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Summary

Molecular sorting is a fundamental process responsible for the organization of
matter in eukaryotic cells. It allows cells to counteract the homogenizing effect of
diffusion, and to maintain different functional properties in appropriated membrane
subregions. A recent phenomenological theory proposes that this process could
emerge from two main physical phenomena, (a) phase separation induced by
molecular self-aggregation and (b) vesicle nucleation due to a coupling between
particle presence and membrane spontaneous curvature. To further explore this
theory preceding works introduced a minimal lattice gas model, in which the
membrane is described as a flat two dimensional surface, and investigated its
stationary state numerically. In this work the model is extended to take place on
a fluid membrane. This allows to introduce an interaction between the presence
of particles and the surface spontaneous curvature, which couples the molecular
sorting process with surface fluctuations.
The membrane is described using the Helfrich Hamiltonian, which allows to do some
theoretical predictions, and simulated employing a Dynamically Triangulated Monte
Carlo (DTMC) model. The latter is used to simulate both thermal fluctuations
and diffusion of the surface, onto which particles behaving accordingly to a Markov
process of insertion, domain aggregation and extraction are insterted and coupled
with curvature. Various properties of both the membrane and the distillation
process are investigated at different values of the particle curvature coupling and
the elastic constant.
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Chapter 1

Introduction

Molecular sorting is a major mechanism regulating the organization of cellular
matter in eukaryotic cells. It allows cells to counteract the homogenizing effect
of diffusion, by the sorting and distillation of specific proteins in submicrometric
vesicles. Such vesicles, after the detach from the membrane, are then transported
towards appropriate destinations by active mechanisms [1, 2].
A phenomenological theory has recently been introduced [3] and extended [4],
proposing that molecular sorting may emerge from two main physical phenomena,
(a) phase separation induced by molecular self-aggregation and (b) vesicle nucleation
originating from a coupling between the molecules and the membrane curvature.
In both these works a spatially homogeneous probability of nucleation of sorting
domains is considered. It has however been observed that sorting domains may
cluster in "hotspots" or "nucleation organizers" [5]. This kind of spatial correlation
may be due to effects that take place only onto a fluctuating surface. The numerical
works of the preceding papers [3, 4] both took place on a flat lattice, so in order
to investigate this possibility, and more in general to investigate how the surface
fluctuations and the sorting process influence each other, in this work the model is
simulated onto a fluctuating membrane.
It is widely recognized in the literature that fluid membranes are well described, at
a mesoscopic scale, in a field-theoretic framework, using a phenomenological elastic
functional, the Helfrich Hamiltonian [6, 7, 8]. This framework allows to make
theoretical predictions about the behaviour of the membrane, that can be confronted
with computational results. To simulate fluid membranes, the computational tool
of Dynamically Triangulated Monte Carlo models (DTMC) is used. In this context
two Monte Carlo moves are used: (1) vertex moves, which randomly displace
vertices within a cube in space and (2) link flips, which select a random bond and
substitute it with another tether connecting two previously unconnected vertices.
The two moves simulate respectively thermal fluctuations and diffusion. This
method was largely used to simulate fluid membranes [9, 10, 11, 12, 13, 14].
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Introduction

In order to investigate computationally the molecular sorting phenomenological
theory onto a fluid membrane, particles behaving according to the Markov process
already used in [3, 4] were inserted onto the fluid membrane model described above.
The new element introduced is a coupling between the particles and the membrane
curvature.
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Chapter 2

Self-Organized Molecular
Sorting

As explained in the introduction the main idea of this work is to extend the model
proposed in [3, 4], which is defined on a two dimensional flat lattice, on a fluctuating
two dimensional surface, embedded in a three dimensional euclidean space. In
the present chapter, first two auxiliary concepts from nonequilibrium physics are
reviewed [15] and then the model of self-organized molecular sorting is explained.

2.1 Reaction Rate Theory
Reaction rate theory studies diffusion-controlled reactions. In such processes two
constituents react as soon as they are within an interaction radius, so the evolution
of this reaction is determined by the timescale with which diffusion brings the
reactants in proximity. The goal of this theory is to determine at which rate
diffusing particles hit an absorbing object. Starting the description in d = 3, we
have an object surrounded by a gas of non interacting particles, each of which is
absorbed whenever it hits the surface of the object (Fig.2.1).
The reaction rate is defined as the steady-state diffusive flux to the object B. To
find it we need to solve the diffusion equation for the concentration n(r⃗, t) outside
the object, with absorption on its boundary ∂B. We choose a spatially uniform
initial condition for the density outside the object, so we have:

∂n

∂t
= D∇2n (2.1)

with n(r⃗,0) = n̄, and n(r⃗ ∈ ∂B, t) = n0. In d = 3 an important simplification
is present, since the diffusion is transient the concentration reaches a steady
state, because the depletion of particles from the region near B is balanced from
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Figure 2.1: Schematic description of diffusing particles around an absorbing
sphere [15]

the replenishment from the bulk of the gas molecules. In this context the case
of interest is d = 2 for which this simplification do not hold since the diffusion is
recurrent, but the rest of the calculation for d = 3 can be found in [15].
As said for d = 2 (and actually also for d ≤ 2), the diffusion is recurrent, implying
that during the absorption a continuously growing region of depletion develops
around the object, eventually leading to a zero influx of particles for t → ∞.

Figure 2.2: Sketch of density profile of quasi-static approximation, dividing space
in “near” and “far” regions. [15]

To simplify this calculation a quasi-static approach is employed. The idea is
that the region outside the absorbing object can be divided in a “near” region,
within r =

√
Dt and a complementary “far” region, see Fig.2.2. In the near region

particles are affected by absorbing boundaries. Nevertheless a stationary state is
assumed in this region, i.e it is assumed that the gas of particles reaches stationarity
faster than the timescale of growth of the object, so that the concentration is nearly
time independent. In the far region, instead, the probability of a particle of being
absorbed is negligible because particles have a small probability to reach a distance
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larger than
√
Dt in time t. Thus in the far zone the particle concentration remains

n(r) ≃ n̄.
Relying on this physical reasoning we can solve the Laplace equation in the near
region, with the time-dependent boundary condition n(r =

√
Dt) = n̄ to mach

the far region static solution.
The calculation from now on is carried out assuming that the object is a circle of
radius R. The general solution of the Laplace equation for d = 2 is n(r) = A+B ln r,
so imposing the boundary conditions

n(r =
√
Dt) = n̄ n(r = R) = n0 (2.2)

we obtain
n(r, t) = n0 + ln(r/R)

ln(
√
Dt/R)

(n̄− n0). (2.3)

The reaction rate then can be found calculating the inward flux of particles,
integrating over a circle of radius r ≫ R such that the diffusion coefficient of the
molecules from the bulk of the gas can be used

K(t) = −D
Ú

Σ
∇n · r⃗dΣ = −D

Ú 2π

0
dθ
∂n

∂r
R (2.4)

obtaining
K(t) = 2πD(n̄− n0)

ln(
√
Dt/R)

. (2.5)

2.2 Aggregation
Aggregation is a fundamental nonequilibrium process, in which reactive clusters
join irreversibly when they meet. It underlies a large variety of phenomena, in this
context the general framework is presented and then the more specific model of
Island Growth is developed in Sec.(2.2.1).
The primary aggregation process may be represented as

Aj + Aj
Kij−−→ Ai+j, (2.6)

two clusters of mass i and j join irreversibly at rate Kij to form a cluster of mass
i+j (fig.2.3). Aggregation is manifestly irreversible, the number of clusters decrease
with time, and eventually just one big cluster is left. The goal of this section is to
write in a general way the equation governing the evolution of the concentration of
clusters of mass k in time, ck(t).
We assume that the mass k runs over positive integers, i.e. that a cluster of mass
k is formed by k minimal mass units. With this convention the reaction rates form
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Figure 2.3: Irreversible merge of clusters of mass i and j. [15]

an infinite symmetric matrix Ki,j = Kj,i.
The starting point to treat aggregation is an infinite set of mean-field equations
that approximately describe how the cluster mass distribution ck(t) evolves in time

dck

dt
= 1

2
Ø

i+j=k

Kijcicj − ck

Ø
i≥1

Kkici. (2.7)

The first term in the r.h.s accounts for creation of clusters of mass k by the merging
of two clusters of appropriated masses i and j. The factor 1

2 is present due to
double counting of different mass pairs, and correctly counts the same mass pairs of
clusters. For a more accurate explanation of this see [15]. The second term instead
is a loss term due to merging of a mass k cluster with any other, here the prefactor
is correctly not present also for same mass pairs since two clusters disappear in a
collision like Kjjcjcj . A more clear way to correctly account for this is

dck

dt
= 1

2
Ø

i,j≥1
Kijcicj(δi+j,k − δi,k.− δj,k) (2.8)

This is the general equation governing aggregation phenomena that will be later
applied. The underlying assumptions of this mean-field equation approach have to
be kept in mind:

• Cluster Locations: Cluster positions are ignored, the assumption is that
the system is well mixed s.t. the probability that multiple reactants are in
proximity factorizes as aproduct of single particle densities. This amounts to
a mean-field approximation.

• Bimolecular reactions: System is assumed to be dilute such that higher body
interactions can be neglected.

• Shape independence: The cluster mass is the only relevant variable in the
dynamics, shape plays no role
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• Thermodynamic limit: The cluster masses are treated as continuos functions.
With this general framework now we can review the more specific case of the Island
Growth model.

2.2.1 Island Growth Model
This model is an example of aggregation with input. Its two main features are:

• Particles are inserted onto the surface with rate F

• “Islands”, i.e. clusters with size larger or equal than 2 are immobile, only
single monomers are mobile.

This implies that the islands can grow only by the addition of mobile monomers to
their boundaries. For a schematic representation of this see fig 2.4

Figure 2.4: Illustration of fundamental processes in island growth model, adsorp-
tion at rate F , monomer collision to form a dimer, monomer aggregation to larger
cluster. [15]

The elementary steps are:

0 F−→ A1 A1 + A1 → A2 A1 + Ak → Ak+1. (2.9)
The first process accounts for the deposition of particles onto the surface with rate
F , the other two to cluster growth. Since only monomers can move, the reaction
matrix simplifies to Kij ∼ Di +Dj = (δi,1 + δj1), with D diffusivity of monomers.
Inserting this into Eq.(2.8), distinguishing between the dynamics of the monomers
and large clusters (which are different), and considering for monomers also the
particle deposition rate we obtain

dc1

dt
= −Dc1

∞Ø
k=1

ck −Dc2
1 + F

dck

dt
= Dc1(ck−1 − ck), k ≥ 2.

(2.10)
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The underlying assumptions are the ones of the general aggregation theory plus:

• Islands are so dilute that they can’t merge directly;

• Islands are point like. This is actually a mild assumption since in the reaction
rate in d = 2, Eq.(2.5) shows just a logarithmic dependence from the island
radius;

• There are immobile islands and moving particles.

Now we are interested in computing the dynamics of the density of immobile islands
I = q

k≥2 ck, for later use.
Summing over the second of Eqs.(2.10) we obtain:

+∞Ø
k=2

dck

dt
= Dc1(

+∞Ø
k=2

ck−1 −
+∞Ø
k=2

ck) (2.11)

which shifting the index of the first sum and recognizing the definition of I in the
l.h.s gives

dI

dt
= Dc2

1. (2.12)

This relation tells us that in this kind of model the number density of the domains
larger that two monomers, the islands, is linearly proportional to the diffusion
coefficient of the particles and quadratically to their density.

2.3 Phenomenological Theory
The model proposes two main ingredients to explain molecular sorting [3, 4]: (a)
phase separation of specific molecules into localized sorting domains and (b) the
introduction of a coupling between the molecule presence and the spontaneous
curvature of the membrane, that after the domain reaches a sufficiently large radius
leads to the formation of a vesicle.
In this picture molecules arrive onto the surface, diffuse and can then aggregate
into localized enriched domains, which grow due to particle absorption. When the
size of the domain is sufficiently big then the spontaneous curvature induced is
enough to nucleate a vesicle, which is constitutively enriched in the biochemical
components of the engulfed domains. This results into a spontaneous distillation
process.
This process can be summarized as follows: molecules arrive onto the surface with a
constant flux ϕ, diffuse, and can aggregate in localized enriched domains, which are
then extracted when they reach a characteristic size RE. The membrane coexists
in a non-equilibrium statistically stationary state with the dilute, freely diffusing,
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“gas” of molecules, which is continuously repleted. This process occurs through the
typical stages of phase separation: after the initial nucleation stage, we consider
to be in a “low supersaturation” context (this is correct if the average molecule
density n̄ of the gas is sufficiently small), so the supercritical domain growth is
driven by diffusion.
This is reminiscent of the Diffusion Limited Aggregation (DLA), in which at late
time dynamics large fractal clusters form. In this context the presence of the cut-off
radius RE prevents this, and the domains remain approximately round.
Here, as in classical theories of nucleation [16], a critical radius RC beyond which a
cluster grows irreversibly is present.
The molecules gas density in the region just outside the domains n0 is different from
the bulk molecule density n̄, due to the absorption which results in a depletion of
the gas near the cluster. For clusters of size R ≫ RC the density n0 is independent
from the domain size, (from the Gibbs-Thomson relation [4]). When the typical
interdomain half distance L is much larger than the extraction radius RE the
difference between the bulk and near boundary density ∆n is given approximately
by ∆n ∼ (n̄− n0) > 0.
In the classical theories of nucleation, domains grow arbitrarily and ∆n tends to
zero. Here this is prevented from the presence of the extraction radius RE ≫ RC ,
and the molecules density difference ∆n is kept finite (and constant in a statistical
sense?) by the continuous particle insertion onto the surface.
With this picture in mind we can study the quasi static density profile outside a
supercritical cluster, employing the Reaction Rate theory presented in (2.1). The
moving boundary considered before here reduces to a static one and its role is
played by L, which now represents the limit of the area that can be influenced by
a domain, due to presence of other domains. We obtain

n(r) = n0 + ln(r/R)
ln(L/R)(n̄− n0), (2.13)

with r distance from domain center and R size of the domain. Following the same
reasoning we can calculate the inward flux of particles into the domain,

ΦR = −D
Ú

Σ
∇n · r⃗dΣ = −D

Ú 2π

0
dθ
∂n

∂r
R = 2πD∆n

ln(L/R) , (2.14)

where D is the diffusion coefficient in the bulk of the gas. Alternatively the flux
can be written highlighting the dependence from the area

ΦA = 4πD∆n
ln(L2/R2) = 4πD∆n

ln(AL/A) , (2.15)

with A = πR2 area of a domain of radius R and AL = πL2 the area occupied by a
circular region of radius L. The area variation of a cluster is caused by the inward
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flux of particles, so we can write the dynamical equation for domain growth as

Ȧ = ΦAA0, (2.16)

with A0 the area occupied by a single diffusing particle. The equation can be
rewritten as

Ȧ = 4πA0D∆n
ln(AL/A) . (2.17)

Assuming that the sorting domains are approximately evenly distributed onto the
membrane, the statistics of the supercritical domains can be described by the
number density N(A, t)dA, which is the average number density of domains per
unit of surface area with dimension between A and A+ dA. The density satisfies
the continuity equation

∂N

∂t
+ ∂(ȦN)

∂A
= −γ(A)N, (2.18)

with γ(A) a parameter encoding in a mesoscopic way the rate of extraction of
domains of size A, which assumes the values γ(A) = 0 for A < AE and γ(A) = γ0
for A > AE.
A stationary solution of (2.18) can be found solving directly the following separable
differential equation

Ȧ

Nst

dNst

dA
= −∂Ȧ

∂A
− γ(A), (2.19)

which, separating the variables and integrating between Ac and a generic A, gives

ln
A
Nst(A)
const

B
= −

Ú A

Ac

1
Ȧ

dȦ

dA
dA−

Ú A

Ac

γ(A)
Ȧ

dA. (2.20)

The integrand of the first term of the r.h.s can be rewritten as the derivative of the
logarithm of Ȧ, so it becomes

−
Ú A

Ac

d

dA
(ln Ȧ)dA = − ln

A
Ȧ(A)
const

B
, (2.21)

taking Ȧ(Ac) as a constant. Finally inverting the logarithm and bringing all
constants together (also A0) into J we obtain

Nst(A) = J ln(AL/A)
4πD∆n exp

C
−
Ú A

AC

da
γ(a) ln(AL/a)

4πA0D∆n

D
. (2.22)

The normalization factor J can be found imposing that in the stationary regime
the flux of incoming particles ϕ equals the average flux of particles being absorbed
into the domains, i.e.

ϕ =
Ú ∞

AC

ΦANst(A)dA. (2.23)
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The integral can be divided in the interval between Ac and AE and AE to +∞. In
the second interval we assume γ0 very large, i.e. we assume that the extraction
factor strongly suppresses the number density. This gives a negligible contribution,
leaving us with ϕ ≃ J(AE − Ac) ≃ JAE, for AE ≫ Ac.
In the regime A < AE the number density has a universal logarithmic behaviour.
Assuming that the incoming flux of particles ϕ is on average divided evenly among
all the available supercritical domains, we can estimate the average number of
supercritical domains per unit area as

N̄d ∼ ϕ

ΦA

∼ ϕ

D∆n, (2.24)

neglecting logarithmic corrections.
The efficiency of the process can be characterized in terms of the average time
of residence of a molecule onto the membrane system T̄ . From the moment of
insertion particles spend an average time T̄f freely diffusing, and an average time
T̄d inside a supercritical domain before extraction. In principle also the time spent
in subcritical domains should be considered, but this is negligible if the critical size
is small enough [4].
The freely diffusing time can be estimated as follows, clearly it is inversely pro-
portional to the average number density of supercrticical domains, and to the
diffusion constant (with growing D also the root mean square distance

√
Dt grows,

increasing the probability to encounter a domain), so

T̄f ∼ 1
DN̄d

∼ ∆n
ϕ
. (2.25)

The time spent inside a domain instead can be estimated as the time in which flow
of particles of flux ΦA, each occupying an area A0, fill an area AE, so

T̄d ∼ AE

A0ΦA

∼ AE

A0D∆n, (2.26)

neglecting logarithmic corrections. The rate of formation of new domains can be
estimated employing Eq.(2.12), since the present situation fits into the framework
of Island growth model (the part of the process concerning the aggregation of
particles into domains). A dimensionless constant is introduced here that accounts
for the efficiency of absorption of single molecules by germs of domains, obtaining

dNd

dt
= CDn̄2. (2.27)

In a stationary state this is also given by dNd/dt = Nd/T̄d, allowing to estimate
the scaling of n̄ as

n̄ ∼
A

ϕA0

CDAE

B1/2

. (2.28)
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Assuming n̄ ≫ n0 (i.e that the domains absorb rapidly, such that the depleted
region near the domains has a very low density), and thus ∆n ∼ n̄ we obtain

T̂f ∼ n̄

ϕ
∼ C−1/2

A
A0

DAEϕ

B1/2

(2.29)

and
T̂d ∼ AE

DA0n̄
∼ C1/2

3
AE

A0

43/2
(Dϕ)−1/2. (2.30)

The total residence time T̄ = T̄f + T̄d has minimum w.r.t C, in C ∼ (A0/AE)2. At
the minimum

T̄f ∼ T̄d ∼
3
AE

A0

41/2
(Dϕ)−1/2 (2.31)

and

n̄ ∼
A
ϕAE

DA0

B1/2

. (2.32)

These two scaling relations identify the optimal dynamical regime, in which molec-
ular sorting is most efficient. The density of particles inside the domains can also
be estimated from

ρd ∼ Nd
AE

A0
∼ C1/2

A
ϕ

D

B1/2 3
AE

A0

43/2
(2.33)

that is the number of domains per unit area multiplied for the number of particles
inside a domain. Repeating the calculation for the minimum w.r.t C for the total
density ρ = n̂+ ρd we find the same minimum C ∼ (A0/AE)2, and the density ρ
evaluated in such minimum gives the same result as Eq.(2.32).

2.4 Lattice gas Model
To further explore the distillation process a minimal lattice gas model of molecule
sorting is introduced. The membrane is described as a two dimensional square
lattice with periodic boundary conditions, where each site can host only one
molecule. The system evolves as a Markov process characterized from the three
following moves:

• Molecules from an infinite reservoir arrive onto the surface and are inserted in
empty sites with rate kI .

• Then molecules can perform diffusive jumps to any empty neighbour with rate
kD/g

Nnn , with kD diffusion rate, g dimensionless coefficient accounting for the
particles tendency to stick together when they meet, and Nnn the number of
occupied neighbors of the site originally occupied by the jumping particle.
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• Finally, particles are extracted removing all the connected components, if
present, which occupy completely a square area of linear size R2

E/A0.

Figure 2.5: The three possible moves of the Markov process: On the upper left
particle insertion, on the upper right particle diffusion, below cluster extraction.
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Chapter 3

Field-Theoretic Description
of a Fluid Membrane

Since the goal of this work is to extend the model presented in the previous chapter
onto a fluctuating membrane, in this chapter the framework in which the membrane
is studied (and simulated) is presented. As it’s known surfaces in dimension greater
than one are influenced from fluctuations at any nonzero temperature, and thus
are not microscopically flat [17].
The nature of this fluctuations depend from the energy of the different non-flat
configurations. In the following, first some useful tools from differential geometry
that allows one to describe this kind of configurations will be reviewed; then the
different energy contributions that can be considered will be discussed, presenting
the Helfrich hamiltonian. Finally, the fluctuations of the model will be analyzed,
and the concept of crumpling transition will be reviewed.
This kind of reasoning treats the membrane as a two dimensional surface with zero
thickness. This is justified in the limit in which the lateral extent of the membrane
is large compared to its thickness, but this is true in typical problems in membrane
biophysics in which a mesoscale approach is employed [10]. The model employed
in this work is of a fluid membrane, i.e. a membrane composed of molecules that
can freely diffuse onto the plane, and that cannot support a shear stress.

3.1 Differential geometry and total surface area
A surface S is a (d− 1)-dimensional manifold embedded in a d-dimensional space.
Points on the surface can be specified by a d-dimensional vector R⃗(u⃗), function of
the (d− 1) coordinates u⃗ = (u1, .., ud−1). Any set of d− 1 independent coordinates
can be used to parameterize the surface, so suitable choices are made for particular
geometries. In this context we are interested to describe quasi-flat configurations
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so we will focus on the Monge gauge. In this gauge the radius is the following
functional

R⃗(x⃗⊥) = (x⃗⊥, h(x⃗⊥)), (3.1)
with x⃗⊥ = (x1, x2, ..., xd−1) coordinates in a fixed plane in space, and h(x⃗⊥) a
function that specifies the height of the surface above such base plane. In general
the surface can have overhangs, for which case the Monge gauge might not be the
best choice since the function h(x⃗⊥) would be a multi valued function. In some
cases it would be possible to avoid this problem rotating the base plane, such that
w.r.t the new base plane the surface has no overhangs, as shown in (3.1).

Figure 3.1: On the left surface with no overhangs, on the right surface that w.r.t
the base plane B has overhangs but not w.r.t the rotated base plane B′. [17]

An equivalent formulation of the Monge gauge is to specify the height of the surface
above the base plane through the zeros of the function

ψ(x⃗) = xd − h(x⃗⊥) (3.2)

where x⃗ = (x⃗⊥, xd) is a d-dimensional vector.
To simplify in the following we focus on the case of surfaces of two and three
dimensions, in the case of no overhangs. A one dimensional surface is simply a
planar curve, which can be parameterized by a single scalar variable u. This means
that

t⃗ = dR⃗

du
(3.3)

is the tangent vector, and the length of the line segment between u and u+ du is
ds = (dR⃗ · dR⃗)1/2. In the Monge gauge R⃗(x) = (x, h(x)), and

dR⃗ =
A
êx,

dh

dx
êy

B
dx (3.4)

with êx and êy versors of the x and and y axes. The total length of the curve in
the Monge gauge is then

L =
Ú L

0
ds =

Ú LB

0

1 +
A
dh

dx

B2
1/2

dx, (3.5)
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where LB is the length of the horizontal base line.
A two dimensional surface instead can be parameterized with two variables

u1,u2. The infinitesimal displacement along the surface is given by

dR⃗ = ∂R⃗

∂u1du
1 + ∂R⃗

∂u2du
2, (3.6)

with t⃗1 = ∂R⃗
∂u1 and t⃗2 = ∂R⃗

∂u2 the tangent vectors to the surface at (u1, u2) (not neces-
sarily orthogonal). The infinitesimal surface element, the area of the parallelogram
of sides du1 and du2, is then

dS =
------ ∂R⃗∂u1 × ∂R⃗

∂u2 .

------ du1du2. (3.7)

We can calculate this quantity in the Monge gauge, where we have R(x1, x2) =
(x1, x2, h(x1, x2)), and we obtain

dS =
ñ

1 + (∇⊥h)2dx1dx2, (3.8)

where
∇⊥h = ∂h

∂x1
êx1 + ∂h

∂x2
êx2 . (3.9)

Then the total area of a surface with no overhangs and related to a fixed base plane
is

A =
Ú
dS =

Ú
AB

ñ
1 + (∇⊥h)2dx1dx2. (3.10)

A normal can be constructed at each point of the surface, in three dimensions this
is given by

N̂ = t⃗1 × t⃗2

|⃗t1 × t⃗2|
. (3.11)

The sign of the normal is not uniquely determined. It can be arbitrary if the two
sides of the surface are indistinguishable, if not (for example the surface separates
two different phases) a consistent convention has to be chosen. The plane normal
to N̂ at P defines the tangent plane of the surface at P . An explicit form of the
normal in the Monge gauge can be calculated from the result used also to calculate
the surface area element

t⃗1 × t⃗2 = ∂R⃗

∂x1
× ∂R⃗

∂x2
= (−∇⊥h,1), (3.12)

which gives
N̂ = 1ñ

1 + (∇⊥h)2
(−∇⊥h,1). (3.13)
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Field-Theoretic Description of a Fluid Membrane

3.2 Curvature
On each point of a surface a curvature can be defined. For a planar curve the
curvature is a scalar quantity, the inverse of the radius of the circle that follows
locally the curve at P , see Fig.(3.2).

Figure 3.2: Planar curve, with T tangent plane at point P , and tangent circle of
radius inverse of the curvature. [17]

Let’s call T the tangent plane at P , x a coordinate along T with the origin in P ,
and h(x) = N̂ · R⃗ the height of the curve above P with R⃗ the radius defining the
curve. For small x the height h(x) can be expanded in power series around zero.
Since T is the tangent at P h(x) has a minimum in x = 0, so dh(x)/dx|x=0 = 0,
implying

h(x) = K
x2

2 . (3.14)

Alternatively, as showed in Fig.(3.2), let’s use the circle of radius R tangent at P .
If the circle of the radius is along the normal N̂ , the curve height around P w.r.t
the normal N̂ is h′ = R(1 − cos θ), with θ the angle measured from N̂ . Then if the
angle θ = x/R is small, a second-order expansion gives

h′(x) = R−1x
2

2 , (3.15)

so the circle and the curve match up to order x2 if K = R−1. If instead the center
of the circle lies along −N̂ we obtain h′ = −R(1 − cos θ) and K = −R−1. So the
curvature K has a positive sign if the curve rises towards N̂ and a negative one if
it falls away from it. This is consistent with K being the second derivative of h
evaluated in x = 0.
A similar reasoning can be carried out for a two dimensional surface S embedded
in a three dimensional space. Let T be the tangent plane at a point P of S. Planes
normal to T at P are called normal planes, each one intersecting the surface in a
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Field-Theoretic Description of a Fluid Membrane

planar curve called normal section. Being planar curves each normal section has an
associated curvature. Let’s define as x1 and x2 the basis vectors of an orthogonal
coordinate system onto the tangent plane, with the origin in P . The height of the
surface h = N̂ · R⃗ above P can then be expanded in a power series in x⊥ = (x1, x2),
up to second order as before

h(x⃗⊥) = 1
2
Ø
i,j

Kijxixj, (3.16)

where K is a 2x2 real symmetric matrix (the Hessian of the function h(x⃗⊥).
Being real and symmetric K has two real eigenvalues R−1

1 , R−1
2 with associated

orthonormal eigenvectors ê1, ê2. The eigenvectors form a base of T so

x⃗⊥ = λ1ê1 + λ2ê2, (3.17)

which inserted into Eq.(3.16) gives:

h(x⃗⊥) = 1
2R

−1
1 (x⃗⊥ · ê1)2 + 1

2R
−1
2 (x⃗⊥ · ê2)2. (3.18)

R1 and R2 are called the principal radii of curvature of the surface at P and
correspond to the radii of the circles that best fit the surface in the planes in which
N̂ , ê1 and N̂ , ê2 respectively lie. The signs of R1 and R2 can either be positive
or negative. If they are both positive (negative) all normal sections are directed
towards (away from) the normal. If they have a different sign the point P identifies
a saddle, as can be seen in Fig.(3.3).

Figure 3.3: (a) surface with both positive principal curvature radii, (b) surface
with both negative principal curvature radii, (c) surface with one positive one
negative principal curvature radii.[17]

The curvature of the normal section containing the generic vector of T e⃗(γ) =
|e⃗(γ)|(cos(γ)ê1 + sin(γ)ê2) can be found inserting it into Eq.(3.18), obtaining

R−1(γ) = R−1
1 cos2(γ) +R−1

2 sin2(γ). (3.19)
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Field-Theoretic Description of a Fluid Membrane

The extremal values of R−1(γ) occur for γ = 0 + aπ and γ = π
2 + aπ with a

any integer, where R−1(γ) equals R−1
1 and R−1

2 respectively. This implies that
the principal curvatures R1 and R2 correspond to the maximum and minimum
curvatures of all the normal sections passing at P .
Two scalar invariants can be constructed from K, i.e.

TrK = R−1
1 +R−1

2 = 2Hc, (3.20)

detK = 1
R1R2

= HG. (3.21)

Hc is the mean curvature and HG is the Gaussian curvature. The mean curvature
in the Monge gauge can be approximated easily taking as a base plane the tangent
plane at P . In this case to linear order in x⃗⊥ we obtain

N̂ = (−∇⊥h,1) = (−
Ø

j

K1jxj,−
Ø

j

K2jxj,1), (3.22)

implying ∇⊥ · N̂ = − TrK. Then

1
R1

+ 1
R2

= −∇⊥ · N̂ = − ∇2
⊥h

[1 + (∇⊥h)2]3/2 . (3.23)

3.3 Continuous Model of a fluid membrane
It is widely known in the literature [6, 7, 8] that the behaviour of a thin (with
thickness small compared to scales describing its shape) fluid (formed by constituents
that can freely diffuse) membrane can be described with a continuum model based
on the following Hamiltonian

Hel =
Ú
dS

C
k

2(Hc −H0)2 + k̄HG

D
(3.24)

which is known as Helfrich Hamiltonian. This functional considers only elastic
energy terms, in more general cases of fluctuating surfaces also other energy contri-
butions can be considered, such as surface tension, but here they will be neglected.
This is justified by the fact that actual fluid membranes often have very small
or negligible surface tension [18], and the absence of such energy term actually
determines the strong fluctuations characteristic of this systems. This is a purely
geometrical model, considering as energy contributions the deviations from flatness,
quantified by the mean curvature Hc and the Gaussian curvature HG. The mean
curvature term measures the deviation from H0 = 2/R0, a local spontaneous curva-
ture. If for example the lowest energy state is the flat configuration then R0 = ∞.
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Field-Theoretic Description of a Fluid Membrane

The Gaussian curvature contribution instead, according to the Gauss-Bonnet
theorem, it’s constant on surfaces of fixed topology. This implies that this term
does not influence fluctuations of surfaces of constant topology.
Now we want to calculate the Hamiltonian in the Monge gauge. If we consider a
surface that has a fixed topology, we can neglect the Gaussian curvature. Further-
more, if the surface is quasi-flat, we can perform the harmonic approximation, i.e.
keeping the field h only up to the second order,

Hhar[h] = 1
2k
Ú
dx⃗⊥(∇2h)2. (3.25)

In order to study the fluctuations we write the Hamiltonian in Fourier space

Hhar[ĥ] = 1
2k
Ú dq⃗

(2π)d−1 q
4|ĥ(q⃗)|2. (3.26)

We recall that when the partition function is a Gaussian functional integral (i.e.
the action is quadratic) the following result for the two point correlation function
holds

⟨ĥ(q⃗)ĥ(q⃗′)⟩ = (2π)(d−1)δ(q⃗ + q⃗′)Ĝ(q⃗), (3.27)
where Ĝ(q⃗) is the Gaussian propagator in Fourier space, which in this case is just
a scalar Ĝ(q⃗) = kBT

kq4 . So we obtain the real space two point correlation function

⟨h2(x⃗⊥)⟩ =
Ú dq⃗dq⃗′

(2π)2(d−1) ⟨ĥ(q⃗)ĥ(q⃗′)⟩ eix⃗⊥·(q⃗+q⃗′)

=
Ú Λ

1/LB

dq⃗

(2π)(d−1)
kBT

kq4

(3.28)

where LB is the largest length scale of the system (corresponding to the smallest
wavevector), and Λ is an upper cut off momentum, that will be set to 1/a, where a
is the smallest unit of length of the system. Specifying the dimension we obtain

⟨h2(x⃗⊥)⟩ =
Ú 1/a

1/LB

d2q

(2π)2
kBT

kq4 = kBT (L2
B − a2)

6πk ≃ kBTL
2
B

6πk , d = 3 (3.29)

since LB ≫ a. Thus a two dimensional surface embedded in three dimensions has
height fluctuations that diverge with the size of the surface. The average position
of such a surface becomes less well defined as the surface dimension increases, that
means that the surface lacks long-range positional order. It is interesting to
compute the fluctuations also for the direction of the surface normal.
Since we are considering quasi-flat configurations the average direction of the
surface can be taken as ê = (0,0,1). Then the surface normal deviations from the
average normal can be written as

δN̂(x⃗⊥) ≈ N̂(x⃗⊥) − ê ≈ (−∇⊥h), (3.30)
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using Eq.(3.23), and we can write for the fluctuations

⟨|δN̂(x⃗⊥)|2⟩ ≈ ⟨(∇2
⊥h)2⟩ = ⟨h2(x⃗⊥)⟩ = −

Ú dq⃗dq⃗′

(2π)2(d−1) q⃗ · q⃗′ ⟨ĥ(q⃗)ĥ(q⃗′)⟩ eix⃗⊥·(q⃗+q⃗′),

(3.31)
where the minus factor in front comes from the imaginary units coming down
from the orthogonal gradient of the exponentials. Then substituting Eq.(3.27) and
integrating the Dirac delta

⟨|δN̂(x⃗⊥)|2⟩ ≈
Ú dq⃗

(2π)(d−1)
kBTq

2

kq4

≈
Ú 1/a

1/LB

d2q

(2π)2
kBT

kq2 = kBT

2πk ln(LB/a). d = 3
(3.32)

This implies that also fluctuations of the normal diverge with the system dimension,
and thus also long-range orientational order is not present.
From this result also a persistence length pertaining the orientational order can be
computed, defined as the length scale at which the normal fluctuations become of
order unity, obtaining

ξp = ae
2πk
kbT . (3.33)

which is called the De Gennes-Taupin persistence length [19]. This implies that
for length scales larger than ξp orientational order is lost, and the surface becomes
crumpled, as it’s shown in Fig(3.4). The fact that the persistence length is always
finite for any nonzero temperature means that fluid membranes described from
Hamiltonians of the type of Eq.(3.24) for large enough length scales are always
crumpled [7].
This result can be obtained more formally employing renormalization techniques
[20], as it will be reviewed in the next section.

Figure 3.4: Representation of crumpling at lengthscales larger than ξp [17].
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3.4 The Crumpling transition
To explore how short-ranged fluctuations renormalize the bending rigidity (and thus
see if a repulsive fixed point is found in the flow equation at nonzero temperature,
signaling a phase transition between a flat and a crumpled phase) we employ
Wilson’s momentum shell renormalization group approach [21]. With this tool
we can lift the harmonic approximation1 and study the mean curvature energy
considering also higher order terms as

Hel[h] = 1
2k
Ú
d2x⊥

è
(∇2

⊥h)2[1 + (∇⊥h)2]−5/2
é
,

≈
Ú
d2x⊥

C
k

2(∇2
⊥h)2 − α

2 k(∇⊥h)2(∇2
⊥h)2

D
.

(3.34)

The prefactor of the fourth order term is kept as a parameter α. The calculation
will be carried out in a generic dimension d, and restricted to case of interest d = 2
at the end (here d is referred to the surface dimension, with d+ 1 the dimension of
the space in which it is embedded). We take the Fourier transform of the height
field

h(x⃗⊥) =
Ú ddq

(2π)d
ĥ(q⃗)eiq⃗·x⃗⊥ , (3.35)

and find the functional in momentum space

Hel[ĥ] =
Ú ddq

(2π)d

kq4

2 |ĥ(q⃗)|2 − α

2 k
Ú ddq1d

dq2d
dq3

(2π)3d
ĥ(q⃗1)ĥ(q⃗2)ĥ(q⃗3)×

× ĥ(−q⃗1 − q⃗2 − q⃗3)(q2
1q

2
2(q⃗3 · (q⃗1 + q⃗2 + q⃗3)).

(3.36)

The field is divided in fast and slow modes as ĥ(q⃗) = ĥ<(q⃗) + ĥ>(q⃗), with the
slow modes involving momenta in the range 0 < q⃗ < Λ/l. To renormalize the
Hamiltonian we will integrate over fast modes, that are nonzero in the momentum
shell Λ/l < q⃗ < Λ. The Gaussian term and the interaction term that couples fast
and slow modes are identified respectively as

H0 =
Ú ddq

(2π)d

kq4

2 |ĥ(q⃗)|2,

HI = −α

2 k
Ú ddq1d

dq2d
dq3

(2π)3d
ĥ(q⃗1)ĥ(q⃗2)ĥ(q⃗3)ĥ(−q⃗1 − q⃗2 − q⃗3)(q2

1q
2
2(q⃗3 · (q⃗1 + q⃗2 + q⃗3)).

(3.37)

1This is actually necessary to investigate how thermal fluctuations renormalize the bending
rigidity, in a quadratic Hamiltonian different wavelength modes fluctuate independently [22].
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The renormalized action is given by the expansion

H′
el[h<] = H0[h<] + ⟨HI⟩0,> − β

2 (⟨H2
I⟩0,> − ⟨HI⟩2

0,>) + ..., (3.38)

where the notation ⟨.⟩0,> identify the average over the Gaussian measure related to
fast modes,

⟨A⟩0,> =
s
Dh>Ae

−βH0[h>]

Z0,>

. (3.39)

With this framework we calculate the one loop correction to the bending rigidity.
The first order corrections are given by

⟨HI⟩0,> = −α

2 k
Ú ddq1d

dq2d
dq3d

dq4

(2π)4d
⟨ĥ(q⃗1)ĥ(q⃗2)ĥ(q⃗3)ĥ(q⃗4)⟩0,> δ(

4Ø
i=1

q⃗i)q2
1q

2
2(−q⃗3 · q⃗4).

(3.40)
We evaluate such terms using Wick’s theorem in a diagrammatic representation.
The only term that has the correct dependence from the wavevector q⃗ to renormalize
k is given by the following contribution

K
q⃗1

q⃗2

q⃗3

q⃗4 L
0,>

, (3.41)

In which the two slow modes are the ones related to the terms that contained
the Laplacian, that have a quadratic contribution in the momentum. This gives a
correction proportional to the fourth power of the momentum, which renormalizes
the bending rigidity. The correction is

q⃗

−q⃗

p⃗

=
Ú Λ/l ddq

(2π)d
q4|ĥ<(q⃗)|2

Ú Λ

Λ/l

ddp

(2π)d

p2kBT

k4 , (3.42)

evaluating the fast mode two point correlation function, and inserting the expression
of the Gaussian propagator. Inserting this correction the coarse-grained slow modes
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action assumes the form

H′
el[ĥ<] =

Ú Λ/l ddq

(2π)d
|ĥ<(q⃗)|2k1q

4

2 − α

2 k
Ú Λ/l ddq1d

dq2d
dq3

(2π)3d
ĥ<(q⃗1)ĥ<(q⃗2)ĥ<(q⃗2)×

× ĥ<(−q⃗1 − q⃗2 − q⃗3)q2
1q

2
2(q⃗3 · (q⃗1 + q⃗2 + q⃗3)),

(3.43)

considering also the first order correction with all slow modes arising from Eq.(3.40),
and with the corrected bending energy

k1 = k

C
1 − α

Ú Λ

Λ/l

ddp

(2π)d

kBT

kp2

D
. (3.44)

Then introducing momentum rescaling q⃗′ = q⃗l and field renormalization ĥ(q⃗) =
ĥ′(q⃗′)z, the renormalized effective action is

H′
el[ĥ′] =

Ú Λ ddq′

(2π)d
l−dk1(q′)4

2 l−4|ĥ′(q⃗′)|2z2 − α

2 k
Ú Λ ddq′

1d
dq′

2d
dq′

3
(2π)3d

l−3dĥ′(q⃗′
1)ĥ′(q⃗′

2)×

× ĥ′(q⃗′
3)ĥ′(−q⃗′

1 − q⃗′
2 − q⃗′

3)z4((q′
1)2(q′

2)2(q⃗′
3 · (q⃗′

1 + q⃗′
2 + q⃗′

3))l−6.

(3.45)

The field renormalization z can be fixated imposing that the two bending rigidities
have the same scaling, obtaining

z = ld+1 (3.46)

which gives for the bending energy renormalized by the first order correction the
following scaling

k′ = k1l
d−2. (3.47)

From now on the calculation is restricted to the case d = 2. The momentum shell
integral can be evaluated exactly asÚ Λ

Λ/l

d2p

(2π)2
kBT

kp2 = kBT

2πk ln(l), (3.48)

giving the renormalization of k (at first order)

k(l) = k

C
1 − αkBT

2πk ln(l)
D
. (3.49)

The differential version of which can be written as following. Writing the spatial
rescaling factor as l = es, for an infinitesimal δs

k + dk

ds
δs+O(δs2) = k

C
1 − α

kBT

2πk δs+O(δs2)
D
, (3.50)
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which gives the flow equation

dk

ds
= −αkBT

2π . (3.51)

The absence of a fixed point confirms, as said previously, that fluid membranes in
two dimensions are always crumpled. The prefactor α in [18], is determined to be
α = 3

2 .

3.5 Curvature Instability
A simple equilibrium model of particles coupled to the curvature and diffusing onto
a fluid membrane [23, 24] is reviewed in this section. Defining the scalar density
field of the particles as Φ(x⃗⊥), the interaction term that couples the diffusing
molecules with the surface spontaneous curvature is introduced as an energy term

Hint = −
Ú
dSµΦHc. (3.52)

Besides interacting with the surface the diffusing molecules interact also between
themselves, so their energy contribution can be written as

Hpart =
Ú
dS

51
2b|∇Φ|2 + 1

2aΦ2
6
, (3.53)

assuming as a simplification that the particle energy is Gaussian. More complicated
energy terms describing the particles onto the surface could be considered, but
already with this very simple treatment some conclusions can be drawn.
Then, still assuming that the surface has no spontaneous curvature itself and that
it is topologically invariant, the total surface energy is

Hsur =
Ú
dS

51
2kH

2
c − µΦHc + 1

2b|∇Φ|2 + 1
2aΦ2

6
. (3.54)

This can be written in the Monge gauge writing the mean curvature using Eq.(3.23),
and taking again the harmonic approximation in the height field, obtaining

Hsur[h,Φ] =
Ú
dx⃗⊥

51
2k(∇2

⊥h)2 − µΦ∇2
⊥h+ 1

2b|∇Φ|2 + 1
2aΦ2

6
, (3.55)

or in Fourier space

Hsur[ĥ, Φ̂]
Ú dq⃗

(2π)d

51
2kq

4|ĥ(q⃗)|2 + µq2Φ̂(q⃗)ĥ(−q⃗) + 1
2(a+ bq2)|Φ̂(q⃗|2

6
. (3.56)
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To examine the effect of the density field onto the surface a simple approach is to
integrate out the degrees of freedom related to the density field in the partition
function

ZG =
Ú
Dĥe−Hsur,ĥ

Ú
DΦ̂e−Hsur,Φ̂ (3.57)

with
Hsur,ĥ[ĥ] = 1

2

Ú dq⃗

(2π)d
kq4|ĥ(q⃗)|2, (3.58)

and

Hsur,Φ̂[ĥ, Φ̂] = 1
2

Ú dq⃗dq⃗′

(2π)d
(a+ bq2)Φ̂(q⃗)Φ̂(q⃗′)δ(q⃗ + q⃗′) +

Ú dq⃗

(2π)d
(−µq2)Φ̂(q⃗)ĥ(−q⃗).

(3.59)
The functional integration in the density field in Eq.(3.57) amounts to a Gaussian
functional integration and thus it can be carried out exactly. We identify the linear
operator in the quadratic term and its inverse as

K(q⃗, q⃗′) = a+ bq2

(2π)d
δ(q⃗ + q⃗′) K ′(q⃗, q⃗′) = (2π)d

a+ bq2 δ(q⃗ + q⃗′). (3.60)

We obtain Ú
DΦ̂e−Hsur,Φ̂ = N exp

C
−1

2

Ú dq⃗

(2π)d

µ2q4

a+ bq2 |ĥ(q⃗)|2
D
, (3.61)

which, inserting back in Eq.(3.57), leads to a partition function depending only on
the height field, and an effective Hamiltonian

Heff [ĥ] = 1
2

Ú dq⃗

(2π)d
q4
C
k − µ2

a+ bq2

D
|ĥ(q⃗)|2. (3.62)

This introduces an effective bending rigidity

keff = k − µ2

a+ bq2 , (3.63)

which, if we restrict to large scale configurations reduces to

keff = k − µ2

a
. (3.64)

So, in the presence of diffusing particles, coupled to the surface spontaneous cur-
vature, the bending rigidity decreases. Furthermore it can already be observed
from this simple treatment that if µ2 −→ ak a curvature instability is present,
in which the bending energy is renormalized to negative values. A more complete
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treatment of this phenomenon can be found in [23].
We stress that the energy describing the diffusing particles onto the surface intro-
duced in this section is not related to the self-aggregation phenomenon described
in Chapter 2, which is a nonequilibrium phenomenon for which a functional cannot
be introduced so easily. Nevertheless we will see in Chapter 5 that the numerical
analysis of the model of self-aggregating particles coupled to the surface sponta-
neous curvature leads to some results that are in qualitative agreement with the
ones explained in this section.
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Chapter 4

Dynamically Triangulated
Monte Carlo

Triangulated Monte Carlo methods have been first used in a membrane context
to describe the crumpling transition of self avoiding tethered surfaces [25], with a
static triangulation. Fluid membranes were first studied by Ho and Baumgartner [9,
26], using dynamically trianguled Monte Carlo (DTMC), in which the triangulation
map of the surface is dynamic. The surface is discretized into a set of N vertices,
T triangles and L links, with a surface topology defined by the Euler number
χ = N + T − L. Below a technique first proposed by Ramakrishnan et al.[11] to
calculate the principal curvatures on triangulated surfaces is explained.

4.1 Triangulated Surface Model
To obtain the principal curvatures at vertices the procedure proposed in [10] and
in [11] was followed. The curvature at vertex is calculated using its one-ring
neighborhood, showed in Fig.4.2, and calculating the discretized shape operator,
which contains all information about the local topography. The set of edges
neighboring the considered vertex v are denoted as {e}v, the set of oriented faces
as {f}v, and toghether they define the one-ring neighborhood. Similarly the set of
faces neighboring an edge is described by {f}e = [f1(e), f2(e)].

Edge and Vertex normals:
Edge normals are completely determined by the set of their neighboring faces {f}e

as

N̂e = N̂f (1, e) + N̂f (2, e)
|N̂f (1, e) + N̂f (2, e)|

. (4.1)
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Figure 4.1: r⃗e = x⃗v − x⃗1 is the vector along the edge connecting v to it’s neighbour,
N̂f(i, e) with i = 1,2 are the face normals adjacent to the edge considered, N̂v is
the normal at the vertex. N̂e and b̂e = r̂e × N̂e are respectively the edge normal
and the binormal, with r̂e = r⃗e

|r⃗e| .Image taken from [10]

In the vertex normal definition instead there is an ambiguity. Denoting as S a
continuos surface around the vertex v and C a closed contour on S containing v,
the vertex normal can be defined as:

Nv =
Ú

C
N̂S(C)dC (4.2)

with N̂S(C) the surface normal on the contour. When replacing the continuos
surface S with a discrete triangulated surface the surface normal only changes at
the interface between faces, when the contour crosses an edge. This has to be
accounted in the discrete version of Eq.(4.2) assigning an appropriate weight to
each face contained in {f}v. The mentioned ambiguity is in the choice of the weight.
In this work the approach from [10] was followed, choosing a weight Ω[A] for the
face normal proportional to the corresponding face area, obtaining the following
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approximation:

N̂v =
q

{f}v
N̂fΩ[Af ]

|q{f}v
N̂fΩ[Af ]|

, (4.3)

with Af the area of the face f .

Edge Shape operator:
The surface topographic details are contained in the faces and edges. The shape
operator, the discrete counterpart of the curvature tensor, is constructed at each
edge, and then projected to obtain the shape operator at the vertex. As mentioned,
an object crossing a discrete surface feels its curvature only when crossing an edge.
At any point p on such edge an edge curvature can be defined, which is the gradient
of the area vector of the triangles sharing e [27],[28],

h(e) = ∇p(area) ≈ 2|r⃗e| cos
A
ϕ(e)

2

B
(4.4)

where ϕ(e) is the signed dihedral angle between the faces sharing e, given by:

ϕ(e) = [(N̂f (1, e) × N̂f (2, e)) · r⃗e] arccos(N̂f (1, e) · N̂f (2, e)) + π. (4.5)

The edge curvature can be used to define the shape operator, which contains
information both about the curvature and the orientation of the edge:

SE(e) = h(e)[b̂(e) ⊗ b̂(e)]. (4.6)

Figure 4.2: Illustration of dihedral angle, taken from [10]

Vertex Shape operator:
As was done on edges, the shape operator is constructed in the tangent plane at the
vertex. The shape operator of every edge connected to a vertex contributes to the
shape operator at the edge, so the shape operator at vertex SV (v) is a superposition
of all the edge shape operators around it, {SE(e)}v. The relevant component of all
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SE(e) is the one along the tangent plane at v, this can be obtained by defining the
projection operator:

Pv = [I − N̂V ⊗ N̂V ] (4.7)

where I is the identity matrix. The vertex shape operator can be expressed as a
weighted sum of the projected shape operators:

SV (v) = 1
AV

Ø
{e}v

W (e)P †
vSE(e)Pv, (4.8)

where the weight factor is W (e) = N̂v ·N̂e, and Av = q
{f}v

Af/3 is the area assigned
to each vertex. By definition the first two eigenvalues of the shape operator are
the principal curvatures c1(v),c2(v), with eigenvectors the principal curvature
directions, and the third is zero with eigenvector along the vertex normal N̂v. The
shape operator is defined in the global reference frame [x̂, ŷ, ẑ]. To calculate the
eigenvalues in a computationally convenient way a Householder transformation TH

can be used to rotate the ẑ axis to the normal vector N̂v, and obtain a 2 × 2 minor
with as eigenvalues the principal curvatures. Calculating then the eigenvalues of
the matrix in the rotated reference frame C(v) = TH(v)†SV (v)TH(v) is easier.
Knowing the principal curvatures per vertex now the discretized version of the
Helfrich hamiltonian can be written using the mean curvature per vertex Hc(v) =
1
2(c1(v) + c2(v), obtaining:

Hel = k

2

NØ
v=1

(c1(v) + c2(v))2Av. (4.9)

4.2 Monte Carlo Procedure
The equilibrium properties of the surface are described by its partition function:

Z(N, k) = 1
N !

Ø
{T }

NÙ
v=1

Ú
dx⃗(v) exp{−β[Hel({X⃗}, {T}) + VSA]}, (4.10)

where VSA is the self avoiding potential, here chosen as the hard sphere potential, X⃗
is the position vector of all vertices of the surface, T the corresponding triangulation
map. The integral is carried out over all possible vertices positions and summed
over all possible triangulations. Imposing the hard sphere potential (i.e. prohibiting
any configuration in which two vertices come closer than their diameter) and a
maximum tether length l =

√
2 make the surface completely impenetrable, ensuring

self avoidance [29]. See Fig.4.4 for clarity.
The state of the membrane in its phase space is described by the tuple η =
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Figure 4.3: Representation of hard sphere potential with actual volumes of
impenetrable beads [29].

[{X⃗}, {T}]. A Monte Carlo move corresponds to a change in the state of the
system η → η′, and it can be decomposed into two set of moves which both satisfy
detailed balance.

(a) Vertex move:
The vertex positions are updated, {X⃗} → {X⃗ ′}, moving a randomly chosen vertex
in a cube of size 2σ around it. The triangulation map {T} is left unchanged, so the
system configuration changes as η = [{X⃗}, {T}] → η′ = [{X⃗ ′}, {T}]. The move
must obey the detailed balance condition:

ω(η → η′)Pacc(η → η′) = ω(η′ → η)Pacc(η′ → η) (4.11)

which, choosing for the forward and backward trial probabilities to be equal, and
uniform in the choice of the vertex and the displacement

ω(η → η′) = ω(η′ → η) = 1
8Nσ3 , (4.12)

gives for the acceptance probability the condition

Pacc(η → η′) = min{1, exp[−β∆Hel(η → η′)]}, (4.13)
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which is the usual Metropolis probability. The parameter σ determines the maxi-
mum displacement of vertices and thus the acceptance probability.

(a) Link flip:
An edge shared by two triangles is deleted, and another one connecting the two
previously unconnected vertices is created. The triangulation map is updated
{T} → {T ′}, and some vertices neighborhoods change, effectively creating a
diffusion. The particle positions are left unchanged so the configuration changes
as η = [{X⃗}, {T}] → η′ = [{X⃗}, {T ′}]. The trial probability is given by ω(η →
η′) = ω(η′ → η) = 1

L
, and applying the same reasoning with detailed balance the

acceptance probability is the same as the vertex case.

Figure 4.4: Monte carlo moves for equilibrium simulation of a fluid random
surface. (a) The vertex move simulates thermal fluctuations and (b) link flip
simulates diffusion. [10]

Clearly the Monte Carlo moves must obey the conditions that ensure self avoiding,
so all the moves that result in a tether length l >

√
2, or in a distance between

vertices d < 2r (where r is the radius of the hard spheres) are rejected. Finally,
during the link flip dynamics the further condition that vertices cannot have less
than 3 edges must be imposed, s.t. the total number of edges is conserved1.

1Without this condition edges can be deleted, due to the formation of pyramidal structures.
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4.3 Technical Remarks
The naive way to implement this kind of procedure results in a computationally
expensive algorithm, for two main reasons. The hard sphere potential requires that
when any vertex is displaced it has to be checked that there is no overlapping with
all other vertices, making the move O(N2). Furthermore, if the elastic energy is
recalculated on the whole surface at each step, this result also in a O(N2) cost.
This can be solved by making both calculations local:

• The overlapping check was solved using a Linked-List Cell structure, essentially
dividing the space in cells, assigning each vertex to a cell, storing and then
updating the positions during the dynamics. This allows to check only the
vertices that are stored in neighboring cells for overlapping, making the
procedure O(1).

• The elastic energy calculation was done locally, updating after each vertex
or link move only the curvatures associated to the interested vertices, and
re-calculating it locally using the procedure explained in (4.1).

The algorithm implemented in this way is O(N).

4.4 Coupling with particles
The idea is then to place particles evolving according to the Markov process
explained in Sec.(2.4) onto the surface, considering an interaction between particles
and surface, in which each particle creates a spontaneous curvature of the surface.
The particles were inserted onto the triangular faces of the surface, such that the
subsequent spontaneous curvature is localized first in the edges neighboring the
occupied face. Then the contribution is projected onto the vertices curvatures.
Considering the discrete Hamiltonian describing the membrane in Eq.(4.9) and
confronting it with the continuous version in (3.24) it’s clear that until now we are
describing a membrane with zero spontaneous curvature (which tends to be flat).
The shape operator at edges is defined by Se = h(e)b̂(e) ⊗ b̂(e), with h(e) a scalar
measure of curvature at edge. We insert a coupling between particle presence and
curvature in the following way: add a constant −µ to h(e) if one adjacent face
is occupied by a particle, −2µ if both. This way when particles are present the
Shape operator is modified as: S ′

e = (h(e) − αeµ)b̂(e) ⊗ b̂(e), with αe = 0,1,2 an
index associated to each edge, counting the number of neighboring faces occupied
by particles. The trace of the new shape operator is Tr(S ′

e) = Tr(Se)(1 − αeµ).
Since the Shape operator at vertex is defined as the averaged sum of the projection
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of the adjacent edge shape operators:

Sv = 1
Av

Ø
{e}

W (e)P+(v)SeP (v), (4.14)

the eigenvalues are invariant under a change of basis, and the trace is linear, the
trace of Sv is given by the weighted sum:

Tr(Sv) = 1
Av

Ø
{e}

W (e)Tr(Se). (4.15)

So, when particles are added edge shape operators are modified accordingly and
shape operators at vertices change as:

Tr(S ′
v) = Tr(Sv) −

Ø
{e}

αeµW (e)Tr(Se)
Av

. (4.16)

The trace of the shape operator at vertex is the mean curvature, so when particles
are added, the mean curvature at the vertex changes as:

H ′
c = Hc −

Ø
{e}

αeµW (e)Tr(Se)
Av

. (4.17)

Inserting this in the discrete form of the Helfrich Hamiltonian it becomes clear that
this introduces a spontaneous curvature at each vertex proportional to the number
of occupied neighbors, creating a coupling between the density of particles and the
spontaneous curvature of the membrane.

4.5 Model Implementation
For the implementation, a geometry processing library, called libigl [30], was largely
used. Following the structure introduced in such library, a triangulated surface
with N vertices and T triangles is described simply as a pair of matrices

• vertex list, matrix of dimension N × 3, i-th row contains the cartesian coordi-
nates of the i-th vertex.

• triangle list, matrix of dimension T × 3, i-th row contains the indices of the
vertices forming the i-th triangle. The order of the vertex indices determines
the face orientation, so it has to be consistent for the entire surface.

Various quantities describing the topography of the surface are initially calculated,
and updated locally during the dynamics. The various functions are structured as
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follows:

MC step vertex:
A random vertex is selected and displaced randomly inside a cube. It is checked
that the self-avoiding conditions are satisfied by the new configurations, so that (1)
the tethers connecting the displaced vertex with its neighbours onto the mesh don’t
exceed the maximum and (2) the is no overlapping of the hard spheres potential
between that of the displaced vertex and of all the vertices assigned to one of the
neighboring 26 cells of the Linked-List-Cell structure. If this is verified, the elastic
energy of the new surface is calculated. This is done locally (to avoid an O(N2)
cost), subtracting the curvature contribution associated to the old position of the
vertex and the one associated to its neighbors, and recalculating them from their
one-ring neighborhood according to the procedure explained in Sec.(4.1).
This allows to calculate the acceptance probability, if the move is accepted the
quantities describing the surface (such as the Linked-List-Cell) are locally updated
accordingly. Once this has been completed for all vertices (in random order) a
sweep is complete.

MC step link:
A random edge is selected, and the vertices and edges related to the two triangles
that share it are identified. Then the edge present in both triangles is removed,
and an edge connecting the two remaining vertices is added. It is checked that
the new edge length doesn’t exceed the maximum, and that this operation does
not lead to a vertex having less than three neighbors (that can happen due to the
formation of pyramidal configurations that lead to the elimination of an edge, and
superposed edges appearing multiple times). Furthermore the dynamics has to
preserve the orientation of the faces, i.e. the order of the vertices.
If the conditions are satisfied, the elastic energy of the new configuration is cal-
culated. This is again done locally, updating only the curvature contribution of
the four vertices involved. If the move is then accepted the surface is updated
accordingly. Once N tethers have undergone this procedure a sweep is complete.

Elastic Energy:
Both the initial energy calculation and the various local updates are performed
according to the procedure explained in Sec.(4.1). When the energy is calculated
onto the whole surface the shape operators at edges are stored in a list of matrices.
This allows to avoid to recalculate this quantities when unnecessary, and speeds
up the procedure. The different updates that have to be distinguished are the
following

• vertex update: after a vertex is displaced, the orientation of all the neighboring
faces changed. All the edge shape operators have to be recalculated.
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• neighborhood update: update of curvature of the neighboring vertices of a
displaced vertex. In their one-ring neighborhood only the edge shape operator
associated to the edge connected to the displaced vertex has to be recalculated.

• link update: the shape operators of all the 5 edges involved and the related
vertices have to be updated.

For all this different operations a specialized function was defined.

Particles:
Finally particles are inserted onto the surface, according to the Markov process
presented in Sec.(2.4), and a coupling with surface spontaneous curvature is con-
sidered, as explained in Sec.(4.4).
Both for the insertion and diffusion process the surface curvature is updated locally
after each move. For the extraction at each timestep all the clusters are individuated
with a Depth First Search algorithm that finds the connected components. The
energy is not updated immediately after the particle extraction, but is updated
gradually during the subsequent vertex and link dynamics, in which the local
curvature updates take into account the presence of the particles.
This choice was made both for simplicity and with the idea that an actual membrane
would need a certain amount of time in which, after a vesicle extraction, it relaxes
back to the original configuration.

The simulations performed in this work concern a surface with spherical topology.
A typical configuration is shown in Fig.(4.5).

Figure 4.5: Example of a typical configuration, with N = 642, k = 500, µ = 0.5,
kI = 10−5, kD = 100, g = 250, NE = 20.

For the complete code see https://github.com/giangomango/DTMC.
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Chapter 5

Results and Discussion

In the simulations time was measured in MCS (Monte Carlo Sweeps), and measures
were taken in the stationary state, considering one configuration every 10 MCS.
The ensemble average of the particle density in the stationary state was measured
at different values of µ and k, to examine how the aggregation process is modified
by the surface fluctuations. As can be seen in Fig.(5.1), it seems that the particle
density is independent both from µ and k. The ensemble average of the elastic

Figure 5.1: Stationary state ensemble average of the particle density.
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energy in the stationary state was measured at different values of the particle-
membrane coupling µ and the membrane bending energy k, as can be seen in
Fig.(5.2).

Figure 5.2: Stationary state ensemble average of the elastic energy.

It can be observed that beyond a certain value of the coupling µ the energy
increases monotonically with it. This observation can be qualitatively linked with
the renormalization of the bending energy to lower values by a factor proportional
to the coupling µ presented in Sec.(3.5). The related model was introduced in an
equilibrium context, of freely diffusing interacting particles, with a coupling with
the surface spontaneous curvature, onto a fluid membrane. Despite the differences
between this model and the one that is considered in this work (in which particles
are inserted, undergo aggregation, and are extracted, keeping the system in a driven
nonequilibrium state), the qualitative conclusion that the spontaneous curvature
induced by the particles renormalizes the bending energy to smaller values is in
agreement. Actually one relevant common element between the two models is the
form of the interaction between the particles density and the spontaneous curvature.
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The interaction introduced by Leibler [23] has the form

Hint = −
Ú
dSµΦHc, (5.1)

and, upon defining a local function calculating the local correction due to presence
of particles

Ψ(v) =
Ø
{e}v

αeW (e)Tr(Se)
Av

(5.2)

inserting the local correction introduced in our numerical model, Eq.(4.17), into
the discrete form of the Helfich Hamiltonian we obtain

Hel = k

2

NØ
v=1

(Hc − µΨ(v))2Av

= k

2

NØ
v=1

(H2
c − 2µΨ(v)Hc + µ2Ψ(v)2)Av.

(5.3)

A further comment can be made about the fact that for values of k ≥ 50 the energy
always increases w.r.t µ, even if with a small plateau. Instead, for values smaller
there is an initial decrease. This means that there is a change in dependence of
the energy from µ changing the bending modulus, signaling some change of regime.
This could be related to the curvature instability introduced in [23, 24], with the
difference that in this context the instability triggered by the particles is localized
in specific regions. However, at this level this conclusion cannot be drawn, and this
effect needs further investigation.
Finally, observing Figs.(5.2) and (5.3), we can see that as the coupling µ increases
the bending modulus becomes less relevant in determining the elastic energy of
the stationary configuration. In fact the energies for different k become closer
and closer and the configurations become more similar. This suggest that a larger
coupling value µ at which the bending modulus k becomes irrelevant could exist.

5.1 Domain Distance frequency density
In order to evaluate the distance frequency density for domains the following
procedure was employed:

• The centroids of clusters were found taking the area weighted average of
geometrical centers of single triangles belonging to the domain. Then the
vertex belonging to the domain which is closest to the point found is selected
as centroid.
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Figure 5.3: On the upper left configuration with k = 4, µ = 0.05, upper right
configuration with k = 4 and µ = 0.5. Downward left k = 500, µ = 0.05, downward
right k = 500,µ = 0.5. Clearly, at lower values of the coupling µ the elastic energy
is more relevant in determining the behaviour of the system, as it can be seen
confronting the figures on the left. Instead, when the coupling is big the bending
modulus is less relevant, as it can be seen from the similarity of the figures on the
right.

• Selecting as centroid a vertex allows to determine the distance between domains
as a shortest path distance on a weighted graph. The graph has as nodes the
vertices of the triangulated surface and as edges the tethers connecting the
vertices. Then the distance is found employing Djikstra’s algorithm.

The result is shown in Fig.(5.4), where no particular dependence from µ or k is
observed.

41



Results and Discussion

Figure 5.4: Frequency of domains distance distribution, varying k and µ.
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