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Abstract

Optical Kerr microresonators in the last years have acquired attention from the
scientific community, being from a fundamental point of view rich complex physical
systems but at the same time, thanks to the late improvements of the nanofabrica-
tion technologies, feasible to fabricate in a controlled way. That has recently resulted
in a plethora of cutting-edge applications spanning from spectroscopy to LIDAR
and atomic clocks. The complex behaviour of the optical field within the resonator
arises from being both an out-of-equilibrium and nonlinear system, leading to the
emergence of bistability, hysteresis of the optical resonance, chaotic behaviour, and
self-organization in coherent states. This dynamics is accurately described by the
Lugiato-Lefever equation, a generalization of the Nonlinear Schrödinger equation
accounting for further driven-dissipative terms. Among the different attractor
state of the system, there is one essential for the majority of the applications of
these devices, so-called Dissipative Kerr Soliton (DKS), a stable, coherent and
localized state circulating inside the cavity. Despite its stability, its generation in
the resonator can be inhibited by the presence of interactions between different
cavity mode families due to non-ideal geometry and parasitic scattering centers.
That gives birth to the so-called avoided mode crossings (AMX), that lead to
the generation of dispersive waves that can destabilize or completely forbid the
formation of DKS. Moreover, the presence of the interaction between the confined
light and the vibrational degrees of freedom of the material, known as Raman
scattering, further reduces the stability of the DKS and makes it sensitive to the
driver noise. The generation of noiseless soliton is one of the essential ingredient to
obtain state-of-the-art integrated photonics devices. Recent experimental studies
found out that in presence of AMX, the soliton response to the driver noise can
be substantially reduced. In this framework, the aim of the thesis is to deepen
the understanding of the phenomenon of noise reduction, by deriving a perturbed
Lugiato-Lefever model – in a form of complex nonlinear partial differential equation
(PDE) - that embodies both the generation of dispersive waves, key properties
of AMX, and Raman scattering. The nonlinear dynamics of the model has been
simulated and the properties of the generated solitons have been studied through
Lagrangian perturbative approach, obtaining conditions for the minimization of
the noise dependence.



i



Acknowledgements

I would like to thank Polytechnic of Turin for the scientific education he conveyed
to me through the hard work of the professors of the course in Physics of Complex
Systems.
I want also to thank Professor Tobias J.Kippenberg for the opportunity offered to
me to join his Lab to work on this thesis project.
Thank you also to Alexey and Sasha, for the support given both for this work.

(In italian for my family) Voglio inoltre ringraziare la mia famiglia, i miei genitori
e le mie sorelle che mi hanno sempre supportato e sopportato, specialmente in
questi ultimi anni in cui sarei potuto essere piu’ vicino. Ai miei genitori dedico
questo lavoro, ringraziandoli per avermi dato la possibilita’ di studiare fuori casa, e
di farmi arrivare fin qui. Un ringraziamento speciale non puo’ mancare alla Nonna
Franca, che seppur a distanza in questi anni, l’ho sentita sempre vicina col pensiero
e con le sue preghiere giornaliere.

ii





Table of Contents

List of Figures vi

1 Introduction to Kerr Microresonators 1
1.1 Platform and Applications . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Physical properties of the system . . . . . . . . . . . . . . . 3
1.1.2 Coupled-mode and Lugiato Lefever equations . . . . . . . . 4
1.1.3 Realistic Dispersion Profile and limits of the equation: Higher

order Dispersion and Avoided Mode Crossing . . . . . . . . . 6

2 Model of the Avoided Mode Crossing 10
2.1 Pertubed LLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Properties of the Equation and Conservation Laws . . . . . . . . . . 11

2.2.1 Continuity equation for the Norm . . . . . . . . . . . . . . . 11
2.2.2 Dynamics of the Momentum . . . . . . . . . . . . . . . . . . 12
2.2.3 Symmetries of the Equation . . . . . . . . . . . . . . . . . . 14
2.2.4 Case µ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Case µ /= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Dimensionality of parameter space and choice of the pump

power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Case µ̄ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Case µ̄ /= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Noise reduction and Microwave generation 23
3.1 Noise transduction mechanism . . . . . . . . . . . . . . . . . . . . . 24
3.2 Extension of the model: Detuning Noise . . . . . . . . . . . . . . . 25

3.2.1 Simulated Soliton Dynamics in Presence of Noise . . . . . . 26
3.3 Extension of the model: Raman Scattering . . . . . . . . . . . . . . 29
3.4 Quiet Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Alternative approach to QP . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



3.5.2 Analytical Derivation . . . . . . . . . . . . . . . . . . . . . . 39

4 Numerical Methods 45
4.1 Split-Step Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Simulation of perturbed LLE . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Hard and Soft Seed . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Faraday Instability . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Soliton Noisy dynamics simulation . . . . . . . . . . . . . . 50

4.3 Newton-Raphson Method . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 General description of the method . . . . . . . . . . . . . . . . . . . 51

4.4.1 Soliton Group Velocity Implementation: Equations . . . . . 52
4.4.2 Matrix Form of the Equations . . . . . . . . . . . . . . . . . 54
4.4.3 Discretization of the Equations . . . . . . . . . . . . . . . . 56
4.4.4 Initialization condition . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusions and outlook. 61

Bibliography 63

v



List of Figures

1.1 Applications of Kerr microresonators (figure adapted from [2]). . . . 2
1.2 Schematic representation of kerr microresonator (figure adapted

from [2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Stability Diagram of Lugiato-Lefever equation (figure adapted

from [22]). From the figure we can see the stable attractors of
the system in dependence of the operating point. With stable MI
is intended stable Modulation instability, that is the phenomena
by which the homogeneous solution becomes unstable due to four-
wave mixing processes, that in an ordered way start occupying more
resonating cavity modes, forming the so called Turing rolls, whose
spatial profile is visible in the figure. If the detuning ζ0 is further
increased, the system enters in the region of Chaotic MI, where now
the resonating modes are occupied in a chaotic way, destabilizing
Turing rolls, obtaining a unstructured field distribution inside the
resonator. At the end of this region, the breathers or solitons regions
are reached, where localized structured becomes stable. See [20] for
further details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Example of Avoided mode crossing interaction. We can see how
the dispersions of two modes belonging to different family, interacts
avoiding the crossing. Furthermore from the mode profile is possible
to see that in the neighborhood of the crossing the two modes hybridize. 8

1.5 Example of a realistic dispersion profile in presence of Avoided mode
crossing interaction, figure adapted from [23]. . . . . . . . . . . . . 8

2.1 Tuning to resonance for different resonance shift µ̄ = 0. a) No
resonance shift, b) aµ̄ = 3, c) aµ̄ = 5, d) aµ̄ = 10. e) No resonance
shift, f) aµ̄ = −3, g) aµ̄ = −5, h) aµ̄ = −10. We can see that
according to the strength of the resonance shift the system is found
in a different region of the parameter space, as already verified in [39] 19

vi



2.2 Single soliton simulated dynamics. We can see the simulated
soliton (light green line) propagating along the azimuthal coordinate
θ during time t for the operating point (ζ0, aµ̄, µ̄) = (4,−8, 6). Both
the modulation of the background and the presence of periodic
boundary conditions are visible. . . . . . . . . . . . . . . . . . . . . 20

2.3 Dissipative cavity soliton. Simulated soliton for µ̄ = 18. As already
demonstrated, the period is related to the mode number, such that
there are exactly 18 "hills" in the dispersive tail of the soliton. . . . 20

2.4 Solitons in real space and their spectra for different resonace shifts aµ̄. 21
2.5 Soliton Crystal state. Soliton crystal state, (aµ̄ = −0.66, µ̄ = 15).

We can see how the period (i.e. lattice length) is exactly equal to the
number of mode displaced, this due to the presence of the modulated
background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Periodicity of the soliton background Different stable soliton solution
for different mode number µ̄ displaced. . . . . . . . . . . . . . . . . 22

2.7 P−µ Symmetry We can clearly see from the figures how the dynamics
for two operating points in the parameters (sub)space (ζ0, ā,µ, µ̄)-
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Chapter 1

Introduction to Kerr
Microresonators

1.1 Platform and Applications
In the latest years the world of photonic integrated circuits (PIC) has attracted
much more attention thanks to the improvements of the nanofabrication processes
that made possible to produce very small PIC, very precisely. In particular, a
big contribution to the recent success of the integrated photonics is undoubtedly
represented by the Kerr microresonators, systems at the boarder between pure
physical experiments from one side, due to the interplay between nonlinear and
out-of-equilibrium dynamics that lead to the emergence of numerous exotic features,
and from the another side they represent actual photonics devices with a wide range
of applications. The key features of these devices is represented by their capability
of generating dissipative Kerr solitons (DKS) [1] and consequently optical frequency
combs [2]. The latter have revolutionised over the past two decades our ability to
accurately frequency calibration and led to numerous advances, such optical atomic
clocks and were awarded the 2005 Nobel Prize in Physics.

The discovery of solitons in microresonators has unlocked the full potential of
the integrated photonics: within only few years, soliton microcombs have been
used in a variety of system level demonstrations [2], in the field of telecommu-
nications, connecting the microwave and optical regimes [3, 4], creating optical
frequency synthesizers [5], enhancing parallel coherent communications [6], in the
field of measurements and sensors, with the implementation of dual-comb spec-
troscopy [7], LIDAR [8, 9], Low-noise microwave generation [10] and astronomical
spectroscopy [11, 12]. In this way, soliton microcombs have become a new research
field worldwide at the interface of frequency metrology, soliton physics and nonlinear
dynamics with integrated photonics. DKSs are formed by non-equilibrium optical
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Introduction to Kerr Microresonators

Figure 1.1: Applications of Kerr microresonators (figure adapted from [2]).

driving, and represent a double balance between chromatic dispersion and Kerr
nonlinearity, as well as cavity losses and parametric gain.

The simplest implementation of a Kerr microresonator is the one shown in
Fig. 1.2, in which the resonator is represented by a single ring of dielectric material
(usually of Si3N4) that can support resonating optical modes. These are excited
through an external light source, usually a tunable continuous wave (CW) laser,
coupled to the ring through an external waveguide made of the same material.
The nature of the coupling has to be assigned to the spatial overlap of the mode
volume of the input field with one (or more) resonant modes of the cavity, and
so its strength, usually parameterized by the parameter κex, can be opportunely
engineered by fabrication design. Since the nature of the coupling is usually not
directional, as the input field is coupled inside the resonator, at the same time part
of the intracavity field is outcoupled to the external waveguide. And from that the
DKS (i.e. frequency comb) is measured.
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Introduction to Kerr Microresonators

Figure 1.2: Schematic representation of kerr microresonator (figure adapted
from [2]).

1.1.1 Physical properties of the system
The richness of the features that an already (relative) simple implementation like 1.2
can manifest, is due to the properties of the dielectric (Si3N4), being an absorbent,
nonlinear and dispersive material.
Being absorbent it means that, while the light circulate inside the resonator it is
also dissipated by the cavity itself, for this, and for the presence of the external
coupling, it is required to maintain the external source active while the system
operates, and this feature makes the system a driven-dissipative one, that, as in
the recent years has been observed, they are the systems in which new exotic
phenomena manifest.

In addition the material responds nonlinearly to the optical field, with the nonlin-
earity represented, at the first order1 by the cubic (so called Kerr [13]) nonlinearity,
in which the induced polarization density depends cubicly on the electric field in the
cavity, resulting in an intensity dependence of the refractive index of the material.
This nonlinear response couples photons with different frequencies in a nontrivial
way, making them interacting through Four-wave mixing processes(FWM) [13].
Since however this nonlinear response acts as a perturbation for the system, it
requires high-intensities intracavity optical fields to give a relevant contribution.
This is however achieved in the microresonators thanks to the high purity fabri-
cation process, measured by the quality factor Q, that makes the intrisic optical
losses (measured by the parameter κ0) very small, increasing the photon lifetime
enough to enhance the effect of the nonlinearity.

1Due to the amorphous structure of the Si3N4 that make the second order nonlinear response
vanishing
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Introduction to Kerr Microresonators

Finally, Si3N4 is dispersive, meaning that the refractive index depends also on the
frequency of the optical mode propagating, due to the microscopic interaction of the
electrons of the material and the optical field [13]. This effect leads to a distribution
of the resonant frequencies of the resonator along a complex dispersion profile,
associating in principle to different optical modes different resonant frequencies.

The interplay of these features gives rise to complex dynamical behaviour of
the optical field inside the resonator.

1.1.2 Coupled-mode and Lugiato Lefever equations
Starting from the optical properties of the material, under opportune hypotheses [14],
it is possible to derive from Maxwell’s equations a dynamical equation for the
amplitudes of the resonating modes inside the Kerr microresonators. This has been
first done in [14], and the equation is called coupled mode equation and it is here
reported:

Ȧη = −1
2∆ωηAη − ig0

Ø
α,β.µ

Λαβµ
η AαA∗

βAµe
iω̄αβµηt + 1

2∆ωηFηe
i(Ω0−ωη)t (1.1)

Where ω̄αβµη = ωalpha − ωβ + ωµ − ωη.

This equation describes the dynamical evolution of the slowly-varying amplitudes
({Aα}) of the resonating eigenmodes inside the cavity (whose resonance frequency is
ωα), subjected to its dissipation (∆ωη), the cubic nonlinearity (g0) and the external
field (Fη), oscillating at frequency Ω0. The strengths of the coupling between
different eigenmodes depends on the overlap of the modes (Λαβµ

η ) and on their
differences in frequencies (ω̄αβµη), and it is maximized when they have the same
eigenfrequencies, indicating that the nonlinear processes can happen just when
particular phase-matching conditions are satisfied

Even if these equations correctly describe the dynamics of the system and give
important insights in the actual interactions between different modes, it requires
long computational time to simulate it, requiring to numerically solve a big system
of coupled equations, since there is no analytical solution known.

After the discovery of the presence in this systems of dissipative solitons [1], it has
been found out that the dynamics of the system could be described by an alternative
and equivalent [15] equation, known as (1D) Lugiato-Lefever equation(LLE) [16]:

∂A

∂T
= −

3
κ

2 + iδω
4
A+ i

D2

2
∂2A

∂ϕ2 + ig0|A|2A+ √
κexsin (1.2)

This is the equation for A, the complex envelop of the electric field inside the res-
onator, where in addition to the dissipation (κ), Kerr nonlinearity (g0) and external
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Introduction to Kerr Microresonators

pump (sin), there is the explicit appearance of the dispersion term, represented
by the second order derivative and a further dependence on the detuning term δω,
defined as:

δω = ω0 − ωp (1.3)

taking in account the difference between the external laser frequency ωp and the
closest cavity resonance ω0.
The envelop depends on the so called fast time ϕ that is related to the azimuthal
coordinate around the ring2, and in fact, due to the ring topology, this field satisfy
the periodic boundary conditions, making it possible to be decompose in a discrete
series of eigenmodes [15] as follows:

A(ϕ, T ) =
Ø
m∈Z

Am(T )e−imϕei[ωm−(ωp+D1m)]T (1.4)

Where Am are exactly the amplitude described in equation (1.1) The advantages of
equation 1.2 is that it describes the dynamics of the field within a single equation
in real space, making it faster to numerically solve3.
Equation 1.2 can be further simplified, making the following change of variables4:

t = κ
2T θ =

ñ
κ

2D2
ϕ

ζ0 = 2δω
κ

ψ =
ñ

2g0
κ
A f =

ñ
8ηg0
κ2 sin =

ñ
Pin

Pthres ℏω0

(1.5)

and read as follows:
∂ψ

∂t
= − (1 + iζ0)ψ + i

2∂
2
θψ + i|ψ|2ψ + f (1.6)

This formulation of the equation makes evident that the complete description of
the physical state of the system is given by the value of the only two parame-
ters ζ0 and f , and according to the position of the operating point (ζ0, f) in the
two-dimensional space (ζ0, f) the intracavity field will manifest the presence of
Turing rolls [17], chaos [18], rogue waves [18], single and multi-solitons states [1,
2], breathers [19], and stable dissipative solitons. The stability of the different
solutions has been studied in dependence on the operating point position through
a bifurcation analysis [20] and a Lagrangian approach [21] and the stability map

2To be precise, it is actually defined in a rotating frame inertial to the soliton group velocity
such that ϕ = φ−D1t, with φ ∈ [0,2π] but it does not change the nature of the consideration

3Look at Chapter 4 for details on the numerical solution algorithm
4To note that while in 1.2 the azimutal coordinate ϕ belongs to [−π, π], in the normalized

version 1.6 θ ranges in
#
−L

2 ,
L
2
$

with L := 2π
ñ

κ
2D2

, and since κ
D2

>> 1, in the following, when
integrating along the cavity we will take the limit L → ∞.
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Introduction to Kerr Microresonators

shown in figure 1.3 has been obtained.

Figure 1.3: Stability Diagram of Lugiato-Lefever equation (figure adapted
from [22]). From the figure we can see the stable attractors of the system in
dependence of the operating point. With stable MI is intended stable Modulation
instability, that is the phenomena by which the homogeneous solution becomes
unstable due to four-wave mixing processes, that in an ordered way start occupying
more resonating cavity modes, forming the so called Turing rolls, whose spatial
profile is visible in the figure. If the detuning ζ0 is further increased, the system
enters in the region of Chaotic MI, where now the resonating modes are occupied in
a chaotic way, destabilizing Turing rolls, obtaining a unstructured field distribution
inside the resonator. At the end of this region, the breathers or solitons regions are
reached, where localized structured becomes stable. See [20] for further details.

1.1.3 Realistic Dispersion Profile and limits of the equation:
Higher order Dispersion and Avoided Mode Crossing

The properties and the stability of the soliton state are strongly related to the
dispersion profile of the system [23] and it is essential to take them in account.
Expressed in this way, equation 1.6 (and consequently 1.2) implies an important
assumption, that is the dispersion profile of the optical cavity frequencies is purely

6



Introduction to Kerr Microresonators

parabolic. This can be seen by rewriting the dispersion term expanding the
normalized field in its eigenmodes decomposition Eq. 1.4 [15, 20] as follows5:

∂2
θψ = ∂2

θ

Ø
µ

ψµ(t)eiµθ = −
Ø
µ

µ2ψµ(t)eiµθ := −
Ø
µ

D̂int(µ)ψµ(t)eiµθ (1.7)

Where we highlighted the presence of the parabolic dispersion defining the dispersion
operator D̂int.
Even if this model has been demonstrated to be very precise in predicting the
dynamical behaviour of the field in the resonator [24], this parabolic approximation
is valid only in the neighborhood of a local minima of the dispersion. Far from
that, higher order derivative terms have to be taken in account in the dispersion
operator.

More importantly, equations (1.6) assumes that inside the resonator there is
only a single family of modes [14], but this assumption is almost never true, since,
even for a one dimensional system there is always at least pair of orthogonal modes,
i.e. transverse elecrtic (TE) and transverse magnetic TM) [13].

When two or more mode families coexist inside the resonator, sharing the same
mode volume, they interact with an the strength of the interaction depends on the
overlap of their optical volumee. This interaction, called avoided mode crossing
(AMX) 1.4, prevents the two modes dispersions to be degenerate within the same
resonance frequency, leading to an abrupt change of the dispersion profiles in the
neighborhood of their interception [25, 26]. This process can be described through
the coupled mode equations in the following way [27]:

dA1

dt
= iω1A1 + iJ12A2

dA2

dt
= iω2A2 + iJ21A1.

(1.8)

Finding the eigenvalues of the coupling matrix and setting J12 = J21 = J , obtaining:

ω± = ω1 + ω2

2 ±
ó3

ω1 − ω2

2

42
+ |J |2 (1.9)

Where we can see, that even in the presence of degeneracy ω1 = ω2, the resulting
modes are symmetrically shifted by a contribution proportional to the coupling J,
as shown in figure 1.4
While the soliton state has been proven to be robust with respect to the higher

order terms of the dispersion profile, the same it is not true for the presence of
the mode crossings [23], since it can prevent the soliton formation and induce

5We rewrote Eq. 1.4 in its normalized version, incorporating in ψµ all the temporal dependence

7
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Figure 1.4: Example of Avoided mode crossing interaction. We can see how
the dispersions of two modes belonging to different family, interacts avoiding
the crossing. Furthermore from the mode profile is possible to see that in the
neighborhood of the crossing the two modes hybridize.

Figure 1.5: Example of a realistic dispersion profile in presence of Avoided mode
crossing interaction, figure adapted from [23].

instabilities [28]. Only recently the latter phenomena has been seen also as a
potentially useful phenomena, finding out that it can reduce the laser phase-noise
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Introduction to Kerr Microresonators

dependence of the soliton dynamics [29], trigger nonlinear dynamics in normal
dispersion resonators [30, 31, 32, 33], and control the chaotic state which results in
the generation of structured state of light called soliton crystals [34].

In the present work, we focus on deepening the understanding of the phenomena
of the noise reduction tightly related to the notion of the quiet point - a partic-
ular operating point in the soliton existing range which is characterized by the
anomalously low phase noise of the system. We approach this problem via the
combination of theoretical and numerical methods applied to a simplified model of
the avoided mode crossing, in which only a single mode is shifted from the parabolic
dispersion profile. This simple yet efficient model allows us to examine analytically
the range of the quiet points existence and confirm it numerically estimating, the
resulting phase noise of the generated RF signal.

9



Chapter 2

Model of the Avoided Mode
Crossing

2.1 Pertubed LLE
The model developped in this thesis is a perturbed Lugiato-Lefever equation
(LLE) (1.2) in which the resonance of one single resonating cavity mode has been
shifted from the pure parabolic dispersion. The perturbation term is obtained
starting from equation (1.2) and modifying directly the integrated dispersion
operator D̂int as follows:

D̂µ̄
int(µ) = D̂int(µ) + aµ̄δµ,µ̄ (2.1)

Substituing the following integrated dispersion in the formal definition of
LLE (1.2) we obtain:

∂tψ = −(1 + iζ0)ψ − i
Ø
µ

D̂µ̄
int(µ)ψ̃µ + i|ψ|2ψ + f

⇒ ∂tψ = −(1 + iζ0)ψ + i

2∂
2
θψ + i|ψ|2ψ + f − iaµ̄ψ̃µ̄e

iµ̄θ

(2.2)

Where now the chosen mode µ̄ has a resonance frequency given by 1:

ωµ̄ = µ̄2

2 + aµ̄ (2.3)

This is the simplest model deviating from the perfectly parabolic dispersed that
can manifest the key feature of the phenomenon of AMX, that of the generation

1Strictly speaking, it represents the value of its integrated dispersion, but this does not change
the following reasoning
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of dispersive wave through the interaction of solitonic linear dispersion with the
shifted resonance of the µ̄-th cavity mode of the system [35, 29]. The presence of
dispersive wave formation is one of the major characteristic features of the physics
of the AMX.

2.2 Properties of the Equation and Conservation
Laws

We now study how the perturbation induces changes in the dynamics of two relevant
quantity of the system, respectively the norm and the momentum of the field.

2.2.1 Continuity equation for the Norm

From equation 2.2 a dynamical equation for the norm of the intracavity field (i.e.
the energy) can be derived. By multiplying eq. (3.9) by ψ∗ we obtain:

ψ∗∂tψ = −(1 + iζ0)|ψ|2 + i

2ψ
∗∂2
θψ + i|ψ|4 + fψ∗ − iaµ̄ψ̃µe

iµ̄θψ∗, (2.4)

where ℜ (ℑ) is the operator taking the real (imaginary) part of the function to
which it is applied. Summing now (2.4) to its complex conjugated, we obtain the
following equation for the norm of the field2 of the system:

ψ∗∂tψ + ψ∂tψ
∗ ≡ ∂t|ψ|2 =

i

2(ψ∗∂2
θψ − ψ∂2

θψ
∗) − 2|ψ|2 + f(ψ + ψ∗) − iaµ̄(ψ̃µeiµ̄θψ∗ − ψ̃∗

µe
−iµ̄θψ)

⇒ ∂t|ψ|2 + ∂θJψ = −2|ψ|2 + 2fℜ{ψ} + 2aµ̄ℑ{ψ̃µeiµ̄θψ∗} (2.5)

Where with Jψ we defined the current density associated to the field and is defined
as follows:

Jψ = − i

2[ψ∗∂θψ − ψ∂θψ
∗] (2.6)

2That it is related to the actual number of photons in the system

11
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If we now integrate equation 2.5 over the ring we obtain:

∂t

Ú
dθ|ψ|2 + Jψ(θ)|

L
2
− L

2
= −2

Ú
dθ|ψ|2 + 2fℜ

Ú
dθψ + 2aµ̄ℑ

;Ú
dθψµ̄e

iµ̄θψ∗
<
(2.7)

⇒ ∂tN = −2N + 2fℜ{ψ0} + 2aµ̄ℑ
;
ψµ̄

Ú
dθψ∗eiµ̄θ

<
(2.8)

⇒ ∂tN = −2N + 2fℜ{ψ0} + 2aµ̄ℑ
î
|ψµ̄|2

ï
(2.9)

⇒ ∂tN = −2N + 2fℜ{ψ0} (2.10)

Where N :=
s
dθ|ψ|2 and we used the definition of the Fourier transform both

to express the circulation of the field in the pump term and to make appear the
modulus squared in the imaginary part.
The integral is taken around the ring so for the periodic boundary condition imposed
by the topology the density current is integrated to zero.
Equation (2.10) describes the dynamics of the norm of the field that is strictly
related to the actual power in the resonator.
We can see that, as in the case of the unperturbed LLE, the system presents losses
and gains indicated respectively by the first and second term of the r.h.s.. More
importantly, the derivation shows that the perturbation does not directly contribute
to the change of the norm of the system, so that its action has to be considered as
a redistribution of the energy around the ring.
Considering the stationary case, that could describe the solitonic case, we obtain:

N = fℜ{ψ0} (2.11)

Meaning that the condition such that a soliton, or any other stationary wave, can
be sustained inside the cavity is that the losses must compensate the gain from
the external pump; when this condition are satisfied, additionally, the norm of the
field, that is related to the intracavity power, would be proportional to the pump
term (i.e. input power) and to the number of photons in the pumped mode.

2.2.2 Dynamics of the Momentum

The second relevant quantity that can be considered in the system is the total
momentum of the field defined as:

P =
Ø
µ

µ|ψ̃µ|2 (2.12)

12
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We can further rewrite it in the real space as follows:

P =
Ø
µ

µ| ˜ψµ|2

= 1
2i

CØ
µ

(iµψµ)ψ∗
µ −

Ø
µ

1
−iµ∗

µ

2
ψµ

D

= 1
2i

CØ
µ

(∂θψ)µ ψ
∗
µ −

Ø
µ

(∂θψ∗)µ ψµ
D

= 1
2i

Ú
dθ [ψ∗∂θψ − ψ∂θψ

∗]

= ℑ{
Ú
dθψ∗∂θψ}.

(2.13)

Taking the time derivative of the equation we obtain:

∂tP = ℑ{
Ú
dθ∂t (ψ∗∂θψ)}

= ℑ{
Ú
dθ(∂tψ∗)∂θψ)} + ℑ{

Ú
dθψ∗∂θ∂tψ}

= ℑ{
5
ψ∂tψ

∗|L/2
− L

2
−
Ú
dθψ∂θ∂tψ

∗ +
Ú
dθψ∗∂θ∂tψ

6
}

= ℑ{2iℑ
Ú
dθψ∗∂θ∂tψ}

= 2ℑ{
Ú
dθψ∗∂θ∂tψ}

= 2ℑ{
Ú
dθ∂θψ

∗∂tψ}

(2.14)

Where, thanks to the periodic boundary conditions, the constant term resulting
from the two integration by parts (line 3 and 6) are equal to zero. Considering now
the follow formal definition of (2.2):

∂tψ = LLE[ψ] − iaµ̄ψµ̄e
iµ̄θ (2.15)

where with LLE[ψ] we consider the r.h.s of (1.2), we can write:Ú
dθ∂θψ

∗∂tψ =
Ú
dθ∂θψ

∗LLE[ψ] − iaµ̄ψµ̄

Ú
dθ∂θψ

∗eiµ̄θ

=
Ú
dθ∂θψ

∗LLE[ψ] − iaµ̄ψµ̄

Ú
dθ∂θψ

∗eiµ̄θ

=
Ú
dθ∂θψ

∗LLE[ψ] − iaµ̄ψµ̄

A
−
Ú
dθ
Ø
µ

ψ∗
µiµe

−iµθeiµ̄θ
B

=
Ú
dθ∂θψ

∗LLE[ψ] − µ̄aµ̄ |ψµ̄|2

(2.16)
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Being the term related to the perturbation a real number, equation (2.14) is written
as:

∂tP = 2ℑ{
Ú
dθ∂θψ

∗LLE[ψ]} (2.17)

Obtaining so that the perturbation does not directly alter neither the dynamics of
the momentum of the field.
If we now instead assume as a solution a propagating wave of group velocity v i.e.:

ψ(θ, t) = ψ(θ − v(t)) ⇒ ∂tψ = −v̇∂θψ (2.18)

substituting in equation (2.14) we obtain:

∂tP = 2ℑ{
Ú
dθ(−v̇|∂θψ|2)} = 0 (2.19)

Considering then that the group velocity of the soliton is related to the ratio [36]:

v ∝ P

N
(2.20)

taking in account the previous considerations for the dynamics of the norm, we
obtain that a solitonic solution will propagate at constant velocity.

2.2.3 Symmetries of the Equation
We can further obtain some useful information about the symmetry of the equation
considering the effective Lagrangian of the system3:

L =
Ú

R
dθL(ψ, ψ∗, θ)

=
Ú

R
dθ

C
i

2 (ψ∗∂tψ − ψ∂tψ
∗) − 1

2 |∂θψ|2 + |ψ|4

2 − ζ0|ψ|2 − i|ψ|2 + if(ψ + ψ∗)
D

− aµ̄|ψµ̄|2

=
Ú

R
dθ

C
i

2 (ψ∗∂tψ − ψ∂tψ
∗) − 1

2 |∂θψ|2 + |ψ|4

2 − ζ0|ψ|2
D

− aµ̄

Ú
R,R

dθdθ′ψ(θ′)eiµ̄(θ−θ′)ψ∗(θ)
(2.21)

Where the integral are taken around the ring. We can see at first that the Lagrangian
density dependence of the position comes just from the perturbation term (last

3We are considering in the Lagrangian also the nonconservative terms. It can be easily verified
that δL

δψ∗ = 0 is equivalent to (2.2)
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term).
Rewriting the Lagrangian density as follows:

L = L0(ψ, ψ∗) + δL(ψ, ψ∗, θ) (2.22)

δL(ψ, ψ∗, θ; µ̄, aµ̄) := −aµ̄
Ú

R
dθ′ψ(θ′)eiµ̄(θ−θ′)ψ∗(θ) (2.23)

we firstly concentrate on the properties of L0 :=
s
dθL0.

We note that due to the periodic boundary condition and from the absence of
explicit dependence of L0 on the spatial coordinate it follows that the unperturbed
Lagrangian is symmetrical under any space translation so that:

θ → θ′ = θ + c (2.24)

Furthermore, from the following relations:Ú L/2

−L/2
dθF [ϕ(θ), ∂tϕ(θ)] = −

Ú −L/2

L/2
dθF [ϕ(−θ), ∂tϕ(−θ)] =

Ú L/2

−L/2
dθF [P̂ϕ, ∂tP̂ϕ]

(2.25)
|∂θψ(−θ)|2 = | − ∂θψ(−θ)|2 = |∂θP̂ψ|2 (2.26)

we obtain that the unperturbed Lagrangian is invariant under the parity transfor-
mation of the field:

ψ → ψ′ = P̂ψ (2.27)

where P̂ is defined as:
P̂ψ = ψ(−θ) (2.28)

This symmetry could be deduced from the symmetry of the parabolic dispersion
(i.e. distribution of modes) and it is equivalent to the following transformation in
Fourier space:

µ → −µ (2.29)

Where each mode is replaced to its opposite counterpart. These are the symmetries
found in the unperturbed system.
Moving now to the perturbation term δL, we can seen that it presents different
properties depending on the value of µ and in particular in the cases µ̄ = 0 and
µ̄ /= 0, that we analyze separately in the following.

2.2.4 Case µ = 0
In this case δL loses its spatial dependence (the dispersion in this case, even if not
perfectly parabolic, it is still symmetric) and the perturbation of the Lagrangian is
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written as:

−aµ̄
Ú
dθdθ′ψ(θ′)eiµ̄(θ−θ′)ψ∗(θ) −−→

µ̄=0
−a0

----Ú dθψ(θ)
----2 = −a0|ψ̃0|2 (2.30)

So the Lagrangian is perturbed with a term depending on the modulus squared of
the circulation of the field, term that preserves both the translational invariance
(due to the ring geometry), the parity (ψ(θ) → ψ(−θ)) and the inversion (µ → −µ)
symmetries of the unperturbed Lagrangian.

2.2.5 Case µ /= 0
Differently, in the case µ̄ /= 0, the perturbation δL introduces now an explicit
spatial dependent term in the Lagrangian density L.
However this dependence is periodic, being represented by a plane wave, of period
2π
µ̄

.
This results in the following invariance of the Lagrangian density 4:

δL(θ + α) = δL(θ) (2.31)

for α = 2πn
µ̄

leading to the discrete translational symmetry under the transformation:

θ → θ′ = θ + α (2.32)

Reminding that the periodic boundary conditions of the systems imposes for any
resonant mode numbers to be as56:

µ = 2πm
L

(2.33)

Where L is the length of the cavity, we can rewrite the period as:

α = 2π
µ̄

= 2πL
2πm̄ = L

m̄
(2.34)

This symmetry could already be seen from (2.2) Furthermore, from the explicit
dependence of δL also on the particular mode µ̄, we can see that, as expected

4We remind that L0 is already invariant under any spatial translation
5Refer to equation (1.4)
6Due the relation 2.33, we can uniquely refer to any mode number µ by referring to its relative

integer counterpart m. We will do so and in the following, whenever we will refer to an integer
mode displaced, i.e. µ̄ = m̄ we will be referring to µ̄ = 2π

L m̄
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by the asymmetric dispersion profile, it is not invariant under the transformation
µ → −µ in fact:

aµ̄

Ú L

−L
dθ
Ú L

−L
dθ′ψ (θ′) eiµ̄(θ−θ′)ψ∗ (θ′) µ→−µ−−−→ aµ̄

Ú L

−L
dθ
Ú L

−L
dθ′ψ (θ′) e−iµ̄(θ−θ′)ψ∗ (θ′)

(2.35)
Moreover, if we further develop the r.h.s of (2.35) we obtain:

aµ̄

Ú L

−L
dθ
Ú L

−L
dθ′ψ (θ′) e−iµ̄(θ−θ′)ψ∗ (θ′)

= aµ̄

Ú L

−L
d(−θ)

Ú L

−L
d (−θ′)ψ (− (−θ′)) eiµ̄((−θ)−(−θ′))ψ∗(−(−θ))

= aµ̄

Ú −L

L
dx
Ú −L

L
dx′ψ (−x′) eiµ̄(x−x′)ψ∗(−x)

= aµ̄

Ú −L

L
dx
Ú −L

L
dx′ P̂ψ (x′) eiµ̄(x−x′) P̂ψ∗(x)

(2.36)

The system, after the inversion µ → −µ in fact, even if behaves differently, it
has the exact same dynamics of the field P̂ψ, so that the perturbed system results
symmetric with respect to a more general symmetry P − µ-symmetry.

2.3 Simulations
2.3.1 Dimensionality of parameter space and choice of the

pump power
As it has been seen in chapter 1, the dynamical behaviour of the system described
by the pure LLE is defined by a point (so called operating point) in the two-
dimensional parameters space spanned by the pump f and detuning ζ0 parameters,
the only two parameters on which L0 depends on. The perturbation δL introduces
two further parameters in the model, resulting in an increase of the dimensionality
of the parameters space, becoming 4-dimensional, since in principle the resonance
shift aµ̄ and the displaced mode number µ̄ are independent.

In order to simplify the study of the dynamical properties of the system we
operate in a three-dimensional subspace (ζ0, aµ̄, µ̄), fixing the value of the pump
term to f =

√
6 to maintain the system far from the region of transient and

spatiotemporal chaos described in [37], thus being able to stably access the solitonic
states.

2.3.2 Case µ̄ = 0
In this case, the dispersion profile of the system is still symmetric even if not
exactly parabolic due to the displaced pump mode. However, given the fact that
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the inversion symmetry (µ → −µ) is still preserved, the only constant momentum7

the system can have is zero momentum.
Furthermore, as highlighted in the supplementary informations of [38], in the

stationary state, the presence of the perturbation becomes equivalent to rescaling
and phase shifting of the pump term8. Thus in this case, the soliton solution is
exactly equivalent to the dissipative Kerr soliton of the LLE.

It has been demonstrated, that the phase shift of the pump can facilitate
the soliton generation [38] and increase pump-to-soliton conversion efficiency, as
demonstrated in [39]. This occurs due to the change in the properties of the
bifurcation diagram, making different attractors stables in different operating
points of the parameters space of the system.

We have observed these results from the simulated dynamics depicted in figure 2.1.
The beginning of the modulation instability region depends strongly on the strengths
of the displacement, justified from the fact the in this way we practically change the
frequency of the pump, effectively exciting the system already in a red or blue-side
detuning regime. In this way, the system can start the dynamics directly in the
soliton existence range, chaotic or stable MI.

Since this case has been already studied in Refs. [38, 39], we will not focus on this
case during the rest of the work, however we reported this results for completeness.

2.3.3 Case µ̄ /= 0
As discussed in the previous section, the system demonstrates an explicit asymmetry
in the dispersion profile. This results into the acquisition of the soliton of a constant
momentum different from zero as can be seen in figure 2.2. Still from 2.2 it is
possible to see that the soliton and the background are in phase, propagating
together at the same speed and in the same direction.

In addition, as we can see from the soliton profile in figure 2.3, there it manifests
a periodic modulation of the background (referred as dispersive wave) superimposed
to the soliton, characterized by the exact period imposed by the perturbation term
δL described in 2.6.

That has been justified by the fact that the asymmetry in the distribution of
modes imposed by the perturbation induces a surplus or a deficit in the number of
photons in the displaced mode, i.e. |ψµ̄|2 with respect to the unperturbed value. In
fact, while in the unperturbed case the contribution of the different modes perfectly

7See (2.14)
8We remind that in LLE the pump term can be assumed real with the condition that all the

phase of the system are defined relative to the actual pump phase[15], and here the same can be
done in the stationary case
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Figure 2.1: Tuning to resonance for different resonance shift µ̄ = 0. a) No
resonance shift, b) aµ̄ = 3, c) aµ̄ = 5, d) aµ̄ = 10. e) No resonance shift, f) aµ̄ = −3,
g) aµ̄ = −5, h) aµ̄ = −10. We can see that according to the strength of the
resonance shift the system is found in a different region of the parameter space, as
already verified in [39]

superimpose (1.4), compensating each other, resulting in a flat soliton background,
in the presence of the shifted resonance, only the shifted mode µ̄ contribution to
the superposition will be different, and the exceeding (or lacking) contribution will
result in the periodic tail. In formulas:

ψSoliton(θ, t) =
Ø
µ

ψSolitonµ (t)eiµθ (2.37)

ψAMX(θ, t) =
Ø
µ/=µ̄

ψSolitonµ (t)eiµθ + (ψSolitonµ̄ + δψµ̄)eiµ̄θ = ψSoliton(θ, t) + δψµ̄e
iµ̄θ

(2.38)

Where ψSoliton indicates the DKS of LLE with flat background and ψAMX the
soliton solution within the following model. This explains also the variation in the
amplitude observed for different frequency shift aµ̄. As we can see in 2.4 in fact, the
amplitude (and so the occupancy |ψµ̄|2 ) depends on the frequency shift, and this,
as explained in [40, 35], is due to the dependence of the phase matching conditions
between the soliton dispersion and the displaced resonance, that changes if the
resonance is shifted.

As already observed, the dispersive wave is phase-locked to the soliton. This
is a key properties, since in this way the presence of the dispersive wave increases
the interaction range of the soliton, that becomes now more correlated to the entire
cavity.
This results in the stabilization of multisolitons states, as discussed in [41], allowing
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Figure 2.2: Single soliton simulated dynamics. We can see the simulated
soliton (light green line) propagating along the azimuthal coordinate θ during
time t for the operating point (ζ0, aµ̄, µ̄) = (4,−8, 6). Both the modulation of the
background and the presence of periodic boundary conditions are visible.

Figure 2.3: Dissipative cavity soliton. Simulated soliton for µ̄ = 18. As already
demonstrated, the period is related to the mode number, such that there are exactly
18 "hills" in the dispersive tail of the soliton.

the solitons to propagate closer to each other without interacting and subsequently
annihilating, as normal in the LLE dynamics. This property manifests, in the
extreme case, as the existence of a new multisoliton state, the so called Soliton
crystal which presents a radially symmetrical distribution of solitons around the
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Figure 2.4: Solitons in real space and their spectra for different resonace shifts aµ̄.

Figure 2.5: Soliton Crystal state. Soliton crystal state, (aµ̄ = −0.66, µ̄ = 15).
We can see how the period (i.e. lattice length) is exactly equal to the number of
mode displaced, this due to the presence of the modulated background.

ring, which, as observed in [37], is instead an unstable solution for the unperturbed
LLE. In addition, the number of solitons forming the crystal is exactly equal to
the mode number of the mode displaced, highlighting again the importance of the
dispersive wave for the crystallization process.
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Figure 2.6: Periodicity of the soliton background Different stable soliton solution
for different mode number µ̄ displaced.

Figure 2.7: P −µ Symmetry We can clearly see from the figures how the dynamics
for two operating points in the parameters (sub)space (ζ0, ā,µ, µ̄)-plane, differing
only for the value of µ̄, equal to µ̄ = 6 (left) and µ̄ = −6 (right), is related by a
parity transformation.
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Chapter 3

Noise reduction and
Microwave generation

Among the numerous applications of Kerr microresonators, the microwave gener-
ations is often considered as a primary one. Without entering the details of the
engineering of an actual device and the implications such devices, we will give here
a simple conceptual description of the phenomena.

In the ideal case, a dissipative soliton obeying the Lugiato Lefever equation,
at fixed detuning and pump power, will circulate in the ring at a constant group
velocity.
Due to the coupling between the waveguide and the cavity 1.2, part of the intracavity
field is dissipated, being outcoupled.
If we then place a photodiode at the output port of the integrated circuit, it will
detect a train of identical optical pulses equally separated in time, by a constant
time interval, τR called the roundtrip time, since it is the time in which the soliton
make a complete round around of the cavity. Being the latter of the order of
microseconds, the optical signal will be converted to the microwave domain with
constant frequency fR. This frequency is called repetition rate and it is related to
the roundrip time by the following relation:

frep = 1
τR

(3.1)

In this ideal case a perfect microwave generator could be realized.

In a real world situation instead, the process of creating a trustful integrated
radio-frequency signal generator is hindered by the presence of different noise
sources in the system. Some of them are intrinsic to the resonator, due to the
coupling of photonic intracavity field to the phononic degrees of freedom of the
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cavity; since the latter depend on the temperature field within the resonator, the
result is an effective coupling of the intracavity optical and the temperature fields,
known as thermo-optic effect. This can be modeled as a further temperature
dependence of the refractive index of the system and leads, to the coupling of
fluctuations of the temperature field to the fluctuations of the cavity resonances,
giving rise to the major thermal noise contribution, known as thermo-refractive
noise, firstly experimentally characterized in Silicon nitride resonators in [42]. The
second main sources of noise are instead related to the nature of the external driver.
One of that is the shot noise, a fundamental noise source arising from the discrete
nature of the electromagnetic field produced by the driver that leads to a fluctuating
number of photons emitted in time.
Finally, the driver field, far from being ideal, fluctuates both in phase and ampli-
tude, leading to two further independent sources of noise that affects the soliton
dynamics [40].
The presence of these stochastic effects results in a fluctuation of the soliton group
velocity, that will lead to a fluctuation of the roundtrip time and consequently
to a fluctuating repetition rate of the microwave generator. In particular, as
underlined in [43], the major contributors to the soliton noisy dynamics are the
thermo-refractive noise and the phase noise of the laser. For this, in the work we
focused explicitly on the presence of pump phase noise, showing how the presence of
a single shifted resonance, if opportunely engineered, can compensate the presence
of the noise, stabilizing the soliton dynamics.

3.1 Noise transduction mechanism
The response of the resonator to the presence of the noise depends strongly on
the material. For instance if the material is ideally parabolic dispersed, so exactly
described by the Lugiato Lefever equation, it would be insensitive to external phase
noise of the laser [40],1 being the group velocity independent on the detuning. In a
real system instead the dispersion profile is more complex than simple parabolic,
presenting higher orders of dispersion and multiple mode families interacting (earlier
presented AMX); this leads to the generation of dispersive waves due to the resonant
(phase-matched) interaction between the soliton linear dispersion and one or more
resonance frequency of the cavity. Being the strength of the soliton-dispersive wave
interaction detuning dependent, this makes the soliton susceptible of the frequency
noise of the laser.

1Assuming the system is evolving in the (ζ0, f) parameter space far from the soliton existence
range, otherwise, the noise could move the system to another attractor different from the soliton
one
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Furthermore, the presence of a further coupling of the intracavity optical field
to the vibrational degrees of freedom of the cavity can give rise to the so called
Raman scattering2, an interaction that breaks the inversion symmetry and allows
the soliton to acquire a defined detuning dependent group velocity [44].
Recent studies [29, 45] have shown that the combined action of both these phenom-
ena could surprisingly results in a noise reduction of the system, reaching the so
called quiet point (QP), an operating point in the parameter space characterised by
the lowest sensitiveness to noise of the system. We extended the perturbed model
presented in chapter 2 to take in account both the pump noise and the Raman
interaction to show how already the presence of a very narrow and localized AMX
(i.e. single resonance shift) could be sufficient to induce a noise reduction.

3.2 Extension of the model: Detuning Noise
In order to take in account the presence of pump phase noise, we followed exactly the
same calculation proposed in [14], with the only extension of introducing a further
time dependent phase to the input field, obtaining the following noise-dependent
version of the coupled mode equation 1.13:

Ȧµ = −∆ωµ
2 Aµ − ig0

Ø
αβγ

Λαβγ
µ AαA∗

βAγe
iω̄αβγµt

+ 1
2∆ωµFµ

ñ
1 + δρ2ei(Ω0t+φ(t)+δϕ(t)−ωµt) (3.2)

Making the following change of variable:

Bµ = Aµe
−i(Ω0t+φ(t)+δϕ(t)−ωµt) (3.3)

we obtain the following equation:

Ḃµ = −
A

∆ωµ
2 + i

1
Ω0 + φ̇+ ˙δϕ− ωµ

2B
Bµ − ig0

Ø
αβγ

(Λ′)αβγµ BαB∗
βBγ (3.4)

+1
2∆ωµFµ

ñ
1 + δρ2 (3.5)

2In Si3N4 microresonators the effect of Raman scattering is experienced but not for the silicon
nitride cavity itself, having a small Raman coupling constant, but due to the stronger coupling of
the Silica (SiO2) substrate over which the integrated circuit is grown

3See Ref. [15] for the equivalence between the two version of the equation
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with:

δρ2 := φ̇4 + 4φ̇2Ω2
0 + 4φ̇3Ω0 + φ̈2

Ω4
0

(3.6)

δϕ(t) := tan−1
A

ϕ̈

Ω2
0 + φ̇2 + 2φ̇Ω0

B
(3.7)

Λ′ := Λe−i(Ω0t+φ(t)+δϕ−ωµt) (3.8)

The introduction of a phase noise in the driver field translates so in a duplex
contribution to the dynamics. A first term that is responsible for a time fluctuation
of the detuning term and a second one responsible both for the amplitude noise
of the pump term. Considering the noise terms as perturbations, we decided to
work in the simplified assumptions of assuming, as leading term responsible for the
noisy dynamics, the detuning noise term.
Doing so we assumed the following dynamical equation4:

∂tψ = −(1 + i(ζ0 + δζ(t)))ψ + i

2∂
2
θψ + i|ψ|2ψ + f − iaµ̄ψ̃µ̄e

iµ̄θ (3.9)

Where the phase noise of the pump is taken in account through a time dependent
detuning term, distributed according to the frequency noise power spectral density
of the driving laser.

3.2.1 Simulated Soliton Dynamics in Presence of Noise
Implementing the algorithm described in Chapter 4, we numerically solved equa-
tion (3.9) to see the response of the system in presence of the noise5.
In all the simulation in this section the soliton seems fluctuating around a preferred
position in the ring but this is an artifact due to compensation in the simulation
of the mean group velocity of the soliton, so that we can analyze only the noisy
dynamics. In the actual simulation the soliton will propagate around the ring
linearly with time with a constant group velocity that fluctuates around a constant
mean value.

We first simulated the detuning term as a deterministic sinusoidal function of
time (cf. Fig. 3.1a) obtaining the results shown in figure 3.1. From Fig. 3.1b we can

4Refer to Ref. [15] for the details on the equivalence between equations (3.5) and (3.9)
5Due to the P − µ-symmetry of the model, that is detuning independent, in this section we

simulated the dynamics just for positive mode displaced, i.e. µ̄ > 0. Furthermore, since we are
interested in the case in which there is greatest contribution due to the perturbation, we chose to
work with aµ̄ < 0, such that there is greatest interaction between soliton and displaced mode.
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clearly see that the soliton group velocity depends directly on the detuning value,
following with its trajectory exactly the detuning changes. This can be justified
by looking at the dynamics in the Fourier space6 (cf. Fig. 3.1c); we can see in
fact how the linear dispersion of the soliton rotate coherently according to the
detuning, going from a region of coherence of signs between the frequencies and
the mode numbers, leading to a backward propagation of the soliton, to regions
in which the frequencies have opposite signs with respect to the mode numbers,
resulting to forward propagation of the soliton. In addition, it can be seen that,
the shifted mode µ̄ is majorly occupied with respect to the other modes, justifying
the presence of the dispersive wave during the whole dynamics. That shows that
the soliton and the dispersive wave are behaving as an unique global structure and
not as two independent entities(3.1 a and d).

6InFig. 3.1c, as in the following other, we analyzed the dynamics also in the Fourier space, by
taking the 2D-Fourier transform of the real space soliton dynamics; in this way it is possible to
observe the linear dispersion of the soliton

27



Noise reduction and Microwave generation

Figure 3.1: Simulated soliton dynamics in presence of sinusoidal modu-
lation of the detuning. m̄ = 15, f 2 = 6, ζ0 = 4, δζ(t) = 0.1ζ0 cos(αt+ φ), α =
0.0033, φ = −200.a) Detuning b) (log scale) Real space soliton dynamics: we can
see that the soliton and the dispersive wave are phase locked, responding coherently
to the noise. c) Response of the soliton in Fourier space: The linear dispersion of
the soliton change angle periodically, following the detuning change. d) Zoom of
the linear dispersion: we can see how the presence of the modulated background
for different detuning shows that at any detuning the soliton dispersion is phase
matched with the displaced resonance of mode µ̄.

We further simulated the dynamics in presence of a purely random noise with
Lorentian distribution (cf. Fig. 3.2). We can see the soliton state is still preserved
also with a fast changing detuning dynamics such as that of a stochatic noise,
showing that it is a robust coherent structure with respect to detuning. Furthermore,
the same consideration as in the previous case of sinusoidal noise can be done, such
that the dispersive wave is still phase-locked to the soliton. Thanks to the previous
simulation, now it is easier to understand from Fig. 3.2c, as the linear dispersion of
the soliton randomly changing slope with in response of the random detuning.
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Figure 3.2: Simulated soliton dynamics in presence of random noise and
single mode displaced only. m̄ = 15, f 2 = 6, ζ0 = 4 a) Stochastic Detuning b)
(log scale) Real space soliton dynamics c) Response of the soliton in Fourier space

3.3 Extension of the model: Raman Scattering

As previously explained, Raman scattering is due to the interaction between the
intracavity field and the vibrational degrees of freedom of the Silica substrate over
which the photonic circuit is fabricated. Its contribution to the LLE has already
been derived starting from Maxwell wave equation [46], adding a further term to
the nonlinear susceptibility of the system, representing the retarded response of the
system due to the material vibrational degree of freedom7. In addition, following
the approach carried on in Ref. [44], only the first order of the Raman response
has been taken in account. In this way the the following equation is obtained:

∂tψ = −(1+ i(ζ0 + δζ(t)))ψ+ i

2∂
2
θψ+ i|ψ|2ψ+f − iaµ̄ψ̃µ̄e

iµ̄θ − iτ(∂θ|ψ|2)ψ, (3.10)

7Refer to [46] for a detailed derivation of it
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where

τ = τRaman

ó
κ

2D2
D1 (3.11)

is a normalized parameter that takes into account the properties of the resonator
and the response of the silica substrate that is of order of femtoseconds and strongly
depends on the individual design of the resonator and fabrication.

If we expand this further term in the discrete Fourier basis we can see that it
breaks the µ → −µ-symmetry in a non trivial way. In fact:

− iτψ∂θ|ψ|2 = −iτ
AØ

µ

ψµe
iµθ

B
∂θ

Ø
µ′,µ′′

ψµ′ψ∗
µ′′ei(µ

′−µ′′)θ


= −iτ

Ø
µ,µ′,µ′′

ψµψµ′ψ∗
µ′′i (µ′ − µ′′) ei(µ+µ′−µ′′)θ

= τ
Ø

µ,µ′,µ′′
(µ′ − µ′′)ψµψµ′ψ∗

µ′′ei(µ+µ′−µ′′)θ

⇒
1
ψη,−iτψ∂θ|ψ|2

2
= τ

Ø
µ,µ′

(µ− η)ψµψµ′ψ∗
µ+µ′−η

= −ητ
Ø
µ,µ′

ψµψµ′ψ∗
µ+µ′−η + τ

Ø
µ,µ′

µψµψµ′ψ∗
µ+µ′−η

(3.12)

where with (ψη,−iτψ∂θ|ψ|2) we consider the projection of the Raman term on a
plane wave of mode η. This dependence on the mode number of the equation results
in a asymmetry between positive and negative mode numbers and consequently, as
simulated, it leads the soliton to acquire an additional detuning dependent group
velocity. This can be seen in Fig. 3.3, where, subjected to the same sinusoidal noise
as in Fig. 3.1, the soliton is again susceptible to the detuning change.
This time, being simulated the dynamics only in presence of the Raman scattering
without any mode displaced, we can see from Fig. 3.3b there is no preferred mode
more occupied than others, and consequently no modulation of the background of
the soliton. But still the dynamics looks very similar as Fig. 3.1, possibly indicating
that the two effects can combine in a optimal way to reduce the noise dependence.
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Figure 3.3: Simulation of soliton dynamics in presence of Sinusoidal
noise and Raman scattering only. The noise is exactly the same sinusoidal
noise as in figure 3.1 but with only Raman scattering present. No resonance for
any particular mode indeed and absence of dispersive wave.

Figure 3.4: Simulation of soliton dynamics in presence of random Loren-
tian noise and Raman scattering only. Simulation of soliton dynamics in
presence of the same random noise as in figure 3.2 but with only Raman scattering
present. No resonance for any particular mode indeed and absence of dispersive
wave.

3.4 Quiet Point
Combining now both the single mode resonance shift and the Raman term in
presence of detuning noise, we looked for the noise reduction effect. By opportunely
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sweeping the parameters of the perturbed single mode displaced model (i.e. aµ̄, µ̄)
we explored the parameter space to see how the two effects combine together and
if this combined effect can lead to a noise reduction, as experimentally proven [45].
We first fixed both the detuning ζ0 and the resonance shift aµ̄ and simulated the
dynamics for different mode number µ̄. Due the Raman term now the dynamics
of positive and negative mode are no more related by a parity transformation
as in absence of Raman, and for this we needed to simulate the two dynamics
independently.
In figure 3.5, we have summed up the major results of the sweeping. By comparing
the upper lines of subfigures with the lower one, is evident that there is no more
a parity transformation relating the positive and negative dynamics; while in the
case of figures 3.5b,d the dynamics are qualitatively the same with some minor dif-
ferences, in figure 3.5c,e the system dynamics strongly differentiates in the two case,
since in one case (cf. Fig. 3.5c) the soliton still responds to the noisy environment,
while in the second one (Fig. 3.5e) we can appreciate a clear noise suppression.
It is evident from figure 3.5 that the perturbation can both enhance (3.5b,d). or
reduce the noise response, until reaching, in the optimal case, the so called quiet
operating point (QP)(i.e.the optimal balance between AMX and Raman effects)
This has been explained as follows.
Both the perturbations activate a noise transduction mechanism that translates in a
detuning-dependent rotation of the soliton linear dispersion; if the rotations induced
by the perturbation and by the Raman term are in phase, meaning that they both
rotate the soliton line in the same direction, then the system will stronger respond
to the detuning noise, enhancing the noisy input. Vice versa, if the perturbations
are in antiphase, meaning they tend to rotate the soliton dispersion in opposite
direction, we will obtain a reduction (or optimally a complete suppression) of the
noise sensitiveness of the system.
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Figure 3.5: Comparison of noise cancellation for different operating
points. a) Simulated soliton dynamics in presence of detuning random noise
and Raman scattering only. b),c),d),e) Simulated soliton dynamics in presence
of exactly the same realization of the random detuning noise present in figure a,
computed at different operating points, differing only by the mode number µ̄, in
alphabetical order: µ̄ = 10, µ̄ = 21, µ̄ = −10, µ̄ = −21.

3.5 Alternative approach to QP
Once it has been demonstrated the possibility of obtaining a QP within the model,
the question arise about the uniqueness of this QP; is this the only point in the
parameters space having this low sensitiveness on detuning noise or there are more
than one?

To answer this question, we applied the same sweeping scheme to a wider region
of phase space (sweeping also the detuning and the resonance shift ζ0, aµ̄), obtaining
some results but at the cost of longer computation time. That is because, to obtain
information about the detuning dependence of the soliton dynamics we simulated
the complete evolution of it. This is of course a powerful method that completely
characterizes the dynamics of the soliton in a given time interval, but due to the
richness of information obtained with the simulation, it results as a slow method
to observe the different behaviour of the system in a wide region of the space of
the parameters. The process of spanning regions of parameters space in search of
the quiet operating point should be speed up using a different approach.
The key idea is to find a way to compute the value of the soliton group velocity for
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different operating points of the (ζ0, aµ̄, µ̄)-space8, without simulating the whole
dynamics in presence of noise, and then studying the detuning dependence of
the soliton group velocity. This idea is based on the fact that a quiet point is
a particular operating point of the parameters space characterised by the lowest
dependence on the detuning, regardless on the nature of the noise, being an intrinsic
property of the dynamics of system.

To do so, we have implemented the Newton-Raphson method. This method,
as explained in more details in chapter 4, it is used to find roots of vectorial equa-
tions through an iterative algorithm on subsequent approximations. By opportunely
choosing the equations and the unknowns of the equations, it was possible to use
it to compute the correct group velocity acquired by the system for a given point
of the parameter space, in presence of both the single mode perturbation and the
Raman scattering, more than 60 times faster then with the previous method.9.

3.5.1 Results

Fixing the pump term f for convenience, the parameter space to investigate in
search of the quiet points reduces to the three-dimensional space (ζ0, aµ̄, µ̄) making
our computed group velocity already a four-dimensional manifold. We then firstly
choose to fix the already found mode number µ̄ = −21 and sweeping for the
parameters in the plane (ζ0, aµ̄) and compare it with the case of opposite mode
µ̄ = 21 resulting in figure 3.6.

From the resulting computation of the group velocity shown in Fig. 3.6, we can see
that the soliton group velocity has an increasing (in Fig. 3.6a) (or decreasing in
Fig. 3.6b) behaviour toward a specific region of the parameter space and this has
been justified by the plot of the occupancy of the displaced mode (cf. Fig. 3.6c,d),
showing that a critical value for the group velocity is obtained close to the maximum
of the occupied mode. That has been explained by a maximum resonant condition
between the soliton and the displaced mode µ̄ for a particular operating point
(ζ0, aµ̄). Also from this perspective we can see, from the different values in absolute
value assumed by the group velocity, how the P −µ-symmetry presented in chapter
2 is not present anymore.

8We remind that we took raman time and pump power fixed
9All the details in Chapter 4
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Figure 3.6: Computed soliton group velocities and occupancy of dis-
placed mode in (ζ0, aµ̄)-subspace with Newton-Raphson method a)Soliton
group velocity for (ζ0, aµ̄), µ̄ = −21), b)Soliton group velocity for (ζ0, aµ̄, µ̄ = 21),
c)Occupancy of displaced mode for (ζ0, aµ̄, µ̄ = −21), d)Occupancy of displaced
mode for (ζ0, aµ̄, µ̄ = 21). We can see that the group velocity and the occupancy
of the displaced mode µ̄ present a similar behaviour. To note that, due to the
presence of Raman term, we have the breaking of P − µ-symmetry obtaining that
vg,µ̄>0 /= −vg,µ̄<0

At this point, we searched for the quiet points by numerically computing the
directional derivative of the group velocity w.r.t the detuning direction (3.7), since
a QP can be identified as a point P = (ζ∗

0 , a
∗
µ̄, µ̄

∗) such that:

∂vg
∂ζ0

|P = 0 (3.13)
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Figure 3.7: Example of fixed detuning lines for derivative computation in the
case of subfigure a) of fig. 3.6

The computation of the derivatives are shown in 3.8 in log10 scale.

Figure 3.8: Directional derivative of soliton group velocity along the
ζ0-direction (i.e. detuning). Log10 value of the directional derivatives along
the detuning direction of the group velocities of figure 3.6, with subfigures in the
same order. It is clear the difference between positive and negative mode, since the
latter present a further line of quiet points.

We can see that the two cases present both some common features and some
different ones. First of all, in both the cases the derivatives present, in the bottom
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left corner of the region of parameters, two lines of points of opposite behaviour;
The yellow line, that is characterized by high values of the derivative in which we
expect the system to be strongly dependent on the detuning, and the blue line, in
which we have an opposite behaviour, characterized by low value of the derivative.
The points on this latter line can be already considered quiet points, verifying
already the existence of different quiet points.
We notice that these two lines can be related to the occupancy of the displaced
mode being in proximity of its maximum (see Fig. 3.6). Furthermore, an important
difference is evident in Fig. 3.8: the negative mode clearly manifests a further line
of QPs that is absent in the positive mode case. This difference has again to be
understood due to the Raman scattering that breaks the P − µ-symmetry.
From this result we could apriori predict the simulations shown in Fig. 3.5c,d
(Pc = (4,−4,21), Pd = (4,−4,−21)). In fact in the first case (Pc) the operating
point is in the green region of figure 3.8b with no particular noise reduction, whereas
Pd stays exactly on the QP lines.
Furthermore, this latter line of QPs, differently from the first one in the bottom
corner, being far from region of high enhancement of the noise, should be the
preferred one in the engineering of a device, since, due to some fabrication errors,
in this case even if the point would not be one of the quietest, it still will be in
a region of low derivative (i.e. low noise sensitiveness), while in the case of the
corner QP line, a fabrication error could result in operating the system in a region
of high enhancement of the noise, resulting in a bad performing device.
To double check the correctness of the approach, we launched a further test, running
three complete simulations of the dynamics in presence of random noise at fixed
detuning for the operating points shown in figure 3.9.
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Figure 3.9: Choosing the operating points on the group velocity change plot for
further investigation of the noise properties.

The results are plotted in figure 3.10. With these further simulations we have
clearly observed that the lines in parameter space really coincides to a quiet points
line, demonstrating the existences of multiple quiet points for different realizations
of the mode shifting.
This is a brand new results, since in the literature it has never been considered the
possibility of having different quiet points, opening the scenario of engineering the
system to beside exactly at the more convenient quiet point.
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Figure 3.10: Resulting simulations related to fig.3.9

3.5.2 Analytical Derivation

Considered the crucial role of the quiet operating point in the generation of ultra-
low noise RF signal and thus the potential impact of the numerical simulations
presented in the previous sections, finally we tried to analytically derive the results
shown in Fig. 3.8 in order to extends the considerations directly from a closed form
equation.
To do so, we followed the common procedure to study the properties of the solution
of perturbed Nonlinear Schrödinger Equations (NLSE) [36], by substituting an
ansatz solution in the definition of the norm (2.10) and momentum (2.12). We
took as an ansatz a soliton solution of the unperturbed NLSE with an additional
superposition of a plane wave of period µ̄ and amplitude proportional to aµ̄, locked
to the soliton pulse, as the numerical observations showed 2.3:

ψ = B sech
A
θ − θ0

τs

B
eiφe−iΩ(θ−θ0) + aµ̄Ae

iµ̄(θ−θ0)eiφ (3.14)
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Equations (2.10) and (2.12) are then rewritten as follows:

N =
Ú
dθ|ψ|2

=
Ú
dθ

C
B2 sech2

A
θ − θ0

τs

B
+ a2

µ̄A
2 + 2aµ̄ABℜ{ei((Ω+µ̄)(θ−θ0))} sech

A
θ − θ0

τs

BD

= 2B2 + a2
µ̄A

2L+ 2aµ̄ABτsℜ
Ú
dx sech(x)ei(Ω+µ)τsx

= 2B2 + a2
µ̄µ̄A

2L+ 2aµ̄ABπ sech
5
π

2 (Ω + µ̄)τs
6

(3.15)
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P = 2ℑ
Ú
dθψ∗∂θψ = 2ℑ

Ú
dθeiφψ∗∂θψe

−iφ

= 2ℑ
Ú
dθψ∗∂θ

C
B sech

A
θ − θ0

τs

B
e−iΩ(θ−θ0) + aµAe

iµ̄(θ−θ0)
D

= 2ℑ
Ú
dθψ∗[B

τs
(−) sech

A
θ − θ0

τs

B
tanh

A
θ − θ0

τs

B
e−iΩ(θ−θ0)

− iΩB sech
A
θ − θ0

τs

B
e−iΩ(θ−θ0) + iµ̄aµ̄Ae

iµ̄(θ−θ0)]

= 2ℑ
Ú
dθ[−B2

τs
sech2

A
θ − θ0

τs

B
tanh

A
θ − θ0

τs

B
− iΩB2 sech2

A
θ − θ0

τs

B

+ iµ̄aµ̄AB sech
A
θ − θ0

τs

B
ei(Ω+µ̄)(θ−θ0)

− aµ̄A
B

τs
sech

A
θ − θ0

τs

B
tanh

A
θ − θ0

τs

B
e−i(µ̄+Ω)(θ−θ0)

− iΩaµ̄AB sech
A
θ − θ0

τs

B
e−i(µ+Ω)(θ−θ0) + iµ̄a2

µ̄A
2]

= 2ℑ
I

−iΩB2
Ú
dθ sech2

A
θ − θ0

τs

B
+ iµ̄aµ̄AB

Ú
dθ sech

A
θ − θ0

τs

B
ei(Ω+µ̄)τs

θ−θ0
τs

+ aµAB
Ú
dθ∂θ sech

A
θ − θ0

τs

B
e−i(µ̄+Ω)τs

θ−θ0
τs

− iΩaµ̄AB
Ú
dθ sech

A
θ − θ0

τs

B
e−i(µ̄+Ω)τs

θ−θ0
τs + iµ̄a2

µ̄A
2
Ú
dθ}

= −4ΩB2 + 2µ̄aµ̄ABτsπ sech
3
π

2 (Ω + µ̄)τs
4

+ 2µ̄a2
µ̄A

2L

− 2Ωaµ̄ABτs sech
3
π

2 (Ω + µ̄)τs
4
π + 2(µ̄+ Ω)aµ̄ABτsπ sech

3
π

2 (Ω + µ̄)τs
4

= −4ΩB2 + 2µ̄a2
µ̄A

2L+ 4πµ̄aµ̄ABτS sech
3
π

2 (Ω + µ̄)τS
4

(3.16)
The group velocity of the soliton is then proportional to[36]:

vg ∝ P

N
=

−4ΩB2 + 2µ̄a2
µ̄A

2L+ 4πµ̄aµ̄ABτS sech
1
π
2 (Ω + µ̄)τS

2
2B2 + a2

µ̄µ̄A2L+ 2aµ̄ABπ sech
1
π
2 (Ω + µ̄)

2 (3.17)
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Assuming now the following:

τs = 1
B

(3.18)

B =
ñ

2(ζ0 + γaµ̄) (3.19)

Ω = −16
15τ

B2

τ 2
s

(3.20)

∂ζ0A = 0 (3.21)

Where the first two relations are obtained from the unperturbed NLSE soliton
solution[36]the third one from a Lagrangian approach in presence of only Raman
scattering [47] and the last one from the numerical simulations. In particular in
3.19 we also took in account a correction term (γaµ̄) depending on the parameter
of perturbation. Assuming additionally that:

∂ζ0P >> ∂ζ0N (3.22)

as numerical simulations showed in presence of noise, we obtained:

∂ζ0vg =
G

√
1−G2(2π2Aµ̄2aµ̄)√

2z3/2 + 8
5π

2AG
√

1 −G2µ̄τaµ̄
√
z + 128

5 τz
2

A2La2
µ̄ + 2πAGaµ̄

√
2z + 4z

(3.23)

With:

z = ζ0 + γaµ̄

Ξ =
π
1
µ̄− 16

15τz
2
2

2
√

2z
G = sech(Ξ)
A = 0.01
γ = 0.57
τ = 0.005
L = 200

Where the values of the parameters A, γ, L have been fitted in order to reproduce
a comparable results.

From figures 3.11 and 3.12 we can see a comparison between the numerical
( 3.11a,b) the analytical ( 3.11,c,d). The figures show that within the analytical
formulation is possible to catch the main properties of the system, such as the
different behaviour between positive and negative mode numbers µ̄ and, more
importantly, the quiet points lines.
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Figure 3.11: Comparison between the numerical (left) and analytical (right)
values of the log-derivative of the group velocity.
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Figure 3.12: Comparison between the numerical (left) and analytical
(right) 3D plots of the soliton (log-)group velocity log10(|∂ζ0vg|) We can see
how the analytical formula predicts the different behaviours for opposite values of
µ̄
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Chapter 4

Numerical Methods

To study the dynamical properties of the systems two different numerical approach
have been used in this work, the Split-Step method and a generalization of Newton-
Raphson method. The first one has been used to simulate the dynamics of the
system finding numerical solutions of the perturbed LLE (3.10), not being known
any analytical solution of it.
The second one instead has been implemented to obtain insights on the response
of the system in presence of frequency noise to find the optimal values satisfing the
quiet point (QP) conditions.

In the following a general description of each method is proposed, followed by the
actual implementation for the particular problems considered.

4.1 Split-Step Algorithm
Considering a general nonlinear partial differential equations (PDE) of the first
order in time and with explicit derivative term w.r.t time. Then it can be formally
written as:

∂tψ = Ĥψ := [D̂ + N̂ ]ψ (4.1)

where we separated the infinitesimal evolution operator Ĥ in its linear, D̂, and
nonlinear part, N̂ . The equation is formally solved by the action of the propagator
on the initial condition i.e.:

∂tψ = [D̂ + N̂ ]ψ ⇒ ψ(t) = Û(t)ψ(0) (4.2)

where, Û(t) := e[D̂+N̂ ]t.

In the optimal case in which the linear and nonlinear operators commute (i.e.
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[D̂, N̂ ] = 0) the propagator can be factorized in two independent ones as follows:

Û(t) = e[D̂+N̂ ]t = eD̂teN̂t (4.3)

So, if the nonlinear propagator (i.e. eN̂t) can be analytically computed1, the PDE
is solved by firstly evolving the initial condition applying one propagator and
subsequently applying the other one:

ψ(t) = Û(t)ψ(0) = eD̂teN̂tψ(0) (4.4)

This is not always the case since in general the operators D̂ and N̂ do not commute,
i.e. [D̂, N̂ ] /= 0.
However, for two general operators we can write as follows thanks to the
Baker–Campbell–Hausdorff formula[wiki]:

eD̂teN̂t = e(D̂+N̂)t+ t2
2 [D̂,N̂ ]+g([D̂,N̂ ],t) (4.5)

ĝ(0, t) = 0 (4.6)
ĝ([D̂, N̂ ], t) = O(t3) (4.7)

where for (4.7) it has further assumed that operators D̂ and N̂ do not explicitly
depends on time.

In the present work it has been adopted one of the simplest implementation
of the Split-Step method to simulate (3.10); this is based on the assumption that
for small enough time interval, the propagator can be factorized2 owing an error of
order t2, due to the first neglected term in exponent of (4.5).
In formulas:

Û(δt) = e(D̂+N̂)δt ≈ eD̂
δt
2 eN̂

δt
2 (4.8)

ψ(Nδt) =
NÙ
i=1

(eD̂ δt
2 eN̂

δt
2 )ψ(0) (4.9)

Note that this method is faster than the finite difference relying on the optimized
Fast Fourier Transform (FFT) algorithm.

1A linear propagator can be always in principle formally derived
2That is equivalent of assuming the propagation media as stratified in subsequent layers of

nonlinear and linear material
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4.2 Simulation of perturbed LLE
As described in chapter 3 the system under study is described by the following
PDE:

∂tψ = −(1 + iζ0)ψ + i

2∂
2
θψ + i|ψ|2ψ − iτ(∂θ|ψ|2)ψ + f − iaµ̄ψµ̄e

iµ̄θ (4.10)

Following the Split-step algorithm, we have first to solve independently the following
linear and nonlinear PDEs (i.e. finding the respective propagators eD̂tand eN̂t):

∂tψ = D̂ψ ≡ −(1 + iζ0)ψ + i

2∂
2
θψ + f − iaµ̄ψµ̄e

iµ̄θ (4.11)

∂tψ = N̂ψ ≡ i|ψ|2ψ − iτ(∂θ|ψ|2)ψ = i[(1 − τ∂θ)|ψ|2]ψ (4.12)

As for (4.11), being a linear equation we can solve it in Fourier space, where it
reads as follows:

∂tψµ = − (1 + iZµ,µ̄)ψµ + f (4.13)

with Zµ,µ̄ := ζ0 + µ2

2 + aµ̄δµ,µ̄ This is a first order nonhomogenous linear differential
equation and the solution is readily found as the following:

ψµ(t) = e−(1+iZµ,µ̄)tψµ(0) + f

(1 + iZµ,µ̄)
1
1 − e−(1+iZµ,µ̄)t

2
(4.14)

Defining now the operator Ôµ,µ̄ as follows:

Ôµ,µ̄(t)ψ := e−(1+iZµ,µ̄)tF̂ψ + f

(1 + iZµ,µ̄)
1
1 − e−(1+iZµ,µ̄)t

2
(4.15)

we can express the propagator of the linear equation as:

eD̂t = F̂−1Ôµ,µ̄(t) (4.16)

where with F̂(F̂−1) we considered the operator that Fourier-(anti)transform an L2

function.
Owing to the translation invariance of the system, being the system in a ring ge-
ometry, we do not have to bother for the implementation of the periodic boundary
conditions in the code that are automatically implemented by the use of the Fourier
transform.

Concerning now the nonlinear equation (4.12), it can be easily solved once noticed
that ∂t|ψ|2 = 0.
In fact, multiplying eq. (4.12) by ψ∗ we obtain:

ψ∗∂tψ = i[(1 − τ∂θ)|ψ|2]|ψ|2 (4.17)
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summing now (4.17) to its complex conjugated we obtain:

ψ∗∂tψ + ψ∂tψ
∗ ≡ ∂t|ψ|2 = i[(1 − τ∂θ)|ψ|2]|ψ|2 − i[(1 − τ∂θ)|ψ|2]|ψ|2 = 0 (4.18)

Thanks to this result we can readily write the propagator of (4.10) as:

eN̂t = ei[(1−τ∂θ)|ψ|2]t (4.19)

Once the two propagator have been computed, we it has been possible to follow
the Split-Step algorithm, implementing it in a C++ program.

4.2.1 Hard and Soft Seed
To simulate the dynamics two different types of initial conditions (i.e. seeds) have
been selected. We refer as soft seed when the dynamics has been initialized with a
zero initial condition, i.e. the initial field inside the resonator has zero amplitude.
This type of seed is used to simulate the actual experiment of exciting the resonator,
in which the laser frequency (i.e. detuning) is adiabatically increased over time,
until the first resonance frequency of the cavity is reached and the four-wave mixing
processes are started3.
The requirement of adiabaticity in the evolution of the detuning term is to assume
the system can be described to at any instant by equation (4.10) with fixed detuning
ζ0.
It has been implemented as follows. Being ζn the detuning at time tn, assuming a
linear increase with time of the detuning, we have:

ζn = ζn−1 + δζ (4.20)
tn = tn−1 + δτ (4.21)

The adiabaticity conditon is assumed such that4:

δζ

δτ
<< 1 (4.22)

. An hard seed is instead an initial condition for the field inside the resonator of
a particular shape that could be represented by a particular state of the system,
to study the dynamics of the particular state; the majority of the simulations in

3also said scanning through the resonance
4We are assuming normalized parameters
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the work have been done with an hard seed represented by an approximated single
soliton solution obtained as follows:

ψ(0) = ψ0 +B Sech(B(θ − θ0))eiφ (4.23)

with:

ψ0 = f

1 + iζ0
(4.24)

B =
ñ

2ζ0 (4.25)

cos(φ) =
√

8ζ0

πf
(4.26)

where (4.24) is the uniform constant solution of (4.10), while equation of the shape,
of the modulus and of the phase are the one obtained within a Lagrangian approach
in the case of simple LLE5.

As it can be seen from its definition, the seed depends on the particular op-
erating point of the parameters space chosen. It means that if there is a mismatch
between the initial values of the simulation parameters and those at which the seed
is referred to, the solitonic seed will hardly be stable and will decay to the uniform
solution. Figures

4.2.2 Faraday Instability
As highlighted in the footnote2 of this chapter, the implementation of this algo-
rithm is based on a simplified assumption that see the medium in which the light
propagate as a stratified medium with subsequent layers of linear and nonlinear
materials, where the size of each layer is given by the time interval separating two
subsequent instant of time δτ .
If this interval is not small enough, the result is that the simulation wills start
feeling the periodicity of the medium, manifesting the so called Faraday instability.
This numerical artifact is defined as an instability since it destabilizes the solitonic
solution.
To avoid this numerical error the time interval has been fixed running multiple
hard seeded simulations with different values of δτ for long propagation times and
see for which one the soliton remained stable.

5See results chapter ? for τ and δζµ̄ and µ̄ equal to zeros
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4.2.3 Soliton Noisy dynamics simulation
The same method has been used to simulate the soliton dynamics in presence of
detuning noise according to equation (3.10).
The procedure has been exactly the same discussed in Subsection 4.2.1, where
a single soliton solution has been hard seeded with the key difference that the
detuning array this time has not considered constant but it has been obtained as a
realization of a stochastic process defined by the following equation:

ζ(t) = ζ0 + δζ(t) (4.27)

δζ(t) =
Ú
dωδ̃ζ(ω)ei(ωt+x(ω)) (4.28)

x ∼ U[−π,π] (4.29)

where δ̃ζ(ω) represents the zero-mean spectral density of the detuning noise,
incoherently superimposed thanks to the random uniformly distributed phase x, in
order to generate a random detuning noise array. Two types of spectral density
have been considered in the simulations.
A first type taken as a test defined as a Lorentian with parameters chosen such
that the standard deviation of the detuning noise was of the order of the 10% of
the mean value ζ0.
The second type is instead obtain from the actual power spectral density of the
detuning noise of the Toptica laser. At the end, as demonstrated in chapter 3, the
nature of the quiet point of operation is an intrinsic property of the system to be
the more insensitive as possible to variations of detuning, independently6 on how it
is distributed.

4.3 Newton-Raphson Method
The Newton-Raphson method, is a method used to find roots of nonlinear equations
starting from an initial guess, through an iterative algorithm on subsequent ap-
proximations. It can also be used to find constant solutions of ordinary differential
equation, finding a numerical root of the system of equations expressed in explicit
form. In the work it has been used for computing the behaviour of the group
velocity depending on the operating point in a subspace of parameters space, in
order to find the condition for a quiet point7. After a short description of the
algorithm, in the following the application to the perturbed equation (3.10) are
discussed in detail.

6Excluding critical case of relatively big standard deviation
7see chapter 3
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4.4 General description of the method
Let:

F (Ψ) = 0 (4.30)

representing a set of nonlinear equations to integrate and Ĵ(Ψ) the corresponding
Jacobian8 defined as follows:

Ĵ(Ψ) δΨ := FLin. (Ψ + δΨ) − F (Ψ) (4.31)

Where with FLin we indicate first order approximation of F (Ψ + δΨ) in δΨ.
The method is based on the following iteration scheme:Ψ(k+1) = Ψ(k) − Ĵ

−1(Ψ(k))F (Ψ(k))
Ψ0 : Initial guess solution

(4.32)

With Ĵ
−1 the inverse of the matrix Ĵ .

Assuming the conditions such that Ĵ−1 exists, the solution is given by the fixed
point Ψ∗ of the iteration9.

To implement the algorithm for a continuous case (as the one required by the work),
it is necessary to correctly discretize all the variables, since the roots to look for
can be continuous functions, solutions of differential equation.
To discretize the function we use the standard approach of discretize the domain of
the function into N equal intervals and take the array Ψdiscr. whose components
are the values of the function in the middle points of the discretized domain.
Once the function has been discretized in an array form, a matrix equation of the
following form :

F Ψdiscr. = 0 (4.33)

has to be found, describing the equation (4.30), where F is a discrete matrix repre-
sentation of the nonlinear function F and analogously a matricial representation Ĵ
of the Jacobian matricial operator has to be obtained10.

8In case of differential equations, as the one in which we are interested, it can be a matricial
operator

9For more details refer to [48]
10Both these matrices will depend in principle on the solution itself, as also readable from the

descrition of the iteration scheme
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Furthermore, a threshold value has to be fixed to define the convergence and
to stop the iteration.
This is done defining a metrics to compare the solutions at two subsequent itera-
tions.
In the present work the threshold has been chosen as the relative error computed
with a 2-norm:

ϵ =

öõõõô NØ
i=1

------Ψ
(i)
k+1 − Ψ(i)

k

Ψ(i)
k

------
2

(4.34)

and the convergence criterion has been fixed as:

ϵ < 10−6 (4.35)

4.4.1 Soliton Group Velocity Implementation: Equations
As described in Chapter 3, to overcome the slowness of the Split-step method related
to the computation of the group velocity acquired by the system, we implemented
the Newton-Raphson method.
In the following the implementation of the method has been explained.

Considering the equation (3.10) here rewritten for convenience11:

∂tψ = −(1 + iζ0)ψ + i

2∂
2
θψ + i|ψ|2ψ − iτ(∂θ|ψ|2)ψ + f − iaµ̄ψµ̄e

iµ̄θ (4.36)

The method can be applied thanks to the conservation of the momentum of the
system.
Since the velocity acquired by the soliton is constant, in fact, the idea is to set
the algorithm such that it will find the correct reference frame (i.e. the constant
velocity) in which the equation admits a stationary solution.
This is equivalent to find solution of the equation in the form of propagating wave
at constant velocity as follows:

ψ(t, θ) = ψ(θ − vgt) (4.37)

In this way, the l.h.s. of equation (4.36) is rewritten as:

∂tψ = −vg∂θψ (4.38)

11Since as already stated, the position of the quiet points does not depend on the particular
distribution of the detuning noise but only on its mean value defining the actual operating point,
only the noiseless equation must be considered
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And the equation is now rewritten as follows:

−(1 + iζ0)ψ + vg∂θψ + i

2∂
2
θψ + i|ψ|2ψ − iτ(∂θ|ψ|2)ψ + f − iaµ̄ψµ̄e

iµ̄θ = 0 (4.39)

To correctly apply the method to find the group velocity vg, as clear from (4.32),
we should be able to compute the equation at each iteration, and that requires
to know, in addition to the group velocity, also the value of the field ψ in any
point, requiring to considere it as a further variable the algorithm has to find.
Furthermore, since ψ and ψ∗ are independent (conjugated) variables, we have to
consider in the array of solutions also ψ∗.
In this way we define the array of solution we want the algorithm to converge as
the following:

Φ′ =

 ψψ∗

vg

 (4.40)

Having increased the number of unknown of our problem we should add also two
further equations to obtain a well determined problem. A second equation that
can be readily written is the conjugated of equation (4.39) obtaining the following
system of equations:−(1 + i(ζ0 − 1

2∂
2
θ ))ψ + iψ(1 − τ∂θ)|ψ|2 + f − iaµ̄ψµ̄e

iµ̄θ + vg∂θψ = 0
−(1 − i(ζ0 − 1

2∂
2
θ ))ψ∗ − iψ∗(1 − τ∂θ)|ψ|2 + f + iaµ̄ψ

∗
µ̄e

−iµ̄θ + vg∂θψ
∗ = 0

(4.41)
The last missing equation has been instead written requiring that the position of
the maximum of the (soliton) solution at each iteration does not evolve with time.
This has been expressed through the following equation:

∂θ (ℜψ) |θ=θmax = 0 (4.42)

where θmax = arg maxθ|ψ0|2, i.e. the position of the maximum of ψ0, the initial
guess solution. The equation requires that the solution12 must have a critical point
in the fixed position θmax. In this way we obtain the following system of equations:


−(1 + i(ζ0 − 1

2∂
2
θ ))ψ + iψ(1 − τ∂θ)|ψ|2 + f − iaµ̄ψµ̄e

iµ̄θ + vg∂θψ = 0
−(1 − i(ζ0 − 1

2∂
2
θ ))ψ∗ − iψ∗(1 − τ∂θ)|ψ|2 + f + iaµ̄ψ

∗
µ̄e

−iµ̄θ + vg∂θψ
∗ = 0

∂θ (ℜψ) |θ=θmax = 0
(4.43)

12Actually for convenience only the real part has been considered, but it is equivalent due to
the independence of real and imaginary part of ψ
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4.4.2 Matrix Form of the Equations
To be able to implement the method it is convenient to formally rewrite this system
of equations in a matrix-like equation of the form13:

Â Φ′ = 0 (4.44)

To do so we first notice that formally it possible to rewrite equation (4.39) as a
matrix product between a so defined row vector and the solution vector as follows14:

r̂1 Φ′ :=

−1 − i(ζ0 − 1
2∂

2
θ + aµ̄

s
dθeiµ̄(θ′−θ))

iψ2(1 − τ∂θ) − iτψ∂θψ
∂θψ


⊺  ψψ∗

vg

 = 0 (4.45)

Analogous reasoning can be applied to express the second equation in (4.43) as
follows: :

r̂2 Φ′ :=

 −iψ∗2(1 − τ∂θ) + iτψ∗∂θψ
∗

−1 + i(ζ0 − 1
2∂

2
θ + aµ̄

s
dθeiµ̄(θ′−θ))

∂θψ
∗


⊺  ψψ∗

vg

 = 0 (4.46)

For the third equation we need further considerations to be done.
We can formally rewrite it as follows:

∂θ(ℜψ)|θ=θmax =
Ú

R
dθδ(θ − θmax)∂θ(ℜψ) = 1

2

Ú
R
dθδ(θ − θmax)∂θ(ψ + ψ∗) (4.47)

= 1
2

Ú
R
dθδ(θ − θmax)∂θ(ψ + ψ∗) = 1

2

Ú
R
dθδ(θ − θmax)F−1{iµF{ψ + ψ∗}} (4.48)

13Note that this is a formal equation where the matrix Â can be a matrix of operators in
principle depending on Φ′

14To do so the Raman term and the periodic perturbation have been rewritten as follows:

−iτψ∂θ|ψ|2 = −iτψ2∂θψ
∗ − iτ |ψ|2∂θψ

−iaµ̄ψµ̄eiµ̄θ
′

= −iaµ̄
Ú
dθeiµ̄(θ′−θ)ψ(θ)
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Where the integral has to be intended in the ring and for F and F−1 the operator
that respectively Fourier transforms and antitransforms an L2 function. In par-
ticular F−1 acts on functions of the variable µ giving as an output a function of
variable θ and conversely F acts on functions of the variable θ giving as an output
a function of variable µ. The last equivalence is obtained recalling that the action
of the differential operator on the Fourier basis is represented by the multiplication
of a factor iµ. 15

In this way we can formally rewrite the equation as:

r̂3 Φ′ :=


1
2
s

R dθδ(θ − θmax)iF−1µF
1
2
s

R dθδ(θ − θmax)iF−1µF
0


⊺  ψψ∗

vg

 = 0 (4.49)

That allows us to formally define the following matricial operator as:

F̂(ψ, ψ∗) :=

r̂1
r̂2
r̂3

 ≡ (4.50)

−1 − i(ζ0 − 1
2∂

2
θ + aµ̄

s
dθeiµ̄(θ′−θ)) iψ2(1 − τ∂θ) − iτψ∂θψ ∂θψ

−iψ∗2(1 − τ∂θ) + iτψ∗∂θψ
∗ −1 + i(ζ0 − 1

2∂
2
θ + aµ̄

s
dθeiµ̄(θ′−θ)) ∂θψ

∗

1
2
s

R dθδ(θ − θmax)iF−1µF 1
2
s

R dθδ(θ − θmax)iF−1µF 0


(4.51)

Finally the system of equations (4.43) is formally rewritten16:

F̂(Φ′) Φ′ = 0 (4.52)

To compute now the Jacobian matrix operator apply the definition (4.31) to the
system (4.43) expressing it in vectorial form:

 −(1 + i(ζ0 − 1
2∂

2
θ ))ψ + iψ(1 − τ∂θ)|ψ|2 + f − iaµ̄ψµ̄e

iµ̄θ + vg∂θψ
−(1 − i(ζ0 − 1

2∂
2
θ ))ψ∗ − iψ∗(1 − τ∂θ)|ψ|2 + f + iaµ̄ψ

∗
µ̄e

−iµ̄θ + vg∂θψ
∗

∂θ (ℜψ) |θ=θmax

 = 0

(4.53)

15This is at the basis of the solution of linear PDE through the Fourier transform
16To note that all the integrals present in the matrix has to be considered as integral operators,

defined just when applied to a specific function
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Obtaining:
Ĵ(Φ) =

è
ĵ1 ĵ2 ĵ3

é
(4.54)

where with ĵi we indicate the i-th column of the matricial operator, defined as
follows:

ĵ1 =

−1 − i(ζ0 − 1
2∂

2
θ + aµ̄

s
dθeiµ̄(θ′−θ) − 2|ψ|2) + vg∂θ − iτ({∂θ, |ψ|2} + ψ∂θψ

∗)
−iψ∗2(1 − τ∂θ) + iτψ∗∂θψ

∗

1
2
s

R dθδ(θ − θmax)iF−1µF


(4.55)

ĵ2 =

 iψ2(1 − τ∂θ) − iτψ∂θψ

−1 + i(ζ0 − 1
2∂

2
θ + aµ̄

s
dθe−iµ̄(θ′−θ) − 2|ψ|2) + vg∂θ − iτ({∂θ, |ψ|2} + ψ∗∂θψ

1
2
s

R dθδ(θ − θmax)iF−1µF


(4.56)

ĵ3 =

 ∂θψ∂θψ
∗

0

 (4.57)

Noticing the similarities with (4.51), the Jacobian can be rewritten as:

Ĵ(ψ, ψ∗) = F̂(ψ, ψ∗) +

∆̂(ψ, ψ∗) 0 0
0 ∆̂∗(ψ, ψ∗) 0
0 0 0

 (4.58)

Where ∆̂(ψ, ψ∗) := 2i|ψ|2 + vg∂θ − iτ(∂θ|ψ|2 + |ψ|2∂θ + ψ∂θψ
∗)

4.4.3 Discretization of the Equations
Once we defined the equations and the variables of our problem, we can now
describe how to discretize it in order to run the algorithm on a computer program.

Let us start from the solution array Φ′, and in particular on its continuos compo-
nents (i.e. ψ and ψ∗).
Considered N the size of the discretization of the field ψ, we can associate to the
latter the following array17:

ψ → ψ :=
NØ
i=1

ψiêi (4.59)

17With êi we consider the i-th unit versor of C2N+1 that is the space in which the discretized
solution Φ′ lives
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We can then write the discretised version of the solution array Φ′ as:

Φ′ → Φ :=
2N+1Ø
i=1

Φiêi (4.60)

where:

Φi =


ψi i < N + 1
ψ∗
i N < i < 2N + 1

vg i = 2N + 1
(4.61)

After having discretized the vector solution, also the system of equations (4.43)
have to be expressed in the discretized form a matricial equation of the form (4.33).

First of all we notice that, since in the discretized formulation we have 2N+1
unknowns, we need to expand also the number of equations. Noticing that each
entry of (4.51) or (4.58), indexed with i < 3 or j < 3 is related to the scalar fields
ψ, ψ∗, that have been already discretized in N-dimensional vectors, it is possible
to expand the number of equations converting the two 3 × 3-matricial operators
(4.51)(4.58) in two 2N + 1 × 2N + 1 scalar matrices F (Φ), J(Φ) ∈ C2N+1×2N+1,
whose entries depend on the solution vector18 Φ.

Decomposing F̂ (Φ) and Ĵ(Φ) as follows:

F̂ (Φ) = AF (Φ) + Ô
F (Φ) (4.62)

F̂ (Φ) = AJ(Φ) + Ô
J(Φ) (4.63)

Where AI(Φ) represents the scalar part of the original matrix and ÔI(Φ) its opera-
torial part, I ∈ {F, J}.

In term of discretization, for the scalar part of both operator (4.51)(4.58) it can be
done straightforwardly according to the following procedure:
being AIi,j(ψ, ψ∗) an entry of the scalar part of (4.51) or (4.58) (I = F and I = J
respectively), with i < 3 ∧ j < 3, we will associate to it a complex matrix defined
as follows:

AIi,j(ψ(θ), ψ∗(θ)) → M I,i,j(Φ) :=
NØ
n=1

AIi,j(ψn, ψ∗
n)ênê⊺n (4.64)

18This does not result in a problem since, as prescribed by the method, at any iteration they
will be computed at the value of the preceding iteration
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That is a N × N diagonal matrix having in each non vanishing component the
entry of the original matrix computed at a given point of the discretization grid.

With analogous reasoning, the third column of both the matrix operators (4.51)
and (4.58) (for both equal to ĵ3), not depending on any operator, can be readily
extended to obtain the (2N +1)-th column of the discretized scalar 2N +1×2N +1
matrices (F (Φ) or J(Φ)) as:

ĵ3 =

 ∂θψ∂θψ
∗

0

 → cI2N+1(Φ) :=
2N+1Ø
n=1

anên (4.65)

With:

an =


(∂θψ)n n < N + 1
(∂θψ∗)n N < n < 2N + 1
0 n = 2N + 1

(4.66)

To finally implement also the operatorial parts of (4.51) and (4.58), represented by
the differential or integral operators, we exploit the python function "sp.linalg.dft"
implementing the Discrete Fourier Transform through the so called DFT matrix[49]
This matrix and its inverse are exactly the discrete implementation of the operators
presented in (4.48), that make possible to write a differential (or integral operator)
by explicitly writing its algebraic counterpart in the Fourier space. In such a way,
we were able to compute both the remaining operatorial terms ÔF and Ô

J .
In this way we can readily write the matrix representation of the family of operators
∂nθ .
Being F the N points DFT matrix, the matrix associated to ∂nθ is found as follows:

∂nθ ψ → F−1((iµ)n)F ψ (4.67)

where Dn := F−1(iµn)F is the searched matrix.
And analogously for the integral term in the diagonal entries of F̂ :

−aµ̄F
Ú
dθψ(θ)eiµ̄(θ′−θ) = −aµ̄ψµ̄Feiµ̄θ′ = −aµ̄δµ,µ̄Fψ → −aµ̄δµ,µ̄ F ψ (4.68)

A last consideration is required for the discretization of (4.48).
As the δ-function select a particular point in the continuos space θ, also in the
discretization it is required to take a single value of the discretized derivative and
this is readily implemented as follows:

1
2

Ú
R
dθδ(θ − θmax)F−1{iµF{ψ}} → 1

2 ê
⊺
nmax

F−1(iµ)F (4.69)
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Where only the nmax-row of the matrix F−1(iµ)F has been taken.

Finally, the discretized scalar matrices F (Φ) and J(Φ) have the following ex-
pression:

F (Φ) =

M
F,1,1 MF,1,2

MF,2,1 MF,2,2 cI2N+1(Φ)
0 0

+ (4.70)


−iF−1

1
µ2

2 + aµ̄δµ,µ̄
2

F −iτ
1qN

n=1 ψ
2
nênê

⊺
n

2
D1 0

iτ
1qN

n=1 ψ
∗2
nênê

⊺
n

2
D1 iF−1

1
µ2

2 + aµ̄δµ,µ̄
2

F 0
1
2 ê

⊺
nmax

D1 1
2 ê

⊺
nmax

D1 0

 (4.71)

(4.72)

J(Φ) = F (Φ) +

∆(Φ) 0 0
0 (∆(Φ))∗ 0
0 0 0

 (4.73)

Where:

MF,1,1 = −(1 + iζ0)I (4.74)

MF,1,2 = i
NØ
n=1

ψ2
nênê

⊺
n (4.75)

MF,2,1 = −i
NØ
n=1

ψ∗2
nênê

⊺
n (4.76)

MF,2,2 = (−1 + iζ0)I (4.77)
(4.78)

and:

∆(Φ) := i
NØ
n=1

(2|ψn|2 + τ((∂θ|ψ|2)n) + ψn(∂θψ∗)n)ênê⊺n+

− iτ

A
NØ
n=1

|ψn|2ênê⊺n

B
D1 (4.79)

4.4.4 Initialization condition
Once all the operators are written in terms of scalar matrices and so implementable
in the discrete architecture of the computer, the remaining step to apply the method
described in (4.32) is the definition of the the initial condition.
As initial condition we have taken the soliton solution obtained from the split-
step method above described, and on this point is important to highlight some
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considerations.
We remind that the aim of the implementation of this method is that of speeding up
the computation of the group velocity acquired by the system in an extended region
of the subspace of the parameters space related to the perturbation parameters
and to the detuning, i.e. on the subspace (aµ̄, µ̄, ζ0), in place of using the split-step
method that, simulating the whole dynamics of the system, requires a longer
computation time.
If we assume so to take as initial condition a different result of the split-step method
it will requires to first simulate the system with split-step for later applying the
Newton-Raphson method, resulting still in a very long computation time required.
To overcome this situation, a single hard seed has been taken to initiate the Newton-
Raphson method. In this way, after the simulation for the first operating point
has been terminated we took the converged solution to seed the next simulation,
obtaining a two-fold advantage, speeding up the computation and insuring that the
seed is always close enough to the actual solution associated to the new operating
point.
This procedure is valid since we scanned the parameter space in a way that two
subsequent application of the method were related to close point in the parameter
space.
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Chapter 5

Conclusions and outlook.

In this work, we proposed a model of the perturbed Lugiato-Lefever equation that
can catch the main physics of soliton dynamics in the presence of the avoided mode
crossing in Kerr microresonators. We studied the main properties of the model
obtaining insights about the formation of the dispersive waves in the resonator and
their impact on the soliton dynamics.

Our starting point has been a recent experimental study [29] showing that
the presence of the avoided mode crossing can lead to the phenomenon of noise
suppression in rings microresonators - crucial property to use this system that can
be used in various applications. To deepen the understanding of this phenomenon,
we derived a new model, we further extended the model to take into account the
presence of phase noise of the driving laser. We provided versatile studies of the
system considering first the effect of the mode crossing alone, next the effect of
Raman scattering, and finally both these effects together. Thus, we have proven that
the complete model effectively demonstrates the reduction of the noise transduction
to the soliton repetition rate. We verified that this is possible for a given operating
point of the system (referred in literature as quiet point). Furthermore, we applied
a fast simulation approach (known as Newton-Raphson method) to explore wider
regions of the parameters space, finding out, for the first time in literature, that
the quiet point is not a unique point related to a specific avoided mode crossing
geometry, but it can be obtained, in principle, within different dispersion profiles.
We finally justified these numerical results through an analytical derivation that,
after additional improvements, could in principle lead to an apriori prediction of
the position of the quiet points in the whole soliton existence range.

We underline that, at the moment, the present work is still theoretical and
that must be proven by subsequent experimental studies. Thus, as the outlook of
the study, we would like to highlight the unique possibilities that follow after the
experimental implementation of an integrated device that can perform an active
scan over the quiet point parameter space. One of such possibilities can be the
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significant miniaturization of a very low-noise yet compact RF source that can be, for
instance, easily placed in a space shuttle saving valuable cargo weight. However, the
realization of such a device remains a very challenging task that nonetheless can be
achieved in the nearest future. Indeed, the Laboratory of Photonics and Quantum
Measurements at EPFL is actively testing different schemes and implementations
to make these ideas a reality. In this regard, the results obtained in this thesis can
serve as a solid theoretical foundation for identifying all the criteria to reach the
thermodynamical noise limit in the soliton generating cavities.
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