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Summary

In this work it is discussed a model of heterogeneous agents inspired by the
El Farol Bar problem and the Minority Game which reproduce the main
stylized facts of anomalous collective fluctuations in finance.

The rules are simple: a finite number of players have to choose between two
sides and the quantity they want to bet; whoever ends up in the minority
side is a winner. By definition all players cannot be winners, and therefore
they should not agree with each other as to what is the best strategy. Thus
the Minority Game punishes herding and rewards diversity; the players make
do with only a limited information processing capacity. Although this game
is a generic model of competition between adaptive agents, it has attracted
much attention as a model of financial markets, bringing appealing insights
into market dynamics.

As in financial markets, the agents interact each other through a collective
variable - that play the role of price - such that its value depends on the
choice of the players at each time. Stock market prices are characterized by
anomalous fluctuations, known as stylized facts, these are:

• the global efficiency, that measure the coordination among the agents
• the predictability, that measure the symmetry of the game

It is first introduced the Poisson Minority Game, whose dynamics is de-
scribed by a set of deterministic equation and it is studied the role of differ-
ent types of agents: producers and speculators.
Producers are traders who use the market for exchanging goods, their deci-
sion originate from outside and not on the market dynamics.
Speculators trade to gain from market fluctuations.
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Compared with the classical Minority Game, here it is discussed a version in
which the agents not only choose to “buy” or “sell”, but also the number of
shares they bid, that it is assumed to be drawn from a Poisson distribution.
A variable ϵ, that models the incentives of agents for trading in the market,
is also added.

Then the stochastic differential equations for continuum time limit of the
dynamics are derived. It is shown that this dynamics admits a Lyapunov
function, that is a function which is minimized along the trajectories of the
dynamics of the system. So the problem of studying the stationary state
of a stochastic dynamical system turn into the characterization of the local
minima of a function, considered as an Hamiltonian, the stationary state of
the system corresponds to the ground state of the Hamiltonian, which can
be computed analytically in the relevant thermodynamic limit.

Using the assumption of Poisson distribution, it has been derived, in the sta-
tionary state, a relation between the collective behavior. Numerical results
gives evidence of the accuracy of the association.

The minimization of the Hamiltonian of the system has been done by using
the Replica Method and it is shown that the analytical solution and the
result found by numerical simulation coincide in the stationary state. In
particular in the limit ϵ → 0, the minimization of the Hamiltonian reveals
that the collective behaviour of the Minority Game features a phase transi-
tion as a function of the number N of agents. When there are less agents
than the critical number, the price evolution seems predictable to an exter-
nal agent (but not to those already playing), whereas when the number of
agents is beyond the critical number, the market becomes unpredictable.
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In primis, vorrei esprimere la mia più sincera gratitudine al mio relatore, il
Professore M. Marsili, per la sua immensa pazienza, per i suoi consigli, per
le conoscenze trasmesse e il supporto durante la stesura dell’elaborato.

Ai miei genitori Rosita e Luigi che mi sono sempre stati accanto. Loro che
hanno creduto in me fin dal primo momento, mi hanno sostenuto, appog-
giando ogni mia decisione. Mi hanno insegnato il significato della parola
“sacrificio” del quale mi hanno dato dimostrazione rendendomi la persona
che sono. Ringrazio affettuosamente mio fratello Stefano per arricchire i
pomeriggi col suo virtuoso pianoforte.

Un grazie speciale va ai miei amici, che hanno avuto un peso determinante
nel conseguimento di questo risultato sui quali so che potrò sempre con-
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importanti; Emiliano, compagno di una vita, con il quale abbiamo condi-
viso tante avventure e che continua a dimostrarmi quanto tiene a me non
smettendo mai di incoraggiarmi; Alfredo, Samuele e Tarek, che nonostante
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Chapter 1

Introduction

Minority game can be regarded as an Ising Model for system of hetero-
geneous adaptive agents, who interact through a global mechanism which
involves competition for limited resources as in financial markets. For this
reason it qualifies as a complex systems.

Markets are institutions which allow agents to exchange goods. Through
these exchanges, traders can reallocate their resources in order to increase
their profit. Since trading itself does not create wealth, the market must be
a zero sum game. Taking out transaction costs and other frictions which are
needed to reward the market maker for the service he is providing, the game
becomes a Minority Game, i.e. a setting where only a minority of agents
can win

Comparing real financial market with the Minority Game it is obvious that
the latter cannot describe the complexity of the former in all its conditions
and regimes, but the Minority Game can be considered a faithful picture of a
financial market. The key observation is that the Minority Game is tailored
to study fluctuation phenomena and their statistical properties. Statistical
physics suggests that the collective behaviour of a system of many interacting
units, is qualitatively rather indifferent to microscopic details.
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Introduction

Stock market prices are characterized by anomalous collective fluctuations
which are strongly reminiscent of critical phenomena.The connection with
critical phenomena is natural, because financial markets are indeed complex
systems of many interacting degrees of freedom, the traders.
Statistical mechanics of disordered systems provides analytical and numer-
ical tools for the description of complex systems, in particular analytic ap-
proaches provide exact result for the limit of infinitely many agents.

Minority Games provide a natural microscopic explanation for the volatility
correlations found in real markets. Hence the Minority Game offers a broad
picture of how financial markets operate, consistent with empirical data.
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Chapter 2

Poisson Minority Game

2.1 Model

In the market described by the Minority Game a large number N of agents
have to make one of two opposite actions such as e.g. “buy” or “sell” in every
period t = 1, 2, ... and only those agents who choose the minority action are
rewarded.

In order to model this situation, let N = (1, ..., N) be the set of agents and
let A = (−1, +1) be the set of the two possible actions.
The actions of agents depend on the value µ(t) of a public information
variable which can be in one of P states: µ ∈ P = (1, ..., P ).

The variable µ encodes all possible information on the state of the environ-
ment where agents live, so sometimes µ is called “information”. Here it is
supposed that µ is drawn from a uniform distribution on P .

We assume that P is large and of the same order of N such that:

α = P

N

is finite in the limit N → ∞
Let’s define the AP the set of all strategies: an element of AP is a function:

a : µ ∈ P −→ aµ ∈ A

14



Poisson Minority Game

that is P dimensional vector with coordinates aµ, ∀µ ∈ P . There are
|AP | = 2P possible function. The quantity ai ∈ AP is called a possible pure
strategy for agent i ∈ N , with elements aµ

i ∈ A for all µ ∈ P .

Here it is assumed that the strategies aµ
i of traders are randomly and inde-

pendently drawn (with replacement) from AP . More precisely:

P (aµ
i = +1) = P (aµ

i = −1) = 1
2 , ∀i ∈ N , µ ∈ P (2.1)

Note that independence of a⃗i across agents is reasonable because µ is a
sunspot and no pre-play communication is possible (agents are assigned
their a⃗i before the game starts).

If a
µ(t)
i ∈ A is the action of agent i ∈ N , the payoff of agent i is given by:

Ui(t + 1) = Ui(t) − a
µ(t)
i

A(t)
P

− ϵ (2.2)

Where
A(t) =

Ø
i

a
µ(t)
i ni(t) (2.3)

this is a global or aggregate quantity which is produced by all players. This
type of interaction is typical of market systems and it is similar to the long-
range interaction assumed in mean-field models of statistical physics.

The factor ni describes the number of shares taken by agent i.

The threshold ϵ is such that the agents will gain if their payoff is larger then
it. This quantity can be seen as a benchmark, it models the incentives of
agents for trading in the market.

Let’s define the following variable:

λi(t) = max(0 ; ΓUi(t)) (2.4)

Where Γ > 0 represents the percentage of payoff that agents bid.
According to this definition, here it is supposed that:

P (ni(t) = k) = λi(t)k

k! exp(−λi(t)), ∀i ∈ N (2.5)

that is, at each time step, the quantity played by each agents is drawn from
a Poisson distribution with parameter λi(t)
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Poisson Minority Game

In order to see that the game rewards the minority group notice that the
MG interaction is described by the logical XOR function:

sign(ai(t)) sign(A(t)) sign(∆Ui + ϵ)
- - -
- + +
+ - +
+ + -

Table 2.1: The Poisson Minority Game interaction.

The agents from the minority (who took the action a(t) = −sign(A(t))) are
rewarded with a gain |A(t)|, and those from the majority (who took the
action a(t) = sign(A(t))) are punished by a loss −|A(t)|.

2.2 Speculators and Producers

Real markets are not zero sum games D. Challet [2001]. In real markets
the participants can be divided into two groups: speculators and producers.
Producers can be characterized by those using the market for purposes other
than speculation, their trading strategy originate from outside opportunities
related to the economic activity and not on the market dynamics itself. They
need market for hedging, financing, or any ordinary business. They thus pay
less or no attention to “timing the market”.
Speculators, on the other hand, join the market with the aim of exploiting
the marginal profit pockets, their aim is to gain from market fluctuations.

The producers inject information into the market prices, and the speculators
make a living exploiting this information. The reason why producers let
themselves be taken advantage of is that they have other business in mind.
To conduct their business, they need the market, and their expertises and
talents in other areas give them still better games to play.
Speculators make do exploiting the “meager margin” left in the competitive
market.

In this version of MG, producers will be limited in choice, their activities
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Poisson Minority Game

outside the game are not represented. Thus, the they have a fixed pattern
in their market behavior and put a measurable amount of information into
the market, which is exploited by the speculators.
In this thesis, following D. Challet [2000], it will be considered a population
of N speculators and θ2N heterogeneous producers, so that θ2 is the fraction
of producers per speculator. The actions producers can do is just ”buy” or
”sell” and the quantity they bid is restricted to 1. The outcome is then:

A(t) = A(t)spec + A
µ(t)
prod =

NØ
i

a
µ(t)
i ni(t) + A

µ(t)
prod

where A
µ(t)
prod ∼ G(0, θ

√
N) that is a Gaussian random variable with zero

mean and variance θ2N , that it is rewritten as:

A
µ(t)
prod =

√
NA

µ(t)
0 , with A

µ(t)
0 ∼ G(0, θ)

Producers always benefit from the presence of speculators, and reversely:
both types of agents live in symbiosis. Indeed, the producers introduce sys-
tematic biases into the market, and without speculators, their losses would
be proportional to these biases. The speculators precisely try to remove
this kind of bias, reducing also systematic fluctuations in the market, thus
reducing the losses of the producers and their own losses.

2.3 Characterization of collective behavior

Before entering in the analysis of the game, here is presented the notation
that it will be used in the next sections.
First of all the average of a measure O over the information µ is given by:

Ō = 1
P

PØ
µ=1

Oµ (2.6)

The average over the Poisson distribution:

⟨O(t)⟩ =
∞Ø

k=0
P (O(t) = k)k (2.7)

where O(t) is distributed according to (2.5).
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Poisson Minority Game

As a preliminary it is useful to introduce the key quantities which describe
the collective behavior, full description in D. Challet [2005]

Symmetry arguments suggest that none of the two groups sign(A(t)) = −1
or sign(A(t)) = 1 will be systematically the minority one.
This means that A(t) will fluctuate around zero and ⟨A⟩ = 0.
The size of fluctuations of A(t), instead, displays a remarkable non-trivial
behaviour. The variance

σ2 = ⟨A2⟩ = 1
P

PØ
µ=1

KAØ
j

aµ
j nj(t) +

√
NAµ

0

B2L
(2.8)

of A(t) in the stationary state is a measure of how effective the system is
at distributing resources. The smaller σ2 is, the larger a typical minority
group is, that correspond to an efficient coordination among agents. In other
words σ2 is a reciprocal measure of the global efficiency of the system, that
measures market’s fluctuation.
Numerical simulations of the Global efficiency for the Poisson Minority game
are shown below:

Figure 2.1: Global efficiency σ2/N as a function of P/N = α for Γ = 0.01,
0.05, 0.1; θ = 0.5; ϵ = 0.01, 0.1; averaged over 70 realizations of the game.
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Poisson Minority Game

Figure 2.2: Global efficiency σ2/N as a function of P/N = α for Γ = 0.01,
0.05, 0.1; θ = 0.5; ϵ = 0.01, 0.1; averaged over 70 realizations of the game.

In both values of θ = 0.5, 0.3 it can be seen an increasing trend in the value
of the global efficiency when the threshold ϵ decrease. This is due to the
fact that there exist a critical value for α, that it will be calculated later
that is αc = 1/2 in which the system undergo trough a phase transition.

In the asymmetric phase, ⟨A|µ⟩ /= 0 for at least one µ. Hence knowing the
history µ(t) at time t, makes the sign(A(t)) statistically predictable. As a
measure of the asymmetry, it is introduced the predictability:

H = ⟨A⟩2 = 1
P

PØ
µ=1

Ø
j

aµ
j ⟨nj(t)⟩j +

√
NAµ

0

2

(2.9)

In the symmetric phase ⟨A|µ⟩ = 0 for all µ and hence H = 0, that correpsond
to the situation in which the market is unpredictable or informationally
efficient.

For the same values of the parameters before, numerical simulations of the
Predictability for the Poisson Minority game are shown below:
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Poisson Minority Game

Figure 2.3: Predictability H/N as a function of P/N = α for Γ = 0.01,
0.05, 0.1; θ = 0.5; ϵ = 0.01, 0.1; averaged over 70 realizations of the game.

Figure 2.4: Predictability H/N as a function of P/N = α for Γ = 0.01,
0.05, 0.1; θ = 0.5; ϵ = 0.01, 0.1; averaged over 70 realizations of the game.
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Poisson Minority Game

In this case, instead, numerical simulation reveal that the Predictability
decrease when ϵ goes down. In particular what it will proven is that for
ϵ → 0 and values of α < αc = 1/2 the quantity H/N = 0 that is the market
becomes unpredictable.

Both the quantities σ2 and H are extensive, that is, are proportional to N

for N → ∞, so the case of interested is in the finite quantities σ2

N and H
N .
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Chapter 3

Continuum time limit

3.1 Continuum time limit and the dynamics
in the long run

In this chapter, it is first derived a continuum time dynamics for (2.2) which
captures the long run behavior of the system.

Then it will be shown that the collective behaviour of agents, within this
continuum time dynamics, admits a Lyapunov function, that is a function
which is minimized along the trajectories of the dynamics of the system.
The dynamics therefore converges to the minima of this function.
This is a quite important step, since it allows to turn the study of the
stationary state of the dynamical model into the study of the local minima
of the Lyapunov function. Therefore one can regard the Lyapunov function
as the Hamiltonian of a system and resort to the powerful tools of statistical
mechanics in order to study the statistical properties of its ground state
(global minimum) and eventually of its meta-stable states (local minima).
This shall be the subject of the next chapter

In order to study the stationary state properties of the system, it is consid-
ered the long time limit of the dynamics of scores.
The approach below, which follows that of M. Marsili [2001], is based on the
following key observations:
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Continuum time limit

• It is expected that Ui(t) changes significantly and systematically only
over time-scales of order ∆t ∼ P (characteristic times of the dynamics
are proportional to P ).

• The scaling σ2 ∼ N , with fixed α, means that typically A(t) ∼
√

N .

• Time increments of Ui(t) are small (i.e. of order
√

N
P ∼ 1√

P
)

In the limit P, N >> 1, the system is studied on a fixed infinitesimal incre-
ment of time dτ such that Pdτ = αNdτ . In doing so the continuum time
limit dτ → 0 is taken after the thermodynamic limit N → ∞.
In order to capture the long time dynamics of scores, set

Ui(t) = ui(τ), with τ = t

P
(3.1)

The dynamics for Pdτ time steps, from t = Pτ to t = P (τ + dτ) will be:

ui(τ + dτ) − ui(τ) = −
P (τ+dτ)−1Ø

t=P τ

A
a

µ(t)
i

A(t)
P

+ ϵi

B

= −
P (τ+dτ)−1Ø

t=P τ

a
µ(t)
i

A(t)
P

− ϵiPdτ (3.2)

The goal is to obtain the following expression for the dynamics :

ui(t + 1) − ui(t) = dui(τ) + dWi(τ) (3.3)

where dui(τ) is the deterministic part and dWi(τ) a noise term.
In doing so the quantity a

µ(t)
i A(t) is averaged first with respect to the uniform

distribution of µ(t) and the probability distribution of ni(t), then averaged
with respect to time interval Pτ ≤ t ≤ P (τ + dτ), that is:
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Continuum time limit

1
Pdτ

P (τ+dτ)−1Ø
t=P τ

ai

Ø
j

aj⟨nj(t)⟩j +
√

NAµ
0

 =

1
Pdτ

P (τ+dτ)−1Ø
t=P τ

 1
P

PØ
µ=1

aµ
i

Ø
j

aµ
j ⟨nj(t)⟩j +

√
NAµ

0

 =

1
Pdτ

P (τ+dτ)−1Ø
t=P τ

 1
P

PØ
µ=1

aµ
i

Ø
j

aµ
j

∞Ø
k=0

P (nj(t) = k)k +
√

NAµ
0

 =

1
P

PØ
µ=1

aµ
i

Ø
j

aµ
j

∞Ø
k=0

 1
Pdτ

P (τ+dτ)−1Ø
t=P τ

P (nj(t) = k)
ü ûú ý

k

 +
√

NAµ
0

 = ai⟨A⟩π(τ)

where for the time interval Pτ ≤ t ≤ P (τ + dτ) it is defined the random
variable for each agent i

πk,i(τ) = 1
Pdτ

P (τ+dτ)−1Ø
t=P τ

P (ni(t) = k) =

= 1
Pdτ

P (τ+dτ)−1Ø
t=P τ

λi(t)k

k! exp(−λi(t))

which is the frequency with which agent i takes k shares in the time interval
Pτ ≤ t ≤ P (τ + dτ).

Once the above random variable has been introduced, it is derived the aver-
age of the number of shares taken by agent i in the time interval considered,
that is:

λi(τ) = 1
Pdτ

P (τ+dτ)−1Ø
t=P τ

P (ni(t) = k)k

= max(0 ; Γui(τ))

According to this definition, it is rewritten:

a
µ(t)
i A(t) = ai⟨A⟩π(τ) + Xi(t) (3.4)

that is, the above quantity is split into an average over the distribution of
information and frequency and a stochastic part that has zero mean.
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Continuum time limit

Substituting into (3.2) it is obtained

ui(τ + dτ) − ui(τ) = dui(τ) + dWi(τ) =

= − 1
P

P (τ+dτ)−1Ø
t=P τ

A
ai⟨A⟩π(τ) + Xi(t)

B
− ϵiPdτ =

= − ai⟨A⟩π(τ)dτ − 1
P

P (τ+dτ)−1Ø
t=P τ

Xi(t) − ϵiPdτ

Consider the term 1
P

P (τ+dτ)−1q
t=P τ

Xi(t), according to (3.4) it is a a sum of Pdτ

random variables Xi(t) with zero average.

By taking dτ fixed and N very large, so that Pdτ >> 1, it is possible to
use limit theorems. According to the model, µ(t) and ni(t) are drawn inde-
pendently at each time that means that the variables Xi(t) are independent
from time to time and identically distributed , hence in the time interval
[Pτ, P (τ + dτ)] it is possible to use the Central limit theorem, that is, the
terms dWi can be approximated by a Gaussian variable that have zero mean
and covariance matrix given by:

⟨dWi(τ)dWj(τ ′)⟩ = 1
P 2

P (τ+dτ)−1Ø
t=P τ

P (τ ′+dτ)−1Ø
t′=P τ ′

⟨Xi(t)Xj(t′)⟩π(τ) (3.5)

because of independence of Xi(t) for different time, (3.5) becomes:

⟨dWi(τ)dWj(τ ′)⟩ = δ(τ − τ ′)
P 2

P (τ+dτ)−1Ø
t=P τ

⟨Xi(t)Xj(t)⟩π(τ) =

= δ(τ − τ ′)
P

dτ⟨Xi(t)Xj(t)⟩π(τ)

by expanding the product inside the sum:

⟨Xi(t)Xj(t)⟩π(τ)

P
=

aiaj⟨A2⟩π(τ)

P
−

ai⟨A⟩π(τ) aj⟨A⟩π(τ)

P

The second term is of order N0 so it vanishes in the limit N → ∞.
Indeed aµ

i ⟨A|µ⟩π(τ) is of order
√

N but its sign fluctuates, when it is averaged
over P ∼ N different µ, it is obtained a quantity of order N0.
It is implicitly assumed that ⟨A⟩ ≃ 0
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Continuum time limit

The first term, instead

σ2(τ) ≡ ⟨A2⟩π(τ) ≈ ⟨A2|µ⟩π(τ) (3.6)

which corresponds to:

⟨A2|µ⟩π(τ) =
Ø
i,j

aµ
i aµ

j λi(τ)λj(τ) =

=
Ø

i

λi(τ)2 +
Ø
i /=j

∞Ø
k,l=0

aµ
i aµ

j λi(τ)λj(τ)

that is of order N .

Within this approximation, the correlation, in the limit N → ∞ becomes:

⟨dWi(τ)dWj(τ ′)⟩ ∼=
σ2(τ)

N
aiajδ(τ − τ ′)dτ (3.7)

Summarizing the dynamics of ui is describes by a continuum time Langevin
equation:

dui(τ)
dτ

= −ai⟨A⟩π(τ) − ϵiP + ηi(τ) (3.8)

⟨ηi(τ)⟩ = 0 (3.9)

⟨ηi(τ)ηj(τ ′)⟩ ∼=
σ2(τ)

N
aiajδ(τ − τ ′) (3.10)

Hence (3.8) are complex non-linear stochastic differential equations with a
time dependent noise term.

3.2 Stationary State

The stochastic differential equation for the payoff is:

dui(τ) = −
 1

P

PØ
µ=1

aµ
i

 NØ
j=1

aµ
j λj +

√
NAµ

0

 + ϵP

dτ + dWi(τ) (3.11)

Notice that πi(τ) is a stochastic variables, hence it is defined the average on
the stationary state as:

⟨...⟩ = lim
τ0,T →∞

1
T

τ0+TÚ
τ0

dτ⟨...⟩π(τ) (3.12)
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Continuum time limit

So that the average over the stationary state of the dynamics will be read:
K

dui(τ)
dτ

L
= −ai⟨A⟩ − ϵP, ⟨A|µ⟩ =

Ø
j

aµ
j λj +

√
NAµ

0 (3.13)

From (2.2):
K

dui(τ)
dτ

L
= −ai⟨A⟩ − ϵP (3.14)

=
0 if λi > 0,

< 0 if λi = 0.

This can be understood with the following argument: suppose that ⟨dui⟩ = 0
that means the score stabilize around a positive value and λi is picked such
that λ = max(0 ; Γui). On the other hand, if dui < 0 the score associated
to agent i, ui → −∞, hence λi = 0.
Consider the right part of (3.14):

ai⟨A⟩ + ϵP = 1
P

A
PØ

µ=1
aµ

i ⟨A|µ⟩
 + ϵP

= 1
P

PØ
µ=1

aµ
i

 NØ
j=1

aµ
j λj +

√
NAµ

0

 + ϵP

this can be seen as the minimization problem of a function H̃ defined as the
following:

H̃ = 1
2P

PØ
µ=1

 NØ
j=1

aµ
j λj +

√
NAµ

0

2

+ ϵP
NØ

j=1
λj (3.15)

Such that the following conditions should be satisfied

∂H̃

∂λj
=
0 if λj > 0,

> 0 if λj = 0.
(3.16)

that is to find:
λi = arg min

z⃗
H̃(zi) (3.17)
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Continuum time limit

3.3 Numerical result

In the stationary state the distribution λi does not depend on Γ, neither
does the predictability H. In addition:

⟨ni(t)nj(t)⟩ = ⟨ni(t)⟩⟨nj(t)⟩ = λiλj, for i /= j

According to this, it is possible to relate the global efficiency and the pre-
dictability through the following:

σ2 = 1
P

PØ
µ=1

⟨A2|µ⟩ = 1
P

PØ
µ=1

KAØ
j

aµ
j nj(t) +

√
NAµ

0

B2L
=

= 1
P

PØ
µ=1

Ø
i,j

aµ
i aµ

j ⟨ni(t)nj(t)⟩ + 2
Ø

i

aµ
i ⟨ni(t)⟩

√
NAµ

0 + N(Aµ
0)2

2

=H + 1
P

PØ
µ=1

NØ
i

(aµ
i )2

⟨n2
i ⟩ − ⟨ni⟩2

D
= H +

NØ
i

⟨ni⟩

Figure 3.1: Relation σ2/N and H/N + ⟨n⟩ as a function of P/N = α in the
stationary state for θ = 0.3, 0.5; ϵ = 0.01, 0.1; averages were taken over 70
realizations of the game.
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Chapter 4

Replica Method

4.1 Introduction

The goal of this section is to compute and characterize the minimum of

the Hamiltonian H̃ = 1
2P

Pq
µ=1

 Nq
j=1

aµ
j λj +

√
NAµ

0

2

+ ϵP
Nq

j=1
λj. Considering

H̃ as an Hamiltonian of a statistical mechanic’s system, this can be done
analyzing the zero temperature limit. First the partition function is built

Z(β) =
∞Ú
0

e−βH̃(z) dz (4.1)

where β is the inverse temperature. This is nothing else than a generating
function, from which all the statistical properties can be computed.

The quantity of interest is the minimum of H̃, taking the limit β → ∞ at
the end of the calculus.

min
z⃗

H̃(z⃗) = lim
β→∞

1
β

log Z(β) (4.2)

This in principle depends on the specific realization aµ
i of rules chosen by

agents and
√

NAµ
0 the number of producers ∀µ ∈ P . In practice however,

to leading order in N , all realizations of aµ
i and

√
NAµ

0 yield the same limit,
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Replica Method

which then coincides with the average of min
z⃗

H̃(z⃗) over aµ
i and

√
NAµ

0 . In
other words rather than focusing on the solution of this problem for a par-
ticular game, that is for a given realization of the structure of interactions,
the interested is in the generic properties which hold for ‘typical’ realizations
of the game in the limit N → ∞. These properties are called self-averaging
because they hold for almost all realizations. In other words, in this limit,
all the realizations of the game are characterized by the same statistical
behaviour, that is, the same values for all the relevant quantities.

The average of log Z over the a′s, which we denote by ⟨...⟩aµ
i

and the one
over the producers, which we denote by ⟨...⟩Aµ

0
is reduced to that of moments

of Z using the replica trick M. Mezard [1987]:

⟨⟨log Z(β)⟩aµ
i
⟩Aµ

0
= lim

n→0

log⟨⟨Z(β)n⟩aµ
i
⟩Aµ

0

n
(4.3)

With integer n the calculation of ⟨⟨Zn⟩aµ
i
⟩Aµ

0
amounts to study n identical

copies of the original system all of them with the same realisation of aµ
i and

Aµ
0 . A set of dynamical variables za = {za

i } is introduced for each replica,
which are labeled by the index a = 1, ..., n.
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4.2 Partition Function

⟨⟨Z(β)n⟩aµ
i
⟩Aµ

0
=
KK∞Ú

0
e−βH̃(z) dz

nL
aµ

i

L
Aµ

0

=
∞Ú
0

dz1...

∞Ú
0

dzn

KK
e−β[H̃(z1)+...+H̃(zn)]

L
aµ

i

L
Aµ

0

(4.4)

The sum of the Hamiltonians over all the realizations is:

nØ
a=1

H̃(za) =
nØ

a=1

1
2P

PØ
µ=1

A
NØ

i=1
aµ

i za
i +

ó
P

α
Aµ

0

2

+ ϵP
nØ

a=1

NØ
i=1

za
i (4.5)

Substituting (4.5) in (4.4) it is obtained:

∞Ú
0

dz

KK
e

−β

5
nq

a=1

1
2P

Pq
µ=1

3
Nq

i=1
aµ

i za
i +

√
P
α Aµ

0

42

+ϵP
nq

a=1

Nq
i=1

za
i

6L
aµ

i

L
Aµ

0

=

=
∞Ú
0

dz

KK
e

nq
a=1

Pq
µ=1

− β
2P

3
Nq

i=1
aµ

i za
i +

√
P
α Aµ

0

42

−βϵP
nq

a=1

Nq
i=1

za
i
L

aµ
i

L
Aµ

0

=

=
∞Ú
0

dz

KK
nÙ

a=1

PÙ
µ=1

e
− β

2P

3
Nq

i=1
aµ

i za
i +

√
P
α Aµ

0

42L
aµ

i

L
Aµ

0

e
−βϵP

nq
a=1

Nq
i=1

za
i

It is now used the so called Hubbard–Stratonovich transformation defined
by the integral identity:

e− x2
2 =

ó
1

2π

∞Ú
−∞

e− y2
2 +ixy dy (4.6)

In the following it will be denoted by ⟨...⟩y the expectation over the Gaussian
variable (zero mean and unit variance) y and it has been introduced the
variable yµ

a for each a and µ.
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With this transformation, the Partition Function becomes:
∞Ú
0

dz

K
nÙ

a=1

PÙ
µ=1

KK
e

i
√

β
P

3
Nq

i=1
aµ

i za
i +

√
P
α Aµ

0

4
yµ

a
L

Aµ
0

L
y

L
aµ

i

e
−βϵP

nq
a=1

Nq
i=1

za
i =

=
∞Ú
0

dz

K
PÙ

µ=1

 NÙ
i=1

K
e

i
√

β
P

3
nq

a=1
za

i yµ
a

4
aµ

i

L
aµ

i

Ke
i
√

β
α

nq
a=1

Aµ
0 yµ

a
L

Aµ
0

L
y

e
−βϵP

nq
a=1

Nq
i=1

za
i

The average over aµ
i con be compute explicitly using the distribution:

P (aµ
i = +1) = P (aµ

i = −1) = 1
2 , ∀i ∈ N , µ ∈ P (4.7)

that gives:

K
e

i
√

β
P

3
nq

a=1
za

i yµ
a

4
aµ

i

L
aµ

i

= cos
ó β

P

nØ
a=1

za
i yµ

a

 = e
− β

2P

3
nq

a=1
za

i yµ
a

42

Where in the last passage it is used the relation cos(x) ≃ 1 − x2

2 ≃ e− x2
2

which is correct to order x2 in a power expansion.

Notice also that:
K

e
i
√

β
α

nq
a=1

Aµ
0 yµ

a
L

Aµ
0

= e
− β

2α θ2
3

nq
a=1

yµ
a

42

that is the Characteristic function of a Gaussian distribution.
With this approximation it is obtained the following expression:

∞Ú
0

dz

K
PÙ

µ=1

 NÙ
i=1

e
− β

2P

3
nq

a=1
za

i yµ
a

42e
− β

2α θ2
3

nq
a=1

yµ
a

42L
y

e
−βϵP

nq
a=1

Nq
i=1

za
i =

=
∞Ú
0

dz

K
e

− β
2P

Pq
µ=1

nq
a,b=1

yµ
a yµ

b

Nq
i=1

za
i zb

i − β
2α θ2

Pq
µ=1

3
nq

a=1
yµ

a

42L
y

e
−βϵP

nq
a=1

Nq
i=1

za
i

Let’s now introduce the matrix order parameters Q̂ ≡ {Qa,b, a, b = 1, ..., n}
that has elements:

Qa,b = 1
N

nØ
i=1

za
i zb

i
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such that the following identity holds:

e
− β

2P

Pq
µ=1

nq
a,b=1

yµ
a yµ

b

Nq
i=1

za
i zb

i

=

=
Ú

dQ̂
Ù
a≤b

δ

 nØ
i=1

za
i zb

i − NQa,b

e
− β

2α

Pq
µ=1

nq
a,b=1

yµ
a Qa,byµ

b

Consider now the average over Gaussian variables, by definition:

⟨...⟩y =
PÙ

µ=1

nÙ
a=1

∞Ú
−∞

dyµ
a

1√
2π

e
− 1

2

1
yµ

a

22

=
PÙ

µ=1

nÙ
a=1

∞Ú
−∞

dyµ
a

1√
2π

e
− 1

2

nq
b=1

yµ
a yµ

b δa,b

such that it is rewritten:
K

e
− β

2P

Pq
µ=1

nq
a,b=1

yµ
a yµ

b

Nq
i=1

za
i zb

i − β
2α θ2

Pq
µ=1

3
nq

a=1
yµ

a

42L
y

=

=
Ú

dQ̂
Ù
a≤b

δ

 nØ
i=1

za
i zb

i − NQa,b

Ke
− β

2α

Pq
µ=1

nq
a,b=1

yµ
a Qa,byµ

b − β
2α θ2

Pq
µ=1

3
nq

a=1
yµ

a

42L
y

=

=
Ú

dQ̂
Ù
a≤b

δ

 nØ
i=1

za
i zb

i − NQa,b

Ke
− β

2α

Pq
µ=1

A
nq

a,b=1
yµ

a Qa,byµ
b +θ2

3
nq

a=1
yµ

a

42
BL

y

=

=
Ú

dQ̂
Ù
a≤b

δ

 nØ
i=1

za
i zb

i − NQa,b

Ú dye
− 1

2

nq
a,b=1

ya

3
δa,b+ β

α

3
Qa,b+θ2

44
yb

P

=

=
Ú

dQ̂
Ù
a≤b

δ

 nØ
i=1

za
i zb

i − NQa,b

 1ñ
det(M̂)

P

Where it has been defined the matrix:

M̂ = Î + β

α

A
Q̂ + θ2

B

that is a matrix of the form:

Ma,b = m + Mδa,b
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where m = β
α(q + θ2) and M = 1 + β

α(Q − q).

Last transformation that will be taken into account is the integral represen-
tation of Dirac’s delta function, by introducing the matrix
R̂ ≡ {Ra,b, a, b = 1, ..., n}, such that:

1 =
Ú

dQ̂
Ù
a≤b

δ

 nØ
i=1

za
i zb

i − NQa,b



=
Ú Ú

dQ̂dR̂e

αβ2
2
q
a≤b

Ra,b

3
nq

i=1
za

i zb
i −NQa,b

4

With this the partition function becomes:

⟨Z(β)n⟩ =

=
Ú Ú

dQ̂dR̂

 1ñ
det(M̂)

P ∞Ú
0

dze

αβ2
2
q
a≤b

Ra,b

3
nq

i=1
za

i zb
i −NQa,b

4
e

−βϵP
nq

a=1

Nq
i=1

za
i

=
Ú Ú

dQ̂dR̂e−βnNFβ(Q̂,R̂)

where:

Fβ(Q̂, R̂) = α

2nβ
log det

1
M̂
2

(4.8)

+αβ

2n

Ø
a≤b

Ra,bQa,b+ (4.9)

− 1
nβ

log
Ú

dze

αβ2
2
q
a≤b

Ra,bzazb−ϵP β
q
a

za

(4.10)

The first term arise from the expectation over yµ
a , instead the second and

the third terms arise from the integral representation of the delta functions.

The key point is that, in the limit N → ∞ the integral over the matrices Q̂
and R̂ is dominated by their saddle point values, i.e. by the values of Qa,b

and Ra,b for which F attains its minimum value. One should then study the
first order conditions ∂F

∂Qa,b
= 0 and ∂F

∂Ra,b
= 0 for all a, b. Here it is assumed

the replica symmetric approximation that is the matrices have the following
form:

Qa.b = q + (Q − q)δa,b Ra.b = r + (R − r)δa,b (4.11)
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Taking the limit n → 0, following the calculation in Appendix A and putting
together (A.1), (A.2) and (A.3), the expression of the free energy is:

F RS
β (Q, q, R, r) = α

2β
log

A
1 + β

α
(Q − q)

B
+ 1

2
α(q + θ2)

α + β(Q − q)+

+αβ

2

A
RQ − rq

2

B
− 1

β

K
log

Ú
dze−βVy(z)

L
y

(4.12)

where it has been introduced the potential:

Vy(z) = −αβ

2

A
R − r

2

B
z2 + ϵPz −

ó
αr

2 zy (4.13)

The last term of F RS
β looks like the free energy of a particle with potential

Vy(z) where y plays the role of disorder.

These equation have to be studied in the limit β → ∞, where the minimum
of H̃ is recovered by (4.2), that is:

lim
N→∞

min
z⃗

H̃(z) = − lim
β,N→∞

1
βN

⟨log Z(β)⟩ = lim
β→∞

F RS
β (Q, q, R, r)

-----
sp

(4.14)

In order to study the limit β → ∞ it is convenient to define the response
function, given by

χ = β

α
(Q − q) =⇒ q = Q − α

β
χ (4.15)

Q − q measures the distance between two different replicas of the system:

Q − q =(za)2 − zazb = za(za − zb) =

=1
2za(za − zb) + 1

2zb(zb − za) =

=1
2(za − zb)2 ∼ 1

β

A replica is nothing that a realization of the stochastic process with given
initial conditions. A finite value of χ means simply that two processes with
different initial conditions converge, in the stationary state, to the same
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point, that is in the limit β → ∞, are searched solutions where q → Q and
χ, which it is called susceptibility, remains finite.

The following variables are also defined:

ν = −αβ

A
R − r

2

B
, ξ =

ó
αr

2 , ϵP → ϵ (4.16)

With this change of variables, the potential (4.13) becomes:

Vy(z) = ν

2z2 + (ϵ − ξy)z

When β → ∞, the last term in (4.12) is dominated by z∗(y) which is the
solution of

z∗(y) = arg min
z

Vy(z)
that is it will be averaged over an exponential family distribution whose
potential is picked around z∗(y).
To find that value, the derivative of Vy(z) is taken and made equal to 0

0 = ∂Vy(z)
∂z

= νz + ϵ̃ − yξ

=⇒ z∗(y) = 1
ν

1
yξ − ϵ̃

2
Clearly this equation makes sense only when z∗(y) ≥ 0, that corresponds to
the condition for the Gaussian variable

y ≥ ϵ

ξ

that is

z∗(y) =


1
ν

1
yξ − ϵ

2
if y ≥ ϵ

ξ ,
0 if y < ϵ

ξ .

So that in the limit β → ∞ it is obtained:

F RS
∞ (Q, χ, ν, ξ) =1

2
(Q + θ2)

1 + χ
+

−1
2νQ + 1

2αξ2χ+

+
K

ν

2z∗(y)2 + (ϵ − ξy)z∗(y)
L

y

(4.17)
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The Free Energy F RS
∞ is computed at the saddle point values, so the param-

eters Q, χ, ν, ξ are fixed by the first order conditions

∂F RS
β

∂Q
=

∂F RS
β

∂χ
=

∂F RS
β

∂ν
=

∂F RS
β

∂ξ
= 0

that is to solve the following system

∂F RS
β

∂Q
= 0 =⇒ ν = 1

1 + χ

∂F RS
β

∂χ
= 0 =⇒ ξ = ν

ó
Q + θ2

α

∂F RS
β

∂ν
= 0 =⇒ Q =

e
z∗(y)2

f
∂F RS

β

∂ξ
= 0 =⇒ αχξ =

e
z∗(y)y

f

(4.18a)

(4.18b)

(4.18c)

(4.18d)

Now let’s evaluate the thermal average:

e
z∗(y)y

f
= 1√

2π

∞Ú
ϵ/ξ

dy e− y2
2 z∗(y)y =

= ξ

ν
√

2π

∞Ú
ϵ/ξ

dy e− y2
2

A
y − ϵ

ξ

B
y = ξ

ν
I1

A
ϵ

ξ

B

in the same way let’s evaluate the other thermal average:

e
z∗(y)2

f
= 1√

2π

∞Ú
ϵ/ξ

dy e− y2
2 z∗(y)2 =

= ξ2

ν2
√

2π

∞Ú
ϵ/ξ

dy e− y2
2

A
y − ϵ

ξ

B2
= ξ2

ν2 I2

A
ϵ

ξ

B

Where the two following quantity has been defined:

1√
2π

∞Ú
ϵ/ξ

dy e− y2
2

A
y − ϵ

ξ

B
y = I1

A
ϵ

ξ

B
,

1√
2π

∞Ú
ϵ/ξ

dy e− y2
2

A
y − ϵ

ξ

B2
= I2

A
ϵ

ξ

B
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Once these expressions have been derived, it follows from the system of
equation that: 

ν = 1
1+χ

α = ν2(Q+θ2)
ξ2 = I2

3
ϵ
ξ

4
+ ν2σ2

ξ2

ν2Q
ξ2 = I2

3
ϵ
ξ

4
αχν = I1

3
ϵ
ξ

4

Combining the expressions above, the following relation is obtained:

αχν = α
χ + 1 − 1

χ + 1 = α

A
1 − 1

χ + 1

B
= α(1 − ν) = I1

A
ϵ

ξ

B

from which one gets:
ν = 1 − 1

α
I1

A
ϵ

ξ

B

and substituting it in the expression for α, finally it gets:

α = I2

A
ϵ

ξ

B
+ θ2

ϵ2

A
ϵ

ξ

B2C
1 − 1

α
I1

A
ϵ

ξ

B2

(4.19)

By solving equation (4.19) numerically as a function of parameters ϵ, ξ, θ
and substitute the roots in the system above, to find the other variables, it
is obtained a curve that describes the Free Energy F RS

β in the limit β → ∞
as a function of the order parameter α

The curves found analytically are compared with the numerical simulations
in the stationary state, in particular, below is shown the Free Energy for
values of θ = 0.5, 0.3 and values of ϵ = 0.01, 0.1
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Figure 4.1: Free Energy F RS
β as a function of P/N = α for θ = 0.5; ϵ =

0.01, 0.1; averages were taken over 70 realizations of the game.

Figure 4.2: Free Energy F RS
β as a function of P/N = α for θ = 0.3; ϵ =

0.01, 0.1; averages were taken over 70 realizations of the game.
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4.3 limit ϵ → 0

In this section it will be analyzed the limit ϵ → 0 that will simplify the
saddle point equations living only two equations to be solved for ξ and ν in
terms of the parameters α, ϵ and σ. These equation are:

α(1 − ν) = I1

A
ϵ
ξ

B
α − I2

A
ϵ
ξ

BBA
ξ
ν

B2
= θ2

In order to study this limit, assume that:
ϵ

ξ
= ω

where as before it is denoted by

I1(ω) =

= 1√
2π

∞Ú
ω

dy e− y2
2
1
y − ω

2
y = 1√

2π

∞Ú
ω

dy e− y2
2 y2 − ω√

2π

−e− y2
2

------
∞

ω

=

= − 1√
2π

∂

∂λ

∞Ú
ω

dy e−λy2

------
λ= 1

2

− ω√
2π

e− ω2
2 =

= − 1√
2π

∂

∂λ

 1√
λ

∞Ú
√

λω

dz e−ω2

------
λ= 1

2

− ω√
2π

e− ω2
2 =

= − 1√
2π

∂

∂λ

 1√
λ

√
π

2

A
1 − erf

1√
λω
2B------

λ= 1
2

− ω√
2π

e− ω2
2 =

= − 1√
2π

√
π

2

− ω√
π

e−λω2
− 1

2
√

λ

A
1 − erf

1√
λω
2B1

λ

------
λ= 1

2

− ω√
2π

e− ω2
2 =

= 1√
2π

ω

2 e−λω2 1
λ

------
λ= 1

2

+ 1√
2π

√
π

2
1

2
√

λ

A
1 − erf

1√
λω
2B1

λ

------
λ= 1

2

− ω√
2π

e− ω2
2 =

= ω√
2π

e− ω2
2 + 1

2

1 − erf

A
ω√
2

B − ω√
2π

e− ω2
2 = 1

2

1 − erf

A
ω√
2

B
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In the same way let’s evaluate the other thermal average:

I2(ω) = 1√
2π

∞Ú
ω

dy e− y2
2
1
y − ω

22 =

= 1√
2π

∞Ú
ω

dy e− y2
2 y2 − 2ω

ν2
√

2π

−e− y2
2

------
∞

ω

+ ω2√2√
2π

√
π

2

1 − erf

A
ω√
2

B =

= − 1√
2π

∂

∂λ

∞Ú
ω

dy e−λy2

------
λ= 1

2

− 2ω√
2π

e− ω2
2 + ω2

2

1 − erf

A
ω√
2

B =

= ω√
2π

e− ω2
2 + 1

2

1 − erf

A
ω√
2

B − 2ω√
2π

e− ω2
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2

1 − erf

A
ω√
2

B =

=ω2 + 1
2

1 − erf

A
ω√
2

B − ω√
2π

e− ω2
2

when ϵ → 0 there are two possible solutions, either ξ and ν tend to a finite
value, or they both tend to zero.

4.3.1 Finite ξ, ν solution

If ξ attains a finite value, then I1, I2 → 1/2 as ϵ → 0.
The system of equations is easily solved and gives ξ = θ

α

ñ
α − 1

2
ν = 1

α

1
α − 1

2

2
that is valid for α > 1

2 .
By substituting this expression, from (4.18c) it is found:

Q =
e
z∗(y)2

f
= ξ2

ν2 I2(ω) = ξ2

2ν2 = θ2

2α − 1 (4.20)

finally in the limit considered:

lim
ϵ→0

F RS
∞ = θ2

2α

3
α − 1

2

4
(4.21)

and also, it is calculated:

⟨ni⟩ =
e
z∗(y)y

f
= θó

2π
3

α − 1
2

4 (4.22)
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4.3.2 ξ, ν → 0 solution

Let’s set
ν = ξ

y

from (4.2), according to this limit:

α = I1(ω) (4.23)

that yields
y = θñ

α − I2(ω)
= θñ

I1(ω) − I2(ω)

since by definition ω ≥ 0, this solution describes the region α ≤ 1
2 .

What is interested now is to study α → 1
2 , in this limit the solution has the

leading behaviour:

ω =
√

2π

A1
2 − α

B
+ O

A1
2 − α

B2

that therefore implies
Q ≃ θ2α

1
2 − α

H = 0

As it is shown, in the limit ϵ → 0, the minimization of H̃ reveals that the
collective behaviour of the Minority Game features a phase transition as a
function of the number N of agents. When there are less agents than a
critical number, the price evolution seems predictable to an external agent
(but not to those already playing), whereas when the number of agents is
beyond the critical number, the market becomes unpredictable. This sug-
gests that, as long as there are few participants, the market will attract more
and more agents, thus approaching the critical number where the market
becomes unpredictable and hence unattractive.
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Appendix A

Free Energy Calculation

A.1 First term

Consider the first term (4.8):

α

2nβ
log det

1
M̂
2

In order to compute the determinant of this matrix, it can be easily find the
trivial eigenvector v(1) = (1, ...1) of all ones with eigenvalue λ(1) = mn +
M . Notice also that the matrix M is symmetric, it means that eigenvector
associated with different eigenvalues are orthogonal, that is all the others
eigenvector should satisfy the following property:

0 =
nØ

a=1
v(k)

a v(1)
a =

nØ
a=1

v(k)
a 1 =

nØ
i=1

v(k)
a ∀k ∈ [2, ..., n]

so it can be written the following eigenvalue equation

M̂ • v(k) =
nØ

a=1
Ma,bv

(k)
a =

nØ
a=1

(m + Mδa,b)v(k)
a = Mv

(k)
b

so M is eigenvalue for all the others eigenvector v(k), ∀k ∈ [2, ..., n] and M
has degeneracy n − 1.
Finally it has been obtained that det M̂ = (mn + M)Mn−1.

44



Free Energy Calculation

Now (4.8) can be rewritten as
α

2nβ
log det

A
Î + β

α

A
Q̂ + θ2

BB
=

= α

2nβ
log

An
β

α
(q + θ2) + 1 + β

α
(Q − q)

BA
1 + β

α
(Q − q)

Bn−1 =

= α

2nβ

n log
A

1 + β

α
(Q − q)

B
+ log

C
1 + nβ

α(q + θ2)
1 + β

α(Q − q)

D =

= α

2β
log

A
1 + β

α
(Q − q)

B
+ α

2nβ

nβ
α(q + θ2)

1 + β
α(Q − q)

+ O(n) =

= α

2β
log

A
1 + β

α
(Q − q)

B
+ 1

2
α(q + θ2)

α + β(Q − q) + O(n) (A.1)

A.2 Second term

Let’s now focus on (4.18b):
αβ

2n

Ø
a≤b

Ra,bQa,b

the sum is split Ø
a≤b

Ra,bQa,b =
Ø
a<b

Ra,bQa,b +
Ø
a=b

Ra,bQa,b

because in the first sum it has been put explicitly that a /= b, referring to
(4.11), there would be only the contribution coming from q and r, instead
in the second sum there would be only the contribution coming from Q and
R, in practice Ø

a<b

rq +
Ø
a=b

RQ = n(n − 1)
2 rq + nRQ

In total it is found
αβ

2

C
RQ + (n − 1)

2 rq

D
Remembering that the limit n → 0 is taken, (4.18b) would be

αβ

2

C
RQ − rq

2

D
+ O(n) (A.2)
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A.3 Third term

In the end the third term is considered (4.18c):

1
nβ

log
Ú

dze

αβ2
2
q
a≤b

Ra,bzazb−ϵP β
q
a

za

By using the (4.11) it is possible to rewrite it as:

1
nβ

log
Ú

dze
αβ2

2
r
2

3q
a

za
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+ αβ2
2

3
R− r

2

4q
a

(za)2−ϵP β
q
a

za

Using again the Hubbard–Stratonovich transformation in (4.6), the above
equation becomes

1
nβ

log
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αβ2

2
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2
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β
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log
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log
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log
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log
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= 1
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n

K
log
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+ O(n)

= 1
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K
log
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L
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+ O(n) (A.3)

Where, as before, it has been averaged over the Gaussian variable (zero
mean and unit variance) y and it has been introduced the potential

Vy(z) = −αβ

2

A
R − r

2

B
z2 + ϵPz −

ó
αr

2 zy
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Appendix B

Source code

This appendix contains the source code to simulate the Poisson Minority
Game, it measures σ2

N , H
N and ⟨n⟩ for random histories.

In order to measure the collective behaviour in the stationary state is has
been introduced a time of equilibrium (TEQ) and then the data are collected
through a certain number of iterations (NIT);
both this quantity are proportional to P .

Initially every player (speculator) starts with a payoff Ui(0) = 0, ∀i ∈ N ,
instead the rate of producers is drawn by a Gaussian Distribution:

Aµ
prod ∼ G(0, θ

√
N), ∀µ ∈ P

Before the simulation starts initialization of the variable is done:

• M is the length of the history
• α indicates the ratio P

N .
• Gamma is the percentage of payoff that agents bid
• epsilon is the incentive of agents for trading in the market.
• theta is the square root of the fraction of producers per speculator
• avgA is a vector containing for each position µ ∈ P the value ⟨A|µ⟩
• T is a vector containing the number of time a given µ is drawn
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Source code

1 import numpy as np
2 import matplotlib . pyplot as plt
3 import math
4 ### Parameters
5 M = 5 # length of history
6 NITP = 500 # number of iterations /P
7 Gamma = [0.01 , 0.05 , 0.1]
8 epsilon = 0.01/32
9 theta = 0.5

10 alphas = np. logspace (math.log10 (0.1) , 1.7, 17)
11

12 def Number_of_agents (p, alph):
13 n = int(p/alph)
14 if n%2 == 0:
15 n = n + 1
16 return n
17

18 def Minority_Game (M, NITP , alpha , Gamma , theta , eps):
19 ### Parameters
20 P = 2**M
21 N = Number_of_agents (P, alpha)
22 NIT = NITP*P # number of iterations
23 TEQ = 300*P # equilibrium time
24 NIT = NIT + TEQ
25 ### Memory allocation
26 number = np.zeros(N)
27 a = np.zeros ((N,P))
28 avgA = np.zeros(P)
29 T = np.zeros(P)
30 A_0 = np.zeros(P)
31 ### Initialisation of the players
32 for j in range(P):
33 for i in range(N):
34 a[i,j] = 2*np. random . binomial (1 ,0.5 ,1) - 1
35 A_0[j] = np. random . normal (0, np.sqrt(N)*theta)
36 ### Beginning of the game
37 U = np.zeros(N)
38 mu = np. random . randint (0, P) # mu(t=0) is randomly drawn
39 sigma2 = 0
40 for it in range(int(NIT)):
41 if it == TEQ:
42 sigma2 = 0
43 for nu in range(P):
44 avgA[nu] = 0
45 T[nu] = 0
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46 for i in range(N):
47 number [i] = 0
48 A = A_0[mu]
49 for i in range(N):
50 n = np. random . poisson (max (0, Gamma*U[i]))
51 number [i] = number [i] + n
52 A = A + a[i,mu]*n
53 avgA[mu] = avgA[mu] + A # builds <A|mu >
54 T[mu] = T[mu] + 1 # number of times mu appears
55 sigma2 = sigma2 + A*A
56 # update of the strategy scores
57 for i in range(N):
58 U[i] = U[i] - a[i,mu]*A/P - eps
59 mu = np. random . randint (0, P)
60 H = 0
61 for mu in range(P):
62 if T[mu] > 0:
63 H = H + (avgA[mu]* avgA[mu])/T[mu]
64 sum_i = 0
65 for i in range(N):
66 sum_i = sum_i + number [i]
67 sum_i = sum_i /(( NIT - TEQ)*N)
68 H = H/(( NIT - TEQ)*N)
69 sigma2 = sigma2 /(( NIT - TEQ)*N)
70 return sigma2 , H, sum_i
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