
POLITECNICO DI TORINO

Master’s Degree in Engineering and Management

Master’s Degree Thesis

Development of REST API to support
the Project Management object and

process model

Supervisor: Candidate:
Prof. Paolo Eugenio Demagistris Simone Ranno

In collaboration with: PM-Lab of PoliTo

Academic Year 2021/2022

2

Abstract
This thesis has been carried out with the collaboration of the Project Management
Laboratory of Politecnico di Torino.

Project Management processes are already well defined, and usually take a semi-
standardized path in well-established environments. On the other hand, only in
recent times companies began to introduce the use of digital tools in support to
the project management process, making this new branch still wild and open to
enhancement. Many tools are being developed for the new agile methodologies, but
they lack the classic project management document-oriented approach. The pur-
pose of this thesis is to demonstrate that the technology is ready for the next step
towards the digitalization of Project Management through the development of an
open-source platform to enable the digital project delivery. The software will be
composed by three components, the front-end, the back-end and the API, where
only the latter will be the one researched in this paper.

Contents

1 Introduction 4
1.1 Where the need comes from . 4
1.2 What is needed . 4
1.3 What this thesis is focusing on . 4

2 Definitions 5
2.1 What is an API . 5
2.2 What is an end-point . 5
2.3 The project management object and process model 5
2.4 How a API satisfies the Project Management needs 6
2.5 The classic approach versus the modern approach 6
2.6 What is a Framework . 6
2.7 Data interchange formats . 6

3 Case study 8
3.1 Requirements . 8

3.1.1 Expose a REST API to add, retrieve, edit and delete documents 8
3.1.2 Enable row level permission to documents 8
3.1.3 Allow the reuse of existing components to ease the implemen-

tation of already defined structures (Microsoft Project) 8
3.1.4 Use python as programming language 9

3.2 Design . 9
3.2.1 Authentication . 9
3.2.2 The project structure . 9
3.2.3 The document structure . 10
3.2.4 Processes . 10
3.2.5 Permissions . 10
3.2.6 Computed fields . 10

3

4

3.2.7 Microsoft Project Files . 10
3.2.8 MS Project Computed Fields 10

3.3 Technologies . 11
3.3.1 Python . 11
3.3.2 FastApi . 11
3.3.3 SQLModel, SQLAlchemy and Pydantic 11
3.3.4 JSON . 11
3.3.5 MPXJ and JPype . 12

4 Implementation 13
4.1 Python code . 13

4.1.1 default module . 13
4.1.2 database module . 18
4.1.3 datatypes module . 18
4.1.4 routers module . 20
4.1.5 security module . 22
4.1.6 utils module . 23

4.2 Schemas . 23
4.2.1 Project Schema . 24
4.2.2 Document schema . 24

5 Version Control, Deployment and Documentation 26
5.1 Version control repository . 26
5.2 Deployment . 26
5.3 Documentation . 27

6 Explanatory use case 28
6.1 First step: Registration . 28
6.2 Second step: Login . 28
6.3 Third step: Project creation . 29
6.4 Fourth step: Document content insertion 31
6.5 Fifth step: Edit document content 31
6.6 Sixth step: Adding a second document 33
6.7 Seventh step: Adding a Microsoft Project file 33

7 Findings 36
7.1 Conclusion . 36
7.2 (TLR) Technology Readiness Level 36

Introduction

1.1 Where the need comes from
The Project Management Laboratory of the Polythecnic University of Turin, that
researches cutting-edge processes and methodologies of Project Management, has
found that the current project management industry stands behind in terms of
digitalization. Given this findings, the PM Lab has issued a research in order to
demonstrate that the technology is mature enough to guide the Project Management
towards the next step.

1.2 What is needed
For the purpose of creating a working platform for supporting the Project Manage-
ment objects and processes, it has been individuated the need for a three component
project:

Front-end the part visible to the user.

Back-end the component responsible for delivering the front-end’s User Interface
to the user, managing authentication and authorization.

API that serves both front-end and back-end, delivering a suite of interface-less
resources and services, including authorization and authentication.

1.3 What this thesis is focusing on
The focus of this thesis will be demonstrating the technology readiness for the de-
velopment of the API required by the project.

5

Definitions

2.1 What is an API
API stands for Application Programming Interface
But what does this mean? API means that the system allows a way to access some
informatic service, through a well-defined suite of protocols and methods, which
require to communicate with a predefined set of rules.
The purpose of an API is to allow multiple different systems to communicate with the
desired resources, without redefining an ad-hoc system for every informatic system.
Examples of different systems are websites, mobile applications, automated services
and more.

2.2 What is an end-point
In the API environment, it is defined as an endpoint a specific string that the server
recognizes without ambiguity and that corresponds to a specific action or resource.
Example of an endpoint: example.com/documents is an endpoint If the endpoint
is interrogated with GET method, it will return a collection of documents, while if
interrogated with POST it could allow the insertion of a new document

2.3 The project management object and process
model

Project management is defined by documents and processes, which produce data in
a structured or unstructured way. This necessity for documents has always been

6

7

satisfied by paper and ink, but we can upgrade to a digital document management,
allowing a fine-grained control over authentication and authorization.

2.4 How a API satisfies the Project Management
needs

Every project defines its own processes and documents and needs a way to store
them, each associated with its own authorizations for the users. A API can sat-
isfy those needs, providing a standardized way of accessing resources and limiting
them according to custom rules defined by the project owner. In this way other
platforms/services/websites/applications can access and edit in the same way the
resources.

2.5 The classic approach versus the modern ap-
proach

Ten years ago, the best choices for web development were Apache web server, that
executed PHP code, Apache Tomcat for Java and ASP.NET for C# and Visual
Basic. Nowadays new tools are readily available, offering a much simple and fast
deployment with good performances. To name a few, Python has Django, Flask and
FastApi; Kotlin has KTor; Golang has Gin; Rust has Rocket Framework.

2.6 What is a Framework
In computer science, it is defined as a framework a suite of code that satisfies a
need by calling some user-written code. The project will make use of frameworks
designed for the delivery of web services.

2.7 Data interchange formats
In order to transfer meaningful data across the web, many interchange formats have
been developed. For the purpose of this thesis, only two are being considered.
JSON: (JavaScript Object Notation) one of the most popular formats, has found
wide adoption and many tools are defined around it, making it compatible with

8

nearly every system.
YAML: (Yet Another Markup Language) another popular format, it has a structure
similar to JSON but is more human-readable, making it suitable for direct user
input.

Case study

3.1 Requirements
The platform was required to have the following features and constraints:

3.1.1 Expose a REST API to add, retrieve, edit and delete
documents

This requirement states that the way to interact with the documents must be a
REST API over Http protocol and must support the Http methods (GET, POST,
PUT, PATCH, DELETE). REST is a type of architecture for APIs that defines the
methods and constraints for the communications. There exist other types of API
(SOAP, RPC, GraphQL) but REST is the most popular and one of the easiest to
learn, making it the best candidate for an easy-accessible API.

3.1.2 Enable row level permission to documents
The API must authenticate user and limit their actions based on the permissions
the user has on the object resource. Row-level states that authorization policies are
enforced to the level of the single record.

3.1.3 Allow the reuse of existing components to ease the im-
plementation of already defined structures (Microsoft
Project)

In order to not reinvent the wheel, the software should use already popular tools,
since many users already have familiarity with wide-known softwares and program-
ming libraries. In particular, the API has to allow the transfer of Microsoft Project

9

10

files, which already incorporate structured data about the project scheduling and
resources.

3.1.4 Use python as programming language
Being the most popular programming language across university environments,
python has been dictated as requirement for this software, in order to be easily
readable and accessible. Although there exist programming languages that carry
incredibly better performance (Java, GoLang, C++, .Net), the use of Python al-
lows an easier development and requires less programming knowledge, making the
project more accessible to people who do not possess high-level programming skills.

3.2 Design
After extensive research about the documents used in project management, it came
the conclusion that there is no exact industry standard and every company defines
its own rules. This could be acceptable in non digital environments, but informatic
systems work with exact schemas and data so approximate approaches are not viable
for computer-based solutions. Beside that, every project is different from the others,
in size and complexity, so hard-coding a one-size-fits-all solution may not result in
the most versatile approach. It has been decided to implement a platform that
allows the user to define its document structures, constraints and authorizations.
Using this paradigm, the software can cover more project needs than having a rigid
structure.

3.2.1 Authentication
Authentication is carried out through the use of an internet standard called JWT
Tokens (JSON Web Token). JWT Tokens are time-dependent tokens carrying a
payload. They provide basic safety for the purpose of this thesis, have a solid
foundation since it is based on cryptographic encryption but it is not exempt from
flaws.

3.2.2 The project structure
The project has been identified as the top-level container for all the documents.
Users with the appropriate authorization on the platform can create projects.

11

3.2.3 The document structure
Documents can be inserted by authorized users and are composed by the validation
schema and the document content. Each time the document is edited, the system
keeps track of the edit user, content and time. In order to ensure compatibility with
other systems, the JsonPatch standard shapes the format of the edits.

3.2.4 Processes
Processes are defined as activities having documents as inputs and outputs. The
system will prevent the insertion of the content of a document if there exists any
defined process where the document to be inserted is listed in the outputs and there
is at least one document listed as input that has no content.

3.2.5 Permissions
Permissions are defined at system, project and document level. Each call to the
API requires a certain permission, that can be granted by users who have the “edit
permissions” authorization for that resource.

3.2.6 Computed fields
In many cases documents need to incorporate a summary of other documents. For
this event, the system allows to define computed fields. Computed fields are defined
as a special string, whose value is ensured by the JsonPath standard. JsonPath
allows to retrieve a subset of data through filtering, making it possible to summarize
other documents.

3.2.7 Microsoft Project Files
Microsoft Project is one of the most popular software for scheduling, resource and
cost allocation, and its inclusion in the software allows to interoperate with its
files, making easier the communication with the API for users that already have
familiarity with it.

3.2.8 MS Project Computed Fields
Like the document computed fields, users can define computed fields that summarize
content from Microsoft Project files.

12

3.3 Technologies

3.3.1 Python
Python is a general-purpose programming language, that is wide utilized due to its
easy syntax and fast implementation. Its structure is more similar to a pseudocode,
famous for the use of indentation instead of brackets. However, the use of Python
has its drawbacks, due to its notorious slowness in running time, compared to many
other languages.

3.3.2 FastApi
One of the “Big Three” in the python web development environment, has seen its
popularity rise thanks to the fast prototyping and fast response times, from both of
which claims its name. Specialized in API, FastApi can cover also other cases such
as HTML responses and GraphQL API.

3.3.3 SQLModel, SQLAlchemy and Pydantic
Developed by the creator of FastApi, SQLModel is both an ORM (Object-Relational
Mapping) and an interface for database interaction. It helps with the connection to
a database and it transforms the results from the database into Python usable data
and structures. It is based on both SQLAlchemy and Pydantic and combines their
features. SQLAlchemy provides the relational mapping while Pydantic offers simple
ways to return data, making it easy to return JSON in FastApi calls.

3.3.4 JSON
JavaScript Object Notation. Based on the JavaScript programming language, has
seen widespread use in every environment. Many standards, languages and tools
have been developed for JSON and in this project three of them are being used:

JsonSchema

Standard for schema validation of JSON documents, allows to define fine-grained
constraints for fields and types.

13

JsonPatch

Format based on JSON which defines edits to a JSON document, allowing to record
changes without having to store every variation.

JsonPath

Query language created for JSON, allows to define queries for a particular field or
subset, with the option to apply a filtering logic.

3.3.5 MPXJ and JPype
MPXJ is a Java-based library that can work with Microsoft Project files. Being
Java-based means that it needs a special porting and it has to run with the JPype
library, that bridges Java code to make it interoperable with Python code.

Implementation

4.1 Python code

4.1.1 default module
main.py

This python file is the first file called on startup and sets up the FastApi app
instance, sets up the database tables and defines the basic endpoints for the user
authentication.

Listing 4.1: App instance
1 app = FastAPI()

Listing 4.2: Set up the database on startup
1 @app.on_event("startup")

2 def on_startup():

3 """

4 Called on startup, creates the database tables if they do not exist

5 """

6 create_db_and_tables()

Listing 4.3: Login for access token
1 @app.post("/token", response_model=Token)

2 async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends(),

3 session : Session = Depends(get_session)):

4 """

5 Reads data from the login form and returns a token if the user is valid

6

7 :param form_data: data sent by the client

8 :param session: database session from dependencies

9 :return: token

10 """

11 user = crud.get_user(session, form_data.username)

12 if user is None \

14

15

13 or \

14 not verify_password(form_data.password, user.password):

15 raise HTTPException(

16 status_code=status.HTTP_401_UNAUTHORIZED,

17 detail="Incorrect username or password",

18 headers={"WWW−Authenticate": "Bearer"},

19)

20 access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)

21 access_token = create_access_token(

22 data={"sub": user.user_name}, expires_delta=access_token_expires

23)

24 return {"access_token": access_token, "token_type": "bearer"}

Listing 4.4: Register user
1 @app.post("/register", response_model=UserBase)

2 def register(user: User, session: Session = Depends(get_session)):

3 """

4 Registers a new user

5

6 :param user: user to add to the database

7 :param session: database session from dependencies

8 :return: user

9 """

10 if crud.get_user(session, user.user_name) is not None:

11 raise HTTPException(status_code=status.HTTP_409_CONFLICT, detail="User could not

be registered")

12 user.password = get_password_hash(user.password)

13 print(crud.get_users_count(session))

14 if crud.get_users_count(session) ^== 0:

15 user.system_permissions = [SystemPermission(permission=permission) for

permission in SysPermissions]

16 session.add(user)

17 session.commit()

18 session.refresh(user)

19 if not user:

20 raise HTTPException(status_code=409, detail="User could not be registered")

21 return user

app_config.py

Contains the unique secret key used in the authentication process.

Listing 4.5: Secret key
1 SECRET_KEY = "991c37e0b2867aa8f7ab5028ee26fd185c2d1a92ab178c3e15330297c8931e2f"

The secret key should be private and changed from the one provided. A new key
can be generated using the following command: openssl rand -hex 32

16

auth.py

Defines the methods necessary to the authorization of the user. The following are
the permissions that can be checked for system, project and documents.

Listing 4.6: Permissions
1 class Permissions(str, enum.Enum):

2 """

3 Enum for permissions

4 """

5 create = "create"

6 view = "view"

7 edit = "edit"

8 delete = "delete"

9 edit_permissions = "edit_permissions"

The permissions check is called from the dependencies trough the methods has_sys-
tem_permission, has_project_permission and has_document_permission

Listing 4.7: Check if user has permission on document
1 def has_document_permission(session : Session,

2 user : User,

3 project : Project,

4 document : Document,

5 permission: Permissions):

6 """

7 Checks if a user has a permission on a document

8

9 :param session: session to use

10 :param user: user to check

11 :param project: project of document

12 :param document: document to check

13 :param permission: permission to check

14 :return: True if user has permission, False otherwise

15 """

16 if project is None:

17 return False

18 if user.user_name ^== project.owner_name:

19 return True

20 if document is None:

21 perm = PermissionUtils(session, user.user_name, project.project_name)

22 else:

23 if user.user_name ^== document.author_name:

24 return True

25 perm = PermissionUtils(session, user.user_name, document.project_name, document.

document_name)

26

27 if permission not in document_map.keys():

28 return False

29 p = document_map[permission]

30 return (

31 perm.has_sys_perm(p[0])

32 or perm.has_proj_perm(p[1])

33 or perm.has_doc_perm(p[2]))

17

dependencies.py

Defines the methods used in the FastApi’s dependency injection system. One par-
ticular use of this dependency injection system is the check of authentication and
authorization before the method execution, removing the need of checking inside it.

Listing 4.8: Retrieve current authenticated user
1 async def get_current_active_user(token : str = Depends(oauth2_scheme),

2 session: Session = Depends(get_session)):

3 """

4 Gets the current user from the token

5

6 :param token: token

7 :param session: database session from dependencies

8 :return: current user

9 """

10

11 credentials_exception = HTTPException(

12 status_code=status.HTTP_401_UNAUTHORIZED,

13 detail="Could not validate credentials",

14 headers={"WWW−Authenticate": "Bearer"},

15)

16 try:

17 payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])

18 username: str = payload.get("sub")

19 if username is None:

20 raise credentials_exception

21 token_data = TokenData(username=username)

22 except JWTError:

23 raise credentials_exception

24 user = crud.get_user(session, token_data.username)

25 if user is None:

26 raise credentials_exception

27 return user

Retrieve project, document or msprojects by name Thanks to dependency injec-
tion the method gets the project name from the path parameters

Listing 4.9: Retrieve project
1 def get_project(project_name: str | None = None,

2 session : Session = Depends(get_session)):

3 """

4 Gets the project named project_name from the database

5 If project_name is None, returns None

6 If project is not found, raises 404 exception

7

8 :param project_name: project name, from path params

9 :param session: database session from dependencies

10 :return: project

11 """

12 if project_name is None:

13 return None

14 db_project = crud.get_project_by_name(session, project_name)

15 if db_project is None:

18

16 raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="Project not

found")

17 return db_project

In the dependencies there is also the method for checking if the user has certain
permissions. With the help of a callable class, if the user does not have the required
permission the method will raise an exception and return the 401 unauthorized http
status

Listing 4.10: Check Project Permission
1 class CheckProjectPermission:

2 """

3 Callable class that checks if user has permission on project

4 """

5 def ^__init^__(self, permission: Permissions):

6 self.permission = permission

7

8 def ^__call^__(self,

9 session : Session = Depends(get_session),

10 user : User = Depends(get_current_active_user),

11 db_project: Project | None = Depends(get_project)):

12

13 if not has_project_permission(session, user, db_project, self.permission):

14 raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="

Unauthorized")

15

16

17 def require_project_permission(permission: Permissions):

18 """

19 Checks if user has permission on project, raises 401 if not authorized

20

21 :param permission: permission to check

22 """

23 return CheckProjectPermission(permission)

The dependencies also help to retrieve the body content from different content-
types.

Listing 4.11: Get request body
1 async def get_request_body(request: Request):

2 """

3 Gets request body from request and returns it as dict, parsing both json and yaml

4

5 :param request: request from body

6 :return: dict with request body

7 """

8 if "content−type" not in request.headers:

9 raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Missing

Content−Type in header")

10 content_type = request.headers['content−type']

11

12 match content_type:

13 case "application/json":

19

14 try:

15 request_body = await request.json()

16 except json.decoder.JSONDecodeError as err:

17 raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(

err))

18 case "application/x−yaml":

19 try:

20 request_body = yaml.safe_load(await request.body())

21 except Exception as err:

22 raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=str(

err))

23 case _:

24 raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST)

25 return request_body

4.1.2 database module
crud.py

Defines the queries required for retrieval of records identified by multiple primary
keys. The method uses the database session in order to retrieve the requested
document.

Listing 4.12: Get document of project
1 def get_document_of_project(session: Session, project_name: str, document_name: str):

2 """

3 Get document of project

4

5 :param session: session to use

6 :param project_name: project name

7 :param document_name: document name

8 :return: document if found, None otherwise

9 """

10 return session.exec(select(Document)

11 .where(Document.project_name ^== project_name)

12 .where(Document.document_name ^== document_name)

13).first()

4.1.3 datatypes module
models.py

Defines the SQLModel models, composed by fields and relationships. Example of a
Model:

Listing 4.13: Document model
1 class Document(SQLModel, table=True):

20

2 # field name | type | options

3 project_name : str = Field(default=None, primary_key=True, foreign_key

=Project.Fields.project_name)

4 document_name : str = Field(default=None, primary_key=True)

5 author_name : str = Field(default=None, foreign_key

=User.Fields.user_name)

6 jsonschema : Dict = Field(default={}, sa_column=Column(JSON))

7 first : Dict = Field(default={}, sa_column=Column(JSON))

8 last : Dict = Field(default={}, sa_column=Column(JSON))

9 schema_add_date: datetime = Field(default_factory=datetime.utcnow)

10 creation_date : datetime | None = Field(default=None)

11 updated_date : datetime | None = Field(default=None)

12

13 # relationship name | type | options

14 patches : List["Patch"] =

15 Relationship(back_populates="document")

16 project : Project =

17 Relationship(back_populates="documents")

18 permissions : List["DocumentPermission"] =

19 Relationship(back_populates="document", sa_relationship_kwargs={ "cascade": "all

, delete, delete−orphan"})

20

21 documents_processes : List["DocumentProcess"] =

22 Relationship(back_populates="document",

23 sa_relationship_kwargs={ "cascade": "all, delete, delete−orphan"})

24

25 computed_fields : List["ComputedField"] =

26 Relationship(

27 sa_relationship_kwargs={"primaryjoin": 'Document.document_name^==ComputedField.

field_document_name', "lazy": "joined", "cascade": "all, delete, delete−orphan"})

28

29 computed_fields_reference: List["ComputedField"] =

30 Relationship(back_populates="reference_document",

31 sa_relationship_kwargs={"primaryjoin": 'Document.document_name^==ComputedField.

reference_document_name', "lazy": "joined"})

32

33 ms_computed_fields : List["MSProjectComputedField"] =

34 Relationship(

35 sa_relationship_kwargs={"primaryjoin": 'Document.document_name^==

MSProjectComputedField.field_document_name', "lazy": "joined", "cascade": "all,

delete, delete−orphan"})

schemas.py

Defines pydantic models for the swagger documentation.

Listing 4.14: Schema models
1 """

2 Module for defining schemas for Swagger request body

3 """

4

5 from typing import List, Dict

6 from pydantic import BaseModel, Extra

21

7

8

9 class ProcessSchema(BaseModel):

10 inputs : List[str]

11 outputs: List[str]

12

13 class Config:

14 extra = Extra.forbid

15

16

17 class PermissionSchema(BaseModel):

18 documents: Dict

19

20 class Config:

21 extra = Extra.forbid

22

23

24 class ProjectCreateSchema(BaseModel):

25 project_name: str

26 documents : Dict[str, Dict]

27 processes : List[ProcessSchema]

28 permissions : Dict[str, PermissionSchema]

29

30 class Config:

31 extra = Extra.forbid

4.1.4 routers module
projects.py

Defines the endpoints for the operations on projects, which include creation, re-
trieval, edit of permissions and deletion.

Listing 4.15: Permissions
1 @router.get("/", response_model=List[str])

2 def get_projects(session: Session = Depends(get_session),

3 user : User = Depends(get_current_active_user)):

4 """

5 Returns a list of all projects that the user has access to

6

7 :param session: session from dependencies

8 :param user: current user from dependencies

9 :return: list of project names

10 """

11

12 return [project.project_name for project in crud.get_projects(session)

13 if has_project_permission(session, user, project, Permissions.view)]

22

documents.py

Defines the endpoints for the operations on documents, which include creation,
insertion and edit content, retrieval, edit of permissions.

Listing 4.16: Set document content
1 @router.put("/{document_name}",

2 response_model=DocumentReturn,

3 dependencies=[Depends(require_document_permission(Permissions.edit)),

4 Depends(check_document_process),

5 Depends(validate_document)])

6 async def put_document_to_project(document_body: Dict = Depends(get_request_body),

7 user : User = Depends(

get_current_active_user),

8 db_project : Project = Depends(get_project),

9 db_doc : Document = Depends(get_document),

10 session : Session = Depends(get_session)):

11 """

12 Add or update content of document

13 Requires the authenticated user to have the permission to edit the document

14

15 :param document_body: document content to add or update

16 :param user: current user from dependencies

17 :param db_project: project of path from dependencies

18 :param db_doc: document of path from dependencies

19 :param session: session from dependencies

20 :return: the document

21 """

22

23 last = db_doc.last

24 time = datetime.utcnow()

25 db_doc.last = document_body

26 db_doc.updated_date = time

27

28 if not bool(db_doc.first):

29 db_doc.first = document_body

30 db_doc.creation_date = time

31 db_doc.author_name = user.user_name

32 else:

33 patch = json.loads(jsonpatch.JsonPatch.from_diff(last, db_doc.last).to_string())

34 diff = Patch(project_name=db_project.project_name, patch=patch, user_name=user.

user_name)

35 db_doc.patches.append(diff)

36

37 for computed_field in db_doc.computed_fields_reference:

38 jsonpath_expr = jsonpath_ng.ext.parse(computed_field.jsonpath)

39 computed_field.field_value = list(map(lambda a: a.value, jsonpath_expr.find(

db_doc.last)))

40

41 session.add(db_doc)

42 session.commit()

43 session.refresh(db_doc)

44

45 db_doc.update_forward_refs()

23

46

47 return db_doc

msprojects.py

Defines the endpoints for the operations on Microsoft Project files, which include
the upload, retrieval and deletion.

Listing 4.17: Get microsoft project file
1 @router.get("/{ms_project_name}",

2 dependencies=[Depends(require_project_permission(Permissions.view))])

3 async def get_ms_file_of_project(db_ms_project: MSProject = Depends(get_ms_project)):

4 """

5 Get ms file of a project

6 :param db_ms_project: ms project from dependencies

7 :return: ms project if found, 404 otherwise

8 """

9 return db_ms_project

4.1.5 security module
utils.py

Defines the methods for hashing and verifying passwords

Listing 4.18: Password hashing and verifying methods
1 ALGORITHM = "HS256"

2 ACCESS_TOKEN_EXPIRE_MINUTES = 3000

3 pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")

4

5

6 def verify_password(plain_password, hashed_password):

7 """

8 Verifies password against a hash

9

10 :param plain_password: password to verify

11 :param hashed_password: hash to verify against

12 :return: True if password matches, False otherwise

13 """

14 return pwd_context.verify(plain_password, hashed_password)

15

16

17 def get_password_hash(password):

18 """

19 Returns a hash of the password

20

21 :param password: password to hash

22 :return: hashed password

23 """

24 return pwd_context.hash(password)

24

schemas.py

Defines the pydantic schemas for the JWT token

Listing 4.19: Token Schemas
1 """

2 Token schemas

3 """

4

5 from pydantic import BaseModel

6

7

8 class Token(BaseModel):

9 access_token: str

10 token_type : str

11

12

13 class TokenData(BaseModel):

14 username: str | None = None

4.1.6 utils module
Contains the common utility functions as the retrieval of the current timestamp.

Listing 4.20: Utility functions
1 """

2 Module for utility functions

3 """

4

5 import time

6

7

8 def current_milli_time():

9 """

10 Returns the current time in milliseconds

11

12 :return:

13 """

14 return round(time.time() * 1000)

4.2 Schemas
Schemas are fundamental for the correct communication with the API. Every end-
point has defined input and output schemas, that the client must respect. This API
accepts JSON and YAML schemas to define projects and documents. Documents
fields are user-defined and follow constraints based on a jsonschema the user uploads

25

4.2.1 Project Schema

Listing 4.21: Project creation schema
1 project_name: example_project

2 documents:

3 ^^...

4 processes:

5 ^^...

6 permissions:

7 ^^...

Created project must provide a unique name. The other fields (documents, pro-
cesses and permissions) are optional. The “documents” field specifies the documents
that the project will contain. Documents can be added also after the project creation
and the schema for insertion is the same. As the name suggests, “Processes” defines
the processes for the project. Each process has two fields: inputs and outputs.

Listing 4.22: Processes field in Project creation schema
1 processes:

2 develop_work_breakdown_structure:

3 inputs: [project_charter]

4 outputs: [work_breakdown_structure]

The “Permissions” field defines the authorization on the project and documents
for the users.

Listing 4.23: Permissions field in Project creation schema
1 permissions:

2 doge:

3 documents:

4 project_charter: [view, edit, delete]

5 work_breakdown_structure: [view, edit, delete]

4.2.2 Document schema
Documents are created specifying name and schema.

Listing 4.24: Document creation schema
1 project_charter:

2 jsonschema:

3 properties:

4 overview: { type: string }

5 impact: { type: string }

6 organization: { type: string }

7 additionalProperties: false

8 computed_fields:

9 scope:

10 reference_document: work_breakdown_structure

11 jsonpath: $.elements[?(@.level ^== 1)].name

26

12 ms_computed_fields:

13 scope:

14 ms_project_name: example

15 field_from: tasks

16 jsonpath: $[?(@.level < 3)].name

As the name explains, “jsonschema” defines the schema which the document
will be validated against. “computed_fields” is a list of fields that refer to other
documents of the project. To provide a summary and not the entire document, the
field “jsonpath” defines which parts of the other document to include. “ms_com-
puted_fields” works like “computed_fields” only that the referred document is a
Microsoft Project document. “field_from” specifies from which of the three fields
(tasks, resources, proj_info) the document is referring to.

Version Control, Deployment and
Documentation

5.1 Version control repository
In order to track changes, it has been selected the GitHub repository platform, that
offers reliable tools for software versioning.
The source code is publicy available at
github.com/pm-lab-polito/EnvForDigitalProjectDelivery/tree/main/project-
management-api

5.2 Deployment
Docker has been selected for the deployment. The Dockerfile in the code files takes
a python 3.10 image, installs the required packages, installs java and runs uvicorn.

1 FROM python:3.10

2 RUN apt−get update ^&& \

3 DEBIAN_FRONTEND=noninteractive \

4 apt−get −y install default−jre−headless ^&& \

5 apt−get clean ^&& \

6 rm −rf /var/lib/apt/lists/*
7 RUN pip install −−upgrade pip

8 WORKDIR /code

9 COPY ./app/requirements.txt /code/requirements.txt

10 RUN pip install −−no−cache−dir −−upgrade −r /code/requirements.txt

11 COPY ./app /code/app

12 ENV PYTHONPATH /code/app

13 CMD ["uvicorn", "app.main:app", "−−host", "0.0.0.0", "−−port", "80"]

In order to run the API, three steps are required: build the image, create a
volume and finally run the image in a container specifying the volume for the ”db”
folder.

27

https://github.com/pm-lab-polito/EnvForDigitalProjectDelivery/tree/main/project-management-api
https://github.com/pm-lab-polito/EnvForDigitalProjectDelivery/tree/main/project-management-api

28

1 sudo docker build −t myimage .

2 sudo docker volume create myvolume

3 sudo docker run −d −−name mycontainer −v myvolume:/db −p 80:80 myimage

5.3 Documentation
Documentation has been carried out through the Sphinx library, which with the
help of some tools automatically generates the documentation from the docstrings
in the code. The documentation is available at
https://project-management-api.web.app

https://project-management-api.web.app

Explanatory use case

6.1 First step: Registration
User sends a POST request to /register with the following body:

Listing 6.1: register form
1 {

2 "user_name": "doge",

3 "password" : "doge_pass"

4 }

If no user exists with the specified name, the system adds the user to the database
and returns:

Listing 6.2: register response
1 {

2 "user_name": "doge"

3 }

If the user is the first registered user, the system grants the user all the authoriza-
tions.

6.2 Second step: Login
In order to use the API endpoints, the user must be authenticated. The user sends
a POST request to /token with the same body as the register:

Listing 6.3: Login form
1 {

2 "user_name": "doge",

3 "password" : "doge_pass"

4 }

29

30

If the system finds correspondence of the username and password in the database,
it will return a valid JWT token that the user can use. Example of response:

Listing 6.4: Token response
1 {

2 "access_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

eyJzdWIiOiJkb2dlIiwiZXhwIjoxNjU0MTg0MTM2fQ.

SToW2wOkh2KrVRdQDfTaSZeG5Qajy9DzoXwB4HQNf0k",

3 "token_type": "bearer"

4 }

6.3 Third step: Project creation
If the user has the permission to create projects, it can send a POST request to
/projects Example request:

Listing 6.5: Project creation request body
1 # Project name
2 project_name: example_project

3 documents:

4 project_charter:

5 # jsonschema of the document
6 jsonschema:

7 properties:

8 overview: { type: string }

9 impact: { type: string }

10 organization: { type: string }

11 additionalProperties: false

12 computed_fields:

13 scope:

14 reference_document: work_breakdown_structure

15 jsonpath: $.elements[?(@.level ^== 1)].name

16 scope:

17 ms_project_name: example

18 field_from: tasks

19 jsonpath: $[?(@.level < 3)].name

20 work_breakdown_structure:

21 jsonschema:

22 properties:

23 elements:

24 type: array

25 items:

26 properties:

27 level: { type: integer }

28 code: { type: string }

29 name: { type: string }

30 description: { type: string }

31 additionalProperties: false

32 additionalProperties: false

33 processes:

34 # process name

31

35 develop_project_charter:

36 inputs:

37 outputs: [project_charter]

38 develop_work_breakdown_structure:

39 inputs: [project_charter]

40 outputs: [work_breakdown_structure]

41 permissions:

42 # user name
43 doge:

44 documents:

45 project_charter: [view, edit, delete]

46 work_breakdown_structure: [view, edit, delete]

The server would return:

Listing 6.6: Project response
1 {

2 "project_name": "example_project",

3 "owner_name": "doge",

4 "documents": [

5 {

6 "project_name": "example_project",

7 "document_name": "project_charter",

8 "author_name": "doge",

9 "jsonschema": {

10 ^^...

11 },

12 "first": {},

13 "last": {},

14 "creation_date": null,

15 "patches": [],

16 "computed_fields": {

17 "scope": []

18 },

19 "ms_computed_fields": {}

20 },

21 {

22 "project_name": "example_project",

23 "document_name": "work_breakdown_structure",

24 "author_name": "doge",

25 "jsonschema": {

26 ^^...

27 },

28 "first": {},

29 "last": {},

30 "creation_date": null,

31 "patches": [],

32 "computed_fields": {},

33 "ms_computed_fields": {}

34 }

35]

36 }

32

6.4 Fourth step: Document content insertion
The endpoint for the document content insertion is
PUT /projects/example_project/documents/project_charter

Listing 6.7: Document content insertion
1 {

2 "overview": "Academic research for implementing an environment for digital delivery of

projects",

3 "impact": "Creation of the environment^^...",

4 "organization": "PoliTo Project Management Lab"

5 }

Listing 6.8: Document response
1 {

2 "project_name": "example_project",

3 "document_name": "project_charter",

4 "author_name": "doge",

5 "jsonschema": {

6 ^^...

7 },

8 "first": {

9 "overview": "Academic research for implementing an environment for digital

delivery of projects",

10 "impact": "Creation of the environment^^...",

11 "organization": "PoliTo"

12 },

13 "last": {

14 "overview": "Academic research for implementing an environment for digital

delivery of projects",

15 "impact": "Creation of the environment^^...",

16 "organization": "PoliTo"

17 },

18 "creation_date": "2022−04−11T16:05:06.575202",

19 "patches": []

20 "computed_fields": {

21 "scope": []

22 },

23 "ms_computed_fields": {

24 "scope": []

25 }

26 }

6.5 Fifth step: Edit document content
The endpoint for document editing is
PATCH /projects/example_project/documents/project_charter
In this example the user wants to edit the field “organization” from “PoliTo” to
“PoliTo Project Management Lab”

33

Listing 6.9: document patch request body
1 {

2 "organization": "PoliTo Project Management Lab"

3 }

Then the response would be

Listing 6.10: document patch response
1 {

2 "project_name": "example_project",

3 "document_name": "project_charter",

4 "author_name": "doge",

5 "jsonschema": {

6 ^^...

7 },

8 "first": {

9 "overview": "Academic research for implementing an environment for digital

delivery of projects",

10 "impact": "Creation of the environment^^...",

11 "organization": "PoliTo"

12 },

13 "last": {

14 "overview": "Academic research for implementing an environment for digital

delivery of projects",

15 "impact": "Creation of the environment^^...",

16 "organization": "PoliTo Project Management Lab"

17 },

18 "creation_date": "2022−04−11T16:05:06.575202",

19 "patches": [

20 {

21 "id": 1,

22 "user_name": "doge",

23 "updated_date": "2022−04−11T16:05:57.498469",

24 "patch": [

25 {

26 "op": "replace",

27 "path": "/organization",

28 "value": "PoliTo Project Management Lab"

29 }

30]

31 }

32],

33 "computed_fields": {

34 "scope": []

35 },

36 "ms_computed_fields": {

37 "scope": []

38 }

39 }

34

6.6 Sixth step: Adding a second document
Adding the work breakdown structure will provide a summary of the tasks to the
project charter.

Listing 6.11: Work breakdown structure insertion body
1 {

2 "elements": [

3 {

4 "level": 1,

5 "code": "1",

6 "name": "Task 1",

7 "description": "descr"

8 },

9 {

10 "level": 2,

11 "code": "1.1",

12 "name": "Task 1.1",

13 "description": "descr"

14 },

15 {

16 "level": 3,

17 "code": "1.1.1",

18 "name": "Task 1.1.1",

19 "description": "descr"

20 },

21 {

22 "level": 1,

23 "code": "2",

24 "name": "Task 2",

25 "description": "descr"

26 }

27]

28 }

In the project charter document, the “computed_fields” value will be:

Listing 6.12: computed_fields value
1 "computed_fields": {

2 "scope": [

3 "Task 1",

4 "Task 2"

5]

6 }

6.7 Seventh step: Adding a Microsoft Project file
The endpoint for adding Microsoft Project Files is POST /projects/example_pro-
ject/msprojects/

35

Listing 6.13: MS Project file insertion response
1 {

2 "project_name": "example_project",

3 "ms_project_name": "example",

4 "author_name": "doge",

5 "update_author_name": "doge"

6 "proj_info": {

7 "baseline_start": "Thu May 16 08:00:00 CEST 2019",

8 "baseline_finish": "Wed Dec 30 17:00:00 CET 2020",

9 "currency_code": "EUR"

10 },

11 "resources": [

12 {

13 "name": "Workers IT",

14 "id": "1"

15 },

16 {

17 "name": "Workers IND",

18 "id": "2"

19 },

20 ^^...

21],

22 "tasks": [

23 ^^...

24 {

25 "name": "C1 − Start of Activities",

26 "level": 2,

27 "duration": "0.0d",

28 "predecessors": [

29 {

30 "target_task": "M1 − Effective Date",

31 "target_task_id": "2",

32 "lag": "42.0ed",

33 "type": "FS"

34 }

35],

36 "ef": "Thu Jun 27 08:00:00 CEST 2019",

37 "es": "Thu Jun 27 08:00:00 CEST 2019",

38 "lf": "Thu Jun 27 08:00:00 CEST 2019",

39 "ls": "Thu Jun 27 08:00:00 CEST 2019",

40 "start": "Thu Jun 27 08:00:00 CEST 2019",

41 "finish": "Thu Jun 27 08:00:00 CEST 2019",

42 "cost": "0.0",

43 "id": "3"

44 },

45 ^^...

46],

47 }

The value of “ms_computed_fields” will be:

Listing 6.14: ms_computed_fields value after insertion
1 "ms_computed_fields": {

2 "scope": [

3 "2018−PMTermProject_BID_baseline",

4 "New production line",

5 "M1 − Effective Date",

36

6 "C1 − Start of Activities",

7 "Design",

8 "C2 − Design completed",

9 "Purcahse",

10 "Manifacturing",

11 "Transportation",

12 "Testing",

13 "M2 − Owner's Taking Over",

14 "Civil Works",

15 "O1 − Permits completed",

16 "O2 − Civil works substantial completion"

17]

18 }

Findings

7.1 Conclusion
It has been demonstrated to be rather accessible to design and implement a platform
to support the enabling of a digital transformation. At this development level, the
API offers a sufficient number of features and allows the customization and addition
of features with ease.

7.2 (TLR) Technology Readiness Level
It is possible to assert that the TLR for this development has reached level TRL6,
since the platform has been tested to be ready to accept complex cases.

37

	Introduction
	Where the need comes from
	What is needed
	What this thesis is focusing on

	Definitions
	What is an API
	What is an end-point
	The project management object and process model
	How a API satisfies the Project Management needs
	The classic approach versus the modern approach
	What is a Framework
	Data interchange formats

	Case study
	Requirements
	Expose a REST API to add, retrieve, edit and delete documents
	Enable row level permission to documents
	Allow the reuse of existing components to ease the implementation of already defined structures (Microsoft Project)
	Use python as programming language

	Design
	Authentication
	The project structure
	The document structure
	Processes
	Permissions
	Computed fields
	Microsoft Project Files
	MS Project Computed Fields

	Technologies
	Python
	FastApi
	SQLModel, SQLAlchemy and Pydantic
	JSON
	MPXJ and JPype

	Implementation
	Python code
	default module
	database module
	datatypes module
	routers module
	security module
	utils module

	Schemas
	Project Schema
	Document schema

	Version Control, Deployment and Documentation
	Version control repository
	Deployment
	Documentation

	Explanatory use case
	First step: Registration
	Second step: Login
	Third step: Project creation
	Fourth step: Document content insertion
	Fifth step: Edit document content
	Sixth step: Adding a second document
	Seventh step: Adding a Microsoft Project file

	Findings
	Conclusion
	(TLR) Technology Readiness Level

