methods with higher precision or we may decide to
use both methods with lower accuracy in order to have more information. We could
also choose to have faster results over more precision. The decision might depend
from the situation we find ourselves in, the treaty we are dealing with or even the
data submission. However, we can already conclude that the Panjer recursion can
provide the same results of the Monte Carlo simulation with different methodology,
same efficiency and a little more code.
In the following section we will introduce the treaty features and analyze the effects
that they might have on the distributions. Note that the aggregate terms do not
have an impact on the methods efficiency thus they will not affect the observations
made above.

4.4 Treaty features: AAD and AAL
Now that both the Monte Carlo simulation and the Panjer recursion have been
implemented we want to analyze the effects of the annual aggregate deductible
(AAD) and the aggregate annual limit (AAL) over the aggregate loss distribution.
Let’s consider a scenario where we have an aggregate loss to the layer (we will name
it X) and we are provided with both the AAL and AAD. Then we would have

MIN(MAX(0, X - AAD), AAL)

Indeed, the maximum value we could ever obtain is the the aggregate limit.
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4.4.1 Implement AAD and AAL
We now present the pseudocode inserted in Algorithm 1 and Algorithm 3 respectively
in order to apply the AAD followed by the AAL. Note that we will not report the
full pseudocodes of MC and Panjer again but we will refer to the algorithms’ line
numbers in order to underline where we implemented the treaty features. We will
apply these features on the MC simulation performed with 10000 simulations and
the Panjer recursion with dimension 100.

Algorithm 4 Monte Carlo simulation with AAD and AAL
10: ...
11: AADk ← valueAADk ó AAD definition
12: AALk ← valueAALk ó AAL definition
13: Skj ← min(max(0, Skj - AADk), AALk) ó Apply AAD followed by AAL
14: Sk[j]← Skj
15: end for
16: return Sk

Note that instead of specifying for each layer k a value for the deductible we used
"valueAADk" since we tried different numbers to really see the effect of these features
and to analyze more than one scenario. The same holds for "valueAALk" for each
layer k.
In the Panjer recursion in order to have a clear comparison with MC we considered
the same AAD and AAL of Monte Carlo simulation with the only difference that we
worked with the indexes instead (see Algorithm 5). This is due to the fact that in
this case we are dealing with densities thus to obtain a correct representation we
need to adapt the steps to both the AAD and AAL respectively.

Algorithm 5 Panjer recursion with AAD and AAL
25: ...
26: AADnk ← AADk/epsk ó AAD definition
27: firstka ← 0 ó Mass in zero for above density
28: firstkb ← 0 ó Mass in zero for below density
29: for i← 1 to AADnk do
30: firstka ← firstka + Sak[i]
31: firstkb ← firstkb + Sbk[i]
32: end for
33: AADSak ← Sak[AADnk:]
34: AADSak[0] ← firstka ó Overwrite first element density above
35: AADSbk ← Sbk[AADnk:]
36: AADSbk[0] ← firstkb ó Overwrite first element density below
37: listk ← [0, 1*epsk, 2*epsk, . . . , rangepanjer*epsk]
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38: AALnk ← (listk.index(AALk)) ó AAL definition
39: lastka ← 0 ó Mass in last position for above density
40: lastkb ← 0 ó Mass in last position for below density
41: for i← AALnk to (rangepanjer - AADnk) do
42: lastka ← lastka + AADSak[i]
43: lastkb ← lastkb + AADSbk[i]
44: end for
45: newSak ← AADSak[:AALnk]
46: newSak[AALnk] ← lastka ó Overwrite last element density above
47: newSbk ← AADSbk[:AALnk]
48: newSbk[AALnk] ← lastkb ó Overwrite last element density below
49: CDFpbk ← empty list ó Aggregate CDF below
50: CDFpbk[1]← newSbk[1]
51: for i← 2 to len(newSbk) do
52: CDFpbk[i]← newSbk[i]+CDFpbk[i− 1]
53: end for
54: CDFpak ← empty list ó Aggregate CDF above
55: CDFpak[1]← newSak[1]
56: for i← 2 to len(newSak) do
57: CDFpak[i]← newSak[i]+CDFpak[i− 1]
58: end for

It takes 17.94 seconds to run the Monte Carlo simulation while for the Panjer
recursion we need 14.87 seconds. As we can see, for both methods the introduction
of treaty features does not increase significantly the computational time needed to
run the algorithms. However, these features have a big impact on the distributions
and they can really change the treaty structure.

4.4.2 Results obtained

As previously mentioned, we will now apply on each layer the AAD followed by the
AAL and we will try different values for both the deductibles and limits in order
to analyze the effects of these treaty features on the layering. We will report just
the Monte Carlo distributions plots since the features’ effect on the Panjer recursion
densities is the same. Finally, we will compare the two methods’ CDFs and observe
the similarity of the results.
In Figure 4.15 we reported the two scenarios we will consider for our analysis. We
tried different values for both the AAD and AAL in order to prove how much the
treaty features can influence the distributions. We kept invariant the AAD for the
first and second layer and the AAL for the third and fourth one to better see the
effects of each single feature on the distributions.
In order to have a first look at the effect of the treaty features on the aggregate loss
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AAD AAL
L1 20.000.000 20.000.000 
L2 15.000.000 55.000.000 
L3 5.000.000  60.000.000 
L4 10.000.000 25.000.000 

AAD AAL
L1 20.000.000 30.000.000 
L2 15.000.000 40.000.000 
L3 10.000.000 60.000.000 
L4 2.000.000  25.000.000 

AAD AAL
L1 20.000.000 20.000.000 
L2 15.000.000 55.000.000 
L3 5.000.000  60.000.000 
L4 10.000.000 25.000.000 

AAD AAL
L1 20.000.000 30.000.000 
L2 15.000.000 40.000.000 
L3 10.000.000 60.000.000 
L4 2.000.000  25.000.000 

Figure 4.15: Left: first scenario, Right: second scenario.

distribution we start by analyzing the first layer whose distributions are reported in
Figure 4.16. In both scenarios we have an AAD of 20 million which means that all
the aggregate losses are reduced by 20 million with the condition that the ones up
to 20 million get capped at zero. Graphically speaking, this results into a general
shift to the left of the distribution with a big mass in zero corresponding to all those
losses lower than or equal to the AAD. However, the effect of this feature will be
more evident for the third and fourth layers.
The AAL instead is a limit thus every aggregate loss above the aggregate limit will
be capped at it. For the first scenario we have 20 million aggregate limit and, indeed,
it is possible to observe in the graph that we have quite a lot of mass at 20 million
with respect to the original simulated distribution and nothing after. However, in
the second layer the limit increased by 10 million.
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Figure 4.16: First layer distributions comparison.

For the second layer the limit reduces and from Figure 4.17 it is clear that the effect
is the opposite of what we could observe for the first layer. Indeed, the mass at the
aggregate limit for the second scenario increased quite a lot since the aggregate limit
is 15 million less than in the first one.
By having a look at the third layer, we can see that even if the AAL is at 60 million
for both scenarios we still have a big change in the distribution (see Figure 4.18).
This is due to the fact that, as previously mentioned, the AAD provokes a shift of the
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Figure 4.17: Second layer distributions comparison.

distribution to the left equal to the amount of the AAD thus we have a big mass in
zero. Since in the second scenario the AAD increases by 5 million, as a consequence
of the above mentioned shift the mass gathered in zero increases a lot.
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Figure 4.18: Third layer distributions comparison.

It is interesting to focus for a moment on the fourth layer, in particular on the
first scenario. Figure 4.19(a) shows a very big mass in zero even if the AAD is not
extremely big with respect to our losses scale (10 million). This is due to the fact
that this layer has a quite high retention (25 million) thus just a few losses fall
in and each of the ones that touch the retention is a quite small loss to the layer.
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Figure 4.19: Fourth layer distributions comparison.

Furthermore, there is a very big mass in zero due to all those losses that do not
touch the layer and most of the remaining mass falls quite close to zero since the
aggregate loss to the layer will most likely tend to be small.
In the second scenario we reduced the aggregate deductible by 8 million without
changing the AAL. This change afftects the distribution by pushing it to the right
and, indeed, we have less mass gathered in zero.
To have a better overview of the treaty features’ effects it can be interesting to look
at the expectations of each distribution:

L1 L2 L3 L4
First scenario 7.696.947  24.109.821 28.047.643 1.892.218  
Second scenario 7.882.387  23.379.976 23.952.085 4.301.436  

Figure 4.20: Output table reporting for each scenario the expectations of the layers’
distribution.

For the first and second layers we left the AAD invariant and we changed the AAL.
This causes a small change of the distributions’ expectations where for the first layer
it is slightly higher in the second scenario as a result of increasing the AAL while
for the second layer it is smaller as a consequence of decreasing the AAL. For the
third and fourth layers we modified the AAD by leaving the AAL unchanged and
this provokes quite a strong change when it comes to the layers’ expectations. This
is a reasonable result since, as previously mentioned, the AAD causes a shift of the
distribution thus we expected the mean to be affected by it in a relevant way. In
particular, for the third layer it is smaller in the second scenario consequently to an
increase of the AAD while for the fourth layer we see a higher expectation as a result
of a decrease in the AAD.
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In order to check that the results obtained with the Panjer recursion are in line with
the MC ones we report in Figure 4.21 the CDFs for each layer obtained by applying
the treaty features corresponding to the first scenario.
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Figure 4.21: Monte Carlo simulation and Panjer recursion with AAD and AAL:
CDFs comparison.

By looking at the CDFs the effect that the treaty features have on the distributions
is clear. Indeed, with respect to the CDFs reported in Figure 4.10 here we observe a
jump at zero provoked by the AAD, a jump to one at the aggregate limit due to the
AAL effect and a general shift of the cumulative distribution to the left. The shift is
quite evident for the fourth layer while for the first three layers is less apparent. The
jumps at zero and at the AAL that characterize the four CDFs come from the big
masses we see in all four layers’ distributions as an effect of the introduction of the
treaty features.
Once the results have been analyzed and an interpretation of the graphs has been
given, we would like to understand what these treaty features mean for the reinsurer
and the reinsured in a practical way.
As we already know, the AAD is an agreement between the two parties where the
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reinsured pays by its own all the losses up to the agreed upon aggregate deductible
during the policy year and once all the losses up to that amount are paid by the
reinsured, the reinsurer pays the remainder of losses for the annual period. By having
a look at the two scenarios analyzed above we can easily understand how much the
AAD can influence a treaty. The reason why a company would buy an AAD is to
have a lower premium and very often the AAD is bought just for the first layer.
However, we introduced an AAD for each layer just to have a better overview on the
effect that it might have on the treaty.
The aggregate annual limit instead is the maximum amount of coverage that a
reinsurer provides over a year thus once the covered expenses reach the AAL the
reinsurer stops paying. Differently from the AAD, the AAL does not have a big
impact on the pricing itself but it can have a quite big influence on the VaR or on
the aggregate loss distribution.

4.5 Conclusions

The Monte Carlo simulation is the method used by the Zurich Actuarial Team in
Sompo International to simulate the aggregate loss distribution on a reinsurance
structure. Despite it is a very good and well known method to implement, it is
not the only option a reinsurer has. Indeed, the Panjer recursion is an alternative
method that allows the actuary to obtain an interval in which the final distribution
is expected to fall in. Furthermore, this recursion algorithm can be more precise
than Monte Carlo without requiring a significantly higher time to run.
The Panjer recursion has both advantages and disadvantages with respect to the
Monte Carlo simulation. An advantage could be that it provides an interval delimited
by two distributions, one below and one above, that may allow the actuary to have
some more information with respect to a single simulated distribution (for example
we might have a better idea on the standard error of the estimate). Indeed, we
could have a range where to expect the final distribution to be even if in the end the
actuary would just retrieve the average distribution from the below and the above
ones. Furthermore, by tightening up the interval we can presumably reach an higher
precision than with the Monte Carlo method. Indeed, we showed that if we consider
the same computational time to run each method the Panjer recursion as a lower
MSE thus it is more accurate.
However, there might be some side effects coming from the Panjer recursion imple-
mentation. One may be that to perform this recursion the frequency distribution
must satisfy some hypotheses and that a discretization of the severity distribution
must be performed. Furthermore, the discretization requires some code in order to
be carried out thus the Monte Carlo simulation is for sure straightforward and easier
to implement than the Panjer recursion. Note that these observations do not change
if the treaty includes some aggregate terms.
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This work will enable Sompo International to eventually implement the Panjer re-
cursion in the company pricing tool by knowing that it can be a valid alternative
or a parallel method to the Monte Carlo simulation for the models simulation with
all the possible advantages or disadvantages that may come with it. It will then
be up to the actuary to decide which option can be the best one with respect to
the situation he finds himself in. Indeed, for small clients and easy treaties a faster
approach might be preferred while if we are presented with a very complicated treaty
it can be ideal to be able to perform comparison between methods in order to be
more precise and to have more information on the model.
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Appendix A

Python code

1 ### L i b r a r i e s
2 import pandas as pd
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 import seaborn as sns
6 from sc ipy import s t a t s
7 import random
8 import dc_stat_think as dcst
9 import s t a t i s t i c s

10 import time
11 from math import e
12 from sk l ea rn . met r i c s import mean_squared_error
13

14 ### Import c la ims
15 df = pd . read_excel ( " claims_data . xlsm " )
16 df . i n f o ( verbose = True )
17

18 pr in t ( " Losses above 3m" )
19 over_3m = df [ " 30/06/2021 " ] >= 3e6
20 sns . countp lot ( x = over_3m)
21 p l t . x l a b e l ( ’ Losses at 30/06/21 that are above the th r e sho ld ’ )
22 p l t . y l a b e l ( ’ Count ’ )
23 p l t . t i t l e ( ’ Losses above 3 m i l l i o n ’ )
24 p l t . show ( )
25

26 ’ ’ ’ S eve r i t y ’ ’ ’
27

28 pr in t ( " Un ivar ia te d i s t r i b u t i o n o f data " )
29 df_over = df . l o c [ df [ ’ 30/06/2021 ’ ] >= 3e6 ]
30 df_over = df_over . reset_index ( )
31 df_over = df_over . drop ( columns = ’ index ’ )
32 sns . d i s t p l o t ( df_over [ " 30/06/2021 " ] , h i s t = True , c o l o r = ’ green ’ , b ins

= 25 , kde = False , hist_kws={ ’ edgeco l o r ’ : ’ b lack ’ })
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33 p l t . x l a b e l ( " Losses at 30/06/21 " )
34 p l t . y l a b e l ( " Count " )
35 p l t . t i t l e ( " Un ivar ia te d i s t r i b u t i o n o f data " )
36 p l t . g r i d ( ax i s = ’ y ’ , l i n e s t y l e = ’−− ’ )
37 p l t . show ( )
38

39 ## KS t e s t
40 random . seed (1000)
41 l i s t _ o f _ d i s t s = [ ’ expon ’ , ’gamma ’ , ’ loggamma ’ , ’ lognorm ’ , ’norm ’ , ’ pareto ’ ]
42 r e s u l t s = [ ]
43 f o r i in l i s t _ o f _ d i s t s :
44 d i s t = g e t a t t r ( s ta t s , i )
45 param = d i s t . f i t ( df_over [ ’ 30/06/2021 ’ ] )
46 a = s t a t s . k s t e s t ( df_over [ ’ 30/06/2021 ’ ] , i , a rgs=param )
47 r e s u l t s . append ( ( i , a [ 0 ] , a [ 1 ] ) )
48 r e s u l t s . s o r t ( key=lambda x : f l o a t ( x [ 2 ] ) , r e v e r s e=True )
49 f o r j in r e s u l t s :
50 pr in t ( " {} : s t a t i s t i c ={}, pvalue={}" . format ( j [ 0 ] , j [ 1 ] , j [ 2 ] ) )
51

52 ## Gamma d i s t r i b u t i o n
53 random . seed (1002)
54 param_g = s t a t s . gamma. f i t ( df_over [ " 30/06/2021 " ] )
55 num_reps = 10000
56 sim_gamma = s t a t s . gamma. rvs (param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] , s i z e =

num_reps )
57 pr in t ( ’ 2KS t e s t r e s u l t f o r Gamma d i s t r i b u t i o n : ’ )
58 s = len ( df_over [ ’ 30/06/2021 ’ ] )
59 pr in t ( s t a t s . ks_2samp (np . asar ray ( df_over [ ’ 30/06/2021 ’ ] ) , sim_gamma [ : s ] ) )
60 x1 , y1 = dcst . e cd f ( df_over [ ’ 30/06/2021 ’ ] )
61 x2 = np . l i n s p a c e (3000000 , 40000000 , 10000)
62 y2 = s t a t s . gamma. cd f ( x2 , param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
63 p l t . p l o t ( x1 , y1 ∗100 , ’ g ’ , l a b e l = ’CDF c l i e n t data ’ )
64 p l t . p l o t ( x2 , y2 ∗100 , ’b ’ , l a b e l = ’CDF t h e o r e t i c a l d i s t r i b u t i o n ’ )
65 p l t . xl im ( l e f t = 3e6 )
66 p l t . x l a b e l ( ’ Claims ’ )
67 p l t . y l a b e l ( ’ Percentage ’ )
68 p l t . t i t l e ( ’CDF comparison ’ )
69 p l t . l egend ( l o c = ’ lower r i g h t ’ )
70 p l t . show ( )
71 f i g = p l t . f i g u r e ( )
72 ax = f i g . add_subplot (111)
73 r e s = s t a t s . probplot ( df_over [ ’ 30/06/2021 ’ ] , d i s t = s t a t s . gamma, sparams

= param_g , p l o t = ax )
74 ax . s e t _ t i t l e ( "Gamma with MLE parameters e s t imat i on " )
75

76 ## Pareto d i s t r i b u t i o n
77 random . seed (1003)
78 param_p = s t a t s . pareto . f i t ( df_over [ " 30/06/2021 " ] )
79 num_reps = 10000
80 sim_pareto = s t a t s . pareto . rvs (param_p [ 0 ] , param_p [ 1 ] , param_p [ 2 ] , s i z e

= num_reps )
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81 pr in t ( ’ 2KS t e s t r e s u l t f o r Pareto d i s t r i b u t i o n : ’ )
82 s = len ( df_over [ ’ 30/06/2021 ’ ] )
83 pr in t ( s t a t s . ks_2samp (np . asar ray ( df_over [ ’ 30/06/2021 ’ ] ) , sim_pareto [ : s ] )

)
84 x1 , y1 = dcst . e cd f ( df_over [ ’ 30/06/2021 ’ ] )
85 x2 = np . l i n s p a c e (3000000 , 40000000 , 10000)
86 y2 = s t a t s . pareto . cd f ( x2 , param_p [ 0 ] , param_p [ 1 ] , param_p [ 2 ] )
87 p l t . p l o t ( x1 , y1 ∗100 , ’ g ’ , l a b e l = ’CDF c l i e n t data ’ )
88 p l t . p l o t ( x2 , y2 ∗100 , ’b ’ , l a b e l = ’CDF t h e o r e t i c a l d i s t r i b u t i o n ’ )
89 p l t . xl im ( l e f t = 3e6 )
90 p l t . x l a b e l ( ’ Claims ’ )
91 p l t . y l a b e l ( ’ Percentage ’ )
92 p l t . l egend ( l o c = ’ lower r i g h t ’ )
93 p l t . t i t l e ( ’CDF comparison ’ )
94 p l t . show ( )
95 f i g = p l t . f i g u r e ( )
96 ax = f i g . add_subplot (111)
97 r e s = s t a t s . probplot ( df_over [ ’ 30/06/2021 ’ ] , d i s t = s t a t s . pareto ,

sparams = param_p , p l o t = ax )
98 ax . s e t _ t i t l e ( " Pareto with MLE parameters e s t imat i on " )
99

100 ’ ’ ’ Frequency ’ ’ ’
101

102 n_rows = df_over . shape [ 0 ]
103 df_over . i n s e r t (3 , ’ Loss count ’ , np . ones ( n_rows ) )
104 df_over . i n s e r t (3 , ’ Year ’ , df_over [ ’ Date o f Loss ’ ] . dt . year )
105 agg_loss_count = df_over . groupby ( ’ Year ’ ) [ ’ Loss count ’ ] . sum ( )
106 n = np . array ( [ 1 989 , 1995 , 1996 , 1997 , 1998 , 1999 , 2000 , 2001 , 2002 ,

2003 , 2004 , 2005 , 2006 , 2007 , 2008 , 2009 , 2010 , 2011 , 2012 , 2013 ,
2014 , 2015 , 2016 , 2017 , 2018 , 2019 , 2020 , 2021 ] )

107 nxt i ck s = [1989 , 1996 , 1998 , 2000 , 2002 , 2004 , 2006 , 2008 , 2010 , 2012 ,
2014 , 2016 , 2018 , 2020 ]

108 nyt i ck s = [ 0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 ]
109 p l t . bar (n , np . asar ray ( agg_loss_count ) , width = 0 .85 , alpha = 0 . 7 )
110 p l t . g r i d ( ax i s = ’ y ’ , l i n ew id th = 0 . 5 , l i n e s t y l e = ’−− ’ )
111 p l t . x l a b e l ( ’ Year ’ )
112 p l t . y l a b e l ( ’ Count ’ )
113 p l t . t i t l e ( ’ Count l o s s e s above 3 m i l l i o n ’ )
114 p l t . x t i c k s ( nxt icks , nxt icks , r o t a t i o n = 45)
115 p l t . y t i c k s ( t i c k s = nyt i ck s )
116 p l t . show ( )
117

118 ## Find the o f f s e t t r i a n g l e with l o s s count f o r each year
119 df . i n s e r t (3 , ’ Year ’ , d f [ ’ Date o f Loss ’ ] . dt . year )
120 t r i a n g l e = df . i l o c [ : , [ 3 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 ,

23 , 24 , 25 , 2 6 ] ]
121 last_15_years = t r i a n g l e [ ’ Year ’ ] >= 2007
122 t r i a n g l e = t r i a n g l e [ last_15_years ]
123 years = np . array ( [ 2007 , 2008 , 2009 , 2010 , 2011 , 2012 , 2013 , 2014 , 2015 ,

2016 , 2017 , 2018 , 2019 , 2020 , 2021 ] )
124 o f f s e t _ t r i a n g l e = pd . DataFrame ( )
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125 f o r year in years :
126 dataframe = t r i a n g l e . l o c [ t r i a n g l e [ ’ Year ’ ] == year ]
127 dataframe . i l o c [ : , 1 : ] = dataframe . i l o c [ : , 1 : ] . s h i f t ( pe r i od s = −(year

−2007) , ax i s = 1)
128 o f f s e t _ t r i a n g l e = o f f s e t _ t r i a n g l e . append ( dataframe , ignore_index =

True )
129 o f f s e t _ t r i a n g l e = o f f s e t _ t r i a n g l e . rename ( columns = { ’ 31/12/2007 ’ : ’ 1 ’ ,

’ 31/12/2008 ’ : ’ 2 ’ , ’ 31/12/2009 ’ : ’ 3 ’ , ’ 31/12/2010 ’ : ’ 4 ’ , ’
31/12/2011 ’ : ’ 5 ’ , ’ 31/12/2012 ’ : ’ 6 ’ ,

130 ’ 31/12/2013 ’ : ’ 7 ’ ,
’ 31/12/2014 ’ : ’ 8 ’ , ’ 31/12/2015 ’ : ’ 9 ’ , ’ 31/12/2016 ’ : ’ 10 ’ , ’
31/12/2017 ’ : ’ 11 ’ , ’ 31/12/2018 ’ : ’ 12 ’ ,

131 ’ 31/12/2019 ’ : ’ 13 ’ ,
’ 31/12/2020 ’ : ’ 14 ’ , ’ 30/06/2021 ’ : ’ 15 ’ })

132 o f f s e t _ t r i a n g l e = o f f s e t _ t r i a n g l e . f i l l n a (0 )
133 co l 1 = o f f s e t _ t r i a n g l e . l o c [ : , [ ’ Year ’ ] ]
134 c o l s = o f f s e t _ t r i a n g l e . i l o c [ : , 1 : ]
135 c o l s [ c o l s <= 3e6 ] = 0
136 c o l s [ c o l s > 3e6 ] = 1
137 o f f s e t _ t r i a n g l e = pd . concat ( [ co l1 , c o l s ] , a x i s = 1 , j o i n = ’ inner ’ )
138 agg_count = pd . DataFrame ( )
139 f o r year in years :
140 sum = o f f s e t _ t r i a n g l e . l o c [ o f f s e t _ t r i a n g l e [ ’ Year ’ ] == year , [ ’ 1 ’ , ’ 2 ’ ,

’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ , ’ 10 ’ , ’ 11 ’ , ’ 12 ’ , ’ 13 ’ , ’ 14 ’ , ’
15 ’ ] ] . sum ( )

141 agg_count = agg_count . append (sum , ignore_index = True )
142 agg_count = agg_count [ [ ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ , ’ 10

’ , ’ 11 ’ , ’ 12 ’ , ’ 13 ’ , ’ 14 ’ , ’ 15 ’ ] ]
143 agg_count . i n s e r t (0 , ’ Year ’ , year s )
144 agg_count
145

146 ## LDFs
147

148 # Age to Age LDFs
149 row = np . arange (1 , 14)
150 row = np . f l i p ( row )
151 j = 1
152 AtA = [ ]
153 f o r i in row :
154 l d f = agg_count . i l o c [ : i , j +1] . sum ( ) /agg_count . i l o c [ : i , j ] . sum ( )
155 l d f = round ( ld f , 3)
156 AtA. append ( l d f )
157 j =j+1
158 AtA. append (1 )
159 new_row1 = { ’ Year ’ : ’Age to Age LDFs ’ , ’ 1 ’ : ’− ’ , ’ 2 ’ : AtA [ 0 ] , ’ 3 ’ : AtA

[ 1 ] , ’ 4 ’ : AtA [ 2 ] , ’ 5 ’ : AtA [ 3 ] , ’ 6 ’ : AtA [ 4 ] , ’ 7 ’ : AtA [ 5 ] , ’ 8 ’ : AtA
[ 6 ] , ’ 9 ’ : AtA [ 7 ] , ’ 10 ’ : AtA [ 8 ] ,

160 ’ 11 ’ : AtA [ 9 ] , ’ 12 ’ : AtA [ 1 0 ] , ’ 13 ’ : AtA [ 1 1 ] , ’ 14 ’ : AtA [ 1 2 ] ,
’ 15 ’ : AtA [ 1 3 ] }

161 l d f s = pd . DataFrame ( )
162 l d f s = l d f s . append (new_row1 , ignore_index = True )
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163 # Age to Ultimate LDFs
164 AtU = [ ]
165 f o r i in range (14) : # AtA does not conta in the "−"
166 l = AtA [ i : ]
167 l d f = mult ip ly ( l )
168 l d f = round ( ld f , 3)
169 AtU. append ( l d f )
170 i = i+1
171 AtU. append (1 )
172 new_row2 = { ’ Year ’ : ’Age to Ultimate LDFs ’ , ’ 1 ’ : AtU [ 0 ] , ’ 2 ’ : AtU [ 1 ] , ’

3 ’ : AtU [ 2 ] , ’ 4 ’ : AtU [ 3 ] , ’ 5 ’ : AtU [ 4 ] , ’ 6 ’ : AtU [ 5 ] , ’ 7 ’ : AtU [ 6 ] , ’ 8 ’
: AtU [ 7 ] , ’ 9 ’ : AtU [ 8 ] , ’ 10 ’ : AtU [ 9 ] ,

173 ’ 11 ’ : AtU [ 1 0 ] , ’ 12 ’ : AtU [ 1 1 ] , ’ 13 ’ : AtU [ 1 2 ] , ’ 14 ’ : AtU [ 1 3 ] ,
’ 15 ’ : AtU [ 1 4 ] }

174 l d f s = l d f s . append (new_row2 , ignore_index = True )
175 l d f s = l d f s [ [ ’ Year ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ , ’ 10 ’ ,

’ 11 ’ , ’ 12 ’ , ’ 13 ’ , ’ 14 ’ , ’ 15 ’ ] ]
176 # Develop l o s s
177 loss_count = l i s t ( agg_loss_count [ 1 3 : ] )
178 AtU. r e v e r s e ( )
179 trend_dev_loss = [ ]
180 f o r i in range (14) :
181 trend_dev_loss . append ( loss_count [ i ] ∗AtU [ i ] )
182

183 ## Burning co s t and expected number o f l o s s e s in 2022
184 v = pd . read_excel ( " claims_data_v . xlsm " )
185 v_2021 = v . drop ( index = 15)
186 h = v_2021 [ ’VY’ ]
187 burning_costs = [ ]
188 f o r i in range (14) :
189 burning_costs . append ( trend_dev_loss [ i ] / h [ i ] )
190 pr in t ( ’ Burning c o s t s : ’ )
191 pr in t ( burning_costs )
192 avg_bc = s t a t i s t i c s . mean( burning_costs )
193 pr in t ( ’ Average o f burning c o s t s from 2007 to 2020 : ’ )
194 pr in t ( avg_bc )
195 exp_num_losses = avg_bc∗v [ ’VY’ ] [ 1 5 ]
196 pr in t ( ’ Expected number o f l o s s e s in 2022 : ’ )
197 pr in t ( exp_num_losses )
198

199 " " " Compound model " " "
200

201 ## Monte Carlo s imu la t i on
202 random . seed (1010)
203 num_simulations = 10000
204 S1 = [ ]
205 S2 = [ ]
206 S3 = [ ]
207 S4 = [ ]
208 start_time = time . time ( )
209 f o r j in range ( num_simulations ) :
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210 N = s t a t s . po i s son . rvs ( exp_num_losses )
211 S1_j = 0
212 S2_j = 0
213 S3_j = 0
214 S4_j = 0
215 f o r i in range (1 , N+1) :
216 X_i = s t a t s . gamma. rvs (param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
217 r e t e n t i o n 1 = 3000000
218 l i m i t 1 = 2000000
219 exp_loss_layer1 = np . minimum( l im i t1 , np . maximum(0 , X_i −

r e t e n t i o n 1 ) )
220 r e t e n t i o n 2 = r e t e n t i o n 1 + l i m i t 1
221 l i m i t 2 = 5000000
222 exp_loss_layer2 = np . minimum( l im i t2 , np . maximum(0 , X_i −

r e t e n t i o n 2 ) )
223 r e t e n t i o n 3 = r e t e n t i o n 2 + l i m i t 2
224 l i m i t 3 = 15000000
225 exp_loss_layer3 = np . minimum( l im i t3 , np . maximum(0 , X_i −

r e t e n t i o n 3 ) )
226 r e t e n t i o n 4 = r e t e n t i o n 3 + l i m i t 3
227 l i m i t 4 = 25000000
228 exp_loss_layer4 = np . minimum( l im i t4 , np . maximum(0 , X_i −

r e t e n t i o n 4 ) )
229 S1_j = S1_j + exp_loss_layer1
230 S2_j = S2_j + exp_loss_layer2
231 S3_j = S3_j + exp_loss_layer3
232 S4_j = S4_j + exp_loss_layer4
233 i = i+1
234 S1 . append ( S1_j )
235 S2 . append ( S2_j )
236 S3 . append ( S3_j )
237 S4 . append ( S4_j )
238 j = j+1
239 elapsed_time = time . time ( ) − start_time
240 pr in t ( ’ Elapsed time f o r MC s imu la t i on : ’ )
241 pr in t ( elapsed_time )
242

243 # Plots
244 alpha = 0.05
245 VaR1 = np . q u a n t i l e ( S1 ,1− alpha )
246 pr in t ( "VaR with alpha at " , alpha , " : " , round (VaR1) )
247 sns . d i s p l o t ( S1 , kind = " h i s t " , b ins = 35)
248 p l t . x l a b e l ( ’ Claim amount ’ )
249 p l t . y l a b e l ( ’ Count ’ )
250 p l t . t i t l e ( ’ D i s t r i b u t i o n l a y e r 1 ’ )
251 p l t . axv l i n e (VaR1 , c o l o r=’ k ’ , l i n e s t y l e=’ dashed ’ , ymax = 0 . 9 , l i n ew id th

=1)
252 min_ylim , max_ylim = p l t . yl im ( )
253 p l t . t ex t (VaR1∗1 .02 , max_ylim ∗0 .9 , ’{}% VaR: { : . 0 f } ’ . format (95 , VaR1) )
254 p l t . t ight_layout ( )
255 p l t . show ( )
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256

257 VaR2 = np . q u a n t i l e ( S2 ,1− alpha )
258 pr in t ( "VaR with alpha at " , alpha , " : " , round (VaR2) )
259 sns . d i s p l o t ( S2 , kind = " h i s t " , b ins = 35)
260 p l t . x l a b e l ( ’ Claim amount ’ )
261 p l t . y l a b e l ( ’ Count ’ )
262 p l t . t i t l e ( ’ D i s t r i b u t i o n l a y e r 2 ’ )
263 p l t . axv l i n e (VaR2 , c o l o r=’ k ’ , l i n e s t y l e=’ dashed ’ , ymax = 0 . 9 , l i n ew id th

=1)
264 min_ylim , max_ylim = p l t . yl im ( )
265 p l t . t ex t (VaR2∗1 .02 , max_ylim ∗0 .9 , ’{}% VaR: { : . 0 f } ’ . format (95 , VaR2) )
266 p l t . t ight_layout ( )
267 p l t . show ( )
268

269 VaR3 = np . q u a n t i l e ( S3 ,1− alpha )
270 pr in t ( "VaR with alpha at " , alpha , " : " , round (VaR3) )
271 sns . d i s p l o t ( S3 , kind = " h i s t " , b ins = 35)
272 p l t . x l a b e l ( ’ Claim amount ’ )
273 p l t . y l a b e l ( ’ Count ’ )
274 p l t . t i t l e ( ’ D i s t r i b u t i o n l a y e r 3 ’ )
275 p l t . axv l i n e (VaR3 , c o l o r=’ k ’ , l i n e s t y l e=’ dashed ’ , ymax = 0 . 9 , l i n ew id th

=1)
276 min_ylim , max_ylim = p l t . yl im ( )
277 p l t . t ex t (VaR3∗1 .02 , max_ylim ∗0 .9 , ’{}% VaR: { : . 0 f } ’ . format (95 , VaR3) )
278 p l t . t ight_layout ( )
279 p l t . show ( )
280

281 VaR4 = np . q u a n t i l e ( S4 ,1− alpha )
282 pr in t ( "VaR with alpha at " , alpha , " : " , round (VaR4) )
283 sns . d i s p l o t ( S4 , kind = " h i s t " , b ins = 35)
284 p l t . x l a b e l ( ’ Claim amount ’ )
285 p l t . y l a b e l ( ’ Count ’ )
286 p l t . t i t l e ( ’ D i s t r i b u t i o n l a y e r 4 ’ )
287 p l t . axv l i n e (VaR4 , c o l o r=’ k ’ , l i n e s t y l e=’ dashed ’ , ymax = 0 . 9 , l i n ew id th

=1)
288 min_ylim , max_ylim = p l t . yl im ( )
289 p l t . t ex t (VaR4∗1 .02 , max_ylim ∗0 .9 , ’{}% VaR: { : . 0 f } ’ . format (95 , VaR4) )
290 p l t . t ight_layout ( )
291 p l t . show ( )
292

293 pr in t (np . mean( S1 ) )
294 pr in t (np . mean( S2 ) )
295 pr in t (np . mean( S3 ) )
296 pr in t (np . mean( S4 ) )
297

298 sns . d i s t p l o t ( S1 , h i s t=False , c o l o r=’ blue ’ , l a b e l = ’MC L1 ’ )
299 p l t . x l a b e l ( ’ Claim amount ’ )
300 p l t . y l a b e l ( ’ Density ’ )
301 p l t . t i t l e ( ’ D e n s i t i e s comparison ’ )
302 sns . d i s t p l o t ( S2 , h i s t=False , l a b e l = ’MC L2 ’ )
303 sns . d i s t p l o t ( S3 , h i s t=False , l a b e l = ’MC L3 ’ )
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304 sns . d i s t p l o t ( S4 , h i s t=False , c o l o r=’ green ’ , l a b e l = ’MC L4 ’ )
305 min_ylim , max_ylim = p l t . yl im ( )
306 p l t . l egend ( )
307 p l t . show ( )
308

309 ## Panjer r e c u r s i o n
310

311 random . seed (1020)
312 dimension = 100
313 r e t e n t i o n 1 = 3000000
314 l i m i t 1 = 2000000
315 eps1 = l i m i t 1 / dimension
316 lower_prob1 = s t a t s . gamma. cd f ( r e t ent i on1 , param_g [ 0 ] , param_g [ 1 ] ,

param_g [ 2 ] )
317 upper_prob1 = 1−s t a t s . gamma. cd f ( r e t e n t i o n 1+l imi t1 , param_g [ 0 ] , param_g

[ 1 ] , param_g [ 2 ] )
318 x1 = [ ]
319 x1 . append ( r e t e n t i o n 1 )
320 f o r i in range ( dimension ) :
321 x1 . append ( i n t ( r e t e n t i o n 1 +( i +1)∗ eps1 ) )
322 CDF1_toscale = s t a t s . gamma. cd f ( x1 , param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
323 CDF1_below = ( CDF1_toscale−lower_prob1 ) /(1−lower_prob1 )
324 CDF1_below = CDF1_below . t o l i s t ( )
325 CDF1_below . append (1 )
326 CDF1_below = np . asar ray (CDF1_below)
327 CDF1_above = CDF1_below [ 1 : ]
328 CDF1_above = CDF1_above . t o l i s t ( )
329 CDF1_above . append (1)
330 CDF1_above = np . asar ray (CDF1_above)
331 density1_below = [ ]
332 f o r i in range ( l en (CDF1_below) ) :
333 i f ( i == 0) :
334 d_i = CDF1_below [ i ]
335 e l s e :
336 d_i = CDF1_below [ i ] − CDF1_below [ i −1]
337 density1_below . append ( d_i )
338 density1_above = [ ]
339 f o r i in range ( l en (CDF1_above) ) :
340 i f ( i == 0) :
341 d_i = CDF1_above [ i ]
342 e l s e :
343 d_i = CDF1_above [ i ] − CDF1_above [ i −1]
344 density1_above . append ( d_i )
345 # Panjer r e c u r s i o n
346 h0_below1 = e∗∗(−(1−lower_prob1 ) ∗exp_num_losses )
347 h0_above1 = e ∗∗((1− lower_prob1 ) ∗exp_num_losses ∗(CDF1_above [0 ] −1) )
348 a1 = 0
349 b1 = (1−lower_prob1 ) ∗exp_num_losses
350 start_time = time . time ( )
351 range_panjer = np . arange (1 , 10000)
352 Sb1 = [ ]
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353 Sb1 . append ( h0_below1 )
354 f o r n in range_panjer :
355 h = 0
356 l im = min(n+1, dimension+2)
357 f o r j in range (1 , l im ) :
358 h = h + density1_below [ j ] ∗ Sb1 [ n−j ] ∗ ( a1+b1∗ j /n)
359 Sb1 . append (h)
360 Sa1 = [ ]
361 Sa1 . append ( h0_above1 )
362 f o r n in range_panjer :
363 h = 0
364 l im = min(n+1, dimension+2)
365 f o r j in range (1 , l im ) :
366 h = h + density1_above [ j ] ∗ Sa1 [ n−j ] ∗ ( a1+b1∗ j /n)
367 Sa1 . append (h)
368 elapsed_time1 = time . time ( ) − start_time
369 pr in t ( ’ Elapsed time f o r Panjer r e c u r s i o n f o r l a y e r 1 : ’ )
370 pr in t ( elapsed_time1 )
371 CDF_pb1 = [ ]
372 CDF_pb1 . append ( Sb1 [ 0 ] )
373 f o r i in range (1 , l en ( Sb1 ) ) :
374 CDF_pb1 . append ( Sb1 [ i ]+CDF_pb1 [ i −1])
375 CDF_pa1 = [ ]
376 CDF_pa1 . append ( Sa1 [ 0 ] )
377 f o r i in range (1 , l en ( Sa1 ) ) :
378 CDF_pa1 . append ( Sa1 [ i ]+CDF_pa1 [ i −1])
379

380 random . seed (2050)
381 r e t e n t i o n 2 = r e t e n t i o n 1 + l i m i t 1
382 l i m i t 2 = 5000000
383 eps2 = l i m i t 2 / dimension
384 lower_prob2 = s t a t s . gamma. cd f ( r e t ent i on2 , param_g [ 0 ] , param_g [ 1 ] ,

param_g [ 2 ] )
385 upper_prob2 = 1−s t a t s . gamma. cd f ( r e t e n t i o n 2+l imi t2 , param_g [ 0 ] , param_g

[ 1 ] , param_g [ 2 ] )
386 x2 = [ ]
387 x2 . append ( r e t e n t i o n 2 )
388 f o r i in range ( dimension ) :
389 x2 . append ( i n t ( r e t e n t i o n 2 +( i +1)∗ eps2 ) )
390 CDF2_toscale = s t a t s . gamma. cd f ( x2 , param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
391 CDF2_below = ( CDF2_toscale−lower_prob2 ) /(1−lower_prob2 )
392 CDF2_below = CDF2_below . t o l i s t ( )
393 CDF2_below . append (1 )
394 CDF2_below = np . asar ray (CDF2_below)
395 CDF2_above = CDF2_below [ 1 : ]
396 CDF2_above = CDF2_above . t o l i s t ( )
397 CDF2_above . append (1)
398 CDF2_above = np . asar ray (CDF2_above)
399 density2_below = [ ]
400 f o r i in range ( l en (CDF2_below) ) :
401 i f ( i == 0) :
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402 d_i = CDF2_below [ i ]
403 e l s e :
404 d_i = CDF2_below [ i ] − CDF2_below [ i −1]
405 density2_below . append ( d_i )
406 density2_above = [ ]
407 f o r i in range ( l en (CDF2_above) ) :
408 i f ( i == 0) :
409 d_i = CDF2_above [ i ]
410 e l s e :
411 d_i = CDF2_above [ i ] − CDF2_above [ i −1]
412 density2_above . append ( d_i )
413 # Panjer r e c u r s i o n
414 h0_below2 = e∗∗(−(1−lower_prob2 ) ∗exp_num_losses )
415 h0_above2 = e ∗∗((1− lower_prob2 ) ∗exp_num_losses ∗(CDF2_above [0 ] −1) )
416 a2 = 0
417 b2 = (1−lower_prob2 ) ∗exp_num_losses
418 start_time = time . time ( )
419 range_panjer = np . arange (1 , 10000)
420 Sb2 = [ ]
421 Sb2 . append ( h0_below2 )
422 f o r n in range_panjer :
423 h = 0
424 l im = min(n+1, dimension+2)
425 f o r j in range (1 , l im ) :
426 h = h + density2_below [ j ] ∗ Sb2 [ n−j ] ∗ ( a2+b2∗ j /n)
427 Sb2 . append (h)
428 Sa2 = [ ]
429 Sa2 . append ( h0_above2 )
430 f o r n in range_panjer :
431 h = 0
432 l im = min(n+1, dimension+2)
433 f o r j in range (1 , l im ) :
434 h = h + density2_above [ j ] ∗ Sa2 [ n−j ] ∗ ( a2+b2∗ j /n)
435 Sa2 . append (h)
436 elapsed_time2 = time . time ( ) − start_time
437 pr in t ( ’ Elapsed time f o r Panjer r e c u r s i o n f o r l a y e r 2 : ’ )
438 pr in t ( elapsed_time2 )
439 CDF_pb2 = [ ]
440 CDF_pb2 . append ( Sb2 [ 0 ] )
441 f o r i in range (1 , l en ( Sb2 ) ) :
442 CDF_pb2 . append ( Sb2 [ i ]+CDF_pb2 [ i −1])
443 CDF_pa2 = [ ]
444 CDF_pa2 . append ( Sa2 [ 0 ] )
445 f o r i in range (1 , l en ( Sa2 ) ) :
446 CDF_pa2 . append ( Sa2 [ i ]+CDF_pa2 [ i −1])
447

448 random . seed (2060)
449 r e t e n t i o n 3 = r e t e n t i o n 2 + l i m i t 2
450 l i m i t 3 = 15000000
451 eps3 = l i m i t 3 / dimension
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452 lower_prob3 = s t a t s . gamma. cd f ( r e t ent i on3 , param_g [ 0 ] , param_g [ 1 ] ,
param_g [ 2 ] )

453 upper_prob3 = 1−s t a t s . gamma. cd f ( r e t e n t i o n 3+l imi t3 , param_g [ 0 ] , param_g
[ 1 ] , param_g [ 2 ] )

454 x3 = [ ]
455 x3 . append ( r e t e n t i o n 3 )
456 f o r i in range ( dimension ) :
457 x3 . append ( i n t ( r e t e n t i o n 3 +( i +1)∗ eps3 ) )
458 CDF3_toscale = s t a t s . gamma. cd f ( x3 , param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
459 CDF3_below = ( CDF3_toscale−lower_prob3 ) /(1−lower_prob3 )
460 CDF3_below = CDF3_below . t o l i s t ( )
461 CDF3_below . append (1 )
462 CDF3_below = np . asar ray (CDF3_below)
463 CDF3_above = CDF3_below [ 1 : ]
464 CDF3_above = CDF3_above . t o l i s t ( )
465 CDF3_above . append (1)
466 CDF3_above = np . asar ray (CDF3_above)
467 density3_below = [ ]
468 f o r i in range ( l en (CDF3_below) ) :
469 i f ( i == 0) :
470 d_i = CDF3_below [ i ]
471 e l s e :
472 d_i = CDF3_below [ i ] − CDF3_below [ i −1]
473 density3_below . append ( d_i )
474 density3_above = [ ]
475 f o r i in range ( l en (CDF3_above) ) :
476 i f ( i == 0) :
477 d_i = CDF3_above [ i ]
478 e l s e :
479 d_i = CDF3_above [ i ] − CDF3_above [ i −1]
480 density3_above . append ( d_i )
481 # Panjer r e c u r s i o n
482 h0_below3 = e∗∗(−(1−lower_prob3 ) ∗exp_num_losses )
483 h0_above3 = e ∗∗((1− lower_prob3 ) ∗exp_num_losses ∗(CDF3_above [0 ] −1) )
484 a3 = 0
485 b3 = (1−lower_prob3 ) ∗exp_num_losses
486 start_time = time . time ( )
487 range_panjer = np . arange (1 , 10000)
488 Sb3 = [ ]
489 Sb3 . append ( h0_below3 )
490 f o r n in range_panjer :
491 h = 0
492 l im = min(n+1, dimension+2)
493 f o r j in range (1 , l im ) :
494 h = h + density3_below [ j ] ∗ Sb3 [ n−j ] ∗ ( a3+b3∗ j /n)
495 Sb3 . append (h)
496 Sa3 = [ ]
497 Sa3 . append ( h0_above3 )
498 f o r n in range_panjer :
499 h = 0
500 l im = min(n+1, dimension+2)
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501 f o r j in range (1 , l im ) :
502 h = h + density3_above [ j ] ∗ Sa3 [ n−j ] ∗ ( a3+b3∗ j /n)
503 Sa3 . append (h)
504 elapsed_time3 = time . time ( ) − start_time
505 pr in t ( ’ Elapsed time f o r Panjer r e c u r s i o n f o r l a y e r 3 : ’ )
506 pr in t ( elapsed_time3 )
507 CDF_pb3 = [ ]
508 CDF_pb3 . append ( Sb3 [ 0 ] )
509 f o r i in range (1 , l en ( Sb3 ) ) :
510 CDF_pb3 . append ( Sb3 [ i ]+CDF_pb3 [ i −1])
511 CDF_pa3 = [ ]
512 CDF_pa3 . append ( Sa3 [ 0 ] )
513 f o r i in range (1 , l en ( Sa3 ) ) :
514 CDF_pa3 . append ( Sa3 [ i ]+CDF_pa3 [ i −1])
515

516 random . seed (2070)
517 r e t e n t i o n 4 = r e t e n t i o n 3 + l i m i t 3
518 l i m i t 4 = 25000000
519 eps4 = l i m i t 4 / dimension
520 lower_prob4 = s t a t s . gamma. cd f ( r e t ent i on4 , param_g [ 0 ] , param_g [ 1 ] ,

param_g [ 2 ] )
521 upper_prob4 = 1−s t a t s . gamma. cd f ( r e t e n t i o n 4+l imi t4 , param_g [ 0 ] , param_g

[ 1 ] , param_g [ 2 ] )
522 x4 = [ ]
523 x4 . append ( r e t e n t i o n 4 )
524 f o r i in range ( dimension ) :
525 x4 . append ( i n t ( r e t e n t i o n 4 +( i +1)∗ eps4 ) )
526 CDF4_toscale = s t a t s . gamma. cd f ( x4 , param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
527 CDF4_below = ( CDF4_toscale−lower_prob4 ) /(1−lower_prob4 )
528 CDF4_below = CDF4_below . t o l i s t ( )
529 CDF4_below . append (1 )
530 CDF4_below = np . asar ray (CDF4_below)
531 CDF4_above = CDF4_below [ 1 : ]
532 CDF4_above = CDF4_above . t o l i s t ( )
533 CDF4_above . append (1)
534 CDF4_above = np . asar ray (CDF4_above)
535 density4_below = [ ]
536 f o r i in range ( l en (CDF4_below) ) :
537 i f ( i == 0) :
538 d_i = CDF4_below [ i ]
539 e l s e :
540 d_i = CDF4_below [ i ] − CDF4_below [ i −1]
541 density4_below . append ( d_i )
542 density4_above = [ ]
543 f o r i in range ( l en (CDF4_above) ) :
544 i f ( i == 0) :
545 d_i = CDF4_above [ i ]
546 e l s e :
547 d_i = CDF4_above [ i ] − CDF4_above [ i −1]
548 density4_above . append ( d_i )
549 # Panjer r e c u r s i o n
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550 h0_below4 = e∗∗(−(1−lower_prob4 ) ∗exp_num_losses )
551 h0_above4 = e ∗∗((1− lower_prob4 ) ∗exp_num_losses ∗(CDF4_above [0 ] −1) )
552 a4 = 0
553 b4 = (1−lower_prob4 ) ∗exp_num_losses
554 start_time = time . time ( )
555 range_panjer = np . arange (1 , 10000)
556 Sb4 = [ ]
557 Sb4 . append ( h0_below4 )
558 f o r n in range_panjer :
559 h = 0
560 l im = min(n+1, dimension+2)
561 f o r j in range (1 , l im ) :
562 h = h + density4_below [ j ] ∗ Sb4 [ n−j ] ∗ ( a4+b4∗ j /n)
563 Sb4 . append (h)
564 Sa4 = [ ]
565 Sa4 . append ( h0_above4 )
566 f o r n in range_panjer :
567 h = 0
568 l im = min(n+1, dimension+2)
569 f o r j in range (1 , l im ) :
570 h = h + density4_above [ j ] ∗ Sa4 [ n−j ] ∗ ( a4+b4∗ j /n)
571 Sa4 . append (h)
572 elapsed_time4 = time . time ( ) − start_time
573 pr in t ( ’ Elapsed time f o r Panjer r e c u r s i o n f o r l a y e r 4 : ’ )
574 pr in t ( elapsed_time4 )
575 CDF_pb4 = [ ]
576 CDF_pb4 . append ( Sb4 [ 0 ] )
577 f o r i in range (1 , l en ( Sb4 ) ) :
578 CDF_pb4 . append ( Sb4 [ i ]+CDF_pb4 [ i −1])
579 CDF_pa4 = [ ]
580 CDF_pa4 . append ( Sa4 [ 0 ] )
581 f o r i in range (1 , l en ( Sa4 ) ) :
582 CDF_pa4 . append ( Sa4 [ i ]+CDF_pa4 [ i −1])
583 t imePanjer = elapsed_time1+elapsed_time2+elapsed_time3+elapsed_time4
584 pr in t ( t imePanjer )
585

586 # Plots
587 p l t . t i t l e ( ’ D e n s i t i e s l a y e r 1 ’ )
588 p l t . p l o t (np . arange (10000) ∗eps1 , Sa1 , l a b e l = ’ Density above ’ )
589 p l t . p l o t (np . arange (10000) ∗eps1 , Sb1 , l a b e l = ’ Density below ’ )
590 p l t . xl im ( −0.1 e8 , 1 . 5 e8 )
591 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
592 p l t . y l a b e l ( ’ Density ’ )
593 p l t . l egend ( )
594 p l t . t ight_layout ( )
595 p l t . show ( )
596

597 p l t . t i t l e ( ’ D e n s i t i e s l a y e r 2 ’ )
598 p l t . p l o t (np . arange (10000) ∗eps2 , Sa2 , l a b e l = ’ Density above ’ )
599 p l t . p l o t (np . arange (10000) ∗eps2 , Sb2 , l a b e l = ’ Density below ’ )
600 p l t . xl im ( −0.1 e8 , 1 . 5 e8 )
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601 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
602 p l t . y l a b e l ( ’ Density ’ )
603 p l t . l egend ( )
604 p l t . t ight_layout ( )
605 p l t . show ( )
606

607 p l t . t i t l e ( ’ D e n s i t i e s l a y e r 3 ’ )
608 p l t . p l o t (np . arange (10000) ∗eps3 , Sa3 , l a b e l = ’ Density above ’ )
609 p l t . p l o t (np . arange (10000) ∗eps3 , Sb3 , l a b e l = ’ Density below ’ )
610 p l t . xl im ( −0.1 e8 , 1 . 5 e8 )
611 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
612 p l t . y l a b e l ( ’ Density ’ )
613 p l t . l egend ( )
614 p l t . t ight_layout ( )
615 p l t . show ( )
616

617 p l t . t i t l e ( ’ D e n s i t i e s l a y e r 4 ’ )
618 p l t . p l o t (np . arange (10000) ∗eps4 , Sa4 , l a b e l = ’ Density above ’ )
619 p l t . p l o t (np . arange (10000) ∗eps4 , Sb4 , l a b e l = ’ Density below ’ )
620 p l t . xl im ( −0.1 e8 , 1 . 5 e8 )
621 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
622 p l t . y l a b e l ( ’ Density ’ )
623 p l t . l egend ( )
624 p l t . t ight_layout ( )
625 p l t . show ( )
626

627 # CDFs
628 p l t . p l o t (np . s o r t ( S1 ) , np . l i n s p a c e (0 , 1 , l en ( S1 ) , endpoint=False ) , l a b e l

= ’Monte Carlo ’ , c o l o r = ’ r ’ )
629 p l t . p l o t (np . arange (10000) ∗eps1 , CDF_pa1, l a b e l = ’ Panjer Above ’ )
630 p l t . p l o t (np . arange (10000) ∗eps1 , CDF_pb1, l a b e l = ’ Panjer Below ’ )
631 p l t . xl im ( −0.1 e8 , 1 .25 e8 )
632 p l t . l egend ( l o c = ’ lower r i g h t ’ )
633 p l t . t i t l e ( ’CDFs l a y e r 1 ’ )
634 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
635 p l t . y l a b e l ( ’ Percentage ’ )
636 p l t . t ight_layout ( )
637 p l t . show ( )
638

639 p l t . p l o t (np . s o r t ( S2 ) , np . l i n s p a c e (0 , 1 , l en ( S2 ) , endpoint=False ) , l a b e l
= ’Monte Carlo ’ , c o l o r = ’ r ’ )

640 p l t . p l o t (np . arange (10000) ∗eps2 , CDF_pa2, l a b e l = ’ Panjer Above ’ )
641 p l t . p l o t (np . arange (10000) ∗eps2 , CDF_pb2, l a b e l = ’ Panjer Below ’ )
642 p l t . l egend ( l o c = ’ lower r i g h t ’ )
643 p l t . xl im ( −0.1 e8 , 1 .25 e8 )
644 p l t . t i t l e ( ’CDFs l a y e r 2 ’ )
645 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
646 p l t . y l a b e l ( ’ Percentage ’ )
647 p l t . t ight_layout ( )
648 p l t . show ( )
649
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650 p l t . p l o t (np . s o r t ( S3 ) , np . l i n s p a c e (0 , 1 , l en ( S3 ) , endpoint=False ) , l a b e l
= ’Monte Carlo ’ , c o l o r = ’ r ’ )

651 p l t . p l o t (np . arange (10000) ∗eps3 , CDF_pa3, l a b e l = ’ Panjer Above ’ )
652 p l t . p l o t (np . arange (10000) ∗eps3 , CDF_pb3, l a b e l = ’ Panjer Below ’ )
653 p l t . l egend ( l o c = ’ lower r i g h t ’ )
654 p l t . xl im ( −0.1 e8 , 1 .25 e8 )
655 p l t . t i t l e ( ’CDFs l a y e r 3 ’ )
656 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
657 p l t . y l a b e l ( ’ Percentage ’ )
658 p l t . t ight_layout ( )
659 p l t . show ( )
660

661 p l t . p l o t (np . s o r t ( S4 ) , np . l i n s p a c e (0 , 1 , l en ( S4 ) , endpoint=False ) , l a b e l
= ’Monte Carlo ’ , c o l o r = ’ r ’ )

662 p l t . p l o t (np . arange (10000) ∗eps4 , CDF_pa4, l a b e l = ’ Panjer Above ’ )
663 p l t . p l o t (np . arange (10000) ∗eps4 , CDF_pb4, l a b e l = ’ Panjer Below ’ )
664 p l t . l egend ( l o c = ’ lower r i g h t ’ )
665 p l t . xl im ( −0.1 e8 , 1 .25 e8 )
666 p l t . t i t l e ( ’CDFs l a y e r 4 ’ )
667 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
668 p l t . y l a b e l ( ’ Percentage ’ )
669 p l t . t ight_layout ( )
670 p l t . show ( )
671

672 ## CDFs comparison f o r r e s u l t s
673 # MC with 100k s imu la t i on s
674 random . seed (9010)
675 num_simulations_z = 100000
676 S1z = [ ]
677 S2z = [ ]
678 S3z = [ ]
679 S4z = [ ]
680 start_time = time . time ( )
681 f o r j in range ( num_simulations_z ) :
682 N = s t a t s . po i s son . rvs ( exp_num_losses )
683 S1_j = 0
684 S2_j = 0
685 S3_j = 0
686 S4_j = 0
687 f o r i in range (1 , N+1) :
688 X_i = s t a t s . gamma. rvs (param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
689 r e t e n t i o n 1 = 3000000
690 l i m i t 1 = 2000000
691 exp_loss_layer1 = np . minimum( l im i t1 , np . maximum(0 , X_i −

r e t e n t i o n 1 ) )
692 r e t e n t i o n 2 = r e t e n t i o n 1 + l i m i t 1
693 l i m i t 2 = 5000000
694 exp_loss_layer2 = np . minimum( l im i t2 , np . maximum(0 , X_i −

r e t e n t i o n 2 ) )
695 r e t e n t i o n 3 = r e t e n t i o n 2 + l i m i t 2
696 l i m i t 3 = 15000000
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697 exp_loss_layer3 = np . minimum( l im i t3 , np . maximum(0 , X_i −
r e t e n t i o n 3 ) )

698 r e t e n t i o n 4 = r e t e n t i o n 3 + l i m i t 3
699 l i m i t 4 = 25000000
700 exp_loss_layer4 = np . minimum( l im i t4 , np . maximum(0 , X_i −

r e t e n t i o n 4 ) )
701 S1_j = S1_j + exp_loss_layer1
702 S2_j = S2_j + exp_loss_layer2
703 S3_j = S3_j + exp_loss_layer3
704 S4_j = S4_j + exp_loss_layer4
705 i = i+1
706 S1z . append ( S1_j )
707 S2z . append ( S2_j )
708 S3z . append ( S3_j )
709 S4z . append ( S4_j )
710 j = j+1
711 elapsed_time = time . time ( ) − start_time
712 pr in t ( ’ Elapsed time f o r MC s imu la t i on : ’ )
713 pr in t ( elapsed_time )
714 # MC 10k CDFs
715 S1 = np . s o r t ( S1 )
716 vector1 = np . arange (10000) ∗ eps1
717 CDF_MC1 = [ ]
718 num_simulations = 10000
719 j = 0
720 count = 0
721 whi le j in range (10000) :
722 i f count == num_simulations :
723 CDF_MC1. append (1)
724 j = j + 1
725 e l s e :
726 i f S1 [ count ] <= vector1 [ j ] :
727 count = count + 1
728 e l s e :
729 CDF_MC1. append ( count /num_simulations )
730 j = j + 1
731 S2 = np . s o r t ( S2 )
732 vector2 = np . arange (10000) ∗ eps2
733 CDF_MC2 = [ ]
734 j = 0
735 count = 0
736 whi le j in range (10000) :
737 i f count == num_simulations :
738 CDF_MC2. append (1)
739 j = j + 1
740 e l s e :
741 i f S2 [ count ] <= vector2 [ j ] :
742 count = count + 1
743 e l s e :
744 CDF_MC2. append ( count /num_simulations )
745 j = j + 1
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746 S3 = np . s o r t ( S3 )
747 vector3 = np . arange (10000) ∗ eps3
748 CDF_MC3 = [ ]
749 j = 0
750 count = 0
751 whi le j in range (10000) :
752 i f count == num_simulations :
753 CDF_MC3. append (1)
754 j = j + 1
755 e l s e :
756 i f S3 [ count ] <= vector3 [ j ] :
757 count = count + 1
758 e l s e :
759 CDF_MC3. append ( count /num_simulations )
760 j = j + 1
761 S4 = np . s o r t ( S4 )
762 vector4 = np . arange (10000) ∗ eps4
763 CDF_MC4 = [ ]
764 j = 0
765 count = 0
766 whi le j in range (10000) :
767 i f count == num_simulations :
768 CDF_MC4. append (1)
769 j = j + 1
770 e l s e :
771 i f S4 [ count ] <= vector4 [ j ] :
772 count = count + 1
773 e l s e :
774 CDF_MC4. append ( count /num_simulations )
775 j = j + 1
776 # MC 100k CDFs
777 S1z = np . s o r t ( S1z )
778 vector1 = np . arange (10000) ∗ eps1
779 CDF_MC1z = [ ]
780 j = 0
781 count = 0
782 whi le j in range (10000) :
783 i f count == num_simulations_z :
784 CDF_MC1z. append (1 )
785 j = j + 1
786 e l s e :
787 i f S1z [ count ] <= vector1 [ j ] :
788 count = count + 1
789 e l s e :
790 CDF_MC1z. append ( count /num_simulations_z )
791 j = j + 1
792 S2z = np . s o r t ( S2z )
793 vector2 = np . arange (10000) ∗ eps2
794 CDF_MC2z = [ ]
795 j = 0
796 count = 0
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797 whi le j in range (10000) :
798 i f count == num_simulations_z :
799 CDF_MC2z. append (1 )
800 j = j + 1
801 e l s e :
802 i f S2z [ count ] <= vector2 [ j ] :
803 count = count + 1
804 e l s e :
805 CDF_MC2z. append ( count /num_simulations_z )
806 j = j + 1
807 S3z = np . s o r t ( S3z )
808 vector3 = np . arange (10000) ∗ eps3
809 CDF_MC3z = [ ]
810 j = 0
811 count = 0
812 whi le j in range (10000) :
813 i f count == num_simulations_z :
814 CDF_MC3z. append (1 )
815 j = j + 1
816 e l s e :
817 i f S3z [ count ] <= vector3 [ j ] :
818 count = count + 1
819 e l s e :
820 CDF_MC3z. append ( count /num_simulations_z )
821 j = j + 1
822 S4z = np . s o r t ( S4z )
823 vector4 = np . arange (10000) ∗ eps4
824 CDF_MC4z = [ ]
825 j = 0
826 count = 0
827 whi le j in range (10000) :
828 i f count == num_simulations_z :
829 CDF_MC4z. append (1 )
830 j = j + 1
831 e l s e :
832 i f S4z [ count ] <= vector4 [ j ] :
833 count = count + 1
834 e l s e :
835 CDF_MC4z. append ( count /num_simulations_z )
836 j = j + 1
837 # Panjer r e c u r s i o n dimension 100 average CDFs
838 CDF1p = [ ]
839 f o r i in range ( l en (CDF_pa1) ) :
840 avg = (CDF_pa1 [ i ]+CDF_pb1[ i ] ) /2
841 CDF1p . append ( avg )
842 CDF2p = [ ]
843 f o r i in range ( l en (CDF_pa2) ) :
844 avg = (CDF_pa2 [ i ]+CDF_pb2[ i ] ) /2
845 CDF2p . append ( avg )
846 CDF3p = [ ]
847 f o r i in range ( l en (CDF_pa3) ) :
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848 avg = (CDF_pa3 [ i ]+CDF_pb3[ i ] ) /2
849 CDF3p . append ( avg )
850 CDF4p = [ ]
851 f o r i in range ( l en (CDF_pa4) ) :
852 avg = (CDF_pa4 [ i ]+CDF_pb4[ i ] ) /2
853 CDF4p . append ( avg )
854 # MSE comparison
855 mseMC1 = mean_squared_error (CDF_MC1z, CDF_MC1)
856 mseMC2 = mean_squared_error (CDF_MC2z, CDF_MC2)
857 mseMC3 = mean_squared_error (CDF_MC3z, CDF_MC3)
858 mseMC4 = mean_squared_error (CDF_MC4z, CDF_MC4)
859 mse_avgMC = (mseMC1 + mseMC2 + mseMC3 + mseMC4) /4
860 pr in t (mse_avgMC)
861 mseP1 = mean_squared_error (CDF_MC1z, CDF1p)
862 mseP2 = mean_squared_error (CDF_MC2z, CDF2p)
863 mseP3 = mean_squared_error (CDF_MC3z, CDF3p)
864 mseP4 = mean_squared_error (CDF_MC4z, CDF4p)
865 mse_avgP = (mseP1 + mseP2 + mseP3 + mseP4) /4
866 pr in t (mse_avgP)
867

868 ## Monte Carlo s imu la t i on AAD−AAL F i r s t Tr i a l
869 random . seed (1010)
870 num_simulations = 10000
871 S1 = [ ]
872 S2 = [ ]
873 S3 = [ ]
874 S4 = [ ]
875 start_time = time . time ( )
876 f o r j in range ( num_simulations ) :
877 N = s t a t s . po i s son . rvs ( exp_num_losses )
878 S1_j = 0
879 S2_j = 0
880 S3_j = 0
881 S4_j = 0
882 f o r i in range (1 , N+1) :
883 X_i = s t a t s . gamma. rvs (param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
884 r e t e n t i o n 1 = 3000000
885 l i m i t 1 = 2000000
886 exp_loss_layer1 = np . minimum( l im i t1 , np . maximum(0 , X_i −

r e t e n t i o n 1 ) )
887 r e t e n t i o n 2 = r e t e n t i o n 1 + l i m i t 1
888 l i m i t 2 = 5000000
889 exp_loss_layer2 = np . minimum( l im i t2 , np . maximum(0 , X_i −

r e t e n t i o n 2 ) )
890 r e t e n t i o n 3 = r e t e n t i o n 2 + l i m i t 2
891 l i m i t 3 = 15000000
892 exp_loss_layer3 = np . minimum( l im i t3 , np . maximum(0 , X_i −

r e t e n t i o n 3 ) )
893 r e t e n t i o n 4 = r e t e n t i o n 3 + l i m i t 3
894 l i m i t 4 = 25000000
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895 exp_loss_layer4 = np . minimum( l im i t4 , np . maximum(0 , X_i −
r e t e n t i o n 4 ) )

896 S1_j = S1_j + exp_loss_layer1
897 S2_j = S2_j + exp_loss_layer2
898 S3_j = S3_j + exp_loss_layer3
899 S4_j = S4_j + exp_loss_layer4
900 i = i+1
901 AAD1 = 20000000
902 AAL1 = 20000000
903 AAD2 = 15000000
904 AAL2 = 55000000
905 AAD3 = 5000000
906 AAL3 = 60000000
907 AAD4 = 10000000
908 AAL4 = 25000000
909 S1_j = min (max(0 , ( S1_j − AAD1) ) , AAL1)
910 S2_j = min (max(0 , ( S2_j − AAD2) ) , AAL2)
911 S3_j = min (max(0 , ( S3_j − AAD3) ) , AAL3)
912 S4_j = min (max(0 , ( S4_j − AAD4) ) , AAL4)
913 S1 . append ( S1_j )
914 S2 . append ( S2_j )
915 S3 . append ( S3_j )
916 S4 . append ( S4_j )
917 j = j+1
918 elapsed_time = time . time ( ) − start_time
919 pr in t ( ’ Elapsed time f o r MC s imu la t i on : ’ )
920 pr in t ( elapsed_time )
921

922 pr in t (np . mean( S1 ) )
923 pr in t (np . mean( S2 ) )
924 pr in t (np . mean( S3 ) )
925 pr in t (np . mean( S4 ) )
926

927 sns . d i s p l o t ( S1 , kind = " h i s t " , b ins = 35)
928 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
929 p l t . y l a b e l ( ’ Count ’ )
930 p l t . t i t l e ( ’L1 D i s t r i b u t i o n with AAD−AAL’ )
931 min_ylim , max_ylim = p l t . yl im ( )
932 p l t . t ight_layout ( )
933 p l t . show ( )
934

935 sns . d i s p l o t ( S2 , kind = " h i s t " , b ins = 35)
936 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
937 p l t . y l a b e l ( ’ Count ’ )
938 p l t . t i t l e ( ’L2 D i s t r i b u t i o n with AAD−AAL’ )
939 min_ylim , max_ylim = p l t . yl im ( )
940 p l t . t ight_layout ( )
941 p l t . show ( )
942

943 sns . d i s p l o t ( S3 , kind = " h i s t " , b ins = 35)
944 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
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945 p l t . y l a b e l ( ’ Count ’ )
946 p l t . t i t l e ( ’L3 D i s t r i b u t i o n with AAD−AAL’ )
947 min_ylim , max_ylim = p l t . yl im ( )
948 p l t . t ight_layout ( )
949 p l t . show ( )
950

951 sns . d i s p l o t ( S4 , kind = " h i s t " , b ins = 35)
952 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
953 p l t . y l a b e l ( ’ Count ’ )
954 p l t . t i t l e ( ’L4 D i s t r i b u t i o n with AAD−AAL’ )
955 min_ylim , max_ylim = p l t . yl im ( )
956 p l t . t ight_layout ( )
957 p l t . show ( )
958

959 ## Panjer r e c u r s i o n AAD−AAL
960 dimension = 100
961 r e t e n t i o n 1 = 3000000
962 l i m i t 1 = 2000000
963 eps1 = l i m i t 1 / dimension
964 lower_prob1 = s t a t s . gamma. cd f ( r e t ent i on1 , param_g [ 0 ] , param_g [ 1 ] ,

param_g [ 2 ] )
965 upper_prob1 = 1−s t a t s . gamma. cd f ( r e t e n t i o n 1+l imi t1 , param_g [ 0 ] , param_g

[ 1 ] , param_g [ 2 ] )
966 x1 = [ ]
967 x1 . append ( r e t e n t i o n 1 )
968 f o r i in range ( dimension ) :
969 x1 . append ( i n t ( r e t e n t i o n 1 +( i +1)∗ eps1 ) )
970 CDF1_toscale = s t a t s . gamma. cd f ( x1 , param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
971 CDF1_below = ( CDF1_toscale−lower_prob1 ) /(1−lower_prob1 )
972 CDF1_below = CDF1_below . t o l i s t ( )
973 CDF1_below . append (1 )
974 CDF1_below = np . asar ray (CDF1_below)
975 CDF1_above = CDF1_below [ 1 : ]
976 CDF1_above = CDF1_above . t o l i s t ( )
977 CDF1_above . append (1)
978 CDF1_above = np . asar ray (CDF1_above)
979 density1_below = [ ]
980 f o r i in range ( l en (CDF1_below) ) :
981 i f ( i == 0) :
982 d_i = CDF1_below [ i ]
983 e l s e :
984 d_i = CDF1_below [ i ] − CDF1_below [ i −1]
985 density1_below . append ( d_i )
986 density1_above = [ ]
987 f o r i in range ( l en (CDF1_above) ) :
988 i f ( i == 0) :
989 d_i = CDF1_above [ i ]
990 e l s e :
991 d_i = CDF1_above [ i ] − CDF1_above [ i −1]
992 density1_above . append ( d_i )
993 # Panjer r e c u r s i o n
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994 h0_below1 = e∗∗(−(1−lower_prob1 ) ∗exp_num_losses )
995 h0_above1 = e ∗∗((1− lower_prob1 ) ∗exp_num_losses ∗(CDF1_above [0 ] −1) )
996 a1 = 0
997 b1 = (1−lower_prob1 ) ∗exp_num_losses
998 start_time = time . time ( )
999 range_panjer = np . arange (1 , 10000)

1000 Sb1 = [ ]
1001 Sb1 . append ( h0_below1 )
1002 f o r n in range_panjer :
1003 h = 0
1004 l im = min(n+1, dimension+2)
1005 f o r j in range (1 , l im ) :
1006 h = h + density1_below [ j ] ∗ Sb1 [ n−j ] ∗ ( a1+b1∗ j /n)
1007 Sb1 . append (h)
1008 Sa1 = [ ]
1009 Sa1 . append ( h0_above1 )
1010 f o r n in range_panjer :
1011 h = 0
1012 l im = min(n+1, dimension+2)
1013 f o r j in range (1 , l im ) :
1014 h = h + density1_above [ j ] ∗ Sa1 [ n−j ] ∗ ( a1+b1∗ j /n)
1015 Sa1 . append (h)
1016 AADn1 = i n t (AAD1/ eps1 )
1017 AADxp1 = ( ( np . arange (10000) ∗ eps1 )−AAD1) [AADn1 : ]
1018 f i r s t 1 a = 0
1019 f i r s t 1 b = 0
1020 f o r i in range (AADn1+1) :
1021 f i r s t 1 a = f i r s t 1 a + Sa1 [ i ]
1022 f i r s t 1 b = f i r s t 1 b + Sb1 [ i ]
1023 AADSa1_new = Sa1 [AADn1 : ]
1024 AADSa1_new [ 0 ] = f i r s t 1 a
1025 AADSb1_new = Sb1 [AADn1 : ]
1026 AADSb1_new [ 0 ] = f i r s t 1 b
1027 xp1 = np . arange (10000) ∗ eps1
1028 xp1 = xp1 . t o l i s t ( )
1029 AALn1_new = xp1 . index (AAL1)
1030 xp1_kept = xp1 [ : AALn1_new+1]
1031 l a s t 1 a = 0
1032 l a s t 1b = 0
1033 f o r i in range (AALn1_new, l en ( xp1 )−AADn1) :
1034 l a s t 1 a = l a s t 1 a + AADSa1_new [ i ]
1035 l a s t 1b = la s t 1b + AADSb1_new[ i ]
1036 Sa1_new = AADSa1_new [ : AALn1_new+1]
1037 Sa1_new [AALn1_new ] = l a s t 1 a
1038 Sb1_new = AADSb1_new [ : AALn1_new+1]
1039 Sb1_new [AALn1_new ] = la s t 1b
1040 elapsed_time1 = time . time ( ) − start_time
1041 pr in t ( ’ Elapsed time f o r Panjer r e c u r s i o n f o r l a y e r 1 : ’ )
1042 pr in t ( elapsed_time1 )
1043 CDF_pb1 = [ ]
1044 CDF_pb1 . append (Sb1_new [ 0 ] )
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1045 f o r i in range (1 , l en (Sb1_new) ) :
1046 CDF_pb1 . append (Sb1_new [ i ]+CDF_pb1 [ i −1])
1047 CDF_pa1 = [ ]
1048 CDF_pa1 . append (Sa1_new [ 0 ] )
1049 f o r i in range (1 , l en (Sa1_new) ) :
1050 CDF_pa1 . append (Sa1_new [ i ]+CDF_pa1 [ i −1])
1051

1052 random . seed (2050)
1053 r e t e n t i o n 2 = r e t e n t i o n 1 + l i m i t 1
1054 l i m i t 2 = 5000000
1055 eps2 = l i m i t 2 / dimension
1056 lower_prob2 = s t a t s . gamma. cd f ( r e t ent i on2 , param_g [ 0 ] , param_g [ 1 ] ,

param_g [ 2 ] )
1057 upper_prob2 = 1−s t a t s . gamma. cd f ( r e t e n t i o n 2+l imi t2 , param_g [ 0 ] , param_g

[ 1 ] , param_g [ 2 ] )
1058 x2 = [ ]
1059 x2 . append ( r e t e n t i o n 2 )
1060 f o r i in range ( dimension ) :
1061 x2 . append ( i n t ( r e t e n t i o n 2 +( i +1)∗ eps2 ) )
1062 CDF2_toscale = s t a t s . gamma. cd f ( x2 , param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
1063 CDF2_below = ( CDF2_toscale−lower_prob2 ) /(1−lower_prob2 )
1064 CDF2_below = CDF2_below . t o l i s t ( )
1065 CDF2_below . append (1 )
1066 CDF2_below = np . asar ray (CDF2_below)
1067 CDF2_above = CDF2_below [ 1 : ]
1068 CDF2_above = CDF2_above . t o l i s t ( )
1069 CDF2_above . append (1)
1070 CDF2_above = np . asar ray (CDF2_above)
1071 density2_below = [ ]
1072 f o r i in range ( l en (CDF2_below) ) :
1073 i f ( i == 0) :
1074 d_i = CDF2_below [ i ]
1075 e l s e :
1076 d_i = CDF2_below [ i ] − CDF2_below [ i −1]
1077 density2_below . append ( d_i )
1078 density2_above = [ ]
1079 f o r i in range ( l en (CDF2_above) ) :
1080 i f ( i == 0) :
1081 d_i = CDF2_above [ i ]
1082 e l s e :
1083 d_i = CDF2_above [ i ] − CDF2_above [ i −1]
1084 density2_above . append ( d_i )
1085 # Panjer r e c u r s i o n
1086 h0_below2 = e∗∗(−(1−lower_prob2 ) ∗exp_num_losses )
1087 h0_above2 = e ∗∗((1− lower_prob2 ) ∗exp_num_losses ∗(CDF2_above [0 ] −1) )
1088 a2 = 0
1089 b2 = (1−lower_prob2 ) ∗exp_num_losses
1090 start_time = time . time ( )
1091 range_panjer = np . arange (1 , 10000)
1092 Sb2 = [ ]
1093 Sb2 . append ( h0_below2 )
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1094 f o r n in range_panjer :
1095 h = 0
1096 l im = min(n+1, dimension+2)
1097 f o r j in range (1 , l im ) :
1098 h = h + density2_below [ j ] ∗ Sb2 [ n−j ] ∗ ( a2+b2∗ j /n)
1099 Sb2 . append (h)
1100 Sa2 = [ ]
1101 Sa2 . append ( h0_above2 )
1102 f o r n in range_panjer :
1103 h = 0
1104 l im = min(n+1, dimension+2)
1105 f o r j in range (1 , l im ) :
1106 h = h + density2_above [ j ] ∗ Sa2 [ n−j ] ∗ ( a2+b2∗ j /n)
1107 Sa2 . append (h)
1108 AADn2 = i n t (AAD2/ eps2 )
1109 AADxp2 = ( ( np . arange (10000) ∗ eps2 )−AAD2) [AADn2 : ]
1110 f i r s t 2 a = 0
1111 f i r s t 2 b = 0
1112 f o r i in range (AADn2+1) :
1113 f i r s t 2 a = f i r s t 2 a + Sa2 [ i ]
1114 f i r s t 2 b = f i r s t 2 b + Sb2 [ i ]
1115 AADSa2_new = Sa2 [AADn2 : ]
1116 AADSa2_new [ 0 ] = f i r s t 2 a
1117 AADSb2_new = Sb2 [AADn2 : ]
1118 AADSb2_new [ 0 ] = f i r s t 2 b
1119 xp2 = np . arange (10000) ∗ eps2
1120 xp2 = xp2 . t o l i s t ( )
1121 AALn2_new = xp2 . index (AAL2)
1122 xp2_kept = xp2 [ : AALn2_new+1]
1123 l a s t 2 a = 0
1124 l a s t 2b = 0
1125 f o r i in range (AALn2_new, l en ( xp2 )−AADn2) :
1126 l a s t 2 a = l a s t 2 a + AADSa2_new [ i ]
1127 l a s t 2b = la s t 2b + AADSb2_new[ i ]
1128 Sa2_new = AADSa2_new [ : AALn2_new+1]
1129 Sa2_new [AALn2_new ] = l a s t 2 a
1130 Sb2_new = AADSb2_new [ : AALn2_new+1]
1131 Sb2_new [AALn2_new ] = la s t 2b
1132 elapsed_time2 = time . time ( ) − start_time
1133 pr in t ( ’ Elapsed time f o r Panjer r e c u r s i o n f o r l a y e r 2 : ’ )
1134 pr in t ( elapsed_time2 )
1135 CDF_pb2 = [ ]
1136 CDF_pb2 . append (Sb2_new [ 0 ] )
1137 f o r i in range (1 , l en (Sb2_new) ) :
1138 CDF_pb2 . append (Sb2_new [ i ]+CDF_pb2 [ i −1])
1139 CDF_pa2 = [ ]
1140 CDF_pa2 . append (Sa2_new [ 0 ] )
1141 f o r i in range (1 , l en (Sa2_new) ) :
1142 CDF_pa2 . append (Sa2_new [ i ]+CDF_pa2 [ i −1])
1143

1144 random . seed (2060)
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1145 r e t e n t i o n 3 = r e t e n t i o n 2 + l i m i t 2
1146 l i m i t 3 = 15000000
1147 eps3 = l i m i t 3 / dimension
1148 lower_prob3 = s t a t s . gamma. cd f ( r e t ent i on3 , param_g [ 0 ] , param_g [ 1 ] ,

param_g [ 2 ] )
1149 upper_prob3 = 1−s t a t s . gamma. cd f ( r e t e n t i o n 3+l imi t3 , param_g [ 0 ] , param_g

[ 1 ] , param_g [ 2 ] )
1150 x3 = [ ]
1151 x3 . append ( r e t e n t i o n 3 )
1152 f o r i in range ( dimension ) :
1153 x3 . append ( i n t ( r e t e n t i o n 3 +( i +1)∗ eps3 ) )
1154 CDF3_toscale = s t a t s . gamma. cd f ( x3 , param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
1155 CDF3_below = ( CDF3_toscale−lower_prob3 ) /(1−lower_prob3 )
1156 CDF3_below = CDF3_below . t o l i s t ( )
1157 CDF3_below . append (1 )
1158 CDF3_below = np . asar ray (CDF3_below)
1159 CDF3_above = CDF3_below [ 1 : ]
1160 CDF3_above = CDF3_above . t o l i s t ( )
1161 CDF3_above . append (1)
1162 CDF3_above = np . asar ray (CDF3_above)
1163 density3_below = [ ]
1164 f o r i in range ( l en (CDF3_below) ) :
1165 i f ( i == 0) :
1166 d_i = CDF3_below [ i ]
1167 e l s e :
1168 d_i = CDF3_below [ i ] − CDF3_below [ i −1]
1169 density3_below . append ( d_i )
1170 density3_above = [ ]
1171 f o r i in range ( l en (CDF3_above) ) :
1172 i f ( i == 0) :
1173 d_i = CDF3_above [ i ]
1174 e l s e :
1175 d_i = CDF3_above [ i ] − CDF3_above [ i −1]
1176 density3_above . append ( d_i )
1177 # Panjer r e c u r s i o n
1178 h0_below3 = e∗∗(−(1−lower_prob3 ) ∗exp_num_losses )
1179 h0_above3 = e ∗∗((1− lower_prob3 ) ∗exp_num_losses ∗(CDF3_above [0 ] −1) )
1180 a3 = 0
1181 b3 = (1−lower_prob3 ) ∗exp_num_losses
1182 start_time = time . time ( )
1183 range_panjer = np . arange (1 , 10000)
1184 Sb3 = [ ]
1185 Sb3 . append ( h0_below3 )
1186 f o r n in range_panjer :
1187 h = 0
1188 l im = min(n+1, dimension+2)
1189 f o r j in range (1 , l im ) :
1190 h = h + density3_below [ j ] ∗ Sb3 [ n−j ] ∗ ( a3+b3∗ j /n)
1191 Sb3 . append (h)
1192 Sa3 = [ ]
1193 Sa3 . append ( h0_above3 )
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1194 f o r n in range_panjer :
1195 h = 0
1196 l im = min(n+1, dimension+2)
1197 f o r j in range (1 , l im ) :
1198 h = h + density3_above [ j ] ∗ Sa3 [ n−j ] ∗ ( a3+b3∗ j /n)
1199 Sa3 . append (h)
1200 AADn3 = i n t (AAD3/ eps3 )
1201 AADxp3 = ( ( np . arange (10000) ∗ eps3 )−AAD3) [AADn3 : ]
1202 f i r s t 3 a = 0
1203 f i r s t 3 b = 0
1204 f o r i in range (AADn3+1) :
1205 f i r s t 3 a = f i r s t 3 a + Sa3 [ i ]
1206 f i r s t 3 b = f i r s t 3 b + Sb3 [ i ]
1207 AADSa3_new = Sa3 [AADn3 : ]
1208 AADSa3_new [ 0 ] = f i r s t 3 a
1209 AADSb3_new = Sb3 [AADn3 : ]
1210 AADSb3_new [ 0 ] = f i r s t 3 b
1211 xp3 = np . arange (10000) ∗ eps3
1212 xp3 = xp3 . t o l i s t ( )
1213 AALn3_new = xp3 . index (AAL3)
1214 xp3_kept = xp3 [ : AALn3_new+1]
1215 l a s t 3 a = 0
1216 l a s t 3b = 0
1217 f o r i in range (AALn3_new, l en ( xp3 )−AADn3) :
1218 l a s t 3 a = l a s t 3 a + AADSa3_new [ i ]
1219 l a s t 3b = la s t 3b + AADSb3_new[ i ]
1220 Sa3_new = AADSa3_new [ : AALn3_new+1]
1221 Sa3_new [AALn3_new ] = l a s t 3 a
1222 Sb3_new = AADSb3_new [ : AALn3_new+1]
1223 Sb3_new [AALn3_new ] = la s t 3b
1224 elapsed_time3 = time . time ( ) − start_time
1225 pr in t ( ’ Elapsed time f o r Panjer r e c u r s i o n f o r l a y e r 3 : ’ )
1226 pr in t ( elapsed_time3 )
1227 CDF_pb3 = [ ]
1228 CDF_pb3 . append (Sb3_new [ 0 ] )
1229 f o r i in range (1 , l en (Sb3_new) ) :
1230 CDF_pb3 . append (Sb3_new [ i ]+CDF_pb3 [ i −1])
1231 CDF_pa3 = [ ]
1232 CDF_pa3 . append (Sa3_new [ 0 ] )
1233 f o r i in range (1 , l en (Sa3_new) ) :
1234 CDF_pa3 . append (Sa3_new [ i ]+CDF_pa3 [ i −1])
1235

1236 random . seed (2070)
1237 r e t e n t i o n 4 = r e t e n t i o n 3 + l i m i t 3
1238 l i m i t 4 = 25000000
1239 eps4 = l i m i t 4 / dimension
1240 lower_prob4 = s t a t s . gamma. cd f ( r e t ent i on4 , param_g [ 0 ] , param_g [ 1 ] ,

param_g [ 2 ] )
1241 upper_prob4 = 1−s t a t s . gamma. cd f ( r e t e n t i o n 4+l imi t4 , param_g [ 0 ] , param_g

[ 1 ] , param_g [ 2 ] )
1242 x4 = [ ]
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1243 x4 . append ( r e t e n t i o n 4 )
1244 f o r i in range ( dimension ) :
1245 x4 . append ( i n t ( r e t e n t i o n 4 +( i +1)∗ eps4 ) )
1246 CDF4_toscale = s t a t s . gamma. cd f ( x4 , param_g [ 0 ] , param_g [ 1 ] , param_g [ 2 ] )
1247 CDF4_below = ( CDF4_toscale−lower_prob4 ) /(1−lower_prob4 )
1248 CDF4_below = CDF4_below . t o l i s t ( )
1249 CDF4_below . append (1 )
1250 CDF4_below = np . asar ray (CDF4_below)
1251 CDF4_above = CDF4_below [ 1 : ]
1252 CDF4_above = CDF4_above . t o l i s t ( )
1253 CDF4_above . append (1)
1254 CDF4_above = np . asar ray (CDF4_above)
1255 density4_below = [ ]
1256 f o r i in range ( l en (CDF4_below) ) :
1257 i f ( i == 0) :
1258 d_i = CDF4_below [ i ]
1259 e l s e :
1260 d_i = CDF4_below [ i ] − CDF4_below [ i −1]
1261 density4_below . append ( d_i )
1262 density4_above = [ ]
1263 f o r i in range ( l en (CDF4_above) ) :
1264 i f ( i == 0) :
1265 d_i = CDF4_above [ i ]
1266 e l s e :
1267 d_i = CDF4_above [ i ] − CDF4_above [ i −1]
1268 density4_above . append ( d_i )
1269 # Panjer r e c u r s i o n
1270 h0_below4 = e∗∗(−(1−lower_prob4 ) ∗exp_num_losses )
1271 h0_above4 = e ∗∗((1− lower_prob4 ) ∗exp_num_losses ∗(CDF4_above [0 ] −1) )
1272 a4 = 0
1273 b4 = (1−lower_prob4 ) ∗exp_num_losses
1274 start_time = time . time ( )
1275 range_panjer = np . arange (1 , 10000)
1276 Sb4 = [ ]
1277 Sb4 . append ( h0_below4 )
1278 f o r n in range_panjer :
1279 h = 0
1280 l im = min(n+1, dimension+2)
1281 f o r j in range (1 , l im ) :
1282 h = h + density4_below [ j ] ∗ Sb4 [ n−j ] ∗ ( a4+b4∗ j /n)
1283 Sb4 . append (h)
1284 Sa4 = [ ]
1285 Sa4 . append ( h0_above4 )
1286 f o r n in range_panjer :
1287 h = 0
1288 l im = min(n+1, dimension+2)
1289 f o r j in range (1 , l im ) :
1290 h = h + density4_above [ j ] ∗ Sa4 [ n−j ] ∗ ( a4+b4∗ j /n)
1291 Sa4 . append (h)
1292 AADn4 = i n t (AAD4/ eps4 )
1293 AADxp4 = ( ( np . arange (10000) ∗ eps4 )−AAD4) [AADn4 : ]
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1294 f i r s t 4 a = 0
1295 f i r s t 4 b = 0
1296 f o r i in range (AADn4+1) :
1297 f i r s t 4 a = f i r s t 4 a + Sa4 [ i ]
1298 f i r s t 4 b = f i r s t 4 b + Sb4 [ i ]
1299 AADSa4_new = Sa4 [AADn4 : ]
1300 AADSa4_new [ 0 ] = f i r s t 4 a
1301 AADSb4_new = Sb4 [AADn4 : ]
1302 AADSb4_new [ 0 ] = f i r s t 4 b
1303 xp4 = np . arange (10000) ∗ eps4
1304 xp4 = xp4 . t o l i s t ( )
1305 AALn4_new = xp4 . index (AAL4)
1306 xp4_kept = xp4 [ : AALn4_new+1]
1307 l a s t 4 a = 0
1308 l a s t 4b = 0
1309 f o r i in range (AALn4_new, l en ( xp4 )−AADn4) :
1310 l a s t 4 a = l a s t 4 a + AADSa4_new [ i ]
1311 l a s t 4b = la s t 4b + AADSb4_new[ i ]
1312 Sa4_new = AADSa4_new [ : AALn4_new+1]
1313 Sa4_new [AALn4_new ] = l a s t 4 a
1314 Sb4_new = AADSb4_new [ : AALn4_new+1]
1315 Sb4_new [AALn4_new ] = la s t 4b
1316 elapsed_time4 = time . time ( ) − start_time
1317 pr in t ( ’ Elapsed time f o r Panjer r e c u r s i o n f o r l a y e r 4 : ’ )
1318 pr in t ( elapsed_time3 )
1319 CDF_pb4 = [ ]
1320 CDF_pb4 . append (Sb4_new [ 0 ] )
1321 f o r i in range (1 , l en (Sb4_new) ) :
1322 CDF_pb4 . append (Sb4_new [ i ]+CDF_pb4 [ i −1])
1323 CDF_pa4 = [ ]
1324 CDF_pa4 . append (Sa4_new [ 0 ] )
1325 f o r i in range (1 , l en (Sa4_new) ) :
1326 CDF_pa4 . append (Sa4_new [ i ]+CDF_pa4 [ i −1])
1327 t imePanjer = elapsed_time1+elapsed_time2+elapsed_time3+elapsed_time4
1328 t imePanjer
1329

1330 p l t . t i t l e ( ’CDF from Panjer l a y e r 1 ’ )
1331 p l t . p l o t (np . s o r t ( S1 ) , np . l i n s p a c e (0 , 1 , l en ( S1 ) , endpoint=False ) , l a b e l

= ’Monte Carlo ’ , c o l o r = ’ r ’ )
1332 p l t . p l o t ( xp1_kept , CDF_pa1, l a b e l = ’ Panjer Above ’ )
1333 p l t . p l o t ( xp1_kept , CDF_pb1, l a b e l = ’ Panjer Below ’ )
1334 p l t . t i t l e ( ’L1 CDFs with AAD−AAL’ )
1335 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
1336 p l t . y l a b e l ( ’ Percentage ’ )
1337 p l t . t ight_layout ( )
1338 p l t . l egend ( l o c = ’ lower r i g h t ’ )
1339 p l t . show ( )
1340

1341 p l t . t i t l e ( ’CDF from Panjer l a y e r 2 ’ )
1342 p l t . p l o t (np . s o r t ( S2 ) , np . l i n s p a c e (0 , 1 , l en ( S2 ) , endpoint=False ) , l a b e l

= ’Monte Carlo ’ , c o l o r = ’ r ’ )
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1343 p l t . p l o t ( xp2_kept , CDF_pa2, l a b e l = ’ Panjer Above ’ )
1344 p l t . p l o t ( xp2_kept , CDF_pb2, l a b e l = ’ Panjer Below ’ )
1345 p l t . t i t l e ( ’L2 CDFs with AAD−AAL’ )
1346 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
1347 p l t . y l a b e l ( ’ Percentage ’ )
1348 p l t . t ight_layout ( )
1349 p l t . l egend ( l o c = ’ lower r i g h t ’ )
1350 p l t . show ( )
1351

1352 p l t . t i t l e ( ’CDF from Panjer l a y e r 3 ’ )
1353 p l t . p l o t (np . s o r t ( S3 ) , np . l i n s p a c e (0 , 1 , l en ( S3 ) , endpoint=False ) , l a b e l

= ’Monte Carlo ’ , c o l o r = ’ r ’ )
1354 p l t . p l o t ( xp3_kept , CDF_pa3, l a b e l = ’ Panjer Above ’ )
1355 p l t . p l o t ( xp3_kept , CDF_pb3, l a b e l = ’ Panjer Below ’ )
1356 p l t . t i t l e ( ’L3 CDFs with AAD−AAL’ )
1357 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
1358 p l t . y l a b e l ( ’ Percentage ’ )
1359 p l t . t ight_layout ( )
1360 p l t . l egend ( l o c = ’ lower r i g h t ’ )
1361 p l t . show ( )
1362

1363 p l t . t i t l e ( ’CDF from Panjer l a y e r 4 ’ )
1364 p l t . p l o t (np . s o r t ( S4 ) , np . l i n s p a c e (0 , 1 , l en ( S4 ) , endpoint=False ) , l a b e l

= ’Monte Carlo ’ , c o l o r = ’ r ’ )
1365 p l t . p l o t ( xp4_kept , CDF_pa4, l a b e l = ’ Panjer Above ’ )
1366 p l t . p l o t ( xp4_kept , CDF_pb4, l a b e l = ’ Panjer Below ’ )
1367 p l t . t i t l e ( ’L4 CDFs with AAD−AAL’ )
1368 p l t . x l a b e l ( ’ Aggregate c la im amount ’ )
1369 p l t . y l a b e l ( ’ Percentage ’ )
1370 p l t . t ight_layout ( )
1371 p l t . l egend ( l o c = ’ lower r i g h t ’ )
1372 p l t . show ( )
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