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Abstract

The use of motor imagery to activate motor-related brain areas represents an
effective tool for promoting motor rehabilitation in individuals with severe muscle
deficits. The oscillations in neuronal activity occuring during motor imagery can
be acquired and processed into external outputs by using Brain Computer Interface
(BCI) systems. To improve the effectiveness of rehabilitation procedures, it is
useful to combine BCI and a Functional Electrical Stimulation (FES) device, which
takes as input the signal processed by the BCI and translates it into a stimulation
that generates movement in the compromised limb. Indeed, an approach based
on simultaneous activation of cortical regions (through motor imagery) and motor
nerves of the muscle of interest (through FES) has the potential to promote
functional reorganization of cortical structures, thereby improving the results
of the rehabilitation procedure. Therefore, the development of new techniques
for acquiring and processing neural activity to provide accurate inputs for FES
activation plays a central role in the field of rehabilitation.

In this thesis work, two algorithms suitable for non-invasive BCIs applications
were designed. The simplest signal recording method for BCI systems is Elec-
troEncephaloGraphy (EEG). EEG is a non-invasive technique that provides useful
information to recognize the subject’s motion intention, which is the event of
interest for the activation of a FES device. The proposed algorithms process EEG
signals recorded during motor imagery tasks, which are characterized by changes
in cortical fluctuations in a specific frequency band, typical of the mu/alpha brain
rhythm. These changes were detected by a threshold, iteratively determined and
subject-specific, that defines the trigger event of motor intention. The first algo-
rithm was developed with a standard approach and performs a signal analysis in
the frequency domain. The parameter used in this procedure is the Power Spectral
Density (PSD) of the signal, which shows amplitude suppression during motor
imagination. The second algorithm was developed using a non-linear operator
defined in the continuous domain, called Teager’s Energy Operator (TEO), which
tracks energy changes in the signal. Besides the threshold, in this approach an
amplitude constraint was introduced to minimize the influence of artifacts and
increase the accuracy of event recognition.

The goal of both implemented techniques was a fast, real-time detection of the
motor intention events, and two different approaches were tested and compared, to
assess which one provided the best performance in terms of sensitivity, specificity,
accuracy, precision and activation delay. The tests were performed on two datasets,
one provided by BCI competiton IV and the other consisting of signals acquired
on-site with g.tec HIamp recording system. To minimize processing complexity and



enable the development of a low-power and wearable system, the use of a single
EEG channel was investigated. Application of the proposed methods to the on-site
recorded dataset led to online accuracy rates of 83.7% for the PSD-based algorithm
and 84.5% for the TEO-based one, while the movement onset detection latency
was 410 ms and 1200 ms for the two approaches, respectively.
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Chapter 1

Introduction

1.1 Central Nervous System Anatomy
and Function

The nervous system is the major centre of control, regulation and communication of
the body. It is divided in two main parts: the central nervous system (CNS), which
coordinates and processes information from the entire body, and the peripheral
nervous system (PNS), which consists of nerves that connect the central nervous
system to the rest of the body (Figure 1.1).

Figure 1.1: Main components of Central Nervous System [1].
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Introduction

1.1.1 Brain and Spinal Cord Architecture

The CNS comprises brain and spinal cord. The spinal cord is a tubular structure
made of nervous tissue surrounded by vertebrae (Figure 1.2).

Figure 1.2: Spinal Cord structure [2].

It extends downwards from the brainstem to the lumbar region of the vertebral
column. It plays a key role in the transmission of the sensory information, which
are carried through the tightly packed column of axons, or nerve fibers, that make
up the spinal cord. The axons of the sensory neurons that carry the information
related to touch, position, pain and temperature run through the back side of
the spinal cord, while the axons of the motor neurons, responsible for movement,
run through the ventral part. Injuries to the spinal cord causes the loss of the
perception and the ability to perform movements with the parts of the body served
by the nerve fibers corresponding to the damaged regions [3, 4, 5]. Brain is the most
complex organ of the human body and it is responsible for coordinating other organs
functions, by processing and integrating sensory information through the nervous
system. It is divided in three major regions: hindbrain, midbrain and forebrain.
Hindbrain and midbrain together form the brainstem, while the forebrain comprises
two symmetrical cerebral hemispheres. The surface of the brain is lined by the
cerebral cortex, also called gray matter, because it contains most of the nerve cells,
which give it its characteristic light gray color. Beneath the cortex are axons, i.e.,
extensions of neurons found in the cortex, which constitute the white matter. The
cerebral cortex has a folded structure, developed to expand the total surface area of
the brain, thus the space available for new neurons. The ridges are called gyrus and
grooves are called sulcus. The cerebral cortex is divided into two hemispheres, and
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each hemisphere is divided in four lobes: frontal, parietal, occipital and temporal
(Figure 1.3). The hemispheres are characterized by contralateral organization, that
means the motor and sensory functions of the right side of the body are controlled
by the left hemisphere and vice-versa[6].

Figure 1.3: The cortex is morphologically divided in four lobes: frontal, parietal,
occipital and temporal. It is also organized in functional areas controlling sensory
and cognitive functions [7].

The frontal lobe is the most anterior part of the brain and plays a critical role in
the control of voluntary movements, through two specific regions: primary motor
cortex and pre-motor cortex. The primary motor cortex, located in the posterior
area of the lobe, is responsible for controlling the movement of various body districts.
In front of it the pre-motor cortex is located , which is responsible for organizing
and controlling the movements of proximal muscles and of the torso. The other
regions of the frontal lobe are involved in important cognitive functions such as
long-term memory, emotions development, problem solving, social interaction and
impulse control. The parietal lobe, located above the occipital lobe, processes
information related to taste, touch and temperature and plays a central role in the
development of the sense of space and position. The temporal lobe is located below
the frontal and parietal lobes. It plays an important role in processing auditory
stimuli and in developing language comprehension skills. The occipital lobe is
located in the posterior part of the brain and it is responsible for processing visual
information [3]. Subcortical areas of the brain are also important because play a
critical role in movement and sensory functions. The major regions that interact
with cortex are: thalamus, brainstem, basal ganglia and cerebellum (Figure 1.4).
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The thalamus, located below the cortex, serves as the main gateway to the cerebral
cortex for sensory inputs from spinal cord and other subcortical structures. The
brainstem lies at the base of the brain and contains motor and sensory nuclei, and
also nerve fibers descending to and ascending from the spinal cord. The basal
ganglia is a group of interconnected nuclei deeply involved in motor function. The
cerebellum play an important role in the production of smooth and coordinated
movements. The nervous tissue consists of neuronal cells, closely interconnected

Figure 1.4: Subcortical regions [8].

by axons and dendrites, and glial cells, which act as support and protection for
neurons and play an important role in the transmission of nerve impulses. The
cerebral cortex consists of six layers, morphologically distinguishable by the type
of cells they contain, which are mainly pyramidal cells and stellate cells, as well as
horizontal and vertical nerve fibers, which connect different regions of the cortex
and extend from the cortex to the spinal cord (Figure 1.5).
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Figure 1.5: Six layers of cortex [9].

Layer I contains few neurons and consists mainly of dendrites extending from the
apex of pyramidal cells to the deepest striae of the cortex and horizontally arranged
fibers. Layer II contains stellate cells and smaller pyramidal cells. Layer III is the
primary source of fibers that interconnect the different areas of the cortex. Layer
IV includes the afferent fibers, which reach the cortex carrying sensory information.
Layer V contains the larger pyramidal cells, which have long axons that act as
efferent fibers and carry information outside the cortex. Finally, layer VI encloses
a diverse collection of cells of different types [6, 10].

1.1.2 Neurons Structure
Neurons are specialized communication cells of the nervous system. They are
responsible for the electrical signals that carry informations about internal and
external state changes of the body and the activation of muscles and glands in
response to those stimuli. The most important part of the neuron is the soma, or
cell body, which includes the nucleus and major organelles, from which extensions
called processes emerges. The most important process is the axon, which has
the role of conducting electrical impulses from the cell body to the target cells.
The neuron’s other processes are called dendrites (Figure 1.6). Dendrites receive
information from other neurons through specific contact areas called synapses,
and conduct the impulse to the cell body, which processes the information and
transmits it along the axon. The larger the surface area of dendritic membranes,
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the greater the number of synapses the neuron can establish with other nerve
cells [4]. Electrical signals are generated at the junction point of the axon with

Figure 1.6: Structure of a neuron [11].

the cell body, which is called axon hillock, and from here the impulses descend
along the axon, traveling along its entire length. The terminal part of the axon
develops into branches, which allow neurons to communicate with more nervous
cells. At the extreme apex of each branch is the axon terminal, a small expansion
containing mitochondria and synaptic vesicles, which contain neurotransmitters.
Many axons are covered with myelin, which is made of cytoplasmic extensions
of glial cells. Myelin does not cover the entire axon: the axon hillock remains
uncovered and there are gaps betweeen myelinated segments, which are called nodes
of Ranvier. The myelin covering has a central role in controlling both the timing
and the insulation of the electrical signal as it runs down the axon. There are
different criteria for classifying neurons, the most common involves a morphological
classification based on the number of processes attached to the cell body (Figure
1.7). Pseudo-unipolar neurons have only one process departing from the cell body.
These cells are generally located in the sensory and autonomic nervous systems.
Bipolar neurons have two processes. They are not very common neurons, they
are localized mainly in the retina of the eye. Finally, multipolar neurons are the
most common cell type that can be found in the nervous system, and have many
processes. These neurons are further distinguishable by their shape, for example,
the cells in the cerebral cortex and hippocampus have triangular-shaped bodies,
so they are called pyramidal cells, while the cells in the cerebellum have very
extensive dendritic branches and are called Purkiinje cells [11]. Neurons can also
be classified according to their function in the nervous system. Sensory neurons
receive information from the outside world, and these stimuli are translated into
neuronal signals that are subsequently processed by the brain. Motor neurons are
responsible for the transmission of CNS commands to muscles and glands. All
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Figure 1.7: Types of neurons [11].

other neurons are interneurons, non-specialized cells that enable communication
between motor and sensory neurons [12].

1.1.3 Generation and Propagation of Action Potential
Neuronal signals, or action potentials, are produced by ions moving across the
neuronal membrane. This displacement occurs by diffusion, as there is a difference
in the relative concentration of ions between intra- and extracellular fluid. Extra-
cellular fluid is characterized by large concentrations of chloride ions (Cl-) and
sodium ions (Na+), and a low concentration of potassium ions (K+). In contrast,
intracellular fluid, in the resting neuron, contains a large amount of potassium
ions and a low concentration of Na+ and Cl- ions, as well as numerous negative
particles, which contribute to amplifying the negative charge inside the cell. The
potential difference between the inside and the outside of the cell turns out to
be -70 milliVolt, and this difference, measured when the nerve cell is not active,
is called the resting potential (Figure 1.8). Due to the difference between ions
charges, another force that determines the displacement of ions is the electric force,
which works in opposition to or in the same direction as diffusion, to constantly
ensure the electrochemical balance of the cell. If the membrane potential moves
away from the resting potential in a more positive direction, the membrane is
in a state of depolarization. There is a threshold value that determines when a
polarizing discharge is sufficient to trigger the sequence of events that generates
the action potential, and this threshold corresponds to a depolarization of about
-65 milliVolt. When the threshold is reached, voltage-gated sodium channels open.
A voltage-gated channel is a structure that responds to changes in the electrical
properties of the membrane in which it is embedded. In the case of depolarization,
when the voltage within the cell becomes less negative, the channels open allowing
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Figure 1.8: The cell membrane potential is generated by diffusive and electric
forces moving ions towards their equilibrium [11].

the passage of ions. The entry of sodium ions into the cell brings to a rising of the
potential from a threshold value of about -55 milliVolt to a maximum value that
fluctuate around +40 milliVolt. When the peak of the action potential occurs in
the cell, the environment inside the membrane is more positive than outside, so
the sodium channels close and the voltage-gated potassium channels open, and
potassium begins to leave the cell, causing the lowering of the potential. The
potential go down beyond the resting state, causing a condition called hyperpolar-
ization, which describes a change in the membrane potential in a more negative
direction compared with the resting potential. After the closure of the voltage-gated
potassium channels, the potential returns to the resting state (Figure 1.9). The

Figure 1.9: Cell membrane potential shows depolarization, followed by repolar-
ization and hyperpolarization, then returns to rest state [11].

8



Introduction

frequency of neural pulses generation is limited by the properties of the membrane
channels. When the peak of the action potential is reached and the voltage-gated
sodium channels close, a short refractory time follows in which the channels cannot
re-open until the cell returns to the membrane potential ,and no stimulus can
trigger a new action potential. The refractory time prevents the generation of an
impulse in a segment that has just produced one, and ensures the unidirectionality
of action potential propagation, which travels from the soma to the axon terminal.
Neural information does not depend on the intensity and the amplitude of the
action potential, but follows the “All or Nothing” principle, that means it depends
on the frequency of generation of action potentials. The greater the number of
action potentials generated, the greater the intensity of the stimulus [11].

Propagation of the action potential occurs along the axon due to the presence
of ion channels concentrated in the myelin sheath gaps, called Ranvier nodes.
Myelination allows the action potential to jump between the Ranvier nodes, rather
than requiring it to activate each segment between the two nodes. This type of
conduction is called saltatory conduction and, because of myelin, it is faster and
more efficient than the regular one [4]. Neurons transmit impulses to the other
cells by two different mechanisms, electrical junctions and chemical synapses. The
electrical junction is a direct connection between two active cells, in which ions
can pass directly from one to the other. When one cell depolarizes, the joined cell
also depolarizes, as ions diffuse between cells. Since the cells are joined by an ion
channel, the signal can be transmitted in either direction. The chemical synapse is
a gap where neurotransmitters are released to flow from the presynaptic neuron to
the postsynaptic neuron, where neurotransmitters bind to specific receptors. In
this case, the signal can only be transmitted in one direction, from the presynaptic
cell to the postsynaptic cell. The binding between neurotransmitters and receptors
in the postsynaptic cell can lead to the generation of an excitatory signal or
an inhibitory signal. In the former case, the postsynaptic membrane receives a
mild depolarization, called excitatory postsynaptic potential (EPSP). EPSPs are
produced by the opening of ligand-gated sodium channels, controlled by a ligand
(neurotransmitter) that binds to a specific location on the extracellular surface
of the cell and causes the channel to open to allow Na+ ions to pass through.
EPSPs are called graded potentials because they do not follow the all-or-nothing
principle like the action potential. Ions emerging from the channel diffuse within the
postsynaptic cell, and as their concentration in a given membrane segment dilutes,
the voltage level in that segment changes. This means that the voltage gradually
repolarizes with the distance of the ions from the channel, allowing the EPSP to
vary in intensity. In the second case, neurotransmitter-receptor binding results
in the generation of an inhibitory postsynaptic potential (IPSP). IPSP is a mild
hyperpolarization of the postsynaptic membrane, which reduces the probability
of the postsynaptic neuron to generate an action potential. IPSP is a graded
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potential generated by the opening of ligand-gated chlorine and/or potassium
channels, which allow chloride ions to enter the neuron or positive potassium ions
to leave the cell to increase the negative charge within the cell. A neuron receives
both excitatory and inhibitory impulses from multiple surrounding neurons. If the
summation effect of all these signals causes the membrane to reach the threshold,
then an action potential is generated. The summation can be achieved by two
different mechanisms. The first one is called Spatial Summation, in which multiple
synapses close to each other all activate at the same time, and the neuron adds up
all the excitatory signals and substracts the inibitory ones. If the end result induces
sufficient depolarization in the axon hillock, the cell generates an impulse(Figure
1.10). The second mechanism is called Temporal Summation, because it is the
summation at a single synapse over a very short period of time of EPSP and IPSP.
It results from a very rapid firing at the single synapse, so the membrane does not
have the time to completely repolarize before the next signal arrives [11].

Figure 1.10: Result of summation of postsynaptic potentials. At point A, a
summation of excitatory postsynaptic potentials add up to the depolarization. At
point B, the total summation of excitatory and inhibitory postsynaptic potentials
can be observed [11].

1.2 ElectroEncephaloGraphy (EEG)
ElectroEncephaloGraphy (EEG) is a non-invasive technique that records brain
electrical activity by using electrodes placed over the scalp. Richard Charton (1842-
1942) recorded the first EEG in cats and monkeys, using non-polarized electrods
and a mirror galvanometer. In 1924 Hans Berger recorded brain activity in humans
for the first time, paving the way for the development of this technique, which is
now widely used in clinical applications [13].
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1.2.1 Neurophysiological origins of EEG Signal and Rhythms
The EEG signal is the spatial average of electric fields generated by pyramidal
cell dendrites in the superficial layers of the cortex. These fields are due to the
summation of excitatory postsynaptic potentials (EPSPs) and inhibitory potentials
(IPSPs) of neuronal cell populations involved in synchronized activities. Pyramidal
cells are disposed vertically to the surface of the cortex, with dendrites arranged
parallel to each other. When the potential of the cell changes from that of an
adjacent cell, an extracellular current flows from one cell to another, generating a
measurable potential difference at the surface [11]. In this sense, pyramidal cells
behave as dipole sources (Figure 1.11). These dipoles produce an external potential
when they act synchronously, and this phenomenon is made explicit by Poisson’s
equation [14]:

∇ (θ∇ (V )) = −J (1.1)

Where V is the potential field, J is the current source density and θ is the
conductivity tensor.

Figure 1.11: The structure of pyramidal cells on the left and electric dipole of
pyramidal cells on the right [15].

The phenomenon of local synchrony, whereby a group of cortical cells depolarize
in unison, is essential for recording brain activity. In fact, most pyramidal cells
operate asynchronously, so their external potentials cancel each other out; however,
if even a small portion of pyramidal cells polarize simultaneously, this will be
visible in the EEG, as they generate a total field given by the linear combination
of the potential fields that each source would produce individually. The location
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of these dipoles also affects the EEG measurement. In fact, the cortical surface is
characterized by folds and grooves, in which pyramidal cells perpendicular to the
surface itself are located. Therefore, even if the sensor is located directly above the
active site, it could detect no activity if the dipoles within the grooves are oriented
horizontally with respect to each other. In that case the total potential will be
zero. This phenomenon is called "paradoxical lateralization" (Figure 1.12).

Figure 1.12: The EEG signal results from the postsynaptic activity of the
pyramidal neurons in the surface of the brain. Scalp potentials are particularly
sensitive to dipoles of radially oriented pyramidal cells in the gyri [16].

The extracellular current generated by each cell is extremely small, but this flow
is propagated throughout the brain because of a phenomenon called "conduction
volume". This phenomenon is due to the fact that tissues, which are made up mostly
of water, are good conductors, and allow the passive propagation of electric current
throughout the brain. Therefore localized brain activity spreads by conduction
volume and may appear at more than one site in the scalp. However, conduction
volume also causes the spread of non-neuronal physiological electrical signals,
such as eye movements and muscle and heart activities, which inevitably affect
the recorded EEG signal. Non-pyramidal cells in the cortex do not contribute
significantly to surface signal recordings [10, 17].

1.2.2 EEG signal Components Properties
Neurons in the cortical area are organized into functional groups, closely inter-
connected by a dense network of links between cortical regions and subcortical
structures. These groups of neurons are involved in cyclic activities necessary
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for normal brain function, occurring in a frequency band ranging from 1 to 100
Hz and beyond. This coordinated activity, characterized by identifiable rhythmic
waves, generates the recordable electrical signal, which is measured over time and
shows high variability. The EEG signal shows a complex harmonic composition,
characterized by distinguishable frequency components called rhythms. Typically,
one particular component dominates over the others during a specific brain activity.
Brain rhythms are defined by their location, amplitude, morphology, synchrony,
symmetry and responsiveness, but the most common method of classifying these
waves is by frequency [18]. Four main rhythms can be distinguished: delta waves
(δ), beta waves (β), theta waves (θ) and alpha waves (α). Gamma waves (γ) may
also be present on frequency bands greater than 40 Hz (Figure 1.13). Each rhythmic

Figure 1.13: Brain rhythms [19].

wave is generated by specific interconnections. Alpha rhythm and slow beta rhythm
are originated by a mechanism called thalamus-cortical resonance, due to the close
connection between the thalamus and the adiacent cortical regions, which undergo
thalamic resonance activity. Low-frequency theta waves are generated by resonance
between the cortex and subthalamic nuclei, while beta waves, which are faster, are
produced by short-range connections between cortical sites [20].

Delta waves have a bandwidth of 1-3 Hz and are associated with non-REM sleep
states and states of unconsciousness. This rhythm excessively concentrated in a
particular area is a symptom of severe dysfunction of that area, due to localized
injury or trauma, for example. Excessive delta rhythm in a global area, on the
other hand, indicates generalized pathology, aging, and other systemic problems
[21].
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The alpha rhythm have a frequency ranging from 8 to 13 Hz. It is a rhythm
that reach its maximum intensity in the posterior area of the brain, and tends to
increase during relaxation of the visual system. This happens because the alpha
wave is a thalamo-cortical resonance that involve the optic pathways and primary
visual cortex. During concentrated alpha activity, the individual is relaxed but
conscious, so an increase in alpha waves represents less brain activity [20]. The
frequency band associated with the alpha rhythm is also characteristic of another
rhythm, the mu rhythm, which is visible in the central area of the cortex. The mu
waves (8-13 Hz) and slow beta waves (13-15 Hz), are called Sensorimotor Rhythms
(SMRs), as they are visible in the so-called sensorimotor cortices, i.e., posterior
frontal and anterior parietal areas. It has been shown that SMRs undergo changes
during motor behaviors, specifically these rhythms energy decreases before and
during movement, or motor intention. This decrement is named Event-Related
Desynchronization (ERD), and it is the decrease in rhythmic activity following an
externally or internally provoked event, such as voluntary movement. ERD may
be associated with a subsequent increase in SMRs immediately after movement,
which is called Event-Related Synchronization (ERS) (Figure 1.14) [22].

Figure 1.14: (A) Example of ERD/ERS time courses. (B) Maps of signal
distribution on the scalp during motor imagery [23].

Both ERDs and ERSs are located in specific cortical areas and characterized
by certain frequencies. These phenomena can be visualized in the time domain,
by time-frequency analysis or with topographic maps. SMRs are due to a joint
activity of cortical and subcortical regions, which are closely interconnected. Indeed,
acquisitions performed with invasive electrodes revealed activity in the mu and
beta bands in the thalamus, subthalamic nuclei, and pedunculopontine area [24].

The slow beta rhythm, as specified earlier, is characterized by frequencies ranging
from 13 to 15 Hz and, like the mu rhythm, exhibits desynchronization in association
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with motor behavior. The major difference between the two rhythms is that beta
waves, in addition to ERD, develop ERS consequent to movement in the same brain
area. This phenomenon is called beta rebound. The ERD and ERS associated
with the beta rhythm, in fact, occur uniformly in the motor cortex, thalamus
and subthalamic nuclei, while in the case of the mu rhythm, during movement,
the ERD occurs in the motor cortex while the ERS associated with it occurs in
the subthalamic nuclei. The beta rhythm (15-20 Hz) represents brain activation
and conscious and intentional thinking. High beta waves (20-30 Hz) are typical
of anxious states and agitation. Gamma waves are fast waves, with frequencies
ranging from 35 to 45 Hz. These waves have very low amplitude and are found in
moments of deep concentration [18].

1.2.3 Acquisition Electrodes
The system for measuring EEG signals is called an electroencephalograph. It
consists of an acquisition system, that picks up the weak electrical signal on the
scalp, a signal processing system, a storage and display system. The signal is
acquired with surface electrodes, which are applied on the skin with the help of
adhesive collars or patches, or are placed on a special elastic cap that fits over the
patient’s head. Because the outer surface of the scalp does not conduct sufficiently
well, it is necessary to apply the electrodes with the help of a gel or electrolyte
solution. This serves the dual purpose of promoting signal conduction, creating good
electrode-to-skin contact, and maintaining adhesion between electrode and skin,
reducing motion artifacts. Commercially available electrodes can be of different
types, including cup electrodes made of tin and silver coated with silver chloride
(Ag/AgCl), double-sided disposable Ag/AgCl electrodes, and stainless steel ring
electrodes [25].

The most common acquisition method involves the use of the elastic electrode
cap, with the electrodes placed on the scalp according to the arrangements defined
by the 10-20 International Standard System. It consists of the placement of 21
electrodes on the scalp surface, located at intervals of the 10% and the 20% of
reference lengths. The references are respectively the length of the skull in the
transverse plane and the median plane, which are measured between two reference
points, one placed at the base of the skull (inion) and the other at eye level, between
the nose and forehead (nasion) (Figure 1.15) [26].

Depending on the experimental requirements, acquisitions can be carried out
using two standard derivations, the monopolar derivation and the bipolar derivation
(Figure 1.16). In the monopolar derivation, an electrode is placed at an active site
and the reference electrode at an electrically neutral site. Reference sites generally
are located at the mastoid, tip of the nose, earlobe or chin. This type of recording
determines the absolute activity underlying the active site. In bipolar derivation,
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Figure 1.15: Electrode placement on the scalp according to 10-20 International
Standard System [27].

both electrodes are placed on active sites in the area of interest, so the resulting
signal corresponds to the difference between the signals recorded from the two sites
[10].

Figure 1.16: Example of monopolar and bipolar EEG derivations [28].

1.2.4 Acquisition Techniques
Surface EEG is a very low amplitude signal that reaches, in normal conditions,
values of 50-100 microVolt. The recording system of such weak signals requires
specific parameters in terms of signal amplification, noise rejection and electrodes
impedance. Each channel is provided with a pre-amplifier, which must conform
the following requirements:

• Differential gain of 104 order, which is achieved by two amplifier blocks
arranged in cascade.

• Input impedance greater than 10 MOhm, which minimize the interconnection
error that would otherwise further attenuate the EEG signal.

• High common mode rejection ratio (CMRR) to reduce the effect of interference
due to ambient electrical noise, specifically interference due to 50 Hz power
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lines. The CMRR defines the ability of a differential amplifier to attenuate
the common-mode voltage while amplifying the differential mode voltage, and
it is defined as:

CMRR = 20 log | Ad

Acm

| (1.2)

Where Ad is the differential gain and Acm is the common-mode voltage.

• AC coupling of electrodes, which is achieved by placing a capacitor at the inlets
of the pre-amplifier. AC coupling is used to remove continuous noise (DC) due
to electrode potentials, which degrade the Signal to Noise Ratio at the output
of the amplifier stage. The electrode potential depends on temperature and
electrochemical composition and is much greater than the EEG potentials. If
the electrodes were DC coupled with the pre-amplifier, the electrode potentials
have to be perfectly equal to cancel their effect at the differential input of
the amplifier. However, even using high quality electrodes of the same type,
potential differences cannot be avoided, because the electrodes are placed at
different locations on the scalp and their potentials are inevitably affected by
variable parameters, such as temperature and electrolyte concentration of the
gel. This potential difference generates a noise that is amplified and can drive
the amplifier output into saturation. The presence of the coupling capacitor
makes each entrance of the pre-amplifier to behave as a high-pass filter that
attenuates the DC components.

• Isolation circuit, introduced to prevent the danger of micro- and macro-shocks.

• Amplifiers, which allow the required high gain to be achieved.

• Anti-aliasing low-pass filter, necessary to filter the signal so that it satisfies
the assumptions of the sampling theorem. If the signal has to be sampled by
Analog-to-Digital converter (ADC), its bandwidth has to be limited to satisfy
Shannon’s theorem, whereby, if fs is the sampling frequency of the converter,
the signal bandwidth must be contained within fs/2, to avoid the distorting
phenomenon of aliasing.

• Analog-to-digital converter, which has as input the sampling frequency fs and
the number of bits of the converter.

• Electrode impedance measurement circuit. If the impedance are too high,
it increases the interconnection error and reduces the signal amplitude. In
addition, unbalanced electrode impedance introduces differential noise that
contributes to lower signal-to-noise ratio. Electrode impedance values below
5 kW are recommended, with a maximum unbalance of 1 kW.

The signal acquired in this way is then stored, processed and finally displayed
on a monitor [13].
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1.3 Brain Computer Interface (BCI)
The central nervous system (CNS) is responsible for processing external and internal
information and stimuli and processing responses that are naturally muscular or
hormonal. Brain Computer Interface is a system that record the CNS activity,
extrapolate specific features and translates these features into artificial outputs that
replace, restore or enhance the natural outputs of the body. BCI systems provide
a direct communication channel that prescinds from the normal neuromuscular
outputs of the CNS, enabling interactions with the surrounding environment for
individuals with severe neuromuscular disorders. A generic BCI system consists of
three parts: signal acquisition, signal processing and feedback, which is the tangible
consequence of the subject’s brain activity. Brain signals that serves as BCI’s
inputs can be recorded by a variety of different techniques, and carry different
information depending on the recording method, in terms of frequency content,
resolution, morphology and area of origin. The most common electrophysiological
monitoring techniques use electric and magnetic fields in the brain, hemoglobin
oxygenation values, and other signals recorded on the scalp or more invasive
recordings within the brain. EEG is particularly suitable for applications with BCI
because it is noninvasive, low cost, has wide spatial coverage and high temporal
resolution. EEG-based BCI systems can be classified, according to the type of
control signal used, into exogenous or endogenous, depending on whether or not
the presence of an external stimulus is required to induce the manifestation of
the signal. The most commonly used control signals in EEG-based BCIs are
visual-evoked potentials (exogenous), P300 evoked potentials (exogenous), Slow
Cortical Potentials (endogenous) and sensorimotor rhythms (endogenous) [6].

1.3.1 Motor Imagery driven BCI
Sensorimotor rhythms (SMR) are EEG signal fluctuations that can be detected over
the motor cortex and correspond to alpha/mu rhythm (8-13 Hz) and beta rhythm
(14-30 Hz). These rhythms are characterized by detectable energy modulations
during motor tasks, either executed or imagined. These modulations occuring during
motor execution, motor imagination or sensory stimulation are called event-related
desynchronization (ERD) or event-related synchronization (ERS). ERD are defined
by a decrease of the rhythms amplitude, while ERS correspond to an increase of the
amplitude. The voluntary movement triggers the desynchronization of sensorimotor
rhythms from about 2 seconds before the movement, in the controlater hemisphere,
and the same effect is originated by the motor imagery, as the immagination
of movement engages the same cortical regions that activate during the actual
execution [22]. Since SMRs consists of rhythmic oscillations, most BCIs developed
starting from frequency analysis. The most common way to quantify sensorimotor
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rhythms is to define the proportional power decrease (ERD) and power increase
(ERS), by band-pass filtering each trial of the raw signal in a specific frequency
band, squaring the samples and averaging over multiple trials [22]. A lot of
other frequency-analysis techniques have been used to develop BCI systems, as
the Fourier transform, the continous wavelet transform, matching pursuit and
autoregressive models. Alpha/mu and beta rhythms modulations are characterized
by a somatotopic organization. The decrease of SMR that results from motor
imagery or movement execution of different limbs is detectable in regions along the
primary sensorimotor cortex corresponding to the interested body part, according
to Homunculus organization of the cortex (Figure 1.17). This aspect of SMR offers
a wider range of applications in the SMR-based BCIs field [29].

Figure 1.17: The motor Homunculus shows the effects of electrical stimulation of
the cortex on human body parts [6].

1.3.2 FES-BCI System
Functional Electrical Stimulation (FES) is a technique that uses electric current to
stimulate muscle contraction in order to generate functional movement. It provides
a rehabilatitive tool that can be used to help patients with persistent motor deficits
to improve motor functions, by inducing an artificial muscular contraction. This
treatment is effective only if the motor neurons of the target muscle are preserved,
otherwise muscle activation cannot be triggered. FES system acts by approximately
reproducing the neuronal stimulus, which under normal conditions triggers muscle
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contraction through intact peripheral nerves. The current carried to the motor nerve
is controlled by the electrical stimulator, which determines the pulse amplitude,
frequency, duration, waveform and duty cycle. This current is delivered by means
of electrodes, which are available as non-invasive surface electrodes or invasive
implantable ones [30]. FES can be activated externally, by a predefined program or
by a therapist. In these cases, however, the rehabilitation process turns out to be
less effective than if the patient decides to activate FES by motor imagination effort.
In fact, to stimulate muscle rehabilitation it is useful to enhance neuroplasticity,
a phenomenon that occurs in the central nervous system and is responsible for
altering its structure in response to internal and external stimuli, and this is achieved
by promoting synchronization between the subject’s intention and physiological
feedback. FES used as a part of a brain-computer interface technology has been
demostrated to be a powerful tool to improve motor functions and facilitate the
recovery of muscolar activity, due to the ability of this system to promote neural
organization and motor learning, as it provides proprioreceptive sensory input along
with an actual feedback, that is, visual perception of the movement. Real-time
feedback of a BCI device provides an immediate reward-based reinforcement, that
can be used to enhance the production of useful patterns of neural activity over
others. This learned modulation, along with sensory input provided by FES, may
promote the functional recovery of muscles and sensory pathways. BCI-FES systems
synchronize the artificial movement with modulated brain activity, as the FES
is activated only when appropriated brain signals events are detected during the
imagination of the movement. This is the reason why this combinated system has
the potential to be more efficient than therapies that uses FES alone, as it focuses
on neuromodulatory and neuroplastic motor learning aspects of rehabilitation.

1.4 Movement Intention Detection
1.4.1 Standard Approach
The standard approach to extrapolate features from physiological signals requires
signal sampling, which is the conversion of the starting analog signal into a succession
of samples. Samples are values taken from the analog signal at predetermined,
equidistant instants. The time interval between two successive instants is called the
sampling period, and its inverse the sampling rate. Sampling ensures the transition
from the continuous set domain to the discrete domain. According to the sampling
theorem (Shannon theorem), to avoid loss of information during the sampling
phase of the signal, it is necessary to sample at a frequency greater than twice
the bandwidth of the signal. The quantization of an analog signal is the process
of discretization of the signal’s amplitude. The sampled signal is divided into a
finite set of intervals, and the samples in the same interval are associated with the
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same output. As the sampling process, quantization results in an inevitable loss of
information, which is quantified by the quantization error, which is the difference
between the input value and the quantized value. The quality of the quantization
process depends on the number of quantization levels; in particular, more are the
levels, lower will be the associated error. The sampling rate and quantization error
are parameters defined according to the desired specifications of the conversion
system. ADCs used in EEG are characterized by sampling frequencies ranging
from 256 Hz to 5 kHz. The resolution of the system is defined by the number of
bits of the converter, which in commercial EEG has a value of 12 or 16 bits. The
number of bits and the quantization number, which must meet the specification for
the maximum quantization number of the system, allow the values to be mapped
in a specific amplitude interval [13].

Once the signal is sampled, it can be analyzed with the help of different tools.
The most common method used to extrapolate significant features from the EEG
signal is the analysis in frequency domain with Fast Fourier Transform (FFT).
This method allows an extensive examination of the discretized signal in terms of
frequency characteristics, which are computed by Power Spectral Density (PSD)
estimation. One method for PSD estimation is the Welch’s method. The original
signal is divided into M sections of equal length L, that can be overlapped:

xi (n + iD) , n = 0, 1, 2, ..., M − 1; i = 0, 1, 2, ..., L − 1; (1.3)

Where iD is the starting point of the sequence.
A window is then applied to each section to produce the so-called modified

periodograms.

Pxx (f) = 1
MU

|
M−1Ø
#n=0

xi (n) ω (n) e−j2πfn|2 (1.4)

The parameter U is a normalization factor of the power, defined as:

U = 1
M

M−1Ø
#n=0

ω2 (n) (1.5)

Where w(n) is the window function. The final Welch’s power spectrum is
achieved by averaging all the modified periodograms.

P W
xx = 1

L

L−1Ø
#i=0

Pxx (f) (1.6)

Frequency domain analysis with Fourier is convenient because it allows the
signal to be investigated as a sum of sine waves, thus allowing to isolate noise
components from the useful signal more easily [31, 32]. EEG signal is non-stationary,
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and this characteristic makes it theoretically unsuitable for analysis with FFT,
which is a method applicable correctly only to deterministic signals or stationary
or slowly varying stochastic processes. However, EEG signal can be assumed as
stochastic and stationary if short intervals are considered. In order to execute an
accurate analysis of locally stationary signals, it is important to consider that very
short intervals bring to a more precise localization of discontinuities, but it makes
more difficult a clean differentation of frequency components. Time and frequency
resolution depends on the definition of the length of the stationariety intervals and
by improving one, the other deteriorates [33].

1.4.2 Energy-based Approach
The energy of the EEG signal is a parameter that allows the extrapolation of
meaningful information regarding motion detection, or motion intention. One
operator that allows to investigate the energy content of the signal is the Teager’s
energy operator (TEO). TEO is a nonlinear tool defined in both the continuous and
discrete domains, that could continuously track the energy changes of the signal.
This operation is largely applied to elaborate and analyze nonlinear modulation-
type processes, as speech signals and audio signal processing. It has been used
also to help the detection of the movement onset from the EMG signal [34] as
this operator is characterized by a high sensitivity to instantaneous changes of the
signal amplitude and subtle changes. This energy measure is derived from the
product of the square of the amplitude and the square of the signal frequency. In
fact, the total energy of a simple oscillating system, that is, the sum of kinetic and
potential energies, is defined as [35]:

E = 1
2mw2A2 (1.7)

where m is the mass of the oscillating body, W is the frequency of oscillations
and A is the amplitude. Teager’s algorithm is developed using simple trigonometric
hypothesis, starting from the signal of the motion of an oscillatory body, expressed
as a periodic harmonic formula:

xn = Acos(Ωn + ϕ) (1.8)

The essential harmonic energy that generate the signal can be then calculated as:

En = x2
n − xn+1xn−1 = A2sin2(Ω) ≈ A2Ω2 (1.9)

The Teager’s operator is defined in the continuous domain as:

Ψ[x(n)] = (dx(t)
dt

)2 − x(t)d2x(t)
dt2 (1.10)

22



Introduction

This function define the energy content of the signal and it depends only on the
signal itself and its first two time derivatives. In discrete domain TEO is defined
as:

Ψ[x(n)] = x2
n − xn+1xn−1 (1.11)

Where the operator is defined by three adjacent samples of the signal. Because
of its properties, TEO could be involved in the developing of an event-driven
technique to detect movement intention. The issue with the standard approach
is that it is very consuming in terms of power, as it requires a constant sampling
frequency and, consequently, the presence of the ADC in the hardware system. On
the other hand, TEO enables an event-driven approach because it is a nonlinear
operator implementable in continuous domain, hence it does not require the ADC
to extract valuable informations from the signal. The major lack of this operator
is that is very sensitive to noise. However, the effect of noise can be reduced by
applying a proper filtering procedure to the signal. In particular for the application
on EEG signal, it is important to pass the signal through band-pass linear filters,
to minimize the error introduced by artifacts [36, 35, 37].
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State of the Art

2.1 FES-driven BCI Systems
The signal processing chain of non-invasive BCI-FES systems is defined by a specific
sequential units. The first stage involves the acquisition of the EEG signal during
motor imagery performed by subjects. The process of imagining motor activity
causes oscillatory changes in sensorimotor rhythms. The next step is to provide a
subject-specific calibration, and depending on the feature extraction model chosen,
parameters can be defined for offline and online implementations. The detected
motor imagery events are sent to the interface unit (feature translation), which
activates the FES (device output). The FES delivers the stimulus to the patient as
needed and thus the desired motion is achieved (Figure 2.1) [38].

Most commercially available BCI-FES systems are aimed at the rehabilitation of
stroke patients. One of the first works for rehabilitation was done by Pfurtscheller
et al., who implemented a system for restoration of hand grasp function using
BCI-FES device in a quadriplegic patient. The patient was trained to generate
changes in alpha and beta oscillations during motor imagination. The EEG signal
during the MI task was acquired with 60 electrodes. The oscillations were band-
pass filtered and Fisher’s linear discriminant analysis was used for trial separation
and classification. A threshold system was implemented to identify FES trigger
events and subjects exhibited an accuracy of 83% in imagined movement. With
this study, it was shown that in FES-driven BCI systems, the activity of EEG
signals is strongly contaminated by FES-stimulated muscle activity, however, this
activity is particularly visible in the lateralized EEG channel, but absent in the
mid-central EEG recordings, which is the most relevant region for the detection of
motor imagery-sensitive signals [39].

In another study conducted by McCrimmon et al. it was shown that BCI-
controlled FES is an effective physioherapy tool for lower-limb motor recovery in
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Figure 2.1: Schematic representation of BCI-FES system for neurorehabilitation
[38].

stroke survivors, as it promote a lasting neurological and functional improvements.
The main parameter used in this study was the Power Spectral Density (PSD)
of the EEG signal recorded from a 63-channel system. The PSD was calculated
for each trial in the offline calibration, it was then spatial filtered with class-wise
principal component analysis (CPCA) to separate two different class of movements,
then a linear discriminant analysis (LDA) was applied. The features were extracted
from the signal and then classified using a Bayesian classifier [40].

Many studies focuses on the detection and recognition of different imagined
movements, but that requires the involvement of elaborate spatial filters and
machine learning analysis, which results in using a high number of electrodes
and high computational power. The goal of this work was to develop a real-time
implementable system that focuses on the detection of the hand movement using a
single EEG electrode, by implementing also techniques of which the efficacy has
been extensively tested, as the PSD. Another work that demonstrated the efficacy
of a technique based on the PSD parameter for the detection of the movement
was the one conducted by Aleksandra Vuckovic et al. [41]. In this work, bipolar
derivation EEG recordings were used to calculate the PSD in the alpha and beta
band frequency, and the subjects were able to control the suppression of the PSD
during the motor imagination of an opening hand, thanks to the feedback provided
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from a graphical user interface (GUI) (Figure 2.2). The hand involved (left or
right) was chosen before the task as the placement of the electrodes was different
depending on the imagery movement performed. FES was activated when the
suppression of the PSD reached a predefined value. They demonstrated that once
the FES was activated, even if the subjects stopped the motor imagery task, the
movement stimulated by FES was able to keep active the motor-related areas of
the brain, as the power suppression was still detectable. This system led to an
accuracy rate of 83.5% for left hand and 83.8% for right hand.

Figure 2.2: BCI-FES system developed in [41].

2.2 Single Channel EEG MI-based BCI Systems
Many studies have been conducted to detect motor intention from a single EEG
channel. The use of a single channel often implies a signal corrupted by artifacts,
which are normally minimized by using multiple channels, that allow the involvment
of spatial filters for noise rejection. The presence of artifacts lowers the accuracy of
the single-channel system ability to detect signal changes due to motor imagination.
In [42] a single channel hybrid BCI system was developed. The system combined
motor imagery (MI) related signals and steady-state visually evoked potential
(SSVEP). For the recordings the subjects were asked to simultaneously perform an
MI task and visually focus on SSVEP flicker. Feature extraction was performed
with short-time Fourier transform (STFT) and common frequency pattern (CSP)
method. To estimate the classification accuracy was used a linear discriminant
classifier (LDC). This system achieved an offline accuracy of 85%, but it was not
suitable for real time applications.

In [43] the motor intention detection from one channel EEG was achieved by
using low frequency readiness potential (RP), a signal elicited in EEG during
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imagery or real movement. RP is detectable in the delta bandwidth (0 – 5 Hz), but
it is highly contaminated by low frequency transients artifacts. To minimize the
transients, a total variation denoising (TVD) filter was applied. TVD is a nonlinear
tool for efficient noise suppression that preserves at same time low frequency sharp
edges and the shape of the signal underneath. The filtered signal was processed
with Teager’s energy operator (TEO) and the events related to the movement were
isolated by using a threshold and constraints related to morphological characteristcs
of the RP waveform. An accuracy of 91.2% was achieved in real movement execution
tasks.

2.3 Wearable Systems
One of the goals of this thesis work was to define an accurate method for motor
intention detection that can be employed in the developement of wearable devices,
suitable for real-time applications. There are a wide variety of noninvasive BCI
devices on the market, characterized by a signal acquisition part and a translation
part. The acquisition system contains electrodes, analog circuit and digital system
for recording and signal transmission. The connection between the acquisition
system and the translation part can be wired or wireless. The most famous
companies producing wireless devices are G.tec, Emotiv, Open BCI, Neurosky.
G.tec has marketed a wearable EEG device called G.Nautilus (Figure 2.3), which
uses 32 analog-to-digital converters (ADCs) that enable very high sampling rates
and high resolution.

Figure 2.3: g.NAUTILUS wearable EEG headset [44].

27



Chapter 3

Algorithms Description

3.1 Preliminary Assessments
Motor behavior generates changes in the EEG signals in the form of event-related
desynchronization (ERD) and event-related synchronization (ERS). ERD is a
localized decrease of the rhythmic activity amplitude in a specific frequency band.
During imaginary or real movement, ERD of mu rhythms is visible in the central
cortical area, as it is the result of an increasing excitability of central neurons. On
the other hand, ERS represents an amplitude increase of cerebral rhythms. In
particular, ERS results as beta rebound in the frequency band ranging from 15 to
30 Hz that occurs after limb movement. The analysis of ERD/ERS pattern in time
and space during motor imagery is a valid indicator of the dynamics occuring in
cortical networks [22].

In this work, ERD/ERS patterns were used to identify the specific frequency
band in which motor imagery occurred (Figure 3.3). EEG signal changes related
to motor behavior have been shown to occur primarily in the mu/alpha band;
however, this band exhibits variability across subjects. Therefore, it is important
to identify for each subject the precise range of frequencies in which motor activity
is visible during the performed task [45]. The general method for calculating ERD
is as follows (Figure 3.1):

• raw signal segmentation to obtain event-related trials;

• band-pass filtering;

• squaring of each trial samples to obtain power samples;

• averaging power samples across all trials to minimize the influence of artifacts
and non related-event oscillations;

• smoothing the signal by averaging over time samples to reduce variability;

28



Algorithms Description

ERD is generally expressed as a percentage value, which is calculated as:

ERD/ERS(%) = (E − R)
R

∗ 100 (3.1)

Where E is the event, identified as the signal in the period in which the motor
imagery occurs, and R is a reference period prior to the event [46].

Figure 3.1: Example of ERD/ERS calculation method [46].

To determine the subject-specific frequency band, time-frequency analysis was
performed on the signals, and the cerebral activity maps were plotted to identify the
precise frequency range in which the brain activation occured (Figure 3.3). Time-
frequency analysis was executed using EEGLab, an open-source toolbox accessible
from Matlab that allows an accurate processing and analysis of electrophysiological
data. A baseline correction was applied to the signals and ERD/ERS calculation
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was performed. ERD/ERS maps were created using a sinusoidal wavelet with
minimum 3 wavelet cycles at lowest frequency and a coefficient of 0.8 for defining
the number of wavelet cycles per data window at highest frequency. A p-value
threshold of 0.05 was defined using the bootstrap method for defining statistically
significant area and the False Discovery Rate method was implemented to correct
the p-value across time and frequencies (Figure 3.2).

Figure 3.2: EEGLab Graphical User Interface to set the parameters to perform
time-frequency analysis.

The aim of the developed algorithms is to detect the movement intention from
one single EEG channel. Due to cerebral controlaterality, the signal developed
by the imagination of the right hand is more pronounced in the left hemisphere.
To detect the imagined movement of both the right and left hand, in preliminary
tests only signals acquired from Cz channel were used, as it is placed over the
cortical mid-line motor area and it is influenced by both the activity of the right
and left hemisphere. However, this consideration is not valid for all subjects, as
some subjects show enhanced activity for both imagined movements in a specific
hemisphere. To ensure a better performance of this application, therefore, it
is necessary to define during offline calibration a subject-specific placement of
the single electrode, using time-frequency analysis to identify which area is most
activated during motor imagination.
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Figure 3.3: Time-frequency analysis performed on subject 1 during motor imagi-
nation task of both hands, second session. On the y-axis the power content of the
signal in the frequency domain is shown. On the x-axis is shown ERD signal in blue
and ERS signal in red. The onset of motor imagination is indicated by the dashed
line. (A) The signal acquired from channel C3 shows minimal desynchronization
(in blue) in the most active frequency band, followed by related synchronization
(in red). (B) In Cz, intense activity is observed at low frequencies and slight
desynchronization at the mu/alpha band. (C) In C4, a strong desynchronization
is observed in the band of interest. This indicates greater brain activity during
the task in the right hemisphere for subject 1. According to the time-frequency
maps, the frequency range of greater activation for subject 1 is (9-14 Hz), and the
channel that detects the major brain activity is C4. These two parameters will be
used as input in the following processing.

3.2 Power Spectral Density (PSD) based Algo-
rithm

3.2.1 Pre-processing
Motion intention is detected using the power spectral density (PSD) of the signal.
This frequency-based parameter was chosen to analyse neuronal modulation of
SMR because of its ease of application and straightforward interpretation. EEG
signal is known to be subsceptible to different sources of noise, so, to assess the
actual effect of artifacts on data signal, independent component analysis (ICA)
was performed. ICA is a widely used filtering technique for artifacts removal in
EEG signal, however it is effective on signals recorded in multi-channel mode. This
method consists of a linear decomposition of the original signal into linearly mixed
indipendent components [47]. The signal recorded from electrodes placed all over
the scalp is the weighted sum of many neural potentials, originated by different
sources distributed on the scalp. ICA attempts to separate the highly correlated
signals recorded from different locations on the scalp into subcomponents and
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facilitate the recognition of artefact components, that can be substracted from the
original signal [48]. ICA application is not the most suitable method for the purpose
of this work, as it requires signals recorded from a large number of electrodes to be
considered effective, but it was tested on signals to evaluate how artifacts effectively
change the algorithm performances. ICA was implemented in EEGLab toolbox,
using signals recorded from 25 channels (Figure 3.4).

Figure 3.4: ICA analysis of signals acquired from 25 electrodes from subject 3 of
the BCI competition IV dataset. The subject was instructed to perform a motor
imagery task. The vertical line represents the onset of the task. In blue are the
original signals, in red are the signals filtered with ICA. It can be observed that
ICA effectively filters out artifacts.

After ICA application on signals, PSD was calculated. The analysis of Power
Spectral Density of signals with and without artifact rejection leads to the conclusion
that artifacts have small impact on the PSD in the frequency band of interest
(Figure 3.5).
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Figure 3.5: Power Spectral Density of Subject 3 EEG data. In blue the PSD of
the non filtered data, in red the PSD of the ICA filtered data. The PSD on the
mu/alpha range was not heavily affected by artifacts, indeed the filtering had a
major effect on higher frequencies.

These results shown in Figure 3.5 have been confirmed by various studies, which
show that the PSD technique is less susceptible to artifacts than other techniques
[49]. Given the small noisy contribution of artifacts, to avoid higher computation
complexity and power consumption, and to fulfill the single channel EEG request,
artifact removal was not implemented.

3.2.2 Control Parameters
The PSD was calculated over a moving average window of 1 second to enable an
online application and without overlap to maximize computation time. Different
window lengths were tested and 1 second was defined as the optimal length according
to performance results of the system. This interval length turned out to be the
minimum time required for event-related power suppression to be recognized [41].
Within each window, PSD was estimated using non-parametric Welch’s method,
which is one of the most widely used approach for power evaluation in EEG
processing studies [50]. PSD by Welch’s method depends on three parameters:

• Window length and type

• Window overlap

• Number of FFT points (NFFT)
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Hanning window type was chosen as it is characterized by a good frequency
resolution and reduced spectral leakage. Window length was selected equal to 125
milliseconds. A small window size allows to obtain smoother PSD and to minimize
the influence of noise, as it will be averaged out. However if the window length
is chosen too short, it will compromise the frequency resolution, as the distance
between two frequency points will rise (Figure 3.6) [51].

Figure 3.6: Power Spectral Density using Welch method for different window
sizes.

A high overlap equal to 75% the window size was introduced to reduce the
impact of noise. The number of FFT point defines the frequency resolution of the
signal. Generally this number is set equal to the power of 2 of the window length.
In this application, to obtain a resolution of 0.125, NFFT parameter was chosen
equal to 2048. The PSD is defined in the frequency domain, so to obtain the signal
power trend over time, the frequency band of interest was selected and the PSD
signal samples within the predefined frequency range were summed. Each value
obtained from the summation corresponds to a sample of the signal power in the
chosen frequency band at a specific instant, as can be seen in Figure 3.7.
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Figure 3.7: Plot of the power content of Subject 1 EEG signal in time domain
during motor imagery. The suppression of the power can be seen after the motor
imagery task onset.

3.2.3 Threshold Calibration

To detect the event generated by motor imagination, a threshold was defined with
an iterative process (Figure 3.8). If the power signal calculated during an episode
of motor imagination remained below the predefined threshold for an interval of 1
second, then it was submitted to a robustening process, in which the threshold was
tested on a relaxation signal, recorded from subjects who were instructed to stay
open-eyed without speaking. If the rest signal dropped below threshold for at least
1 second, then the threshold was increased and the iterative process was repeated,
until a stable threshold was established (Figure 3.8).

35



Algorithms Description

Figure 3.8: Iterative process to define a robust threshold for motor intention
detection.
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Figure 3.9: Time-controlled threshold.

The threshold was calculated during offline calibration for each trial, then the
maximum threshold across each trial was selected. The power signal that remained
below the threshold for at least the predefined time interval was identified as event.

Figure 3.10: Subject 5 power content signal. The power of the EEG signal (in
blue) had to remain below the threshold for at least 1 second after the task onset
(in black) to be identified as an event (in magenta).

37



Algorithms Description

3.3 Teager-Kaiser Energy Operator (TEO) based
Algorithm

3.3.1 Preprocessing

The first step in the algorithm is to apply a filter to the original signal in order
to isolate the band of frequencies of interest. As previously illustrated, the range
of frequencies in which the signal undergoes changes during motor imagination
is variable from subject to subject. Once the optimal frequency band is defined
for each subject, the signal is bandpass filtered with a butterworth bandpass filter
(Figure 3.11). The butterworth filter is widely used in electrophysiological signal
processing because it has no passband and stopband ripple and has a shallow
roll-off in the area where the roll-off is significant, that is, near the cutoff frequency
[52]. This type of filter provides a linear response in comparison to others, which
makes it the most suitable tool for separating the frequency components of the
EEG signal and to minimize the influence of artifacts (Figure 3.12) [53].

Figure 3.11: [8-14]Hz Bandpass Butterworth filter transfer function
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Figure 3.12: Effect of the butterworth filter on the EEG signal.

EEG is strongly affected by artifacts, which contaminate the quality of the
signal. The most common external noise sources, such as low-frequency transients
or power line interference, are easily removed with simple high-pass and band-pass
filters. Eye artifacts represent the most common physiological artifacts. They are
generated by eye movements and blinks that propagate throughout the scalp due
to the conduction volume phenomenon. These artifacts are characterized by an
amplitude much larger than that of the EEG signal, and frequencies similar to
those of the EEG signal. Although they are artifacts that propagate over the entire
head surface, only the signals acquired from the frontal electrodes are severely
corrupted by ocular noise. These artifacts are also present in signals acquired from
electrodes placed in the central area of the scalp, but they are less influential [54].
The slight influence of EOG signal noise in the acquired signals was minimized
during signal processing by imposing a limit on the amplitude of EEG signal
oscillations, technique that will be explored later. Muscle artifacts can be caused
by any muscle near the EEG signal recording site, and are due to facial micro-
movements, swallowing, and jaw movements. However, the frequency distribution
of muscle signals is outside the range of interest evaluated in this work.Cardiac
artifacts originate from blood vessels near the acquisition site. The vessels dilate
and contract, resulting in pulsating noise, which, however, is characterized by low
frequencies, around 1.2 Hz, thus outside the band of interest [55].
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3.3.2 TEO processed Signal

The second step is the application of Teager’s operator to the filtered signal (Figure
3.13). This operator is useful in the analysis of the EEG signal because it depends
on its first two derivatives, so it has the characteristic of showing sudden changes
in the signal such as discontinuities, frequency and amplitude variations, and it
provides an accurate measure of signal energy over time [56]. The EEG signal in
the selected band during a motor imagery task is susceptible to a phenomenon of
desynchronization of neural potentials, resulting in a decrease in amplitude of the
energy content of the signal, which is effectively detected by the TEO operator.
The energy of the signal in traditional processing is calculated as the sum over
time of the absolute value of the signal squared, or is estimated from the Fourier
transform [57, 35, 58].

Teager and Kaiser, starting with a second-order differential equation, developed
a new operator that can track changes in energy, starting with the observation that
the energy to generate a simple sinusoid varies with frequency and amplitude. As
illustrated previously, Teager’s non-linear operator is defined both in the continuous
and in the discrete domain and potentially offers a simple and affordable tool to
analyse the EEG signal.

Figure 3.13: Preliminary steps of processing of the EEG signal of Subject 5
during motor imagery task.
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3.3.3 Threshold and Amplitude Parameter Setting

Detection of the signal corresponding to motor intention, i.e., the event of interest,
is accomplished using a threshold. The event is generated by the desynchronization
of the action potentials of neurons involved in processing motor activity; this results
in the decrease in the energy content of the original signal. Event recognition
occurs when the TEO signal remains below the threshold for a predefined time
interval. The time interval was chosen based on the characteristics of neuronal
desynchronization, and in order to recognize the energy decrease as an actual
response of an activity related to motor imagination, an interval of at least 300 ms
was established. Desynchronization lasts from a few hundred milliseconds to a few
seconds, but in order to develop a real-time system, capable of detecting the event
quickly, the length of the minimum interval within which energy decrement can be
defined as an event was chosen. The threshold was defined as follows:

Threshold = mean(TEOx) + k ∗ δ(TEOx) (3.2)

Where δ is the standard deviation of the signal. The value of the coefficient k
was defined using a Receiver Operating Characteristic (ROC) curve, to optimize
the performance of the system (Figure 3.14).

Figure 3.14: ROC curve of Subject 5 to determine the optimum value of k
coefficient. The curve was obtained by changing the k value and evaluate the
consequent response of the algorithm. The appropriate k coefficient in this case
was chosen equal to 0.4, as it led to a good accuracy without causing an excessive
increase of FPs/min number.

41



Algorithms Description

Each value of k was tested as a function of the number of True Positive Rates
(TPRs) and False Negatives per minute (FPs/min). The k value chosen was the one
that guarantees the highest number of TPRs versus the lowest number of FPs/min.
If the signal remains below the threshold for a minimum duration of 300 ms, then
the binary output corresponding to that interval was set equal to 1, otherwise it
was set equal to 0. The binary output represented the activation signal of the
subject’s motor imagination.

Figure 3.15: TEO signal of Subject 5. In magenta, the events detected by the
first threshold block.

As can be seen in Figure 3.15, this first detection block provides an approximate
tool for event detection; however, it is not sufficiently accurate by itself, because it
cannot always discriminate the energy deflection representing the event and the
random noisy oscillations. The TEO operator is extremely sensitive to the back-
ground noise of the EEG signal. Noise generated by ocular artifacts, transients, and
random fluctuations that corrupt the EEG signal affect the operator’s performance.
The effects of these perturbations become significant because they are amplified
by the squaring operations employed to estimate the necessary parameters by the
Teager’s operator, who can detect signal changes due to motor activity but lacks
the ability to discriminate these signals from noisy perturbations [59].

To clean the output signal and accurately classify the event of interest, morpho-
logical considerations were made on the signal. Energetically, the signal exhibits
homogeneous deflection during the activity of imagining or performing the move-
ment [60], so to discriminate the signal from noise, it is useful to observe the
presence of rapid oscillations with high peak-to-peak amplitudes (Figure 3.16).
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These oscillations are in fact the result of the TEO operator’s processing of the
noisy perturbation, which in the original EEG signal manifests as a discontinuity
and is energetically translated as a sudden increase in the TEO signal.

Figure 3.16: Example of high peak-to-peak amplitude noisy oscillations in Subject
5 TEO signal.

A second block that takes as input the segments of 300 ms duration, previously
processed by the threshold method, was introduced, to minimize the influence of
noise by identifying peaks with excessively high amplitude. If there were found
oscillations in the considered window that were recognized as noise, the binary
output at that window was set to 0, otherwise it was set equal to 1. The amplitude
constraint of the noisy oscillations is defined by means of an ROC curve (Figure 3.19),
which, as in the evaluation of the threshold parameter k, is useful in understanding
how system performance varies depending on the amplitude coefficient chosen.
Thus, the parameter chosen depends on True Positive Rate and the number of
False Positives per minute.
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Figure 3.17: ROC curve for determining the maximum peak-to-peak amplitude
of noisy oscillations.

As can be seen in Figure 3.18, the application of a second block to minimize
the noise is significant in improving the accuracy of the algorithm, which shows
improved ability to recognize motor imagination events and reject false positives.

Figure 3.18: Subject 5 TEO signal
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Figure 3.19: Steps of the TEO-based algorithm for motor intention detection.
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Chapter 4

Intervention Protocol
Description

4.1 Experimental Set-Up
Experimental acquisitions were made with g.tec HIamp, a tool used for measuring,
processing, recording and reviewing biosignal data. Five subjects participated in
the experiment. All subjects were volunteers, male, aged between 24 and 26 years.
EEG signals were collected using Ag/AgCl active electrodes, placed on the proper
elastic cap, that was available in the g.tec kit. The electrodes montage was based
on 10-20 international system (Figure 4.1). Different electrode configurations were
tested in order to identify the best arrangement for the desired application. In
general, 12 electrodes were always used for EEG signal recording: Cz, C3, C4,
CP3, FC3, CP4, FC4, O1, O2, T7, T8, plus a reference electrode placed on the
left ear. The electrode placement was defined to cover the central cortical area
of both cerebral hemispheres (Figure 4.2). The greatest neuronal activity during
motor imagery tasks occurs in areas covered by electrodes Cz, C3 and C4, but the
signal propagates on the scalp because of the volume conduction, so in addition
to simple monopolar acquisitions from these three electrodes, bipolar acquisitions
were recorded too, to examine how the signal changes from one site to another and
from one derivation to another.

G.recorder, the software provided from g.tec for the acquisition and the visu-
alization of the signal, enables the selection of the desired derivation, monopolar
or bipolar. The bipolar configurations tested were performed from C3 and C4
channels, using Cz as EEG ground, and another configuration was CP3-FC3 and
CP4-FC4. The recordings had a dynamic range of ±100 µV and a sampling rate
of 256 Hz. The immediate preprocessing performed through g.recorder was a
bandapass filtering of the signal between 0.1 Hz and 100 Hz. This preliminar filter
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Figure 4.1: International Sys-
tem 10-20. Electrodes high-
lighted are the ones employed in
the acquisitions.

Figure 4.2: Electrode’s placement on
Subject 2 during on-site recording.

allows to eliminate the low frequency noisy transients and to limit the frequency
band, as the EEG signal does not have frequency components higher than 100 Hz.
It was applied also a notch filter to minimize the power line noise, defined in a
frequency range of 48-52 Hz. Subjects were comfortably sitting in an armchair,
watching a screen monitor located in front of them. Each subject was instructed
to perform two sessions of motor imagery tasks, one session of real movement
execution and a final rest signal acquisition was performed (Figure 4.3).

Figure 4.3: Experimental set-up.
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4.2 Cue-Based Motor Imagery Task
To record the motor imagery related signal was used a cue-based paradigm (Fig-
ure4.5). Each subject was instructed to sit in front of a screen and perform a task
based on what appeared on the screen. The paradigm consisted of two classes
of imagery, left and right hand motion imagery. Each session of motor imagery
consisted of 30 trials for each type of movement, for a total number of 60 trials.
Between each session, a maximum of 10 minutes break was given. Before performing
the first motor imagery task, the subject was instructed to perform a session of
real movement. This session of movement execution was used to help the subjects
to imagine better the movements in the following tasks, but also to verify that
the system was working correctly and that the motor activity was detectable from
the EEG signal. A signal consisting of 60 s of rest state was recorded, and the
subject was simply instructed to remain relaxed, without talking or moving, but
free to move the eyes and blink. Each trial started with a fixation cross and, 500
ms later, an arrow pointing either the left or the right, in a randomic order, was
presented for 7 seconds. Over this period, the subject was instructed to imagine
the corresponding hand movement. Each trial was followed by a break of at least
2 seconds, in which the blank screen re-appeared. A randomized time of up to 1
second was added to avoid adaptation (Figure 4.4).

Figure 4.4: Timing scheme of the paradigm.

The session of real movement execution was conducted using the same paradigm.
The real movement signals were not used in the development of the algorithms,
they were acquired with the aim to provide a short training to the subjects and to
assess the functioning of the system and paradigm.
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Figure 4.5: Subject was instructed to watch the instruction on the screen and
perform motor imagery till the cue disappeared.
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Chapter 5

Experimental Results and
Discussion

5.1 Quantification Parameters
The system perfomance was evaluated over an offline calibration and a simulated
online session. The offline calibration was performed on the first session recorded,
consisting of 30 trials in which left or right hand motor imagery was executed.
This step allowed the definition of subject-specific parameters (frequency band,
channel of major activity, threshold, window length, amplitude coefficient). These
parameters were tested over the second session recorded. The simulated online test
was performed using a while loop in Matlab version 2021, that took as input one
signal sample at a time, to replicate the continuous data acquisition implemented
by a real-time system. The loop was interrupted and the event was counted when
the signal was found below the threshold for a predefined time interval. To provide
a complete view of the performances of the two implemented methods, matrix based
metrics were employed (Table 5.2), in which True Positive (TP), False Negative
(FN), False Positive (FP) and True Negative (TN) values were reported.

The calculation of these parameters was based on the following assumptions:

• Subjects were required to follow the instructions appearing on the screen. The
assumption is that subjects had the ability to start the motor imagery when
the cue was presented on the screen.

• It is assumed that subjects could stop the motor imagery when the cue
disappeared and the blank screen was presented.

• Subjects was instructed to focus on imaging doing the movement, rather than
simply visualizing it. The ability to re-creating the feeling of the movement is
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called Kinesthetic Imagery (KI) and it is different from Visual Imagery (VI).
VI results in weaker SMR deflections, that could bring to a mis-classification
if the signal is not low enough to remain below the threshold. On the other
hand, KI translates in greater brain activity in the central cortical region and
results in a simplest recognition of the event [41].

Figure 5.1: Confusion Matrix (CM) presenting TP, FN, FP, TN values of TEO-
based algorithm tested on Subject 1.

Figure 5.2: Normalized Confusion Matrix (NCM) presents the results in a more
intuitive way, but the information related to the dataset (i.e. number of trials) is
lost during normalization.

True Positive is the outcome when the system identifies the event while the cue
is presented on the screen (Figure 5.3). Following the suppositions made previously,
in particular assuming that the subjects imagined the movement when the trial
started, for each trial, a TP is counted only at the first activation during cue
presentation, if the activation occurs, and that constitutes the output event (Figure
5.4).

False Positive is the outcome when the system incorrectly identifies an event in
the period of time in which the blank screen is presented. Each event incorrectly
recognized was counted as FP (Figure 5.6).
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Figure 5.3: Example of TP detection from TEO-based signal of Subject 1. TP
are defined when the system identifies the event after the onset of the task, while
the cue is presented on the screen.

Figure 5.4: Example of TP detection from TEO-based signal of Subject 1. Even
if two or more events are recognized, TP is counted only at the first activation
during cue presentation.

In case an event was identified prior the onset of motor imagery, and continue
during the time interval aimed at motor imagery, the event was not counted as FP
(Figure 5.7). This consideration was done according to numerous studies ( [61, 62,
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63, 64, 65]), which showed that when the subject is mentally ready to perform or
imagine an action, then brain activity prior to the onset of movement developed in
preparation for the movement itself.

Figure 5.5: Example of FP detection from TEO-based signal of Subject 2. FP is
counted when the algorithm identifies an event in the period of time in which the
blank screen is presented.

Figure 5.6: Example of FP detection from TEO-based signal of Subject 2. If two
or more events are recognized during the rest period, all these events are counted
as FP.

53



Experimental Results and Discussion

Figure 5.7: Example of FP detection from TEO-based signal of Subject 1. If
the event (pointed by the arrow) was identified prior the onset of motor imagery,
and continue during the time interval aimed at motor imagery, the event was not
counted as FP

False Negative is the outcome when the model does not recognize an event
during the motor imagery time interval, while True Negative results when the
system does not identify an event when the blank screen is on (Figure 5.8).

Figure 5.8: Example of FP detection from TEO-based signal of Subject 1. The
arrows point respectively a FN and a TN.
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To perform an analysis of performance of the two implemented techniques, in
order to confront them, from Confusion Matrix (CMs), the following metrics were
calculated:

• ACCURACY: Accuracy indicates the degree of veracity of the test, so it
represents how well the system can identify both True Positives and True
Negatives [66].

Accuracy = TP + TN

TP + TN + FP + FN
(5.1)

• PRECISION:

Precision = TP

TP + FP
(5.2)

• SENSITIVITY: Sensitivity is the proportion of true positives correctly identi-
fied by the system.

Sensitivity = TP

TP + FN
(5.3)

• SPECIFICITY: Specificity is the proportion of true negatives correctly identi-
fied by the system, so it indicates how well the system recognizes the periods
in which the subjects are not performing motor imagery.

Specificity = TN

TN + FP
(5.4)

• Activation Delay. The activation delay (or latency) is defined as the time
between the onset of the motor imagery task and the instant when the first
event is identified. Keeping the assumption that the subject has the ability
to imagine motion when the onset appears, the delay represents the time it
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takes the system to recognize the event (Figure 5.9).

Figure 5.9: Example of TP detection from TEO-based signal of Subject 1. The
activation delay is defined as the time between the onset of the motor imagery task
and the instant when the first event is identified.

5.2 PSD and TEO Methods Comparison

In this section, the on-site recorded dataset is referred as Dataset1, while the BCI
Competition IV dataset [67] is referred as Dataset2. The acronyms PSD and TEO
are used respectively to indicate the PSD-based algorithm and the TEO-based
algorithm. The analysis is performed starting from the results obtained using
Dataset 1.
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Table 5.1: Quantitative results for the two algorithms obtained OFFLINE applied
on Dataset 1

.

Table 5.2: Quantitative results for the two algorithms obtained ONLINE applied
on Dataset 1
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As can be seen from the tables (Table 5.1, Table 5.2), both algorithms show
good accuracy (Figure 5.10). In particular, both algorithms have a high ability to
recognize events as True Positive, as can be deduced from the high sensitivity values.
However, the accuracy value is lowered by the presence of False Positives, which
are detected less efficiently by both algorithms, as can be seen from the specificity
and precision values. The latency (or activation delay) values, are generally lower
for the PSD-based algorithm, which demonstrates greater speed in recognizing the
subject’s motor imagery activity (Figure 5.11).

Figure 5.10: Both algorithms shows a similar accuracy in recognizing movement
intention detection. Accuracy of PSD-based method shows slightly higher inter-
subjects variability.

Figure 5.11: TEO-based method tends to be slower than PSD-based one in the
recognition on the brain activity changes induced by MI task.

58



Experimental Results and Discussion

In terms of online performances of the systems, PSD-based method shows higher
consistency in the results of offline calibrations and online sessions (Figure 5.12),
while TEO-based algorithm has averagely higher performances in the movement
intention detection offline rather then online (Figure 5.13).

Figure 5.12: Accuracy of PSD-based algorithm during offline and online session.

Figure 5.13: Accuracy of TEO-based algorithm during offline and online session.

Both algorithms were also tested on Dataset 2 to provide a broader overview of
the performance of the implemented systems. The results are shown in Table 5.3
(offline performance) and Table 5.4 (online performance).
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Table 5.3: Quantitative results for the two algorithms obtained OFFLINE applied
on Dataset 2

Table 5.4: Quantitative results for the two algorithms obtained ONLINE applied
on Dataset 2
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Results on Dataset 2 shows slightly higher accuracy delivered by PSD-based
method (Figure 5.14), and confirms its higher capacity on recognizing the movement
intention detection faster than TEO-based one, as can be seen from the activation
delay values (Figure 5.15).

Figure 5.14: Both algorithms shows a similar accuracy in recognizing movement
intention detection. Accuracy of PSD-based is slightly higher than TEO-based one.

Figure 5.15: TEO-based shows slower activation delay than PSD-based one in
the recognition on the brain activity changes induced by MI task.

As can be seen in Figures 5.16 and 5.17, the considerations previously done
about the similar response of offline calibrations and online sessions in terms of
accuracy obtained with PSD-based method remain valid, as the TEO-based one
shows higher gaps between the two sessions.
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Figure 5.16: Accuracy of PSD-based algorithm during offline and online session.

Figure 5.17: Accuracy of TEO-based algorithm during offline and online session.

Overall, PSD-based algorithm has higher accuracy and lower activation delays,
but it needs longer computation time, due to the greater amount of processing
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that has been done to calculate the PSD and the iterative process implemented
to define the threshold. On the other hand, TEO-based technique is faster in
terms of computation time, because it has a less complex implementation and the
observation window used to detect the movement intention has a length of 300 ms,
versus the 1 second window length used in the PSD-based method. In order to
decrease the time requested to the PSD algorithm to compute, the window length
can be shortened, at expense of the accuracy delivered by the system, as can be
seen in Figure 5.18.

Figure 5.18: Accuracy of PSD-based algorithm obtained for different observation
window lengths.
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Chapter 6

Conclusion and Future
Perspective

In this thesis project, EEG signal was investigated for the purpose of being used
for the development of an EEG-based BCI system. The EEG signal exhibits
various responses to internal and external stimuli, which can be analyzed to extract
parameters useful for external applications, such as FES control. In particular,
variations in the signal induced by motor imagery can be employed to develop a
powerful rehabilitation tool that associates the cortical activation occuring during
movement imagery and the visual and sensory feedback of movement induced by
FES. In this context, two approaches for motor intention recognition have been
developed, to be used to provide accurate inputs for FES activation in a BCI
system. The proposed algorithms process EEG signals recorded during motor
imagery tasks in the mu/alpha frequency band, where the oscillations changes due
to the activation of motor-related brain regions are more obvious. EEG signal was
recorded on-site using g.tec system. Five subjects participated to the recordings,
during which they were instructed to perform motor imagery of right and left hand,
following a predefined paradigm. Two sessions per subject were recorded, to be used
respectively for an offline calibration and a simulated online test session. The signals
employed in the developing of the algorithms were acquired from a single EEG
channel, placed over the central region of the scalp. After preprocessing the signal
using a notch filter and a highpass filter, a time-frequency analysis was performed
for each subject, to identify the frequency range and the cortical region in which
was more noticeable the brain activity during motor imagery. In this way it was
possible to determine the best conditions to easily detect the movement intention.
Both algorithms exploit a time-controlled threshold method, that recognizes the
movement intention by detecting changes in cortical fluctuation during motor
imagery. The first algorithm performs a signal analysis in the frequency domain,
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using as main parameter the Power Spectral Density (PSD), which shows amplitude
suppression during motor imagination. The second algorithm detects the energy
changes in the EEG signal processed by Teager’s Energy Operator (TEO). The
two different approaches were tested on the on-site recorded dataset and on the
one provided by BCI competiton IV, then the performance of the systems were
evaluated in terms of sensitivity, specificity, accuracy, precision and activation delay.
Both methods have shown a high sensitivity in recognizing the movement intention.
PSD-based method exhibits good accuracy in both datasets and fast recognition
of the movement intention, compared with TEO-based technique. However, the
Teager operator approach was investigated because, being defined in the continuous
domain, it is potentially usable for nonstandard BCI applications. The typical
structure of a BCI involves acquisition of the EEG signal, conversion to a digital
signal performed by an ADC, and transmission of the data to a device (e.g.,
computer). The theoretical aspect of the implemented algorithm suggests that
TEO could be applied directly on the analog signal, as it extracts the energy content
using a linear combination of signal derivatives. Potentially, then, a device that
apply a hardware version of TEO could be implemented, that employes hardware
derivative and uses a voltage comparator to detect the events of interest. This coul
lead to the development of an hardware acquisition system that does not require
the use of an ADC and outputs motor intention events directly. The literature
suggests little insight into the feasibility of such an implemented system, because it
generally relies on a traditional implementation. It might be an interesting future
work to investigate the performance and cost of a system built in a nontypical
manner. Besides of that, future works should focus on executing online tests of
both systems using FES, to further increase the performances of the implemented
methods. Studies have demonstrated that providing a feedback by means of FES
helps the subjects to better perform motor imagery and potentially allows faster
detection of the motor intention.
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