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0.1 Introduction

Since the demonstration of second-harmonic generation (SHG) in 1961, nonlinear optics has
been an important branch of optics research. Generation of new optical frequencies is indeed
a powerful tool that has been widely used for many applications: it enables a huge array of
capabilities in optical signal generation and processing, such as switching and demultiplexing
of signals, radio-frequency spectroscopy. In quantum computing and quantum communication,
non linear optics components are often used for the generation of entangled photon pairs or to
convert single photons to telecommunication wavelengths. This huge variety of applications
motivates the creation of efficient nonlinear optical components with photonic integrated cir-
cuits reducing the footprint.

Among all the applications, the area of research on mid-infrared detector for gas sensing has is
huge interest. The mid-infrared (mid-IR) region of the optical spectrum is an important range
for applications in gas sensing and integrated nonlinear photonics offers the best outlook for
achieving these functions at low cost, while maintaining good performance. Gas molecules
vibrational motion radiates light in the mid-infrared spectrum. State of the art mid-infrared
detectors, however, are not on-chip integrable, require cryogenic temperatures and are quite ex-
pensive. Nonlinear optics allows to convert a mid-infrared wave into a near-infrared that can be
easily detected with standard silicon photodiodes, which are compact and cheap.

In this work I will present the design of a device for the up-conversion of a mid-infrared signal
into a near-infrared signal by means of a pump. The device concept is a long waveguide that
takes advantage of the second-order optical susceptibility of the core media. Indeed guided-
wave nonlinear optics has arisen research interest since the earliest stage of integrated optics.
Second-order nonlinear effect have been studied with various waveguides materials and phase
matching schemes. Materials considered includes ferroelectric crystals such as LiNbO3, or-
ganic crystals, and III-V semiconductors. Among all materials available, Aluminum Gallium
Arsenide is a favorable one for up-conversion device because of its large quadratic nonlinear
optical coefficients and well-established processing technology. AlGaAs waveguides have al-
lowed the achievement of important results in terms of tunable sources or quantum optics and
information

This work has been done in the laboratory Matériaux et Phénomènes Quantiques (MPQ) in
the Dispositif Optiques Nonlinéares group (DON), where the main research concern nonlinear
optics phenomena, optomechanics and optoelectronics. The first topic is the field of study of my
supervisor, Giuseppe Leo, whose research mainly focuses on AlGaAs nonlinear nanophotonics
and nonlinear metasurfaces.
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Chapter 1

Brief introduction on nonlinear optics

The term "nonlinear optics" refers to those phenomena that occur when the response of a
medium to electric field depends in a nonlinear way on the strength of that. Those phenom-
ena occur when the optical properties of a material depends on light intensity. The induced
polarization P can be written as:

Pi = ϵ0
(∑

j

χ(1)
i j E j +

∑
jk

χ(2)
i jkE jEk +

∑
jkl

χ(3)
i jklE jEkEl + · · ·

)
(1.1)

where χ(2) and χ(3) are known as the second- and third-order nonlinear optical susceptibility
tensor, respectively. The reason why the polarization plays a key role in the description of non
linear optical phenomena is that a time-varying polarization P(t) can act as a source of new
components of the electric field. In this report I will focus only in the second-order nonlinear
processes. It is important to note that the tensor χ(2) is non-zero only for non-centro symmetric
materials, that is in crystals without inversion symmetry. Among the second order nonlinear
processes, which can be described as three-wave interactions the simplest is the second har-
monic generation (SHG) for which, under proper conditions, the power in the incident beam
at ω is converted to frequency 2ω. If the optical field that impinges on the nonlinear medium
consists of two distinct frequency components ω1 and ω2, it is possible to obtain a component of
the field at ω3 = ω1 + ω2. This interaction is called sum frequency generation (SFG). Note that
the SHG can be seen as a degenerate case of the SFG, which occurs when ω1 = ω2. A third kind
of interaction occurs when the generated wave has a frequency ω3 = ω1 − ω2, which is known
as difference frequency generation (DFG). A schematic image of this three main second-order
nonlinear processes is shown in figure (1.1).

In nonlinear optics it is often used a compact notation for the χ(2) rank-three tensor, exploiting
its symmetries. Let us introduce the tensor d, for which

di jk =
1
2
χ(2)

i jk (1.2)

Under Kleinman symmetry conditions the tensor d is symmetric in the last two indices, and it
is therefore possible to introduce the Voigt contracted notation:

∣∣∣∣∣∣ jk : 11 22 33 23, 32 31, 13 12, 21
l : 1 2 3 4 5 6

∣∣∣∣∣∣ (1.3)
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Figure 1.1: Different χ(2) nonlinear processes

which simplifies the nonlinear tensor into a 3x6 matrix:

d =

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

 (1.4)

The particular form of such tensor is specific for each crystalline class.
It is crucial to define the physical conditions under which the second-order nonlinear effects can
occurs. In order to understand this, it is necessary to solve the wave equation in a non linear
medium:

∇2E −
n2

c2

d2E
dt2 =

1
ϵ0c2

d2PNL

dt2 (1.5)

where PNL is the non linear term of the polarization vector P. Starting from this equation, it
is possible to show that the amplitude A3 of the slowly varying envelope of the field at ω3 satis-
fies the equation:

dA3

dz
=

2ideffω
2
3

k3c2 A1A2ei∆kz (1.6)

where A1 and A2 are the envelope amplitudes at ω1 and ω2, respectively and deff is the effective
value of the tensor d. The factor ∆k = k1 + k2 − k3 is called the momentum mismatch and plays
a crucial role in the amplitude of the field A3. If we consider the special case of ∆k = 0, called
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Figure 1.2: Effects of wavevector mismatch on the efficiency of sum-frequency generation

phase matching condition, A3 increases linearly with the spatial position z. Conversely if the
phase matching condition is not fulfilled the intensity A3 is smaller than for the case of ∆k = 0.
Integrating equation (1.6) over a distance L, can be readily found that

|A3|
2∝ L2sinc2(

∆kL
2

) (1.7)

This expression predicts a rapid decrease of the efficiency of the sum frequency generation
for ∆k , 0. Achieving the phase matching condition is in general not trivial because the refrac-
tive index of materials is an increasing function of the frequency (normal dispersion). In bulk
media is possible to exploit the natural birefringence of the crystal to achieve phase matching;
otherwise it is possible to create a periodic structure to achieve the so called quasi-phase match-
ing.

Depending on the polarization of the waves involved, there are two types of phase matching.
Type I phase matching is the case in which the low-frequency waves (ω1 and ω2) have the same
polarization and type II is the case where the polarizations are orthogonal.

1.1 Propagation of the electromagnetic field into a waveguide

Optical waves can be confined in a transnational invariant dielectric structure with a small cross
sectional and a refractive index higher than that of the surrounding medium. In such waveg-
uides, light can be guided through successive total internal reflections at the boundaries. A
waveguide media of nonlinear optical materials allows strong nonlinear interaction over a long
interaction length. In waveguide structures one can exploit the different values of the effective
indices of the modes to achieve mode-dispersion phase matching.

Taking the z axis as the propagation axis, the distribution of the refractive index can be written
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as n(x, y) and the electric field of the wave as:

E(x, y, z) = E(x, y)e−iβz (1.8)

where β is the propagation constant. The field has a transverse profile E(x, y) and a propagation
term e−iβz along z. Substituting this expression of the field into the Helmholtz equation:[ d2

dx2 +
d2

dy2 + (
ω2

c2 n2(x, y) − β2)
]
E(x, y) = 0 (1.9)

This equation has a discrete number of solutions that are the modes of the waveguide. If β
is real the mode is a guided mode and it is possible to define an effective index for that mode
neff = β · c/ω. Guided modes with Ey = 0 and whose main field component is Ex(x, y) are called
TE-like mode; there also exists guided modes with Ex = 0 and dominant component Ey(x, y)
that are designated as TM-like modes.

Figure 1.3: Schematic cross section of a rectangular channel waveguide. The labels na,nc and ns refer to the
refractive indices of air, core and substrate respectively
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Chapter 2

Design of the device

The device that we aim to design is a chip-scale nonlinear waveguide for efficient sum frequency
generation (SFG). Such waveguide will be excited with two waves at ω1 and ω2 and, thanks to
the second-order non linear interaction, it will generate a wave at ω3 = ω1 + ω2. Such a device
is supposed to convert a mid-infrared wave to a wave that falls in the near infrared spectrum
(around λ = 1000 nm), via three-wave mixing with of a pump wave. Since the mid-infrared
wave can fall in a relative wide spectrum (approximately from λ = 2500 nm to λ = 4000 nm), it
is necessary that the device is tunable over a broad spectral range. The material used to realize
the guides is AlxGa1−xAs with a given molar fraction x of Aluminum (Al) added. The band
gap of the material can be engineered by changing the Al concentration x. The AlxGa1−xAs is
a non-centrosymmetric crystal with a strong quadratic non linearity. Its nonlinear tensor d has
the form:

d =

0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14

 (2.1)

where d14 = 119 pm/V at λ = 1500 nm. This tensor structure makes it necessary that both
x y components of the electric field are non-zero otherwise the nonlinear interaction vanishes.
Our waveguide is therefore required that the waveguide to be along the [110] directions of the
(Al)GaAs.

Once we have phase matching, high SFG efficiency requires to maximise the waveguide length,
because the intensity of the signal at ω3 is proportional to the square of the distance traveled
in the guide. On the other hand, the upper limit for the waveguide length is the loss of the
guide. Therefore it is crucial to minimize losses to have long waveguide. In general, as order of
magnitude, losses <0.5 cm−1 can be achieved, and this sets a maximum length for the guide of
more than 2 cm. Further details will be given about the materials and structures used to obtain
a low-loss waveguide.

Another important feature to consider is the overall geometry of the guide. The idea of the
device is that it should be compact and integrable on-chip: in other words, it must occupy the
smallest area possible. Of course there are many possible valid geometries. One very com-
pact geometry is a spiral-shape, but the physical considerations in terms of phase-matching and
tunability of such a shape would be quite complicated.
The solution adopted is a slalom shape: a straight waveguide of length 1 mm is followed by a
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Figure 2.1: Geometry of the waveguide

half-arc guide with radius 100 µm. This geometry allows to store in 1 mm2 a guide with a length
of roughly 0.75 cm. The schematic of the geometry is depicted in figure (2.1). In the following
two different kind of structures and materials for the waveguides will be analyzed:
1) a low index contrast waveguide with an Al0.22Ga0.78As on top of Al0.8Ga0.2As cladding.
2) a high index contrast waveguide made in Al0.18Ga0.82As on top of SiO2.

2.1 Low-contrast waveguides

2.1.1 Design of the straight waveguide

Figure 2.2: Index Profile

Structure 1) is a low-contrast: the material for the core is AlGaAs with 22% of aluminum and
the cladding below is made again of AlGaAs with an higher concentration of aluminum (80%).
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The increment of Al in the material has two consequences:increasing the band gap of the mate-
rial and the lowering of the refractive index of the same. The theoretical value of the refractive
index (λ = 1550 nm) of the Al0.22Ga0.78As is n = 3.25 compared to the refractive index of
Al0.8Ga0.2As which is n = 2.96. The theoretical band gap of the Al0.22Ga0.78As is Eg = 1.696
eV which corresponds to λ = 731 nm. It is useful to consider the energy band gap of the core
because for high energy (i.e. small λ) of the incident waves two photon absorption may occur;
this phenomenon can be detrimental for the performances of the device.

Figure 2.3: Sketch of the structure for the low contrast index waveguides. The core is made of Al0.22Ga0.78As and
the cladding Al0.8Ga0.2As

The low contrast between core and cladding refractive indices results in poorly confined modes:
this makes necessary to increase both core width and height in order to properly accommodate
the modes in the waveguide and avoid that the field leaks to the high-index GaAs wafer. Be-
cause of such relatively large core, the modes sit in the center of the core and sees less the border
of the core itself. The lateral wall sides of the waveguides usually have some imperfections due
to fabrication issues and consequently the fact that the field stays relatively far apart from the
border avoid important scattering phenomena during the transmission and this lower the losses
of the waveguide. Let us stress again the importance for this kind of devices of keeping the
losses as low as possible, in order to allow long waveguide and thus increasing the overall ef-
ficiency of the nonlinear interaction. This constitutes the main advantage of structure number 1).

The first step to determine waveguide width and height is to choose the degeneracy point, which
means to choose three wavelength λ1, λ2 and λ3 such that λ1 = λ2 =

λ3
2 . The degeneracy point

sets the upper limit for λ3, which is the SFG wavelength, so it is necessary to choose properly
this wavelength. Our choice here is to set λ3 = 1040 nm and consequently λ1 = λ2 = 2080 nm.
Then it is required to find the proper geometry that guarantees the phase matching condition
β1 + β2 = β3 for the three selected wavelengths. The phase-matching condition can be rewritten
as:

2π
λ1

ne f f
1 (λ1) +

2π
λ2

ne f f
2 (λ2) =

2π
λ3

ne f f
3 (λ3) (2.2)
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which at degeneracy can be rewritten simply as:

ne f f
1 (λ1) + ne f f

2 (λ2) = 2ne f f
3 (λ3) (2.3)

In order to fulfill equation (2.2) one has to consider three different modes, one for each wave-
length; each mode is characterized by its effective index neff, which depends on a few factors:
the materials, the geometry of the waveguide, the wavelength, the mode polarization (TE, TM).
As recalled in the theoretical introduction, the use of waveguides allows phase matching by
mode-dispersion. The mode index depends upon the waveguide dimension and the mode order
and takes a value between the refractive indices of the core and the cladding for each wave-
length. Thus in principle it is possible to select the proper geometry and the modes that allow
the phase matching at the selected wavelengths.

Figure 2.4: Effective indices of the fundamental TE and TM mode as function of the height of the core. It is not
possible to reach the phase matching condition for any value of the height

There are two types of phase matching, depending on the polarization of the modes involved.
For type I phase matching, the input modes have the same polarization (e.g. TE) while the SHG
signal has a different polarization (e.g. TM). On the contrary, in type II phase matching the
input polarizations are orthogonal and therefore one will be TE while the other TM.

In general a type I phase matching is more convenient because it allows to work just with fun-
damental TE and TM modes, which are easier to excite with respect to higher order modes.
However, as suggested by figure (2.4), it is not possible to find a geometry (width and height)
that satisfies type I phase matching condition and therefore it is necessary to look for phase
matching with higher-order modes. The picture shows the variation of the refractive indices of
the modes as function of the height of the core for planar waveguides (i.e. infinite width). Since
there is no intersection between the two curves over a wide range of heights, it is not possible
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Figure 2.5: Map of the ∆β as function of the width and the height of the core. The modes considered are TM00 for
the pump, TE00 for the input signal and TE20 for the output signal. The red dashed line represents the points where
∆β = 0, i.e. the geometries for which the phase matching is reached.

to find a geometry that fulfill type I phase matching.

(a) TE00 mode at 2080 nm (b) TM00 mode at 2080 nm

(c) TE20 mode at 1040 nm

Figure 2.6: Electric field distributions for the three interacting modes

To find the proper geometry that fulfills type II phase matching, I performed a sweep both on the
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height and the width of the core of the guide and numerically finding the effective indices of the
three modes and then verifying if equation (2.2) is satisfied or not. All the numerical calculation
are performed by means of the Finite-Difference Eigenmode (FDE) solver of Lumerical. This
eigensolver find the modes by solving Maxwell’s equations on a cross-sectional mesh of the
waveguide by means of a finite-difference algorithm. Maxwell’s equations are formulated into
a matrix eigenvalue problem, which depends on the geometry and on the mesh, and are solved
using sparse matrix techniques.

Since it is not possible to find a geometry allowing for phase matching among fundamental
modes, I had to consider higher order modes: in particular a fundamental TE00 mode for the
input signal, a fundamental TM00 mode for the pump and a TE20 mode for the SHG output.
The values of the effective indices at degeneracy are neff = 3.125 (TE20), neff = 3.131(TE00) and
neff = 3.118 (TM00).

Figure (2.5) shows the momentum mismatch ∆β of the effective indices of this modes as func-
tion of the different dimensions of the core. In particular, for a width of 3000 nm and a height
of 1125 nm, I found the type II phase matching at λ = 2080 nm for both input signal and pump.
and λ = 1040 nm for the SHG output. Figure (2.6) shows the distribution of the electric field
for the three different modes. Since the waveguide will be used to perform SFG over a range of
different wavelengths, I needed to evaluate the whole tunability curve of for this structure. Such
curve represents all the λ1, λ2 and λ3 that satisfy both energy conservation law

2πc
λ1
+

2πc
λ2
=

2πc
λ3

(2.4)

and the conservation of momentum

2π
λ1

neff
1 (λ1) +

2π
λ2

neff
2 (λ2) =

2π
λ3

neff
3 (λ3) (2.5)

In order to obtain this curve I first evaluated the dispersion relation ne f f
1 (λ1), ne f f

2 (λ2) and
ne f f

3 (λ3) by means of the FDE solver of Lumerical.

Once the dispersion relation has been evaluated, I can find the three wavelengths that satisfy
both (2.4) and (2.5). Figure (2.7) illustrates the tunability curve: the x-axis represent the wave-
length of the output signal, while the y axis represent both the wavelength of the input signal
(blue curve) and the pump (red curve). The intersection point is the degeneracy which occurs
at 1040 nm for the output signal and 2080 nm for the input signal and the pump as predicted.
The picture shows also the limit under which two photon absorption (TPA) occurs for AlGaAs
with 22% of Al. Note that TPA can lower the effect of the desired nonlinear effect, in particular
if we work with input pulsed laser. Adding a certain percentage of Al to GaAs was indeed made
to lower the TPA threshold. However, this choice makes the refractive-index contrast between
core and cladding weaker, resulting in less confined modes. It is therefore necessary to find the
right compromise for the quantity of Al to add.

An important parameter to evaluate is the nonlinear conversion efficiency η0: indeed the phase
matching condition is not sufficient to guarantee the SFG. This is due to the fact that the in-
teracting modes must have a sufficient non-linear spatial overlap in order to have an efficient
frequency up conversion.
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Figure 2.7: Tunability curve. The horizontal axis represents the wavelength of the SGF singal, TE20 mode. The
vertical axis represents the wavelength of both the input signal (blue curve, TE00) and the pump (red curve, TM00)
which are fundamental TE mode and fundamental TM mode respectively. The horizontal dashed line represents
the limit below which two photon absorption (TPA) occurs for AlGaAs with 22% of Al

η0 =
8π2

ϵ0cλ1λ2

d2
14

neff(λ1)neff(λ2)neff(λ3)

["
d(x, y)ET E00(λ1)ET M00(λ2)ET E20(λ3)dxdy

]2
(2.6)

where ET E00(λ1), ET M00(λ2) and ET E20(λ3) are the normalized electric field of the three differ-
ent modes; nλ1

eff, nλ2
eff and nλ3

e f f are the effective indices. Moreover d(x, y) is the cross-sectional
distribution of nonlinear optical coefficient normalized to d14.

The modal overlap depends both on the susceptibility tensor χ(2) and on the spatial geomet-
rical overlap between the components of the electric field of the different modes. This implies
that there are sort of selection rules on the symmetries of the modes involved in the interaction.
In particular it is necessary that the overall integrated function is even: the modes involved
must therefore exhibit the same symmetry. Moreover the interaction must occur along a proper
crystallographic direction that guarantees that the χ(2) tensor does not vanish. The conversion
efficiency has been evaluated for different wavelengths: at degeneracy (λ1 = λ2 = 2080 nm and
λ3 = 1040 nm) η0 = 10.02 W−1cm−1. Moving away from degeneracy, and thus lowering λ3 the
non-linear efficiency parameter has the tendency to decrease. In particular at λ3 = 1015 nm a
value of η0 = 8.31 W−1cm−1 is found and η0 = 7.03 W−1cm−1 at λ3 = 1000 nm .

2.1.2 Design of the arc-shape waveguide

So far, only the straight part of the waveguides has been considered for the design. Further
considerations are needed to take into account the arc-shaped waveguides, because there is a
shift in the effective indices of the modes in the arched part, and moreover the value of the χ(2)

tensor changes along the curve.
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First of all, for a half circle of radius R, the wave propagating along the curve will accumu-
late a phase shift given by ∆βarc · πR = mπ, where ∆βarc = β

λ1
arc + β

λ2
arc − β

λ3
arc is the difference

of the three wavectors of the modes inside the arc. The modes inside the curved waveguides
have a different shape and different values of the effective indices. It is crucial to notice that the
difference between such effective indices has important consequences on the phase-matching
condition: indeed in general it is not guaranteed that a triplet of modes that are phase matched
along the straight waveguide are still phase matched along the curve. This is of course an im-
portant issue that must be tackled in the design of the device.

Figure 2.8: Image of the TE20 mode at λ = 1040 nm in a curved waveguide with radius 100 µm. The lobes of the
mode are shifted towards the external side of the curvature

Figure (2.8) shows the TE20 mode at λ = 1040 nm: the mode is shifted inside the core to-
wards the external side of the curvature. Furthermore, when moving along the curve, the tensor
product between χ(2) and the three fields will not take a constant value, since the fields explore
different directions within the crystal; due to the symmetry of the 4 crystal, the normalized ten-
sor will assume a value d(l) = cos(2l/R) along the curvature where l is a position parameter
along the waveguide. The amplitude A(l) of the SHG mode is described by:

dA(l)
dl
= id(l)e−i∆β(l)l (2.7)

where d(l) = 1 along the straight waveguides. In order to properly understand the behaviour of
the three different modes under this condition let us start from the degeneracy (λ1 = λ2 = 2080
nm; λ3 = 1040 nm). In this case, since the waveguide is properly designed, ∆β = 0 along
the straight path, the value of d(l) is constant, and thus the solution of equation (2.7) is sim-
ply A(l) = il, so that the amplitude increases linearly along the imaginary axis in the complex
plane. Obviously its square modulus |A|2= l2 according to the usual quadratic relation between
the amplitude of the second harmonic and the length l of the waveguide. On the other hand, the
behavior of the amplitude A along the curve depends on the particular value of ∆βarc ·πR = mπ.

Let us now focus on the behavior of the second harmonic for different integer values of m.
For odd values of m, the wave generated in the second straight waveguide destructively inter-
feres with the wave generated in the first straight waveguide, with the net result that the overall
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Figure 2.9: |A|2 of the second harmonic in a U-shaped waveguide, for different values of m. The two straight parts
have a length of 300 µm each and the radius is 100 µm. For odd values of m, there is destructive interference at the
exit of the curve and the amplitude drop (yellow and blue lines). For even values of m, the amplitude of the second
harmonic further increases after the curve (purple line). For the special case m = 2 (red line), there is a quasi-phase
matching, thus the second harmonic partially increases in amplitude even along the arc.

amplitude along the structure does not increase. On the contrary, for even values of m there
is a constructively interference between the waves in the two straight parts of the waveguide
and the overall result is an increasing the second harmonic amplitude. Note, however, that
along the curvature there is no net gain in the amplitude. For the particular case of m = 2, the
wavevector mismatch is compensated by the modulation of the nonlinear optical coefficient by
cos(2l/R), and thus a quasi-phase matching condition is reached. The phase difference condi-
tion, ∆βarc · πR = 2π is equivalent to the 4−QPM condition.

Figure (2.9) shows the square modulus of the amplitude of the second harmonic as function
of the length traveled by the wave in the U-shaped waveguide with two 300 µm straight parts
and half circle with radius R = 100 µm. In the first straight part, the SHG amplitude increase
quadratically with the length because of phase matching. Along the arc, it oscillates keeping
a more or less constant value (save the case m = 2) and finally the behavior in the last straight
part depends on the value of m.

In order to gain a better insight on how the SHG amplitude A evolves along the guide, it is
possible to show in the complex plane the real and imaginary part of A. Fig(2.10) shows the
phasor A in the complex plane when the wave propagates along the curve. For m = 1 and m =
3 (odd values) the phasor describes a half hypocycloid and a half epicycloid respectively and
thus the phasor turn in the negative direction along the imaginary axis. For m = 4, the curve
described by the amplitude is a full epicycloid, that the end of the entire arc the direction on the
imaginary axis is positive. Lastly, for m = 2, the curve described by the phasoris a cycloid-curve
that increases in amplitude during the propagation.
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Figure 2.10: Phasor of the SHG amplitude A along a half circle in the complex plane, for different values of m.
For m = 1 and m = 3 the curves described are half cycloids and thus end in the negative direction, whereas for m
= 4 the curve is a full cycloid that ends in the positive direction. For the particular case m = 2 the cycloid is not a
closed line and the amplitude of the phasor increases along the arc.

In conclusion, m = 2 is the best condition to achieve because it guarantees a partial gain in
the curvature and a constructive interference between the waves. It should be possible in princi-
ple to design the curved part of the guide such that this condition is obtained at degeneracy. This
means to find the proper width of the curved wave guide such that the condition ∆βarc · R = 2 is
satisfied at degeneracy (the procedure to find the proper geometry would be very similar to the
one used to obtain the phase matching condition in the straight waveguide). But unfortunately,
even if the proper width is obtained, the QPM condition would be satisfied only for one particu-
lar point (λ1 = λ2 = 2080 nm and λ3 = 1040 nm). Indeed if one consider different wavelengths
on the tunability curve (that are the points where ∆β = 0 only on the straight guide), it is not
longer guaranteed that the QPM m = 2 condition is still valid on the arc. Of course this is a
problem that undermine the proper tunability and functionality of the entire device.

2.1.3 Tunability of the entire structure

In order to understand the behavior of the structure, it is necessary to study the entire device
under different input wavelengths λ1 and λ2, and then evaluate the amplitude |A|ω3 of the mode
at λ3. To this end, let us consider a unit cell of the structure which is composed by a straight
waveguide of length 500 µm, followed by an arc waveguide with R = 100 µm, again followed
by a straight waveguide with length 1000 µm, followed by a second arc of the same radius and
finally the last straight part long as the first. The total length of the unit cell is 2.683 mm. The
schematic of the unit cell is illustrated in fig (2.11). The entire device will be a repetition of this
unit cell. Let two waves impinge at λ1 and λ2 (i.e. ω1 and ω2), with a relative phase difference
∆ϕ that is set to zero for convenience. The phase difference at the end of the cell depends on
the distance traveled and the ∆β of the waves along the different segments of the cell. The final
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phase ∆ϕ f at the end of the cell is given by:

∆ϕ f = ∆βl1 + ∆βarcl2 + ∆βl3 + ∆βarchl4 + ∆βl5 (2.8)

where ∆β and ∆βarc are the momentum mismatches for the straight and curved part respectively,
l1, l3, l5 are the lengths of the three straight parts, and l2, l4 the lengths of the arc-shaped parts.

Figure 2.11: Schematic of the unit cell of the structure. Two waves ω1 and ω2 impinge at the entrance with a
relative difference of phase ∆ϕ set to 0 for convenience. The difference of phase at the end of the cell, ∆ϕ f ,
depends both on the distance traveled and the different ∆β’s along the structure.

Note that the initial phase of the following cell is the final phase ∆ϕ f of the previous cell and
the amplitude Aω3 at the exit of each cell is strongly influenced by the value of the initial phase.
Indeed the difference of phase at the entrance of the cell affects the interference that can be
constructive rather than destructive. In order to evaluate the value of Aω3 after a cell for two
impinging ω1 and ω2 it is necessary first to evaluate both ∆β and ∆βarc for the triplet ω1, ω2 and
ω3 = ω1 + ω2. Then perform the integral given by equation (2.6) over each segment of the unit
cell:

(2.9)
Aω3 = i ·

[ ∫
l1

e−i∆βl+ϕ0dl +
∫

l2
cos(2l/R)e−i∆βarcl+ϕ1dl +

∫
l3

e−i∆βl+ϕ2dl +

+

∫
l4

cos(2l/R)e−i∆βarcl+ϕ3dl +
∫

l5
e−i∆βl+ϕ4dl

]
where ϕ1, ϕ2... are the cumulated phases along each segment of the cell and ϕ0 is the initial
phase. In order to evaluate the whole Aω3 along the structure, it is necessary to calculate equa-
tion (2.9) as many times as necessary, considering a new ϕ0 for each iteration. Of course Aω3

must be evaluated on different values of ω1 and ω2 (or λ1 and λ2).

Figure (2.12) shows the square modulus of the amplitude |A|2ω3
, in logarithmic scale and arbi-

trary units, as function of λ1 and λ2, for five unit cells (i.e. a total length of 1.31 cm) of the
waveguide. The colored area in the figure represent thus the points for which the couple λ1 and
λ2 produce a significant non linear interaction (SFG) along the entire waveguide. In the right
image, which is a zoomed image of the first, it is possible to better appreciate the fringes of
|Aω3 |

2, which are reminiscent of the fringes of a typical sinc2(x) function. This image shows that
the entire structure presents its own tunability. Figure(2.13) shows the fringes of interference
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(a) (b)

Figure 2.12: a) |Aω3|
2 in logarithmic scale and arbitrary units as function of λ1 and λ2, for a structure composed by

5 unit cells (total length of the guide is 1.31 cm). The colored area represents the region where the SFG intensity
is high. The dashed lines represent the loci of constant λ3. (b) Zoomed image of the previous

evaluated for different λ3.

Figure 2.13: SFG amplitude |Aω3 |
2 as a function of λ1, for different fixed values of λ3. The vertical lines represent

the points for which there would be a maximum in a straight waveguide with the same width and height of the
core.

The figure shows the amplitude |Aω3|
2 as function only of the wavelength of the TE00 mode λ1

for different fixed wavelength of the TE20 mode λ3. Since changing one of the wavelength and
fixing the other will change the value of the ∆β(λ1, λ2, λ3), one would expect in this figure to find

19



the curves that characterize the relation between the amplitude and the momentum mismatch:

|A3|
2∝ L2sinc2(

∆βL
2

) (2.10)

However, in this more complex geometry, where straight waveguides are alternated by curved
waveguides and the phase matching condition changes along the different types of guides, the
shape of the square modulus of the SHG amplitude it is no longer ∝ sinc2(x). It is interesting
to note, the presence of a double peak in the amplitude, especially for low values of λ1. The
higher the wavelength, however, the lower the second peak. The vertical dashed lines represent
the position of the maximum of the peak of the sinc2(x) for a straight waveguide with the same
width and height. It is worth noticing that in the slalom waveguides the peaks are slightly shifted
due to the presence of the curved parts. Finally, the existence of a SHG peak of intensity for
the square modulus of the amplitude of the TE20 mode at different λ3 confirms that this kind of
geometry waveguides presents its own tunability.

2.2 High-contrast waveguides

Figure 2.14: Index Profile

The second kind of waveguide that I have considered for fabrication is a high contrast. In this
case the core material is AlGaAs with a slightly lower Al concentration ( 18%) which lays on
a SiO2 cladding and the whole structure sits on a Silicon wafer. The theoretical value of the
refractive index of the Al0.18Ga0.82As at λ = 1550 nm is about n = 3.28, while n = 1.45 for
SiO2. Note that the fabrication of this kind of waveguides requires a wafer bonding process
between the III-V semiconductor wafer and the S iO2 on Silicon wafer; some further details will
be provided in the following.
The schematic of the structure is depicted in figure (2.15). Furthermore a passivation layer in
SiO2 deposited by PECVD on top of the guide has been considered.

Since there is a high index contrast between the core and the cladding, it is not necessary in
principle to consider relative large dimensions for the guide (with respect to the previous kind
of structure). Now the modes in this case will be more tightly confined, and the good quality
of the SiO2 (especially if compared to the quality of the native oxide AlOx) guarantees low loss
even for this type of structure.
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Figure 2.15: Schematic of the high-contrast waveguides

In order to find the core dimensions (width and height) that guarantee phase matching, I fol-
lowed the same logical steps as in section 2.1. The degeneracy point in this case is chosen at
λ1 = λ2 = 2160 nm and λ3 = 1080 nm: this will shift the tunability curve towards higher values
of λ for the input signal mode. In high-contrast structures it is possible to find type I phase
matching: this means that ∆β = 0 condition is reached for TE00 modes of the input signal and
the pump and a fundamental TM00 mode for the output signal. Type I phase matching condition
(2.4) at degeneracy (λ1 = λ2) can be rewritten in the form:

neff
1 (λ1) ≡ neff

2 (λ2) = neff
3 (λ3) (2.11)

Figure 2.16: Absolute value of the difference between the effective indices of the TE00 evaluated at λ1 = 2160
nm and the effective index of the TM00 mode evaluated at λ3 = 1080 nm. The dark blue region represents the
geometries for which the phase matching condition is reached.

It is then possible to evaluate ∆neff = neff
1 (λ1) − neff

3 (λ3) as a function of the width and the height
of the waveguide core (for fixed λ1 and λ2 ). Figure (2.16) shows the difference in absolute
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value between the TE00 mode at λ1 = 2160 nm and TM00 mode at λ3 = 1080 nm : the dark
blue region corresponds to the geometries for which the phase matching condition is achieved.
Note that the phase matching region is almost independent of the width. Since the device that
we want to design should work at quite large λ1, it is convenient to choose a waveguide with a
large width because it will better confine the long wavelength modes. Therefore a height of 163
nm and width of 3000 nm is chosen for this kind of waveguides. The electric-field distribution
of both TM00 and TE00 modes at degeneracy (λ1 = λ2 = 2160 nm and λ3 = 1080 nm) is plotted
in figure (2.17). The effective index of the modes is neff = 2.13 for both modes.

Figure 2.17: Distribution of the electric field for the TE00 mode at λ = 2160 nm (a) and the TM00 mode at λ = 1080
nm (b)

Once the width and height of the core are found, it is possible to evaluate the tunability for the
straight guide. Similarly to the first kind of structure, it is necessary to consider the dispersion
of both the TE00 and TM00 and find all the λ1, λ2 and λ3 that fulfill both energy conservation and
phase-matching condition. The tunability curve is shown in figure(2.18). The vertical dashed
lines represents specific cases for which the conversion efficiency η0 has been evaluated by
means of equation 2.6 conveniently adapted to the case of type 1 phase matching. It is worth
to noticing that the new η0 is two order of magnitude higher than in the case of low-contrast
waveguides. This is due to the fact that in this second kind of waveguides we are considering a
type I phase matching between fundamental modes. The overlap integral between fundamental
modes is much larger values when it is evaluated between fundamental modes than higher-order
modes, which indeed present some nodes that lower the overall value of the integral.
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Figure 2.18: Tunability curve of the high-contrast straight waveguide. Dashed vertical lines represent the output
wavelengths λ3 for which η0 has been evaluated. The horizontal dashed line represents the wavelength below
which two photon absorption (TPA) occurs.

2.2.1 Arc-shape waveguide and tunability

Similarly to low-contrast waveguides, I had to consider the different phase matching condition
for the arc-shaped parts of the guides. The physical considerations are essentially the same with
respect to the previous case, since the material used for the core is again AlGaAs. It is therefore
possible to evaluate the tunability of the entire structure by performing a very similar procedure:
first I evaluate the momentum mismatches ∆β and ∆βarc for different ω1, ω2 and ω3 = ω1 + ω2.
Then I consider a unit cell made of three straight parts and two arcs and I iterate equation (2.9)
for a certain number of cells (in this case 5 cells were considered) in order to evaluate the am-
plitude |Aω3|

2 as function of λ1 and λ2.

(a) (b)

Figure 2.19: a) |Aω3|
2 in logarithmic scale as function of the input signal λ1 and the pump λ2 for a structure

composed by 5 unit cells. The dashed colored lines represents the loci of constant λ3 b) Zoomed image of the
previous
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Figure (2.19) shows square modulus of the amplitude |Aω3 |
2 of the optical wave at λ3 as a

function of the impinging wavelength at λ1 and λ2. Once more it is possible to appreciate
that it exists a region in the λ1/λ2 plane for which the intensity of the TM00 mode at λ3 is not
vanishing and therefore the entire structure presents its own tunability. In the zoomed image
(b) it is possible to appreciate the presence of a double line, meaning that also for this kind of
structures is characterized by a double peak in the intensity.

2.2.2 Fabrication of high-contrast waveguides

Since it is not possible to grow epitaxial (Al)GaAs on top of of SiO2 due to the amorphous nature
of the latter, the fabrication of high-contrast waveguides requires a wafer bonding technique
between a silicon on insulator wafer and a GaAs wafer on top of which it has been grown
the desired epitaxy. Figure (2.20) is a schematic of this technology. First the two wafers are
bonded together by means of an adhesive layer of BCB. Next it is necessary to remove the
GaAs substrate correctly and the process is carried out via a wet etching technique. In order
to do so, it is required to have an etch-stop layer of Al0.8Ga0.2As between the substrate and the
desired Al0.18Ga0.82As layer. The substrate of GaAs, which thickness is several hundreds of
m is removed by a citric acid solution at high temperature. Citric acid is highly selective on
the Al0.8Ga0.2As layer with respect to the GaAs. In order to remove the etch stop layer, whose
thickness is of the order of some hundreds of nm, it is used a solution of BOE for few minutes.

Figure 2.20: Schematic of the fabrication process. a) wafer bonding is performed between a Silicon wafer and a
GaAs wafer on top of which it has been grown the desired epitaxy. b) Then the GaAs substrate is removed by a
citric acid solution. c) Lastly the etch stop layer of Al0.8Ga0.2As is removed with a BOE solution for few minutes.

Once the substrate is ready, the following step is a lithographic process in order to define the
waveguides. Since the width of our ridge waveguides is quite small and it is necessary to have
the highest quality of the edges possible, I resorted to electron-beam lithography. In order
to do that, first a negative resist MAN2401 is spinned over the sample and then the electron-
beam lithography is performed. The last process is the ICP-RIE performed with chlorate gasses
to etch the Al0.18Ga0.72As. Figure(2.21) is a electron microscope picture of a Al0.18Ga0.72As.
waveguide on top of SiO2 obtained with this procedure.
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Figure 2.21: Electron microscope picture of a Al0.18Ga0.72As waveguide

2.3 Conclusion

I have designed a slalom shaped waveguide in AlGaAs by means of two different kinds of struc-
tures, one low-contrast and one high-contrast, used for the realization of a device that will work
in up-conversion. Both waveguides required to be phase matched on a large range of wave-
lengths in order to have an efficient second-order nonlinear conversion between the interacting
modes. However the phase matching condition changes on the curved parts with respect to the
straight ones, threatening the tunability of the whole device. It was therefore necessary to con-
sider the tunability of the entire slalom waveguide in order to understand the efficiency of the
nonlinear conversion.

For both kind of waveguides it is possible to have an efficient tunability over a wide range of
wavelengths. In particular, the low-index waveguides presents a larger core dimensions which
should guarantee low loss. On the other hand for this kind of structures it is not possible to
achieve a type I phase matching and therefore is necessary to deal with higher order modes.
For what concerns the high-contrast waveguides, despite the smaller dimension of the core, it is
possible to have a nonlinear interaction between fundamental modes.
This is a great advantage with respect to the previous case for many physical reasons. First of
all, a type II phase matching working in down conversion requires to excite a TE20 mode, which
in general is not trivial and requires some challenge. Moreover I have shown that the nonlin-
ear conversion between fundamental modes is two order of magnitude higher with respect to
the one evaluated with higher order modes due to the different geometrical overlap of the modes.

On the other hand, high-contrast waveguides require a wafer bonding technique followed by
a wet etching substrate removal that complicates the fabrication process and can affect the qual-
ity of the guide. Overall after all this consideration we have decided to work with a high-contrast
waveguide for the realization of the device.
In the next period of my stage I will first characterize the effective index of the AlGaAs on SiO2

platform in order to have a reference on the real values of the indices of the materials. In order
to do so, I have designed and fabricate a grating coupler on the platform that I will use to couple
a near infrared light. The angle of incidence for which coupling occurs between the free space
radiation and the planar waveguide depends on the effective index of the material.
Next, once the real effective index of the material will be characterized, I will fabricate short
AlGaAs waveguides correctly phase matched in order characterize the loss of both straight and
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arc shaped guides. The values of the loss is essential to determine the maximum length possible
for the guide.

To conclude I have shown using numerical simulations the possibility to realize an on-chip
integrable tunable device for up-conversion in the mid-IR. The final step will be the realization
and the characterization of the slalom-shape waveguide; the comparison of the measurements
will be a feedback to understand the effective correspondence with the theory developed in this
work.
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