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Abstract

This work is part of a larger project that aims to investigate the level of consciousness
in non-responsive patients (Vegetative State or Minimal Conscious State). The
ratio of misdiagnosis is indeed very high at the moment. We are developing a
Brain Computer Interface able to support the diagnosis. Our BCI uses Readiness
Potentials (RP), first identified by Kornuber[2] , which arise just before the start of
a voluntary movement. Therefore, the presence of an RP is a marker of presence of
consciousness[4]. Within this project, the aim of this thesis was to create a robust
machine learning algorithm that can predict whether a movement is voluntary or
not.
We firstly investigated the characteristics of RP useful for this scope (feature
extraction), then we selected the most informative ones (feature selection). Finally,
we compared different classifiers model. More in detail, after the EEG pre-processing
(i.e. the noise reduction and the correction of artifacts), a feature extraction has
been performed in order to find the best RP’s attributes for classification; this
first part was the most critical one because the extraction of feature influence
the performance of the classifiers. The section of feature selection was aimed at
detecting which attributes were most informative, thus discarding the redundant
or irrelevant ones, that could lead to misclassifications. The selected features
were finally used to train and validate three different classifiers, one based on
the K-Nearest Neighbour (K-NN), one Decision Tree (DT) and the other using
Support Vector Machines (SVM). Significant results were obtained from the binary
classification, and in particular: 73.3% specificity and 63.3% sensitivity for linear
SVM, 73.3% specificity and 80% sensitivity for cubic SVM, 93.3% specificity and
73.3% sensitivity for K-NN and finally 73.3% specificity and 100% sensitivity for
DT.
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Chapter 1

Consciousness

1.1 What is consciousness?

The definition of consciousness has been source of debates over the centuries, so
long as academic’s opinions differ about what exactly needs to be studied and
explained as consciousness. Recently, consciousness has also become a significant
topic of interdisciplinary research in cognitive science[19], including fields such as
psychology, linguistics, anthropology, neuropsychology and neuroscience. To the
purpose of this work consciousness definition offered by neurology and neuroscience
seems to be the most suitable and most appropriate to start with. In neurology
terms, the common conception of consciousness involves[6]:

• awareness of the surrounding environment.

• wakefulness characterized by a vigilante state.

These two concepts are the basis for the definition of a state of consciousness, but
is it possible to measure how conscious a subject is?
The state of consciousness is difficult to evaluate because it is correlated to subjective
parameters and is hardly measurable by instrumental investigations. If the subject
is in a vigilante state and aware it’s easy to say that he/she is aware, but when
one or both components are lacking or malfunction, this is referred to as altered
states of consciousness. In these cases, especially since the individuals concerned
are unable to communicate with the outside world, it is difficult to quantify the
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Consciousness

state of consciousness; one therefore speaks of disorders of consciousness.

Figure 1.1: Awareness VS Wakefulness graphic

1.2 Disorders of consciousness

Disorders of consciousness (DOCs) are clinical conditions in which alteration or
loss of consciousness[15] occurs. The deficit of awareness has different degrees of
severity, in some cases the loss of consciousness is confined to certain areas of the
brain, for instance in the case of neglect, where the subject experiences a deficit in
attention, or prosopagnosia for the visual perception area; or when the alteration
is temporary like in the anosognosia, the subject is unconscious of a part of the
body, a condition that most often occurs post-stroke. Condition of greater severity
are those affected by coma or vegetative state, where, in addition to a state of
non-supervision, individuals are unable to communicate with the outside world.
Since a classification of the state of consciousness is difficult to make, rating scales
have been proposed, as an help in diagnosis:

1.2.1 Glasgow coma state

The GCS assesses a person based on his/her ability to perform eye movements, to

2



Consciousness

speak, and to move the body. These three behaviour establish the three elements
of the scale: eye, speech, and motion . A person’s GCS score can range from 3
(completely unresponsive) to 15 (fully responsive). This score is used to guide
immediate medical care after a brain injury (such as a car accident) and also to
monitor hospitalized patients and track their level of consciousness.
Lower GCS scores are correlated with higher risk of death. However, the GCS
score alone should not be used on its own to predict the outcome for an individual
person with brain injury.

1.2.2 AVUP: Alert - Verbal - Pain - Unresponsive

It is a simplification of the Glasgow Coma Scale, which assesses a patient response
through three measures: eyes, voice and motor skills. The AVPU scale should be
assessed using these three identifiable traits, looking for the best response of each.
AVPU is an acronym for Alert, Verbal, Pain, Unresponsive. Each of these letters
identifies a level of consciousness based on the type of stimulus required to evoke a
response from the patient.

• Alert:The patient is fully awake (although not necessarily oriented). This
patient will have spontaneously open eyes, will respond to voice (although
may be confused) and will have bodily motor function.

• Verbal: The patient shows some kind of response to external talk in any of
the three components of eyes, voice or motor (patient’s eyes open on being
asked "Are you OK?"). The response could be as little as a grunt, moan, or
slight move of a limb when prompted by the voice of the rescuer.

• Pain: The patient makes a response on any of the three components upon
the application of pain stimulus, such as a central pain stimulus like a sternal
rub or a peripheral stimulus such as squeezing the fingers. A patient with
some level of consciousness (a fully conscious patient would not require a pain
stimulus) may respond by using his/her voice, moving the eyes, or moving
part of the body (including abnormal posturing).

• Unresponsive: Sometimes seen named ’unconscious’, this outcome is recorded
if the patient does not show any eye, voice or motor response to voice or pain.
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For instance, following a car accident the AVUP is the first assessment the rescuer
makes, the rating goes from least serious (A) to most serious (U). The AVUP scale
is not suitable for long-term neurological observation of a patient; in this situation,
the Glasgow Coma Scale is more appropriate.

1.2.3 WHIM: Wessex Head Injury Matrix

The Wessex Head Injury Matrix (WHIM; Shiel et al., 2000)[7] is a behavioural
observational assessment tool commonly used for the assessment of patients in
emerging from a coma and patients in the DOC. The scale is a 62-item observational
matrix that collects data by observation as well as the person’s reaction to specific
stimuli with regard to his or her arousal level and concentration, visual consciousness,
communication, cognition, and social behaviours by observing those behaviours
that occur spontaneously or in response to stimulation.
What happens at the neuronal level?

1.3 The human brain and consciousness

In order to find the connection between brain activity and consciousness, it is
important to understand how the human brain works. Consciousness is, from
clinical definition, divided into two major components: awareness and wakefulness.
The area of the brain responsible for wakefulness consists of brain-stem neuronal
populations, previously called the reticular activating system, that directly project
to both thalamic and cortical neurons. Instead, the awareness involves the activity
of the areas of the cerebral cortex and its reciprocal sub-cortical connections.
However, these two states may be related, as awareness requires wakefulness;
despite, like it can happen in cases of severe trauma, if the subject is in a waking
state, it does not mean that he is also aware of the external environment or what
is going on around him.
Conscious knowledge is the cooperation of multiple areas of the brain. The activity
of the brain results from electrical impulses generated by nerve cells (neurons),
which process and store information. The impulses pass along the nerve fibres
within the brain.
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The brain stem connects the cerebrum with the spinal cords; the connection is
called reticular activating system, which plays an important role in the regulation
of basic functions, and it controls the levels of consciousness and alertness. This
part of the brain also has the significant function of regulating certain critical
body function: if the entire brain stem becomes severely damaged, consciousness
is lost, and these automatic body functions cease (terminate) and brain death
occurs. However, if the brain stem remains intact, the body may remain alive, even
when severe damage to the cerebrum makes awareness, thought, and movement
impossible.

1.3.1 Anatomy of the brain

The human brain is a very complex structure; it controls thoughts, memories,
language, movements and the functionality of all organs of the body. The brain is
divided into two hemispheres, left and right, each one also split into four lobes:

• Frontal lobe: the anterior part, is associated to voluntary movements, control
of intellectual process (speech, though, concentration, judgments and planning),
controlling and coordinating facial expressions and gestures with mood and
feelings;

• Parietal lobe: in charge of the elaboration of stimuli, in particular for pain,
tact and temperature, and language processing;

• Temporal lobe: responsible of generating memory and emotions, processing
immediate events into recent and long-term memory, including sound and
images;

• Occipital lobe: the rear part, this is where the termination of the optic nerve
is located; it is related to processing and interpreting vision and also integrate
visual perception with spatial information.
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Figure 1.2: Different parts of the brain with their functions .

The information is directed into the various lobes of the brain by neurons, which
may be classified into three different types according to their functionality:

• Afferent or sensory neurons: to convey information from tissues and organs
into the central nervous system;

• Efferent or motor neurons: to transmit signals from the central nervous
system to the effector cells;

• Inter-neurons: to connect neurons within specific regions of the central
nervous system.

How is the information is propagated?
The neurons receive and send information through chemical or electrical signals,
which are two different kinds:

• Action potential (AP) are the fundamental units (spikes) through which
neurons interact with each other. They are short electrical signals that
propagate along the axons. They have an amplitude too small to be measured
by electrodes placed on the scalp;

• Post-synaptic are formed when the neurotransmitter binds to the receptor
on the membrane of the post-synaptic cell. They can be excitatory if they
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increase the probability that a post-synaptic neuron will produce an action
potential, or inhibitory if they decrease this probability.

Figure 1.3: Action Potential curve: the stimulus from the pre-synaptic neuron
depolarises the target neuron. Sodium channels open and sodium enters the cell.
This results in depolarisation. At the peak, the potassium channels open and the
ion exits out of the cell.

Figure 1.4: Post-Synaptic Potential: A)positive ions (Na+) enter the neuron,
causing membrane depolarisation; B) inhibitory negative ions (Cl-) enter the neuron,
causing hyperpolarisation of the membrane hyperpolarisation.

1.3.2 Brain areas for voluntary action

Voluntary action is viewed as a set of processes connected to specific brain areas,
that therefore determine a sort of decision making[13]. In addition to voluntary
actions, reflexes actions can also be distinguished and their difference, in how
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the movements originate, provides neuroscientific suggestions. Voluntary actions
involve the cerebral cortex, while reflexes are not cortical movements but purely
spinal. Moreover, voluntary actions and are two distinct subjective experiences:
the first experience concerns the planning of an act and the second one concerns
the experience of agency, which is when one action is influenced by a particular
external event.
The human brain has several and distinct pathways for voluntary actions. The
most important component is the primary motor cortex (M1) because it is the
motor and the final common track to execute commands by transmitting them to
the spinal cord and muscles. Motor areas are located in the rear side of the frontal
lobe, known as the granular frontal cortex.
Before reaching M1, one input arrives at the pre-supplementary motor area (pre-
SMA), which in turn receives inputs from the basal ganglia and the pre-frontal
cortex. The pre-frontal areas represent the neuronal substrate, which would be at
the basis of the development of the intentions, that precede and orient actions.
Several human-neuroimaging investigations have demonstrated that the pre-SMA
has more vigorous activation for self-paced actions than for triggered stimuli. The
pre-SMA is a part of the frontal cognitive network that involves pre-motor, the
cingulate, and frontopolar cortices.
In the pre-SMA, a negative and prolonged slope occurs before the volitional
movement. It can be said that the RP begins with a cascade of neuronal activity
that spreads from the pre-SMA to the SMA until M1, which causes the movement.
Concerning SMA, M1 represents a widely complex set of movements.
Conversely, a second cortical circuit converges on M1 and has a fundamental role for
the immediate sensory guidance of actions. Information from early sensory cortices
is sent to intermediate representations of the parietal lobe until the lateral pre-motor
cortex, which projects in turn to M1. In the posterior parietal areas, classified as an
associative area, neuronal activity, connected to motor acts, is observed; this means
that the posterior parietal cortex has to be considered as a part of the cortical
motor system. From an anatomical point of view, the parietal-frontal connections
reveal a high level of specificity, and this is translated into the fact that each of
these circuits appears involved in one particular sensory-motor transformation, as
a description of a stimulus realized in sensory terms into one in motor terms.
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The frontal and the posterior parietal cortices are strongly connected and form
circuits to work in parallel and integrate sensory and motor information to certain
effectors. The posterior motor areas receive cortical afferents from the parietal lobe,
while the anterior motor areas, from the pre-frontal cortex and the cingulate.
Pre-frontal and cingulate regions are important to cognitive control processes and
are responsible for intentions, planning in the long term, and the choice of when
to act. These regions are interconnected with medial frontal regions that are the
primary source of pre-movement activity.

How is it possible to study the brain activity mentioned above?

9



Chapter 2

EEG signals and Readiness
Potential

2.1 Introduction

In the previous chapter, the definition of consciousness was addressed, which made
it possible through the neuropsychological approach to point out the differences
between the greatest global Disorders of Consciousness and their symptoms.
For establishing if a patient is clinically in Coma, Vegetative State or Minimal Con-
scious State, clinicians have to make an appropriate diagnosis through behavioural
assessment methods, that are based exclusively on the behavioural observation
of the patient. Behavioural responses are essential to provide useful data to de-
scribe the patient’s clinical situation but, often, these are sporadic or non-existent.
However, it has been demonstrated from several studies that diagnostic errors of
VS and MCS are very frequent. Therefore, differentiating the Vegetative State
from Minimally Consciousness State is often one of the most difficult issues facing
clinical staff involved in the care of severely brain-injured patients.
To avoid misdiagnoses and to improve clinical assessment, behavioural observa-
tions must be integrated with neuroimaging and electrophysiological techniques to
formulate a more complete and correct diagnostic picture. Particularly to explore
cognitive function in unresponsive patients through a reproducible motor com-
mand, that is a sign of awareness, an ERP component linked to volitional intention
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movement is Readiness Potential, on which the study of this thesis is based, to
better understand its contribution during voluntary, semi-voluntary and involuntary
movements acquired by electromyography (EMG), according to an experimental
protocol. In effect, there have been findings, in which it is suggested EMG as
a means for the awareness assessment objective in pathologies of consciousness,
through recording muscle activity below the behavioural threshold, when patients
make a voluntary movement to command.

2.2 The Electroencephalogram (EEG)

One of the most essential techniques to study the brain activity is the Electroen-
cephalogram (EEG), invented by Hans Berger in 1929. What EEG records is
mostly the PSPs of cortical neurons directed perpendicularly to the scalp, while
a single neuron’s electrical activity is too small to be detected. What we record,
indeed, is the synchronous activity of thousands of neurons orientated in a similar
way. Since pyramidal neurons of the cortex are particularly similar in orientation,
near to the scalp and synchronous, they are thought to produce the majority of
EEG signal[25].
Since the signals recorded are usually between only 10-100 µV, the amplitudes
are very near to the electrical noise generated by the device. Moreover, most of
the recordings suffer from some artifacts, which interfere with the useful signal,
such as the eye and muscle movement or an electrode temporary detachment. For
this reason, attention must be paid not only during the recording, to avoid any
interference with other instruments, but also in filtering, artifact-removing and
deleting any outcome that is corrupted.
The EEG can identify a spontaneous activity of the brain, which is always present.
The frequency spectrum is characterized by bands, called rhythms, such as delta
rhythm (< 4 Hz), found during dreamless sleep, theta rhythm (4-7 Hz), found in
sleep, meditation and hypnotic state, alpha (8-15 Hz), found in a very relaxed state
of wake or in the moments immediately before falling asleep, Beta (16-30 Hz), in
states of normal waking consciousness[16].
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Figure 2.1: Example of EEG recordings

On the EEG trace, it is also possible to observe particular waves, called Event-
related Potentials (ERPs), due to the administration of sensory stimuli or the
performance of the motor or cognitive task.

2.3 Event-Realted Potential

The EEG can identify a spontaneous activity of the brain, which is always present.
The frequency spectrum is characterized by bands, called rhythms, such as delta
rhythm (< 4 Hz), found during dreamless sleep, theta rhythm (4-7 Hz), found
in sleep, meditation and hypnotic state, alpha (8-15 Hz), found in a very relaxed
state of wake or in the moments immediately before falling asleep, Beta (16-30 Hz),
in states of normal waking consciousness. On the EEG trace, it is also possible
to observe particular waves, called Event-related Potentials (ERPs), due to the
administration of sensory stimuli or the performance of the motor or cognitive task.
In addition to the clinical use, there is an increased interest in employing EEG/ERP
paradigms to understand the brain function and develop brain control interfaces
(BCI).
The ERPs signals due to an external input are, in most cases, related to an imagined
or intentional movement[20]. Furthermore, the preparation of the movement
produces a recognizable wave on the track before the movement performance[10].
In an experiment, if the subjects are instructed to make a series of occasional
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responses, with no eliciting stimulus, the response are preceded by a slow negative
shift at frontal and central electrode sites that begins up to 1 second before the
actual response. This is called the Bereitschaftspotental (BP) or more commonly
known as Readiness Potential (RP)[8].

Figure 2.2: Example of ERP acquisition triggered by a visual stimulus

2.3.1 Neurophysiological mechanisms of Event-related po-
tentials

ERPs are small time-locked voltages that arise corresponding to sensory, cognitive,
or motor events. It is not possible to observe an ERP waveform in single trials
because of how small the potential is respect to all the remaining EEG, and it is
necessary to increase the SNR through averaging.
While for EEG is not possible to study the signal morphology, what we are in-
terested to in ERP studies is the waveform and its parameters, and the factors
influencing the amplitudes and latencies.
The ERPs reflect the coordinate PSPs activity of many thousands of neurons in re-
sponse to internal or external stimuli; they are directly related to neuro-transmission

13



EEG signals and Readiness Potential

and can be used as bio-markers because of their sensitivity for individual differences.

2.3.2 Readiness Potential

The RP was independently discovered by Kornhuber and Deecke (1964). The scalp
topography of the readiness potential depends on which effectors will be used to
stimulate the response[8], with differences between the left and right sides of the
body; it is important to highlight that brain activation is contralateral: if the
movement is performed with the right side of the body then the left side of the
brain will be activated and vice versa.
The lateralized portion of the RP named lateralized readiness potential has been
widely used in cognitive studies. The LRP is particularly useful because it can be
easily isolated from other ERP components. In the chapter 4 will be highlighted
some characteristics useful to classify the RP signal[3].
The RP signal must be not confused with the contingent negative variation , a
different event-related potential, cue-based, that is a negative variation between
warning and imperative stimulus. Instead, the RP is self-placed, and it is a negative
variation[1] of voluntary action.

Figure 2.3: Example of Readiness Potential curve.

Early RP

he first component of the RP is the early RP, or BP1. This is an initial slow rising
phase that lasts from about 1500 ms to about 400 ms before movement, but because
of the high variability of the subject these values can be very different in different
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conditions. The early RP is topographically characterized by a vertex maximum
and the main areas contributing to the early BP are the pre-motor cortex and the
supplementary motor area (SMA), both bilaterally. This component is influenced
by cognitive functions such as level of intention, preparatory state and movement
selection in both amplitude and onset. One hypothesis is that the early RP reflects
in part nonspecific preparation processes for the following movement.

Late RP

The second component of the RP is the late RP, or BP2, or Negative slope
(NS’). This is distinguished from the other component from the abrupt increase
in the gradient of the signal recorded by the central electrode corresponding to
the movement, happening around 400 ms before movement onset. The negativity
begins to shift to the central region contralateral to the hand that is moving, and
while the early BP was generated in the premotor cortex and in the SMA, in the
late RP the contribution of the primary motor cortex (M1) becomes prominent.
The late RP is maximal over the contra-lateral central area for hand movements
(corresponding to electrodes C1 and C2 following the 10-20 standard) but for foot
movements the maximum is found in the midline (Cz electrode). This difference is
probably due to the different cortical locations of the portion controlling the hand
and the portion controlling the foot in the primary motor cortex and is evidence
of the involvement of M1 in the generation of this component. The late BP is
influenced by features of the movement itself such as precision, discreteness and
complexity.

Lateralized RP

In 1988 two groups introduced in literature the Lateralized Readiness Potential
(LRP)[11], one in Groningen and one in Illinois. As already discussed, while the
first part of the RP is equally distributed on right and left hemisphere, and early
RP is therefore measured at the midline, the later part of the potential becomes lat-
eralized, with larger amplitudes found in electrodes contra-lateral to the movement.
A simple method for obtaining the LRP is subtracting the ipsilateral electrode
signal from the contra-lateral one. In case of right-hand movements, the LRP is
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obtained subtracting the ERP elicited in electrode C3 (contra-lateral) to the one
elicited in electrode C4 (ipsilateral).
The LRP should be interpreted as a measure of the difference between the contralat-
eral RP with respect to the ipsilateral: negative LRP values mean that for those
time-points the contra-lateral side has a more negative values, and since the RP is
a negative potential more negative values are larger signals. One of the studies that
first assess the existence of the LRP also demonstrates the relation between the
LRP and the onset of a peripheral motor response: EMG activity begins when the
signal reaches a fixed threshold value, regardless of response accuracy or latency.
The LRP reaches the maximum amplitudes for hand movements, and due to the
shape of the primary motor cortex for foot movements the polarity of the signal is
reversed: the side where the highest voltage value is reached is the ipsilateral one
to the movement instead of the contra-lateral.

2.3.3 Libet experiment

In the early 1980s, the neurologist Benjamin Libet performed landmark experiments
aimed at investigating the role of consciousness in the generation of a motor action
(Libet et al., 1983)[4]. Libet et al. (1983) measured the time when subjects became
consciously aware of the decision to move. The experiment consisted of using a
clock with a rapidly rotating dot: the subjects were asked to note the position of
the moving dot when they were aware of the conscious decision to move a finger.
Scalp EEG and finger EMG were used simultaneously to monitor brain activity and
flex movement during the experiment. Libet et al. (1983) found a premovement
build-up of electrical potential called readiness potential (RP) starting ∼550 ms
before the movement. Unexpectedly, the conscious awareness of the decision or
“the urge to move” emerged only 200 ms before movement, leaving therefore a time
lag of ∼350 ms between the initial rising of the RP and the conscious awareness of
the decision to flex. Libet et al. interpreted the early rise in the RP as a reflexion
of neuronal computation that unconsciously prepare for the voluntary action.
Thus, according to Libet et al., our brain unconsciously plans our behaviour but
allows for a conscious “veto” to alter the outcome of our volition. The findings of
Libet et al. (1983) have had an unrivalled influence on the prevailing view that
both our conscious “will” and subsequent actions are caused by prior neural activity.
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Figure 2.4: Caption

Therefore, since the presence of RP determinate the voluntary intention to
move, if this signal is not present it should mean that there is no voluntary action.
Being able to distinguish between voluntary/involuntary movements can be a
possible method of revealing the presence of consciousness. This thesis work is
concerned with identifying the features that best characterise the RP and finding
an appropriate classification model.
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Chapter 3

Recordings and
categorisation of data

During this thesis work, an experimental phase was performed at “Centro Puzzle”
in Turin. The EEG recordings have been acquired on healthy volunteers, both
females and males, aged between 23-26, by using Galileo NT and its software.
These EEG recordings were acquired by using an EEG cap with 7 or 34 passive
Ag/AgCl electrodes. The EEG datasets were recorded with a sampling frequency
of 512 Hz. Inspired by the movement that Libet made in his experiment, it was
decided to have the subject perform the movement of a finger by recording an
EMG signal. For this study, only signals from healthy subjects were analysed.

3.1 Protocols

3.1.1 Protocol 2012-2015

The experimenter starts the timer displayed on the computer at 5 seconds, the
subject makes a flexion of the index finger of the right hand once every 10 seconds
for 6 minutes (total 40 epochs). The start of the finger movement was monitored
through the placement of two adhesive electrodes on the front and the back of the
second phalanx of the index finger.
In addition to this standard task, alternative tests described below were performed:
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• Using the mouse: instead of flexing the index finger, the movement of clicking
the mouse button is used;

• Use of both hands: in order to remove the effect of the stereotyped movement,
the subject uses both hands, and it is the experimenter who indicates which
one;

• Short trials: the experiment is carried out in the same way as the standard
one, but with a shorter trial duration (5 seconds). The aim is to validate
the hypothesis of a lack of free will: the subject becomes aware of the action
to be performed after the brain has been prepared for that action (Libet
experiment);

• Bimanual: the experiment is performed with both hands simultaneously. This
type of task stems from the need to investigate the cognitive condition of
patients with anosognosia due to hemiplegia, a transitory condition that, in
some cases, may afflict subjects in which the stroke has affected the right
hemisphere of the brain, damaging the motor area. In these subjects, there is
paralysis of the left side of the body, but the patient himself is not conscious
of this, he openly claims that he has no problem and that he can move both
the paralysed arm and leg correctly.

3.1.2 Protocol 2015-2018

In the experiment, are the subject is asked to perform a simple movement, observing
a clock projected onto the PC screen: starting from second 5, the movement is
repeated every 10 seconds, for 6 minutes and 40 seconds, for a total of 40 epochs. The
movements required include: flexion of the index finger, the voluntary movement
of the foot or leg, coordinated movement of the hand and leg and the patellar knee
reflex. Some tasks are performed with the subject blindfolded: in this case, the
operator observes the watch and gives the subject the indication when to perform
the movement, in order to avoid a possible influence of the external environment
on the subject.
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3.1.3 Protocol 2018

The healthy volunteers had to perform three tasks in every experimental session:

• Voluntary task: the subject was instructed to bend the index finger. The firm
movement had to be made during a time window of about 10 s-13 s, started
by an acoustic signal. This experiment is intended to choose the timing of the
movement and not to feel the urge to move. This movement is “self-paced”;

• Semivolontario task: also a flexion of the index finger was performed, but this
time the subject has to move in correspondence with an acoustic signal, as
soon as it is heard. Unlike the voluntary task, this experiment is “cue-based”
because of the external trigger.

• Involuntary task: the patellar reflex is elicited in correspondence of the tendon
with a reflex hammer. For this task, an acoustic signal is only heard by the
experimenter wearing headphones, so that the subject does not expect the
moment when the stimulus occurs. Starting from the first movement to the
last, the degree of will decreases and the control of the voluntary muscles is
greatly reduced.

Figure 3.1: Schema relativo ai tre diversi task da compiere.

Every session is composed of 40 trials for each task and the acoustic signal is
randomized to avoid the adaptation of the brain. The acoustic signal is emitted by
a device LabJack and is converted into a voltage signal through LabJack’s DAQ
to synchronize it with the EEG tracks. To organize the experiment, the software
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OpenSesame was used, which allowed the experimenter, through a GUI, to choose
the task and the respective number of repetitions that the subject will have to
perform.

3.2 Experimental Setup

Figure 3.2: Data collection station.

• Data acquisition device: Galileo Suite, EB Neuro with amplifiers BE (Brain
Explorer);

• The device of processing and display the EEG traces PC with Galileo software;

• The device with the stimulation system: PC with OpenSesame for the acoustic
signal and the use of LabJack;

• Synchronization system: Labjack and photocoupler circuit;

• Recording tools: EEG cap, adhesive electrodes (4 for EOG signal and 2 for
EMG signal), the ground electrode for EMG (for the wrist: voluntary and
semi-voluntary tasks and the ankle: involuntary task), 2 earlobes reference
electrodes for EEG;
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• Additional accessories: TEN20 (conductive paste), NUPREP (abrasive paste),
conductive EEG gel, a syringe with a blunt needle.

Figure 3.3: EEG Headset.

Figure 3.4: EMG electrodes.

3.2.1 The preparation stage

The preparation stage is the longest but also the most important setp, as it allows
to obtain a legible EEG trace. During the experiment, two computers are used:
a computer, in which OpenSesame software is loaded, is aimed at starting the
task and emitting the acoustic signal; the other one, hosting Galileo software, is
used to visualize, process, but also export subsequently, the signals acquired from
the EEG head. The volunteer is seated on a raised chair to prevent the feet from
touching the floor, to simply achieve the involuntary task, that is the patellar reflex.
Furthermore, the subject is seated behind the computer, which contains Galileo
software, while the second computer is placed on the table turning left from the
position in which he is sitting, so as not to be influenced in any way during the
experiment. Immediately thereafter, the preparation for signal acquisition begins.
First of all, the electrodes for EOG and EMG recordings are placed using the TAN20
paste and then the earlobes and the wrist (or the ankle for 41 the involuntary
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task) electrodes are mounted respectively, always using the TEN20 conductive
paste. Once these electrodes are in place, the EEG cap is set on the head, trying to
position the Cz electrode in the middle, between Nasion and Inion and also between
the two earlobes reference electrodes. After placing the cap, the skin is cleaned,
using the Nuprep abrasive paste, to remove sebum and dead scalp cells. Then, the
inside of the cap electrodes is filled with the conductive EEG gel, through a syringe
with a blunt needle.
The conductive EEG gel is used for two reasons:

• to improve signal conduction, lowering the electrode impendence to obtain a
good electrode-skin contact;

• to improve adhesion with the skin, avoiding any problem of detachment caused
by movement.

Before acquiring the EEG signal, the experimenter has to check that the electrodes’
impendence does not exceed a certain threshold value, equal to 10 kW. At the end
of the trial, the materials are cleaned, because dry gel residues on the electrodes
can be a source of noise, using alcohol for earlobes and wrist (or ankle) electrodes
and only water for the EEG cap.

3.3 Datasets organization

The data for the two protocols and the different tasks were classified and named
according to the information on the subject, the type and method of acquisition of
the biological signals and the specifications of the tools used. In the rating adopted,
both the EMG signal and the Labjack signal were rated on a scale from 0 to 3,
where 0 indicates that the signal has a poor quality while 3 indicates a signal of
good quality. The considerations on the quality of the EMG signal are based on
the variability of the signal itself and the amount of noise. The datasets have a
name consisting of a string of 45 characters. More in detail, there are:

• 8 characters showing the name of the anonymised subject, read in the first
letter of the first name, the first letter of the surname, the last digit of the
year of registration, the last two digits of the year of birth, the month of
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registration and the character 0/1 if the subject is male/female (in case of
homonymy, the last character is set to 2);

• 5 characters to decipher the EEG electrode montage: 32C18 is the acronym for
the montage with the 34-electrode headset (’32 Channel 2018’), while OBE12
is the one with the bridge electrodes (’Over Bridge Electrodes 2012’);

• 4 characters indicating the protocol used for the controls: A18C for the 2018
protocol ("After 2018 Controls"), B18C for the 2015-2018 protocol ("Before
2018 Controls") and VOPC refers to the 2012-2015 protocol data ("Very Old
Protocol Controls");

• characters to describe the condition of the subject: the acronym FOL refers
to blindfolded subjects and UNF to non-blindfolded subjects;

• 5 characters to identify the type of task performed: voluntary, semi-voluntary
or involuntary, indicated by VOL18, SEM18 or INV18 respectively;

• 4 characters for the task: RFOF for right forefinger, LFOF for left forefinger,
BFOF for bimanual forefinger, RMOU for right mouse, RLEG for right leg,
LLEG for left leg, RFOO for right foot, LFOO for left foot, RHLE for right
hand and leg, LHLE per left hand & leg;

• 4 characters to indicate the channel used for EMG: EMG1 for channel 1,
EMG2 for channel 2, EMGX for the channel without any number;

• 4 characters to discriminate EMG and Labjack signal quality, thus: E +
0/1/2/3 for EMG and L+ 0/1/2/3 for Labjack (in protocols prior to the
2018 protocol, the last two characters correspond to L0, as the Labjack is not
present).

3.4 Software

The software used for processing and analysing the post-acquisition data was
MATLAB 2021b. In particular, a plug-in was implemented for the EEGLAB tool
named MRCPLAB.
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3.4.1 EEGLAB & MRCPLAB

EEGLAB is an interactive MATLAB toolbox, created by the Swartz Centre for
Computational Neuroscience (SCCN). EEGLAB is used to process signals from
electro-encephalography, magneto- encephalography and other electro-physiological
signals[29].
A graphical user interface (GUI) allows the user to choose between different
operations to be performed both in the time domain and in the frequency domain,
such as applying filters, rejecting artefacts, averaging, event statistics and visualise
data.
EEGLAB also allows the visualisation of brain dynamics related to events and
to store and manipulate EEG data through functions already implemented. In
addition, functions can be written to carry out real-time analysis and automatic
analysis.
To process the EEG data acquired by the software, a plug-in was developed for
EEGLAB, called MRCPLAB, which manages the integration of all the algorithms
implemented with EEGLAB and also adds very useful functions for analysing the
signal automatically.

Figure 3.5: EEGLAB GUI with MRCPLAB plug-in
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Chapter 4

Method and Project
Development

4.1 State of the art

The first studies proposed on this matter were the Libet experiments mentioned
above. Through the years many scientists approached this problem, especially
focusing on the changes that occurr in the BP in several movement disorders,
notably Parkinson’s disease, in which the pattern is consistent with a failure of
pre-SMA activation. The presence (or absence) of a clear preceding negativity can
also have diagnostic importance for certain movement disorders. Several techniques
of features extraction for RP characterization were implemented and various types
of classifiers, mostly support vector machine, were utilized for classification, for
example, imaginary and real voluntary movements; or if the RP were recorded
from a patient or a healthy subject.
In this thesis a new approach was investigated: to characterise and classify whether
a movement is voluntary or involuntary, in first for healthy subjects, and then for
patients with hemiplegia or coma state.
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4.2 Introduction

In this project the problem of RP signal classification was investigated, that basically
consists in four work stage; the first, after the pre-processing part, during which
the signals form the EEG were filtered, artifacts corrected and jitter compensated
(three method were proposed in the plug-in), was targeted at selecting the ‘good’
signals among the different subjects. The second was consisting of the feature
extraction part, that refers to the procedure of transforming raw data into numerical
features that can be processed while preserving the information in the original
data set. The third, the feature selection stage, was about choosing among the
different attributes which most contribute most to the prediction variable or any
specific output of interest. The fourth, and last, was regarding the classification
process; some different types of classification were proposed and after an analysis
of performance one classifier was selected.

Figure 4.1: Work-Flow of the project.

4.3 Datasets review

For this work EEG signals from both 2015 and 2018 protocols were considered,
trying to select subjects who performed different tasks in a balanced way.
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4.3.1 Pre-processing

At the beginning, after the recording and anonymisation of data, the MRCPLAB
plugin on Matlab were open. The operations to do in order to load, examinate and
process the data are explained below.
First, loading the data: from the entry “import/save data” it was possible to import
the data for the first time form “.asc” file and the data were automatically filtered
and saved into a “.set” format. Afterwards, the opening of the data was possible
form the “.set” file.
After that, many actions to clean the signal could be performed:

• Seek noisy channels, to detect particularly noisy channels.

• Select or reject data, to select or delete portions of data; by selecting or
deleting time ranges, epochs or entire channels.

• Artifact correction

• Interpolate electrodes

• Spatial filtering

The choices of pre-processing options were up to the operator.
Then, the signal had to be divided into epochs through the command “Epoch
operation” and the epoch should be realigned with “jitter compensation” command;
thereafter, an average is made and the channels of interest Fcz, Fc3, Fc4, Cz, Pz,
C3 and C4 were extracted.

4.3.2 Selection of datasets

A manual selection of the subjects who do not have good EEG tracings and who
could mislead their classification was performed. In order to be as objective as
possible, some characteristics were selected to determine whether or not a set had
to be deleted:

• Bad EMG signals; if the set had E1 or E0, which means that the quality of
EMG is bad, was not considered.
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• The number of epochs; if the set had less than 10 epochs the experiment
may be invalid, since the EEG recordings were not made by experts, they
could be incorrect.

• Signal to noise ratio (SNR); it had to be positive when the RP signal is
present and negative in the other cases.

Following the evaluation of these attributes, we were able to select the set of
data in order to proceed to classification. In total, 15 subjects from involuntary,
and 15 subjects from voluntary task groups were taken, in order to have available
a balanced dataset.

4.4 Feature Extraction

What is a feature?
Features, or attributes, were defined as any extractable measurements, evaluation,
judgment, in other words data[12]. Several categories can be distinguished:

• Binary: they assume values 0 or 1.

• Categorical data: they assume a predefined set of values that can be ranked
or not.

• Integer or Numerical data.

The aim of the extraction of these characteristics is to identify the most significant
ones to summarise our problem. This can be done by relying on the judgement of
an expert operator or, as in our case, by referring to existing studies on component
characterisation and classification of the RP signal. Feature extraction is the most
crucial part of biomedical signal classification because the classification performance
might be degraded if the features were not properly selected.

4.5 RP feature

All the features were picked out from the windowed signal 1 second before and 1.5
seconds after 0, both time and frequency domain were investigated:

29



Method and Project Development

• Time domain:

– Peak amplitude (Amp): -5uV to -20 uV. The negative peak represents
the potential of neurons activated when there is an intention to move.
When the movement is only imagined the amplitude is less negative. It
was evaluated in the motor area (C line).

– Negative Slope : it occurs before the movement onset and for this
reason is evaluated in the pre-motor area (Fc line).

– Onset of RP: that is the number of seconds elapsed before reaching the
peak. considering the start of the slope as 0. As in the previous cases it
must be considered the pre-motor zone (Fc line).

– Also, more general features were extracted like variance, mean value,
skewness and kurtosis in the motor area (C line).

– Principal component analysis (PCA) on the signal (C line)

– Signal to noise ratio evaluation: which is positive when the signal
exceeds the noise. Variance and mean were calculated in the motor area
(C line).

• Frequency domain

– Since the signal has slow fluctuation in a range between 3 and 5 Hz, due
to neuronal synchronicity, the distribution of average signal power in
the band of interest was calculated.

– Principal component analysis (PCA) on the power spectral density
(PSD).
All the analysis were done on the C line.

In this study, a Principal Component Analysis was performed on both the signal
and the PSD.

4.5.1 Principal Component Analysis

PCA was used to extract a new dataset where every pattern was a linear combination
of the original ones. The new patterns were orthogonal (un-correlated) and were
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the principal components. In other words, PCA can reduce the dimension of the
dataset[21], providing computational benefits, so as to represent the dataset by a
linear combination of less than: the number of samples for the signal or, for the
PSD, the squared magnitude units of the time series data per unit frequency. Then,
only the components with higher variance were considered.
Thus, a feature vector was created, and the set of original data was reduced into
relevant ones. But all the features have the same influence on the classification?
and are all those found useful for classification, or can they lead to misclassification?
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4.6 Feature selection

The central premise when using a feature selection technique was that the data
contains some features that were either redundant or irrelevant and can thus be
removed without incurring much loss of information. The concepts of “redundant”
and “irrelevant” were two distinct notions, since one relevant feature may be
redundant in the presence of another relevant feature with which it is strongly
correlated, while irrelevant means that it carries no information[14].
Feature Selection is the process in which it is possible to select automatically or
manually those features which contribute most to the prediction variable or output
of interest[26]. The benefits obtained not only lead to a better interpretation of
the problem (in our case a better classification), but also help the computational
costs and time spent. The major advantages are:

• Reduces overfitting: less redundant data means less opportunity to make
decisions based on noise.

• Improves accuracy: less misleading data means modelling accuracy improve-
ment.

• Reduces training time: fewer data points reduce algorithm complexity and
algorithms train faster.

Three main types of feature selection can be considered: filter techniques, wrapped
method and embedded techniques.

• Filter techniques: the relevance of features was considered only looking at
intrinsic properties of the data and selection was a pre-processing before the
classification model. The relevance of features was calculated, and the less
relevant features were ignored. This kind of selection is fast, easy and it is not
dependent on the classifier.

• Wrapped methods: these methods integrate feature selection and the clas-
sification model. A subset of feature is used to perform the classification
and is evaluated in terms of classification performance. Thus, the subset
will be specific for the classification model. This interaction between subset
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and classifier is an advantage, but there is the risk of overfitting, and the
computational cost can be high, depending on the classification model.

• Embedded techniques: the selection was embedded in the classifier construction.
Like wrapped methods, embedded techniques performed an interaction between
features and classifier, but their computational cost is cheaper.

For this study filtering techniques were applied, and EEG features may be classified
by means of linear algorithms, thus allowing the evaluation of the relative weight
of each individual feature. Common sequential methods that use dimensionality
reduction, such as principal components analysis (PCA), do not guarantee good
classification since the best discriminating component may not be among the largest
principal components. In this work a filtered method is proposed; a proxy measure
was utilized to score a feature subset.

Figure 4.2: An example of general feature selection with filtered method.

4.6.1 FS: ReliefF method

Relief

Proposed for the first time by Kira and Rendell in 1992, as an individual evaluation
filtering feature selection method, Relief[5] calculates a proxy statistic for each
feature that can be used to estimate feature ‘quality’ or ‘relevance’ to the target
concept. The original Relief algorithm was limited to binary classification problems
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and had no mechanism to handle the missing data.
The original algorithm is proposed below:

Figure 4.3: Relief algorithm.

First a vector of zeros of length equal to the number of features is created, than
the algorithm cycles through m random training instance (Ri), selected without
replacement, where m is a user-defined parameter. Each cycle, Ri is the ‘target’
instance and the feature score vector W is updated based on feature value differences
observed between the target and neighbouring instances. Therefore, each cycle, the
distance between the ‘target’ instance and all other instances is calculated. Relief
identifies two nearest neighbour instances of the target; one with the same class,
called the nearest hit (H) and the other with the opposite class, called the nearest
miss (M). The last step of the cycle updates the weight of a feature A in W if the
feature value differs between the target instance Ri and either the nearest hit H or
the nearest miss M. Features that have a different value between Ri and M support
the hypothesis that they are informative of outcome, so the quality estimation
W[A] is increased.
Conversely, features with differences between Ri and H provide evidence to the
contrary, so the quality estimation W[A] is decreased. The diff function calculates
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the difference in value of feature A between two instances I1 and I2, where I R 1 =
i and I2 is either H or M, when performing weight updates for continuous feature,
diff is defined as:

diff(A, I1, I2) = |value(A, I1) − value(A, I2)|
max(A) − min(A)

The maximum and minimum values of A are determined over the entire set of
instances. The diff function is also used to calculate the distance between instances
when finding nearest neighbours. The total distance is simply the sum of diff
distances over all attributes, for example Manhattan distance. The original Relief
algorithm used Euclidean distance instead of Manhattan distance. However, exper-
iments indicated no significant difference between the results. Thus the simplified
description of the Relief algorithm has become standard for this reason. In our
case, a Euclidean metric measure was applied. At the end all the value inside the
vector will be between -1 (that denotes the worst feature) and 1 (that indicates the
best feature).
Originally the description of Relief algorithm specified an automated method, a
relevance threshold τ was defined such that any feature with a relevance weight
W[A]>τ would be selected. Kira and Rendell demonstrated that “statistically, the
relevance level of a relevant feature is expected to be larger than zero and that of
an irrelevant one is expected to be zero (or negative)”. Therefore, generally the
threshold should be selected such that 0<τ<1.
In practice, rather than choosing a value of τ , it is often more practical to choose
some number of features to be selected a priori based on the functional, computa-
tional, or run time limitations of the downstream modelling algorithms that will be
applied. Ultimately the goal is to provide the best chance that all relevant features
are included in the selected set for modelling, but at the same time, remove as
many of the irrelevant features as possible to facilitate modelling, reduce overfitting,
and make the task of induction tractable. In order to be as generic as possible, all
the weights greater than 0 were considered.
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Strengths and limitations

Regarding strengths, Relief has been presented as being both non-myopic, as
it estimates the quality of a given feature in the context of other features, and
non-parametric, as it makes no assumptions regarding the population distribution
or sample size. The efficiency of the algorithm has been attributed to the fact that
it doesn’t explicitly explore feature subsets and because it does not bother trying
to identify an optimal minimum feature subset size. The major limitation of this
algorithm being very sensitive to noise and unaffected by feature interactions. For
these reasons different Relief algorithms were implemented through the years.

ReliefF

The original Relief algorithm is rarely applied in practice and has been supplemented
by ReliefF[27]. The “F” in the name refers to the sixth variation of the algorithm
proposed by Kononenko. Here we highlight four key differences between ReliefF
and Relief.

1. ReliefF relies on a ‘number of neighbours’ user parameter k that specifies the
use of k nearest hits and k nearest misses in the scoring update for each target
instance (rather than a single hit and miss). This change increased weight
estimate reliability. [ReliefA]

2. Three different strategies were proposed to handle the missing value. The
best approach (ReliefD) sets the diff function equal to the class-conditional
probability that two instances have different values for the given feature. This
is implicitly an interpolation approach. [Relief(B-D)]

3. Two different strategies were proposed to handle multi-class endpoints. These
strategies were proposed under the names ReliefE and ReliefF. ReliefF finds k
nearest misses from each ‘other’ class and averages the weight update based on
the prior probability of each class. Conceptually, this encourages the algorithm
to estimate the ability of features to separate all pairs of classes regardless of
which two classes are closest to one another. [Relief(E-F)]

4. Since it is expected that as the parameter m approaches the total number
of instances n, the quality of the weight estimates becomes more reliable,
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Kononenko proposed the simplifying assumption that m=n: every instance in
the dataset gets to be the target instance one time.

Figure 4.4: RealiefF

The steps of ReliefF function implemented in Matlab were:

1. Set all predictor weights Wi to 0.

2. Select randomly the Xr observation

3. Find the k-nearest observation to Xr, with k equal to 10, for each class (Xq)

4. Calculate the weight for each feature Fi, the value will be between -1(worst)
and 1 (best).
For continuous data, the formulas for updating the weights were as follows:

• Same class:
Wi

i = W i−1
i − ∆(xr, xq)

m
· drq

• Different class:

Wi
i = W i−1

i + pyq

1 − pyr

· ∆(xr, xq)
m

· drq

In this case Manhattan distance where used:

∆(xr, xq) = |xrj − xqj|
max(Fj) − min(Fj)
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4.7 Classification

The last part of this work was the classification of the voluntariness or involuntari-
ness of a movement; therefore, it was a binary classification.
The term classification, in statistics, includes all those algorithms that divide
or categorise data into groups or types using attribute (features). The classifier
applied those features as an information to decide in which class to assign the data.
Different classifiers could be used, and there was the possibility to divide them
into those with supervised or unsupervised learning. In supervised learning, the
classification of part of data was known a priori and could be used to train the
classifier (training set). The result of the training part was about the selection of
free parameters that allowed the classifier to fit the training dataset.
At first, a classifier well-known in literature, the Support Vector Machine (SVM)
was used[23, 18]. After, two other classifiers were implemented: K-NN, which
follows the model used for feature selection, and the decision tree (DT). For each
machine learning algorithms, the leave-one-out cross-validation procedure was used
to estimate the performance.

4.7.1 Support Vector Machine

SVM, developed by Vapnik and Co. in 1963-1992, was one of the most robust
predictor models based on statistical learning frameworks. The algorithm could be
applied for both regression or classification in order to solve linear and non-linear
problems[17].
The idea of SVM was simple[9]: the algorithm creates a line or a hyperplane which
separates the data into classes. SVM works by mapping data to a high-dimensional
feature space so that data points can be categorized, even when the data were
not otherwise linearly separable. A separator between the categories was found,
named decision boundary. For example, whether the data could be separated by a
line: anything that falls into one side will be classified as one class, and anything
that falls into the other as another class (binary classification).The idea behind the
binary SVM was to split the dataset in two hyperspaces of features, separated by
an hyperplane. Of course, more than one hyperplane can exist allowing the wanted
split between classes.
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Figure 4.5: Example of hyperplane, margin and support vectors for a SVM.

The SVM algorithm tried to find the solution which maximizes the margins from
both tags. In other words: the hyperplane (remember it’s a line in this case)
whose distance to the nearest element of each tag is the largest. The data points
nearest to the hyperplane were named support vectors, the points of a data set
that, if removed, would alter the position of the dividing hyperplane. Because of
this, they could be considered the critical elements of a data set. Following this,
characteristics of new data can be used to predict the group to which a new record
should belong. What about no-linear data?
Other dimensions could be added, or different types of kernels applied like, for
example, Gaussian, Radial Basis Function (RBF), sigmoid or others. However, the
approach to the problem remains identical, to seek the best separation between
classes that could be more than two.
For this paper, both SVM with linear kernel and cubic polynomial kernel were
applied.
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4.7.2 K-NN

The k nearest neighbour algorithm developed by Fix and Hodges in 1951, and later
updated by Cover, was applied for classification and regression problem. Limiting
ourselves, as in our case, to a classification problem, the input consisted of the k
closest training examples in a data set. While the output was a class membership.
An object was classified by a plurality vote of its neighbours, with the object being
assigned to the class most common among its k nearest neighbours[22]. The steps
of the algorithm were as follows[24]:

1. Select the number of the K nearest neighbour.

2. Calculate the distance of K number of neighbour, that could be Euclidean,
Cityblock, Chebychev, etc.

3. Take the K nearest neighbour as per calculated distance.

4. Among these K neighbours, count the number of the data points in each
category.

5. Assign the new data points to that category for which the number of the
neighbour is maximum.

Figure 4.6: Example of K-NN.
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4.7.3 Decision Tree

The decision tree predicting model could be applied both for classification and
regression problem (supervised learning)[28]. The algorithm on which this is based
is very intuitive and simple to intemperate. This characteristic is fundamental in
some specific areas in which a major simplicity of understanding is preferable to
greater accuracy of the model.
The decision tree algorithm was articulated as follows; the input data were con-
tinuously separated on the basis of previously known criteria. The information
integration of the separation criteria was explained above; first it was important to
define some key concepts:

• Root Node: the base of the decision tree.

• Nodes: represent a condition on which the separation of data is based.

• Splitting: the process of dividing a node into multiple sub-nodes.

• Leaf node: when a sub-node does not further split into additional sub-nodes;
represents possible outcomes.

• Pruning: the process of removing sub-nodes of a decision tree.

• Branches: intermediate or final step, the places where the data end up once
separated. If the separation was not possible anymore, so it come to an end,
the branch was called leaf.
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Figure 4.7: Examples of generic Decision tree

A fundamental point of the Decision Tree was to select the Root Node and the
other Nodes that allow the tree to branch. The target was to find the values of
the variable for which the best split could be achieved. The choice of the best
could be made through various metrics, depending on whether the dealing was a
classification or regression case. For example, for classification cases it was feasible
to use Entropy or Information Gain or the Gini index, calculated as follows:

• Entropy:

Entropy = −
NØ

i=1
pi(x) log2 pi(x) (4.1)

• Gini index:
Gini = 1 −

NØ
i=1

p2
i (4.2)

N: number of classes.
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pi :proportion of the samples that belongs to class N for a particular node.

• Information Gain:

InformationGain(i) = Entropy(before) −
NØ

i=1
Entropy(i, after) (4.3)

N: number of subsets generated by the split; for binary case, equal to the
number of classes.
"before" was the dataset before the split.
"after" is the subset i after the split.

In general, however, the objective was to divide the initial population by the value
of a variable to create two groups that were as internally homogeneous as possible
and as in-homogeneous as possible.
It is important to note that in this case the attributes can also be categorical,
whereas in previous cases it was necessary to discretize the features.

4.7.4 Performance of Machine Learning Algorithms

After selecting a classification model type and setting the parameters, it was
important to evaluate predictions for classification problems.

Leave-One-Out Cross-Validation (LOOCV)

One possible technique, which corresponds to the one used in this thesis, was
cross-validation using the leave-one-out method. This was a special method where
the number of folds equals the number of instances in the data set. Thus, the
learning algorithm was applied once for each instance, using all other instances
as a training set and using the selected instance as a single-item test set. This
process was closely related to the statistical method of jack-knife estimation. The
Leave-one-out cross-validation uses the following approach to evaluate a model:

1. Split a dataset into a training set and a testing set, using all but one observation
as part of the training set. Note that only one observation was left out form
the trainset.
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2. Build the model using data only originating from the training set.

3. Use the model to predict the response value of the one observation left out of
the model.

4. Repeat the process n times, where n was the number of observations (subject
in our case), leaving out a different observation from the training set each
time.

5. Create the confusion matrix that allows visualization of the performance of
an algorithm.
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Chapter 5

Results

5.1 Introduction

In this chapter the criticalities and results collected on the selection of the datasets,
feature extraction & selection and classification are presented.

5.2 Datasets selection

For the choice of datasets to be used, as it was explained in chapter 4, an attempt
was made to be as generic and objective as possible. Here below some figures
that help to better explain how the choice was made, consisting in the signal
representations after pre-processing and the signal to noise ratio (SNR), for both
voluntary and involuntary tasks. Three types of sets were selected: one acceptable,
one unacceptable and one borderline.
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The case of Involuntary task

a) Good Dataset

Acceptable case: as it was possible to see the signal was approximately flat, there
was a trend towards a positive signal, but it is not significant of an RP signal. For
the SNR, that was always negative, it means that there was a preponderance of
noise compared to the signal. This situation was optimal and an indication that
there was no signal, as it should happen in the case of involuntary movement and
more specifically of a reflex. In this case the subjects were from the protocol 2015
and blindfolded.

Figure 5.1: Acceptable set
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b) Bad Dataset

Unacceptable case: the signal in this case was similar to an RP, one can observe a
trend towards negativity and then a return towards zero. The SNR in this case
was positive in the window where there should be an RP signal, 200 ms before the
EMG onset, which was why the subject cannot be considered for the study. The
subject was from the protocol 2015 and unblindfolded.

Figure 5.2: Unacceptable set
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c) Borderline Dataset

Borderline case: the signal of this subject had a negative slope, but as it can also
be seen from the graph, the slope is not as steep. The decision to keep this signal
was based mainly on the SNR which, in the window of interest, was negative and
therefore there was a preponderance of noise in relation to the signal. The signal
of the subject was from protocol 2018.

Figure 5.3: Borderline set
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The case of Voluntary task

a) Good Dataset

Acceptable case: in this case the RP signal is clearly visible; the negative slope was
pronounced, and the signal reached a peak around the -19 uV, fully in the range
of an RP signal. SNR was positive in the window, thus giving an indication of a
signal exceeding the background noise. Subject blindfolded from protocol 2015.

Figure 5.4: Acceptable set
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b) Bad Dataset

Unacceptable case: in spite of the fact that there was a trend towards negativity,
the signal is very spanned and not RP-like; furthermore, the SNR was almost
negative in the time zone of interest, especially on C line, so this signal must be
discarded. Subject from protocol 2018.

Figure 5.5: Unacceptable set
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c) Borderline Dataset

Borderline case: the signal was similar to an RP but the slope was not very evident
and the peak was not very high, around -5uV. The signal to noise ratio was positive
in the time range; although, as in the signal in figure 5.4, the values were not
high, thus suggesting not to discard this signal for the project because it may
happen sometimes that the signal could not reach sufficiently high values. Subject
blindfolded from protocol 2015.

Figure 5.6: Borderline set
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5.3 Feature extraction & selection

At this stage, the most crucial of the entire project, a key choice had to be made
as to which features could be considered. Since the literature was a little sparse
on this point, efforts were made to be as specific as possible in searching for the
features that differentiate the RP signal from other ERPs .
Here is an example of feature extracted from one subject:

Feature Voluntary dataset Involuntary dataset
Peak Amplitude -12.23 10.93

Slope -0.0104 0.0005
Variance 14.33 61.09

Mean value -1.61 5.87
SNR variance 3.78 7.81

Area -11095 34631
Kurtosis -1.620 -0.941
Skewness -0.120 0.080

Power on delta-theta band 5.26 2.17
PCA1(PSD) 0.025 0.294

PCA1(Signal) -0.172 0.267
PCA2(Signal) 0.094 0.435
PCA3(Signal) 0.128 -0.370
PCA4(Signal) 0.187 0.008

Table 5.1: Table of all the extracted features: from voluntary dataset CP593041
figure 5.4 and involuntary dataset AP594061 figure 5.1.

Through the feature selection algorithm ReliefF based on K-NN method with k
equal to 7, only the most informative features were selected. The total dataset was
reduced to 5 features: the peak, the slope, the skewness and the second and the
fourth component extracted with PCA from the signal.
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Feature Voluntary dataset Involuntary dataset
Peak Amplitude -12.23 10.93

Slope -0.0104 0.0005
Skewness -0.120 0.080

PCA2(Signal) 0.094 0.435
PCA4(Signal) 0.187 0.008

Table 5.2: Table of the selected features: from voluntary dataset CP593041 figure
5.4 and involuntary dataset AP594061 figure 5.1.

5.4 Classification

As reported in chapter 4, three different types of models were utilized for this
thesis, in particular: two different approaches for SVM, one K-NN model and one
decision tree. Each of the four implementations was confronted by the accuracy
value described in the tables 5.3 & 5.4.

5.4.1 SVM

For this project two types of binary SVM were implemented for the classification.
Both the performance of the classifications were calculated with LOOCV, and a
confusion matrix was created to display the (multivariate) frequency distribution
of the classification output variables.
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Linear SVM

The first one was a linear SVM; the performance of the classification has been
reported in the confusion matrix in figure below.

Figure 5.7: Confusion Matrix for Cubic SVM Model.
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Figure 5.8: ROC curve for Linear SVM Model.
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Cubic SVM

The second SVM realized was one with a polynomial kernel; different degrees of
the polynomial were tried and, at the end, it was decided to opt for a cubic SVM.

Figure 5.9: Confusion Matrix for Cubic SVM Model.
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Figure 5.10: ROC curve for Cubic SVM Model.
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5.4.2 K-NN

For K-NN several neighbouring k-values have been tested, and at the end the
optimal k-value was 7. Instead, a standardised Euclidean metric was used to
assess the distance between neighbours. The performance of the classification
was calculated with LOOCV, and a confusion matrix was created to displays the
(multivariate) frequency distribution of the classification output variables.

Figure 5.11: Confusion Matrix for K-NN Model.
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Figure 5.12: ROC curve for KNN Model.
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5.4.3 Decision Tree

For DT, Gini index was applied in order to evaluate which feature best split the
data, at the end two nodes were found: the Root Nodes was the peak amplitude
(x1) and the other node was the second component of the PCA done on the signal
(x4), illustrated in figure 5.13:

Figure 5.13: Decsion Tree implemented in Matlab with the fitctree function whit
the Root Node as x1 and the second Leaf Node as x4.

Figure 5.14: Confusion Matrix for Decision Tree Model.
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Figure 5.15: ROC curve for Decision Tree Model.
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5.4.4 Tabeles of Performances

W/ Feature Selection, 5 Features
Linear SVM Cubic SVM K-NN Decision Tree

Accuracy 73,3% 76,7% 83,3% 86,7%
K Statistics 46,7% 53,3% 66,7% 73,3%
Specificity 73,3% 78,6% 77,8% 100,0%
Sensitivity 73,3% 75,0% 91,7% 78,9%

AIC 26,73 18,72 -1,47 -14,86

Table 5.3: Table of classification performances with the algorithm for feature
selection, in this case the features were 5.

W/O Feature Selection, 14 Features
Linear SVM Cubic SVM K-NN Decision Tree

Accuracy 73,3% 63,3% 76,7% 86,7%
K Statistics 46,7% 26,7% 53,3% 73,3%
Specificity 81,8% 60,0% 75,0% 100,0%
Sensitivity 68,4% 70,0% 78,6% 78,9%

AIC 26,73 45,84 18,72 -14,86

Table 5.4: Table of classification performances without the algorithm for feature
selection, in this case the features were 14.
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Chapter 6

Conclusions

During this work it was shown how a Brain Computer Interface in support of the
diagnosis of consciousness disorders can be very useful. In particular, a machine
learning model added to a BCI allowed to achieve an objectivity much higher than
simply using rating scales operator dependent. To date, as mentioned in chapter 1,
scales are used to evaluate the degree of conscience of a subject; obviously they
are subjective and operator-dependent, that is mainly affected by his/her skill or
state of concentration.To eliminate this dependence, it was decided to implement
a support BCI which, after cleaning the EEG signal, classifies whether the signal
found corresponds to a voluntary or involuntary movement. In particular, in this
thesis a machine learning algorithm has been developed for the classification on
the presence or absence of voluntariness in the movement.
It is important to notice that the selection of good datasets greatly influences the
performance of the classifiers; since an attempt was made to take subjects from
the various tasks in a balanced manner, it was noted that for involuntary tasks,
i.e., when the movement was dictated by a reflex, a preponderance of acceptable
datasets was when the subject was blindfolded. Instead, for voluntary movement,
it was observed that if the task consisted in moving two parts of the body (i.e.,
hand and leg), in some subjects the occurrence of two peaks, resulting from moving
two distinct body part, was notable.
Afterwards, feature extraction and selection were performed. Since according to
the state-of the art in literature the RP were best detected in the pre-motor and
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motor area of the scalp, it was decided that the feature could be extracted in the C
line (motor area) and Fc line (pre-motor area), so as to obscure any ERPs arising
from other external stimuli (i.e., auditory). Subsequently, the selection of the most
informative feature was performed mainly to reduce the computational cost and
delete the irrelevant and redundant ones. As it can be seen in table 5.3 and 5.4 the
performances of the classifiers were strictly correlated with the feature selection.
In particular, for linear SVM with the feature selection algorithm, despite of the
same performance, a lower computational cost was observed. In cubic SVM the
performance of the classifier with selection showed an improvement, that happened
also for K-NN model. On the other hand, with the DT it was possible to see that
both the root node and the leaf node coincide (peak amplitude for the root node
and the second component of the PCA on the signal for the leaf node), but in this
case, too, FS algorithm based on K-NN, implied a lower computational effort.

6.1 Issues and limitations

Before concluding this thesis and articulate some ideas for the future, however,
it is important to examine the main problems encountered while developing the
project and the limitations of the described approach. Some issues about the
datasets were mentioned in chapter 4. In particular, for the Protocol 2018, the
available measurements were mostly badly taken or corrupted by noise. These
types of problems could be related to poor-quality recordings of the EEG signal
(i.e. misplaced electrodes, movements of the subject during the experiment, etc.).
This problem was most noticeable in subjects with semi-voluntary tasks, due to
which the corresponding datasets were not used in this work. Since only the control
group was used in this work, in order to have good results for the patient, it should
be fundamental to have high quality recordings .
The issues for the classification are strictly correlated to the EEG recordings; in the
preliminary study it was possible to evaluate only a binary classification, because
the signal from the semi-voluntary task had poor quality.
Finally, a limitation of this approach is the possible, and not detectable, involuntary
reflex of the patient, as his/her will to move is a sign of consciousness, but we
cannot say that the absence of this will is a sign of unconsciousness. In addition,
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the signals from the patient were less marked (i.e., the peak amplitude usually is
lower because the movement is imagined) and more difficult to analyse.

6.2 Idea for the future

In accordance with the problems encountered during the development of the project,
the first step is to enlarge the dataset with real good measurements. By testing a
larger dataset, the study of the classification algorithms may become more accurate.
Once the dataset is enlarged, particular attention should be given to the Protocol
2018 and in particular, in the second experiment, the semi-voluntary actions, in
order to be able to implement a non-binary classification.
Also linked to possible improvements of the machine learning algorithm, as it can be
seen in table 5.3, the performance of K-NN and DT model are rated good. A future
implementation of a new model, maybe a second Decision Tree, that takes in input
the output of the K-NN and DT, could even lead to a better classification model.
Moreover, it could be possible to add more classes; for example, to investigate the
Lateralized Readiness Potential so as to evaluate if the right or the left part was
moved (or it was an imagined movement). It is important to notice that the brain
activation is contra-lateral: if the subject moves, for example, the right hand, the
left hemisphere of the brain would be activated and vice-versa.
Finally, the approach could be tested on brain-injured patients: this would be the
final and most important phase of the project, but also the most critical. As we
already said, the EEG measurement phase was already a demanding step in the
healthy subjects. Most of them had to be discarded due to the high electrode
impedance, and this noise only get worse in patients. Moreover, contrary to what
happens in healthy subjects, patients are not able to repeat the trials as many times
as needed, and for this reason the ERP components might become very difficult to
be interpreted. In the end, however, with some strong pre-processing of the EEG
signals, we could be able to demonstrate if this approach works. We could thus
prove to have found a new method to identify signs of consciousness by using a
mathematical measure of easy and fast calculation.
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