
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Energy-Efficient Deep Learning-based
Heart-Rate Estimation on Wearables

Supervisors

Prof. Daniele Jahier PAGLIARI

Dr. Alessio BURRELLO

Dr. Matteo RISSO

Candidate

Noemi TOMASELLO

Academic Year 2021-2022

Abstract

Nowadays, Deep Learning (DL) is predominant in many fields like Computer Vision
or Natural Language Processing, thanks to its excellent predictive performance.
On the other hand, deploying a network in a real-world embedded system still
poses several challenges. First, the data collected is often corrupted and can hinder
a correct prediction of the network. Second, Deep Neural Networks (DNNs) are
usually too big to fit the tight constraints of an embedded platform (for instance, a
limited memory of few MBs) and need manual tuning to be optimized and reduce
their dimensions while still achieving good accuracy.
Integrating AI predictions directly on edge devices like wearables can be really
helpful in many situations where the real-time monitoring of the user is needed. For
instance, Heart-Rate (HR) monitoring is becoming increasingly more linked to the
analysis of PhotoPlethysmoGraphic (PPG) signals, which can be extracted from
wrist-worn devices. Such a technique is portable, cheap and comfortable, compared
to the previously dominant one based on Electrocardiogram (ECG), which is more
intrusive and whose collection impairs the daily life of the subject. However, the
benefits of the PPG-based HR monitoring do not come without downsides. The
main problem of PPG is the presence of Motion Artifacts (MA) generated by the
movements (especially in wrist-worn wearables) and the infiltration of light between
the skin and the sensor, that create noise in the collected signal.
The focus of this work is the development of a complete system able to collect
the PPG and track the HR of the subject while removing MAs. The system
consists of i) a Client-Server interaction based on the Bluetooth Low Energy (LE)
communication protocol to send PPG data / HR estimation to a collecting device
(e.g., a smartphone), ii) a deep neural network model (specifically a Temporal
Convolutional Network – TCN) optimized for the execution on the edge, and iii) a
simple controller based on a Finite State Machine (FSM) that manages the collection
of data, the prediction of the HR and the transmission of data. The selected edge
devices are the STM32WB55 Nucleo development board, for the prototyping phase,
and a real wearable device called H-Watch, developed by ETH Zurich for the
final deployment. Specifically, both devices feature 1 MB of Flash Memory and
a STM32WB55RGV6 System on Chip (SoC) by ST Microelectronics with two

ii

independent cores: an ARM® Cortex™-M4 at 64MHz and ARM® Cortex™-M0+
at 32MHz, dedicated to the Bluetooth Low Energy (BLE) stack. Additionally, the
H-Watch comes with different sensors, among which a pulse oximetry (MAX30101)
and 6-axes IMU (LSM6DSM), allowing the collection of data.
The dataset that we used to benchmark our results is PPGDalia, the largest
publicly available collection of PPG and tri-axial accelerometer data obtained
during daily life activities. The neural network chosen to be deployed is a Temporal
Convolutional Network, known to work well with time series-like data, such as
the stream of PPG signals over time. The model is optimized for edge execution,
and it consists of around 97K parameters, occupying 374.75 KB of the total 1MB
memory space in the MCU. On the PPGDalia dataset, the network running on the
STM32WB55 achieves a Mean Absolute Error (MAE) of 2.36 Beats per Minute
(BPM) compared to the golden HR computed with an ECG band.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1

2 Background 5
2.1 Deep Learning . 5

2.1.1 From the Perceptron to Deep Neural Networks 5
2.1.2 Backprogation and stochastic gradient descent 8

2.2 Convolutional Neural Networks . 10
2.2.1 Convolutional layers . 11
2.2.2 Pooling layers . 13

2.3 Microcontrollers and Embedded systems 14
2.3.1 Embedded Neural Networks constraints 16

2.4 Optimization for the Embedded Deployment of DNNs 17
2.4.1 Quantization . 17
2.4.2 Pruning . 21

2.5 H-Watch . 22

3 Related Works 24
3.1 Classical Approaches . 25
3.2 Deep Learning-based approaches . 28

3.2.1 ActPPG . 29
3.2.2 Q-PPG . 31

4 Porting HR Detection on Wearable Devices 32
4.1 Hardware setup . 32
4.2 Bluetooth . 36

v

4.2.1 BLE on Hardware device - Server 38
4.2.2 BLE on host device - Client 41

4.3 STMCube.AI . 42
4.4 Dalia Dataset . 43
4.5 Procedure . 44
4.6 Neural Network Design . 47

4.6.1 Moving Average . 49
4.7 GUI . 49

5 Experimental Results 52
5.1 Models tested: size and complexity 52
5.2 Evaluation . 53
5.3 Energy Consumption . 57

6 Conclusions 63

Bibliograpy 66

vi

List of Tables

4.1 Table of the service and characteristic UUIs for the P2P server
application [73]. 39

4.2 Table of P2P profiles’ specification [73]. 40
4.3 PPGDalia activities summarized. [12] 44
4.4 Architectures’ structure tested . 48

5.1 Results of models’ complexity . 53

vii

List of Figures

2.1 Biological vs Artificial neuron [14] 5
2.2 Artificial Neural Network architecture vs Deep Neural Network [17]. 8
2.3 Gradient descent. The figure shows how the gradient descent al-

gorithm uses the derivatives of a function to follow the function
downhill to a minimum [16]. 9

2.4 Example of convolution operation (a) and equivalent transposed
convolution operation (b) for a 3 × 3 filter kernel size applied to a 4
× 4 feature map [19] . 11

2.5 A sparse layer vs a fully connected layer [16] 12
2.6 Padding example with a 2 × 2 border of zeros using unit strides [21] 13
2.7 Typical structure of an embedded system [30] 15
2.8 The roofline model. FLOP stands for Floating Point Operations. . . 16
2.9 Post-Training quantization vs.Quantization-aware training [34] . . . 18
2.10 (A)Weights grouping; (B) Sparse weight matrix after pruning [36]. . 19
2.11 Quantization-aware training with Straight-Through Estimator [34] . 20
2.12 Node pruning example with masked layer. Node a− 3 withα3 = 0

can be removed. [36] . 21
2.13 H-Watch logic schematic [41] . 22

3.1 Illustration of a PPG sensor . 25

4.1 Hardware setup . 33
4.2 Evaluation board .ioc configuration taken from the tool STM32CubeMX

provided by STMicroelectronics . 34
4.3 HWatch .ioc configuration taken from the tool STM32CubeMX

provided by STMicroelectronics . 35
4.4 BLE protocol stack . 36
4.5 STM32CubeProgrammer tool in section Firmware Update Service

used to upgrade the FUS version and flash the BLE_stack binary file. 38
4.6 STM32CubeAI tool Framework . 42
4.7 Flowchart firmware logic . 46

viii

4.8 Illustration of a convolutional block in TEMPONet with two dilation
factor d = 4, stride s = 2 and average pooling. [83] 47

4.9 Screenshot of the GUI created . 50

5.1 STM32Cube.AI Inference of Target results on 5 samples taken from
PPGDalia. 54

5.2 Comparison of the MAE values of all the three architectures 55
5.3 Prediction comparison between the True value of PPGDalia (blue)

and the predicted values from inference on STM32WB55 (red). For
visualization sake the first 256 example are shown. 56

5.4 Prediction comparison between the True value of PPGDalia and the
predictions from the Moving Average algorithm. For visualization
sake the first 256 example are shown. 56

5.5 Current consumption of performing inferences with the Nucleo board. 58
5.6 Current consumption of transferring a long list of floats numbers. . 58
5.7 Current consumption of running the MCU in busy waiting 59
5.8 Current consumption of Nucleo board setted to Low Power Standby

mode. 59
5.9 Temporal graph when transmitting 64 samples (each consisting

of 4 float values) through the BLE stack and successive 0.5 s of
Low-Power mode. 60

5.10 Temporal graph when performing inference on edge, transmission
of the predicted value (i.e., one float) and a successive 0.5 s of
Low-Power mode. 61

5.11 Graphic scheme of the minimum inference time required for the
network . 61

ix

Acronyms

DL
Deep Learning

DNNs
Deep Neural Networks

AI
Artificial Intelligence

HR
Heart Rate

PPG
photoplethysmography

ECG
Electrocardiogram

MA
Motion Arifacts

LE
Low Energy

TCN
Temporal Convolutional Network

FSM
Finite State Machine

xi

SoC
System on Chip

BLE
Bluetooth Low Energy

MAE
Mean Absolute Error

BPM
beats per minute

GPU
Graphic processing unit

TPU
Tensor Processing Units

MAC
Multiply and accumulate

ReLU
Rectified Linear Unit

MLP
Multi-layer Perceptron

RNNs
Recurrent Neural Networks

SGD
Stochastic Gradient Descent

CNNs
Convolutional Neural Networks

i.i.d.
idependent identically distributed

xii

MCU
Microcontroller unit

MPU
Microprocessor unit

CPU
Central processing unit

ROM
Read Only Memory

RAM
Random Access Memory

GPIOs
General Purpose input/output pins

AC/DC
Alternating current/Direct current

IoT
Internet of Things

DMIPS
Dhrystone MIPS

RISC
Reduced instruction set computer

CISC
Complex instruction set computer

ISA
Instruction-Set Architecture

OI
Operational intensity

xiii

FLOP
Floating Point operation

ALU
Arithmetic linear unit

PTQ
Post-training quantization

QAT
Quantization-aware training

STE
Straight-Through Estimator

RMS
Root Mean Square

SIMD
Single Intruction, Multiple Data

IMU
Inertial Measurement Unit

ELU
Exponential Linear Unit

LSTM
Long Short-Term Memory

ICA
Independent Component Analysis

MMV
Multiple Measurement Vector

NAS
Neural Architecture Network

xiv

GUI
Graphic User Interface

USART
Universal Synchronous Asynchronous Receiver Transmitter

I2C
Inter-Integrated Circuit

SPI
Serial Peripheral Interface

GAP
Generic Access Profile

GATT
Generic Attribute Profile

L2CAP
Logical Link Control and Adaptation Protocol

ATT
Attribute Protocol

UUID
Universally Unique Identifier

SMP
Security Manager Protocol

HCI
Host Controller Interface

LL
Link Layer

PHY
Physical Layer

xv

ISM
Industrial, Scientific and Medical

FUS
Firmware Upgrade Service

P2P
Peer-to-peer

RMSE
Root Mean Squared Error

VMs
Virtual Machines

xvi

Chapter 1

Introduction

Over the past decades, Deep Learning has given incredible results in many different
fields. Let us think about the increasingly advanced technologies that are used to
make our daily life activities smarter and faster. Some of these can be found in
tools that we use on a daily basis, like spam email detection in the mail providers,
user likes and dislikes profiling used for marketing strategies, and voice assistants
that help us automating tedious task and quickly answering to our questions. This
list is far from being complete, in fact we can find even more complicated scenarios,
like autonomous driving, virtual and augmented reality used both for entertainment
or for education and medical training. All these kinds of deep learning use-cases
require a huge computational power, usually provided by means of powerful Graphic
Processing Units (GPUs) or even specific custom circuits designed specifically to
deal with the heavy deep learning workloads like the Google’s Tensor Processing
Units (TPUs). Nevertheless, many systems need to be near the user to quickly
collect and analyse data. In fact, most kind of sensors requires a short distance from
theirs targets to detect usable information, unless noise or any kind of interference
can ruin the data collection results. Examples can be thermometers [1], capacitive
sensors [2], or optical cameras. The amount of data generated from all these edge
devices is increasing fast, requiring methodologies that are able to properly analyse
them.
A common solution is to rely on cloud computing technologies, where both the
network’s training and inference phases are offloaded to powerful servers. The
training of neural networks is highly computational expensive since it needs to
analyse and optimize millions of parameters several times. On the other hand, the
inference step is usually less impacting in terms of space and complexity yet can
be difficult to fit in hardware-constrained devices. Cloud computing can ease the
burden of the edge hardware restriction but comes with other problems that do
not have straightforward solutions. Based on the works [3] and [4] we can identify
four main challenges:

1

Introduction

• Latency, is the time required to send data from the source to the cloud that
introduces delays making real-time responses critical. At the same time,
transferring all the data directly to the cloud is yet an inefficient solution for
resource utilization.

• Scalabilities issues come when multiple devices try to connect to the same
cloud server making bottleneck situations a real concern. At the same time,
transferring all the data directly to the cloud is yet an inefficient solution for
resource utilization.

• Privacy is another sensible problem, especially for the end-users. They need
to be warned about sensitive information like biometric data, faces or speech
tracks and informed of how the data is intended to be used.

• Energy is required to send and receive data from the cloud server. This can
significantly affect the efficiency of the entire solution, especially considering
that most embedded devices are battery-powered. The key issue in terms of
energy consumption is to identify the right trade off between the computation
energy consumption and the transmission energy consumption.

Therefore, experts are exploring the opposite solution: porting the deep learning
networks directly to edge devices addressing all four aforementioned solutions.
The latency issue is solved by the proximity of the device with the data source
making real-time services a possibility. To address scalability issues and network
bottlenecks hierarchical architectures of edge compute nodes and cloud data centres
has been proposed[3]. Finally, having the device close to the source avoids sending
data over the public Internet and the data is analysed locally reducing a lot of
privacy issues and security attacks.
It goes without saying that porting Artificial Intelligent (AI) solution to edge
devices comes with another set of difficulties. The first thing to note is that
almost all the networks created without having in mind the specific edge computing
applications are too big and too complex to be deployed into embedded devices.
Hence, several studies have been undertaken that exploit the innate error resiliency
of deep networks that make possible to reduce their sizes and complexity making
possible to be contained in the available memory space of the edge device [5], [6],
[7]. These methodologies can be performed during the training or post-training
and entail quantization [8] [9], which is a methodology for precision reduction that
transforms floating-point computations into integer computations; pruning [10] [6],
which instead is based on cardinality reduction, meaning the removal of redundant
or low-informational nodes in the network architecture.
In other cases, the solution can simply be designing more lightweight architecture
e.g., taking into consideration the number of multiply-and-accumulate (MAC)

2

Introduction

operations that each layer performs, leading to the choice of simpler operations like
depthwise separable convolutions over standard convolutions in CNNs models [11].
A common and notable example of edge device is represented by smartwatches
and in general wrist-worn devices. These are often used in fitness-related or
health monitoring activities. This represents exactly the field where this work is
inserted. For many years, the de-facto standard for heart rate detection and heart
rate variability monitoring used to be based on Electrocardiogram (ECG) signals.
Despite providing reliable and accurate results, this kind of signal, is non-portable
and intrusive requiring direct contact with the patients’ bodies with different
electrodes to be placed on specific parts of the body. Today, an alternative and
more viable technique to ECG is represented by PhotoPlethysmoGraphy (PPG),
which can be performed with cheap and very portable pulse oximeter sensors.
Unfortunately, PPG data comes often with interference with different kinds of noise
sources, mainly related to the so called Motion Artifacts (MA) generated by the
movements of the sensor usually placed on wearable devices such as the wrist-worn
ones.
State-of-the-art solution to this problem is represented by a sensor fusion approach
where the PPG data are collected and processed with other kinds of sensors’ data
like accelerometers. These additional sources of information comes to help in
mitigating the irregularities of the PPG signal due to the high motion of the
activity being performed. In this context, the use of Deep Learning solutions comes
to help thanks to their well known raw sensor data processing ability, which allows
to find useful patterns and to generalize well the data, avoiding complicated feature
engineering steps.
The monitoring of the patient is performed over a relatively short period of time,
forming time-series-like data streams. A fairly new network topology that is known
to work well with this kind of data is represented by Temporal Convolutional
Network (TCN), which are networks that use Convolutional layers like Convolutional
Neural Networks (CNNs) but that introduce two new parameters, namely causality
and dilation.
This work aims to create a complete system based on a Client-Server architecture
linked by Bluetooth LE communication protocol. The client is represented by
an edge device, like a smartwatch where all the PPG and accelerometer data are
measured and directly processed to track hear rate. Instead, the server is a generic
device with relaxed hardware constraints like a laptop or a smartphone where
processed data can be streamed. Bluetooth LE is a technology present in almost
every device used nowadays, making the application highly portable and energy
efficient. The work was extended to analyse every part of the project:

• The low-level development of a Finite State Machine (FSM) on the edge device
that is in charge of collection of data, the HR estimation and the transmission
of data.

3

Introduction

• Server-Client framework based on Bluetooth LE communication. Where the
client is in charge of creating a visualisation tool (i.e., a dashboard) to visualize
the data from another device like a computer.

• the deployment of a deep neural network model, specifically a TCN, optimized
specifically to be executed on edge device

The rest of this work is organized as follows. Chapter 2, provides a brief explanation
of the technical knowledge about Deep learning frameworks, microcontroller and the
optimization techniques required to integrate AI solution on edge devices. Chapter
3 details the related works to this thesis discussing about the analysis of PPG and
accelerometer data with both classical algorithms and deep networks. In Chapter 4,
the steps undertaken to develop the Server-Client systems are explained in details,
starting from the hardware setup, the Bluetooth LE protocol explanation, the
procedure description, the development of the network and the dashboard. Chapter
5 presents the results obtained with the application created, using the dataset
PPGDalia[12] as benchmark to get evaluation performances. Finally, Chapter 6
concludes the work presenting future directions.

4

Chapter 2

Background

2.1 Deep Learning
Deep Learning represents an evolution of Machine Learning, thought to overcome
the problem of classical algorithms to deal with complex tasks involving raw data
(e.g, time-series or images). Deep learning uses representation learning at different
levels, automatically extracting patterns and features in the representation of data
by means of a cascade of non-linear modules. Starting from the raw input more and
more abstract representations are extracted and combined to achieve the desired
task [13].
Deep learning models are based upon the neural network abstraction. Therefore,
we start with a brief review of neural networks operating principles.

2.1.1 From the Perceptron to Deep Neural Networks

Figure 2.1: Biological vs Artificial neuron [14]

5

Background

The basic unit of a Feedforward neural network is a single-layer perceptron. It
was first introduced in 1958 by Rosenblatt [15] and extended ever since. The
perceptron model is inspired by the human brain learning system, specifically made
of a multitude of biological neurons and their connections. Nevertheless, this model
does not represent by any means an attempt to model the real functionalities of the
brain. Bearing this in mind, it is worth to better understand the relation between
the biological and the artificial neuron.

The biological neuron is a cell that is electrical stimulated and communicates with
other cells via specific connections. It is composed of a soma, the cell that combines
signals, the dendrites, the combinations of inputs from other cells, the synapses,
iterations between neurons, the axon, an elongated fibre that extends from the
soma to the terminating endings and transmits electrical impulses along its length,
the axon hillock, the part that connects the soma with the axon and the purpose
to activate the neuron. (Figure 2.1)

A biological neuron first receives inputs in the dendrites, makes some computation
in the soma and the result is sent to the axon hillock. The latter decides based
on a threshold if the cell will activate or not. The state will finally be propagated
through its axon and communicated to the other neurons using synapses.

Mathematically, this procedure has its representation in the perceptron, also called
artificial neuron or unit. It receives some inputs xi (the dendrites) associated with
a weight wi (the synapses), which allows some units to have more importance than
others, and an extra constant b called bias. The activation function, aims to model
the axon hillock, deciding whether the unit will fire or not. This function applies
an element-wise transformation to the data [16]. The perceptron equation can be
formalized as:

y = h
1 nØ

i=1
xiwi + b

2
(2.1)

Where h is this non-linear function applied to the output of the neuron.

The literature is plenty of different proposed activation functions with different
purposes and performance. Nevertheless, all these different choices share a common
purpose which is to adding a non-linearity to the model, leading the network to be
able to learn and represent non-linear relationships, present in most of real world
data.

ReLU, i.e. rectified linear unit, it is usually the recommended choice for most

6

Background

of neural network. It is defined by the following function:

h(x) = max{0, x} (2.2)

Despite actually adding a non-linear transformation to the data, the rectified linear
unit still remains very close to a linear function, being composed of two linear
pieces. This helps preserving the useful properties like easy-optimization and good
generalization typical of standard linear models [16].
The Perceptron proposed by Rosenblatt et al. [15], is the father of artificial neural
networks thought to perform a binary classification task. Hence, it analyses the
input data and classifies it in a class whether than the other. In general, an artificial
neural network is characterized by three different types of layers:

• Input Layer : is the first layer of a network. It takes the input data and pass
it to the following layer.

• Hidden Layer : is the layer that performs the non-linear transformation to the
input data, as said in 2.1.

• Output Layer : is the final layer of the network, the output predictions are
based on the values of its neurons. The way we obtain our predictions may
change based on the task the network has to perform.

If more than one hidden layer is present in the network, we talk about Deep
neural networks (DNNs). When the input data flows through the hidden layer
and finally to the output layer, the network is called feedforward, hence we call
it Deep feedforward network or Multi-layer Perceptron (MLP). If we extend
the hidden layers to include feedback connection, we talk instead of Recurrent
Neural Networks (RNN). As a common practice, feedforward networks organize
the layers as a stack. The number of stacked layer gives us the depth of the model.
In general, we speak of deep learning [16] when the number of hidden layers is
greater than one.

7

Background

Figure 2.2: Artificial Neural Network architecture vs Deep Neural Network [17].

2.1.2 Backprogation and stochastic gradient descent

How machine learning/deep learning models learn is also inspired by the way
humans learn. We, as humans, are instinctively drawn to look for a pattern to
memorize and learn concepts. The same thing is done for letting machine learns.
Given the input data, the model tries to find a pattern, and use a function to
understand whether the result is correct or incorrect.
This function comes by different names: objective function, criterion, loss function
or error function[16], denoted with J(θ). Intuitively, what we want to do is to reduce
as much as possible the incorrect answers, so mathematically we want to either
minimize or maximize this function. To do so, in machine learning algorithms,
it is used the optimization technique called gradient descent, shown in Figure
2.3. Basically, the algorithm computes the derivative to reduce the loss function,
performing small steps towards the negative direction. Since the networks have
many inputs, we speak of gradient instead of single derivatives. The gradient of
f is the vector containing all the partial derivatives of the input vector, ∇xf(x).
These are directional derivates in the direction u. In this way, to minimize the
loss function, we need to find the direction in which f decreases the fastest. The
optimization function is reduced to minucosθ, where θ is the angle between u and
the gradient. The optimization problem results to be optimized when u points to
the direction of the negative gradient. For deep learning models, this optimization
algorithm is extended in order to deal with a much larger amount of data, typical of
deep learning, which allows to generalize better the pattern but is definitely more
computationally expensive. Stochastic Gradient Descent (SGD) takes into
consideration a small group of data size m’, called minibatch, sampled uniformly
from the training set. In this way, the model can be fitted using updates computed

8

Background

Figure 2.3: Gradient descent. The figure shows how the gradient descent algorithm
uses the derivatives of a function to follow the function downhill to a minimum [16].

on a small number of examples.

g = 1
m′∇θ

m′Ø
i=1

L(x(i), y(i), θ(i)) (2.3)

Where x is the input, y is the output.
Then, the SGD optimization algorithm update at each iteration the parameter
following the estimated gradient downhill (i.e., in the negative direction):

θ ←− θ − ϵĝ (2.4)

Where ϵ is the learning rate, a positive scalar hyper-parameter of the optimization
algorithm which is multiplied by the step and determines the size of the step.
The main problem of stochastic gradient descent is that when working with the
non-linearity present in the activation function of the deep neural network, the loss
function becomes non-convex. Hence, the algorithm is not guaranteed to converge.
Nevertheless, most of the time the algorithm found very low minima, that still
result in a very useful result.
The back-propagation algorithm is often confused as the learning algorithm itself,
but as a matter of fact, it is only the way to compute the gradients. It basically
performs the chain rules of calculus with a specific order of operation.

∇xz =
1∂y

∂x

2T
∇yz (2.5)

9

Background

Where ∇xz is the gradient of variable x, ∂y
∂x

is the Jacobian matrix that is multiplied
by the gradient ∇yz.
Back-propagation usually applies the chain rule to tensors of arbitrary size. The
difference of a tensor with a vector is that the numbers are arranged in a grid-form.
When applying the algorithm to tensors we can imagine to flatten each tensor into
a vector-form before running back-propagation that finds the gradient, then the
latter is reshaped back into a tensor-form.
To sum up, during training the model perform a forward pass to calculate the
output of the network and get the loss function. Then, uses back-propagation to
calculate the gradients with respect to the loss, and finally uses stochastic gradient
descent (which use the gradients just calculated) to update the parameters.

2.2 Convolutional Neural Networks
Convolutional Neural Networks [18], (CNNs) are a specific type of neural network
thought to deal with grid-like data, such as images or time series. To deal with
them, fully connected layers would require several tens thousands of weights and
the memory requirements may not meet the hardware implementations. To tackle
this problem, LeCuun et al. identify three main key ideas Convolutional Nets are
focused on:

• local receptive fields, useful to extract visual features such as edges, end-
points or corners. Combining these features in the following layers the network
manage to create higher order features. Moreover, a local feature useful to
one part of the image, is likely to work well over the entire image.

• shared weights (or weights replications), in fact, units in the same layer are
organised in planes so that they share weights. The output of such layers is
called a feature map. This units are constrained to perform the same operation
over different part of the image, so that each feature can be extracted at all
possible location on the input. The units of a feature map are connected to an
x× x area, called receptive field of the unit, this is centered on corresponding
units in the previous layer, making successive units overlap.

• spatial or temporal subsampling, to reduce the resolution of the feature
map and hence reduce the sensitivity to shifts and distortions. In fact, one
the feature has been discovered, its exact location is not highly important,
but only its approximate location is considered relevant. For example, we can
say the input data contains a number 7 on the upper left corner if it contains
a roughly a horizontal segment and a vertical segment, connected at the
top-right endpoints. Additionally, knowing the exact position of the feature

10

Background

could be potentially harmful, since the number 7 can change its conformation
based on handwriting style.

This kind of networks take their name from the particular linear operation they
perform in at least one layer, called the convolution.

2.2.1 Convolutional layers

Figure 2.4: Example of convolution operation (a) and equivalent transposed
convolution operation (b) for a 3 × 3 filter kernel size applied to a 4 × 4 feature
map [19]

Convolutional layers represent the most important element of CNNs. Their main
purpose is implementing a convolution operation. Generally speaking, convolution
is an operator acting between two real functions.

s(t) = (x ∗ w)(t) (2.6)

The first term is the input, while the second is referred to as the kernel or filter.
The feature map or activation map will be the output of this operation. The
convolution specifically performs a dot product between the parameters of the
kernel and the input, therefore it converts all the values in its receptive fields into a
single value, in this way reducing the size of the input. Figure ?? visually present
the convolution operation over 2D matrices.
In a single convolutional layer, there can be many filters, each filter has height and
width smaller than those of the input and it is convolved with the whole input,
producing a multidimensional feature map. A complete convolutional layer stack
all the feature maps of each filter, so that multiple features can be extracted at
each location.
Convolutions are often computed over more than one axis at a time. Therefore,
taking for instance a two-dimensional image as input, the formula of the convolution
becomes:

S(i, j) = (I ∗K)(i, j) =
Ø
m

Ø
n

I(m, n)K(i−m, j − n) (2.7)

11

Background

Where I is the input image and K is the kernel.
The key idea behind convolutional layers are sparse interaction and shared weights.

• sparse interaction or sparse connectivity or local connectivity refers to the
fact that CNNs do not use matrix multiplication between each input and each
output, but making use of the kernel, usually smaller than the input, they
limit each neuron to interact with a small portion of its nearby neurons. An
visual representation of the a sparse layer is shown in Figure 2.5. In this way,
the parameters stored are way less, giving an important advantage in memory
storage requirements. Moreover, computing the output values requires much
less operation, resulting also in a computational improvement.

Figure 2.5: A sparse layer vs a fully connected layer [16]

For each neuron s in layer m, the following neurons in layer m + 1 that are
affected by the output of s constituting the receptive field of neuron s.
Usually, the receptive fields in deeper layers in the convolutional networks
are larger than the receptive fields in the shallow layers of the same network.
Thus, the neurons of the deeper layers are still, even if indirectly, connected to
all or most of the input units. In this way, the network is able to describe local
features, for example, edges or corners, and combine them in the following
layers to create higher order features, allowing convolutional networks to
describe complicated interactions.

• shared weights indicates that the same parameters are used for more than
one function in the network. Differently from MLPs where each weight is
used only once to compute the output, in convolutional networks the values
of the kernel are used all over the input dimension. The units of the same
feature map are forced to share the same set of weights [18]. In this way, the

12

Background

Figure 2.6: Padding example with a 2 × 2 border of zeros using unit strides [21]

network is able to detect the feature regardless of its position in the input.
This procedure additionally reduces the number of parameters that needs to
be stored.

The size of the output of the convolutional layer is controlled by three specific
hyperparameters, which are set before the training of the neural networks. These are
the stride, depth, and the padding. The stride indicates the number of pixels/values
the filter moves over the input. The depth is the number of filters used for each
layer, this affects the final dimension of the features map. For example, if three
filters are used, the output will be a feature map of depth three. Finally, sometimes
it is useful to pad the input to allow control over the final size of the output and
to avoid loosing information during the convolutional operation, especially in the
perimeter of the input. Usually the input is padded with zeroes, as shown in Figure
2.6, where the output dimension depends on the following formula [20]:

O = 1 + N + 2P − F

S
(2.8)

Where P is the number of pixel to be zero-padded, N is the input size, F is the
filter size and S is the stride size.

2.2.2 Pooling layers
Typically in convolutional networks, the main building blocks are composed of a
convolutional layer, a non-linear activation function such as the Rectified Linear
Unit, and a pooling function that modifies the previous output to pass it to the
following layers. Pooling divides its input data into small non-overlapping rectangles

13

Background

and for each of them, it outputs a statistical summary of values. In fact, it is also
known as the downsampling layer, since it reduces the dimensionality of the input.
The most common function used are max-pooling [22], which takes the maximum
values in the subset, and average-pooling, which computes the arithmetic average
of values in the subset. The pooling operation introduces invariance in the network,
i.e., it makes the network robust to small translations in the input data. In this
way, the network takes more into consideration whether a feature is present or not,
rather than considering its exact location.
It is possible to increase the stride between the pooling regions to k pixels (in
the case of images) instead of 1. Note that increasing the value of k reduces the
computational complexity of the network, since the number of input pixels to be
processed is reduced approximately by a factor k2 [16].

2.3 Microcontrollers and Embedded systems
Microcontroller units (MCUs) represent complete computing systems delivered on
a single board and usually workirng without any operating system. The main
components of an MCUs are: a central processing unit (CPU), a Read Only Memory
(ROM) that holds the software and which is non-volatile, meaning that it retains
the its content even without power; a Random Access Memory (RAM) i.e., a volatile
memory that stores data and code generated for execution. To interact with sensors
and other devices MCUs are provided also with a vast range of peripherals like
General purpose input/output pins (GPIOs), timers, AC/DC converter, etc. In
this way, MCUs do not require any additional components to interact with sensors
and different components, making them popular in several applications such as
Internet of Things (IoT) [23], healthcare [24], and drones [25].
It is easy, due to the similar nomenclature, to confuse Microcontrollers and Micro-
processor Units (MPUs). Normally, the first is associated with embedded systems,
while the second is commonly used to denote the computing core of personal
computers [26]. On the other hand, the difference also depends on the performance,
MCUs are less powerful than Microprocessors. Indeed, the computational power of
MPUs is generally much higher. For example, [27] compares two devices in terms
of processing power, measured in Dhrystone MIPS (DMIPS): a ARM Cortex-M4-
based microcontroller such as Atmel’s SAM4 MCU is rated at 150 DMIPS while
an ARM Cortex-A5 application processor (MPU) such as Atmel’s SAMA5D3 can
deliver up to 850 DMIPS.
The market is plenty of different types of microcontroller with very different
capabilities. In general, the following thumb rule holds: the larger is the data bus
width, the more complex the Instruction Set Architecture (ISA) of the MCU [28]
would be. Usually the bus width ranges from 4-bit to 64-bit. ARM is the dominant

14

Background

Figure 2.7: Typical structure of an embedded system [30]

family of processors designed by the company Arm Limited. They are based on
a Reduced Instruction Set Computer (RISC) architecture, which considers each
instruction as a singular function. On the contrary, in a Complex Instruction Set
Computer (CISC) a single instruction can perform multiple low-level functions
(this is the architecture used by processors for desktop computers like Intel). The
ARM ISA is used for the vast majority of embedded devices like smartphones
and wearables. Nevertheless, recently RISC-V, a new architecture, is gaining
popularity. RISC-V proposes a new ISA where the basic instruction-set is based
upon fixed 32-bit instruction and must be aligned on a 32-bit boundary, but its
encoding method can support the extension of the instruction set using variable
length instructions. This kind of architecture is very suitable to met IoT devices
constraints having low power consumption, low cost and good scalability [29]. As
said, MCU’s main use is in embedded systems. But, what is really an Embedded
system? In Figure 2.7 we can see an example of a typical structure of an embedded
system. Generally speaking, it is a combination of hardware and software that
aims to model a specific function and is usually part of broader systems, hence the
name embedded. In particular, as pointed out by F. Vadid et al. [31], embedded
systems share three main common characteristics:

• Single function: MCUs perform a function repeatedly which can vary from
domain to domain: calculator, microwave oven, printers, and so on.

• Tight constraint: the cost of the embedded system should be very low and
this lead to very tight constraints in terms of power, memory, performance or
battery.

• Reactive and/or real-time: many applications require real-time or nearly-real-
time reaction from the embedded system, to calculate metrics like accelerations
or to react quickly to changes in the systems.

Despite originally embedded systems was quite simple, nowadays they are becoming

15

Background

more and more complex allowing the designer to implement complex functions and
decision-making programs.

2.3.1 Embedded Neural Networks constraints

In recent years, there was a big trend to port neural networks into embedded
systems, also called edge devices, like wearables, smartphones and the IoT nodes
[32]. When performing training and inference, neural networks require a great
amount of computational power, hence they are usually executed on cloud servers or
GPUs. Therefore, a strong trend is to move the training and especially the inference
of networks on edge devices to provide benefits in terms of latency, scalability,
energy consumption, and privacy. Doing so is not easy, the majority of current
devices are not able to run the inference phase of deep natural networks in a
real-world scenario. Hence, there is a need to optimize the memory occupation,
computational complexity and energy consumption. Since embedded systems
often deal with real-time (or nearly real-time) applications a significant problem
is the overall processing latency. Often the main latency bottleneck is linked to
the transfer of data from the memory to the CPU and vice versa. The roofline
model[33] is often used to visualize the bound of networks in terms of operational
(or arithmetic) intensity (OI):

OI = N.ofOperations

BytesTransferred
·

èFLOP

Byte

é
(2.9)

This metric is typical for each implementation of a given task, hence different
implementations can have different OIs. The model helps to understand the upper
bound considering hardware characteristics. In Figure 2.8, we identify two main

Figure 2.8: The roofline model. FLOP stands for Floating Point Operations.

16

Background

elements:

π = peakperformance[FLOPs/OrGigaFLOPperSecond] (2.10)
β = peakbandwith[Bytes/s] (2.11)

Looking at the graph in Figure 2.8, we can differentiate two behaviours:

1. Memory bound: in the leftmost side of the model the performance are
limited by the memory, hence the maximum speed achievable depends on the
bandwidth of the platform and not on the computational capabilities.

2. Compute bound: in the rightmost side of the model, instead, the perfor-
mance are limited by the computation, hence we do have enough bandwidth
to transfer the data, but the Arithmetic Linear Units (ALUs) will be always
active.

As indicated by [32], the energy consumed by the operations and data fetches are
the real bottleneck of neural network implementations on embedded systems. This
problem is still open,requiring both hardware and algorithm optimizations.

2.4 Optimization for the Embedded Deployment
of DNNs

Between all the aforementioned good features of Deep learning models, we con-
centrate now on the well-known approximation resiliency to different kinds of
approximations. In fact, changing in small ways the input data or the computations
does not lead to significant changes in the final result. We can exploit this behaviour
to make the models faster, smaller and more efficient. Here, we focus on two main
categories of approaches, that aim to yield benefits for general purpose hardware
like MCUs.

2.4.1 Quantization
Much work has been done to reduce the size of networks. The problem with standard
models is the extra memory and computational power required for floating-point
scaling operation [34]. One of the common solutions is to compress the network and
to reduce the many MAC operations present in the training and inference of deep
networks. In this context, quantization has proven to work well for both training
and inference steps. It consists in reducing the precision of the computations,
usually performed at 32-bit float. If done properly, reducing the bit-width of
operand we can gain a lot in terms of performance while loosing a very little in

17

Background

Figure 2.9: Post-Training quantization vs.Quantization-aware training [34]

accuracy. Hence, switching from 32-bit to 8-bit data can theoretically reduce the
time and the energy to transfer data from and to the memory of a factor of 4.
The main benefits of quantization are the higher power efficiency and the memory
storage reduction which does not require to change the network topology. Never-
theless, extreme reduction in precision may lead to some or severe information loss,
resulting in significant drops in the accuracy values. This is referred to as quanti-
zation error. Quantization can be applied to both weights and activations of the
network and can be done either after training or also during it. The first method is
known as post-training quantization, while latter is referred to as quantization-aware
training. We now describe the two methods in more details.

Post-training quantization

The model is normally trained in floating-point, then it is compressed to a lower
precision like int8, which is usually considered the limit for Post-Training Quantiza-
tion (PTQ) [34]. This is the simplest and fastest way to quantize a model and can
be used to quantize pre-trained models with limited data available. The downside
is that quantization may cause a significant drop in the accuracy of complex tasks.
As said, we can quantize both weights and activations. In details:

• Weights: only the weights of the networks are converted to integers while
the input, the output and the activations remain stored in float32 format.
Quantization can be either uniform, which uses integers of fixed-point, and
non-uniform, which instead requires a code book, a sort of look-up table to
be used to dequantize the values before doing higher precision computations
[35]. At the core of this last method, there is a format called dynamic fixed-
point, which tries to embed the different distribution of the parameters in the
layers of the network. The term dynamic refers to the fact that the set of
quantization parameters are kept static with the same tensor (or sometime
within the same channel of the tensor), but changes concerning the other (or

18

Background

Figure 2.10: (A)Weights grouping; (B) Sparse weight matrix after pruning [36].

channels in the same tensor).Mao et al.[35] identify the quantization process
as a two-step process: first, the range of numbers to be quantized is chosen,
then the real values are mapped into integers represented by the b-width of
the chosen quantization. A common function to represent the real values into
integer is given by f(x) = s · x + z. This is called affine quantizer, where s is
a scale factor and z is a zero offset, identifying the integer in which the real
value zero is quantized. The latter are defined as:

s = 2b − 1
α− β

(2.12)

z = −round(β · s)− 2b−1 (2.13)

The final quantization is defined by:

clip(x, l, s, u) =

l, x < l

x, l ≥ x ≤ u

u, x > u

(2.14)

x = clip(round(s · x + z),−2b−1, 2b−1 − 1) (2.15)

• Weights and activations: in this case, since the quantization is performed
post-training there is the need for some representative data selected from
the ones used during training to give to the converter to properly perform
quantization. Thus the scaling factor s and the offset z can be calculated
as a statistic of the provided input images. Usually, a small range of data
(100-1000) is sufficient.

19

Background

Figure 2.11: Quantization-aware training with Straight-Through Estimator [34]

Quantization-aware training

Quantizing the parameters of the network when the training is already completed
introduces noise in the network’s parameters. This effect of this interference occurs
during inference when the network operates in a point which can be relatively far
from the point reached with the same model with floating-point precision [37]. To
mitigate these problems the quantization-aware training (QAT) technique has been
introduced, which nowadays is the de-facto standard procedure for quantization of
complex tasks, since they suffer a more severe accuracy drops when post-training
quantization is used.

Quantization-aware training compresses the parameters of the network at each step
of the gradient so that in the end a better loss value is reached. But it is important
to still perform the backward pass in floating-point precision, since the gradient
of quantized values is almost always zero in all differentiable points. In fact, as
it shown in Figure 2.11, the function is a thresholding function, so it is constant
in intervals. This means that its derivative is zero almost everywhere making the
network not learning at all. A common way to treat this problem is to use the
Straight-Through Estimator (STE) technique. Gholami et al. [37] explain
clearly how STE simply ignores rounding operations and uses an identity function
to approximate the values. Therefore, the training is still performed in float, but
some nodes have fake quantization operations since the forward pass is performed
as if the operations are done with integer data.

20

Background

Figure 2.12: Node pruning example with masked layer. Node a− 3 withα3 = 0
can be removed. [36]

2.4.2 Pruning
Quantization techniques allow to reduce the size and the complexity of the network
by reducing respectively the precision of the weights to be stored and the precision
of MAC operations, but the computational complexity depends also on the overall
architecture of networks. Pruning is an optimization technique that first trains
the network regularly and then prunes the unnecessary or redundant connections.
This leads to getting good level results with fewer parameters (and also fewer MAC
operations) and better generalization [38], thanks to the well-known regularization
effect offered by the utilization of smaller networks. Pruning is based on the innate
sparsity of neural networks. Sparsity, in fact, helps in improving the generalization
ability and in improving, in general, the performance at inference time and/or
training time. Recent works have proven that the number of pruned parameters of
the models can reach up to 90% with negligible loss in performance [39].
The first categorization of pruning techniques can be done on the object of pruning,
which can be the weights or the activations. The first allows having a good
reduction in the model size, changing the magnitude of the weights, and completely
eliminating the weights corresponding to zero values. It is very beneficial in
terms of memory occupancy but it is done during training and requires re-training
the model. The second is to zeroing some parts of the activations that have a
small magnitude. On the contrary of the weights, this is done at inference time.
The second categorization of pruning techniques is done between unstructured
pruning and structured pruning. The first does not follow a specific constraint,
and whatever element of the network can be pruned. On the contrary, the second
one defines specific locations that can be pruned. We now present two examples of
structured pruning at different granularity:

• Block-based pruning: shown in Figure 2.10. It consists of grouping the
weights into aligned groups that follow the underlying hardware parallelism.
After that, the weight groups are pruned based on the value of an aggregated

21

Background

Figure 2.13: H-Watch logic schematic [41]

metric, the common choice is to use Root-Mean-Square (RMS) to measure
the importance of the group and if it is below a threshold the entire weight
group is removed. Finally, the whole pruned weight matrix will be retrained
[36]. This kind of pruning works best with Single Instruction, Multiple Data
based (SIMD-based) processors and can reduce the model and execution time
of deep natural networks, since it can load a weight group with a single load
instruction.

• Channel pruning: shown in Figure 2.12. It removes entire nodes instead
of single weights. We refer to each neuron in a fully connected layer and to
each feature map in a convolutional layer as a node [36], [40]. Inserting too
much sparsity in the weight matrix may hurt the computation performance of
the layer. Hence, node pruning exploits a dynamic mask layer to discover less
significant nodes dynamically, and multiply the input with a Boolean value.
This does not actually increase the sparsity of the layer, it simply shrinks it.
The final step of node-pruning is to remove the masked layer and re-train the
network. The advantage is that the pruning procedure can come up with the
optimal layer size automatically.

2.5 H-Watch
The system presented in this elaborate is specifically based on the work done
by Polonelli et al. in [41]. The authors propose the design and implementation
of the Health Watch, or H-Watch, a hardware-firmware open-source smartwatch
which combines different sensors for health monitoring. In Figure 2.13 it is repre-

22

Background

sented the H-Watch logical architecture. The smartwatch-form device consists of
a Li-Ion 370mAh battery and a solar panel of 7 cm2, the SoC (Sistem on Chip)
STM32WB55RGV6 by ST Microelectronics, and several sensors. Among these, a
6-axes Inertial Measurement Unit (IMU) featuring 3D digital accelerometer and 3D
digital gyroscope (LSM6DSM), an integrated low-power SoC for pulse oximetry and
heart rate monitoring (MAX30101). Moreover a LCD display as user interface is
present. As communication protocols the H-Watch provides an NB-IoT transceiver
(NB stands for NarrowBand and is a wireless communication standard specifically
made for IoT) and BLE interface.
H-Watch comes with four operation modes. The Sleep mode is the state with the
least power consumption, requiring only 97 µW of consumed power. It considers
all the sensors turned off except for the real-time clock and the display. The
Advertising mode of the BLE, consuming 226µW . The motion detection mode
consumes 1.75mW since it uses accelerometer and skin temperature sensors. Finally,
the full operation mode keeps active all of the possible health classification tasks,
increasing the power consumption up to to 10mW .

23

Chapter 3

Related Works

Computer vision, Natural Language Processing, and Healthcare are just some
examples of applications where Deep learning has made plenty of improvements.
Among the new improvements introduced together with the deep learning, there
are the wearable devices for healthcare monitoring, which are the main focus of this
work. Wearable devices are able to track data from different sensors in real-time.
Thanks to this, they can monitor the user’s health, track fitness progresses or
encourages proactive behaviour for a healthy lifestyle.
Heart Rate monitoring is very popular in this field since it is useful to either track
fitness-related information, and monitor heart health. HR is a vital sign able to
give straight away informations about a person’s health. For instance, the experts
indicate that a normal HR in adults resting is in the range between 60 and 90 bpm
[42]. To estimate the HR, usually the distance between two consecutive heartbeats
is computed. These are captured from the waveform of different kinds of biological
signals (e.g., from electrocardiogram or photopletismographic signal), but noise
can mask the real heart rate signal. Hence, the quality of the HR is dependent on
the quality of the waveform [43], which is in turn a consequence of the amount of
noise present in the signal.
Electrocardiogram was the early predominant signal employed to get the heart rate.
It uses electrodes positioned on particular parts of the body (chest, wrists, arms
and legs) to record impulses and calculate the heartbeats. It is a fast, simple and
effective way, but at the same time it is expensive and requires contact with the
skin of the person, making it non-portable and uncomfortable (wearing an ECG
chest band would impair the subject daily activities).
To overcome this problem, in recent years, the use of a PhotoPlethysmoGraphic
signal to compute the heart rate of the user wearing a smartwatch is becoming
progressively more employed. Compared to ECG, the collection of the PPG is
not invasive and more comfortable. In particular, PPG uses LED lights and a
photo-detector as a receiver to detect volumetric changes in blood streams [45].

24

Related Works

Figure 3.1: The principle behind a reflection-type PPG sensor. The pulse
signal obtained from a PPG sensor comprises an AC (pulsatile) and a DC (slowly
varying) component. The AC component is attributed to changes in the blood
volume synchronous with each heartbeat, whereas the DC component is related to
respiration, tissues, and average blood volume. The two commonly LED are red
and infrared (IR), which gives different absorption properties of the blood stream.
The photodetector captures light and it is used to estimate blood volume changes.
[44]

Figure 3.1 shows the logic behind the functioning of a PPG sensor. The period of
the light impulses indicates the HR. On the other hand, the presence of different
motion artifacts, i.e. distortions in the signal, in most waveform signals captured
by wrist-worn devices can affect the fidelity of the signal [46]. Nowadays, the state-
of-the-art procedure to deal with these noises is to apply sensors fusion techniques
(Deep Learning being one of them) of the PPG signal and accelerometer data.
The algorithms that deal with this type of data can be divided into two main
categories. On one hand, there are the classical approaches, which are based on
time or frequency related features and on filtering and peak detection functions.
On the other hand, the second category is based on deep learning approaches, which
is still a relatively new field the researchers are increasingly exploring.

3.1 Classical Approaches
A first example is represented by TROIKA[47], which is a framework composed
of three parts from which it takes the name: decomposiTion, sparse signal Re-
cOnstructIon and spectral peaK trAcking. The first module partially removes the
MA from the PPG data and scatters its spectrum in the range [0.4− 5]Hz. The
second module makes TROIKA robust to noise interference calculating by means
of calculating a high-resolution spectrum of the PPG signal. Finally, the spectral
peak tracking module is the part of the framework that aims to find the peaks

25

Related Works

corresponding to HR values. The authors collected data samples from 12 subjects
and showed that TROIKA achieved significant better results with a standard
deviation error of 3.07 BPM compared to previous works.
Zhilin Zhang explored in [48] a deep neural architecture to specifically address
PPG signals heavily affected by MA. In fact, previous techniques like Independent
Component Analysis (ICA)[49] or Kalman filtering [50] fit mainly weak MA scenar-
ios. Hence, the author proposed a new approach based on JOint Sparse Spectrum
reconstruction, or JOSS. The underlying idea is that PPG and acceleration sig-
nals may have common characteristics of the spectrum structure. Hence a model
called multiple measurement vector (MMV) is used in joint spectrum estimation
(a similar, but less powerful model applied to a single spectrum was presented also
in TROIKA). The MMV model identifies the spectral peaks related to MA in the
PPG spectra using the spectral peaks extracted from the acceleration spectra. The
author bases the method on the common sparsity constraint, which “encourages
the frequency locations of MA in the PPG spectra to be aligned well with some
frequency locations in acceleration spectra”.
The author evaluated the algorithm on 12 different datasets, each of them containing
PPG signal, accelerometer data, and a channel of ECG data. As a pre-processing
step the raw data was filtered with a bandpass filter form 0.4 to 4 HZ. In the
paper, an explicit comparison with the TROIKA results on the same datasets
were presented to show the improvements in the MAE values compared to it.
In particular, JOSS reached a MAE 1.28 BPM in contrast to the 2.42 BPM of
TROIKA over all the datasets.
Another example of a classical approach is represented by [51]. In this case, to
address the MA issue the authors exploited a Singular Value Decomposition (SVD)
as MA cancellation step to get periodic MA components. A successive adaptive
filtering step suppresses the these components in order to get a two-channel PPG
clean signal. These two results are sent in input to a Spectral Analysis step,
consisting of yet another two substeps. First, the Iterative Method with Adaptive
Thresholding (IMAT) is used to get a higher resolution and to denoise the spectrum
of the input signal. Then, a Peak Selection step that apply a decision mechanisms
based on the frequency harmonic of HR and considering that the HR does not
have abrupt jumps between two successive windows. In this way, the proposed
algorithm achieves a MAE of 1.25 BPM , obtaining a slight improve in comparison
with previous works.
A successive study [52] focused on the reconstruction of MA-corrupted PPG signals
proposing a new algorithm called Spectral filter algorithm for Motion Artifacts
and heart rate reconstruction (SpaMA), which is divided in five steps. First
there is the Time-Varying Spectral analysis that perform a downsampling step
on the PPG and accelerometer data and compute the power spectral density.
Then, the Spectral Filtering step considers only the largest frequency peak of the

26

Related Works

accelerometers’ spectra to feed to the successive step, i.e. the Motion Artifact
Detection that compares the frequencies between the PPG and the accelerometer
spectra. In particular, if the first or second largest peaks in the PPG spectrum
are very similar to the accelerometer’s one, than the MA is present in the PPG,
and the corresponding peak is discarded. After that, the Heart Rate Tracking
and Extraction step is used to identify the HR frequencies. The final step is the
PPG Signal Reconstruction for the hear rate variability analysis. This procedure
outperforms previous algorithm obtaining a MAE of 0.89 BPM on the same dataset
(the SPC 12 subjects dataset).

Chung et al. propose in [53] a finite state machine (FSM) framework that leverages
the crest factor (i.e., the prominence of the peak) from the periodogram obtained
after a MA removal step. The framework is thought to address especially the
estimation of HR during high intensity physical exercises. In particular, the FSM
activates after the calculation of the HR and the crest factor, changing states based
in their values. There are four states: the stable state used when the HR has a
good level of confidence to be accurate, the recovery state indicate that the HR
value is somewhat likely to be accurate, the alert state denotes that the HR is well
be inaccurate. Finally, the uncertain state implies that HR is probably wrong. The
framework manages to reach an average MAE 0.99 BPM .

More recently, [54] proposed a new algorithm, called CUrve Tracing On Sparse
Spectrum (CurToSS). The algorithm has been developed considering also the
more complex DaLia dataset and it includes a sparse spectrum that detects on
the PPG spectra which frequencies are relevant to the HR, extending the work
previously done in JOSS. In this way the CurToSS achieves a MAE 2.2 BPM
on the SPC dataset, and a MAE 4.6 BPM on the more complex DaLia dataset
proposed in [12].

A final mention is to the work presented in [55]. Huang et al. introduce in a new
algorithm called Time-domain based method involving Adaptive filtering, Peak
detection, Interval tracking and Refinement or simply TAPIR. The PPG and the
corresponding simultaneous accelerometer data are filtered with an least mean
square (LMS) adaptive filter to remove MA, then peak detection is performed suing
a MATLAB function called mspeaks, in conjunction with a thresholding step based
on the refractory period. After that, the peak adjustment is performed by tracking
the average peak-to-peak interval over time, specifically if the interval width is less
than a percentage, the peak is likely to have been wrongly selected and therefore
removed. A second interval tracking step but performed on a longer time scale is
used to get a preliminary hear rate estimation. The final step consists in enhancing
the previous HR estimation with a notch filter. The method lead to a MAE of
2.5 BPM on the SPC dataset used in the previous methods, and achieves a MAE
of 4.6 BPM on DaLia.

27

Related Works

3.2 Deep Learning-based approaches
The use of Deep learning for PPG analysis is still relatively rare, but an increas-
ing number of works are now considering it thanks to the great generalization
capabilities of networks that outperform classical methods.
One of the early proposed deep learning models is DeepPPG[12], a Convolutional
Neural Networks that takes as input PPG- and accelerometer-signals, and gives
as output the predicted heart rates. The model has been analysed extending the
investigation to each hyperparameters to obtain optimal results. For instance, they
investigated the optimal number and size of the filters in the convolutional layers,
the type of activation functions, the pooling layers’ size and so on. Note that the
first convolutional layer is thought to unify the PPG and accelerometer channels,
while the second is in charge of detecting the interesting segments for the heart
rate detection. As activation function the authors decided to use the Exponential
linear unit (ELU) [56], and decided to insert a dropout rate of 0.5. Nevertheless,
the model is too large to be embedded into devices, counting 8.5M parameters
and 69.5M computations required to perform a single inference. Therefore, the
authors proposed a constraint-aware model by reducing the number of channels
and other layer-specific parameters and by removing the dropout layer, the resulted
model is significantly reduced to 26K parameters and only 190K operations needed
per second. The network manages to reach a MAE of 7.65 BPM on the DaLia
dataset while on the smaller datasets like SPC the model did not resulted in an
improvements compared with the classical methods. A possible reason the authors
give is the insufficient amount of data per activity in the datasets.
Another example of deep learning applied to PPG-based HR estimation is given
by CorNet [46]. The framework has been created with the aim to outdo the
limitation created by deep CNNs architures, namely the vanishing gradient, and
RNNs which still do not deal well with long term dependency with long sequential
input data. Therefore the architecture of CorNet consists of a two-layer CNN, a
two-layer Long Short-Term Memory (LSTM) and a final dense layer. The CNN can
be thought as a feature extractor able to discern useful features, yet CNN features
do not usually work well with time-series-like inputs, here is where it comes to
help the LSTM module of CornetNet. LSTMs have been decisive in capturing long
term temporal dependencies and help in finding them also in the cardiac activity
recorded by PPG sensors. The outputs of this module is finally fed to the dense
layer used as a regression layer and customized for HR detection. The resulted
architecture is therefore quite performing but highly computational expensive. In
fact, the algorithm achieve an average error of 1.47± 3.37 on all the subject of the
SPC dataset.
One other approach based on Deep Learning applied to PPG signals and acceler-
ation data for HR detection is represented by [57]. Here, two spectra of PPG in

28

Related Works

conjunction with acceleration data are used as inputs. As in previous works, the
ground truth are provided by ECG signals. Similarly to the previous network, the
network proposed by Chung et al. consists of eight layers: one 2D-convolutional
layer and one 1D-convolutional layer, two LSTM layers, one concatenation layer and
three fully connected layers with an ending SoftMax. In fact, to reduce evaluation
loss the HR values are represented as Gaussian distribution, representing each HR
values into 222 frequency bins. This approach has as drawback that the predicted
frequencies obtained may not represent exactly the ground truths, keeping in mind
that this could also be attributed to the difference between HR representations
from PPG values and ECG values. The deep learning model is once again quite
large, counting 3M parameters, but achieves a good MAE of 1.46 BPM on the
SPC test data.
The last explorations in the field of deep learning for heart-rate estimation based
on deep learning approaches went into the direction of the embedding of these
algorithm on low-power and memory-constrained platforms. In particular, in the
following of this chapter, we will briefly analyse two works, [58] Very recently a
set of models were optimized and tested with the specific goal of employing them
in memory-constrained embedding systems. We now, briefly recap two of these
models.

3.2.1 ActPPG
Risso et al.[59] propose a collection of Temporal Convolutional Networks to estimate
HR from raw PPG signals and acceleration data. TCNs are 1D-CNN with the
addition of causality and dilation parameters in the convolutional layers. The first
forces the output of the layer yt to depend exclusively on the inputs xt̃ with t̃ ≤ t,
while the dilation consists in inserting a gap d between the input samples processed
by the convolution, increasing the receptive field without the need of inserting new
parameters. Hence, a convolutional layer in a TCN is implemented by the following
function:

ym
t =

K−1Ø
i=0

Cin−1Ø
t=0

xl
t−di ·W

l,m
i (3.1)

Where x and y are respectively the input and the feature maps, t is the output
time-step and m the output channel. W is the filter weights, Ci,n the number
of input channels, d the dilation factor and K the filter size. In the paper, the
authors propose the adaptation of a popular TCN called TEMPONet, originally
used for gesture recognition. Their TEMPONet takes as input raw data of a PPG
sensor and the raw input of the accelerometer sensor on three axes. Moreover,
the last classification layer is replaced with a single neuron to perform regression.
Finally, the loss used during training is the LogCosh. In order to reduce the size
and complexity and be able to use the network in embedding systems, the authors

29

Related Works

decided to use MorphNet, a Neural Architecture Search (NAS) algorithm that
is able to automatically prune the channels of every layer, strongly reducing the
occupation of the seed network, the TEMPONet in that case. Furthermore the
author applies full-integer post-training quantization to switch the outputs from
float32 to int8.
In [60], the work of [59] is extended to create two main contributions: TimePPG
and ActPPG. The first is a collection of TCNs architecture to predict HR taking as
input raw PPG values and tri-axial accelerometer data. The different architectures
are generated using the NAS algorithm called MorphNet [61] with TEMPONet
used as TCN seed. In particular, Morphet takes as input the training dataset, and
the original TEMPONet, which gives the starting point for architecture exploration.
The optimization of this first TCN produces several optimized models with different
trade-offs of HR predictions and model complexity. This set of optimized models is
what the authors call TimePPG. Finally, a smoothing post-processing step is added
to further improve the accuracy values. This consists in applying a threshold Pth

over the maximum variation of the predicted HR with respect to the averaged HR
estimated during the previous steps. Results show that the biggest model called
TimePPG-Big reaches a Mean Absolute Error (MAE) of 4.88 bpm and has around
232k parameters, while the smallest model requiring only 5.09k parameter still
reach promising results with a MAE of 5.63 bpm.
The second contribution given in [60] is a framework called ActPPG. It combines
the use of different TimePPG models based on the quality of the PPG waveform,
hence on the high presence of Motion Artifacts, exploiting the movement data
given by the accelerometer. The framework is composed of two modules:

• Movement detector: a lightweight Random Forest model, composted of 8 trees,
is fed with the accelerometer data with the goal to categorized the movement
levels in a scale of [0, N − 1], where N is set to 2. The accelerometer values
do not provide any information related to the estimation of the HR, but they
have recently become the state-of-the-art signal to clean the PPG values from
MAs caused by the movement of the devices, especially wrist-worn.

• Predictors: the models that actually perform the estimation of the heart rates.
The module is fed with the previous window difficulty calculated wd, the
training data, and optionally the accelerometer data. Then, based on wd a
specific predictor is chosen, where the higher wd the more performing predictor
will be chosen. Note that the ordering of the predictors is made offline.

The framework is thought to be dependent on two assumptions. Firstly, as the
number of movements increases, the MAs increase too and hence the predictions of
the HR become less accurate. Second, the difference between the bigger models
and the smaller ones is mostly dictated by the ability of the two to recognize the

30

Related Works

high movements of some input examples.
Inspired by the big-little neural networks, ActPPG improves both small and big
models, by using the more appropriate model based on the situation. Despite the
improvements in the MAE values may seem meaningful, the reduction in complexity
and size, and therefore energy consumption, is significant.

3.2.2 Q-PPG
Following the proposed methodology in [59], the authors extended the work to
further reduce the complexity of the models for PPG based HR estimation in [58].
They propose a three-folded contribution:

• The NAS optimization space is extended to consider the dilation parameter
for convolutional layers. This helps to further reduce the model complexity
with a small drop in accuracy.

• Hardware-friendly quantization is added to reduce the model size, thus enrich-
ing also the Pareto frontier.

• They deployed the result on a real embedded smartwatch form device with a
STM32WB55 MCU from ST Microelectronics.

As in the previous works, the seed network for the NAS is TEMPONet. The
final output is a set of quantized TCNs and hence the name of the methodology,
Quantized-PPG (Q-PPG). In particular, the method implemented is the linear
quantizer, which takes the floating-point tensor from the range [αt, βt] into N -bit
integer tensor t̂ as:

t̂ = round
1t− αt

ϵt

2
(3.2)

where ϵt = (βt−αt)/(2N − 1) is the smallest value the quantizer tensor can assume.
In [58], writers apply first uniform quantization and the quantization-aware training
is repeated with formats int2,int4 and int8. Then, the algorithm searches for
the optimal data format for each layer. Finally, a last step of post-processing aims
to remove the inevitable and unpredictable errors given by data-driven models like
the TCNs. Hence, a filter is applied based on the natural dynamics of the heart
that provide a reasonable range of the HR over time.
Thanks to the quantization optimization the resulted networks’ size range from the
biggest 1MB (in float) to the smallest < 1kB. The largest model able to fit in the
target embedded device STM32WB55 required ≈ 412kB reaching a MAE of 4.41
BPM.

31

Chapter 4

Porting HR Detection on
Wearable Devices

The focus of this work is the development of a complete system made of three
main blocks. An interaction framework between a server and a client exploiting
the Bluetooth LE communication protocol. The deployment of a TCN in a real
embedded system and the development of a FSM that allows the collection of data,
HR prediction and the transmission of data using the BLE stack. Finally a Graphic
User Interface (GUI) has been created to enable the streaming of both the input
data and the predictions in real-time. Moreover, the GUI allows to monitor the
performance during the process which is a mandatory requirement when dealing
with long periods of processing and acquisition, in order to make sure everything is
working properly.
The aim of this chapter is to explain the steps and the setup used to create the
aforementioned system. The on-board firmware was entirely developed using the
STM32Cube environment and C code, while the client-side and the GUI were
developed in Python 3.8.

4.1 Hardware setup
The hardware used during the development of this work were two: an evaluation
board by ST Microelectronics and a smartwatch-form embedded systems (shown
in Figure 4.1(b)), developed by ETH Zurich, which is an open source firmware and
hardware project. The latter is a perfect solution to stream and directly evaluate
real data, while the first is the perfect solution during the prototyping stage since
its computing core is the same of the H-Watch. The STM32WB55xx[64], shown
in Figure 4.1(a), is an ultra-low-power MCU that embeds Bluetooth™Low Energy.
It is based on two independent cores, an ARM® Cortex™-M4 running at 64MHz

32

Porting HR Detection on Wearable Devices

((a)) Evaluation Board [62]. ((b)) HWatch [63].

Figure 4.1: Hardware setup

(called CPU1) and a ARM® Cortex™-M0+ running at 32MHz (called CPU2).
The device includes 1MB high speed flash memory and different communication
interfaces. Among these, the most used during the development of the system were:

• USART [31], which stands for Universal Synchronous Asynchronous Receiver
Transmitter. It is a peripheral that receives serial data and stores them as
parallel , and takes parallel data and transmits them as serial data. The main
parameter to be set is the transmission and reception rate, called baud rate,
that has as standardized values like 2400, 4800, 9600, 115200. The baud rate
value used in this work is 115200. Then a parity bit can be used, which is an
extra bit that may be added to each data word to detect transmission errors.

• I2C, inter-integrated circuit interface, which handles communications between
the microcontroller and the serial I2C bus controlling the sequencing, protocol,
arbitration and timing. Despite being constrained in its hardware requirements,
I2C bus provides good support for communication with several slow, on-board
peripheral devices that are accessed intermittently [65].

• SPI [66], stands for Serial Peripheral Interface. It implements a full-duplex
master and slave protocol, which means that both the agents can communicate
at the same time. The data is synchronized using the rising/falling edge of
the clock.

The first was used to simulate the reception of data in the evaluation board, while
the other two interfaces interact with the sensors present in the smartwatch.
The choice of the evaluation board used was not arbitrary. In fact, the H-Watch
has the same MCU of the board, STM32WB55RGV6. Additionally, the H-Watch
embeds two sensors that allow the acquisition of signals needed for HR prediction:

33

Porting HR Detection on Wearable Devices

Figure 4.2: Evaluation board .ioc configuration taken from the tool
STM32CubeMX provided by STMicroelectronics

• MAX30101EFD+ [67], an High-Sensitivity Pulse Oximeter and Heart-Rate
Sensor for Wearable Health. It includes internal LEDs, photo-detectors,
optical elements, and low-noise electronics. Communication happens through
a standard I2C-compatible interface.

• LSM6DSM [68], Ultra-low power, high accuracy and stability iNEMO 6DoF
inertial measurement unit. Specifically is a system-in-package featuring a
3D digital accelerometer and a 3D digital gyroscope. For this sensor the
communication is performed through SPI interface.

The framework provided by STMicroelectronics called STM32CubeIDE [69] is useful
to write/generate, compile and debug the code for the STM32 microprocessors and
microcontrollers. It is a all-in-one development tool based on Eclipse®/CDT™and

34

Porting HR Detection on Wearable Devices

Figure 4.3: HWatch .ioc configuration taken from the tool STM32CubeMX
provided by STMicroelectronics

GCC compiler tool-chains. To set the parameters and the configuration of all
components in the MCU, STM32CubeMX [70] was used. This is a graphical tool
that can be used as a stand alone software, or directly in the STM32CubeIDE
integrated editor.
The easy-to-use interface allows, for example, to set the pin-out configuration with
the help of automatic conflict resolution, or to set the configuration of peripherals
and middle-ware functions. In Figure 4.2 and Figure 4.3, the pin-out configurations
of respectively Evaluation Board and H-Watch are shown, which are quite similar
except for the sensors-specific configurations.

35

Porting HR Detection on Wearable Devices

Figure 4.4: BLE protocol stack. The three main blocks are the Controller (grey),
the Host (blue) and the App (green). The HCI (red) is the interface that manages
the communication between the Controller and the Host. The rectangular frames
represent the different layers of the protocol, and they are ordered in a stack, which
starts from the bottom, with the PHY part, and ends at the higher level, that is
the App. The arrows show how encapsulation and fragmentation work. [71]

4.2 Bluetooth
To communicate data and predictions between the FSM and the client device, the
Bluetooth Low Energy [71] protocol was chosen. Nowadays, the vast majority of
devices include BLE among their technologies making it a brilliant candidate to
port the system to several applications. Moreover, as the name suggest BLE is
characterized by low power consumption which allows it to be embedded in small
devices with small batteries [71].
BLE is a communication protocol composed of a stack with three main blocks,
which we can see in Figure 4.4. The architecture structure is very similar to the
classic Bluetooth, so that it is possible to develop applications compatible with both
protocols. Each block is composed of some sub-layers, and each layer incorporates
its own lower layers.

• Application: the highest block of the stack, it allow direct interaction with
the user, defining some profiles and common reusable functions.

• The Host block includes:

– Generic Access Profile (GAP): the highest layer within the Host block.
It has the main role to interface with the Application layer and hence, with

36

Porting HR Detection on Wearable Devices

the user. It specifies roles, modes, procedures, connection establishing
and security.

– Generic Attribute Profile (GATT): it defines the methods to exchange
profiles’ information and data. Profiles are a specific structure of data
transmitting, they are hierarchically organized into services, organized as
well into characteristics. During the connection establishment, the server
exposes its services and characteristics to the client in order to define
how the connection will be structured. Each characteristic describe the
transmission of a specific type of data, and it is made of a descriptor, a
value and some properties. The latter are used to communicate to the
client what operations are allowed. The most common properties are:
readable, the client can only read the value; writable, the client can write
a new value; notifiable, the client receives a notification when the server
update the characteristic value.

– Logical Link Control and Adaptation Protocol (L2CAP): it takes
the data from the lower layers and transform it into standard BLE packet
format, and vice versa.

– Attribute Protocol (ATT): this layer defines the client-server architec-
ture, where the latter receives the data from the server, which in turn
sends data to the client. Universally Unique Identifier (UUID) is a set of
permissions and a value to organize the data into attributes. The GATT
layer incorporates the ATT to perform connections.

– Security Manager Protocol (SMP): a set of security algorithms with
the goal of encrypting and decrypting data packages.

– Host Controller Interface (HCI), Host side: is the layer that controls
the communication between the Controller’s side and the Host’s side.
Specifically, it defines commands and events to translate raw data into
data packets via serial port to the Controller layer.

• The Controller block includes:

– Host Controller Interface (HCI), Controller side: is the opposite of
the Host side. Hence, it sends data packets from the Controller to the
Host.

– Link Layer (LL): is a combination of a hardware and software defining
the type of communication to be instanced between the devices.

– Physical Layer (PHY): by construction BLE operates in the Industrial,
Scientific and Medical (ISM) band in 2.4− 2.5GHz, the same as classical
Bluetooth (BR/EDR) and Wi-fi. In particular, the BLE frequency goes
from 2.400GHz and 2.4835GHz and is divided into 40 channels. A

37

Porting HR Detection on Wearable Devices

Figure 4.5: STM32CubeProgrammer tool in section Firmware Update Service
used to upgrade the FUS version and flash the BLE_stack binary file.

strategy called Adaptive Frequency Hopping is used to define pseudo-
randomly a communication channel so to avoid interference with other
wireless protocols.

4.2.1 BLE on Hardware device - Server
Both the h-watch and the development board are programmed to play the server
side of the whole application. The first mandatory step to be performed on this side,
is to upgrade the Firmware Upgrade Service (FUS) binary and flash the devices with
the right BLE-firmware stack. The versions compatible with both devices are respec-
tively stm32wb5x_FUS_fw_for_fus_0_5_3 and stm32wb5x_BLE_Stack_full_fw.bin
.
To do so, the STM32CubeProgrammer [72] (shown in Figure 4.5) was used. This is
a graphical configuration tool to read, write and verify debug interfaces, boot-loader
interfaces and memory internal and external and so on.
ST Microlectronics provides several template application to help the user develop
any kind of application. In this work, the P2P_server template (where P2P stands

38

Porting HR Detection on Wearable Devices

for peer-to-peer) was explored to build the server side application. This is based
on a sequencer that execute a background scheduling function and enter a secure
Low-power mode when there is no activity to be executed [73]. The implementation
of the sequencer requires many steps where some of them are mandatory:

1. Set the maximum number of supported functions. In this work the default
parameter is used, i.e., UTIL_SEQ_CONF_TASK_NBR > 32

2. Register a function to be executed by the sequencer which is associated with a
signal in the sequencer itself: UTIL_SEQ_RegTask(1« CFG_TASK_SEND_DATA_ID,
UTIL_SEQ_RFU,
P2PS_Send_Data)

3. Start the sequencer to run a background while loop.

4. Call UTIL_SEQ_SetTask() every time the function need to be executed. The
sequencer will decide which task to call depending on the priority flag associated
with each task (0 is the highest).

To establish a connection with the client, the server works at the GAP level of
BLE, which can discover the remote device and initiate the connection.
Regarding the configuration of services and characteristics configuration the user
can choose between two types of profiles. The first is the Standard profile, defined
by Bluetooth SIG [74]. In this case, the specifications of the characteristics and
the services cannot be changed. The second is the Proprietary profile, this defines
non-standard profiles, hence the user can define custom services and characteristics.
This work is based upon a standard profile.
The P2P_server template implements the services and characteristics listed in
Table 4.1 and Table 4.2.

Groups Service Characteristic Size Mode UUID

Led
Button
control

P2P service - - - 0000FE40-cc7a-482a-984a-7fed5b3e58f

- Write 2 Read / Write 0000FE41-8e22-4541-9d4c-21edae82ed19

- Notify 2 Notify 0000FE42-8e22-4541-94dc-21edae82ed19

Table 4.1: Table of the service and characteristic UUIs for the P2P server
application [73].

39

Porting HR Detection on Wearable Devices

Write
Octets LSB 0 1

Name Device selection LED control

Value

- 0x01: P2P server 1 - 0x00 LED off
- 0x02: P2P server 2 -0x01 LED on
- 0x0x: P2P server x - 0x02 Thread

- 0x00: All

Notify
Octets LSB 0 1

Name Device selection LED control

Value

- 0x01: P2P server 1 - 0x00 switch off
- 0x02: P2P server 2 -0x01 switch on
- 0x0x: P2P server x

- 0x00: All

Table 4.2: Table of P2P profiles’ specification [73].

In this work, the Notify standard profile has been used. In particular, the client
receives a notification every time a new sample (both PPG and accelerometer
data) is available. To do implement the Notify profile is exploited the function
P2PS_STM_App_Update_Char, shown in Listing 4.1. This takes as inputs the UUID
of the characteristc and the BLE payload, i.e. the data to be sent.

Listing 4.1: Snippet of code implementing the send data functionality over BLe
using the Notify service

1 tB leStatus P2PS_STM_App_Update_Char(uint16_t UUID, uint8_t ∗pPayload)
2 {
3 tB leStatus r e s u l t = BLE_STATUS_INVALID_PARAMS;
4 switch (UUID)
5 {
6 case P2P_NOTIFY_CHAR_UUID:
7

8 r e s u l t = aci_gatt_update_char_value (
9 aPeerToPeerContext . PeerToPeerSvcHdle ,

10 aPeerToPeerContext . P2PNotifyServerToClientCharHdle ,
11 0 , /∗ charVa lOf f s e t ∗/
12 20 , /∗ charValueLen ∗/
13 (uint8_t ∗) pPayload) ;
14

15 break ;
16

17 d e f a u l t :
18 break ;
19 }
20

21 re turn r e s u l t ;

40

Porting HR Detection on Wearable Devices

22 }

In Listing 4.1 note that the parameter charValueLen depends on the amount of
data sent. In this case, we want to sent five floating-point values, where 1 value is
for the PPG signal, 3 values are for the tri-axial accelerometer values, and finally
1 value is reserved for the HR prediction. Each float requires 4 bytes, hence the
required length of the payload is set to 20 bytes.

4.2.2 BLE on host device - Client
In the system developed in this work, the client side is represented by a program in
Python on an host computer, but could be extended to any other device equipped
with BLE stack like a smartphone.
To establish the connection the bleak [75] library is used. Bleak stands for Bluetooth
Low Energy platform Agnostic Klient and is a free software supporting Windows
10, Linux, and OS X/macOS. 5 The implementation of Bleak provides a GATT
client that gives support for reading, writing and getting notifications from the
server. The library is thought to work in an asynchronous fashion.
Asynchronous programming is based on the async/await pattern introduced in
Python 3.5. This feature allows the programmer to write a single continuous set
of statements in a direct programming style that will be performed in the correct
order, even when they are run asynchronously as a set of separate events [76]. In
addition, Coroutines are functions that allow suspension and resume of their
execution through the use of the keyword async and await. By all means, if these
tasks are not coordinated properly, the interleaving between tasks from different
activities can be source of bugs [77].
In Python, this kind of programming style can be implemented with the use of
AsyncIO[78] library. This library gives the possibility to write concurrent code,
hence allowing the development of coroutines and awaitable tasks.

Listing 4.2: asyncio coroutine simple example
1 async de f main (address) :
2 async with BleakCl i ent (address) as c l i e n t :
3 model_number = await c l i e n t . read_gatt_char (MODEL_NBR_UUID)
4 pr in t (" Model Number : {0} " . format (" " . j o i n (map(chr ,

model_number))))
5

6 async io . run (main (address))

The library bleak is thus combined with asyncio to manage the Bluetooth con-
nection with the server. As we can see in the example code in Listing 4.2, we

41

Porting HR Detection on Wearable Devices

Figure 4.6: STM32CubeAI tool Framework

create a coroutine to make the function used to establish the connection with the
MCU awaitable. Also the functions that send and receives data to/from the server
depending on the specific application are implemented in this way.

4.3 STMCube.AI
To deploy the DNN on the MCU, we employed the STMCube.AI [79] environment
provided by STMicroelectronics within the same CubeIDE coding environment.
The software provide a graphic interface to automatically load a pre-trained model
without writing all the C code required for the creation of the model, the man-
age of weights and activation functions, generating the STM32-optimized neural
network. Different models’ formats are supported, among which Keras and Tensor-
flowLite™and ONNx.
The tool used as extension in STM32CubeMX framework is shown in Figure 4.6.
Beyond the codegen capabilities, it also provides some useful methods to analyse
the network: checking the architecture with analyse, the validation on desktop
and validation on target device. The analyse button allows to run an analysis of
the model providing information on its dimension (RAM and FLASH memories)
and the complexity (number of MAC operations). The validation on desktop

42

Porting HR Detection on Wearable Devices

button gives the possibility to validate the translated C model. Moreover, both
the a reference ground truth or auto-generated random samples are provided some
metrics are calculated, among which the MAE. The validation on target can be
performed only when the device is connected through the USART to the ST-Link,
allowing to compile, program and run the network [80]. This features resulted useful
when analysing the compatibility of the network with the MCU before generating
the actual code. Moreover, note that Cube.AI gives the possibility to directly
compress the given model to int4 or int8, but since the model was compressed
with TensorflowLite, none compression was applied at this step.

4.4 Dalia Dataset

The dataset used as a benchmark in this work is PPGDalia proposed by A. Reiss
et al.[12]. The dataset comes to fill the lack of extended datasets that comprehends
both PPG and accelerometer data. The name is an acronym for dataset for motion
compensation and heart rate estimation in Daily Life Activities. In fact, it consists
of records of 8 different activities recorded in periods in between. The subjects
included in the dataset are 15 with a total of 36 hours of recorded data. The
collection of data was performed employing a chest-worn device and a wrist-worn
device. The first was used to measure ECG signals, respiration capture with an
inductive plethysmograph sensor, and 3D-accelerometer data. The wearable device,
instead, provided a PPG sensor with four kinds of LEDs (two red and two green),
and an inertial three-axis acceleration sensor sampling at 32Hz.
As said, 15 subjects were involved in the data collection, 8 females and 7 males, all
of them students or employees in good health conditions, with age ranging from 21
to 55 years old. Further information about the subject’s height, weight, skin, and
fitness level are provided in the documentation of the dataset itself.
The activities recorded are divided into three levels of intensity: low, medium
and high. Moreover, the authors decided to consider both periodic and aperiodic
activities with different physical efforts required to generate highly diversified heart
rates. The different activities are briefly described in Table 4.3. The data collection
protocol took around 150 min per subject, except for one of them, for which only
90 min of data are valid due to a hardware issue. In order to provide reliable
golden labels, the authors used R-peak correction on the ECG signals to obtain the
ground-truth heart rates. Moreover, data are segmented using a sliding window
approach where each window has length of 8s, and a shift of 2s. Therefore, there is
an overlap of 6s between two consecutive windows.

43

Porting HR Detection on Wearable Devices

Activity Duration [min] Description

Sitting 10 sitting still and reading on a laptop or magazines

Ascending and descending stairs 5 climb 6 floors of stairs up and going down twice

Table soccer 5 the game was played one-on-one with the supervisor

Cycling 8 the route was about 2 km length with different road conditions

Driving 15 the drive was 15 min long with a common car.

Lunch break 30 includes queuing to get food and eating at a table

Walking 10 -

Working 20 working activities were mainly at a computer.

Table 4.3: PPGDalia activities summarized. [12]

4.5 Procedure
This section aims is to explain the whole logical and practical reasoning behind
the development of the control FSM.
Figure 4.7represents the flowchart of control algorithm running on the STM32Wb55.
The algorithm starts with the initialization of all components, e.g cube.AI and BLE
component along with all the standard interfaces and configurations needed by the
MCU. Then, the sequencer of the BLE application runs in the background, looking
for a connection. When the connection is established with the client, this sends a
command to start the timer on the MCU. The timer TIM16 on the board is used to
set the sampling of data at 32Hz. Every time the timer is called it sets a task that
is in charge of running the function that manages the sending and reception of
data to/from the client. Moreover, to re-create the same sliding window approach
used in the PPGDAlia dataset, two global counters are created.
In the flowchart, we can visually identify two main blocks, the first representing the
very first batch arriving in the MCU, and the second managing all the consecutive
batches. The MCU receive a sample at a time through a serial connection with the
client.
This sample consists of a PPG signal, and three values of the 3D-accelerometer
data. Hence, to recreate a window size of 8s, we need 256 samples (8 ∗ 32). Every
time the sample arrives, the counter_1 is checked to see whether is up to 256, if it

44

Porting HR Detection on Wearable Devices

is not, the window is not yet completed so the sample is sent through Bluetooth
LE to the client in order to be plotted; if the counter_1 is 256, the window is
completed and the entire batch is sent as input to the Cube.AI network, which
returns the predicted HR. Then, the last received sample and the predicted HR are
sent to the client. A global flag is set to indicate that the first batch is completed,
so that the next time the function is called it will manage successive batches.
The last block of the flowchart represents the successive batches after the very
first. Since in PPGDalia dataset the windows are shifted of 2s, we need to take 6s
seconds of data from the previous batch and 2s of new data. This results in coping
192 old samples and receiving 64 new samples, forming the window of 256 samples
required. Thus, as previously done, counter_2 is used to check the number of new
data arrived, if it is less than 64, the sample only is sent to the client through
Bluetooth; when counter_2 is 64, the new window of data is sent to the Cube.AI
and the new prediction is obtained. The latter and the last received sample are
sent to the client. This procedure continues until no more data is received in the
MCU.
Note that this whole procedure is needed to simulate the sampling of data since the
Nucleo STM32WB55 cannot do it directly. When using the H-Watch smartwatch,
the receiving of data from the serial port is substituted by sampling directly from
the PPG sensor (MAX30101) and the three-axis accelerometer sensor (LSM6DSM)
data. Nonetheless, the managing of the sliding window is maintained.
From the client side, the algorithm starts by scanning for available devices and
creating a connection with the provided IP address belonging to the Nucleo board
or the H-Watch. Once the connection is established, the GATT client send a
command, defined as the char value x00x02, to start the timer TIM16. After that,
the client subscribes to the Notify profile providing the Notify characteristic UUID
and a callback. Then, if the server is the Nucleo board, send a sample through
serial communication and wait to receive a notification with the data from the
server. The callback is in charge of taking the value from the payload, cast it to
float and finally save it in a local dataframe.

45

Porting HR Detection on Wearable Devices

Figure 4.7: Flowchart firmware logic

46

Porting HR Detection on Wearable Devices

Figure 4.8: Illustration of a convolutional block in TEMPONet with two dilation
factor d = 4, stride s = 2 and average pooling. [83]

4.6 Neural Network Design
Based on the works presented in [59],[60], and [58] already discussed in sections 3.2.1
and 3.2.2 respectively, the model chosen to be deployed in the STM32WB55 is a
Temporal Convolutional Network. According to [81], the three main characteristics
of TCNs are:

1. Layer-wise computation instead of per-frame sequential update. This means
that every step is updated simultaneously.

2. Convolutions computed across time.

3. For each frame there is a prediction that is function of a fixed period of time,
called receptive field.

The model is written Tensorflow 2.8 [82], which is one of the most famous open
source library that provides different levels of abstraction to create neural networks.
Among these, the Sequential API allows to easily write block-based networks which
fits perfectly the innate modular structure of a TCN. The TCNs used in this work
is strictly correlated to the TEMPONet model mentioned in section 3.2.1. The
model was first described in [83] and was implemented for a gesture recognition
task. The architecture is made of TCN and Convolutional blocks (an example of
Convolutional block is shown in Figure 4.8). This kind of structure enables a more

47

Porting HR Detection on Wearable Devices

powerful processing of times series, since the temporal dimension is consumed at a
lower pace [83]. The input and output layers have been adapted to the shape of the
input and output of the PPGDalia dataset. Moreover, the last layer is substituted
with a single neuron in order to perform the regression task of HR prediction.
The architecture chosen for the final deployment has three main modules, each of
them made of:

• Two Temporal convolutional blocks with variable dilation factors and zero
padding.

• One Convolutional block, made of a 1-dimensional Convolutional layer and a
average-pooling layer.

Then, as in the original TEMPONet we have two regression blocks, made of a
Dense layer, ReLU non-linearity and Batch Normalization.
To test the network on the sTM32WB55 two main configurations of this basic
network have been considered. The two network configurations are summarized in
Table 5.1. Where the dilation factors are used on the 1D-Convolutional layers in

Dilation Factors Channels

Architecture 1 [2, 2, 1, 4, 4,8, 8] [32, 32, 64, 64, 64, 128, 128, 128, 128, 256, 128]

Architecture 2 [2, 2, 1, 4, 4,8, 8] [27, 26, 60, 58, 64, 80, 27, 29, 38, 44, 57]

Table 4.4: Architectures’ structure tested

the TCN blocks. Finally, all layers include the ReLU non-linear activation function
and a Batch Normalization layer.In this way, we can test a bigger and a smaller
network to see if they are able to fit into the embedded system. The architectures
were obtained following the work of [60], exploiting the use of the NAS tool called
MorphNet, which is a lightweight tool that concentrates the hyper-parameters
optimization on the number of channels per layer. In particular, a structured-
channel pruning approach is used, divided into two main steps. First, the size of
the network is reduced forcing all the weights of a channel to a small magnitude,
and the channels whose total magnitude is under a tuned threshold are removed.
Then, to mitigate the performance drop due to the pruning step, an expansion
step is performed, up-scaling the number of channels by a constant factor. The
loss function employed for the training is the Log-Cosh function. This function has
proven to outperform the more common Root Mean Squared Error (RMSE) loss,

48

Porting HR Detection on Wearable Devices

favoring the convergence near the minimum, thanks to its smoother behavior in
that point [60]. The Log-Cosh loss is defined by:

L =
nØ

i=1
log(cosh(yi − ŷi)) (4.1)

The models have been trained for 100 epochs, with Adam optimizer and starting
learning rate set to 0.001.

4.6.1 Moving Average
In order to compare the results obtained with the networks, a simple moving average-
based algorithm has been applied to the Dalia dataset to get the predictions with
a classical method. The moving average is a technique commonly used in statistics
and data analysis to get an idea of the trend of a stream of data. Specifically, the
deterministic algorithm calculates the average of a subset of values from the dataset,
the size of the subset is called window. The average is called moving since the
window is always shifted by a certain step (in our case we considered 2s of overlap
between two consecutive windows, following the DaLia dataset segmentation) to
include new data and “forget” the old data.
In the contest of our application, the mean values are used afterwards for the
computation of the R-R peak interval, which is the time interval between two
consecutive peaks. In fact, the mean value of each window is used as a threshold
to see whether each point can be considered a peak or not.

4.7 GUI
The Bluetooth LE client application is integrated with a Graphical User Interface,
that aims to plot in real-time the data received from the server MCU.
The GUI is created as a Dashboard based upon the library Plotly Dashboard [84].
The dashboard created is rendered as a web page running on local host, but could
also be deployed on Virtual Machines (VMs) or Kubernetes clusters, and accessed
by URLs [85].
Dashboards are a great way to quickly visualize data and capture insights infor-
mation from it. In particular, if the data are collected in real-time having an
immediate response of the data quality and consistency can help in finding mistakes
on the fly and in avoiding measurements’ errors.
Plotly Dash is built upon Flask, Plotly.js and React.js, and allows to create
interactive plots in Python, using predominantly the plotly.py library. The two
main building blocks of Dash are the Layout and Callbacks. The first indicates
which components are used and how they are organized, creating a hierarchical

49

Porting HR Detection on Wearable Devices

Figure 4.9: Screenshot of the GUI created

representation. Dash provide the use of HTML components to create plots, tables,
headings and so on, or specific Dash Core Components that are thought to be
interactive. The callbacks function are used to make the the dashboard interactive.
In fact, they take as parameters both input and output properties of a component,
every time a input is changed the function gets called automatically and it updates
the output component based on the specified logic. Since the outputs react to
changes, this is also called "Reactive Programming"[85].
Figure 4.9 shown the developed GUI. As we can see, there are three graphs on
the left, each showing an axis of the 3D-accelerometer, and one graph on the right
showing the waveform of the PPG signal. Moreover, we found a table listing all
the numerical values of the data. The table is placed underneath the PPG graphs
and gives the possibility to save the raw data as a .csv file using the toggle button

50

Porting HR Detection on Wearable Devices

named "Save Dataframe". On top of the page, the HR value obtained the simple
moving averaging algorithm is shown in blue, while the predicted value using the
TCN deployed on the MCU is shown in orange.
The connect button triggers the scanning for the server’s IP and the connection
with it through Bluetooth LE. Once the connection is established, the client sent
a command to the MCU to start the Timer16 as explained in Section 4.5. After
that it creates a subscription to the notify service of the BLE server. In this way,
every time a new sample is sent from the server to the client, the latter receives
a notification and the new data is added to the DataFrame and plotted on the
graphs.

51

Chapter 5

Experimental Results

This chapter analyses the results obtained with the two architecture defined in
4.6. In particular, we first explore the dimension and the complexity of the two
architecture, and then we analyse the power consumption of the chosen model in
different configurations.
The Bluetooth LE communication protocol is used in the experimental set-up to
send the data samples between the server, i.e. the MCU, and the client, i.e. the
application on a second device like a smartphone or a computer. The transmitted
data is characterised according to whether the network inference is performed on
the embedded system or not. In case of inference on edge, the BLE stack would
be used to send the single predictions performed by the network, i.e. a single
float value. On the other hand, if we need to send all the data to the client to
make the inference, we will need to send 256 or 64 samples of values (1 PGG value
and 3 accelerometer values) in order to make the very first prediction and all the
successive ones respectively.
As we will see in the following sections, the architectures consume more power
in comparison with the continuous stream of the data since the inference time is
considerably long.

5.1 Models tested: size and complexity
Recalling that the total memory available of the STM32WB55 MCU is 1MB, the
two architecture has been verified exploiting the STM32Cube.AI tool that allows
to easily check the size of the models.
In Table 5.1 are summarized the results in terms of size, number of MAC operations
and parameters. In particular, we can see that Arch. 1, the biggest, counts a
total of 429k parameters and a size of 1.63MiB. This unfortunately overflows
the total memory available in the MCU. The consequent step was to apply some

52

Experimental Results

Size Parameters MAC

Arch. 1 1.63 MiB 429,185 13997953

Qarch. 1 917.75 KiB 939,466 35614977

Arch. 2 374.75 KiB 97,241 7591763

Table 5.1: Results of models’ complexity

optimization techniques discussed in section 2.4. Therefore, both quantization-
aware and post-training quantization were implemented in this architecture to
understand if the reduced model can fit the memory of the MCU, and still achieves
a good accuracy. As a downside, the dilation factor had to be removed by setting
the parameter dil = 1 since the tool STMCube.AI does not support quantized
model with dilation factor different from 1 yet. The quantization-aware training of
Convolutional layers is not yet directly supported by TensoflowLite, hence a custom
quantization function [86] has been exploited to quantize the specific layer. In
particular, the function allows describing the behaviour of the network to quantize
weights, activations and outputs of a layer. All the layers except for the Batch
Normalization have been quantized to int8. This quantized version of Arch. 1,
indicated as Qarch. 1 reaches a size of 917.75KiB with 939k parameters, which
unfortunately was still too much to fit in the embedded MCU.
To tackle the issue, Arch. 2 directly reduces the number of channels in each
Convolutional layer and therefore the number of parameters, consequently reducing
the size and latency of the network by simply changing its architecture and without
reducing the precision of the computations. In fact, Arch. 2 consists of 97k
parameters taking up 375.75KiB of memory space. In this case, we are able to fit
this second architecture into the embedded system.
Arch. 2 is therefore chosen to be deployed on the MCU. In Figure 5.1, we can see
the results of the analysis of the network using the graphical interface provided by
STM32Cube.AI. The inference of the network resulted to be quite slow, having an
average time of around 2s.

5.2 Evaluation
To evaluate the performance of all the architectures we used as benchmark dataset
the DaLia dataset presented in section 4.4. The predictions obtained on the
PPGDalia dataset are based on the MAE metric, used in mostly all the works on

53

Experimental Results

Figure 5.1: STM32Cube.AI Inference of Target results on 5 samples taken from
PPGDalia.

PPG data analysis. Moreover, this metric is one of the most common metrics used
for regression tasks in general and it gives an averaged magnitude of the error of
the predictions.

MAE = 1
n

nØ
i=1
|yi − ŷi|2 (5.1)

Where n is the total number of examples, yi is the true value and ŷi is the predicted
value. In our case, we obtain the absolute error between the golden HR represented
by the ECG values, and the predictions obtained with each architecture from the
PPG signals.
As illustrated in Figure 5.2, Arch. 1 which is the biggest, presents a MAE of
2.442 BPM , while its quantized version has a predictable slightly higher MAE
value of 2.519 BPM . Despite having a long inference time, the Arch. 2 reaches a
good value of MAE 2.364 on the whole dataset, without making any difference
neither on subjects nor the activity. The variation of the metric values between the
two architectures is accountable to some overfitting during the training of Arch. 1.
In Figure 5.3 we can see the two waveforms that represent the value of the first
256 HR predictions compared with the true values taken from the golden HR in
the DaLia dataset, having on the y-axis the BPM values and on the x-axis the

54

Experimental Results

Figure 5.2: Comparison of the MAE values of all the three architectures

predictions’ number. We can see that they are almost overlapped, mirroring the
good level of MAE reached.
Moreover, as anticipated in section 4.6.1, the results of the network are compared
with the results obtained with an algorithm based on a simple moving averages and
the so-called R-R interval. The R-R interval is the time between two successive
heartbeats. The RR interval and HR are hyperbolically related (HR × R −
Rinterval = 60000) [87]. The MAE resulted with this algorithm is 13.36 due to
errors caused by MA-induced noise, which is definitely much higher than the result
obtained with the TCN model. In fact, in this case, Figure 5.4, that has, as before,
on the y-axis there is the BPM value and on the x-axis the predictions, shows the
waveforms differ significantly on many points.

55

Experimental Results

Figure 5.3: Prediction comparison between the True value of PPGDalia (blue)
and the predicted values from inference on STM32WB55 (red). For visualization
sake the first 256 example are shown.

Figure 5.4: Prediction comparison between the True value of PPGDalia and the
predictions from the Moving Average algorithm. For visualization sake the first
256 example are shown.

56

Experimental Results

5.3 Energy Consumption
The analysis of energy consumed by deep learning model has gained importance over
the past years. Especially when dealing with hardware-constrained and battery-
powered systems the energy is strictly linked to the lifetime of the target device.
Therefore, the following section aims to explore the power consumption of the
system developed in this work considering its two main characteristics, the BLE
stack and the deep learning inference.
The measurements have been carried out with a multimeter Keysight HP 34401a
[88] and with the Nucleo board STM32WB55, sampling the values of the current
for about 2 minutes. The following parameters are set for all the configurations:

• Sampling at 20Hz

• Full scale at 100mA

• Fast mode with 4 maximum digits

• External power supply at 5V for the board
We tested four different configurations to compare the energy efficiency of the
model deployed on the MCU.
The first configuration tested was the inference of the Network. The project on
the STM32CubeIDE was modified in order to run only the network deployed
once, make it wait for 1000ms, and re-run the inference. The graph in Figure 5.5
shows the current consumption of this configuration. Note that the average current
consumed is 7.078 (mA), therefore the average power consumption is 25.481 (mW),
considering that the power supply of only the MCU is 3.6 V [89].
The second configuration, visible in Figure 5.6, is used to test the power consumption
of data transmission through BLE stack. To get the measurements we continuously
send data through the BLE. In this case, the average power consumption is a bit
higher than when making an inference with the network, reaching 8.852 (mA) and
hence 31.867 (mW).
Figure 5.7 shows the third configuration tested. In this case, the MCU is running
the main while loop without anything in it, so it is set in a busy wait state. In fact,
the power consumption is lower than the first two with a mean value of 6.643 (mA)
and 23.915 (mW). This configuration is thought to get a baseline consumption,
therefore the other configurations where the MCU is actually performing actions
must have higher power consumption than this baseline.
The last configuration, shown in Figure 5.8, is obtained by making the MCU enter
a Low-power StandBy mode. This consists of a state where both CPU1 and CPU2
cannot execute any code, but only a standard set of peripherals are active [90].
As expected, the power consumption of this configuration is much lower than the
previous ones, having a mean value of 0.284 (mA) and therefore of 1.022 (mW).

57

Experimental Results

Figure 5.5: Current consumption of performing inferences with the Nucleo board.

Figure 5.6: Current consumption of transferring a long list of floats numbers.

58

Experimental Results

Figure 5.7: Current consumption of running the MCU in busy waiting

Figure 5.8: Current consumption of Nucleo board setted to Low Power Standby
mode.

59

Experimental Results

Figure 5.9: Temporal graph when transmitting 64 samples (each consisting of 4
float values) through the BLE stack and successive 0.5 s of Low-Power mode.

From these results, we can make some considerations about the effective feasibility
of the architecture deployed, and in general of deep neural networks in embedded
systems working with the Bluetooth LE communication protocol. Figure 5.9 shows
a scenery where the inference is not performed directly on the MCU, but the latter
is only in charge of sending the data through the BLE to the client application. In
the contest of the Dalia dataset, to make an inference we need the transmission of
64 new samples (note that only for the first the network needs all the 256 elements
brand new), after that the MCU is set to the Low-power mode for a short period
of time.
On the other hand, in Figure 5.10 we can see the temporal graph when the inference
is performed on the MCU. In this case, the total power consumption is given by the
consumption of the network, the power consumption of sending a single prediction
to the client (i.e., only a float value), and finally a small power consumption of
the MCU when it is set on Low-power mode as in the previous case. It is easy to
notice that the total energy consumption change with the inference time of the
network deployed on the board. In particular, in Figure 5.11 is illustrated a visual
representation of this phenomenon. The energy consumption of the network grows
linearly with the inference time. Since the BLE consumes always a certain amount
of energy when sending the same amount of data, performing the inference directly
on the device is convenient only up to the intersection of the two straight lines.

60

Experimental Results

Figure 5.10: Temporal graph when performing inference on edge, transmission of
the predicted value (i.e., one float) and a successive 0.5 s of Low-Power mode.

Figure 5.11: Graphic scheme to show the minimum inference time required
for the network. The x-axis is cut to 0.045 (ms) for visualization’s sake. The
analysed energy consumption is based on the 2s time interval between two successive
inferences.

61

Experimental Results

In other words, to be convenient the inference time should be less than the time
needed to send the data through the BLE times the ratio between the power
consumption of the BLE and the power consumption of the inference. The BLE
communication protocol has a data rate of 1 MBps, therefore the latency of
transmission of a single sample is obtained by diving the amount of data by the
data rate. Hence, to transfer the 4 float values (1 PPG value and 3 accelerometer
values) takes around 0.128 (ms). Considering how the data in segmented is the
Dalia dataset, except for the first batch, we need 64 new elements to make an
inference. Thus, it would take around 8.192 (ms) to transfer the data. All things
considered, the inference on edge results a convenient solution only when the
inference time of the network is less than 10.242 (ms). As said, the Arch. 2
deployed on the MCU takes around 2 (s) to make an inference, this implies that,
with the current configuration, streaming all the data with the BLE would result
in a more convenient solution.

62

Chapter 6

Conclusions

Deep Learning has proven to be very efficient in different fields. But the com-
putational power and memory space required to run most of the networks are
often too high to be integrated into embedded devices. Therefore, researchers are
exploring several solutions to the challenge, among which there is the reduction of
the networks’ complexity and space requirements through quantization, pruning
and ad hoc network designing.
The success of the integration of deep learning models into edge devices can bring
many improvements in a variety of fields. One of them is surely the healthcare
industry with the empowering of wearable devices to monitor patients and track
both fitness and health data throughout time.
The aim of the work was the development of a Client-Server interaction based on
the Bluetooth LE communication protocol, the development of a FSM (on the
server-side) in charge of collecting data and transmitting it, and the integration of a
TCN specifically optimized to fit into the MCU used as embedded device. Moreover,
a dashboard has been integrated with the client-side application to visualize data
and prediction on a second device, which in this contest was represented by a
computer, but could easily be adapted to other devices, like smartphones, thanks
to the portability of the Bluetooth LE technology and its presence in almost every
device in use nowadays.
The TCN has been optimized to occupy 374.75KB, and it consists of a total of
97K parameters and around 7M MAC operation. The performance of the network
has been evaluated using the PPGDalia dataset, reaching a good absolute error
of 2.364 BPM compared to the golden HR values provided by the dataset, that
were obtained from ECG signals. The time required for one inference on the
STM32WB55 is about 2 (s).
The analysis has shown that the average current consumed when computing the
inference with the network on the STM32WB55 Nucleo board is 7.078 (mA) and
therefore a power consumption is 25.481 (mW), while sending a window of input

63

Conclusions

data through the BLE stack consumes on average 8.852 (mA) of current and
31.867 (mW) of power. We derived a simple temporal graph to show that the
energy consumption of the process varies according to the network inference time.
In particular, taking into consideration the server-client communication through
the BLE stack, we need an inference time of less than 10.242 (ms) in order to have
the inference on edge as the convenient choice.
Future works surely may include the further exploration of the optimization of the
neural networks’ architectures, especially from the point of view of inference time
and energy efficiency.
Moreover, the framework might be used to sample new data and the creation of a
personalized dataset. The dashboard would be used to verify if the data collection
process is going well, reducing the error measurements and possible time wasted
when analysing the data afterwards.
Finally, the Server-Client application is not strictly linked to the HR monitoring,
by changing the kind of sensors used, it can be easily adapted to any other task
like respiratory monitoring or human temperature monitoring.

64

Acknowledgements

The development of this work could not have been a reality without the guidance
of my supervisors. I would like to sincerely thank Prof. Daniele Jahier Pagliari, Dr.
Alessio Burrello and Dr. Matteo Risso for their continuous support and patient
throughout the stages of experiments and writing of this thesis. Moreover, I am
also grateful to them for providing me the equipment and the instrumentation
needed to complete this project.

65

Bibliograpy

[1] D. Giansanti and G. Maccioni. «Development and testing of a wearable
Integrated Thermometer sensor for skin contact thermography». In: Medical
Engineering Physics 29.5 (2007), pp. 556–565. issn: 1350-4533. doi: https:
//doi.org/10.1016/j.medengphy.2006.07.006. url: https://www.
sciencedirect.com/science/article/pii/S1350453306001482 (cit. on
p. 1).

[2] Tobias Grosse-Puppendahl, Christian Holz, Gabe Cohn, Raphael Wimmer,
Oskar Bechtold, Steve Hodges, Matthew S. Reynolds, and Joshua R. Smith.
«Finding Common Ground: A Survey of Capacitive Sensing in Human-
Computer Interaction». In: Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. CHI ’17. Denver, Colorado, USA: Association
for Computing Machinery, 2017, pp. 3293–3315. isbn: 9781450346559. doi:
10.1145/3025453.3025808. url: https://doi.org/10.1145/3025453.
3025808 (cit. on p. 1).

[3] Jiasi Chen and Xukan Ran. «Deep Learning With Edge Computing: A
Review». In: Proceedings of the IEEE 107.8 (2019), pp. 1655–1674. doi:
10.1109/JPROC.2019.2921977 (cit. on pp. 1, 2).

[4] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. «Edge
computing: Vision and challenges». In: IEEE internet of things journal 3.5
(2016), pp. 637–646 (cit. on p. 1).

[5] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. 2015. doi: 10.48550/ARXIV.1510.00149. url: https://arxiv.
org/abs/1510.00149 (cit. on p. 2).

[6] Babak Hassibi, David G Stork, and Gregory J Wolff. «Optimal brain surgeon
and general network pruning». In: IEEE international conference on neural
networks. IEEE. 1993, pp. 293–299 (cit. on p. 2).

66

https://doi.org/https://doi.org/10.1016/j.medengphy.2006.07.006
https://doi.org/https://doi.org/10.1016/j.medengphy.2006.07.006
https://www.sciencedirect.com/science/article/pii/S1350453306001482
https://www.sciencedirect.com/science/article/pii/S1350453306001482
https://doi.org/10.1145/3025453.3025808
https://doi.org/10.1145/3025453.3025808
https://doi.org/10.1145/3025453.3025808
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.48550/ARXIV.1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149

Bibliography

[7] Marian Verhelst and Bert Moons. «Embedded deep neural network processing:
Algorithmic and processor techniques bring deep learning to iot and edge
devices». In: IEEE Solid-State Circuits Magazine 9.4 (2017), pp. 55–65 (cit. on
p. 2).

[8] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized Neural Networks: Training Neural Networks with
Low Precision Weights and Activations. 2016. doi: 10.48550/ARXIV.1609.
07061. url: https://arxiv.org/abs/1609.07061 (cit. on p. 2).

[9] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko,
Mart van Baalen, and Tijmen Blankevoort. A White Paper on Neural Network
Quantization. 2021. doi: 10.48550/ARXIV.2106.08295. url: https://
arxiv.org/abs/2106.08295 (cit. on p. 2).

[10] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang.
Pruning and Quantization for Deep Neural Network Acceleration: A Survey.
2021. doi: 10.48550/ARXIV.2101.09671. url: https://arxiv.org/abs/
2101.09671 (cit. on p. 2).

[11] Peter Mølgaard Sørensen, Bastian Epp, and Tobias May. «A depthwise
separable convolutional neural network for keyword spotting on an embedded
system». In: EURASIP Journal on Audio, Speech, and Music Processing
2020.1 (2020), pp. 1–14 (cit. on p. 3).

[12] Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laerhoven.
«Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural
Networks». In: Sensors 19.14 (2019). issn: 1424-8220. doi: 10.3390/s19143
079. url: https://www.mdpi.com/1424-8220/19/14/3079 (cit. on pp. 4,
27, 28, 43, 44).

[13] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. «Deep learning». In:
nature 521.7553 (2015), pp. 436–444 (cit. on p. 5).

[14] Rukshan Pramoditha. The Concept of Artificial Neurons (Perceptrons) in
Neural Networks. url: https://towardsdatascience.com/the-concept-
of-artificial-neurons-perceptrons-in-neural-networks-fab22249c
bfc (cit. on p. 5).

[15] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65.6 (1958),
p. 386 (cit. on pp. 6, 7).

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016 (cit. on pp. 6–9, 12, 14).

67

https://doi.org/10.48550/ARXIV.1609.07061
https://doi.org/10.48550/ARXIV.1609.07061
https://arxiv.org/abs/1609.07061
https://doi.org/10.48550/ARXIV.2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://doi.org/10.48550/ARXIV.2101.09671
https://arxiv.org/abs/2101.09671
https://arxiv.org/abs/2101.09671
https://doi.org/10.3390/s19143079
https://doi.org/10.3390/s19143079
https://www.mdpi.com/1424-8220/19/14/3079
https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc
https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc
https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc

Bibliography

[17] Sheraz Aslam, Herodotos Herodotou, Syed Muhammad Mohsin, Nadeem
Javaid, Nouman Ashraf, and Shahzad Aslam. «A Survey on Deep Learning
Methods for Power Load and Renewable Energy Forecasting in Smart Mi-
crogrids». In: Renewable and Sustainable Energy Reviews (Mar. 2021). doi:
10.1016/j.rser.2021.110992 (cit. on p. 8).

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. «Gradient-
based learning applied to document recognition». In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324 (cit. on pp. 10, 12).

[19] Lukas Mosser, Olivier Dubrule, and Martin Blunt. «Stochastic Reconstruction
of an Oolitic Limestone by Generative Adversarial Networks». In: Transport
in Porous Media 125 (Oct. 2018). doi: 10.1007/s11242-018-1039-9 (cit. on
p. 11).

[20] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. «Understanding
of a convolutional neural network». In: 2017 International Conference on
Engineering and Technology (ICET). 2017, pp. 1–6. doi: 10.1109/ICEngTec
hnol.2017.8308186 (cit. on p. 13).

[21] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic
for deep learning. 2016. doi: 10.48550/ARXIV.1603.07285. url: https:
//arxiv.org/abs/1603.07285 (cit. on p. 13).

[22] Zhou and Chellappa. «Computation of optical flow using a neural network».
In: IEEE 1988 International Conference on Neural Networks. 1988, 71–78
vol.2. doi: 10.1109/ICNN.1988.23914 (cit. on p. 14).

[23] Parvaneh Asghari, Amir Masoud Rahmani, and Hamid Haj Seyyed Javadi.
«Internet of Things applications: A systematic review». In: Computer Networks
148 (2019), pp. 241–261. issn: 1389-1286. doi: https://doi.org/10.1016/j.
comnet.2018.12.008. url: https://www.sciencedirect.com/science/
article/pii/S1389128618305127 (cit. on p. 14).

[24] Zarlish Ashfaq, Rafia Mumtaz, Abdur Rafay, Syed Mohammad Hassan Zaidi,
Hadia Saleem, Sadaf Mumtaz, Adnan Shahid, Eli De Poorter, and Ingrid
Moerman. «Embedded AI-Based Digi-Healthcare». In: Applied Sciences 12.1
(2022), p. 519 (cit. on p. 14).

[25] Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand, Davide
Scaramuzza, and Luca Benini. «A 64-mW DNN-Based Visual Navigation
Engine for Autonomous Nano-Drones». In: IEEE Internet of Things Journal
6.5 (2019), pp. 8357–8371. doi: 10.1109/JIOT.2019.2917066 (cit. on p. 14).

[26] M. Schlett. «Trends in embedded-microprocessor design». In: Computer 31.8
(1998), pp. 44–49. doi: 10.1109/2.707616 (cit. on p. 14).

68

https://doi.org/10.1016/j.rser.2021.110992
https://doi.org/10.1007/s11242-018-1039-9
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.48550/ARXIV.1603.07285
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285
https://doi.org/10.1109/ICNN.1988.23914
https://doi.org/https://doi.org/10.1016/j.comnet.2018.12.008
https://doi.org/https://doi.org/10.1016/j.comnet.2018.12.008
https://www.sciencedirect.com/science/article/pii/S1389128618305127
https://www.sciencedirect.com/science/article/pii/S1389128618305127
https://doi.org/10.1109/JIOT.2019.2917066
https://doi.org/10.1109/2.707616

Bibliography

[27] Frédéric Gaillard. «Microprocessor (MPU) or Microcontroller (MCU)? What
factors should you consider when selecting the right processing device for
your next design». In: URL http://ww1. microchip. com/downloads/en/De-
viceDoc/MCU_vs_ MPU_Article. pdf (2013) (cit. on p. 14).

[28] Jeevan F D’Souza, Andrew D Reed, and C Kelly Adams. «Selecting micro-
controllers and development tools for undergraduate engineering capstone
projects». In: Computers in Education 24.1 (2014) (cit. on p. 14).

[29] Jin-Yang Lai, Chiung-An Chen, Shih-Lun Chen, and Chun-Yu Su. «Implement
32-bit RISC-V Architecture Processor using Verilog HDL». In: 2021 Interna-
tional Symposium on Intelligent Signal Processing and Communication Sys-
tems (ISPACS). 2021, pp. 1–2. doi: 10.1109/ISPACS51563.2021.9651130
(cit. on p. 15).

[30] Ben Lutkevich. Embedded System. url: https://www.techtarget.com/
iotagenda/definition/embedded-system (cit. on p. 15).

[31] Frank Vahid and Tony D Givargis. Embedded system design: a unified hard-
ware/software introduction. John Wiley & Sons, 2001 (cit. on pp. 15, 33).

[32] Marian Verhelst and Bert Moons. «Embedded Deep Neural Network Process-
ing: Algorithmic and Processor Techniques Bring Deep Learning to IoT and
Edge Devices». In: IEEE Solid-State Circuits Magazine 9.4 (2017), pp. 55–65.
doi: 10.1109/MSSC.2017.2745818 (cit. on pp. 16, 17).

[33] Samuel Williams. «Roofline: An insightful visual performance model for
floating-point programs and multicore». In: ACM Communications (2009)
(cit. on p. 16).

[34] Ahmad Shawahna, Sadiq M. Sait, Aiman El-Maleh, and Irfan Ahmad. «FxP-
QNet: A Post-Training Quantizer for the Design of Mixed Low-Precision
DNNs With Dynamic Fixed-Point Representation». In: IEEE Access 10
(2022), pp. 30202–30231. doi: 10.1109/ACCESS.2022.3157893 (cit. on
pp. 17, 18, 20).

[35] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius.
Integer Quantization for Deep Learning Inference: Principles and Empirical
Evaluation. 2020. doi: 10.48550/ARXIV.2004.09602. url: https://arxiv.
org/abs/2004.09602 (cit. on pp. 18, 19).

[36] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna
Das, and Scott Mahlke. «Scalpel: Customizing dnn pruning to the underlying
hardware parallelism». In: ACM SIGARCH Computer Architecture News 45.2
(2017), pp. 548–560 (cit. on pp. 19, 21, 22).

69

https://doi.org/10.1109/ISPACS51563.2021.9651130
https://www.techtarget.com/iotagenda/definition/embedded-system
https://www.techtarget.com/iotagenda/definition/embedded-system
https://doi.org/10.1109/MSSC.2017.2745818
https://doi.org/10.1109/ACCESS.2022.3157893
https://doi.org/10.48550/ARXIV.2004.09602
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602

Bibliography

[37] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,
and Kurt Keutzer. A Survey of Quantization Methods for Efficient Neural
Network Inference. 2021. doi: 10.48550/ARXIV.2103.13630. url: https:
//arxiv.org/abs/2103.13630 (cit. on p. 20).

[38] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured Pruning of
Deep Convolutional Neural Networks. 2015. doi: 10.48550/ARXIV.1512.
08571. url: https://arxiv.org/abs/1512.08571 (cit. on p. 21).

[39] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. «Prov-
ing the Lottery Ticket Hypothesis: Pruning is All You Need». In: Proceedings
of the 37th International Conference on Machine Learning. Ed. by Hal Daumé
III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research.
PMLR, 13–18 Jul 2020, pp. 6682–6691. url: https://proceedings.mlr.
press/v119/malach20a.html (cit. on p. 21).

[40] Congcong Liu and Huaming Wu. «Channel pruning based on mean gradient
for accelerating convolutional neural networks». In: Signal Processing 156
(2019), pp. 84–91 (cit. on p. 22).

[41] Tommaso Polonelli, Lukas Schulthess, Philipp Mayer, Michele Magno, and
Luca Benini. «H-Watch: An Open, Connected Platform for AI-Enhanced
COVID19 Infection Symptoms Monitoring and Contact Tracing». In: 2021
IEEE International Symposium on Circuits and Systems (ISCAS). 2021,
pp. 1–5. doi: 10.1109/ISCAS51556.2021.9401362 (cit. on p. 22).

[42] Robert Avram et al. «Real-world heart rate norms in the Health eHeart
study». In: NPJ digital medicine 2.1 (2019), pp. 1–10 (cit. on p. 24).

[43] Chenggang Yu, Zhenqiu Liu, Thomas McKenna, Andrew T Reisner, and
Jaques Reifman. «A method for automatic identification of reliable heart
rates calculated from ECG and PPG waveforms». In: Journal of the American
Medical Informatics Association 13.3 (2006), pp. 309–320 (cit. on p. 24).

[44] Sanjeev Kumar et al. «A wristwatch-based wireless sensor platform for IoT
health monitoring applications». In: Sensors 20.6 (2020), p. 1675 (cit. on
p. 25).

[45] Shahid Ismail, Usman Akram, and Imran Siddiqi. «Heart rate tracking in
photoplethysmography signals affected by motion artifacts: a review». In:
EURASIP Journal on Advances in Signal Processing 2021.1 (2021), pp. 1–27
(cit. on p. 24).

[46] Dwaipayan Biswas et al. «CorNET: Deep Learning Framework for PPG-
Based Heart Rate Estimation and Biometric Identification in Ambulant
Environment». In: IEEE Transactions on Biomedical Circuits and Systems
13.2 (2019), pp. 282–291. doi: 10.1109/TBCAS.2019.2892297 (cit. on pp. 25,
28).

70

https://doi.org/10.48550/ARXIV.2103.13630
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://doi.org/10.48550/ARXIV.1512.08571
https://doi.org/10.48550/ARXIV.1512.08571
https://arxiv.org/abs/1512.08571
https://proceedings.mlr.press/v119/malach20a.html
https://proceedings.mlr.press/v119/malach20a.html
https://doi.org/10.1109/ISCAS51556.2021.9401362
https://doi.org/10.1109/TBCAS.2019.2892297

Bibliography

[47] Zhilin Zhang, Zhouyue Pi, and Benyuan Liu. «TROIKA: A General Frame-
work for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic Sig-
nals During Intensive Physical Exercise». In: IEEE Transactions on Biomed-
ical Engineering 62.2 (Feb. 2015), pp. 522–531. doi: 10.1109/tbme.2014.
2359372. url: https://doi.org/10.1109%2Ftbme.2014.2359372 (cit. on
p. 25).

[48] Zhilin Zhang. «Photoplethysmography-Based Heart Rate Monitoring in Phys-
ical Activities via Joint Sparse Spectrum Reconstruction». In: IEEE Transac-
tions on Biomedical Engineering 62.8 (2015), pp. 1902–1910. doi: 10.1109/
TBME.2015.2406332 (cit. on p. 26).

[49] Zhilin Zhang. «Heart rate monitoring from wrist-type photoplethysmographic
(PPG) signals during intensive physical exercise». In: 2014 IEEE Global
Conference on Signal and Information Processing (GlobalSIP). IEEE. 2014,
pp. 698–702 (cit. on p. 26).

[50] Boreom Lee, Jonghee Han, Hyun Jae Baek, Jae Hyuk Shin, Kwang Suk
Park, and Won Jin Yi. «Improved elimination of motion artifacts from a
photoplethysmographic signal using a Kalman smoother with simultaneous
accelerometry». In: Physiological measurement 31.12 (2010), p. 1585 (cit. on
p. 26).

[51] Mahdi Boloursaz Mashhadi, Ehsan Asadi, Mohsen Eskandari, Shahrzad
Kiani, and Farokh Marvasti. «Heart Rate Tracking using Wrist-Type Photo-
plethysmographic (PPG) Signals during Physical Exercise with Simultaneous
Accelerometry». In: IEEE Signal Processing Letters 23.2 (2016), pp. 227–231.
doi: 10.1109/LSP.2015.2509868 (cit. on p. 26).

[52] Seyed Salehizadeh, Duy Dao, Jeffrey Bolkhovsky, Chae Ho Cho, Yitzhak
Mendelson, and Ki Chon. «A Novel Time-Varying Spectral Filtering Algorithm
for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During
Intense Physical Activities Using a Wearable Photoplethysmogram Sensor».
In: Sensors 16 (Dec. 2015), p. 10. doi: 10.3390/s16010010 (cit. on p. 26).

[53] Heewon Chung, Hooseok Lee, and Jinseok Lee. «Finite state machine frame-
work for instantaneous heart rate validation using wearable photoplethysmog-
raphy during intensive exercise». In: IEEE journal of biomedical and health
informatics 23.4 (2018), pp. 1595–1606 (cit. on p. 27).

[54] Menglian Zhou and Nandakumar Selvaraj. «Heart rate monitoring using sparse
spectral curve tracing». In: 2020 42nd Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE. 2020,
pp. 5347–5352 (cit. on p. 27).

71

https://doi.org/10.1109/tbme.2014.2359372
https://doi.org/10.1109/tbme.2014.2359372
https://doi.org/10.1109%2Ftbme.2014.2359372
https://doi.org/10.1109/TBME.2015.2406332
https://doi.org/10.1109/TBME.2015.2406332
https://doi.org/10.1109/LSP.2015.2509868
https://doi.org/10.3390/s16010010

Bibliography

[55] Nicholas Huang and Nandakumar Selvaraj. «Robust ppg-based ambulatory
heart rate tracking algorithm». In: 2020 42nd Annual International Conference
of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE. 2020,
pp. 5929–5934 (cit. on p. 27).

[56] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. «Fast and
accurate deep network learning by exponential linear units (elus)». In: arXiv
preprint arXiv:1511.07289 (2015) (cit. on p. 28).

[57] Heewon Chung, Hoon Ko, Hooseok Lee, and Jinseok Lee. «Deep Learning
for Heart Rate Estimation From Reflectance Photoplethysmography With
Acceleration Power Spectrum and Acceleration Intensity». In: IEEE Access
8 (2020), pp. 63390–63402. doi: 10.1109/ACCESS.2020.2981956 (cit. on
p. 28).

[58] Alessio Burrello, Daniele Jahier Pagliari, Matteo Risso, Simone Benatti,
Enrico Macii, Luca Benini, and Massimo Poncino. «Q-ppg: energy-efficient
ppg-based heart rate monitoring on wearable devices». In: IEEE Transactions
on Biomedical Circuits and Systems 15.6 (2021), pp. 1196–1209 (cit. on pp. 29,
31, 47).

[59] Matteo Risso, Alessio Burrello, Daniele Jahier Pagliari, Simone Benatti, Enrico
Macii, Luca Benini, and Massimo Pontino. «Robust and Energy-Efficient
PPG-Based Heart-Rate Monitoring». In: 2021 IEEE International Symposium
on Circuits and Systems (ISCAS). 2021, pp. 1–5. doi: 10.1109/ISCAS51556.
2021.9401282 (cit. on pp. 29–31, 47).

[60] Alessio Burrello, Daniele Jahier Pagliari, Pierangelo Maria Rapa, Matilde
Semilia, Matteo Risso, Tommaso Polonelli, Massimo Poncino, Luca Benini,
and Simone Benatti. «Embedding temporal convolutional networks for energy-
efficient PPG-based heart rate monitoring». In: ACM Transactions on Com-
puting for Healthcare (HEALTH) 3.2 (2022), pp. 1–25 (cit. on pp. 30, 47–
49).

[61] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang,
and Edward Choi. «Morphnet: Fast & simple resource-constrained struc-
ture learning of deep networks». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 1586–1595 (cit. on p. 30).

[62] RS. Scheda di espansione Nucleo Pack STMicroelectronics, CPU ARM-Cortex-
M0. url: https://it.rs-online.com/web/p/strumenti-di-sviluppo-
per-microcontrollori/1830086 (cit. on p. 33).

[63] ETH-PBL. H-Watch. url: https://github.com/ETH-PBL/H-Watch (cit. on
p. 33).

72

https://doi.org/10.1109/ACCESS.2020.2981956
https://doi.org/10.1109/ISCAS51556.2021.9401282
https://doi.org/10.1109/ISCAS51556.2021.9401282
https://it.rs-online.com/web/p/strumenti-di-sviluppo-per-microcontrollori/1830086
https://it.rs-online.com/web/p/strumenti-di-sviluppo-per-microcontrollori/1830086
https://github.com/ETH-PBL/H-Watch

Bibliography

[64] STM32WB55xx - Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4
with FPU, Bluetooth® 5.2 and 802.15.4 radio solution. Rev. 11. STMicroelec-
tronics. Apr. 2021 (cit. on p. 32).

[65] Surachai Panich. «A mobile robot with a inter-integrated circuit system». In:
2008 10th International Conference on Control, Automation, Robotics and
Vision. 2008, pp. 2010–2014. doi: 10.1109/ICARCV.2008.4795839 (cit. on
p. 33).

[66] Piyu Dhaker. «Introduction to SPI interface». In: Analog Dialogue 52.3 (2018),
pp. 49–53 (cit. on p. 33).

[67] MAX30101 - High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for
Wearable Health. Rev. 3. Maxime Integrated. June 2020 (cit. on p. 34).

[68] LSM6DSM - iNEMO inertial module: always-on 3D accelerometer and 3D
gyroscope. Rev. 7. STMicroelectronics. Sept. 2017 (cit. on p. 34).

[69] STMicroelectronics. Integrated Development Environment for STM32. url:
https://www.st.com/en/development-tools/stm32cubeide.html (cit.
on p. 34).

[70] STMicroelectronics. STM32Cube initialization code generator. url: https:
//www.st.com/en/development-tools/stm32cubemx.html (cit. on p. 35).

[71] Jacopo Tosi, Fabrizio Taffoni, Marco Santacatterina, Roberto Sannino, and
Domenico Formica. «Performance Evaluation of Bluetooth Low Energy: A
Systematic Review». In: Sensors 17.12 (2017). issn: 1424-8220. doi: 10.3390/
s17122898. url: https://www.mdpi.com/1424-8220/17/12/2898 (cit. on
p. 36).

[72] STMicroelectronics. STM32CubeProgrammer software for all STM32. url:
https://www.st.com/en/development-tools/stm32cubeprog.html (cit.
on p. 38).

[73] AN5289 - Application note - Building wireless applications with STM32WB
Series microcontrollers. Rev. 6. STMicroelectronics. Dec. 2021 (cit. on pp. 39,
40).

[74] Bluetooth SIG. Bluetooth. url: https://www.bluetooth.com/ (cit. on
p. 39).

[75] bleak Documentation - Release 0.14.3. Rev. 6. Henrik Blidh. Apr. 2022. url:
https://github.com/hbldh/bleak (cit. on p. 41).

[76] Bruce Belson, Jason Holdsworth, Wei Xiang, and Bronson Philippa. «A
Survey of Asynchronous Programming Using Coroutines in the Internet of
Things and Embedded Systems». In: CoRR abs/1906.00367 (2019). arXiv:
1906.00367. url: http://arxiv.org/abs/1906.00367 (cit. on p. 41).

73

https://doi.org/10.1109/ICARCV.2008.4795839
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://doi.org/10.3390/s17122898
https://doi.org/10.3390/s17122898
https://www.mdpi.com/1424-8220/17/12/2898
https://www.st.com/en/development-tools/stm32cubeprog.html
https://www.bluetooth.com/
https://github.com/hbldh/bleak
https://arxiv.org/abs/1906.00367
http://arxiv.org/abs/1906.00367

Bibliography

[77] Pantazis Deligiannis, Alastair F Donaldson, Jeroen Ketema, Akash Lal,
and Paul Thomson. «Asynchronous programming, analysis and testing with
state machines». In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 2015, pp. 154–164
(cit. on p. 41).

[78] Python. asyncio — Asynchronous I/O. url: https://docs.python.org/3/
library/asyncio.html (cit. on p. 41).

[79] STMicroelectronics. https://www.st.com/en/embedded-software/x-cube-ai.html.
url: https://www.st.com/en/embedded-software/x-cube-ai.html (cit.
on p. 42).

[80] UM2526 - User manual - Getting started with X-CUBE-AI Expansion Package
for Artificial Intelligence (AI). Rev. 8. STMicroelectronics. Jan. 2022 (cit. on
p. 43).

[81] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager.
«Temporal convolutional networks for action segmentation and detection».
In: proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 156–165 (cit. on p. 47).

[82] Tensorflow. Tensorflow. url: https://www.tensorflow.org/ (cit. on p. 47).
[83] Marcello Zanghieri, Simone Benatti, Alessio Burrello, Victor Kartsch, Francesco

Conti, and Luca Benini. «Robust Real-Time Embedded EMG Recognition
Framework Using Temporal Convolutional Networks on a Multicore IoT
Processor». In: IEEE Transactions on Biomedical Circuits and Systems 14.2
(2020), pp. 244–256. doi: 10.1109/TBCAS.2019.2959160 (cit. on pp. 47, 48).

[84] Plotly. Dash Enterprise. url: https://plotly.com/dash/ (cit. on p. 49).
[85] Plotly. Introduction to Dash (cit. on pp. 49, 50).
[86] TensorFlow. Quantization aware training comprehensive guide. url: https:

/ / www . tensorflow . org / model _ optimization / guide / quantization /
training_comprehensive_guide.md#experiment_with_quantization
(cit. on p. 53).

[87] Jeffrey J Goldberger, Nils P Johnson, Haris Subacius, Jason Ng, and Philip
Greenland. «Comparison of the physiologic and prognostic implications of the
heart rate versus the RR interval». In: Heart Rhythm 11.11 (2014), pp. 1925–
1933 (cit. on p. 55).

[88] Keysight. 34401A Digital Multimeter, 6½ Digit. url: https://www.keysight.
com/us/en/product/34401A/digital-multimeter-6-digit.html (cit. on
p. 57).

74

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.tensorflow.org/
https://doi.org/10.1109/TBCAS.2019.2959160
https://plotly.com/dash/
https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide.md#experiment_with_quantization
https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide.md#experiment_with_quantization
https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide.md#experiment_with_quantization
https://www.keysight.com/us/en/product/34401A/digital-multimeter-6-digit.html
https://www.keysight.com/us/en/product/34401A/digital-multimeter-6-digit.html

Bibliography

[89] STM32WB55xx STM32WB35xx- Multiprotocol wireless 32-bit MCU Arm®-
based Cortex®-M4 with FPU, Bluetooth® 5.2 and 802.15.4 radio solution -
Datasheet production data. Rev. 12. STMicroelectronics. Jan. 2022 (cit. on
p. 57).

[90] STM32 power mode examples. Rev. 3. STMicroelectronics. Aug. 2019 (cit. on
p. 57).

75

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Deep Learning
	From the Perceptron to Deep Neural Networks
	Backprogation and stochastic gradient descent

	Convolutional Neural Networks
	Convolutional layers
	Pooling layers

	Microcontrollers and Embedded systems
	Embedded Neural Networks constraints

	Optimization for the Embedded Deployment of DNNs
	Quantization
	Pruning

	H-Watch

	Related Works
	Classical Approaches
	Deep Learning-based approaches
	ActPPG
	Q-PPG

	Porting HR Detection on Wearable Devices
	Hardware setup
	Bluetooth
	BLE on Hardware device - Server
	BLE on host device - Client

	STMCube.AI
	Dalia Dataset
	Procedure
	Neural Network Design
	Moving Average

	GUI

	Experimental Results
	Models tested: size and complexity
	Evaluation
	Energy Consumption

	Conclusions
	Bibliograpy

