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Summary

During the last decade, the scientific research community has made astonishing
steps in the development and improvement of algorithms that exploit huge amount
of data with the aim of making machines perform tasks such as classification,
object detection and semantic segmentation. Usually, the strategy used to train
this models is the supervised-learning technique that requires labeled datasets.

In fact, the progresses made in the Machine Learning and Deep Learning field
where enabled by a key factor: the presence of famous benchmark datasets already
labeled.

Those famous dataset usually contains a large amout of data. The issue is that
those dataset does not allow to create models useful for real application.

The manufactury industry trends is clearly in the direction of digitalization.
In fact, many companies try to incorporate those powerful algorithms inside the
production/manufacturing processes. The problem is that a strict bottleneck is
present: the absence of taylored datasets. The activity of creating a dataset is
resource consuming. Creating an annotated dataset present time and financial
costs.

A solution is presented by Active Learning Strategies in which the main objective
is to reduce as much as possible the burdain of the human driven annotation activity
by selecting the most representative and useful data to train a model.

The literature, the research and the testing process of the Active Learning
techniques was made exploiting the usual benchmark datasets, but in this work
we present state of the art techniques of Active Learning applied to the Anomaly
Detection field to see if those strategies are robust in more realistic and challenging
context.

Moreover, due to inconsistent results and conclusion from the researchers com-
munity and due to the lack of presence of a stable methodology to quantify the
improvement in the Active Learning field a stable framework is presented to enable
results comparisons in a fair way.
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Chapter 1

Introduction

The digitalization phenomena, the improvements of electronic devices, the spread
of smartphones and social media, the Internet of Things with millions of sensors all
around the world allow us to collect incredibly large amount of data. The amount
of data collected by those devices increase exponentially every year. Those data
are precious and they are able to provide useful information in many different
fields. Let think for example to: ecology, health, economy, physics, agriculture,
manufacturing, marketing and many others.

The scientific research community has made progresses in the development
of algorithms that exploits those large amount of data. In fact, in recent years,
there were developed different strategies and algorithms in the field of Big Data.
In particular, in the Computer Vision sector, are frequently used Deep Learning
models. These models in order to perform tasks need to be trained. The training
process of Deep Learning algorithms usually require dataset with thousand or even
millions of samples. This is the reason why, Deep Learning models are know to
be "data-hungry" algorithms. For this reason, in a normal training process, we
tend to feed to the model as many data samples as possible. In standard/research
situations, we have the possibility to do that because of the presence of huge
already-labeled data-sets (e.g. CIFAR10, CIFAR100, ImageNet). Thanks to this
labeled sets the research community has made significant progresses in finding the
most suitable and efficient architectures. One first drawbacks is that, giving too
much importance to the models, let us forget the key role that plays the training
set. The presence of redundant or useless data samples could actually decrease the
model performances following the principle: garbage-in garbage-out.

Moreover, The most used and effective training strategy is called supervised
learning. In the supervised learning setting we do not only need samples but also
labels. The labeling phase is a human driven activity where the annotator describe
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the content/meaning/class of a given sample. This phase is resource consuming
and it is a real bottleneck for the spread of Deep Learning algorithm in real world
applications.

In order to avoid the labeling burdain, the research community tried to develop
other training strategies such us the unsupervised learning. As the name suggests,
in this learning context, the samples do not actually need the labels. This promising
unsupervised field is challenging and interesting but still do not perform as the
supervised learning. Another approach used to decrease the cost of the annotation
phase is provided by the Active Learning scenario that not only reduce the labeling
costs but also remove the redundant samples providing a better training set for
our learner.

The main concept of Active Learning lies around an important balance: maximize
the performances of a Deep Learning model with the smallest training size possible.
This sentence goes against the usual belief that Deep Learning models are "data-
hungry".

Another point in favour of the development of strategies that do not require
large amount of data is that in real scenarios we need to create our own specific
dataset, and while the data collection phase is usually quite cheap, the labeling
phase in most cases become a bottleneck in terms of time and even actual economic
cost. As an example, we can think about the impact that could have the labeling
process of medical radiographies. This could include task as classification or even
semantic segmentation where the time-economic cost is even higher. First of all we
need professional with a certain degree of domain knowledge and this usually comes
with an high economic cost. In second place, we need to take into account the time
spent by this professional to label, detect or even segment this data samples. In
this case, we do not only have to pay a human to perform a repetitive task, but we
need to take into account the fact that we subtract a valuable resource (the doctor)
to the medical field for different hours, and instead of saving life the doctor needs
to label samples.

Another example are the manufacturing processes where from raw material
we want to obtain as output a functioning mechanical structure. As we know,
manufacturing processes are far from perfect and it could happen that instead
of a clean output we receive a defect product. Sometimes, companies use human
employees in order to perform quality checks. The task is to identify the defect
products and discard them while keeping the products that are defect-free. This
repetitive task can be automated by an algorithm able to autonomously perform
this filtering task, while the employees can perform more complex and less repetitive
tasks. In this cases, as mentioned before, the collection phase is quite cheap (taking
picture of the output product) but we still have the bottleneck represented by the
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cost of the labeling phase.

Even with the above-mentioned issues, we want to keep and exploit the feature
extraction potential of Deep Learning models while reducing the need of huge
human annotated data-set by inserting the training phase inside an iterative process
that progressively select the most suitable data sample to feed to the learner.

We will achieve this objective taking inspiration from the state of the art
techniques of Active Learning that combines concepts of self-supervised learning,
uncertainty sampling, diversity sampling and many more interesting topics. Those
techniques will be applied to a real application scenario: Anomaly Detection.

The Anomaly Detection problem merged with the Active Learning context
presents 2 main challenges that combined are not addressed by the research
community at least to the best of my knowledge. Those issues are:

• The samples defect and defect-free usually differ in minor details (e.g. holes,
cracks) making more difficult to the feature extraction phase to separate the
samples in distinct clusters.

• The extraction phase usually generate highly unbalance training set making
the learning process more difficult and challenging

Moreover, some inconsistent and conflicting results are produced by the scientific
research community due to the lack of a stable framework. The attempt to build a
coherent platform to test and document the result and progresses is made.

The structure of the work is defined as following:

• Background: In this chapter is presented an high level explanation of the
general Active Learning Process. It will allow the reader to get familiar with
the topic.

• Related Works: In this part of the work are presented the most relevant and
important works regarding AL scenario. The reader will find the papers that
fueled and nurtured the development of those techniques. Moreover, there
are also synthetically explained the new research direction that the scientific
community is taking in order to make progresses.

• Methodology: In this chapter of the thesis it is reported a clear step-by-step
guide of the precise AL methodology followed to obtain the results reported
in the next chapter. It is also presented the description of the framework used
to obtain fair and stable results. The final section address the problem of
quintify the gain of the AL process.
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• Result: In this chapter are introduced the real case scenario problem and
the relative datasets with the corresponding result obtain using the strategy
explained in the previous section.

• Conclusion: The final thought and over the work are presented in this brief
final section

The take home message of this work can be nicely resumed by the following
sentence: "get the most out of the least".

4





Chapter 2

Background

In this chapter is presented an introduction to the Anomaly Detection field and
an high level description of the concepts and procedures needed to understand
and perform an Active Learning process. The argument and explanation is self
contained but the reader is supposed to know basic concepts of Machine Learning
and Deep Learning.

Active Learning is an ensemble of strategies and techniques that putted together
attempts to maximize the DL model performances while reducing the labeling
effort required to the oracle/annotator.

This process gives more focus on the data that we will feed to our model
instead of the model itself. In fact, we will see that the goal of this process is to
remove the redundant training samples and select the most representative and
diverse data that will allow our model to rapidly learn a given task. There are
different flavours of Active Learning strategies and they could be divided into three
main categories: membership query synthesis, query-based selective sampling and
pool-based. Membership query synthesis is a shade of AL where the learner can
request to query the label of any unlabeled data samples, even those generated
by the learner itself. Stream-based selective sampling instead is more used in
application where devices have storage and computational power constraint. The
most widespread and common technique is the last one: pool-based sampling. Even
if those technique are partially different, the main concept remains the same.
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Figure 2.1: Active Learning Process

In Fig.2.1, there is the illustration of the Active Learning cycle.
As you can easily understand from the picture above, the overall process can be

divided in 4 main points:

1. Extraction Phase

2. Annotation Phase

3. Training Phase

4. Stopping Criteria

We start with a completely unlabeled set. The first step of our process is to
extract a given number of training samples from the unlabeled set. Then, we
will annotate the selected samples. After the annotation phase, we add our new
labeled data to our labeled training set. Then, we will actually train our model
over the labeled training set. After the training, we will evaluate the performances
of our model and eventually re-start the process by adding to our labeled training
set a new batch of unlabeled data extracted from the unlabeled set. The Active
Learning Process will continue till a certain Stopping Criteria is met. This could
mean that we have finished our budget (e.g. the budget could be represented by an
economic or time constraint) or the model shows us to have reached satisfactory
performances.
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2.1 The Active Learning Process
The Extraction Phase
1. the Extraction Phase is crucial for accomplishing our goal of reducing the
number of total annotations. Precisely, it consists in carefully select the most useful
data out of our unlabeled set. The most useful data are identified by a measure of
diversity and "difficulty to be learnt". In order to quantify this concepts, we first
exploit state of the art techniques in the field of Self-Supervised Learning (it is
important to underline that in this phase we do NOT require any labels) in order to
extract high-level features from our samples. Now, thanks to the extrapolation of
this features we can map our points in a features space and compute distances and
similarity/diversity measures between data-points. We can also apply clustering
techniques in order to identify different groups in our unlabeled set. Moreover,
with dimensionality reduction techniques such as PCA, UMAP and others we can
have a look to the visual representation of our points in the feature space in two or
three dimensions. In Fig.2.2 , you can see an example of visual representation in
two dimensions of the feature space obtained exploiting Self-Supervised Learning
technique and UMAP dimensionality reduction.

Figure 2.2: Illustration of the Embeddings of Medical-MNIST dataset.

In a practical context, after the features extraction phase, in the first Active
Learning step, we do not have already trained our learner.

So, the extraction technique could be to naively select at random a given number
of samples or alternatively it is possible to directly apply more sophisticated
strategies such as coreset-sampling technique that keeps into consideration the
samples diversity.

A comparison between random sampling technique and coreset-sampling tech-
nique is provide in Fig.2.3.

In Fig.2.3 there are represented 2 simulated clusters computed with a Normal
Distribution. This distributions have the same standard deviation and different
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Figure 2.3: Random Extraction vs. Diversity Sampling: In those picture is
represented a situation with 2 clusters. The blue point are the datasamples and the
red point are the selected samples. On the left, there is the example of a random
extraction process while on the right there is the representation of a coreset-selection
process. Coreset-Selection tends to maximize the diversity of the samples.

mean. As we can understand from the picture, the coreset-selection technique
maximize the diversity of the samples while the random technique concentrate the
selected samples near the mean and the center of the cluster. The dataset obtained
by random technique could consequently contains redundant images.

Then, from the second Active Learning step (and beyond) we can apply more
sophisticated hybrid techniques that merge diversity and uncertainty measures.
The uncertainty sampling allows us to extract more samples where the prediction
over that given sample is not certain.

In Fig.2.4 it is show an hybrid techniques that merges the benefits of diversity
and uncertainty sampling. In the pictures there are three distinguishable clusters.
The red squares represents the point extracted with a coreset-sampling technique.
Moreover, by exploiting the predictions over the unlabeled set, we understand that
the model is certain regarding the predictions over the samples belonging to the
cluster on the right, while it is uncertain for what concern the bottom-left and
upper-left clusters. Given that the model is uncertain with the clusters on the left,
the algorithm extracts also the data-points underlined by the orange-diamond. In
this way, our training set will be populated by diverse sample and by the samples
that are more difficult to be learned.

It is important to underline that measuring the uncertainty of a model is a
known problem. The issue of measuring and quantifying the uncertainty of a
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Figure 2.4: Hybrid technique that merges Uncertainty and Diversity sampling.
The blue points are the samples represented in the feature space. The red squares
are the sample selected thanks to the coreset-sampling technique, while the orange-
diamonds are the samples extracted by the uncertainty measure.

prediction of a model is addressed with different strategies. The most popular
techniques used are the following:

Least Confidence = n(1 − max(p))
n − 1

where p represent the prediction of a model over a given sample and n is the
total number of classes. The Least Confidence measures the difference between the
most confident prediction and the complete certainty (100%).

Margin of Confidence = 1 − (max(p) − max(p−))

where p− are the same probabilities of p but it is excluded the largest one, more
formally p− = p\max(p). The Margin of Confidence measures the difference
between the top two most confident predictions.

Ration of Confidence = max(p−)
max(p)

The Ratio of Confidence represents the ratio between the top two most confident
predictions.

And finally the entropy exploit a measure defined by information theory:
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Entropy = − qn
i=0 pilog2(pi)
log2(n)

After the extraction phase, the human driven intervention is needed.

The Annotation Phase
2. The Annotation Phase is the step of the process that actually requires human
intervention. In this subpart of the Active Learning step an oracle is asked to
label the samples selected from the algorithm during the previous extraction phase.
In the labeling phase, the algorithm requests to the annotator to classify the
selected samples. The same approach can be obviously used for tasks such as object
detection with bounding boxes or semantic segmentation with masks. This phase
could be simplified and supported by the usage of modern tools that try to speed
up and organize the labeling process. In fact, multiple modern software manages
to reduce the burdain of the labeling process by creating friendly user interfaces.
The cost of this phase is one of the reasons for all of the research effort in the
Active Learning domain. This because, in some situations, the labeling phase could
actually represent a strict bottleneck to the learning process.

The Training Phase
3. During the Training Phase we can actually train the Deep Learning model
in a traditional supervised manner by feeding to it the data selected and labeled
during the previous phases. The training process could be defined with a fixed
number of iteration per each Active Learning step or it is also possible to fix the
number of epochs making the number of iteration proportional to the size of the
training-set of the current Active Learning step. It is a delicate part of the process
since we have to consider all the important parameters of the traditional training
process but also the new parameters of the Active Learning scenario.

The Stopping Criteria
4. The Stopping Criteria is the moment in which the algorithm decides if it is
time to stop the Learning Process or if it is required to perform another AL cycle.
In a real application context it is a crucial phase in order to obtain a model with
the desired performances.
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2.2 Anomaly Detection Context
Anomaly Detection is the identification of samples that do not show to have the
behaviour/aspect of normal data.

Anomaly Detection can be performed by different types of Algorithms of ML.
Sometimes Anomaly Detection is also identified as Outlier Detection because these
techniques tends to identify the samples that have different characteristics with
respect to the usual data.

The field of application of Anomaly Detection are:

• Network Intrusion Detection: Nowadays, network systems suffer from security
breach and hacker attacks. Modern IT systems are able to collect the data
exchanged between different sources and with algorithm of Machine Learning
are able to understand if the activity between them is an usual user activity
or if it is something anomalous that could possibly damage the infrastructure
or the user experience.

• Medial Diagnosis: In this technological era, we try to exploit the new powerful
algorithms in many different areas. In fact, the evolution in some medial
field is driven by MLDL technologies. Those techniques are used in order to
analyze data such as X-ray, Cardiotocography (fetal heartbeat), MRI or ECG.
Anomaly Detection technique could be applied and are applied in this fields
in order to find patients with possible diseases

• Fraud Detection: As the usage of online transaction increase day by day, so
do the fraudolent transactions. A possible advantage is to exploit those AD
technique also in the financial market. The algorithms are trained to detect
abnormal transaction and individuate the problem. Thanks to the abundance
of data, these algorithms are able to perform well in the detection of Anomaly
and fraudolent Transactions.

• Manufacturing Defect Detection: In the manufacturing context, those algo-
rithm are used in order to automate repetitive tasks. Usually, the enterprise is
able to collect large amount of data thanks to cameras or microphones. Then,
after the data collection phase, the samples are labeled and an algorithm is
trained over them in order to perform a binary classification task: defect and
defect-free. If a manufacturing product is predicted as a defect, it will be
discarded. Given that this operation is performed by machines, the economical
cost of the company could decrease.

Deep Learning is usually introduced in the medical and manufacturing field
because of its well known ability to extrapolate high level features. Thank to the
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Deep Learning applied to the Anomaly detection field we were able to improve in
different context and automate repetitive task.

But some problems are always behind the corner to increase the difficulty to
implement efficient and performant algorithms. Given that the DL algorithms are
known to be data-hungry, a huge amount of data is required and sometimes just
producing data could have significant costs (e.g X-Ray). Then, even if the data
collection phase is cheap, the cost could arise from the labeling phase.

The Active Learning Strategy presented and tested in this work attempts to
provide a solution for both the aforementioned issues. In fact, we want to test the
efficiency and robustness of the state of the art technique in AL applied to AD. The
combination of this two elements generate different challenges. First of all, in the
pipeline adopted it is performed a Self-Supervised Learning step in order to extract
feature from the samples that will be useful in the extraction phase. In a normal
classification context, the feature extraction phase provide well separated clusters
because the difference between images belonging to different class are quite evident
(car, dog, car, boat) while in the AD field the difference are provided by minor
details such as holes and cuts. An example of feature clusters in a classification
context is provided in Fig.2.2 where each cluster represent a separete class. An
example of binary classification in AD context is provided in Fig.2.5 and Fig.2.6

Figure 2.5: Single Cluster: Illustration of the Embeddings of Potato Leaf Blight
Disease dataset. In this Situation is present a single cluster. The majority of leaf
with disease are situated in the bottom left while the majority of healthy leaf are
in the top up part of the cluster.
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Figure 2.6: Misleading Clusters: Illustration of the Embeddings of Casting
Manufacturing Product dataset. In this situation the clusters are misleading
because the cluster are separated in function of the orientation of the manufacturing
product and by the light conditions. While the defect and defect-free are merged
inside both clusters.

The other issues that we will test, it the robustness of the algorithm when those
technique are applied to imbalanced unlabeled set. This is always due to the AD
context because usually the class of defect and defect-free are quite imbalanced.
The imbalance nature of the unlabeled set is reflected in the selected samples and
so it is a problem that affects the efficiency of the Active Learning process.

14





Chapter 3

Related Works

In this chapter of the thesis are presented the main works related to the AL
context. AL is a promising field. The research community try to improve these
technique every years in different aspects by introducing in the Active Learning
cycles new technologies such as Generative Adversarial Networks (GANs) or even
Self-Supervised Learning. Moreover, some researchers started to apply AL technique
in the field of the interesting Edge Computing context. Other researchers instead
try to create AL patterns and techniques that are agnostic with respect to the task
that the model will perform. All of these results and researches let us understand
that the AL field is flourishing but the best performances are not already reached.
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3.1 Dataset Redundancies
The success of Deep Learning models is strictly related to the rise of large annotated
datasets. The common belief is the following: if we feed more sample to our model
during the training phase we will increase the performances of the model.

So, with this stable assumption, for many years the attention of the researchers
was mainly focused towards the model architectures and related subjects. In fact,
while researchers where discovering the powerful and effective skip connections of
the ResNet model [10], we where shadowing the potential benefit of understanding
the training data.

One of the recent works that changed the trend and successfully demonstrated
that not all data are actually useful and that in many cases there is the presence
of redundant samples in different benchmark dataset is represented by [1]. In fact,
in this paper it is shown that it is possible to find subsets of the overall training
set such that the model, if trained on this reduced subset, will have the same
performances or even better performances with respect to a model trained on the
full training dataset.

Thanks to the technique used by the researchers of the papers, they were able to
find at least a 10% of redundant samples in dataset such as CIFAR10 and ImageNet.
It is worth mentioning that training a model without the redundant samples seems
to effectively improve the performance of the model trained on 100% of the training
set. However, their contribution is to demonstrate the existence of redundancies
and they do not claim any algorithmic contribution. The main concept presented
by the authors is that they explicitly looked at a dissimilarity measure between
samples. They explored the feature space of a pre-trained model trained on the
full dataset (as in many other related works, the feature space is obtained from the
penultimate layer of the Neural Network).

To find redundant samples they exploit Agglomerative Clustering [6] applied to
the previously obtained feature space.

The dissimilarity of two samples is computed using the cosine angle. For example,
given two images S1 and S2 whose features coordinates are x1 and x2 respectively,
the dissimilarity is computed as follow:

d(x1, x2) = 1 − ⟨x1, x2⟩
∥x1∥∥x2∥

while the dissimilarity between cluster C1 and C2 is:

D(C1, C2) = max
x1∈C1, x2∈C2

d(x1, x2)
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That represent the maximum dissimilarity between any two of the point belonging
to the respective clusters. Then, points inside the same cluster are considered
redundant and in each cluster they selected the datapoint nearest to the cluster
centroid.

3.2 From Active ML to Active DL
Another important point to underline is that the firsts Active Learning techniques
were developed and tailored for Machine Learning algorithms.

In this early development of AL strategies, if we take into consideration algo-
rithms such as Support Vector Machines, the most common approach for selecting
the data between different steps of Active Learning was to choose the samples
that where near the decision boudaries. An effective improvement was done in [7]
where it is show that better performance could be achieved by taking into account
the prior data distribution. In fact, selecting only data near the boudaries could
produce redundant training sets as pointed out in [1]. With the work presented
in [7], the researchers, exploiting pre-clustering technique are able to avoid to
repeatedly label samples belonging to the same clusters.

Moreover, in the Machine Learning context, the size of the training set was
incremented by one element at each Active Learning step. This because usually
training a ML algorithm is less expensive than training a DL algorithm.
Incrementing the size by 1 element at each AL step represents a problem for 2
main reasons:

• training a Deep Learning model is computationally cumbersome and time
consuming

• adding just one element to the current training set would probably not result
in a significant improvement in the model performances

Hence, in [2], it is pointed out that is necessary to change strategy. In fact, they
decided to query labels for a larger subset of samples at each Active Learning step
instead of just 1.

The researchers of the paper propose a Core-set selection approach that aims to
find a small subset (size>1) to be added to the training set such that the learner
trained on that small subset will be competitive with respect to the model trained
on the entire dataset.

Moreover, one of the main result of this work is that it is shown how the
minimization of the core-set selection problem is equivalent to the K-Center problem.
The K-Center problem is NP-Hard and so the authors developed the following
faster greedy algorithm:
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Algorithm 1 K-Center-Greedy presented in [2]
Require: data xi, existing pool s0 and budget b
Ensure: b > 0, |s0| > 0

1: s = s0

2: while |s| = b + |s0| do
3: u = arg maxi∈[n]\s minj∈s ∆(xi, xj)
4: s = s ∪ {u}
5: end while
6: return s \ s0

3.3 Task Agnostic methods

One of the next issue addressed by the research community is the fact that most
Active Learning strategies are computationally inefficient for large networks or are
carefully tailored for a specific task. In [3], the researchers propose a novel Active
Learning method that is easy to deploy, task-agnostic and also efficient in the Deep
Learning context. The main idea is to modify the learning model by attaching to
it the so called "loss prediction module". As the name suggests, the loss prediction
module will learn to predict the loss of a given sample. The capability of predicting
the loss of a given sample will be deployed over the unlabeled set to create a list.
This list will contains, in decreasing order, the samples with the corresponding
predicted loss. The Active Learning Algorithm will ask to the oracle to label the
Top-K samples of this list with the largest predicted loss.

Figure 3.1: The concept of Learning Loss. Concurrently with the actual model,
it is also trained a new learning loss module. This module will be used to predict
the loss over the unlabeled set. The samples with the highest predicted loss are
the one that will be labeled by the annotator.
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3.4 Self-Supervised Learning
Even if Fully Supervised Learning is leading the learning techniques in the field
of DL algorithms, new strategies are explored and developed. The opposite of
Supervised Learning is Unsupervised Learning. In fact, we go from completely
labeled dataset to completely unlabeled dataset where no labels are required.

This type of technology are not mature enough and some intermediate tech-
niques are studied and improved. An intermediate solution is represented by
Self-Supervised Learning.

In the context of Active Learning, for the extraction phase we need a feature
representation of our dataset. Obviously, at this stage of the AL process we do not
have any labels and for this reason Self Supervised Learning is exploited in order
to compute and create the feature representation of our samples. An example of
this technique is provided in [5] where the authors propose a simple framework for
Contrastive Learning. The proposed method is called SimCLR.

The main concept is that SimCLR learns the representations by maximizing
agreements between the losses in the feature space of the same image augmented
with two different techniques (e.g: cropping and padding, padding and cutting,
rotating-cropping, reflecting-jittering).

The general framework of Self-Supervised SimCLR is composed by four main
components:

• A data augmentation module that is able to create two different augmented
representation of a given data sample

Figure 3.2: The concept of Self Supervised Learning.
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• A Neural Network base encoder that is able to extract features from the
previously augmented data samples

• A smaller Neural Network projection head that maps the features to the space
where the contrastive loss will be applied

• A contrastive loss function defined for a contrastive prediction task

During training, a random minibatch of images is selected and a contrastive
prediction task is define on the pairs of augmented data. The final loss is computed
across all positive pairs.

Promising result in the field of Self-Supervide Learning are provided by recent
works such as [8, 9] where it is shown that in some conditions Neural Networks are
more robust to data shifts when pretrainet on a set of images without supervision.

3.5 Stopping Criteria
Even if the extraction phase and the training phase are efficient and optimized,
they could not be sufficient to obtain satisfactory performances. In fact, another
crucial key aspect in real application is represented by the Stopping Criteria. The
Stopping Criteria is the strategy that allows our algorithm to decide if continue
the Active Learning process or if it is time to stop and do not ask for more labels
to the oracle.

The most used techniques to stop an AL process include the maximum number
of iterations, the exhaustion of the labeling budget (reached maximum number of
possible annotations) or the expected accuracy value.

The Stopping Criteria seems to be a simple choice but an early stopping could
lead to poor performances and an excessive annotation is obviously a waste of
resources.

A new trend called Stabilizing Predictions is emerging. One of the most impor-
tant framework of Stabilizing Prediction is presented in [8]. As the name suggests,
it take into consideration the predictions of the model over a predetermined set of
samples called: stop set (this set of samples does not require to be labeled). If the
variation of the predictions over the stop set does not exceed a given threshold, the
model is supposed to be "well-trained" and the Active Learning process reaches the
end.
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3.6 Data Expansion Strategies
The Active Learning potential is appreciated when the amount of data to be labeled
is as low as possible. General technique adopted when there are only few data
are for example the data augmentation strategies such as: cropping, rotating,
jittering. Those samples transformations synthetically increase the number of
samples without adding annotation costs. Other more sophisticated techniques are
used in the Deep Learning Traditional training and now many researchers try to
implement them also for the Active Learning scenario.

An example is provided by [10] where the researchers build a framework called
Cost-Effective Active Learning. The main idea behind this framework is that the
training set will be enriched by the model itself. In fact, the model is allowed to
assign pseudo-labels to the sample where the prediction have an high confidence.
This enriched set with labels provided by humans and labels provided by the
algorithm itself will be used to re-train the learner.

Another example of data expansion is to introduce inside the AL process the
Generative Adversarial Networks (GANs) data augmentation strategies. The aim
of GANs applied to AL is to increase the learning speed and efficiency. In fact, with
those technique the main objective is to generate training samples that increase
the information contained in the original dataset. An example that follows this
process is provided by [13] where the technique is tested over MNIST dataset.

3.7 The Edge Computing Challenge
The design of this Deep Learning techniques usually does not take into consideration
the applications and limitations of edge computing. In the edge computing context
to the usual Deep Learning issues we have to take care of constraints such as:

• restricted storage

• latency constraints

• limited computational power

This is a problem addressed by [4] where it is pointed out that Active Learning
strategies could actually be used to reduce the amount of data that needs to be
transferred from the edge to the cloud.

Their proposed approach is based on a dynamic Bernoulli process to select
the most appropriate method for extracting the samples based on the model’s
performances. The general framework is presented in Fig.3.3.

In this framework, the sensor collects a certain amount of data (e.g. images or
audio). Then, techniques of Unsupervised Clustering and Outlier Detection are
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combined to select diverse data. Those technique must be as lightweight as possible
in order to satisfy the storage limitation provided by the edge. Next, in function of
a Bernoulli extraction with parameter λ it is decided if introduce the uncertainty
measure or not. More precisely, when the model is mature or it is not trained at all,
this process will more likely not take into account the model uncertainty during the
extraction because of the Bernoulli process with parameter λ. This λ parameter
is adjusted accordingly to the performance shown by the model after the training
phase in the cloud (if the model improve λ is decreased and viceversa).

This work let us realize that it is important to point out the need to improve
AL strategies for what concern the edge context because it is an open issue and it
is difficult to address.

Figure 3.3: The general framework of Active Learning Edge Computing. On
the left there is the Cloud where the model is (re-)trained and the λ parameter
is updated in function of the model performances. Instead, on the right there is
the Edge Device where new data are collected and sampled on the sensor itself in
order to minimize the amount of data exchanged between Cloud and Edge.

3.8 Coherency in the Active Learning Context
As the related works demonstrate, the effort towards the improvement of Active
Learning Strategies is increasing year by year. New techniques are integrated inside
the AL context and researchers claims to constantly improve the performances of
the final learner.

A significant issue is underlined in [14] where it is noticed that under the same
initial settings it happens that different papers report different results and arrive
at different conclusions. As an example, with the same experimental setup, the
performance reported by [15] using 1

5 of the total size of CIFAR10 are 13% lower
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than the performance reported in [3]. Another example of result inconsistency is
provided by [2, 16] where the difference in the result is up to 8%. They both used
40% of the samples of CIFAR100 and VGG16 as Neural Network but the results
are obviously inconsistent.

Moreover, due to this results variance, sometimes the research community tends
to extrapolate from the experiments some conflicting conclusions. In fact, [2, 17]
underline that Diversity Sampling techniques are proved to be better with respect
to Uncertainty Sampling techniques. However, in other related works the conclusion
is exactly the opposite as shown in [3].

All of this observations underline the urgent need for a complete, coherent and
comprehensive framework to test AL strategies. This framework should allow
the research community to quantify and identify the progresses made in this new
challenging context.
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Chapter 4

Methodology

In this part of the thesis it is provided a detailed description of the overall Active
Learning Process exploited to obtain the result shown in the next chapter.

It is important to underline that the main goal of the Active Learning process
is to reduce as much as possible the size of the training set while maximizing the
performances of the model.

We obtain this objective thanks to an iterative process.
The input of the Active Learning Process is a set of unlabeled samples and the

output is a Deep Learning model that satisfy certain conditions of performances.
The core concept of Active Learning still remains the selection of the best samples
to feed to a Neural Network. In our case, the best sample are: the most diverse
data and the hardest data to be learned by the model.

At each step of this iterative process, we extract from the unlabeled set a given
number of samples that will be labeled. This given number of samples is called:
budget. So, at each AL step we increase the size of our training set by adding a
subset of our unlabeled set of size equal to the budget.

In Fig.4.1 it is shown the complete process of the AL strategy presented in this
work.
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Figure 4.1: Complete and detailed illustration of the Active Learning process
exploited in this work.

1. Unlabeled set of samples

2. Feature space of the samples

3. Selected samples to be labeled

4. Oracle/Human

5. Deep Learning Model to be (re-)trained

6. Predictions (NB: uncertainty method only)

4.1 Iterative Process Details
In this section is described step-by-step the adopted methodology used to obtain
the result shown in the next chapter.

1. As aforementioned, the input of the Active Learning Process is a set of
unlabeled samples (raw data, images, text, audio etc..).

2. Then, the iterative process starts with a Feature Extraction phase that will
be performed only once and never again. To extract the features we use a standard
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pre-trained model that will be adapted on our specific use case (this model is
different from the final learner and it is used only once and never again). This
pre-trained model has an architecture similar to ResNet. The output size of this
architecture is 31. So, the feature vector will have 31 dimensions. Higher outputs
introduce various issues including the curse of dimensionality. The result of this
step are the embeddings, that corresponds to a matrix Mn×d where n is the number
of samples and d is the dimension of the final layer of our ResNet like architecture.

NB: Point 1. and 2. are executed only once. For 2. we work on unlabeled data
with self-supervision techniques. NO labels are required to execute this part of the
Active Learning cycle.

3. This is the crucial phase of the Active Learning Process: the extraction phase.
We need to take into consideration 2 main cases: the first Active Learning step
and the steps after the first.

• (Arrow from 2. to 3.) In the first step of Active Learning we still do not have
trained our final learner (the final learner is still randomly initialized). So, to
extract the samples for the first step, we used Diversity CORESET Sampling
techniques and obviously NOT Uncertainty Sampling techniques. For this
reason, in the first AL step, we base our sample extraction on the CORESET
algorithm that geometrical measure the diversity/similarity of our unlabeled
samples. Thanks to these measures, we can extract the samples that are the
most diverse between them, hence the most representative data.

• (Arrow from 6. to 3.) From the second step on, we actually have a trained
learner and for this reason we can merge the benefits of Diversity Sampling
and Uncertainty Sampling. In this case, we build a specific ranking that will
basically measure the utility/benefit of labeling a given sample with respect
to the others. This ranking is build upon a graph representation of our data
points. The geometrical representation is build thanks to the CORESET
sampling technique and moreover we merge this measure with an uncertainty
value obtained by exploit the prediction over the whole unlabeled set. More
precisely, the uncertainty of the prediction over a single sample is deduced
exploiting an entropy measure defined as follow:

entropy = − qn
i=0 pilog2(pi)
log2(pi)

where n is the number of classes and pi are the values of the prediction
concerning a given class i. We balance the magnitude of the Uncertainty
measure and Diversity measure thanks to a λ parameter. We build the ranking.
Then, we select the samples in the ranking in descending order till we exhaust
our budget.
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The output of this phase is a partition of the unlabeled set that should be labeled
and added to the training set that will be used to train our final learner.

4. The bottleneck of the process: a human is required to label the previously
selected samples.

NB: Actually, in a real process this phase consumes a lot of time resources. In
this experimental context we exploited already-labeled datasets. So, the developed
framework was design to speed up point 4 of the ALcycle. The framework was
built such that the behaviour and results obtained are completely unaltered with
respect to a real application of AL strategies to an unlabeled dataset.

5. We train our final learner in a traditional way exploiting the samples selected
and labeled during the previous steps. In particular, we used a model composed by
2 convolutional layers and 3 fully connected layers. The hyper-parameters of the
training process varies in function of the use case.

The Learning Rate (LR) decay inside a AL step is defined by the Polynomial
Decay Schedule of degree 2. The starting and ending value of the LR at each AL
step is 0.001 and 0.0001 respectively. The optimized adopted in all the experiment
is the Stochastic Gradient Descent (SGD). The batch size was set to 15 (this is an
unusual value for the batch size but allowed us to better monitor the progresses with
respect to other AL parameters such as the budget and the number of iterations
per each AL step).

During the training phase, we exploited Data Augmentation strategy provided
by PyTorch such as:

• Random Horizontal Flip: default parameter

• Random Vertical Flip: default parameter

• Random Rotation: 0.05

• Resize: the resize parameter were in function of the specific experiment e.g.
64×64, 256×256, 300×300

• Normalization: the mean and standard deviation for the normalization were
computed on the total unlabeled set

One of the important aspects to take into consideration was the fact the most
of the time the obtained labeled set used for training was highly unbalanced. In
fact, a given class usually had a much higher frequency with respect to the other(s).
In order to cure this issue, the algorithm exploited a balancing-technique called:
weight random sampling. Basically, to each sample is assigned a weight in function
of the class in which it belongs. This weight will be higher for the minority class
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and lower for the majority class. This computed weight will be used in the PyTorch
Dataloader in order to balance the mini-batch during the training phase. In the
training phase, the model will see all the classes with the same frequency inside
each mini-batch.

From the different strategies of Stopping Criteria, the algorithm used the
maximum number of iterations. So, if the pre-selected number of iterations was
reached, the algorithm stopped otherwise it continues the iterative AL process
eventually going toward point 6. and in 3. again.

6. When using an hybrid technique we need to compute the prediction and
consequently the entropy measure of our final learner over all the unlabeled samples
in order to exploit Uncertainty Sampling techniques. The output of this process is
basically a matrix Mn×m where n is the number of total unlabeled samples and m
in the number of classes.

Thanks to this measures the algorithm is able to create a graph representation
of our embeddings and translate it into an importance ranking by taking into
consideration also the entropy measures.
The process return to point 3.

4.2 Building a Stable and Consistent Framework
Given that the research community lacks of a coherent and stable framework to
determine the improvements, we developed a consistent infrastructure from scratch.

In fact, in the methods exploited by research community is not so clear if the
performance improvement of the learner are mostly provided by the increasing
amount of weights updates that the models do in the training phase of each AL
step or if the benefit is actually related to the selection of the best samples.

Our coherent and consistent framework is presented in the following:
(It is possible to use this framework because we are in a research/experimental

scenario. In fact, we start with a complete labeled set and we synthetically create
an unlabeled set to simulate an AL setting. Not applicable in real applications.)

1. Given that we have the complete labeled set, we are able to draw a baseline.
This baseline will represent the maximum performance that we can obtain from
that model and that complete labeled training set. To obtain the baseline, we use a
simple and traditional training process taking into consideration the epochs of the
training. After the traditional training is completed, we will obtain a certain metric
(e.g: accuracy, F1 score) with a certain value that will represents the aforementioned
baseline.

2. From the number of epochs we need to compute the total number of
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iterations in which the model went through answering the question "How many
weights updates has made the model during the traditional training"?

total number of iterations = total number of samples

batch size
× epochs

3. Fix the total number of Active Learning steps that the process will do before
stopping (e.g: 10, 20).

4 Fix the budget and perform Active Learning Process
4.1. Compute the fixed budget as follow:

budget = size complete dataset

number of AL steps

In this way, we will perform the final step of the AL process with the full dataset
(same training set as the baseline).

4.2. Push the budget towards lower values as follow:

budget = previous budget

2
4.3. If the model has reached the baseline value, keep reducing the budget with

the formula in point 4.2, otherwise if the baseline value is not reached, increase the
budget as follow:

budget = previous budget + previous budget

2
5 repeat point 4.1, 4.2 and 4.3 with a Random Extraction Process

Point 4 and point 5 could have as many sub-point as needed. This framework
allow us to define four major aspects:

• Compare the advantages of having a larger or lower budget in between different
step of AL

• Quantify the gain of a taylored selection strategy w.r.t a random extraction
process.

In our work for the final result, a parametric study was performed analyzing the
number of AL step. The baseline value was draw exploiting 10 AL steps and
then the number of AL step was gradually reduced to understand what was the
minimum number of annotation needed to reach the baseline in terms of accuracy.
Special care was take to keep the training cost equal for all the experiments.
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4.3 Quantify the Gains
In the challenging AL context it is also complex to define the actual gain obtained
by exploiting AL strategies with respect to a Traditional Training Technique. But
more importantly is difficult to determinate if one AL strategies is better with
respect to another one. This is due to the fact that measuring the performance af
the AL process could vary in with respect to the needs of the user and the chosen
Stopping Criteria. Obviously by increasing the number of annotation we will usually
improve model performance, but we will increase the costs. The performances
should balance this pros and cons.

As underlined before, the main aspect that AL address is to reduce the burdain of
the labeling phase. With AL strategies we want to reduce the time and economical
cost dedicated to the annotation task.

For those reason a simple, obvious and quite used measure to quantify the gain
provided by AL is to compare the accuracy/f1_score of two learning methods in
function of the number of annotations. Those technique will be used in the Result
chapter to effectively quantify the gains. An example of this gain measurement
technique is provided in Fig.4.2 we can see an example of considering Annotation
as the parameter to quantify the gain between 2 different strategies. If we suppose
that our maximum budget is equal to 80 images, then strategy 1 would perform
better with respect to strategy 2. Instead, if our annotation budget could reach
the 150 samples the strategy to prefer would be strategy 2 because the final model
would have 10% more of accuracy.

Lets suppose instead that our objective is to reach as soon as possible a given
threshold without considering at first the number of annotations. This situation is
represented in Fig.4.3
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Figure 4.2: Annotation Method to quantify the gain provided by AL strategies.
1. shows that when we have a total of 80 annotated samples, the strategy 1 is
better than strategy 2 by a margin of almost 40%. 2. show that with 150 samples,
strategy 2 is better than strategy 1 by a margin of more than 10%.
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Figure 4.3: Threshold Method to quantify the gain provided by AL strategies. In
this case, the objective is to hit a certain threshold of accuracy as soon as possible
in terms of annotations. The 80% threshold is hitted before by strategy 1 with a
gain of 30 annotations, while 90% threshold is hitted first by strategy 2 and then
by strategy 1 with a gain of 60 annotations.

In our work, the advantages or disadvantages of applying an AL technique to
train a model is quantified by comparing the performances of a model trained
exploiting AL stratetegies with modern extraction technique w.r.t a model trained
with an iterative random selection process. The comparison of these to values allow
us to determine the gain or disadvantages of the application of AL strategies.
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Results

In the most of the research literature, the Active Learning Process was tested
and developed with famous benchmark datasets. The advantages of applying AL
techniques in this standard situations is evident. The problem is that most of the
time those dataset do not represent real situations.

We want to go beyond the usual research context and our main objective is to
demonstrate the effective potential and benefit of Active Learning strategies for
real applications.

This is the reason why we decided to apply the AL process in the case of Defect
Detection. Machine Learning Defect Detection is an important feature of modern
Industrial Processes where the labeling phase of samples represents an actual issue
from different point of views: e.g. time and financial costs.

We master our ability to create effective Active Learning Pipeline starting from
classic benchmark datasets such as MNIST and medical-MNIST and other home
made datasets.

Instead, to present our results, we selected 3 main dataset and we run 3 different
experiments: casting product image data for quality inspection and potato leaf
disease detection.
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5.1 Experiment 1
Casting Manufacturing Product

Casting is a manufacturing process where a molten material is poured into a mould.
Then the molten material is allowed to solidify into the desired shape. Sometime
this process leads to defect products. The defects could be: holes, burr, shrinkage
defects and many others. The main goal of this experiment is to exploit Active
Learning techniques in this challenging defect detection context.

Dataset Details
The dataset contains a total of 1300 images. The images are 512 × 512. In the
complete dataset there are 781 images of products with some defect (KO) and 519
images of defect-free products (OK). A custom split is applied in terms of training
and test sets. In particular, the training set contains 469 OK samples and 731
KO images. Instead the test set is composed by 50 KO and 50 OK images. Some
example images are provided in Fig.5.1. The orientation of the camera and the
light condition slightly vary from one sample to the other.

Model Details
In the Active Learning context the focus should be on the dataset and this is the
reason why the usage of a simple model is made. It consists in 2 Convolutional
Layers and 3 Fully Connected Layers in sequence. ReLu is used as Activation
Function. The total number of parameters of the model is: 9 966 606.

Figure 5.1: Example of images of the Casting Product Dataset. The first image
is a defect-free product. Instead, in the second image you can see a product that is
damaged in the external surface while in the third one is present a hole.
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Training Details and Baseline
Data Augmentation techniques are exploited. In particular, RandomHorizon-
talFlip() and RandomVerticalFlip(). Moreover, it is also applied a RandomRo-
tation() with parameter equal to 0.05. The images from 512 × 512 are cropped
with the Resize() function to 300 × 300. The Learning Rate schedule follow a
Polynomial Decay, The starting value of the Learning Rate is 0.001 and the final
value is 0.0001. The usage of Stochastic Gradient Descent is made.
We trained our model with a standard training for a total of 8800 iterations in
order to draw a representative baseline. The process was repeated for 5 times and
the Mean Accuracy was equal to 95.60%.

Active Learning Process (ALP)
The Active Learning Process adopted follows the strategy presented in the previous
chapter (Methodology).

The Budget was set to 120. This means that we start by labeling 120 samples
and then at each Active Learning step the algorithm will ask to us to label a
total of 120 images. We want to perform an analysis between the Active Learning
Training Strategy and the baseline where the training cost is equal for both cases,
That means that the total number of iterations (number of updates of our model
weights) is equal in both AL and Traditional Training. For this reason, we fixed
the number of iteration per active learning step to 880 and we perform a total of 10
Active Learning steps but after the 8 step we will not ask for more labeles. We will
end our Active Learning Process with a total of 8800 iterations and 960 labeled
images.

We performed the Active Learning Process for 5 times and you can see the result
summarized in Tab.5.1.

Random Extraction Process (REP)
In order to see if the advantages of the Active Learning Process are introduced by
the extraction of the most representative samples and not only from the deletion
of redundant data, an additional experiment was performed. In this setting, we
basically changed the extraction criteria from the coreset-active-learning to a merely
random extraction process.

We performed the experiment with this extraction techniques for 5 times and
you can see the result summarized in Tab.5.1.
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step budget total iter. total annot. accuracy

baseline 10 120 8800 1200 95.60

random 8 120 8800 960 95.43

al 8 120 8800 960 95.82

Table 5.1: Result of the experiment on the Casting Product Dataset

The model trained with the baseline strategy has a final accuracy equal to
95.60%. The training cost is 8800 iterations and the annotation cost is 1200 images
(full dataset). Regarding the iterative methods, it is important to underline that
the AL strategy reach an accuracy value that is better than the baseline and
the random technique. In fact, AL reaches an accuracy score of 95.82%. This
result is obtained with the same number of iteration as the baseline (same training
cost) but with fewer samples (240 samples less than the baseline). Moreover, the
iterative random experiment allows us to state the following: selecting diverse and
representative samples using AL strategies will lead to a better model w.r.t to a
model trained in a process that iteratively select samples at random.
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5.2 Experiment 2
Potato Leaf Disease Detection

Blight is a plant disease caused by fungi. It can damage different plants and
vegetables such as potato, pepper and similar. The knowledge and capability to
detect this disease could allow us to prevent the spread and increase the production
of food.

The second experiment is always focused on anomaly detection in an agricultural
context. In this case, the dataset is composed by potato leaf. The potato leaf can
be healty or they can have blight diseases. The objective is to train a model that
will be able to correctly identify the leaves with the desease in a context of binary
classification using as few datasamples as possible.

Dataset Details
The original dataset contained different types of plants and leaves. The selection
of potato leaves is made in order to obtain a binary classification setting. The
obtained potato leaves dataset has a total of 2152 images. The images are RGB and
have a dimensions 256×256 pixels. A custom split is applied in terms of training
and test set.

In particular, in the training set:

• 119 healthy potato leaf images

• 1933 early or late blight potato leaf images

As you can notice, the training set is really imbalance and this allow us to test the
robustness of the Active Learning Process even in this challenging conditions.

For what concern the test set, it is composed by a total of 100 images: 33 healthy
leaves and 67 leaves with the disease. Given that also the test set is imbalanced,
instead of using the accuracy as the metrics for evaluating the performances of the
model, the F1 score is used.

Model Details
Given that our focus is towards the understanding of the dataset, a simple model
is used. As before it is composed by 2 Convolutional Layers and 3 Fully Connecte
Layers in sequence. The ReLu function is used as Activation function. The total
number of parameters is: 7 157 646.
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Figure 5.2: Example of images of the Potato Leaf Dataset. The first image is a
healthy potato leaf. Instead, in the second image you can see a leaf that has the
early blight while in the third one is present a potato leaf that has the late blight.

The methodology applied to this experiment is the one presented in the previous
chapter.

Training Details and Baseline
The baseline was drawn by training the NN for a total 2000 iterations, 7 epochs
and a half given that the size of the total trainingset is almost 2000. Simple
Data augmentation strategies where applied: Random Horizontal/Vertical Flip
and Random Rotation. The LR schedule followed a Polynomial Decay of degree 2
in each AL step. The starting value was 0.001 and the final value of the LR was
0.0001. The baseline was computed as the mean of 5 different runs and it is equal
to 99.41%

Active Learning Process and Random Extraction Process
The ALP has the same structure of the Experiment number 1. The difference is
the following: givent that we have a total of roughly 2000 samples and that we
want to perform 10 steps of AL, the budget was initially set to 200 (number of
samples over number of AL steps). After the second step of AL we will not ask for
more labels and we will end up with 400 labeled samples.

An analogous experiment was performed with the Random Extraction Technique
in order to appreciate the benefits of the ALS and to monitor if the process was
working fine. The budget of the REP was the same of the ALP and is initially set
to 200.
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Results

Table 5.2: Result of the experiment on the Potato Leaf Dataset

step budget total iter. total annot. F1 score

baseline 10 200 2000 2000 99.41

random 2 200 2000 400 97.87

al 2 200 2000 400 99.38

It is possible to observe that the accuracy of the baseline model that exploited the
full dataset (2000 images) and 2000 iterations is 99.41%. This time the performance
of the model that exploited the AL strategy does not go beyond the baseline measure
but it is near with an F1 score of 99.38%. It is important to underline that in
this case the number of annotation used in the AL process is less than half of
the total size of the original unlabeled set. In fact the AL process used just 400
images. Instead, the random process that exploited 400 images loose almost 2% in
performance w.r.t the baseline and the AL process.
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Chapter 6

Conclusion

In this work we faced different challenges that concerned the Active Learning field
in the Anomaly Detection context. Previous research work already proved the
efficacy of AL strategies by testing them with benchmark dataset. In this thesis,
we proved the efficacy and effectiveness of this algorithms also in a real application
scenario.

The result are described thanks to two major experiments.
In the first one we applied the pipeline to an unlabeled set related to the

manufacturing world. The dataset was populated with images where there were
represented the output of a manufacturing process. The task was to identify the
defect products. The main difficulty related to this experiment was the fact that
the two classes (defect and defect-free) where extremely similar and in this way we
putted under pressure the feature extraction phase and consequently the sample
extraction phase. The efficacy and robustness of the applied strategy is shown
thanks to the comparison between the AL process and the random extraction
process. The AL technique show to have a stable advantage when the number of
samples in the training set is reduce.

In the second experiment instead, the field of application was related to the
agricultural context. In the dataset there were images of potato leaves. Those
leaves could be healthy or they could have a disease. The task was to perform
a binary classification process over this dataset. While the difference between
healty-ill (KO-OK) were more evident with respect to the previous experiment, the
major challenge of this dataset was its imbalanced nature. In fact, the healthy class
represented barely the 5.8% of the total unlabeled set. This could create problem
during the extraction phase, but also in this scenario the AL technique proved to
be more powerful and efficient with respect to a random extraction technique.

The pipeline built in this work to perform the AL strategy proved to be consistent
and robust in two different real context.
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Conclusion

The main goal of this work was to show to the reader the efficacy of the Active
Learning strategies not only in research scenario but also in real applications. These
techniques are modern and more effort should be putted into the development
of this strategies. The improvement of AL could automate many task that are
performed by humans. If total automation could not be achieved, those technique
could also be applied and exploited in processes with the "human-in-the-loop".
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