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Abstract

Cancer is one of the world’s deadliest diseases. Number of researchers have put
time and efforts in finding an effective treatment, improving efficiency of cur-
rent treatments and finding the ways to help the patients develop their immune
system that enable them to fight it.

Being a leading cause of death, cancer’s mechanisms of growth and destruction
are widely investigated. Mathematical models explaining these mechanisms sig-
nificantly help to predict the behaviour of cancer cells proliferation.

In this thesis, the main focus is on what’s referred to as high-grade glioma, a
brain cancer whose prognosis is rarely positive. Despite there has been a con-
tinuous progress, standard treatments often lead to a poor outcome, suggesting
that innovative approaches should be considered.

A possibility in this sense is represented by deviations from traditional radiother-
apy protocols. Here, different fractionation schedules are explored by means of
a genetic algorithm. Starting from a certain mathematical model, fitted using a
dataset of magnetic resonance images showing longitudinal tumour volumes dur-
ing a hypofractionated stereotactic radiotherapy, the aim is to predict specific
features for each patient and use them to provide a personalized radiotherapy
protocol capable of improving the final therapy outcome, for example by further
extending the patient survival time.

A final analysis concerning the model reliability has been done, providing a
concrete measure about how much accurate is the parameters’ prediction over
time, which is crucial since personalized medicine requires promptness in the
treatment choices as the disease advances.

Not only, the problem of a raising therapy resistance due to the remarkable
cancer heterogeneity is a constant challenge in the clinical path. Multicompart-
mental models are thus proposed to quantify the growth of a cancer resistant
population, in order to exploit the genetic algorithm in designing effective coun-
termeasures.

Results of in silico experiments are promising: in the limit of an extremely
simplified picture of a complex system as that of tumour dynamics, virtual im-
provements have been achieved. This suggest that further efforts in the direction
of an ever more personalized medicine may be worth it, hopefully leading to a
less dismal scenario.
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Chapter 1

Introduction

1.1 Modelling tumour

Cancer is one of the world’s deadliest diseases, second leading cause of death
in the world after cardiovascular diseases [16]. Number of researchers have put
time and efforts in finding an effective treatment, improving efficiency of cur-
rent low cost treatment and finding the ways to help the patient develop their
immune system that enable them to fight cancer.

Cancer is typically initiated by genetic mutations that lead to enhance the ab-
normal of proliferation rate and cell growth. After a certain size, cancer cell
starts spreading to the other parts of body and this process is called metastasis.
Approximately 90% of cancer deaths are due to cancer metastasis.

Mathematical models explaining cancer’s dynamics are crucial to predict the
behaviour of cancer cells proliferation.

Literature dealing with mathematical modelling of cancer initiation, prolifera-
tion and metastasis is abundant. Mathematical models to simulate the growth
rate of the cancer cells have been derived from both deterministic and stochastic
considerations. Early model of tumor growth by diffusion was first introduced
and then set the scene for many later mathematical models.

Many deterministic models have been used to describe the behaviour of cancer
cell growth and proliferation. Cancer cell growth and proliferation is subjected
to the uncontrolled factors or environmental noise which includes for example
cellular metabolism, hormonal oscillations and individual characteristics such
as body mass index, genes, smoking and stress impact.

Deterministic models in fact are inadequate to explain in-depth the dynamical
process of the cancer cell proliferation. In such a case, research has started to
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extend the deterministic models to their stochastic counterpart. Nevertheless,
deterministic models are still widespread in the scientific community, since they
allow to capture at least many important macroscopic features of cancer devel-
oping and treatment.

This thesis massively relies on these models, aiming to explore new modelling
behaviours without claiming to replace the solid scientific background of refer-
ence, but rather with the purpose of combining them with other study techniques
such as Genetic Algorithms (presented in chapter 2) and numerical optimization
(presented in chapter 3) in order to step forward from a generic description to
what’s called precision medicine, which is essential to adapt therapies meeting
the needs of every single patient.

1.2 Deterministic mathematical models for can-
cer dynamics

1.2.1 Exponential model

Exponential model is the natural description of early stages of cancer growth. In
exponential model, each cancer cell split into two daughter cells in the affected
area with a constant rate. The exponential model is given by:

dV (t)

dt
= λV (t) (1.1)

where, λ is the growth parameter and V (t) is the volume of the cancer cells. The
cancer cell growth in exponential model is proportional to the population of the
cancer. However, at the last stages, the exponential model fails to predict the
angiogenesis process and reduction of the nutrient. Extension of the exponential
model thus is required.

1.2.2 Logistic model

Angiogenesis is a complex process in which there is growth of new blood vessels
from the pre-existing ones and is an essential phenomenon for the growth and
survival of solid neoplasms. Tumour angiogenesis is the proliferation of blood
vessels penetrating the cancerous growth for the supply of nutrients and oxygen.
Angiogenesis is a requisite not only for continued tumour growth, but also for
metastasis [18].

The exponential model has limitations to predict the long-term growth rate of
cancer cell proliferation and the metastasis phenomenon. To overcome these
problems, a logistic model was introduced to explain the behaviour of cancer
cell growth and proliferation.

5



The logistic model equation describes that the growth proportional linearly
with size until the growth of the cells reach the carrying capacity, K. Logistic
equation produces S-shape curve for the volume of cancer cell. This model can
interpret the mutual competition between the cells (intraspecific competition).
The generalized logistic equation is

dV (t)

dt
= λV (t)

(
K − V (t)

K

)
(1.2)

1.2.3 Interacting models

In chapter 4 the starting point will be the assumption about the existence of
a heterogeneous scenario within cancer. Experimental evidence suggests that
tumour cells respond to therapies in many complex ways, in particular they
mutate in order to survive the dangerous effects they undergo. It is a fact that
cancer, in a long-time perspective, evolves in such a way to neutralize almost
completely the effectiveness of the treatment.

The simplest way to take into account this phenomenon is introducing a two-
population (“two compartments”) model for tumour cells: the first sensible to
the treatment and the second resisting it. At some point it turns out natural to
consider some sort of interaction between these two kinds of cell.
When species interact the population dynamics of each species is affected [13].
There are three main types of interaction:
1) If the growth rate of one population is decreased and the other increased the
populations are in a predator–prey situation.
2) If the growth rate of each population is decreased, it is competition.
3) If each population’s growth rate is enhanced, then it is called mutualism or
symbiosis.
The competitive scenario suits cancer behaviour: cells with different features
compete for the same limited resources or in some way inhibit each other’s
growth. A description of this struggling necessitates for a refinement of the
previous models, mathematically through a non-linear term (or more) in order
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to include what’s called interspecific competition.

Consider two species Vs and Vr having logistic growth in the absence of the other.
Inclusion of logistic growth in the system makes them much more realistic, but
sometimes it is not strictly necessary. The dynamics of these two populations
can be described as:

dVs(t)

dt
= λsVs(t)

(
K1 − Vs(t)− bsrVr(t)

K1

)
(1.3)

dVr(t)

dt
= λrVr(t)

(
K2 − Vr(t)− brsVs(t)

K2

)
(1.4)

where λs,K1, λ2,K2, bsr and brs are all positive constants and, as before, the
λ’s are the linear birth rates and the K’s are the carrying capacities. The bsr
and brs measure the competitive effect of Vr on Vs and Vs on Vr respectively:
they are generally not equal.

1.2.4 Why ODE models

Mathematically speaking, models of this kind, using one or several ODEs, are
naive and oversimplified compared to various other kinds of models, reaction-
diffusion PDEs are one example among many used in current mathematical and
computer biology and medicine.

However, models used routinely by experimental biologists and clinicians are the
simplest ODE models, which form the foundation of applied biological modelling
in practice. The most important case in point is the equation of exponential
growth itself; discussions of the value of the Malthusian growth parameter un-
der various conditions still form a major portion of practical tissue culture and
tumour modelling. More generally, it is usually the specification of parameter
values for simple ODE models that is the crux of the discussion.

Such models aim to capture key features using a small number of adjustable pa-
rameters and, equally important, aim to neglect peripheral features judiciously.
Often a mathematically quite sophisticated model is basically a marginal elab-
oration of some simple ODE model.

The physics of tumorigenesis is heavily complex, at the point that it is prac-
tically impossible to take into account every possible interaction, but useful
insight can be obtained through a smart usage of main physical considerations
combined with the tools of applied mathematics.

7



1.3 The need for an adaptive therapy

A number of successful systemic therapies are available for treatment of dissem-
inated cancers.

However, tumour response is often transient, and therapy frequently fails due
to emergence of resistant populations. The latter reflects the temporal and spa-
tial heterogeneity of the tumor microenvironment as well as the evolutionary
capacity of cancer phenotypes to adapt to therapeutic perturbations. Although
cancers are highly dynamic systems, cancer therapy is typically administered
according to a fixed, linear protocol.

In [6], Gatenby et al. employ a mathematical model which finds that when
resistant phenotypes arise in the untreated tumor, they are typically present
in small numbers because they are less fit than the sensitive population. This
reflects the “cost” of phenotypic resistance such as additional substrate and
energy used to upregulate xenobiotic metabolism (i.e. the metabolism of a
foreign and unusual substance in the tissue, the cancer itself) and therefore not
available for proliferation, or the growth inhibitory nature of environments (i.e.,
ischemia or hypoxia) that confer resistance on phenotypically sensitive cells.
Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells
will ordinarily proliferate at the expense of the less fit chemoresistant cells.

The models show that, if resistant populations are present before administra-
tion of therapy, treatments designed to kill maximum numbers of cancer cells
remove this inhibitory effect andactually promote more rapid growth of the re-
sistant populations.

Talking about a general therapy (usually a combination of chemotherapy and
radiotherapy interventions), the goal of adaptive therapy is to enforce a sta-
ble tumour burden by permitting a significant population of sensitive cells to
survive so that they, in turn, suppress proliferation of the less fit but resistant
subpopulations. Computer simulations in this thesis will illustrate that this
could be achieved in some cases, overcoming the static treatment schedules.

It is worth mentioning that adaptive therapies aim not only to eradicate the
resistance phenomenon, but to improve the patient’s quality of life, avoiding
undesired side effects. For example, many current chemotherapy regimens have,
as a fundamental strategy, the goal of killing maximal numbers of tumour cells.
Usually, this is achieved through application of the highest drug dose that results
in acceptable patient toxicity. This limit is “dynamic”, in the sense that knowing
a priori the maximum dosage is hard, because many factors during therapy
influence the patient’s health status. Adaptive therapy then considers these
aspects and design a precise treatment in response to this high dynamicity. In
this thesis, the adaptive traits are restricted to the previously discussed raising
resistance feature.
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1.4 Glioma

This thesis concerns brain tumours, and in particular gliomas, which make up
about half of all primary brain tumours diagnosed; they are particularly nasty
tumours with a depressingly dismal prognosis for recovery. Gliomas are highly
invasive and infiltrate the surrounding tissue. The impressive increased detec-
tion capabilities (but unfortunately still woefully inadequate) in computerized
tomography (CT) and magnetic resonance imaging (MRI) over the past years
have resulted in earlier detection of glioma tumours. Despite this progress, the
benefits of early treatment have been minimal [12].

Gliomas are neoplasms of glial cells (neural cells capable of division) that usu-
ally occur in the upper cerebral hemisphere, but which can be found throughout
the brain and nervous system.

Tumour grade indicates the level of malignancy and is based on the degree of
anaplasia (or deformity in behaviour and form) seen in the cancerous cells un-
der a microscope. Gliomas often contain several different grade cells with the
highest or most malignant grade of cells determining the grade, even if most of
the tumour is lower grade.

Generally, the higher-grade cancer cells are more capable of invading normal
tissue and so are more malignant. However, even with their invasive abilities,
gliomas very rarely metastasize outside the brain (and the nervous system in
general). Here, the focus will be on high-grade gliomas, which are particularly
hard to counter.

An enormous amount of experimental and some theoretical work has been de-
voted to trying to understand why gliomas are so difficult to treat. Unlike many
other tumours, gliomas can be highly diffuse. Experiments indicate that within
7 days of tumour implantation in a rat brain, glioma cells can be identified
throughout the central nervous. A locally dense tumour growth remains where
the cancerous tissue was initially implanted but there are solitary tumour cells
throughout the central nervous system.

There are various, regularly used, treatments for gliomas, mainly chemotherapy,
radiation therapy and surgical intervention.
Chemotherapy essentially uses specialized chemicals to poison the tumour cells.
The brain is naturally defended from these and other types of chemicals by the
intricate capillary structure of the blood–brain barrier.

Many chemotherapeutic treatments are cell-cycle-dependent: the drugs are trig-
gered by certain phases of the cell cycle.

Silbergeld and Chicoine [4] have observed that the motile cells distant from the
bulk tumour do not appear to enter mitosis so cell-cycle specific drugs and stan-
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dard radiation therapy have limited effectiveness. Not only that, gliomas are
often heterogeneous tumours. Those drugs that do reach the cancerous cells are
hindered by drug resistance commonly associated with cancer cell heterogene-
ity. While one cell type is responsive to treatment and dies off, other types are
waiting to dominate. This phenomenon requires a model which includes cell
mutation to resistant cells, in other words a polyclonal model.

The biological complexity of gliomas makes treatment a difficult undertaking.
For planning effective (or seemingly so) treatment strategies, information re-
garding the growth rates and invasion characteristics of tumours is crucial.

The use of mathematical modelling can help to quantify the effects of chemother-
apy and radiation on the growth and diffusion of malignant gliomas. However
standard treatments for high-grade glioma have a very poor record of success.
There is a pressing need for a totally different approach to the treatment of
gliomas, several of which are currently being investigated, for example the in-
termittent strategies proposed in this thesis.

Figure 1.1: CT scans during the terminal year of a patient with anaplastic
astrocytoma (another type of brain cancer) who was undergoing chemotherapy
and radiation treatment. The image on left was taken approximately 180 days
after the image on the right, showing how the treatment didn’t manage to
prevent the tumour’s wild growth. (Figures from Tracqui et al. 1995)

1.5 Radiotherapy and fractionation

Radiation therapy is the use of high-energy radiation to damage cancer cells’
DNA and destroy their ability to divide and grow. It may be delivered using
machines called linear accelerators or via radioactive sources placed inside the
patient on a temporary or permanent basis.

10



Preparation for radiation therapy is focused on targeting the radiation dose to
the cancer as precisely as possible to minimize side effects and avoid damaging
normal cells.

In the following, the mainly focus will be on radiotherapy applications, in par-
ticular about the possibility to explore new fractionation schedules which could
possibly prevent the resistant cells development which arises as the therapy goes
on.

The need for radiotherapy personalization is now widely recognized, however,
it would require considerations not only on the probability of control and sur-
vival of the tumour, but also on the possible toxic effects, on the quality of the
expected life and the economic efficiency of the treatment [2].

Among treatment options, radiotherapy is the most applied because it can be
used either to reduce the extent of the tumour before proceeding with surgery or
to irradiate the resection margins post-surgery. It can be also used as a pallia-
tive therapy and as an elective treatment alone or concomitantly with adjuvant
chemotherapy).

External Beam Radiation Therapy (EBRT) is usually delivered to the patients
by means of multiple fractions characterized by the nominal dose that must be
conveyed to the region of interest including visible tumour and micro-lesions.
Conventional treatment consists of 1.8–2 Gy fractions delivered 5 days a week,
a therapeutic regimen established in early radiobiological studies to maximize
the curative effect while reducing toxicity.

Recently, the identification of patient-specific genomics and radiomics biomark-
ers has suggested the possibility of exploiting altered regimens. An accurate
and personalized approach to EBRT planning would require at least two steps:

1) definition of the most suitable fractionation program, including the nominal
dose value per fraction, based on patient-specific characteristics.

2) accurate delivery of the nominal dose taking into account the anatomical-
pathological changes between fractions and intra-fraction organ movement. Re-
garding dose delivery, irradiation is usually carefully planned by optimizing
the beam entry and activation strategies to administer the tumour with the
prescribed amount of dose while sparing the organ at risks (OAR). The dose
profile can be adjusted according to slow morphological changes (inter-fraction)
using a plan-of-the-day approach.

In the light of this clinical context, mathematical models of tumour evolution
and response to treatment could play an important role allowing the customiza-
tion of radiotherapy simulating different irradiation protocols and thus support-
ing the selection of the most effective one.
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In this thesis, therapy adaptation is limited only to the seek of few (but fun-
damental) features about how tumour volume response is managed, without
considering dose quantity and OAR feedback. Tools such as GAs and numerical
optimization will be exploited to propose several different radiotherapy fraction-
ations with a mathematical modelling background of increasing complexity.

1.6 Cancer is a complex system

In recent years, there have been a number of advances in understanding the
dynamics of cancer that have been achieved through a combination of in vivo or
in vitro experiment and computational simulation using quantitative theoretical
models, sometimes referred to as in silico experimentation.

However, cancer is a complex system: mathematical models need to be suffi-
ciently realistic to provide predictive understanding for cancer behaviour and
this implies complexity. At the same time, complex simulations whose proper-
ties are not well understood risk merely replacing one intractable problem with
another.

A typical approach is to use low-dimensional systems of coupled differential
equations to study the dynamics of immune systems. In the following, multi-
compartmental models are developed to study the ability of cancer to evolve
and resist to the applied therapies. Typical aims of this sort of study are to
identify intercompartmental transfer rates, to reproduce and explain phenom-
ena observed in vivo and to explore scenarios under which particularly beneficial
or pathological responses can occur.

It is often difficult to achieve a realistic compartmental model. Solutions to the
differential equations that faithfully capture observable behavioural phenomena
depend crucially on the values of intercompartmental flow rates and other sys-
tem parameters. These are often difficult or impossible to measure directly and
so values are estimated from available data using parameter estimation tech-
niques.

Together with finding optimal treatment schedules, this is the main challenge
of the whole thesis.
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Chapter 2

Genetic Algorithms

2.1 Overview

Genetic Algorithms (GAs) are a family of search and optimization heuristic
techniques inspired by natural (Darwinian) evolution [10]. They make use of
a chromosome-like data structure [17], which encodes a potential solution to
a specific problem. Starting from a certain initial population of chromosomes
(typically random), the GA assigns a fitness to each of them, namely a score
that quantifies how much “optimal” the solution is.

Then chromosomes are ranked and the ones with larger fitness have a higher
chance of being selected for mating and reproducing. Just like real chromo-
somes, they pass through the steps of recombination and (random) mutation of
the genes, thus generating an offspring with new genomes which are expected
to have a higher fitness.

The procedure is iterated with the next generations over and over to improve
the quality of the solutions encoded by the population. Once certain termina-
tion criteria are satisfied, the GA stops, and among the final population, one
hopefully extracts the optimal solution for the initial problem.

GA theory is an active and growing area [9], widely used by researchers in many
contests and applications such as software engineering, neural networks, image
processing, speech recognition, healthcare, machine learning, etc. . .

In this thesis, GAs represent the main tool employed in order to explore a
definitely complex search space of solutions, for example that one related to
the parameters estimation of highly non-linear and non-differentiable functions,
where deterministic gradient-based methods may easily fail.
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Figure 2.1: Flow chart of a generic GA
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2.2 Structure of a Genetic Algorithm

A GA is constructed from a number of distinct components. This is a particular
strength because it means that standard components can be re-used, with trivial
adaptation in many different GAs, thus easing implementation. As anticipated,
the main components are the chromosome encoding, the fitness function, selec-
tion, recombination, and the evolution scheme. The particular choices of these
components allow to identify several kinds of GAs; In this thesis, the choices
are in line with what’s referred to as the Canonical Genetic Algorithm.

2.2.1 Chromosomes encoding

A GA manipulates populations of chromosomes, which are string representa-
tions of solutions to a particular problem. A chromosome is an abstraction of
a biological DNA chromosome, which can be thought of as a string of letters
from the alphabet A, C, G, T. A particular position or locus in a chromosome is
referred to as a gene and the letter occurring at that point in the chromosome
is referred to as the allele.

The Canonical GA uses a bit-string representation to encode solutions. Bit-
string chromosomes consist of a string of genes whose allele values are characters
from the alphabet {0,1}. The interpretation of these strings is entirely problem
dependent. For example, a bit string of length 20 might be used to represent a
single integer value (in standard binary notation) in one problem, whereas, in
another, the bits might represent the choice of a particular dose fractionation
in a therapy. It is a strength of GAs that common representations can be used
in this way for a multiplicity of problems, making it faster and easier to apply
GAs to new situations.
On the other hand, the consequence is that the chromosome encoding alone
will contain only limited problem-specific information. For example a range of
values can be represented with some discretization step.

In Figure 2.2, some examples of chromosome string encodings. The Binary rep-
resentation is the one employed in the Canonical GA.

2.2.2 Fitness function

The fitness function is a numeric value that evaluates the quality of the chro-
mosome as a solution to a particular problem. By analogy with biology, the
chromosome is referred to as the genotype, whereas the solution it represents is
known as the phenotype.

This is reminiscent of biological evolution, where the chromosomes in a DNA
molecule are a set of instructions for constructing the phenotypical organism. A
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Figure 2.2: Examples of chromosome string encodings

complex series of chemical processes transforms a small collection of cells con-
taining the DNA into a full-grown organism, which is then “evaluated” in terms
of its success in responding to a range of environmental factors and influences.

As anticipated, the evaluation process consists of choosing individuals for mat-
ing based on their fitness value. In the following chapters, the chosen fitness
function for a particular problem will be specified.

2.2.3 Selection

A GA uses fitness as a discriminator of the quality of solutions represented
by the chromosomes in a GA population. The selection component of a GA
is designed to use fitness to guide the evolution of chromosomes by selective
pressure. Chromosomes are therefore selected for recombination on the basis of
fitness. Those with higher fitness should have a greater chance of selection than
those with lower fitness, thus creating a selective pressure towards more highly
fit solutions.

The selection method used in this work is Roulette Wheel (or fitness propor-
tional) selection. This allocates each chromosome a probability of being selected
proportional to its relative fitness, which is its fitness as a proportion of the sum
of fitnesses of all chromosomes in the population.

Suppose a population contains M chromosomes, with fitnesses f1, f2, . . . , fM re-
spectively. We then select M ′ ≤ M times from the population according to the
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following scheme:

1) Calculate the total fitness: f =
∑M

i=1 fi

2) Calculate the proportion pi =
fi
f of total fitness for each chromosome.

3) Divide the unit interval [0, 1] intoM subintervals [t0, t1], (t1, t2], . . . , (tM−1, tM ]

where t0 = 0 and: ti =
∑i

k=1 tk

4) (Repeat M ′ times) Calculate a random number, r, in [0, 1]; r will lie
in a subinterval containing precisely one ti. Select chromosome ith for
reproduction.

Note that [ti−1, ti] has length pi, 1 ≤ i ≤ M , so that [0, 1] is partitioned propor-
tionately according to the relative fitness of the M chromosomes in the popula-
tion. This process results in composition of a mating buffer (MB), which is a
subset of the original population and consists of the M ′ chromosomes selected
for reproduction. Since the solutions are marked proportionally to their fitness,
a solution with a higher fitness is likely to receive more copies than an inferior
solution.

Although easy to implement, roulette wheel selection shows a major drawback:
if a population contains a solution whose fitness substantially exceeds those of
the rest of the solutions, this ’supersolution’ very soon will dominate the popu-
lation, which will inevitably lose its diversity and the GA converges prematurely
(excess of selective pressure). In the GAs used during this study the possibility
of having more than one copy while building the MB has been neglected, in
order to prevent massive dominance of supersolutions, at a cost of a larger time
of convergence.

2.2.4 Recombination

Recombination is the process by which chromosomes from MB are recombined
to form members of a successor population. The idea is to simulate the mixing
of genetic material that can occur when organisms reproduce. Since selection for
recombination is biased in favour of higher fitness, the balance of probabilities
(hopefully) is that more highly fit chromosomes will evolve as result. There are
two main components of recombination, the genetic operators crossover andmu-
tation. Genetic operators are nondeterministic in their behaviour. Each occurs
with a certain probability and the exact outcome of the crossover or mutation
is also nondeterministic.

The crossover operator represents the mixing of genetic material from two se-
lected parent chromosomes to produce a child chromosome. After two par-
ent chromosomes have been selected for recombination, a random number in
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Figure 2.3: The roulette-wheel selection

the interval [0,1] is generated with uniform probability and compared to a pre-
determined “crossover rate”. If the random number is greater than the crossover
rate, no crossover occurs and one or both parents pass unchanged on to the
next stage or recombination. If the crossover rate is greater than or equal to the
random number, then the crossover operator is applied. One commonly used
crossover operator is one-point crossover : a crossover point between 0 and L
(with L being the length of each chromosome) is chosen with uniform proba-
bility. Child chromosomes are then constructed from the characters of the first
parent occurring before the crossover point and the characters of the second
parent occurring after the crossover point.

Mutation operators act on an individual chromosome to flip one or more allele
values. In the case of bit-string chromosomes, the normal mutation operator is
applied to each position in the chromosome. A random number in the interval
[0, 1] is generated with uniform probability and compared to a predetermined
“mutation rate”. If the random number is greater than the mutation rate, no
mutation is applied at that position. If the mutation rate is greater than or
equal to the random number, then the allele value is flipped from 0 to 1 or vice
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versa. Mutation rates are typically very small.

Mutation creates new solutions to avoid local optima: using the crossover oper-
ator alone to produce an offspring makes the GA stuck in the local optima, thus,
the good parts of the parents survive in each generation, and the local optimal
ones are to be found. This problem is called as the local-optima problem. The
mutation operator is used to alleviate this problem by proving new offspring dif-
ferent from parents, and this encourages diversity in the population. However,
an abuse of mutation events may drive the GA to lose important information
essential to reach optimal solutions. The trade-off between recombination and
mutation probabilities is one the main concerns when the algorithm is designed.

Figure 2.4: Example of one-point recombination

2.2.5 Evolution

After recombination, resultant chromosomes are passed into the successor pop-
ulation. The processes of selection and recombination are then iterated until a
complete successor population is produced. At that point the successor popu-
lation becomes a new source population (the next generation).

The GA is iterated through a number of generations until appropriate stopping
criteria are reached. These can include a fixed number of generations having
elapsed, observed convergence to a best-fitness solution, or the generation of a
solution that fully satisfies a set of constraints.

There are several evolutionary schemes that can be used. These range from
complete replacement, where all members of the successor population are gen-
erated through selection and recombination to the so called steady state, where
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the successor population is created by generating one new chromosome at each
generation and using it to replace a less-fit member of the source population.
The choice of evolutionary scheme is an important aspect of GA design and will
depend on the nature of the solution space being searched.

In the present work a stochastic evolution scheme similar to steady state is
used: a member from the old population is selected randomly and its fitness is
compared with one new chromosome from the MB, then choosing the one with
highest fitness. The process is repeated for every chromosome in the MB.

2.3 GA parameters

Determining the interactions that occur among different GA parameters has
a direct impact on the quality of the solution, and keeping parameters values
”balanced” improves the solution of the GA. There are four basic and important
parameters used by GA, those include:

1) Crossover rate (probability): it determines how often crossover processes
occur for chromosomes in one generation (i.e., the chance that two chromosomes
exchange some of their parts). 100% crossover rate means that all offspring are
made by crossover. If it is 0%, then the complete new generation of individuals
is to be exactly copied from the older population, except those resulted from
the mutation process. Crossover rate is in the range of [0, 1].

2) Mutation rate (probability): this rate determines how many chromo-
somes should be mutated in one generation. The purpose of mutation is to
prevent the GA from converging to local optima, but if it occurs very often, GA
is changed to random search (Recall the crossover-mutation trade-off). Also
mutation rate is in the range of [0, 1].

3) Population size: the size of the population indicates the total number of
the population’s inhabitants. Selection of population size is a sensitive issue; if
the size of the population (search space) is small, this means little search space
is available, and therefore it is possible to reach a local optimum. although, if
the population size is very large, the area of search is increased and the com-
putational load becomes high. Therefore, the size of the population must be
reasonable.

4) Number of generations: It refers to the number of cycles before the ter-
mination. In some cases, hundreds of loops are sufficient, but in other cases we
might need more, this depends on the problem type and complexity. Depending
on the design of the GA, sometimes this parameter is not used, particularly if
the termination of the GA depends on specific criteria.

20



These GA parameters are determined whether the GA finds an optimal or near-
optimal solution, and whether it finds an efficient solution. Any change in the
value of these parameters (increasing or decreasing) affects the result of GA
negatively or positively. Tuning the right parameters is a nontrivial task.

2.4 A brief insight into GAs theory

Although GAs have enjoyed significant practical success, attempts to establish a
theoretical account of their precise operation have proved more difficult. There
are two goals for a satisfactory theory of GAs. The first is to explain which
classes of problem GAs are particularly suitable for and why. The second is to
provide techniques and approaches for optimal design and implementation of
GAs, as there are many choices of structure and parameters to be made.

2.4.1 The Schema Theorem

The Schema Theorem is a central result of GA theory. It attempts to explain
how the evolutionary processes in a GA can locate optimal or near-optimal solu-
tions, even though they only ever sample a tiny fraction of the set of all possible
solutions. A schema is a pattern within a chromosome defined by fixing the
values of specific chromosome loci. A schema defines a set of chromosomes,
namely all those containing the pattern.

A schema is a string of symbols from the alphabet 0, 1, ∗. For example, a schema
for 10-bit chromosomes might be specified using the string

01***100**

Chromosomes which belong to this schema include

0110110000
0100010001
0111110011

Chromosomes that do not match the pattern do not belong to the schema and
include

1010110000
1111100000

All chromosomes belong to the schema
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**********

For a particular schema H, we define the length lH to be the difference of the
allele positions of the first and last defined bits of H. The order of H, indicated
with o(H) is the number of defined bits. For example, the schema

01***100**

has 5 defined bits and so has order o(H) = 5. The last defined bit is in posi-
tion 8 and the first is in position 1, and so the schema has length lH = 8−1 = 7.

The Schema Theorem describes how schemata featuring in highly fit chromo-
somes have a greater expectation of propagating through successive populations
as a GA evolves and is stated as follows.

Theorem (Schema). Let H be a schema and let mH(i) be the number of chro-
mosomes belonging to H present in population i of an evolving GA. Then the
expectation of the number of chromosomes belonging to H in population i + 1,
denoted < mH(i+ 1) >, is given by the formula

< mH(i+ 1) >= FH(i) ·mH(i)

[
1− pc

lH
l − 1

]
(1− pm)o(H) (2.1)

where FH(i) is the relative fitness of H, defined to be the average fitness of all
those chromosomes in the population belonging to H divided by the average fit-
ness of all chromosomes in the population; pc is the crossover probability; pm is
the mutation probability.

The formula assumes that the GA uses fitness proportional selection and takes
into account the possibility that the genetic operators of crossover and muta-
tion can act to disrupt schema H. It is worth noting that the formula does not
include a term for new instances of schema H being introduced to the popu-
lation by genetic operators and so really gives a lower bound for the expectation.

The Schema Theorem allows one to reason about the ways in which particular
patterns are likely to propagate and so gain an understanding about how the
performance of a particular GA is affected by the various design choices one
must make. The theorem shows that, all else being equal, those schemata with
relative fitness greater than 1 will be increasingly represented in the successor
population, whereas those with relative fitness less than 1 will be decreasingly
represented. This is purely the effect of selective pressure implemented in the
fitness proportional selection process. However, in the presence of genetic oper-
ators, other factors in the formula can become very significant. In particular, as
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the length of H becomes close to l1, the term relating to crossover, 1–pc
lH
l–1 , ap-

proaches 1–pc. In other words, schemata with a length approaching the length of
the chromosome are almost certain to be disrupted by crossover when it occurs.
Also, as the order of H increases, the term relating to mutation, (1–pm)o(H),
decreases exponentially. In other words, schemata involving many defined bits
are quite likely to be disrupted by mutation when it occurs.

Consequently, we can conclude that short length, low order, above averagely fit
schemata are increasingly sampled in subsequent generations. Such schemata
are known as building blocks and can be thought of as “partial solutions” in
those chromosomes containing them tend to be of higher fitness. Intuitively, a
chromosome containing many building blocks will be a near-optimal solution.

2.4.2 The Building Block Hypothesis

The Building Block Hypothesis (BBH) states that GAs achieve near-optimal
performance by preferentially selecting and juxtaposing building blocks. Ide-
ally, the notion of building blocks should be of particular utility when choosing
an encoding for a GA. Knowledge of the application domain could be used to
ensure that the values of factors known to interact are encoded in neighbouring
loci. Also, genetic operators could be refined to disrupt a chromosome only
at locations where problem-specific knowledge indicates that it makes sense,
thereby increasing the probability that the evolutionary process will fruitfully
juxtapose building blocks and quickly arrive at an optimal solution.

In practice, however, problem knowledge is rarely sufficient to do this. Usually,
GAs are applied to problems where solution sets are very poorly understood.
There is no guarantee that, for any given problem, an encoding can be found,
or even exists, that contains building blocks. Moreover, it is known that, even
where building blocks do exist, the BBH breaks down for many theoretical and
practical problems because other factors impede the evolution.

2.5 Why choosing the GA method

Among a virtually infinite range of problems, here the main focus is about
parameters estimation and optimization of objective functionals representing
therapy schedules. A cancer therapy schedule is usually subjected to many re-
striction (e.g. limit on dose due to its toxicity).

The distinctive attributes that make genetic algorithms potentially suitable for
dealing with problems intractable to many traditional mathematical methods of
optimization of a certain objective functional may be summarised as follows [14]:
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• GAs implement multidirectional search by sustaining a population of can-
didate solutions;

• GAs explore the search space using stochastic processes rather than de-
terministic rules.

• GAs exploit the valuable information obtained so far by being biased to-
wards the selection of ”good” solutions.

• GAs require very little from the objective functional. The objective func-
tional must unambiguously define the payoff of each solution, but may be
multimodal, discontinuous and may allow a certain degree of imprecision
(GAs are “robust”).

Multidirectional search has two advantages. Firstly, it obviously increases the
efficiency of the search by looking for the optimum in many directions simul-
taneously. Secondly, if the search in one direction gets stuck at a local opti-
mum, there is still a chance to find the absolute optimum by approaching it
from another direction. In addition to that, ’stochastic wandering’ through the
search space unburdens Genetic Algorithms from strong dependence on addi-
tional properties of the objective functional such as the gradient.

The last advantage, i.e. the robustness of GAs with respect to the type of the
objective functional, raises Genetic Algorithms to the position of a very versatile
method, which can be applied to a large number of real life optimisation tasks.
This versatility can be explained by the fact that GAs are not concerned with
finding the optimal solution per se. Instead, their main goal is to find better
solutions than those that are already known.

An underlying purpose of this thesis is that GAs may have a role to play in
supplementing traditional approaches to parameter estimation.
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Chapter 3

Monoclonal description of
recurrent high-grade glioma

In this chapter, a model used to describe the growth dynamics of glioma is de-
veloped. Starting from a preselected database of longitudinal tumour volumes,
Genetic Algorithms (GAs) and a numerical optimization approach are used to
explore several aspects about the model as well as consequences of choosing a
particular fractionation protocol for the radiation therapy.

In particular, the focus is on recurrent high-grade glioma (rHGG), which re-
mains incurable with inevitable evolution of resistance and high inter-patient
heterogeneity in time to progression (TTP), namely the length of time from the
date of diagnosis or the start of treatment for a disease until the disease starts
to get worse or spread to other parts of the body. In a clinical trial, measuring
the time to progression is one way to see how well a new treatment works. Here,
we evaluate if early tumour volume response dynamics can calibrate a mathe-
matical model to predict patient-specific resistance to develop opportunities for
treatment adaptation for patients with a high risk of progression.

Predicting progression prior to radiographic manifestation would allow clinicians
to modify therapy before selection for and proliferation of treatment-resistant
tumour subpopulations.

Patients with rHGG included in this modelling study (16 patients in total) were
treated at the Moffitt Cancer Center (Tampa, Florida), between August 2015
and March 2018 as part of a phase I clinical trial (NCT02313272, 05/12/2014)
[3].

The reference dataset consists of a total of 95 T1-weighted contrast-enhanced
(T1post) magnetic resonance images (MRIs) from those patients treated in a
phase I clinical trial with hypo-fractionated stereotactic radiation (HFSRT; 6
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Gy x 5) plus a standard chemotherapy protocol consisting of: pembrolizumab
(100 or 200 mg, every 3 weeks) and bevacizumab (10 mg/kg, every 2 weeks).

Without getting into details about the selection of patient cohort, it is however
important to stress that patients with no recurrency (namely those who didn’t
show tumour regrowth) are excluded from this study since the standard protocol
achieved the desired result, making unnecessary further considerations about
deviating from the adopted strategy.

Figure 3.1: Schedule of the adopted HFSRT

3.1 The mathematical model

The aim of this study is to provide a simple mathematical framework to: 1) fit
the observed tumor growth response data to HFSRT given in five daily fractions,
and, based on this description, to 2) simulate intermittent radiation treatment
(IRT) schedules. The presented model captures only the key mechanisms of
treatment response to limit the mathematical complexity of the model to be
able to obtain high confidence fit parameters estimates.

Glazar et al. [8] suggest a simple tumour growth inhibition (TGI) model to
describe tumour volume dynamics Vs(t):

dVs(t)

dt
= λVs(t)− γ(t)Vs(t) (3.1)

where λ [day−1] is the net tumour growth rate in the absence of therapy and
γ(t) [day−1] is the rate at which the tumour volume decays in response to ther-
apy. An exponential growth is assumed, as the tumour volume is likely far from
carrying capacity after surgery and HFSRT, supported by observed dynamics.

Bevacizumab and pembrolizumab were administered every 2 and 3 weeks until
progression; However, an approximated continuous and constant drug concen-
tration, ignoring pharmacokinetics and pharmacodynamics, is assumed for sim-
plicity. To simulate the evolution of resistance to therapy, is assumed the decay
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rate to be exponentially declining with time, such that:

dγ(t)

dt
= −ϵγ(t) (3.2)

where ϵ [day−1] is the rate at which resistance develops.

The analytic solution of the coupled system of Equations (3.1) and (3.2) is:

Vs(t) = Vs,0 · exp [λ(t− t0) +
1

ϵ
(γ(t)− γ0)] (3.3)

γ(t) = γ0 · exp [−ϵ(t− t0)] (3.4)

with initial conditions [V0, γ0 ] evaluated at t = t0.

Brüningk et al. [3] extended the present model in order to account for the
contribution of HFSRT to tumour volume reduction. To model radiotherapy
effects, at each treatment fraction delivery (tRT ), a proportion of (1−S) of the
viable tumour (Vs) is transferred to a dying compartment, Vd, i.e. tumour cells
uncapable of further proliferate due to the radiation effect: when attempting
to divide, these cells die (mitotic catastrophe). Thus it makes sense to assume
this mechanism having a time scale of λ−1. The surviving fraction S is here
used as a model parameter in itself, rather than as a function of radiation dose
and patient-specific radiation sensitivity, as described by the linear-quadratic
model, thus minimizing the modelling complexity of radiation therapy.

Vs(t
+
RT ) = S · Vs(t

−
RT ) (3.5)

Vd(t
+
RT ) = Vd(t

−
RT ) + (1− S) · Vs(t

−
RT ) (3.6)

Here, t−RT denotes time immediately before delivery of a radiation fraction,
t+RT the time immediately after treatment delivery. Observe that the presented
model provides a worst-case estimate of no explicit consideration of radiation-
induced immune stimulation.

We model radiation induced cell death as mitotic catastrophe which is a prolifera-
tion-dependent process. Hence, we describe the volume change as an exponential
reduction of Vd(t). The reduction of Vd(t) is assumed to be at rate identical to
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the growth rate to restrict the number of free parameters. As anticipated, this
assumption is motivated on the possibility of cell death upon the attempt of cell
division:

dVd(t)

dt
= −λVd(t) (3.7)

whose solution is:

Vd(t) = Vd,0 · exp [−λ(t− t0)] (3.8)

Hence, the total, observed tumor volume V (t) comprises a proliferating Vs(t)
and dying Vd(t) population.

V (t) = Vs(t) + Vd(t), V (0) = V0 (3.9)

In conclusion, this model comprises five parameters (V0, λ, γ0, ϵ, S).

At the very beginning, λ = γ0 is assumed. Looking at (3.1), it is possi-
ble to straightforwardly realize the meaning of this pessimistic assumption:
chemotherapy can only slow down the exponential growth of viable tumour,
at most stopping it when γ = λ.

In [3], λ is considered to be uniform over the whole population. Here λ is
assumed to vary for each patient in a certain range, the latter obtained from
previous literature (as well as in the case of ϵ), in order to move toward a more
personalized clinical picture.

In contrast, while in [3] a 30% deviation from the original V0 in the fitting stage,
here V0 is fixed as the value provided from the first MRI scan for each patient,
thus introducing a constraint in the fitting and reducing the space of feasible so-
lutions and, consequently, shortening the computation time of the applied GA.
It sounds reasonable since treatment strategies are decided taking into account
the very first measured volume.

A last remark about the pre-treatment behaviour of the model is necessary: the
tumour growth is malthusian for t < t0, according to:

dVs(t)
dt = λVs(t) ⇒ Vs(t) = V0 · eλt for 0 ≤ t < t0
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where t = 0 is the time of the first volume measure.

Figure 3.2: Patient specific model parameters to be fitted and related boundaries

3.2 Linear Stability Analysis

Before running computer simulations to find model’s parameters (quantitative
information), it is customary to perform a Linear Stability Analysis [15] to get
some insight into the system stability and long-term behaviour (qualitative in-
formation).

The presented model, after the instantaneous action of radiotherapy described
in (3.5) and (3.6), consists of 3 ODEs: (3.1), (3.2), (3.7). (3.7) is decoupled
from the rest, therefore representing a one-dimensional dynamical system:

V̇d = f(Vd) = −λ · Vd (3.10)

By imposing the steady-state condition V̇d = 0 we find the unique fixed point
V ∗
d = 0. Since it is λ > 0, the sign of the derivative is always negative and from

the phase portrait in Figure 3.3 it is straightforward to see that every trajectory,
determined by the initial condition Vd,0, move towards V ∗

d = 0, which turns out
to be a stable fixed point.

Physically, this simple behaviour makes sense since Vd represents doomed cells.
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Figure 3.3: phase portrait of (3.10)

Equations (3.1) and (3.2) form a two-dimensional non-linear system of coupled
ODEs, which can be rewritten in the compact form:

V̇s(t) = f(Vs, γ) (3.11)

γ̇(t) = g(Vs, γ) (3.12)

The unique fixed point is the origin of the phase space: (V (t)∗, γ∗) = (0, 0).
Linearization procedure around this fixed point leads to the following Jacobian
matrix of the system

J(Vs, γ) =

[
∂f
∂Vs

∂f
∂γ

∂g
∂Vs

∂g
∂γ

]
=

[
λ− γ −1

0 −ϵ

]
which must be evaluated in the origin:

J(0,0)=

[
λ −1

0 −ϵ

]
Being two-dimensional, the linear behaviour of the system around the fixed
point is totally determined by trace τ (sum of Jacobian eigenvalues) and deter-
minant ∆ (product of Jacobian eigenvalues) of J(0, 0):

τ = λ− ϵ∆ = −λϵ < 0

According to Figure 3.4, this is a saddle-point, thus we do expect an unstable
behaviour of the system. This is in agree with the analytical solution of the
system, which in this simple case is known: the viable tumour volume tends to
evolve exponentially, moving away form the fixed point, the latter representing
a non-sense case, since it describe a situation where cancer is absent and no
chemotherapy is applied.
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Figure 3.4: Trace-determinant and related fixed point stability

3.3 Parameters fitting through GA

Once the model has been defined, the fitting stage took place in order to de-
termine patient specific parameters from which further considerations will be
made. As anticipated in chapter 2, a Genetic Algorithm inspired on the basis of
the canonical one has been employed in parameters estimation (see Appendix
A). Tuning the parameters of the GA has been far from an easy task, since
in this sense no precompiled scheme exists. Moreover, GA parameters (such
as crossover and mutation rates) must be set specifically for every patient and
simulation in order to drive the algorithm toward an optimal solution. However,
here (as well as in the following) details about the laborious implementation of
the GA will be neglected. Nevertheless, it should be useful to illustrate few
features, starting on how parameters have been encoded in the chromosome-like
representation of the algorithm, giving an idea about the size of search space,
which reflects the limited numbers of digits used to represent parameters.

So, each parameter could take, in the relevant individual ranges previously
shown in Figure 3.5, 27 = 128 discrete values. Each chromosome represents
one of 221 = 2′097′152 possible solutions of the search space.

Concerning the adopted fitness function, following the work path of [3], the fit-
ting goodness of every output solution proposed by the GA is assessed through
the root mean squared error (RMSE), defined as:
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RMSE =

√∑N
i=1(Vmeasured(ti)− Vsim(ti))2

N
(3.13)

Where Vmeasured(t) is the measured value of tumour volume at a certain time
t through the MRI imaging, N is the total number of those available measures
(it varies from patient to patient) and Vsim(t) is the simulated tumour volume
at time t, related to the particular choice of parameters in the solution.

Figure 3.5: Partition of the bit-string chromosome during the GA fitting

3.3.1 Fitting results

Fitting quality is at least slightly better than the original one (where a deter-
ministic non-linear programming technique was used) in every case, except for
patient 11. It is however evident that patient 11 shows an anomalous behaviour
in comparison to the remaining patient cohort; this is an indication that other
model external variables strongly influenced the evolution of the response. This
is not a surprise: it’s important to stress that cancer kinetics is extremely com-
plex and, in the case of patient 11 whose tumour volume is relatively small, it
may not be misleading to hypothesize that the stochastic component abruptly
emerges.

Parameters’ fitting values and fitting comparison between the proposed model
and the one in [3] are reported in the tables below, followed by the GA fitting
plots.
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Patient λ ϵ S
1 0.054 0.001 0.33
2 0.023 0.046 0.5
3 0.031 0.001 0.67
4 0.025 0.068 0.41
5 0.03 0.003 0.53
6 0.083 0.002 0.78
7 0.03 0.004 0.28
8 0.042 0.071 0.24
9 0.044 0.004 0.48
10 0.055 0.001 0.5
11 0.062 0.018 0.02
12 0.101 0.015 0.2
13 0.043 0.005 0.47
14 0.107 0.005 0.21
15 0.082 0.002 0.56
16 0.051 0.124 0.06

Patient Original fitting RMSE New fitting RMSE
1 9.7 2.9
2 1.6 0.2
3 7.2 7.0
4 1.0 0.6
5 2.5 2.1
6 8.5 6.8
7 2.4 0.8
8 2.9 0.8
9 3.3 1.8
10 3.1 1.4
11 0.6 1.4
12 1.3 0.2
13 0.2 0.1
14 0.2 0.08
15 0.3 0.1
16 0.5 0.2
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3.4 Intermittent Radiotherapy Protocol

The core of this thesis is to propose different radiotherapy schedules whose con-
struction is based on each single patient features, aiming to improve the final
outcome. Assuming that patient therapy response is based on the previously
fitted parameters over the standard hypofractionated protocol, here the same
amount of dose split in 5 fractions is administered in a longer time range (“in-
termittently”).

In [3], the same approach is proposed, but with a rather rigid time schedule:
the interval between a dose and the next is fixed (4, 6, 8, 10 weeks), so for each
patient is possible to explore only 4 possible alternative treatments.

Here a more extended space of alternatives is explored, to find the optimal
intermittent timing by means of a Genetic Algorithm (see Appendix B). The
fitness of a solution is simply the related patient survival time (PST). A small
remark about how the PST has been defined: the available dataset usually re-
ports a final measure of tumour volume (cut-off volume) which is significantly
higher than the previous ones, suggesting that in the worst-case scenario that
measure represents the maximal tumour burden tolerated by the patient before
retiring from the therapy for some reason (e.g. decease or ineffectiveness of the
treatment from then on). For a small but consistent group of patients, the final
measure is small compared to the previous ones, thus the assumption about
the PST definition becomes misleading. This can be due to many reasons, for
example the emergence of side effects which led the patient to quit the therapy
prematurely. To fix the problem, in these cases the PST is replaced by the time
to progression of tumour (TTP) which can be non-rigorously defined as the time
at which the predicted volume is twice the volume of the last measure preced-
ing the therapy. In the following, data analyses and general considerations will
neglect the distinction between PST and TTP.

The objective functional representing the PST is:

PST (c) =

∫ tcut−off (c)

t0

dτ (3.14)

Which has to be maximized. The control vector is represented by the available
time intervals between doses:

c = [c1, c2, c3, c4, c5] where ci ∈ {4, 5, 6, 7, 8, 9, 10 weeks}

The intervals are not fixed anymore, so for example a possible outcome for the
therapy schedule could be:
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1st dose
wait 5 weeks
2nd dose

wait 10 weeks
3rd dose

wait 4 weeks
4th dose

wait 7 weeks
5th dose

In practice, the GA encodes a potential time schedule in bit chromosomes:

A chromosome is made by 12 bits, where the first 3 bits specifies the time inter-
val between the 1st dose and 2nd, the second group of 3 bits specifies the time
between 2nd and 3rd dose and so on. The space of alternative time schedules is
215 = 32′768, which definitely allows a higher grade of therapy personalization
compared to the original 4 allowed choices.

It is also important to point out that the idea of “optimal timing” is strictly re-
lated to the specific therapy goal, which is not necessarily restricted to the PST
maximization. For example, the versatility of the intermittent dosage allows to
modify the schedule in order to reduce the average tumour burden or to take
into account emerging undesired side effects of the ongoing therapy.
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3.4.1 Results

In [3], the intermittent scheme outperforms the HFSTR in 11/16 cases. Here,
intermittent radiotherapy is predicted to be by far a better choice over HFSRT
in every case. This means that the higher personalization grade of both model
parameters and therapy makes a crucial difference in the final outcome.

Computer simulations of best GA outcomes are reported below, together with
the corresponding IRT schedules.

Patient Predicted IRT timetable (days from 1st MRI scan)
1 10 73 143 213 276
2 90 153 202 251 314
3 10 80 150 213 283
4 10 66 122 178 213
5 10 80 136 199 269
6 20 62 132 195 251
7 10 80 143 192 262
8 10 52 108 143 178
9 10 80 150 213 283
10 10 73 143 206 262
11 25 88 158 228 298
12 30 72 135 184 226
13 40 96 159 229 299
14 10 66 129 192 248
15 10 73 129 199 248
16 60 109 158 193 221
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3.4.2 Data Analysis

A data analysis about the time distribution of each delivered fraction has been
done, seeking for statistical information and patterns which may be exploited a
priori when designing an intermittent protocol.

The normalized time distribution of each dose for the 16 patients and the related
box plots are reported below. It is expected and straightforward to see from both
the summary plot in Figure 3.6 and standard deviation values that subsequent
doses have a greater time range of distribution. This tendency for a sharp-to-
uniform spread of delivery times may provide practical useful information (e.g.
how a group of patients treated simultaneously can be logistically distributed).

Figure 3.6: Summary plot of fractions distribution
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3.5 Hyperfractionation

Normal and tumour tissue radiosensitivity may vary strongly between individ-
ual patients. The opportunity to either continue or interrupt treatment at each
of the evaluation time-points holds great potential for treatment personalization.

The total number of delivered fractions can be adjusted to enable personal-
ized dose escalation given the absence of acute normal tissue toxicity. In this
model, potential tissue complications are not considered, although it is clini-
cally confirmed that, in the intermittent setting, normal tissue may be capable
to compensate for radiation-induced damage more effectively than the tumour.
This would motivate an escalation of the total delivered dose in the IRT setting.

In [3], dose escalation does significantly enhance patients’ survival probabilities.
Here, instead of dose escalation, an IRT hyperfractionation schedule of the usual
total dose amount is investigated, in order to see if it is (at least virtually) possi-
ble to improve the final outcome without necessarily incur in plausible radiation
induced damage to normal tissue.

Since the number of fractions is increased but the therapeutic effect is left un-
changed, the tumour surviving fraction varies as follows:

1− SHyper = (1− SHypo) · 5
n =⇒ SHyper = 1−

[
5
n · (1− SHypo)

]
Where SHyper is the new parameter value due to the introduction of hyperfrac-
tionation in the model. SHypo is the value found within the fitting stage and n is
the total number of delivered fractions. The idea is that, when n = 5, the effect
of a single radiation dose is left unchanged, while it decreases as n increases (i.e.
when hyperfractionating).

3.5.1 Results

The plots below show the best predicted hyperfractionation schedules of each
patient, obtained through the usual GA for IRT but with SHyper replacing
SHypo. n is assumed to vary from 6 to 12, thus allowing up to 12 total frac-
tions delivered. The optimization problem is the same as before, but this time
the control vector, which again encodes the the allowed time intervals between
doses, has n elements:

PST (c) =

∫ tcut−off (c)

t0

dτ (3.15)

c = [c1, c2, ..., cn] where ci ∈ {4, 5, 6, 7, 8, 9, 10 weeks}
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Figure 3.7: Legend of the hyperfractionation plots

57



58



59



60



61



62



63



64



3.5.2 Data Analysis

Hyperfractionation protocol predictions exhibit broad heterogeneity. Every pa-
tient responds in its own way, with a highly-personalized therapy schedule for
each fractionation.

Nevertheless, it is possible to identify three main groups of patients:

• Group 1. Hyperfractionation shows a profitable trend: the more the
fractionation the more the PST is increased [Patients #1, 3, 5, 7, 9, 10,
13, 14, 15].

• Group 2. Patients of this group partially benefit from hyperfractionation.
After a certain dose split, the tendency moves toward a smaller PST, thus
making the IRT hypofractionation or even HFSTR more effective [Patients
#2, 4, 6].

• Group 3. The hyperfractionation protocol has no advantage compared
to IRT hypofractionation and sometimes even to HFSRT. Moreover, the
trend is in general the opposite of that of group 1: the more the dose is
split, the lower is the PST [Patients #8, 11, 12, 16].
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In Figure 3.9, the distribution of patients’ parameters is reported. Each group
has been highlighted as in the legend (Figure 3.8). The growth rates λ show
a uniform behaviour (it is however important to stress that the dataset is par-
ticularly limited). For what concerns resistance rates, it is clear that they are
low for every patient of group 1. This means that hyperfractionation may be
a good strategy when a good response to chemotherapy is observed. From the
last picture is possible to see that patients of group 3 are characterized by a low
surviving rate (S) of tumour after radiation is applied. This suggests to prefer a
hypofractionated protocol whenever a good response to radiation therapy shows
up.

Figure 3.8: Plot legend of section 3.5.2

In Figure 3.10, each possible couple of parameters is reported. It seems that sta-
tistical correlation emerges in none of them, either in general and within a group.

In Figure 3.11 a complete scatter plot of the three parameters is reported. It is
evident that patients of group 1 (which is the most numerous among the three)
forms a cluster, thus corroborating that identifying such a group makes sense.
This result may be clinically useful, since it allows to classify future patients
with similar features as those who will probably benefit from a hyperfractiona-
tion more than a traditional hypofractionated protocol.
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Figure 3.9: Single-parameter distributions
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Figure 3.10: Parameters pairs. No evident statistical correlation comes off.
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Figure 3.11: Scatter plot over all parameters. A purple circle highlights the
presence of the aforementioned cluster.

3.6 Model reliability

Up to this moment, almost every result or consideration has been discussed a
posteriori, namely knowing the course of the disease thanks to the available
data. Actually, when designing a fractionation protocol, the amount of infor-
mation is limited, since clinical decisions must be taken in a short time frame
in order to prevent a irremediable cancer spread.

In this section a measure of model’s reliability is proposed. In particular, the
posed question is:

On average, what is the amount of data required by the model in order to per-
form an arbitrarily good parameters’ estimation?

Mathematically, such a measure is performed through the relative error over
parameters prediction as a function of the available amount of information:
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δP (m) =

∣∣∣∣∣∣∣∣Ppartial(m)− Pcomplete

Pcomplete

∣∣∣∣∣∣∣∣ (3.16)

Where P ∈ {λ, ϵ, S} indicates the generic parameter, Ppartial is the parameter
estimate obtained with m measures from the dataset and Pcomplete is the orig-
inal parameter estimate obtained with the full dataset as reported in section 3.3.

The average relative errors over the patient cohort together with the related
standard deviations are reported in Figure 3.12. m varies from 2 to 6, since on
average that’s the maximum number of available measures. the first measure is
the last took before starting the therapy, while m = 2 indicates the first measure
under therapy effect.

The growth rate error diminishes as m increases, same for the resistance rate.
However, the survival fraction rate doesn’t show evident improvement with a
larger m, so one may assume that this parameter can be safely inferred in a
early therapy stage, even though it departs about 100-200% from the original
value.

Notice that the resistance rate error assumes values definitely larger than those
of the other two parameters. This means that the ϵ value predicted by the model
is particularly sensitive with respect to perturbations of the original dynamics.
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Figure 3.12: Relative errors for the three model parameters.
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Chapter 4

Radiation resistance:
polyclonal modelling of
recurrent high-grade glioma

A neoplasm can be viewed from an evolutionary perspective as a large, geneti-
cally and epigenetically heterogeneous population of individual cells [11].

In the scientific community, malignant cancers are widely believed to be gov-
erned by Darwinian dynamics. The process of carcinogenesis includes genetic
instability (i.e. the tendency for DNA mutations) and highly selective local mi-
croenvironments, the combination of which promotes somatic evolution. These
microenvironmental forces, such as hypoxia and acidosis, are not only highly
selective, but are also able to induce genetic instability. As a result, malignant
cancers are dynamically evolving group of cells living in distinct microhabitats
that almost certainly ensure the emergence of therapy-resistant populations [7].

Nevertheless, standard radiobiology theory of radiation response assumes a uni-
form innate radiosensitivity (i.e. the ability of the radiation to damage the
tumor cell) of tumours. However, experimental data show that there is signifi-
cant intratumoral heterogeneity of radiosensitivity [1].

In the presence of an intratumoral distribution of radiosensitivity, there is rapid
selection of radiation-resistant cells over a course of fractionated radiation ther-
apy. Standard treatment fractionation regimes result in the near complete re-
placement of the initial population of sensitive cells with a population of more
resistant cells. Further, as treatment progresses, the tumour becomes more
resistant to further radiation treatment, making each fractional dose less effica-
cious.

However, the emergence of a resistant phenotype is not in itself clinically sig-
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nificant. That is, resistant cells affect patient outcomes only when they form a
sufficiently large population to allow tumor progression and treatment failure:
in destroying the entire population of sensitive cells, maximum dose therapy im-
poses intense selection for resistant phenotypes and, by eliminating all potential
competitors, their proliferation is maximized, which is a well-known evolution-
ary phenomenon termed competitive release [5].

The time between radiation fractionations for IRT could allow for regrowth of
both resistant and sensitive populations. Pre-clinical data and evolutionary con-
vention suggest that resistant cells may display a fitness disadvantage relative to
sensitive clones in the absence of the selective pressure, allowing for the sensitive
subpopulation to preferentially repopulate the tumour [3].

Figure 4.1: Standard HFSRT aims to kill the largest possible tumour mass by
delivering the maximum radiation dose in a short time, leading to the undesired
competitive release where resistant clones dominates the tumour (top row).
With an intermittent approach, sensitive population is expected to exploit its
fitness advantage to repopulate the environment more effectively than resistant
population, allowing the patient to carry a bearable tumour burden which can
be still managed due to the consistent presence of sensitive cells (bottom row).

It is expected that intermittent radiotherapy (IRT) treatments would provide an
advantage over daily hypofractionated stereotactic radiation therapy (HFSRT)
whenever sensitive subclones may repopulate more effectively between fractions.
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In this chapter, the aim is to simulate highly-personalized IRT treatments that
may soften the aforementioned unfavourable competitive release mechanism.

4.1 Multicompartmental model

The first proposed model is a slight modification of the monoclonal descrip-
tion presented in chapter 3. Raising resistance is modelled through a constant
transfer rate from a radiosensitive cells compartment to a radioresistant cells
compartment. Each of the two populations is characterized by its own growth
rate:

dVs(t)

dt
= λsVs(t)− pVs(t) (4.1)

dVr(t)

dt
= λrVr(t) + pVs(t) (4.2)

Where p is the constant transfer rate [time−1], λs and λr are the growth rates
of the sensitive population and resistant population respectively.

The radiation therapy effect is again implemented through a survival fraction
S of the tumour after undergoing a radiotherapy fraction at a certain time tRT .
The novelty here is that this effect applies not to the whole tumour mass, but
only over the sensitive compartment.

Vs(t
+
RT ) = S · Vs(t

−
RT ) (4.3)

Vd(t
+
RT ) = Vd(t

−
RT ) + (1− S) · Vs(t

−
RT ) (4.4)

The dying compartment is the same as in the monoclonal model, with a decay
rate equal to λs, since those are the cells suffering the subsequent mitotic catas-
trophe.

dVd(t)

dt
= −λVd(t) (4.5)
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The resistant population is thus immune to the whole adopted therapy, virtually
proliferating without any limit even in case of a massive radiation dose escala-
tion.

The system of ODEs (4.1), (4.2) and (4.3) is linear. Its solution is easily found:

Vs(t) = Vs,0 · e(λs−p)(t−t0) (4.6)

Vr(t) = eλr(t−t0) · (Vr,0λr − Vr,0λs + Vs,0p+ Vr,0p)

λr − λs + p
− Vs,0 · p · e(λs−p)(t−t0)

λr − λs + p
(4.7)

Vd(t) = Vd,0 · eλs(t−t0) (4.8)

Where Vs,0 and Vr,0 are the initial sensitive population and resistant population
respectively. The total tumour volume is:

V (t) = Vs(t) + Vr(t) + Vd(t), V (0) = Vs,0 + Vr,0

As usual, pre-treatment growth of both populations is malthusian, namely p = 0
for 0 ≤ t < t0.

Remark. In the following, the used dataset is the same as in chapter 3, obtained
through the same therapy schedule, which is a combination of both HFSRT and
chemotherapy. It is natural to wonder how here chemotherapy resistance is
taken into account. Even though the model focuses on radioresistance rather
than chemoresistance, it is essential to specify that here the transfer rate pa-
rameter p is assumed to describe both kind of resistance undistinguishably. The
cost to pay for this simplification is that of working in a worst-case scenario:
those cells developing chemoresistance automatically are assumed to gain ra-
dioresistance as well.

4.1.1 Linear Stability Analysis

Exactly as in the monoclonal model, (4.5) is decoupled from the rest, thus con-
sisting in a one-dimensional dynamical system:

V̇d = f(Vd) = −λs · Vd (4.9)
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Figure 4.2: Schematic representation of the multicompartmental model

Again, by imposing the steady-state condition V̇d = 0 we find the unique fixed
point V ∗

d = 0, which is stable since λs > 0.

Equations (4.1) and (4.2) form a two-dimensional linear system of coupled
ODEs, which can be rewritten in the compact form:

V̇s(t) = f(Vs, Vr) (4.10)

V̇r(t) = g(Vs, Vr) (4.11)

The unique fixed point is the origin of the phase space: (Vs(t)
∗, Vr(t)

∗) = (0, 0).

Since the system is linear, its stability can be deduced from the coefficients ma-
trix:

J(Vs, Vr) =

[
λs − p 0

p λr

]

whose trace and determinant are:
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τ = λs + λr − p ≡ λtot − p

∆ = λr(λs − p) ≡ λeffλq

Where λtot is the tumour total growth rate and λeff is the effective growth rate
of the sensitive population, which decreases as the transfer rate p increases.

The stability changes based on parameters’ values:

• If λeff < 0 the origin is a saddle point. Physically, this corresponds to a
situation where the sensitive population becomes extinct, while the resis-
tant population proliferates. This scenario never occurs in the following.

• If λeff > 0 and λtot > p the FP is unstable. Both populations proliferate.

• If λeff > 0 and λtot < p the FP is stable. However, this condition is
fulfilled only if λs + λr < p and λs > p simultaneously, which would
require λr < 0, making this configuration unfeasible.

• If λeff > 0 and λtot = p the FP is a center. However, this condition never
occurs in the following.

4.1.2 Model fitting

Once again, the parameters fitting stage has been performed by means of a Ge-
netic Algorithm. The models’ parameters are λs, λr, S, Vs,0, Vr,0 and p, encoded
in bit-string chromosomes as the one shown in Figure 4.2. The length of a chro-
mosome is 44 bits, so the search space has a size of 244 ∼ 1013 possible solutions.

The used dataset is again the one presented in chapter 3 and same for the fitness
function:

RMSE =

√∑N
i=1(Vmeasured(ti)− Vsim(ti))2

N
(4.12)

In the legend of the fitting plots, S and R indicate the volume of the predicted
sensitive and resistant population respectively.

Figure 4.3: Partition of the bit-string chromosome
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4.1.3 Data Analysis & Clustering

From the fitting plots it is possible to recognize and hypothesize the existence
of two group of patients:

• Group 1. In late stage therapy, the predicted sensitive population dom-
inates or it’s at least comparable to the resistant one [Patients #1, 2, 5,
7, 8, 9, 12, 13, 15, 16].

• Group 2. In late stage therapy, the resistant population remarkably
dominates over the sensitive one, making the therapy practically ineffective
[Patients #3, 4, 6, 10, 11].

Based on this hypothesis, a data analysis has been carried out in order to cor-
roborate this conjecture, also with the purpose of extrapolating a priori infor-
mation which may be useful. However, model parameters in this case have to
be handled carefully: cancer actually presents a very complex heterogeneity and
the proposed two compartments (resistant and sensitive) are clearly an artifact
of this scientific investigation which cannot be experimentally quantified (for
example the initial resistant and senstive population and their growth rates).
Nevertheless, a total tumour growth rate could realistically be estimated:

λtot = λs + λr

along with hypothetical tumour survival rate S and transfer rate p.

In Figure 4.4, the distributions of the three investigated parameters (λtot, S, p)
are reported. It can be clearly seen that patients assigned to group 2 are char-
acterized by large p values: they are actually those whose cancer resistance
develops abruptly.
Figure 4.5 shows each pair of parameters. A weak linear statistical correlation
emerges between p and λtot. One may carefully infere from this model that a
glioma with sharper growth could also present a tendency to evolve toward its
resistant counterpart.
Figure 4.6, where all the parameters are gathered, shows clearly the existence
of the two predicted clusters, making likely the initial conjecture.

Figure 4.4: Plot legend of section 4.1.3
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Figure 4.5: Single-parameter distributions. A distinction between the groups is
evident for p.
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Figure 4.6: Parameter pairs. A slight linear correlation between p and λtot

emerges.
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Figure 4.7: Scatter plot over all parameters. The two predicted clusters clearly
show up. The rightmost point is that related to patient 15, which behaves as
an outlier.

4.2 Maximizing Clonal Inversion Time

Model fitting predicts a common behavior: early sensitive population is readily
outnumbered by the resistant one as a result of HFSRT (competitive release).
In some cases, as time goes on, resistant cancer cells heavily dominate, making
eventual further radiotherapy intervention almost worthless (as for patients be-
longing to group 2).

In this section, the usual alternative fractionation schedules are proposed, aim-
ing to maximize again the patient survival time (PST) and to delay as much
as possible the moment where early clonal inversion occurs, defined as Clonal
Inversion Time (CIT). The hope of this strategy is to see if by increasing CIT
it is possible to prevent (or at least to delay as much as possible) a long-term
domination of the predicted resistant mass.

A Genetic Algorithm is employed to predict the best fractionation, where the
fitness of each chromosome which has to be maximized is represented by the
sum of the two following objective functionals:
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PST (c) =

∫ tcut−off (c)

t0

dτ (4.13)

CIT (c) =

∫ tCIT (c)

t0

dτ (4.14)

So, the goal is to maximize PST (c) + CIT (c) by finding some control vector
c = [c1, c2, ..., cn] (As in chapter 3, n = 5 for IRT, n ∈ [6, 7, 8, 9, 10, 11, 12] when
hyperfractionating) where ci ∈ {4, 5, 6, 7, 8, 9, 10 weeks}

4.2.1 IRT

The intermittent approach didn’t lead to encouraging results. Although the
early clonal inversion is in almost every case delayed, late domination of resis-
tance population for patient of group 2 is not eradicated and, even worse, PST
is often remarkably reduced.

For what concerns group 1, only patients 13, 16 noticeably benefit from the
intermittent protocol. In all other cases, PSTs are often shortened with respect
to the HFSRT case, without any improvement of late populations’ behavior.

IRT simulations are reported below along with the legend.

Figure 4.8: Legend of the fitting plots
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4.2.2 Hyperfractionation

The hyperfractionation strategy proposed in chapter 3 is once again exploited
to check if improvements with respect to IRT are possible. Previous results fur-
ther validated the hypothesis of dividing the patient cohort in two main groups:
indeed, the response to IRT of the members was similar, in particular for those
of group 2. So, for the sake of clarity, five representative patients have been
selected to undergoing the simulated hyperfractionation protocol:

• Patient 1 (group 1), for which IRT increases CIT and with a PST similar
to the HFSRT case. When reaching the cut-off volume, the resistant
population slightly dominates.

• Patient 6 (group 2), for which IRT fails completely.

• Patient 9 (group 1), for which IRT leads to an increased CIT but with
a visible, although reasonable, reduction of PST with respect to HFSRT.
When reaching the cut-off volume, the sensitive population slightly dom-
inates.

• Patient 15 (group 1), which is clearly an outlier: it’s the only case of
group 1 for which IRT fails completely as for those patients of group 2.
The anomalous feature is further confirmed from the clustering in Figure
4.6 (Patient 15 is the rightmost, isolated data point in the scatter plot)

• Patient 16 (group 1), the one who benefits the most by IRT over the
whole patient cohort.

The outcome is the same for each patient: hyperfractionation leads to a massive
PST reduction. While IRT in some few cases could lead to a slight improve-
ment, hyperfractionation seems to be, at least in this model, not effective. The
related plots are reported below.

The answer to the initial question of section 4.2 about whether dealying early
clonal inversion induces trend reversal of the final populations or not is clearly
negative. One may wonder if investigating other aspects, for example by chang-
ing the objective functional and its weights, could lead to different schedule
predictions and reduce as much as possible the raising resistant population.
The answer may be positive; however, although this simple multicompartmental
model allows for a first rough estimation of cancer heterogeneity and resistance
phenomenon, it doesn’t include a crucial aspect of cancer dynamics: cancer cells
of different nature have different fitness responses to their shared environment
and the fitness of a neoplastic cell is shaped by its interactions with cells and
other factors in its microenvironment (its ecology) [11].

In the present model, a constant transfer rate p increases the resistant popula-
tion proportionally to the size of the sensitive population, which is on average
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larger when switching to an intermittent radiation protocol. It is a fact that
the sensitive population is expected to have some fitness advantage over the
resistant population [7]. This well-known biological feature will be taken into
account in section 4.3, where competition between species is introduced.

Figure 4.9: Legend of the hyperfractionation plots
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4.3 Competitive models

The presence of clonal competition is an unavoidable fact of cancer biology. For
neoplastic cells in a heterogeneous population, competition exists in the form
of resource consumption (oxygen for example). However, neoplastic clones can
also have direct negative effects on each other. For example, one clone can stim-
ulate an immune response that clears other clones [11].

In the absence of treatment, one can infer that resistant cells are less fit than
sensitive cells, as untreated cancers generally have a preponderance of cells that
are sensitive to primary therapies. In controlled studies, it can be observed
that some resistance mechanisms do indeed have a fitness penalty in which the
resistant clones grow slower than the parental sensitive cells. This is probably
related to resource allocation to resistance mechanisms which would reduce the
energy available for proliferation [7].

4.3.1 Including intraspecific competition

At first, intraspecific competition has been introduced within the multicom-
partmental model presented in section 4.1 (equations (4.3), (4.4), (4.5) are left
unchanged):

dVs(t)

dt
= λsVs(t)− pVs(t)− λs

Vs(t)
2

Ks
(4.15)

dVr(t)

dt
= λrVr(t) + pVs(t)− λr

Vr(t)
2

Kr
(4.16)

where Ks and Kr are the carrying capacities [volume] of the sensitive and re-
sistant population respectively, they are both positive constants.

Even though it makes sense to expect this internal competition mechanism, it
is straightforward to note roughly with a quick glance from the data set that
the characteristic S-shaped curve of this logistic growth doesn’t fit the available
data. Indeed, when the genetic algorithm has been used to estimate model’s
parameters, it predicted very large values for Ks,Kr , making the newly intro-
duced terms in equations (4.15),(4.16) definitely negligible.

Moreover, since the model is non-linear, the computational cost of the fitting
stage increased noticeably (the genetic algorithm makes use of the MATLAB
R2022a function ode45() solver in the numerical integration of the ODE system).
For both reasons, including intraspecific competition has been deemed worthless
in terms of mathematical modelling and therefore in the following this aspect,
which anyhow is physically present, has been neglected.
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4.3.2 Including interspecific competition

On the basis of the discussion at the very beginning of this chapter, interspecific
competition between the two species in the multicompartmental model intro-
duced in section 4.1 has been included (equations (4.3), (4.4) and (4.5) are
unaltered):

dVs(t)

dt
= λsVs(t)− pVs(t)− λsbsrVs(t)Vr(t) (4.17)

dVr(t)

dt
= λrVr(t) + pVs(t)− λrbrsVs(t)Vr(t) (4.18)

Where the new positive constants bsr and brs describes respectively the com-
petitive effect over the sensitive population due to the resistant one and vice
versa. They are dimensionally [volume−1].

4.3.3 Model fitting

Following the usual work path, parameters fitting has been performed by means
of a Genetic Algorithm (supported by the MATLAB R2022a function ode15s()
to integrate the non-linear system of ODEs). The models’ parameters are
λs, λr, S, Vs,0, Vr,0, bsr, brs and p, encoded in a bit-string chromosome as shown
in Figure 4.10. The length of the chromosome is 99 bits, so the search space
has a size of 299 ∼ 1029 possible solutions. Fitness function is again the RMSE
in (4.12). In the fitting plots, S and R indicate the volume of the predicted
sensitive and resistant population respectively.

Figure 4.10: Partition of the bit-string chromosome

Remarkably, the GA predicted that sensitive cells are almost in every case more
competitive than their resistant counterpart (see table below). This is in line
with the idea discussed previously: sensitive cells are usually expected to have
a fitness advantage and therefore to repopulate the environment in a more ef-
fective way.
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Patient bsr[cm
3] brs[cm

3]
1 0.000023 0.000094
2 0.000018 0.000031
3 0.0046 0.088
4 0.0039 0.00038
5 0.00011 0.053
6 0.077 0.014
7 0.0000013 0.027
8 0.00092 0.85
9 0.0098 0.15
10 0.0012 1.6
11 0.34 5.2
12 0.056 2.2
13 0.079 0.21
14 0.026 1.4
15 0.016 3.3
16 0.0059 0.55
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4.3.4 IRT

From the GA fitting, it is possible also in this case to see that a consistent group
of patients is predicted to undergo the aforementioned competitive release mech-
anism. Following what’s been done previously, a GA is used to predict the opti-
mal intermittent radiotherapy schedule aiming to increase each patient survival
time (PST) and, hopefully, to delay resistance development as much as possible.

Patients #1, 3, 4 have been selected to compose a sample for this study. IRT
prediction plots are reported below.

• Patient 1 didn’t particularly show the competitive release phenomenon as
a consequence of HFSRT. The intermittent protocol didn’t alter signifi-
cantly this behaviour, but increased its PST.

• For patient 3 the HFSRT GA predicted an evident competitive release.
However, IRT allows sensitive cells to exploit their larger competitiveness
to overcome resistance raising and, noticeably, to induce a relapse of the
resistant population, with an increase of patient’s PST.

• Patient 4, just as patient 3, showed up competitive release within the
HFSRT frame. However, in this case the GA predicted that resistant cells
have a competition parameter value higher than that of sensitive ones. As
a consequence, IRT led to an even more accentuated competitive release
with respect to the hypofractionated case.

Figure 4.11: Plot legend of section 4.3.3

114



115



116



Conclusion

The heterogeneous physics of recurrent high-grade glioma, just like many other
tumours in general, is endowed by several complex features (articulate spatial
distribution, biological nature of cells and surrounding tissues, stochasticity, en-
vironmental noise, etc. . . ). Mathematical models of great complexity are usually
exploited to include many of those aspects.

In this thesis, modelling complexity has been reduced to the minimum. Nev-
ertheless, crucial features like therapy resistance and clonal competition were
included effectively, providing a rough but reasonable description.

A possible immediate extension of the proposed models may provide a more
sophisticated description of the resistance mechanism, for example by including
a non-constant resistance development, which realistically is expected to emerge
slowly, afterwards reaching some asymptotic value.

Moreover, genetic algorithms turned out to be very effective in parameter esti-
mation of this kind of models. Not only, they allowed within a certain extent to
automate the seek of optimal radiotherapy treatments, allowing a high degree
of patient’s therapy customization.

Results of this study suggest that in some cases an intermittent radiotherapy
approach may help clinicians in their struggle against a definitely hard-to-deal
disease such as rHGG, for example by delaying as much as possible the well
known competitive release phenomenon by exploiting, whenever possible, the
fitness advantage of radiation sensitive cells, which typically dominate within
the highly heterogeneous scenario as that of cancer.

The choice of a certain personalized therapy can be further improved by gath-
ering more data and not only MRI scans just like in the proposed database. For
example, patient-specific biological and medical information combined with the
tools of mathematical modelling would lead to a higher treatment quality and,
possibly, to a better final outcome.
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Appendix A
GA template for model
parameters’ fitting

tic

%prepare run

clear

clc

close all

%select operation

fitting=true;

IRT=false;

if fitting==true

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GA parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n_generations=1000;

M=100; % # of population members

M_mating= M/2;

%crossover parameters

p_c=0.8;

n_crossover= 1000;

%mutation parameters

p_m=0.01;

n_mutation=1000;

%Quality threshold

RMSE_target= 1;

ga_used_parameters=[M M_mating n_generations p_c n_crossover...

p_m n_mutation ];
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% fitting through HFSRT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

treatment= ’HFSRT’;

patient= 11;

t_measured=xlsread(’dataset.xlsx’, patient, ’A1:A12’);

vol_measured=xlsread(’dataset.xlsx’, patient, ’G1:G12’);

t_rt_init=xlsread(’dataset.xlsx’, patient,’B1:B1’);

%time range

T_fin=420;

time=1:1:T_fin;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%generating randomly initial population

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nbit = 21;

population = zeros(M,nbit);

for i = 1:M

for j=1:nbit

population(i,j)=randi([0 1], 1);

end

end

%start GA

while n_generations>0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Selection

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mb_indices=ones(M_mating, 1);

mb=zeros(M_mating, nbit);

fitness=zeros(M,1);

for i=1:M

epsilon=((bit2int(population(i,1:7)’,7))*10^-3)+0.001;

lambda=((bit2int(population(i,8:14)’,7))+17)*10^-3;

S=((bit2int(population(i,15:21)’,7))*10^-2)+0.01;

[Vl,Vd,vol]=tumor_volume(lambda,epsilon,S,time,...

vol_measured(1),treatment,t_rt_init);

index=0;

for j = 1:T_fin

if ismember(j,t_measured)

index=index+1;

fitness(i)=fitness(i)+...

(((vol_measured(index))-(vol(j)))^2);
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end

end

fitness(i)=(1/sqrt(length(vol_measured)))*sqrt(fitness(i));

end

if min(fitness)<RMSE_target

break

end

fitness_tot=sum(fitness);

p=zeros(M,1);

for i=1:M

p(i)= fitness(i)/fitness_tot;

end

t=zeros(M,1);

for i=1:M

for j=1:i

t(i)=t(i)+p(j);

end

end

already_used=zeros(M,1);

for i=1:M_mating

r=rand();

for j=1:M

if r<t(j) && already_used(j)==0

mb_indices(i)=j;

already_used(j)=1;

for k=1:nbit

mb(i,k)=population(j,k);

end

break

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Recombination

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Crossover

for i=1:n_crossover

if rand()<p_c

c1= randi([1 nbit], 1);
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c2= randi([c1 nbit], 1);

crossover1=randsample(mb_indices,1);

crossover2=randsample(mb_indices,1);

for j=c1:c2

swap=population(crossover1,j);

population(crossover1,j)=population(crossover2,j);

population(crossover2,j)=swap;

end

end

end

%Mutation

for i=1:n_mutation

if rand()<p_m

mutation=randsample(mb_indices,1);

bit_mutation=randsample(1:nbit,1);

population(mutation,bit_mutation)=~population(mutation,...

bit_mutation);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% calculating mating buffer memebers’ fitness

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fitness_mb=zeros(M_mating,1);

for i=1:M_mating

epsilon=((bit2int(population(mb_indices(i),1:7)’,7))*10^-3)+0.001;

lambda=((bit2int(population(mb_indices(i),8:14)’,7))+17)*10^-3;

S=((bit2int(population(mb_indices(i),15:21)’,7))*10^-2)+0.01;

[Vl,Vd,vol]=tumor_volume(lambda,epsilon,S,time,...

vol_measured(1),treatment,t_rt_init);

index=0;

for j = 1:T_fin

if ismember(j,t_measured)

index=index+1;

fitness_mb(i)=fitness_mb(i)+((vol_measured(index)-vol(j))^2);

end

end

fitness_mb(i)=(1/sqrt(length(vol_measured)))*sqrt(fitness_mb(i));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% new population

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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for i=1:M_mating

candidate=randsample(1:M,1);

if fitness_mb(i)>fitness(candidate)

for j=1:nbit

population(candidate,j)=mb(i,j);

end

end

end

disp(n_generations)

n_generations=n_generations-1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% best fitting and statistical analisys

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%final population fitness

fitness=zeros(M,1);

for i=1:M

epsilon=((bit2int(population(i,1:7)’,7))*10^-3)+0.001;

lambda=((bit2int(population(i,8:14)’,7))+17)*10^-3;

S=((bit2int(population(i,15:21)’,7))*10^-2)+0.01;

[Vl,Vd,vol]=tumor_volume(lambda,epsilon,S,time,...

vol_measured(1),treatment,t_rt_init);

index=0;

for j = 1:T_fin

if ismember(j,t_measured)

index=index+1;

fitness(i)=fitness(i)+...

(((vol_measured(index))-(vol(j)))^2);

end

end

fitness(i)=(1/sqrt(length(vol_measured)))*sqrt(fitness(i));

end

best_fitting_index=1;

for i=2:M

if fitness(i)<fitness(best_fitting_index)

best_fitting_index=i;

end

end

best_RMSE= fitness(best_fitting_index);

epsilon=((bit2int(population(best_fitting_index,1:7)’,7))*10^-3)+0.001;
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lambda=((bit2int(population(best_fitting_index,8:14)’,7))+17)*10^-3;

S=((bit2int(population(best_fitting_index,15:21)’,7))*10^-2)+0.01;

[Vl,Vd,vol]=tumor_volume(lambda,epsilon,S,time,vol_measured(1),treatment,t_rt_init);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Saving results & plots

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mkdir(sprintf(’patient %i RMSE %.3f’, patient,best_RMSE));

folder_path=strcat(’C:\Users\Francesco\Desktop\my code\’, ...

sprintf(’patient %i RMSE %.3f’, patient,best_RMSE),’\’ );

cd (folder_path);

plot(time,vol, ’red’, ’LineWidth’, 2)

xlabel(’Time’)

ylabel(’Tumor volume’)

title(sprintf(’patient %i’,patient))

hold ;

scatter(t_measured, vol_measured, ’o’,’black’, ’filled’)

scatter(t_rt_init,0, ’^’,’blue’,’filled’)

legend(sprintf(’Fit, RMSE = %.3f’, best_RMSE), ’Data’, ’Therapy start’)

savefig(’fitting.fig’)

fitted_parameters=[lambda epsilon S];

writematrix(fitted_parameters,’fitted_parameters.xlsx’);

writematrix(ga_used_parameters,’GA_parameters.xlsx’);

cd ’C:\Users\Francesco\Desktop\my code\’

toc

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% IRT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if IRT== true

treatment=’IRT’;

fractions=[11];

t_btw_fractions=[28 42 56 70];

max_fractions=max(fractions);

max_t_btw_fractions=max(t_btw_fractions);

patient=1;

T_fin=1500;

time=1:1:T_fin;
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t_rt_init=xlsread(dataset.xlsx’,patient,’B1:B1’);

t_rt(1)= t_rt_init;

V0=xlsread(’dataset.xlsx’, patient,’G1:G1’);

folder_path=strcat(’C:\Users\Francesco\Desktop\my code\fitting\’, ...

sprintf(’patient %i’, patient),’\’ );

cd (folder_path);

lambda=xlsread(’fitted_parameters.xlsx’,1,’A1’);

epsilon=xlsread(’fitted_parameters.xlsx’,1,’B1’);

S=xlsread(’fitted_parameters.xlsx’,1,’C1’);

cd ’C:\Users\Francesco\Desktop\my code\’;

for i=1:max_fractions

if ismember(i, fractions)

for j=1:max_t_btw_fractions

if ismember(j,t_btw_fractions)

for k=2:i

t_rt(k)=j+t_rt(k-1);

end

for l=1:T_fin

[Vl,Vd,vol]=tumor_volume(lambda,epsilon,S,time,...

V0,treatment,t_rt);

end

plot(time,vol, ’blue’, ’LineWidth’, 2)

xlabel(’Time’)

ylabel(’Tumor volume’)

title(sprintf(’patient %d iRT fractions=%d Tbtwf=%d’,...

patient,i,j))

savefig(sprintf(’p%d f%d tbf%d’,patient,i,j));

end

end

end

end

toc

end

function [Vl,Vd,vol] = tumor_volume(lambda,epsilon,S,t,V0, treatment,t_rt)

% calculate the tumor volume under RT effect

Vl=zeros(length(t),1);

Vd=zeros(length(t),1);

Vl(1)=V0;

V0_d=0;

t0=0;
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if strcmp(’HFSRT’,treatment)

t_rt_init=t_rt(1);

for i=2:t_rt_init

Vl(i)=V0*exp(lambda*(t(i)-t0));

end

for i=t_rt_init:1:length(t)

if i==t_rt_init

Vl_old= Vl(i);

Vd_old= Vd(i);

for j=1:5

Vl_new=S*Vl_old;

Vd_new=Vd_old+(1-S)*Vl_old;

Vl_old=Vl_new;

Vd_old=Vd_new;

end

Vl(i)= Vl_new;

Vd(i)=Vd_new;

V0=Vl(i);

V0_d=Vd(i);

t0=t(i);

else

Vl(i)=V0*exp(lambda*(t(i)-t0)+(lambda/epsilon)*(exp(-epsilon*(t(i)-t0))-1));

if i~=1

Vd(i)=V0_d*exp(-lambda*(t(i)-t0));

end

end

end

end

if strcmp(’IRT’, treatment)

t_rt_init=t_rt(1);

for i=2:t_rt_init

Vl(i)=V0*exp(lambda*(t(i)-t0));

end

for i=t_rt_init:1:length(t)

if ismember(i,t_rt)

if i~=t_rt_init

Vl(i)=V0*exp(lambda*(t(i)-t0)+(lambda/epsilon)*(exp(-epsilon*(t(i)-t0))-1));

if i~=1

Vd(i)=V0_d*exp(-lambda*(t(i)-t0));

end

end
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Vd(i)=Vd(i)+(1-S)*Vl(i);

Vl(i)=S*Vl(i);

V0=Vl(i);

V0_d=Vd(i);

t0=t(i);

else

Vl(i)=V0*exp(lambda*(t(i)-t0)+(lambda/epsilon)*(exp(-epsilon*(t(i)-t0))-1));

if i~=1

Vd(i)=V0_d*exp(-lambda*(t(i)-t0));

end

end

end

end

vol=Vl+Vd;
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Appendix B
GA template for the
optimal IRT protocol search

tic

%prepare run

clear

clc

close all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GA parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n_generations=100;

M=100; % # of population members

M_mating= M/2;

%crossover parameters

p_c=0.8;

n_crossover= 1000;

%mutation parameters

p_m=0.01;

n_mutation=1000;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% fitting through HFSRT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

treatment= ’IRT’;

patient=15;

lambda=0.082;

epsilon=0.002;

S_5=0.56;
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max_nfrac=12;

PST_HFSRT=220;

PST_IRT=418;

vol_init=xlsread(’dataset.xlsx’, patient, ’G1:G1’);

vol_PST=13.5;

t_rt_init=xlsread(’dataset.xlsx’, patient,’B1:B1’);

%time range

T_fin=1000;

time=1:1:T_fin;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%generating randomly initial population

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%start GA

for q=6:max_nfrac %use this in case of hyperfractionation

nbit = 3*q;

S=1-((5/q)*(1-S_5));

population = zeros(M,nbit);

for i = 1:M

for j=1:nbit

population(i,j)=randi([0 1], 1);

end

end

n_generations=100;

while n_generations>0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Selection

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mb_indices=ones(M_mating, 1);

mb=zeros(M_mating, nbit);

fitness=zeros(M,1);

t_rt=zeros(M,max_nfrac);

nfrac=max_nfrac*ones(M,1);

for i=1:M

t_rt(i,1)=t_rt_init;

index=4;

index_rt=2;

while index<nbit

if bit2int(population(i,index:index+2)’,3)==0

nfrac(i)=nfrac(i)-1;
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else

t_rt(i,index_rt)=t_rt(i,index_rt-1)+...

((bit2int(population(i,index:index+2)’,3))+...

3)*7;

index_rt=index_rt+1;

end

index=index+3;

end

[Vl,Vd,vol]=tumor_volume(lambda,epsilon,S,time,...

vol_init,treatment,t_rt(i,1:nfrac(i)));

for j=t_rt_init+20:T_fin

if vol(j)>vol_PST

fitness(i)= j-1;

break

end

end

end

fitness_tot=sum(fitness);

p=zeros(M,1);

for i=1:M

p(i)= fitness(i)/fitness_tot;

end

t=zeros(M,1);

for i=1:M

for j=1:i

t(i)=t(i)+p(j);

end

end

already_used=zeros(M,1);

for i=1:M_mating

r=rand();

for j=1:M

if r<t(j) && already_used(j)==0

mb_indices(i)=j;

already_used(j)=1;

for k=1:nbit

mb(i,k)=population(j,k);

end

break
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end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Recombination

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Crossover

for i=1:n_crossover

if rand()<p_c

c1= randi([1 nbit], 1);

c2= randi([c1 nbit], 1);

crossover1=randsample(mb_indices,1);

crossover2=randsample(mb_indices,1);

for j=c1:c2

swap=population(crossover1,j);

population(crossover1,j)=population(crossover2,j);

population(crossover2,j)=swap;

end

end

end

%Mutation

for i=1:n_mutation

if rand()<p_m

mutation=randsample(mb_indices,1);

bit_mutation=randsample(1:nbit,1);

population(mutation,bit_mutation)=~population(mutation,...

bit_mutation);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% calculating mating buffer memebers’ fitness

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fitness_mb=zeros(M_mating,1);

t_rt=zeros(M_mating,max_nfrac);

nfrac=max_nfrac*ones(M_mating,1);

for i=1:M_mating

t_rt(i,1)=t_rt_init;

index=4;

index_rt=2;

while index<nbit

if bit2int(population(mb_indices(i),index:index+2)’,3)==0

nfrac(i)=nfrac(i)-1;
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else

t_rt(i,index_rt)=t_rt(i,index_rt-1)+...

((bit2int(population(mb_indices(i),index:index+2)’,3))+3)*7;

index_rt=index_rt+1;

end

index=index+3;

end

[Vl,Vd,vol]=tumor_volume(lambda,epsilon,S,time,...

vol_init,treatment,t_rt(i,1:nfrac(i)));

for j=t_rt_init:T_fin

if vol(j)+20>vol_PST

fitness_mb(i)= j-1;

break

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% new population

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:M_mating

candidate=randsample(1:M,1);

if fitness_mb(i)>fitness(candidate)

for j=1:nbit

population(candidate,j)=mb(i,j);

end

end

end

%disp(n_generations)

n_generations=n_generations-1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% best fitting and statistical analisys

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%final population fitness

fitness=zeros(M,1);

t_rt=zeros(M,max_nfrac);

nfrac=max_nfrac*ones(M,1);

for i=1:M

t_rt(i,1)=t_rt_init;
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index=4;

index_rt=2;

while index<nbit

if bit2int(population(i,index:index+2)’,3)==0

nfrac(i)=nfrac(i)-1;

else

t_rt(i,index_rt)=t_rt(i,index_rt-1)+...

((bit2int(population(i,index:index+2)’,3))+3)*7;

index_rt=index_rt+1;

end

index=index+3;

end

[Vl,Vd,vol]=tumor_volume(lambda,epsilon,S,time,...

vol_init,treatment,t_rt(i,1:nfrac(i)));

for j=t_rt_init+20:T_fin

if vol(j)>vol_PST

fitness(i)= j-1;

break

end

end

end

best_fitting_index=1;

for i=2:M

if fitness(i)>fitness(best_fitting_index)

best_fitting_index=i;

end

end

best_fitness= fitness(best_fitting_index);

[Vl,Vd,vol]=tumor_volume(lambda,epsilon,S,time,vol_init(1),treatment,...

t_rt(best_fitting_index,1:nfrac(best_fitting_index)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Saving results & plots

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

plot(time(1:T_fin),vol(1:T_fin),’LineWidth’,1)

xlabel(’Time [days]’)

ylabel(’Tumor volume [cm^3]’)

title(sprintf(’Patient %i’,patient))

%legend(sprintf(’%i fractions’,q))%,’Therapy start’,...

sprintf(’HFSRT PST = %i’,PST_HFSRT),sprintf(’IRT PST (no hyperfractionation)...
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= %i’,PST_IRT));

hold on;

%writematrix(t_rt(best_fitting_index),..

1:nfrac(best_fitting_index),...

sprintf(’Hyperfractionation_%i.xlsx’,q));

disp(S)

end

scatter(t_rt_init,0, ’^’,’green’,’filled’);

scatter(PST_HFSRT, 0, ’*’,’red’);

scatter(PST_IRT , 0, ’*’,’blue’);

line([0 T_fin], [vol_PST vol_PST])

legend show

savefig(’Hyperfractionation.fig’)

toc
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