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Abstract 
 

Over the past two decades, CubeSat technology has succeeded in making satellites compact 

and light-weight, thus affordable to the broader community. More recently, the maturation of 

Artificial Intelligence (AI) algorithms in conjunction with the significant advances in 

traditional Fault Detection, Isolation and Recovery (FDIR) techniques for space applications 

are supporting the development of Intelligent Health and Mission Management (IHMM) 

systems. These new intelligent systems are expected to provide proprioceptive and self-

adaptation capabilities to satellites, thus granting them trusted autonomy. 

“Intelligence is the ability to adapt to change”, Stephen Hawking said during his Oxford 

University graduation speech. “Intelligence”, “adapt”, “change” are the keywords 

highlighting the important features to be implemented in future systems. 

It is well known that space is not a friendly environment because of various unpredictable 

events, such as external perturbations that affect satellites orbit and attitude, which affect 

smaller platforms the most. IHMM systems exploit the complementary advantages of 

traditional physics-based FDIR and contemporary AI techniques to predict degradation of 

subsystems performance, implementing real-time system health forecasts that accommodate 

enough time to detect, identify and suddenly recover a possible fault, guaranteeing CubeSat 

safety and letting them fulfil their operations, while ensuring an acceptable level of functional 

capability. 

The aim of this thesis is to define how IHMM systems shall be designed and integrated in a 

small satellite to enhance its operational autonomy, with a particular focus on mission-critical 

systems such as the Attitude Determination and Control System (ADCS) and the 

Communication system, which crucially enable a satellite to maintain contact with the ground 

and are subject to various faults. To accomplish this aim, the thesis will introduce the IHMM 

subsystems’ design, followed by a failure analysis of the ADCS components with a possible 

diagnosis. 

An AI-based algorithm will be also implemented in a Digital Twin of the satellite in order to 

predict the behaviour of the system and to diagnose or recover from the different faulty 

scenarios. 

Lastly, results will be discussed in detail with a view towards future research. 
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1. Introduction 
 

Since October 4th1957, when the Soviet Union successfully launched Sputnik I, space science 

and technology research have greatly enhanced our understanding of Earth, its atmosphere, 

and our solar system, as well as outer space, through different space programs and missions 

[1].  

The urgent need to explore space is also justified by the fact that the 21st century population 

growth has triggered energy and water shortages, and environmental damage [2].  

Over all the discoveries and improvements that space research helped to realize, what is 

profoundly changed is the idea of unknown space and the concept of distance in space 

exploration. Starting from the idea of unknown space, the human will of observing the sky is 

anachronistic, but with space observation and exploration missions, it is possible to directly 

find high resolution images from different telescopes or past missions on the internet. For 

example, there is the Astronomy Picture of the Day Archive website, offered by NASA, 

which everyday offers different images to “Discover the cosmos”, as it is written on their site 

[3].  

Regarding the distance in space exploration, since last not near-Earth manned mission was 

the Apollo 11, unmanned spacecraft are serving as substitute for astronauts in exploring the 

solar system and probing the mysteries of the universe. 

Multiple technologies have been developed for unmanned spacecraft, experiencing a real 

boost in studying and producing small satellites. One of the reasons for this boost is the 

substantial reductions in cost and time, which can be explained by focusing on the advances 

in microelectronics and integrated technologies of these last decades. 

Small satellites include a different variety of satellites with a mass less than 180 kilograms, 

and they could be classified as: mini (100-180 kg), micro (10-100 kg), nano (1-10 kg), pico 

(0.01-1 kg) or femto-satellites (0.001-0.1 kg), depending how much they weigh. CubeSat 

technology, which is the one chosen for this case of study, is a subcategory of nanosatellites, 

but with a standard size and a form factor. The standard size is a unit (1U) and it is basically a 

cube with the dimensions of 10x10x10 cm, but it could be extended from 1.5 to 2, 3, 6, up to 

12 U. [4] 



These spacecraft have to function in an extreme environment, because of severe temperature 

cycling exposure, vacuum, micrometeoroid impacts and high energy ionising radiation, 

mostly on LEO and GEO orbits. So considering the harsh operating environment of a 

spacecraft and the inability to repair or replace its malfunctioning equipment, failures are 

some of the major challenges encountered during a space mission. One of the most critical 

systems to ensure extended survivability and operability of satellites is the Attitude 

Determination and Control System (ADCS), since in addition to compromising the payload 

operation, its failure usually compromises regular power generation and thermal management 

as well as communication with the ground. The Communication System (Comsys) is also 

critical in many mission stages since its failure would prevent the continuation of the mission 

even if the other systems are at least partially healthy.  

Degradation of both these subsystems can considerably affect mission performance, and 

failure can result in the loss of the spacecraft. As shown in [5], the ADCS degrades and fails 

more frequently, harder (failures with more severe anomalies), and earlier in LEO than in 

GEO. To overcome this problem, [6] proposed reinforcement learning, a paradigm of 

machine learning, to derive a discrete neural spacecraft attitude control method without 

requiring high-performance computing. It has been also developed a quasi-time-optimal 

control solution to a highly constrained control problem, achieving an important level of 

pointing accuracy. 

While in [7], deep learning was applied for fault detection and identification to detect actuator 

faults in nanosatellites. Models of the satellite were built using MATLAB, and a simplified 

model of the reaction wheel was designed. Satellite faults can be detected autonomously, even 

when they are not detected by the ground station, using the proposed model, and it is expected 

to be very useful for the autonomous operation of the mega-constellation mission that will 

utilize nanosatellites in the near future. 

So, the implementation of IHMM in ADCS could represent a tangible solution for this 

problem. IHMM could change drastically also the feasibility of missions, mostly in terms of 

autonomy. 

NASA definition of autonomy is “the ability of a system to achieve goals while operating 

independently of external control. […] is not the same as artificial intelligence (AI) but may 

make use of AI methods.” [8].  Therefore, it becomes increasingly important to integrate 

autonomy in robotic space exploration to reach and operate in environments that have never 



Figure 1 Sheridan Scale, image from [10] 

been explored, where the knowledge about that environment is uncertain, where the 

spacecraft's interaction with that environment is dynamic, where resources available to the 

spacecraft are limited, and where the harshness of that environment impacts and degrades the 

spacecraft's health.  

Even in previously characterized environments, like the Moon and Mars, autonomy could 

improve productivity, increase robustness, and reduce costs, as seen in recent advances in 

autonomous landing and surface navigation for Mars 2020. [9] It is possible also measuring 

the autonomy of a system with different type of scales. The Sheridan scale [10] (Fig. 1), for 

example, defines ten criteria associated to ten levels that classify the level of autonomy: 

• Level 1 coincides with full control of the operator, 

• Levels from 2 to 4 handle with who decides, 

• Levels from 5 to 9 deal with the way to implement the decision, 

• Level 10 corresponds to the complete autonomy of the machine that decides if inform 

the human or not. 

 
 

 

Although autonomous systems are the focus of attention, human operators continue to play a 

crucial role in the decision-making process during operations, particularly when faulty 

systems and components are involved. In order to achieve trusted autonomous capabilities, as 

it was discussed in [11-12] an IVHM system driven by data-driven AI reasoning techniques 

and models would be required. In this way, the health condition could be monitored in real-

time during operation, system faults could be reliably predicted, and resources could be 



rearranged rapidly to prevent catastrophic events and minimize the impact of single/multiple 

failures. The actual implementation of the IHMM, which will increase the level of autonomy 

of the mission, could reduce also the cost of missions near Earth, reducing telemetry, which is 

handled by the ground stations, and as a consequence reducing the number of people 

involved. Also the feasibility of long-distance space exploration missions, considering that, 

for example, there is a time delay of 40 minutes for communication to go and come back from 

Mars.  

According to what was explained before, the integration of IHMM in the satellite design is 

critically important going forward. 

This thesis goal is to develop a viable solution, by exploiting Artificial Intelligence algorithms 

to assess and predict the degradation of the ADCS performance in CubeSat and similar small-

scale platforms, which could compromise the communication affecting the ComSys, and the 

main contributions are given as follows: 

1. One important outcome of this work is to implement in CubeSats the concept of Trusted 

Autonomy, in other words systems capable of independently assessing the situation (own 

and external), selecting and performing mission tasks, running spacecraft systems, and 

making changes to operations without human interaction [13]. 

2. As a difference from literature [6-7, 14-15], this thesis will rely on a Digital Twin of the 

CubeSat to simulate and study the answer of the system when faults occur. 

One of the benefits of the Digital Twin technology is that it can create a near-real-time 

link between the physical and digital worlds. Models based on it are more realistic and 

holistic, offering deeper and more comprehensive measurements of uncertainty [16]. 

More in detail, a baseline mission will be considered in this study and for the CubeSat design 

choices. 

The structure of this thesis will be the following: the literature overview in Chapter 2, 

followed by the methodology explained in the Chapter 3, the verification case and the 

simulation in the 4th, and at the end it will be the conclusions and the possible future works.  



2. Literature overview 
 

This chapter will cover an overview of the concept of autonomous technology and how the 

idea of FDIR has changed gradually in new and advanced designs and how it was applied in 

ADCS. Starting from Figure 2, it will be described the fundamental steps and innovations, 

while the detailed analysis of the studies will be in the chapter itself. 

 

 

Figure 2 Summary of the fundamental steps covered in the literature overview 

One of the first papers that involves the idea of testing the autonomous capability on a 

conceptual design of the attitude determination subsystem [17] was published in 1986. The 

presence of specific faults related to this specific system was also considered, while 

techniques for observing and isolating these faults were showed, along with correction 

methodologies. It appears clear anyway, that there was not enough confidence in these 

algorithms, supposing that it is needed that the ground station completes the eventual 

reconfiguration, after the fault observation and identification phases. 

In the late 80s, the interest in improving space technologies to reduce weights and costs arose. 

Therefore, research in implementing neural networks for the development of instruments for, 



the spacecraft attitude determination and control were carried out, giving new hopes in this 

field [18,19]. 

A fundamental study that needs to be taken into account is part of the 1990 Nasa Conference 

on Artificial Intelligence for Space Application. In this conference was presented a prototype 

of a Maintenance and Diagnostic System (MDS) to apply to ADCS in order to improve its 

Fault Detection Isolation and Recovery (FDIR) system [20]. This project was meant to be for 

the Space Station Freedom, next converted into the International Space Station in 1993 under 

Clinton administration. In this paper it is highlighted the need to improve autonomous 

capability on remote systems, in other words that systems that could be unreachable, because 

physically distant to the crew, without an Extra-Vehicular Activity (EVA) or through robot 

systems. ADCS is considered a remote system and its maintenance is expensive, so the 

implementation of the MDS to the FDIR was studied to provide crucial information to support 

the FDIR in the fault isolation phase and at the same time giving it predictive capabilities.  

The interest in developing an autonomous ADCS continued also in the 90s, for example with 

the 1996 Danish mission Ørsted, in which it was necessary matching the high requirements on 

autonomy while considering cost requirements that imposed cheap actuators [21]. Among the 

topics discussed are development of novel algorithms for attitude control based on magnetic 

torque, attitude determination schemes based on geomagnetic field measurements, and 

implementation into a supervisory control architecture. In addition, performance degradation 

was tolerated after the occurrence of a fault and the hardware redundancy was acceptable for 

few important components. However, the heritage of this paper is a satellite mission 

applicable idea when autonomy onboard is important, but with the limit of applicability of 

algorithms for satellite with a little number of sensors. 

Another later 90s paper proposed a roadmap for realizing the significant gains that can be 

realized by enhancing spacecraft autonomy [22]. Important purposes of this paper are 

evaluated various AI techniques to determine whether they are suitable for use in various 

spacecraft functions, while defining a command-and-control architecture incorporating virtual 

prototyping as a means of integrating and migrating reusable code from the ground to the 

space segment. As a result of the study, the implementation of AI showed a reduction of about 

30 % of total mission cost, opening a door for reusable software systems and for automating 

ground and space segment operations, but highlighting the need to have a standard high-level 

commanding language to reduce more the costs. 



Going through the 2000s, continued the progress in implementing AI algorithms in order to 

automatize processes of faults diagnosis and their consequences and possible recommendation 

of solutions to let the human crew be able to pay attention to explore and study space. 

This was possible thanks to NASA’s Integrated Vehicle Health Management (IVHM) that led 

the way to the future generation of space vehicles [23]. This study discusses IVHM 

techniques for future space vehicles. It presents how an IVHM could reduce, or even 

eliminate, many of the costly inspections and operations associated with future space 

transportation systems but considering that the development and use of an IVHM are heavily 

dependent on highly reliable sensors and processing software and in that way exposing the 

urge of continuing studies. 

An innovative point of view for the 2000s is offered by [24,25], which are part 1 and part 2 of 

the 2005 IEEE Aerospace conference. In these two documents is explored the world of 

prediction, through Prognostic and Health Management (PHM) capability and the study of the 

useful life remaining capabilities. The term prognostics in PHM has a much broader definition 

than just prognostic functions alone as it includes fault/failure detection, fault / failure 

isolation, enhanced diagnostics, assessment of material condition, performance monitoring, 

and life tracking. These papers end admitting that predictive prognostics has several 

challenges, issues, and lessons to be learned, but with the conviction that this technology will 

mature and become more widely applied. 

Going now more in depth with how the fault diagnosis was implemented in different designs 

to improve the autonomy of the satellite, it is useful start with the idea of the performance of 

fault diagnosis, given by a milestone in this field, professor P.M. Frank, in three steps: 

residual symptom generation, residual evaluation and fault analysis (to determine type, size 

and cause). He also explained that a fault diagnosis system must have the ability to diagnose 

as many small faults as possible with a minimum number of measurements and to be 

extremely robust to unknown inputs [26]. In this paper there is also the classification of 

different methods of fault detection based on the method of residual generation, such as 

signal-based, analytical model-based and knowledge-based. For Analytical Model-based 

approaches, there are different approaches, such as observer-based methods, which use some 

form of observer to measure the output of the system and then construct residuals using 

properly weighted output estimate errors. After that, the residual is examined for the presence 

of faults utilizing a decision rule based on a simple threshold test and a statistical decision 

theory. Ideally, the residual should be equal to zero, without faults or disturbances. 



For example, in [27] a second order sliding mode observer is applied to the ADCS, which 

reconstructs the mapping of four reaction wheel faults into three principal axes. A different 

methodology it is explained in [28] where is implemented a nonlinear observer to calculate 

modified Rodriguez parameters and angular velocity vector. For the faulty recovery control, 

this paper presents the need of having a re-configurable algorithm to preserve the closed-loop 

system's stability and to tune the controller gains in the event of sensor failures. It is proposed 

also a controller that guarantees the uniformly ultimately boundedness in presence of sensor 

faults, but with a limit of a known bound of the tracking error. 

Another approach is the one offered by [29], where an observer-based H∞ output feedback 

fault-tolerant controller is designed, in order to stabilize the attitude system and maintaining 

the system performance. In this paper there were sensor and actuator faults at the same time. 

Firstly, virtual observers are used to reduce fault effects, and then a real observer is derived 

from them. With the newly developed observers, new criteria for designing H∞ FTC methods 

have been established, ensuring that the faulty closed-loop attitude systems are asymptotically 

stable at a given level of disturbance attenuation. 

Differently, in [30] for fault detection, isolation, and estimation is investigated a class of 

nonlinear systems. Specifically, for fault detection, a nonlinear observer is designed to 

minimize the uncertainty within H∞ framework. Then, a series of nonlinear robust unknown 

input observers is defined in order to isolate the faulty actuator. Consequently, fault isolation 

is achieved based on the generalized observer strategy. By using the proposed observer, faults 

and states can be estimated simultaneously, and input disturbances can be decoupled, and 

model uncertainty and external disturbances can be attenuated. 

An interesting point of view is proposed by [31], which presented a Multiple-Fault design 

scheme at two distinct levels, system and component. In the system level, two nonlinear 

observers, so double observers, based on analytical redundancy can diagnose multiple faults 

of the system, but this level can reveal the fault source roughly. Secondly, at the component 

level, a bank of Sliding mode observers is designed to determine precisely which actuators of 

ACDS are malfunctioning; this provides a clear indication of the root cause of the problem, as 

it is explained in Figure 3. 

 



Figure 3 Multiple-Fault Design Scheme, adapted from [31] 

 

 

Other different solutions to diagnose the occurrence of uncertainties and faults are offered for 

example by Gao et al. [33], which designed two Extended Kalman filters and a fault diagnosis 

scheme based on analytical redundancy, in order to use the residuals given by EKFs to 

identify successfully faults and the element that has caused them.  

Pourtakdoust et al. [34] presented an approach in which the presence of external disturbances 

and sensor faults, the angular velocity and attitude of a rigid gyro-less satellite are estimated 

and controlled using a modified Square Root Unscented Kalman Filter (MSRUKF). This 

study also presents and proves a concept that can analytically decouple the unhealthy 

orientation signal from the healthy one using a proposed optimization process for sensor 

installation. 

Lee et al. [7] offers another possible perspective, where a new method based on deep learning 

is proposed for detecting and identifying the faults in the reaction wheel. Furthermore, the 

proposed model enables the satellite to detect faults autonomously. 

Guo et al. [32], on the other hand, proposed a solution where after the fault identification, a 

series of radial basis function neural network (RBFNN)-based observers are designed to 

isolate and estimate the faults. The design of Fault Detection Observers and Fault 

Identification Observers is also improved by the use of a series of Disturbance Compensation 



Figure 4 multi-algorithmic hybrid ADCS, adapted from [35] 

Observers to estimate the disturbances in the system. These disturbance estimates are then 

applied to the fault diagnosis algorithm, making feasible a Multiple Fault Analysis. 

Another interesting approach is proposed by Lee et al. [35], where a multi-algorithmic hybrid 

ADCS for a small satellite has been designed. A hybrid automaton framework was used to 

implement multiple control and estimation algorithms, as well as condition-based switching 

strategies. The hybrid automaton has also been described in detail in terms of its states and 

transition conditions. As it is possible to understand from Figure 4, the switching mechanism 

is controlled by different thresholds, which define what strategy will be implemented for the 

specific case. 

 
 

  



3. Methodology 
 

3.1 Mission baseline and requirements 

 

The satellite designed for this work is composed by COTS (commercial-off-the-shelf) 

components. 

The Nasa Engineering and Safety Center definition of COTS cited by the 2014 technical 

update [56] is “an assembly or part designed for commercial applications for which the item 

manufacturer or vendor solely establishes and controls the specifications for performance, 

configuration, and reliability (including design, materials, processes, and testing) without 

additional requirements imposed by users and external organizations.”   

Based on this definition, the idea of developing a small satellite becomes accessible not only 

at federal industries or economically developed countries, but it is available also for smaller 

countries and universities, or research centres. 

Moreover, the presence of these kind of components allows to impact less if a fault occurs, 

differently from a more complex system implemented, which is more expensive and could be 

fatal for the entire mission. [57] 

Referring to the heritage of other missions, this one will be able to check the Earth in an 

observation mission for remote sensing. The mission considered as a reference for 

specifications and requirements is the ESA Cryosat-2. 

The CryoSat-2 is the replacement mission of the original one that was lost for a launch failure 

in 2005, but keeping the original mission objectives, such as monitoring the thickness of land 

ice and sea ice and trying to explain the connection between the rise in sea levels and the 

melting the polar ice, while giving a contribution to understand how this is influencing the 

climate change. 



 

Figure 5 CryoSat-2 logo, with the courtesy of ESA 

This chapter is divided into the following sections: 

• Next part of this paragraph to define the mission requirements and the design 

preliminaries and choices for this thesis, 

• The detailed description of the component models, with a summary of faults and 

possible diagnosis, in order to simulate efficiently in MATLAB/Simulink 

environment, 

• The attitude representation equations, followed by the Satellite Kinematics and 

Dynamics, 

• The implementation of the applied Unscented Kalman Filter, 

• How the Data Analysis will be executed in order to apply the proposed solution, 

• How the Fault Detection and the Fault Identification will be carried out through the 

equations to implement in MATLAB/Simulink, 

• A summary of the proposed algorithm, which represents the core contribution of this 

thesis. 

The chosen baseline mission for this thesis is an Earth-Observation Mission in LEO. This 

choice is the product of the will of analysing an exemplified mission to design IHMM to 

define an adaptable model for further studies, with the advantage of having more accurate 

data and information available about the environmental conditions and disturbances.  

Since the CryoSat-2 is an Earth-Observation mission in LEO, the orbit specifications and the 

spacecraft parameters will be considered as the selected for this work.  

The spacecraft parameters are listed in Table 1, while the orbital parameters are detailed in 

Table 2. 

 

 



Table 1 Spacecraft Parameters, obtained from Earth online Portal [58] 

Overall 

Dimensions 
4.60 m x 2.34 m x 2.20 m 

Mass 

(fuel included) 
720 kg 

Attitude 
3-axis stabilized local-normal pointing, with 6 degrees nose-down attitude, using 

magneto-torquers 

Power 
2x GaAs body-mounted solar arrays, with 850 W each at normal solar incidence; 

78 Ah Li-ion battery 
 

Table 2 Orbital parameters, obtained from Committee on Earth Observation Satellites [59] 

Semi-major axis (km) 7095348.56 

Eccentricity 0.0005098 

Inclination (deg) 92.0369 

Right Ascension of the 

Ascending Node (deg) 
288.4013 

Argument of Perigee (deg) 159.0008 

Mean Anomaly (deg) 201.1410 

 

While talking about the spacecraft configuration and instruments, CryoSat-2 has a rectangular 

shape, with solar arrays forming a sort of tent. It has also the lower part faces continuously the 

Earth. The antennas used for radio communication, and the Laser Retroreflector, are mounted 

on this surface; an emergency antenna for command and monitoring is also fitted on top of the 

satellite between the solar arrays. The two SIRAL (SAR/Interferometric Radar Altimeter) 

instrument antenna dishes are mounted on a separate rigid bench in the forward section of the 

S/C. In addition, a dedicated SIRAL radiator is mounted at the nose tip. [40] 

Considering the main system considered in this work, the ADCS, the CryoSat-2 mission is 

composed of the following elements: 

• A cold gas system for attitude control and orbit transfer and maintenance maneuvers,  

• Three magnetorquers for compensation of environmental disturbance torques, 

• Three star-tracker heads providing autonomous inertial attitude determination for the 

spacecraft. This makes the sensor system one-failure tolerant, except for the 

occurrence of simultaneous sun and moon blinding of two heads, to which the system 



software is tolerant. Furthermore, the star tracker attitude is useful to be a reference for 

the orientation of the SIRAL interferometric baseline, 

• A DORIS receiver measures the Doppler frequency shifts of UHF and S-band signals 

transmitted by ground beacons. It has an accuracy < 0.5 mm/s in radial velocity, 

allowing an absolute determination of the orbit position with an accuracy of 2-6 cm, 

• • CESS (Coarse Earth-Sun Sensor) to provide attitude measurements (<5º) with 

respect to the sun and Earth for initial acquisition and coarse pointing, 

• • A set of three three-axis fluxgate magnetometers are used for magnetorquer control 

and as rate sensors. They provide a measurement range of at least ± 60.000 nT with an 

accuracy of better than 0.5 % full scale. 

 

Figure 6 CryoSat-2 satellite configuration, courtesy of ESA 

On the other hand, Figure 7 will present the CubeSat design choices.  

In this figure are represented only the systems that could be directly related to this study. As it 

could be seen, the payload block is also represented and it is composed by instruments for 

Earth-Observation, such as Hyperspectral Camera1 and the Lidar2.  

Another important aspect that is highlighted by the legenda is that there are different linkages 

between the different blocks. In particular, the blue arrows indicate the power line, while the 

red one indicate the data line.  

 
1 A hyperspectral imaging camera measures continuous bands of wavelengths within the electromagnetic 
spectrum and can collect and process the information. A wide range of wavelengths is also covered in the 
recorded spectra with fine wavelength resolution. 
2 Lidar is a method for determining variable distances by targeting an object with a laser and measuring the time 
for the reflected light to return to the receiver. Lidar is commonly used to make high-resolution maps. 



Looking at the figure it could be noted that, for what concern the Command and Data 

Handling, there are two double-headed red arrows. These links take to two blocks encircled 

by a green dashed line, not only the ADCS, which will be involved in implementing AI 

algorithms in this thesis, but also the Communication System.  

Between these systems it stands an inherent bond, justified by the fact that the correct 

pointing of antennas, which allows communication with ground stations, it is strictly related 

to external disturbances whom the satellite is affected when in orbit, measured and corrected 

by ADCS.  

So, it appears important consider that the communication system would be influenced, in 

order to have a complete understanding of the design choices done in this case study. 

 

 

Figure 7 CubeSat design choices 

Another important point, it is to have an idea of the mission requirements to model correctly 

the ADCS. 

Table 3 shows the product requirements for the CryoSat-2 mission: 



Table 3 ADCS requirements, from [40] 

 

These requirements will represent constraints to take into account for the simulation phase of 

this thesis, considering them as requirements also for this case study. 

3.2 Component models 

As an innovative point of view, in this thesis, a hybrid approach is proposed to detect and 

identify attitude control failures based on an analytical Model-based approach.  

The detection system would be designed as an intelligent system which combines knowledge 

of spacecraft dynamics control and knowledge of the components behaviour through a digital 

twin of the system and artificial intelligence algorithms.  

The aim of these steps is to allow the system to detect and report anomalies in real time with 

high accuracy, in order to improve pointing accuracy, while increasing satellite autonomous 

capabilities. 

To efficiently use the digital twin approach, in order to simulate accurately the system 

behaviour when a fault occurs, it will be used a Model-based approach and so it will be 

modelled the main components of the instruments used in ADCS:  

• A brushless DC motor for the reaction wheel, 

• A baffle for the star tracker, 

• An air core and three torque rods for the magnetorquer board, 

• A Global Positioning System receiver. 
 

3 SARIn refers to the SAR interferometric mode 

Requirement Value 

Cross-track pointing knowledge for 

SARIn3 mode 

 

< 10 arcsec 

 

Pointing accuracy per axis in the nominal 

Earth-pointing phase of the mission 

 

< 0.2º 

 

Pointing stability for 0.5 s in the nominal 

Earth-pointing phase of the mission 
< 0.005º 



Before proceeding with the actual models, the classification of the components, their possible 

faults, and a possible strategy to diagnose them are listed in Tables from 4 to 6. 

 Table 4 Faults and Diagnosis for Actuators 

  

 
4 Caused by large electrical voltage stresses, electro-dynamic forces produced by winding currents, thermal 
aging from multiple heating and cooling cycles, and mechanical vibrations from internal & external sources. [36] 

Component Fault Diagnostic 

Brushless 

DC Motor [36] 

 

 

 

 

 

Inverter 

 

 

 

Rotor 

 

 

Stator 

Broken rotor bar, 

Static and Dynamic air gap irregularities, 

Dynamic eccentricity, 

Winding short, 

Bearing and gearbox failure. 

• Temperature 

measurements,  

• RF emission 

monitoring, 

• Noise and vibration 

monitoring,  

• Motor Current 

Signature Analysis 

(MCSA),  

• AI & NN based 

techniques,  

• Electromagnetic field 

monitoring. 

 

Loss of one or more of the switches of a phase, 

Short circuit of a switch, 

Opening of one of the lines to the machine. 

Damaged rotor magnets, 

Damaged Hall sensors. 

Breakdown of the winding insulation.4 

Magnetorquer 

[46] 

Broken wire or bad soldering, 

Component burned, 

Short circuit to the power voltage, 

Misalignment of the magnetorquer, 

Short circuit between the magnetorquer and the power 

voltage, 

Faulty supply voltage. 

• Analysis of the residual 

based on Biot-Savart 

Law, 

• Discrepancy between 

estimated and actual 

actuator torques, 

• Decreasing control 

voltage range. 

 



Table 5 Faults and Diagnosis for the Star tracker 

Component Fault Diagnostic 

Baffle [47] 

(Star tracker)  

 

Random errors 

 

 

 

 

 

 

Systematic 

errors 

Shot noise of the flux from the star, 

 

 

Random dark signal, 

 

 

Readout noise of the sensor. 

Decreasable with the increase 

of exposure time. 

 

Reduceable by cooling the 

sensor. 

 

Select the right mode of 

operation or reading out with a 

lower frequency. 

 

Image pixelization, 

 

 

 

The effect of "hot" pixels, 

 

 

 

Bias non-uniformity. 

Calculate the correction to the 

measured coordinates for a 

certain Point Spread Function. 

 

Exclusion from the 

consideration of stars which 

images contain "hot" pixels. 

 

To eliminate this error the map 

of bias needs to be stored and 

taken into account while image 

processing. 

As it possible to notice for the star tracker, all faults founded are affecting the imaging 

process and not the mechanical part, which is the baffle. The baffle could be affected to other 

disturbances that are not considered as proper diagnosable faults, such as micro-meteoroids 

impact and possibility of shifting of the structure because of vibrations due to the launch or 

the deployment. 

Micrometeoroids with velocities of tens of kilometres per second pose a significant 

environmental hazard to spacecraft. As meteoroids impact, their damage is different 

depending on their size, density, porosity, speed, and direction. A repeated impact of micron-

sized to submm-sized particles can cause gradual degradation of spacecraft surfaces through 

erosion or cratering, which may affect for example mirrors, lenses, and sensors. Bigger 

particles can also perforate baffles or insulation layers [48]. For these reasons, in this thesis, 



won’t be considered the faults from the baffle, because they are unpredictable, talking about 

micro-meteoroids impacts, or previously taken into account when the baffle was optimized in 

the design phase. 

Lastly, Table 6 is referred to the GPS receiver and its possible faults. 

Table 6 Faults and Diagnosis for GPS receiver 

Component Fault Diagnostic 

GPS receiver 

[52] 

 

 

 

 

Noise and Resolution,  

 

 

Ephemeris Prediction, 

 

 

Clock Offset, 

 

 

Group Delays, 

 

 

 

Multipath errors. 

 

 

 

 

Antenna obscuration 

 

 

 

Radiofrequency interference 

Intentional and Unintentional 

(jamming) 

Reduceable by using appropriate filtering techniques 

 

 

Evaluable through an equation function of Along 

Track (ATK), Across Track (XTK) and Radial (RAD) 

 

Negligible in most positioning applications, residual 

ineliminable because the corrections are periodic 

 

Estimated on the ground before launch and corrections 

in the navigation message 

 

 

Techniques such as the Narrow Correlator, the Double 

Delta/Strobe Correlator, or the Vision Correlator by 

Fenton and Jones, are useful, but not capable of 

eliminating the errors completely 

 

It is necessary to determine the Line of Sight of the 

satellite with respect to the antenna phase centre 

 

 

Filtering and suppression techniques are applied for 

detecting or anti-jamming 

 



Figure 8 BLDC motor model circuit 

The mathematical models of the components with their equations will be discussed in the next 

paragraphs for a better understanding of the physics behind, and they will be useful for the 

implementation in MATLAB/Simulink environment. 

3.2.1 Brushless DC motor model 

 

 

This R-L circuit represents the BLDC motor functioning, using an armature to convert the 

current in electro-mechanical force that generate a torque [36]. This motor includes also 

permanent magnets, and this induces a back electro-magnetic frequency (emf) in the 

armature. The variables are: 

• R, the resistance 

• L, the inductance5 

• k, the back-emf constant 

• θ,t the angular velocity of the motor shaft 

• J motor moment of inertia 

To obtain a model, it is useful to solve the circuit, applying the Kirchhoff’s law to voltage: 

    𝑅ⅈ(𝑡) + 𝐿
ⅆⅈ

ⅆ𝑡
= 𝑉 − 𝑘

ⅆ𝜗

ⅆ𝑡
       ( 3.1 ) 

Now, considering the mechanical part, the generate torque is proportional to the current ⅈ(𝑡): 

  𝐽
ⅆ2𝜗

ⅆ𝑡2 = 𝑘ⅈ(𝑡)       ( 3.2 ) 

Anyway, this equation is approximative, because it should be considered that there are not 

losses, but it is not realistic. 

 
5 Note that the inductance should be the L-M where L is the self-inductance and M is the mutual inductance 



Figure 9 Non-Ideal Behaviour Circuit for Resistor, adapted from [37] 

To ensure more grip on reality, it is possible to add a damping coefficient to multiplicate the 

angular velocity that model the loss: 

𝐽
ⅆ2𝜗

ⅆ𝑡2
− 𝑏

ⅆ𝜗

ⅆ𝑡
= 𝑘ⅈ(𝑡)      ( 3.3 ) 

So, the set of the equations appears to be: 

{
𝑅ⅈ(𝑡) + 𝐿

ⅆⅈ

ⅆ𝑡
= 𝑉 − 𝑘

ⅆ𝜗

ⅆ𝑡

𝐽
ⅆ2𝜗

ⅆ𝑡2
− 𝑏

ⅆ𝜗

ⅆ𝑡
= 𝑘ⅈ(𝑡)

     ( 3.4 ) 

Now, the transfer function will be: 

      𝐻(𝑠) =
𝑘

𝐿𝐽𝑠3+(𝐽𝑅−𝑏𝐿)𝑠2+(𝑘2−𝑅𝑏)𝑠
     ( 3.5 ) 

In order to be more accurate, it should be considered not the ideal circuit but the non-ideal one 

[37]. 

Starting from the resistor, it is modelled as a circuit with a lumped leaked inductance Llead is 

considered to be in series with the ideal bulk resistance R, that is in parallel with the parasitic 

capacitance Cparasitic. 

 

 

 

While C parasitic is the combination of a lead and a leakage capacitance. 

      𝐶𝑝𝑎𝑟𝑎𝑠ⅈ𝑡ⅈ𝑐 = 𝐶𝑙𝑒𝑎ⅆ + 𝐶𝑙𝑒𝑎𝑘𝑎𝑔𝑒     ( 3.6 ) 

The total impedance will be determined by calculating the sum between the impedance of the 

RC part and the lead inductor: 

     𝑍𝑅𝐶 =
𝑅

1+𝑗𝜔𝑅𝐶𝑝𝑎𝑟
      ( 3.7 ) 

      𝑍𝐿 = 𝑗𝜔𝑅𝐿𝑙𝑒𝑎ⅆ      ( 3.8 ) 



Figure 10 Resistor model implemented in MATLAB environment 

With this model the impedance of the equivalent circuit will be the sum of these two: 

      𝑍𝑅 =
𝑗𝜔𝐿𝑙𝑒𝑎𝑑+𝑅(1−𝜔2𝐿𝑙𝑒𝑎𝑑𝐶𝑝𝑎𝑟)

1+𝑗𝜔𝑅𝐶𝑝𝑎𝑟
     ( 3.9 ) 

 

To exemplify this expression, it will be assumed that: 

Assumption 1. The range of frequencies considered is limited to only low frequencies. 

With this assumption, it could be considered that 𝜔2𝐿𝑙𝑒𝑎ⅆ𝐶𝑝𝑎𝑟 ≪ 1 and 𝜔𝑅𝐶𝑝𝑎𝑟 ≪ 1, and 

𝐿𝑙𝑒𝑎ⅆ ≪ 𝑅, so after mathematical manipulation the impedance of the resistor will be: 

𝑍𝑅 = 𝑅      ( 3.10 ) 

Applying this model in MATLAB environment, it is possible to notice that for low 

frequencies the circuit is working as a simple resistor:  

 

 

  

 

 

For the inductor then, the real circuit will be modelled as: 

• A series inductance 𝐿𝑙𝑒𝑎ⅆ and a parallel 𝐶𝑙𝑒𝑎ⅆ with the ideal inductance because of the 

wire leads of the inductor, 

• A parasitic resistance in series with the ideal inductance to consider the large amount 

of wire in the inductor coil, 



Figure 11 Complete Non-Ideal Behaviour Circuit for Inductor, adapted from 
[37] 

Figure 12 Simplified Non-Ideal Behaviour Circuit for Resistor, adapted from [37] 

 

• A parasitic capacitance in parallel, due to the individual windings of the coil being 

close to one another. 

 

 

 

But it is possible to simplify more this first model, because: 

• 𝐿𝑙𝑒𝑎ⅆ ≪ 𝐿 so, it will therefore be neglected, 

• 𝐶𝑙𝑒𝑎ⅆ ≪ 𝐶𝑝𝑎𝑟𝑎𝑠ⅈ𝑡ⅈ𝑐, same as before. 

 

 

 

With this model the impedance of the inductor will be: 

1

𝑍𝐿
=

1

𝑗𝜔𝐿+𝑅𝑝𝑎𝑟
+  𝑗𝜔𝐶𝑝𝑎𝑟     ( 3.11 ) 

 

This will lead to: 

𝑍𝐿 =
𝑗𝜔𝐿+𝑅𝑝𝑎𝑟

1−𝜔2𝐿𝐶𝑝𝑎𝑟+𝑗𝜔𝑅𝑝𝑎𝑟𝐶𝑝𝑎𝑟
     ( 3.12 ) 

 

For the Assumption 1, the impedance could be written as: 

     𝑍𝐿 = 𝑅𝑝𝑎𝑟 + 𝑗𝜔𝐿      ( 3.13 ) 



Figure 13 Inductor model implemented in MATLAB environment 

Figure 14 Optimized baffle design, image from [38] 

Applying this model in MATLAB environment, it is possible to notice that for low 

frequencies the circuit working as the model: 

 

 

3.2.2 Baffle 

 

There are many factors that limit the performance of star sensors, including stray light level 

on the detector, non-uniformity, and slopes of the corresponding irradiances. A baffle 

prevents direct lightning from the Sun or the Earth from striking optical surfaces.  

Arnoux, in [38], designed an optimization of a star sensor baffle, reducing the length and 

improving the global attenuation and decreasing the stray light irradiance slopes at the 

detector level, while the baffle attenuation alone has been slightly degraded. 

The optimized model, which is shown in the figure, was designed following different steps. 

 
 

Starting from the numbers of vanes that will be five, it is defined that the middle vane shall 

not be illuminated by the Sun. Furthermore, the Baffle is split in two sections by the middle 



Figure 15 Parameters definition, image from [38] 

vane.  

 

The first section length, d2 is defined as 

𝑑2 =
2𝑎[𝑡𝑎𝑛𝜑𝑠−𝑡𝑎𝑛𝜑𝑇]−(𝑟+𝜀)[𝑡𝑎𝑛𝜑𝑇−𝑡𝑎𝑛𝛼2]

[𝑡𝑎𝑛 𝜑𝑇−𝑡𝑎𝑛𝛼2][𝑡𝑎𝑛𝛽−𝑡𝑎𝑛𝜑𝑠]−[𝑡𝑎𝑛𝜑𝑠−𝑡𝑎𝑛𝜑𝑇][𝑡𝑎𝑛 𝛼1−𝑡𝑎𝑛𝛼2]
  ( 3.14 ) 

While the total length of the baffle L 

𝐿 =
2𝑎[𝑡𝑎𝑛𝛽+𝑡𝑎𝑛𝜑𝑠]−(𝑟+𝜀)[𝑡𝑎𝑛𝛼1−𝑡𝑎𝑛𝛼2]

[𝑡𝑎𝑛 𝜑𝑇−𝑡𝑎𝑛𝛼2][𝑡𝑎𝑛𝛽+𝑡𝑎𝑛𝜑𝑠]−[𝑡𝑎𝑛𝜑𝑠−𝑡𝑎𝑛𝜑𝑇][𝑡𝑎𝑛 𝛼1−𝑡𝑎𝑛𝛼2]
  ( 3.15 ) 

And the entrance port radius b will be  

𝑏 = 𝐿 𝑡𝑎𝑛 𝜑𝑇 − 𝑎     ( 3.16 ) 

 

 

After that, it is possible to calculate the second vane position and the depth of the first one. 

𝑍1 =
𝐿𝑉2+𝑏ⅆ2−(𝑎+𝑟)(𝐿−ⅆ2)

𝑉2+𝑏+(𝐿−ⅆ2) 𝑡𝑎𝑛𝛽
     ( 3.17 ) 

𝑈1 = 𝑎 + 𝑟 + 𝑍1 𝑡𝑎𝑛 𝛽     ( 3.18 ) 

     𝑑1 =
2𝑎𝑍1

𝑈1+𝑎−𝑍1 𝑡𝑎𝑛𝛼1
      ( 3.19 ) 

       𝑉1 = 𝑎 + 𝑑1 𝑡𝑎𝑛 𝛼1     ( 3.20 ) 

            𝑈′0 =
𝑉1𝐿+𝑏ⅆ1

𝐿−ⅆ1
      ( 3.21 ) 

𝑈0 = 𝑎 + 𝑟      ( 3.22 ) 

In order to solve these equations, it need to solve the last two, which should be 𝑈′0 = 𝑈0. 



Figure 16 First two vanes depth design, image from [38] 

Figure 17 Fourth and fifth vane depth design, image from [38] 

 

 

 

It is also possible implementing the same method 𝑈′4 = 𝑈4 to calculate the 4th vane position 

and the depth of the last vane: 

𝑈3 =
(𝑉2+𝑎)(𝑎+𝑟)+𝑎ⅆ2 𝑡𝑎𝑛 𝛽

𝑉2+𝑎−ⅆ2 𝑡𝑎𝑛 𝛽
     ( 3.23 ) 

𝑍3 =
(2𝑎+𝑟)ⅆ2

𝑉2+𝑎−ⅆ2 𝑡𝑎𝑛 𝛽
      ( 3.24 ) 

𝑑3 =
𝐿𝑈3+𝑏𝑍3−(𝐿−𝑍3)(𝑉2−ⅆ2 𝑡𝑎𝑛 𝛼2)

𝑈3+𝑏+(𝐿−𝑍3) 𝑡𝑎𝑛𝛼2
     ( 3.25) 

𝑈′4 =
𝑉3+𝑎

ⅆ3
(𝐿 − 𝑎)      ( 3.26 ) 

𝑈4 = 𝑎 + 𝑟 + 𝐿𝑡𝑎𝑛 𝛽      ( 3.27 ) 

 

 

 

3.2.3 Magnetorquer 

The magnetorquer considered in this work is composed of two torque rods and one air core 

torquer, so it will be important to define the main design parameters [39] such as: generated 

dipole, mass, power consumption and occupied volume and interference. 



Generated dipole is one of the most important features for the fact that is strictly related to the 

efficiency of the control torque and, for that reason, should be determined with an accurate 

trade-off between the different requests for the mission. 

Mass is mostly affected by the number of turns and the area of the coil for air core, but for 

torque rods is affected by the presence of the metal core in it. 

Also, the power consumption is a fundamental parameter that is strictly connected to the total 

resistance of the wire, because of Second Ohm’s Law. Anyway, it is also related to the 

temperature of the conductor, tending to decrease while the temperature will increase. 

By now, it should be necessary to divide the phenomenology of the two different actuators to 

model accurately both. 

 

Air core torquer 

Starting from generated dipole, the formula is: 

𝑚 = 𝑛𝐼𝑆      ( 3.28 ) 

Where m is the magnetic dipole intensity6, S is the coil area and n is the number of turns. 

For the magnetic field there is a formula to define it for a rectangular shape coil, where l1 and 

l2 are the dimensions: 

    𝐵𝑧 = 𝑛𝐼
2𝜇0√(𝑙1

2+𝑙2
2)

𝜋(𝑙1ℎ2)
      ( 3.29 ) 

The torque will be: 

�⃗� = �⃗⃗� × �⃗�       ( 3.30 ) 

 

Torque rods 

Starting from the magnetic dipole, this case will highlight more difficulties in designing that 

kind of magnetorquer, because of intrinsic properties and demagnetizing factor that should be 

taken into account. 
 

6 Unit is A*m2 



The magnetic dipole expression will be the sum of two different elements, the dipole due to 

the solenoid and the one inducted by the core’s magnetization, in that way it could be better 

modelled the torque rod behaviour: 

       𝑚 = 𝑁𝐼𝑆 + 𝑉𝐶𝑀      ( 3.31 ) 

Where N, I and S are specifically the number of turns, the current, and the solenoid area, 

while VC and M are the core volume and the magnetization of the core. 

Referring at [5], the final expression for m is 

𝑚 = 𝑁𝐼𝜋𝐺      ( 3.32 ) 

Where G is 

     𝐺 = 𝑟2 +
𝑟2(𝜇𝑟−1)

(1−𝑁𝑑+𝜇𝑟𝑁𝑑)
     ( 3.33 ) 

So, it is a parameter representative of the shape of the core and its magnetic properties. 

With r and 𝑁ⅆ  defined as: 

𝑟 = √
𝑉

𝜋(
𝑙

𝑟
)

3        ( 3. 34 )  

   𝑁ⅆ =
4[𝑙𝑛(

𝑙

2
)−1]

(
𝑙

𝑟
)
2
−4 𝑙𝑛(

𝑙

𝑟
)
      ( 3. 35 ) 

Note that 𝑁ⅆ  is specific for cylindrical core, with r and l as the radius and the length. 

At the same time the expression of B is related at the current and the core shape: 

     𝐵 =
𝜇0𝜇𝑟𝑁𝐼

𝑙(1−𝑁𝑑+𝜇𝑟𝑁𝑑)
      ( 3.36 ) 

As the previous type of magnetorquer, the torque will be 

�⃗� = �⃗⃗� × �⃗�       ( 3.37 ) 

3.2.4 GPS receiver 

 

The GPS receiver is a component of the satellite that allows to improve the precision of 

attitude measurement, since it is based on the Global Navigation Satellite Systems. 

As Sabatini et al. [52] documented in their review, GNSS errors are continuously studied and 



their remediation techniques improved in order to mitigate the degradation of signal, to 

achieve better performances and to make the system more trustworthy. 

As explained in Table 6 in the previous section to implement the GPS receiver, it is necessary 

to consider the presence of possible faults, but since the mission considered for this study is a 

LEO mission, it will not be necessary considering all the faults listed in the paper. 

The first type of faults that will be considered, it is related to the Noise and Resolution, but it 

is not mathematically modellable, since it is reduceable with filtering techniques or with more 

precise receivers. 

Another error is the ephemeris prediction error, which can be described with the (3.38): 

𝐸𝑅𝑅 = 𝑅𝐴𝐷 𝑐𝑜𝑠𝛼 +𝐴𝑇𝐾 𝑠ⅈ𝑛 𝛼 𝑐𝑜𝑠 𝛽 + 𝑋𝑇𝐾 𝑠ⅈ𝑛 𝛼 𝑠ⅈ𝑛 𝛽  ( 3.38 ) 

where 𝛼 and 𝛽 is the angle between the Line Of Sight user-satellite and the satellite vertical 

and β is the angle between the ATK direction and the satellite target containing the Line Of 

Sight and the satellite vertical. It is relevant to notice that United States Department of 

Defence precise ephemeris is observed from ground stations, while the non-DoD agencies or 

organizations use models to predict precisely the position. 

For the Clock Offset and the Group Delays errors, the first one it is reduceable with a 

correction with polynomial coefficients in order to reduce the error, while the second ones are 

fixable with an estimation before launch and corrections while in space. 

Multipath errors are a kind of error that is not negligible and it is an error source that needs to 

be considered, but can be modelled and deleted only in static points, with consecutive 

observations. 

Other types of sources of errors like the propagation errors, are excluded because of the 

presence of the satellite in LEO, so the signal for satellite to satellite will not be delayed 

because of the atmospheric effects of ionosphere and troposphere. 

Different approach for the antenna obscuration, which can be modelled. In order to determine 

the obscuration, it needs to determine the LOS of the GNSS satellite with respect to the 

antenna phase centre. The formula is: 

𝑇𝐸
𝑎 = 𝑇𝑏

𝑎 ∗ 𝑇𝑁
𝑏 ∗ 𝑇𝐸

𝑁     ( 3.39 ) 



where 𝑇𝑏
𝑎 is the transformation matrix between the aircraft body frame and the antenna frame, 

𝑇𝑁
𝑏 is the transformation matrix from ENU (East-North-Up) to body frame and 𝑇𝐸

𝑁 is the 

ECEF (Earth Centred Earth Fixed) to ENU transformation matrix. 

Last error that will be considered is radiofrequency interference, which could be intentional 

or unintentional and it causes a degradation of the accuracy of the navigation or a complete 

loss of the receiver tracking. For these kinds of error there are different anti-jamming or 

jamming detection techniques, also for civil use.  

For more information about sources of errors, these are presented more in depth in the 

Ref.[52]. 

 

3.3 Attitude representation 

 

In order to have a representation of the satellite in orbit, it will be used a body-fixed frame 

with axes aligned to the principal axes of inertia and the origin in the centre of mass, but also 

a reference frame with origin at the center of the earth and axes pointing to the center of the 

earth, along the orbital velocity. 

The attitude representation is the expression of the orientation of the satellite body-fixed 

frame toward reference frame and it could be showed by different types of representation 

including direction cosine matrix, Euler angles, quaternions, and Modified Rodriguez 

Parameters. 

The direction cosine matrix is very inefficient because it is difficult to enforce the six 

constraints, while Euler angles have issues related to trigonometric functions, and 4-element 

quaternion vector has ambiguity problems. [41] 

So, it will be used MRP vector to represent the attitude of the satellite. The MRPs can be 

considered as a normalized version of the Euler parameters. Let’s start with denoting with Φ 

the principal angle and with ê the principal axis associated with Euler’s theorem [42]. The 

Euler parameters are defined by: 

      { 𝑞0 = 𝑐𝑜𝑠(𝜙 ∕ 2)

𝑞ⅈ = êⅈ 𝑠ⅈ𝑛(𝜙 ∕ 2) (ⅈ = 1,2,3)
     ( 3.40 ) 



MRP eliminate the Euler parameter constraint7 and reduce the number of coordinates from 

four to three, introducing σ: 

𝜎ⅈ =
𝑞𝑖

1+𝑞0
     (ⅈ = 1,2,3)     ( 3.41 ) 

 

Furthermore, the MRP are related to the principal angle and the principal axis through: 

     𝜎 = ê 𝑡𝑎𝑛(𝜙 ∕ 4)      ( 3.42 ) 

It is important to notice that MRPs have a singularity in [0,2π] range, avoidable using the 

MRP shadow set [43]: 

𝜎ⅈ
𝑆 =

𝜎𝑖

𝜎𝑇𝜎
= ê 𝑡𝑎𝑛 (

𝜙−2𝜋

4
)     ( 3.43 ) 

The shadow points have important properties, because they go singular at the zero rotation 

and to zero at ±2π principal rotation, so basically the opposite behaviour of 𝜎. 

3.4 Kinematics and Dynamics 

 

So, the kinematic equation can be expressed through this set of differential equations [44]: 

{
�̇� = 𝐺(𝜎)𝜔

𝜎(0) = 𝜎0
       ( 3.44 ) 

Where 𝜔 is the angular velocity of the body-fixed frame in the reference one but expressed in 

the body frame and G is defined as: 

𝐺(𝜎) =
1

2
(𝐼3𝑋3 − 𝑆(𝜎) + 𝜎𝜎𝑇 − 1 +

𝜎𝑇𝜎

2
𝐼3𝑋3)   ( 3.45 ) 

 

S(.) is the 3x3 skew-symmetric matrix, defined as follow: 

𝑆(𝜎) = [

0 𝜎3 −𝜎2

−𝜎3 0 𝜎1

𝜎2 −𝜎1 0
]     ( 3.46 ) 

At the same time, the dynamics of the rotational motion of a rigid body can be described 

through this set of equations in body-fixed frame: 
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{
𝐽�̇� = 𝑆(𝜔)𝐽𝜔 + 𝑢

𝜔(0) = 𝜔0
      ( 3.47 ) 

Where J is the satellite inertia matrix and u is the applied torque vector in body axes [45]. 

Considering that 𝑥 = [𝜎𝑇 𝜔𝑇]𝑇 is the state variable, 𝑦(𝑡) is measured by sensors, it is possible 

to express the state-space model of the studied ADCS, based on attitude kinematics and 

dynamics: 

{
�̇�(𝑡) = 𝜙(𝑥)𝑥(𝑡) + 𝐵𝑢

𝑦(𝑡) = 𝐶𝑥(𝑡)
      ( 3.48 ) 

Where, 

𝜙 = [
03𝑋3 𝐺(𝜎)

03𝑋3 𝐽−1𝑆(𝜔)𝐽
] , 𝐵 = [

03𝑋3

𝐽−1 ] , 𝐶 = 𝐼6𝑋6   ( 3.49 ) 

3.5 Unscented Kalman Filter 
 

In order to calculate the satellite attitude, it will be implemented an attitude estimation 

algorithm, specifically a Kalman Filter. 

Since the problem analysed is nonlinear, the choice can be limited between an Extended 

Kalman Filter, an Unscented Kalman Filter or a Particle Filter, which are the mostly applied 

for local estimation.  

As it showed and explained in [44], if the dynamical models have Gaussian noise the UKF is 

more accurate than the EKF, because it stores the second order moments, while it doesn’t 

need a local approximation. 

Another reason for using UKF, instead of EKF, is because MRP based on EKF has the big 

limit that can be applied to a specific range in which MRP vector is nearly linear. 

The Unscented Kalman Filter is described as it follows. 

Starting from the calculation of the root mean square 𝑆𝑘−1
+  of covariance matrix by Cholesky 

method, where 𝑃𝑘−1
+  is the covariance matrix:  

𝑃𝑘−1
+ = 𝑆𝑘−1

+ 𝑆𝑘−1
+ 𝑇

          ( 3.50 ) 

After that, Sigma point is evaluated as: 



𝑥𝑘−1
+(ⅈ)

= �̂�𝑘−1
+ + √𝑛𝑆𝑘−1;ⅈ

+ , ⅈ ≤ 𝑛         ( 3.51 ) 

𝑥𝑘−1
+(ⅈ)

= �̂�𝑘−1
+ − √𝑛𝑆𝑘−1;ⅈ−𝑛

+ , ⅈ > 𝑛          ( 3.52 ) 

Considering that n is the matrix dimension. 

The Sigma points will be propagated, with τs as a time interval, by: 

𝑥𝑘
−(ⅈ)

= 𝑥𝑘−1
+(ⅈ)

+ 𝑓(𝑥𝑘−1
+(ⅈ), 𝑡𝑘)𝜏𝑠             ( 3.53 ) 

The state and error covariance after propagating, will be described by: 

 𝑥𝑘
− =

1

2𝑛
∑ 𝑥𝑘

−(ⅈ)
2𝑛

ⅈ=1
         ( 3.54 ) 

𝑃𝑘
− =

1

2𝑛
∑ (𝑥𝑘

−(ⅈ)
2𝑛

ⅈ=1
− �̂�𝑘

−)(𝑥𝑘
−(ⅈ) − �̂�𝑘

−)𝑇 + 𝑄𝑘−1         ( 3.55 ) 

With Qk−1 as the system noise covariance. 

The measurements update will be, from the new Sigma point: 

𝑃𝑘
− = 𝑆𝑘

−𝑆𝑘
−𝑇          ( 3.56 ) 

𝑥𝑘
−(ⅈ)

= �̂�𝑘
− + √𝑛𝑆𝑘;ⅈ

− , ⅈ ≤ 𝑛         ( 3.57 ) 

𝑥𝑘
−(ⅈ)

= �̂�𝑘
− − √𝑛𝑆𝑘;ⅈ−𝑛

− , ⅈ > 𝑛           ( 3.58 ) 

The average measurement innovation is defined by: 

{
𝛿𝑧𝑘

−(ⅈ) = 𝑧𝑘 − ℎ(�̂�𝑘
−(ⅈ), 𝑡𝑘)

𝛿𝑧𝑘
− =

1

2𝑛
∑ 𝛿𝑧𝑘

−(ⅈ)
2𝑛

ⅈ=1

     ( 3.59 ) 

Also, the covariance of innovation is: 

𝐶𝛿𝑧,𝑘
− =

1

2𝑛
∑ (𝛿𝑧𝑘

−(ⅈ)
2𝑛

ⅈ=1
− 𝛿𝑧𝑘

−)(𝛿𝑧𝑘
−(ⅈ) − 𝛿𝑧𝑘

−)𝑇 + 𝑅𝑘         ( 3.60 ) 

The next step is calculating the gain matrix, state and error covariance matrix update: 

𝐾𝑘 = [
1

2𝑛
∑ (𝛿𝑧𝑘

−(ⅈ)
2𝑛

ⅈ=1
− 𝛿𝑧𝑘

−)(𝛿𝑧𝑘
−(ⅈ) − 𝛿𝑧𝑘

−)
𝑇

] + (𝐶𝛿𝑧,𝑘
− )−1         ( 3.61 ) 



�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘𝛿𝑧𝑘
−          ( 3.62 ) 

𝑃𝑘
+ = 𝑃𝑘

− − 𝐾𝑘𝐶𝛿𝑧,𝑘
− 𝐾𝑘

𝑇         ( 3.63 ) 

Furthermore, in [55] there are also the shadow-set transformation and all the equations for the 

shadow state. 

3.6 Data Analysis 

 

As it was presented in Fig.6, the new concept presented in this thesis for the ADCS algorithm 

includes the presence of sensors measurement data analysis, in order to detect possible 

anomalies that will trigger the fault investigation path, which will be useful to detect and 

identify possible faulty components, preventing potential problems before they occur. 

As part of data analysis and data-driven anomaly detection, it will be analysed the similarity 

of the monitoring parameters based on distance measurements. An appropriate similarity 

measure can properly reflect the gradual and small changes in the monitoring series, and thus, 

can help identify abnormalities more efficiently, classifying the telemetry data through an 

anomaly detection algorithm, such as the k-Nearest Neighbor (KNN) classification [48][49]. 

For a better understanding of the time series pattern and finding the similarity between two 

unequal sequences, dynamically warping the time axis is necessary. This is possible through 

the Dynamic time warping (DTW) technique, as explained in [50] and as it will presented in 

the following part of this paragraph. 

First, it defines a time series Q and a time series C, each of which has a length of n and m, 

respectively: 

𝑄 = 𝑞1, 𝑞2, … , 𝑞ⅈ, … , 𝑞𝑛     ( 3.63 ) 

𝐶 = 𝑐1, 𝑐2, … , 𝑐𝑗, … , 𝑐𝑚     ( 3.64 ) 

To compare the two time series, it is necessary to align them. Through DTW it is possible to 

construct a matrix that has as ith and jth element the alignment between the two points 𝑞ⅈ e 𝑐𝑗, 

obtained through the calculation of their Euclidean Distance8. 
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The Warping Path, indicated as W, establishes a mapping between the two series because it is 

defined as: 

𝑊 = 𝑤1, 𝑤2, … , 𝑤𝑘, … , 𝑤𝐾     ( 3.65 ) 

Where K is ranging between max(m,n) and m+n-1. 

It is fundamental to impose all the constraints that influence W. It is required that: 

• The warping path starts in one corner cell and it will finish in the diagonally opposite 

one, 

• A step to be allowable has to be in the adjacent cell, including the diagonally one, 

• The points will be monotonically spaced in time. 

It is needed to have the warping path that satisfies the conditions, but that minimizes the 

warping cost at the same time, defined as: 

𝐷𝑇𝑊(𝑄, 𝐶) = 𝑚ⅈ𝑛(
√∑ 𝑤𝑘

𝐾
𝑘=1

𝐾
)    ( 3.66 ) 

K is useful to compensate, in case of different lengths. 

In order to solve (3.51), it is possible to define the cost matrix α: 

𝛼 (ⅈ, 𝑗) = 𝑑(ⅈ, 𝑗) + 𝑚ⅈ𝑛{𝛼(ⅈ, 𝑗 − 1), 𝛼(ⅈ − 1, 𝑗 − 1), 𝛼(ⅈ − 1, 𝑗)}  ( 3.67 ) 

Considering the constraints for the frame elements9, 𝛼 (ⅈ, 𝑗) allows to define the warping path 

calculating the actual map and defining the minimum warping cost DTW(Q,C). 

As it is proposed and tested in [49], with the framework in figure 18, it is possible to detect 

anomalies offline and online with two different types of algorithms. 

 
9 α(0,0)=0, α(i,0)= α(0,j)=+∞ 



Figure 18 Framework of anomaly detection for telemetry data, adapted from [49] 

 

 

 

The next step will be completed through the KNN classification, which will allow to detect 

possible anomalies online. 

In order to have a better understanding of this algorithm, it will be defined the equations as it 

was done in [49], in which is possible to find the specific framework for the KNN algorithm 

too. 

KNN classification is one of the most used algorithms for data mining, which estimates if a 

data point is to be a member of a group or another depending on what group the data points 

nearest to it are in. 

To calculate the average distance inside a class j: 

𝑠𝑗 = {

2

𝑛𝑗(𝑛𝑗−1)
∑ ∑ 𝑑ⅈ𝑠𝑡(𝑥𝑗𝑘, 𝑥𝑗𝑡), 𝑛𝑗 > 1𝑥𝑗𝑡∈𝑋𝑡𝑥𝑗𝑘∈𝑋𝑗

𝑚ⅈ𝑛(𝑆) , 𝑛𝑗 = 1  
   ( 3.68 ) 

Where: 

• 𝑛𝑗  is the number of samples in j, 

• 𝑥𝑗𝑘 and 𝑥𝑗𝑡 are the kth and the tth sample in j, 



• 𝑋𝑗 and 𝑋𝑡 are the training data sets, 

• dist(xjk, xjt) is the distance between these two calculate with the DTW as explained 

before, 

• S is the series of average distance inside each class. 

Following the framework for KNN, explain in depth in [49], the most important part is the 

one about the anomaly judgement. 

To obtain it, it needs to calculate the 𝑑𝑚ⅈ𝑛, which is the minimum distance between 𝑥′ (the 

test time series to be detected) and the samples in class 𝑙′. This will be fundamental for the 

judgement: 

{
𝑑𝑚ⅈ𝑛 > 𝑆 ⋅ 𝑠𝑙′̅̅ ̅ , 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑑𝑚ⅈ𝑛 ≤ 𝑆 ⋅ 𝑠𝑙′̅̅ ̅ , 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑒𝑟ⅈ𝑒𝑠
    ( 3.69 ) 

At the same time, the satellite historical telemetry data will be analysed, while the hierarchical 

clustering will be applied to the unlabelled time series to detect possible anomalies. For this 

part of the algorithm, the main goal is to delete the anomalous class of data in order to keep 

the normal series. This will be done through the P parameter, the abnormal determination 

parameter, to determine the clusters. If this  𝑃 >
𝑛𝑖

𝑁
, the class considered is anomalous, being 

𝑛ⅈ the number of members in the class and 𝑁 the total number of members. 

To have a better understanding of the hierarchical clustering algorithm, refers to Fig. 16, 

adapted from [54], which explains the steps for the Nearest Neighbor Chain Algorithm. 

 

 

 

 

 

 

 

  

 

 

Figure 19 Steps Nearest Neighbor Chain Algorithm, adapted from [54] 



3.7 Fault Detection 

 

As it was previously explained, once the presence of an anomaly in the data is detected, it will 

be triggered the fault detection part of the algorithm. 

In order to detect any sensor or actuator fault without restrictions, it will be implemented the 

observer-based multiple fault diagnosis algorithm presented in [31] that, as explained in the 

literature overview, it is applied in two different levels, the system and the component one. 

Starting from the system level, it will be set up a double observer, one for actuators faults 

based on the satellite dynamics, while the other for star sensors based on the kinematics. 

According to (3.46), the state-space model for the kinematics will be: 

{
�̇�(𝑡) = 𝜙𝜎(𝑥)𝑥(𝑡)

𝑦(𝑡) = 𝐶𝜎𝑥(𝑡)
      ( 3.70 ) 

Where 𝑥 = 𝜎. 

It is possible to design the observer, as follows: 

{
�̂̇�(𝑡) = 𝜙𝜎(�̂�)�̂�(𝑡) + 𝐿1(𝑦(𝑡) − �̂�(𝑡))

�̂�(𝑡) = 𝐶𝜎�̂�(𝑡)
    ( 3.71 ) 

Where the state estimation is �̂�(𝑡) and the output estimation is �̂�(𝑡). 

The state estimation error is defined as 𝑒(𝑡) = 𝑥(𝑡) − �̂�(𝑡) and the output estimation error is 

𝜀1(𝑡) = 𝑦(𝑡) − �̂�(𝑡). 

The goal of designing the observer is to reach an observer gain 𝐿1 that allows state estimation 

�̂�(𝑡) to converge asymptotically to the state variable 𝑥(𝑡), under the condition of free fault. 

It is possible to obtain, through the definition of state estimation error and output estimation 

error, the state error equation: 

�̇�(𝑡) = (𝜙𝜎 − 𝐿1𝐶𝜎)𝑒(𝑡)     ( 3.72 )  

𝜀1(𝑡) = 𝐶𝜎𝑒(𝑡)            ( 3.73 )  

In order to have the error dynamics of the observer to be robustly stable to the unknown 

vector without any fault, Theorem 1 should be respected. 



Theorem 1. For the given constant 𝛾1 and 𝛿1, if existing a matrix 𝑀1 and a positive-definite, 

symmetric matrix 𝑃1 such that: 

𝛱1 = [
𝛬1 + 𝐶𝑇𝐶 𝐶𝑇 − 𝑃1𝐿1

0 (1 − 𝛿1
2)

] < 0    ( 3.74 )  

𝛬1 = 𝑀1
𝑇𝑃1 + 𝑃1𝑀1 + 𝛾1

2𝑃1𝑃1 + 𝐼    ( 3.75 )  

In this way, the state estimate error asymptotically goes to zero in a fault free condition, and 

the observer gain will be 𝐿1 = −𝑀1𝐶
−1. 

For the detailed proof procedure, referring to [51]. 

Moreover, it will be considered a fault free situation if ‖𝜀1(𝑡)‖ < 𝜆1, where 𝜆1 represents the 

threshold for the fault diagnosis. In the other cases, it will be detected the presence of a fault 

in the sensor. 

Now again, according to (3.46), the state-space model for the dynamics will be: 

{
�̇�(𝑡) = 𝜙(𝑥)𝑥(𝑡) + 𝐵𝑢

𝑦(𝑡) = 𝐶𝑥(𝑡)
      ( 3.76 ) 

Where 𝑥 = 𝜔. 

It is possible to design the observer, as follows: 

{
�̂̇�(𝑡) = 𝜙𝜔(�̂�)�̂�(𝑡) + 𝐵𝜔𝑢 + 𝐿2(𝑦(𝑡) − �̂�(𝑡))

�̂�(𝑡) = 𝐶𝜔�̂�(𝑡)
    ( 3.77 ) 

Where the state estimation is �̂�(𝑡) and the output estimation is �̂�(𝑡). 

The state estimation error is defined as 𝑒(𝑡) = 𝑥(𝑡) − �̂�(𝑡) and the output estimation error is 

𝜀2(𝑡) = 𝑦(𝑡) − �̂�(𝑡). 

The goal of designing the observer is to reach an observer gain 𝐿2 that allows state estimation 

�̂�(𝑡) to converge asymptotically to the state variable 𝑥(𝑡), under the condition of free fault. 

It is possible to obtain, through the definition of state estimation error and output estimation 

error, the state error equation: 

�̇�(𝑡) = (𝜙𝜔 − 𝐿2𝐶𝜔)𝑒(𝑡)     (  3.78  )  

𝜀2(𝑡) = 𝐶𝜔𝑒(𝑡)            (  3.79  )  



In order to have the error dynamics of the observer to be robustly stable to the unknown 

vector without any fault, Theorem 2 should be respected. 

Theorem 2. For the given constant 𝛾2 and 𝛿2, if there are a constant 𝛽1 > 1, and positive-

definite, symmetric matrices 𝑄1 and 𝑆, such that 

 (1 − 𝛽1)𝐶
𝑇𝐶 + 𝛾2

2𝑄1𝑄1 +
1

𝛿𝑧
2 𝑄1𝐸𝐸𝑇𝑄1 + 𝐼 = −𝑆     (  3.80  )  

In this way, the state estimate error asymptotically goes to zero in a fault free condition, and 

the observer gain will be 𝐿2 =
1

2
𝛽𝑄1

−1𝐶𝑇. 

For the detailed proof procedure, referring to [51]. 

Moreover, it will be considered a fault free situation if ‖𝜀2(𝑡)‖ < 𝜆2, where 𝜆2 represents the 

threshold for the fault diagnosis. In the other cases, it will be detected the presence of a fault 

in the actuator. 

This configuration of double observers is used to run in parallel, so the logic of the diagnosis 

will be: 

Table 7 Diagnostic logic based on Double Observers, adapted from [31] 

Diagnostic logic Presence of the fault 

‖𝜀1(𝑡)‖ < 𝜆1 and ‖𝜀2(𝑡)‖ < 𝜆2 Fault free 

‖𝜀1(𝑡)‖ ≥ 𝜆1 and ‖𝜀2(𝑡)‖ < 𝜆2 Sensor fault 

‖𝜀1(𝑡)‖ < 𝜆1 and ‖𝜀2(𝑡)‖ ≥ 𝜆2 Actuator fault 

‖𝜀1(𝑡)‖ ≥ 𝜆1 and ‖𝜀2(𝑡)‖ ≥ 𝜆2 Both sensor and actuator fault 

 

Considering the component level, it will be designed a bank of sliding mode observers, as 

done in [31]. 

In case of actuators fault, the dynamics model with the fault will be in this form: 

{
�̇�(𝑡) = 𝜙𝜔(𝑥)𝑥(𝑡) + 𝐵𝜔(𝑢 + 𝑓)

𝑦(𝑡) = 𝐶𝜔𝑥(𝑡)
     ( 3.81 ) 

Where 𝑓(𝑡) = [𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡)] is the fault function and it satisfies the assumption to be 

bounded, for each axis: ‖𝑓(𝑡)‖ ≤ 𝜌(𝑡). 



It will be designed three sliding mode observers, one for each axis, to produce estimations and 

diagnose the actuator fault in that specific axis. 

For better describing the model, another way could be: 

{
�̇�(𝑡) = 𝜙𝜔(𝑥)𝑥(𝑡) + 𝐵𝜔𝑢 + 𝐵𝑓ⅈ𝑓ⅈ

𝑦(𝑡) = 𝐶𝜔𝑥(𝑡)
     ( 3.82 ) 

So, it will be defined 𝐵𝑓 = [𝐵𝑓1, 𝐵𝑓2, 𝐵𝑓3] = B, the fault distribution matrix. 

As a consequence of this, the sliding mode observer will be defined as follow: 

{
𝑧�̂̇�(𝑡) = 𝐹ⅈ𝑧ⅈ(𝑡) + 𝑇ⅈ𝐵𝜔𝑢 + 𝑇ⅈ𝐵𝜔𝜇ⅈ(𝑡) + 𝐻ⅈ𝑦(𝑡)

𝑥�̂�(𝑡) = 𝑧ⅈ(𝑡) + 𝑁ⅈ𝑦(𝑡)

�̂�(𝑡) = 𝐶𝜔𝑥�̂�(𝑡)

    ( 3.83 ) 

Where 𝑥�̂�(𝑡) and 𝑦�̂�(𝑡) are the estimated vectors in the i-th axis,  𝜇ⅈ(𝑡) is the non-linear control 

input, zⅈ(t) is the state variable of the observer, Fi, 𝑇i, 𝐻i, 𝑁i are matrices that are designed to 

allow the state estimation 𝑥�̂�(𝑡) to converge asymptotically to the state variable 𝑥(𝑡), under 

the condition of the i-th actuator fault. 

The state estimation error is defined as 𝑒ⅈ(𝑡) = 𝑥(𝑡) − 𝑥�̂�(𝑡) and the output estimation error is 

𝜀3ⅈ(𝑡) = 𝑦(𝑡) − 𝑦�̂�(𝑡). 

Furthermore, it is necessary to set these conditions: 

{

𝑇ⅈ = 𝐼 − 𝑁ⅈ𝐶
𝐹ⅈ = 𝐾ⅈ𝐶

𝐻ⅈ = −𝐾ⅈ(𝐼 − 𝑁ⅈ𝐶)
      ( 3.84 ) 

To make the i-th observer estimation sensitive to the fault in order to decouple signals, these 

constraints will be applied: 

{
𝑇ⅈ𝐵𝑓ⅈ ≠ 0

𝑇ⅈ𝐵𝑓𝑗 = 0, ⅈ𝑓 𝑗 ≠ ⅈ
      ( 3.85 ) 

How to determine all the matrices is explained in depth in [31]. 

Considering Theorem 2 and the condition that the fault function is norm-bounded, it will be 

considered this other theorem: 

 

 



Theorem 3. It will be defined the nonlinear input control variable, such as: 

𝜇ⅈ = {
−𝜌

𝐹𝑖𝜀3𝑖(𝑡)

‖𝐹𝑖𝜀3𝑖(𝑡)‖
, 𝜀3ⅈ(𝑡) ≠ 0

0,          𝜀3ⅈ(𝑡) = 0
     ( 3.86 ) 

For the detailed proof procedure, referring to [53]. 

It is also possible, to reduce the buffeting, modifying the control input to make it continuous: 

 𝜇ⅈ = −𝜌
𝐹𝜀3𝑖(𝑡)

‖𝐹𝜀3𝑖(𝑡)‖+𝛿
      ( 3.87 ) 

Where 𝛿 is a small positive number. 

This configuration of sliding mode observers is used to run in parallel, so the logic of the 

diagnosis will be: 

Table 8 Diagnostic logic based on Sliding Mode Observers, adapted from [31] 

Diagnostic logic Presence of the fault 

𝜇1 = 0, 𝜇2 = 0, 𝜇3 = 0 Fault free 

𝜇1 = 1, 𝜇2 = 0, 𝜇3 = 0 X-axis actuator fault 

𝜇1 = 0, 𝜇2 = 1, 𝜇3 = 0 Y-axis actuator fault 

𝜇1 = 0, 𝜇2 = 0, 𝜇3 = 1 Z-axis actuator fault 

𝜇1 = 1, 𝜇2 = 1, 𝜇3 = 0 X-axis and Y-axis actuator fault 

𝜇1 = 1, 𝜇2 = 0, 𝜇3 = 1 X-axis and Z-axis actuator fault 

𝜇1 = 0, 𝜇2 = 1, 𝜇3 = 1 Y-axis and Z-axis actuator fault 

𝜇1 = 1, 𝜇2 = 1, 𝜇3 = 1 All actuators fault 

 

3.8 Fault Identification 

 

In order to identify the fault, it will be implemented a hierarchical clustering method that 

allows the cluster centre to be specified. 

As it showed in [54], it is possible to summarize all the hierarchical methods through the 

Lance-Williams dissimilarity update formula.  

This formula allows to check the dissimilarity between two points in an agglomerated cluster 

and all the other points, and it is defined as: 

𝑑(ⅈ ∪ 𝑗, 𝑘) = 𝛼ⅈ 𝑑(ⅈ, 𝑘) + 𝛼𝑗 𝑑(𝑗, 𝑘) + 𝛽 𝑑(ⅈ, 𝑗) + 𝛾|𝑑(ⅈ, 𝑘) − 𝑑(𝑗, 𝑘)| ( 3.88 ) 



Table 9, adapted from [54] gives the specifications of the values of 𝛼ⅈ, 𝛽, 𝛾 to choose in the 

formula for the hierarchical clustering method decided. 

It is important to specify for better understanding of this table that: 

• |ⅈ| is the number of objects in cluster i, 
• 𝑔ⅈ is a vector of dimension m, where m is the set of attributes, 
• ‖. ‖ is the norm in Euclidean metric, 
• 𝛼ⅈ = 𝛼𝑗. 

Table 9 Specifications of Hierarchical Clustering Methods, adapted from [54] 

Hierarchical 
Clustering 

Method 

Lance-Wiliams 
Dissimilarity Update 

formula values 

Coordinates of Center of 
Cluster, which 

Agglomerates Clusters i 
and j 

Dissimilarity 
between 
Cluster 

Centers gi 
and gj 

Single link 
(nearest 

neighbour) 

𝛼ⅈ = 0.5 
𝛽 = 0 

𝛾 = −0.5 
  

Complete link 
(diameter) 

𝛼ⅈ = 0.5 
𝛽 = 0 
𝛾 = 0.5 

  

Group average 
(average link) 

𝛼ⅈ =
|ⅈ|

|ⅈ| + |𝑗|
 

𝛽 = 0 
𝛾 = 0 

  

McQuitty’s 

method 

𝛼ⅈ = 0.5 
𝛽 = 0 
𝛾 = 0 

  

Median method 
𝛼ⅈ = 0.5 

𝛽 = −0.25 
𝛾 = 0 

𝑔 =
𝑔ⅈ + 𝑔𝑗

2
 ‖𝑔ⅈ − 𝑔𝑗‖

2 

Centroid 

𝛼ⅈ =
|ⅈ|

|ⅈ| + |𝑗|
 

𝛽 =
|ⅈ||𝑗|

(|ⅈ| + |𝑗|)2
 

𝛾 = 0 

𝑔 =
|ⅈ|𝑔ⅈ + |𝑗|𝑔𝑗

|ⅈ| + |𝑗|
 ‖𝑔ⅈ − 𝑔𝑗‖

2 

Ward’s method 

(minimum 
variance, error 
sum of squares) 

𝛼ⅈ =
|ⅈ| + |𝑘|

|ⅈ| + |𝑗| + |𝑘|
 

𝛽 =
|𝑘|

|ⅈ| + |𝑗| + |𝑘|
 

𝛾 = 0 

𝑔 =
|ⅈ|𝑔ⅈ + |𝑗|𝑔𝑗

|ⅈ| + |𝑗|
 

|ⅈ||𝑗|

|ⅈ| + |𝑗|
‖𝑔

ⅈ

− 𝑔
𝑗
‖

2

 

 



For this case study, the approach which will be implemented is a cluster centre method, with a 

stored data approach, which steps are described in: 

1. Examination of all dissimilarities and formation of cluster from two closest points, 

2. Replacing two clustered points with a point that represents its centre of gravity, 

3. Restarting form step 1, until all points are in one cluster. 

Considering that the method applied will be the Median method, the Lance-Williams 

dissimilarity update formula will be: 

𝑑(ⅈ ∪ 𝑗, 𝑘) =
ⅆ(ⅈ,𝑘)

2
+

ⅆ(𝑗,𝑘)

2
−

𝛽 ⅆ(ⅈ,𝑗)

4
    ( 3.89 ) 

So, the new cluster centre will be distant from the point k: 

‖𝑘 +
ⅈ+𝑗

2
‖

2

      ( 3.90 ) 

With this algorithm, a dendrogram and a graph representing the clusters will be created, in 

order to try to identify the presence of possible anomalies in the data, which highlight the 

presence of possible faults, to allow to identify them. 

 

3.9 Proposed algorithm 
 

In this paragraph the proposed algorithm will be explained and discussed, to give a summary 

of the studied approach showed in the previous paragraphs. 

Starting from the Figure 20, a standard ADCS framework is presented. 

Within this framework, it is possible to follow the following steps: 

1. The sensors give as output their measurements and telemetry and those will be the 

input of the Attitude Determination block, composed by the UKF; 

2. The output of the UKF block will result in the Attitude Error signal, while it is 

compared to the satellite desired attitude; 

3. This signal will be the command input for the controller block, that will calculate the 

necessary torque to apply to the satellite; 

4. Before the application of the calculated torque, it will be considered the presence of 

the Orbital Environment Disturbance Torques, which are not negligible; 



5. This will result in the application of the total torque, which will cause the change of 

the attitude of the satellite, and it will close the loop, because of the sensors 

measuring the new attitude. 

 

Figure 20 Standard ADCS framework 

On the other hand, in Fig. 21, it is proposed the ADCS framework for this thesis. 

As it possible to notice, there are some differences from the standard loop presented in Fig. 

17, and these will be analysed in the following part of this paragraph. 

The first difference in the proposed approach is the presence of a branch from the sensor 

measurements and telemetry block. 

This branch will be divided into two different paths, as it possible to notice from the scheme. 

The red path represents the data integrity verification loop, while the blue one represents the 

health monitoring and diagnostic loop. 



 

Figure 21 Proposed ADCS framework  

Starting from the red path, as it was explained in 3.6, a data analysis of the sensors’ telemetry 

will be executed online through the KNN algorithm and offline through a Hierarchical 

Clustering, to detect possible anomalies between the data sets and discard them. 

The blue path, instead, will implement two different types of fault detection analysis on two 

different levels of the satellite, with two different approaches. As showed in 3.7, the fault 

detection will be executed on the system level through the Double Observers approach, while 

on the component level it will be executed based on the Sliding Mode Observers one. 

As it is shown in the figure, the two path will merge in a single block, coloured in purple, 

through which it will be conducted the fault identification based on hierarchical clustering, as 

it possible to see in 3.8. 

Lastly, there is the Fault Prognosis and Recovery block, branching in two different parts of 

the framework. 

The first one, referring to the Prognosis part, will go into the sensors’ measurements and 

telemetry block, in order to delete the anomalies in data. 



The second one will merge into the controller block, for the Recovery part of the block, if the 

algorithm will detect any faults at the component level, it will be necessary to deactivate the 

faulty actuator. 

This algorithm will therefore monitor the health status of the satellite through its data and 

prognose possible faults with the Fault Detection and Identification, making the system more 

autonomous, robust and reliable, while at the same time operating Fault Prognosis and 

Recovery.  



4.  Simulation and verification  
In this section, a three-axis stabilized satellite ADCS is implemented in MATLAB/Simulink 

environment to give numerical proof of the effectiveness of the algorithm proposed. 

In order to complete the simulation, the implemented ADCS model will be introduced and 

explained and afterwards the results of the Data Analysis and of the Fault Detection and 

Identification will be showed and commented. 

First, these are the parameters considered for the simulation: 

 Table 10 Simulation parameters 

 

Disturbance torques are also implemented as follow: 

𝑇ⅆ𝑥 = 𝐴𝑥 𝑠ⅈ𝑛 𝜔ⅆ𝑡     ( 3.91 ) 

𝑇ⅆ𝑦 = 𝐴𝑦 𝑠ⅈ𝑛 𝜔ⅆ𝑡     ( 3.92 ) 

𝑇ⅆ𝑧 = 𝐴𝑧 𝑠ⅈ𝑛 𝜔ⅆ𝑡     ( 3.93 ) 

Where, 𝐴𝑥 = 1.5 ∗ 10−5 𝑁𝑚, 𝐴𝑦 = 1.6 ∗ 10−5 𝑁𝑚, 𝐴𝑧 = 1.4 ∗ 10−5 𝑁𝑚 and 𝜔ⅆ = 0.02 𝑟𝑎𝑑/𝑠. 

 

4.1 ADCS model 
 

In this model, as it is noticeable from Fig. 22, the desired position is given as an input in order 

to calculate the signal error from the position measured.  

The next steps, as it is explained in the paragraph 3.9, are the controller block commands that 

become inputs for the actuator blocks, which will produce the necessary torque. The result of 

the controlled torque given by the actuators will be summed at the Environmental 

Satellite parameters 

Mass 720 kg 

Dimensions 4.6x2.2x2.34 m 

Inertia of the satellite Ix = 1269.6 kg m2; Iy = 290.4 kg m2; Iz = 1560 kg m2 

Orbital angular velocity 0.001 rad/s 

Initial attitude (sigma) [-0.3134    0.3663    0.3619] 

Controller parameters 

𝜌ⅈ 0.1 

𝛿ⅈ 0.0001 



Disturbance Torques block that were introduced before, giving as output the total torque that 

will be computed in the Dynamics block. 

After this block, the sensors in the Sensors block will result in the sensors measurements and 

they will be the input for the Unscented Kalman Filter block that will give the measured 

position back, to compute the error with respect to the desired one. 

 

Figure 22 ADCS model in MATLAB\Simulink 

4.2 Attitude model 

 

For the desired attitude, the model used is the following: 

 

Figure 23 Desired attitude model 

 

 



Through the Spacecraft Dynamics Block, from the Simulink Aerospace Blockset, are 

calculated the ICRF (International Celestial Reference Frame) position and velocity, the 

quaternions, the angular velocity in body frame and the time UTC in Julian Days. 

For this case study, in order to obtain an improved accuracy of the dynamics, it will be 

implemented the Environmental Model block offered by [60], which as it represented in 

Figure 24 consider the disturbances depending on the position given as input, calculated form 

the orbit propagator, included in the Spacecraft Dynamics block. 

 

Figure 24 Smart Nanosatellite Attitude Propagator, [60] 

After this, the updated position and the quaternions will be the input of the Attitude Profile 

block that will give as output the specific quaternions. 

These will be converted in MRPs as it is proposed in this thesis. 

4.3 Actuator models 

 

Since the orbital parameters used as reference for the numerical simulation are from the 

mission CryoSat-2, in this case study only the reaction wheels are represented as actuators. 

For ease of calculation are considered only 3 RWs, so one for axis. 

The reaction wheel model is implemented in Simscape, as follow: 



 

Figure 25 DC Motor model on Simscape 

As it clear from the figure, the blue part of the scheme is the electric one, while the green part 

is the mechanical. 

The voltage is given by the controller as the input that is converted to the Simscape 

environment. After the solver has given the solution to the configuration, the DC Motor will 

give the controlled torque to apply. 

The parameters used for the DC motor are: 

Table 11 Simulation parameters for DC motor model 

Electrical parameters 

Armature resistance 4 Ohm 

Armature inductance 2.75 ∗ 10−5 H 

Back-emf constant 0.072 ∗ 10−3 V/rpm 

Mechanical parameters 

Rotor inertia 3.2284 ∗ 10−6 cm2*g 

Rotor damping 3.5077 ∗ 10−6 N*m*s/rad 

4.4 Sensors Model 

For the Sensors block, it is used a three-axis gyroscope block from the Aerospace Blockset for 

measurements and its output is computed in a block that calculate the sigmas from the angular 

velocities through the MRP Kinematics block. 



 

Figure 26 Sensors Model 

This specific block is a modified version of the original, referenced as [61]. 

As it possible to see from the comparison of the two blocks, the one at right, modified for this 

thesis, presents the implementation of the shadow set too, avoiding singularities problems. 

 

Figure 27 MRP Kinematics original version from [61] 

 

Figure 28 MRP Kinematics update version with shadow set 



The choice between the normal or the shadow set is implemented through an if block that 

checks the angle in order to define the range to switch in the other set. 

4.5 Fault detection 

 

As explained in the previous chapter, the fault detection will be carried out through Double 

Observers for the System level and through a bank of three Sliding Mode Observers for the 

Component level. 

 

Figure 29 Fault Detection 

 The Fault presence check block is a simple check for the algorithm to give in input the right 

variables, if there is a fault or not. 

Specifically, the System level Fault Detection block is composed as follows: 

 

Figure 30 Fault Detection System level 



As it is explained in the dedicated paragraph, the Double Observers Fault Detection algorithm 

is implemented, using the equations and satisfying the theorems imposed with the matrices 

chosen. 

For this simulation, the following threshold will be considered: 𝜆1 = 3 ∗ 10−7 𝜆2 = 2 ∗ 10−7. 

In order to have an idea of the effectiveness of this algorithm, it is injected a fault in all of 

three actuators and in all of three sensors. 

For the actuators, the fault injected is a pulse type one, with these characteristics: 

{
𝑢𝑎(𝑡) = 𝑢ⅆ(𝑡), 𝑡 < 780𝑠

𝑢𝑎(𝑡) = 𝑢ⅆ(𝑡) + 𝑓𝑎(𝑡), 𝑡 ≥ 780𝑠
    ( 3.94 ) 

Where 𝑢𝑎 is the actuator output, 𝑢ⅆ is the desired actuator output and  𝑓𝑎(𝑡) is the bias fault of 

the actuators and it is defined as: 

{
𝑓𝑎(𝑡) = 0, 𝑡 < 780𝑠

𝑓𝑎(𝑡) = 0.003, 𝑡 ≥ 780𝑠
     ( 3.95 ) 

The pulse-type fault of an actuator is common to occur as a control line fault or a bearing 

failure [62]. 

At the same time, it is injected a fault in all of the three sensors, another pulse-type, expressed 

as: 

{
𝜎𝑜𝑢𝑡(𝑡) = 𝜎ⅆ(𝑡), 𝑡 < 780𝑠

𝜎𝑜𝑢𝑡(𝑡) = 𝜎𝑓(𝑡), 𝑡 ≥ 780𝑠
    ( 3.95 ) 

Where 𝜎𝑜𝑢𝑡(𝑡) is the sensor output,  𝜎ⅆ(𝑡) is the desired sensor output and 𝜎𝑓(𝑡) = [0,0,0]𝑇 is 

the output when it faults.This kind of fault indicates that the sensor has failed to detect the 

correct attitude information. 

In Figures 31 and 32, it is possible to observe the difference between the free fault condition 

and the faulty one: 



 

Figure 31 Actuator Fault detection at System level 

 

Figure 32 Sensor Fault detection at System level 



After the fault is detected in the actuators, the algorithm continues to the Component level 

Fault Detection block, composed as: 

 

Figure 33 Fault Detection Component level 

In this block, the actuator output estimation error, obtained from the previous fault detection, 

will be the input for the bank of Sliding Mode observers that will compute the difference 

between the estimation of the fault and the real one. 

Figure 34 show the computed comparison between the estimated fault and the real one: 

Figure 34 Actuator Fault detection at Component level 



4.6 Data Analysis 

 

To execute the data analysis, two different approaches are applied and computed, the KNN 

algorithm and the hierarchical clustering, in order to find anomalies in data obtained from the 

sensors. 

To compute the KNN, it was necessary to implement a code on MATLAB, using the built-in 

functions: pdist [63], linkage [64] and dendrogram [65]. 

Using these functions, it was possible to obtain this important comparison, between the free 

fault condition and after the fault injection: 

 

Figure 35 Dendrograms of sensors for KNN 

As it possible to notice, the heights between the different clusters are more heterogeneous, 

indicating the presence of a fault in the sensor or the presence of anomalies in the telemetries. 

To prove the effective presence of anomalies, it was computed a graph through a function 

obtained from [66], which give as output: 



 

Figure 36 Free fault sensor graph from KNN 

This figure represents the free fault configuration showing an organised pattern. 

Different from this, it is Figure 37, which show the faulty configuration, such as the one with 

all the sensor faulty. 

In this one, it is clear the presence of a cluster at the bottom of the left side, which show the 

presence of an anomaly. 

 

Figure 37 Faulty sensor graph from KNN 

The second step, for Data Analysis is executed implementing the hierarchical clustering. 



In the next two figures, it will be presented the output of the sensors and the results of the 

clustering, in a fault free condition and after the injection of the fault. 

 

Figure 38 Sigma Measured vs Time 

 

Figure 39 Clustering graphs for Data Anlysis 

As it is evident from the comparison of these two figures, the faulty condition presents a 

cluster in the centre of the axis, indicating a clear anomaly also from the clustering technique. 



4.7 Fault Identification 

 

As explained previously, the fault identification will be carried out through a hierarchical 

clustering. 

Analysing the data from the fault detection analysis, it is computed the clustering in two 

different configurations, in a free fault situation and in a faulty one. 

As it highlighted from Figure 40, the fault injected for the fault detection is clearly present, in 

the dependency of time: 

 

Figure 40 Torque vs Time 

To identify the fault, it will be calculated the dendrogram before, and after it will be graphed 

the clusters. All these figures will be compared to the fault free condition, in order to give a 

complete understanding: 



 

Figure 41 Dendrograms for actuators faults 

 

Figure 42 Clustering for Fault Identification 

As it represented in Figures 41 and 42, the presence of the fault appears evident as in the 

dendrogram, where the difference between the heights of the last two clusters is 5 times more, 

as in the cluster representation, where the two clusters are completely detached. 

  



5. Conclusions 
 

This thesis aimed to develop a viable autonomous algorithm for a Small-Sat, in view of next 

developments towards trusted autonomy in space.  

The proposed approach, based on a combination of physics-based models and Artificial 

Intelligence (AI) algorithms has satisfied the set objectives, thus providing an effective 

solution to make the ADCS of a satellite more autonomous. 

As substantiated in the presented verification activities, the techniques of fault detection are 

effective, at both levels, in providing an accurate analysis of the presence of possible faults. 

Additionally, the data analysis results help to identify the presence of anomalies in the sensors 

telemetries. As demonstrated, the anomalies can be detected as errors, following the specific 

fault detection for the sensors or it can be anomalies of the data, checking the distances 

provided by the MATLAB code with the abnormal determination parameter. 

The strength of the proposed algorithm relies on the ability of the system to become reliable 

and robust, also in terms of trusted autonomy. As presented and demonstrated by numerical 

simulations, this approach provides: 

• A real-time analysis of data that helps to forecast the possible degradation of the 

components, analysing the patterns obtained from the KNN and comparing with the 

healthy one. At the same time, these results allow to eventually prognose the onset of 

faults, activating the fault detection, identification and recovery mechanism, 

• Another scientific reliable proof that relying on a Digital Twin version of the CubeSat 

offers a valid opportunity of a more accurate representation of the models, being 

closer to reality and achieving a better estimation of the behaviour of the systems. 

As a consequence of these achievements, this work aim is to propose an innovative point of 

view on the trusted autonomy field, showing how it could be possible to design and 

implement an efficient and reliable algorithm to a satellite system, obtaining promising results 

in prognosis of anomalies in data, before the actual degradation of the components or the 

occurrence of faults.  

In this scenario, the satellite does not necessarily need to rely on a ground station, for 

example, being able to preserve and monitor its health status continuously, becoming reliable 

in its own autonomous functioning. 



Based on these conclusions future research should focus on:  

• Further improve the accuracy of physics models, as applicable/required, 

• Extending the analysis to additional kinds of faults for the specific actuators and 

sensors, 

• Conducting experimental flight testing and/or adopting data from real missions, to 

prove the effectiveness of the algorithm in real operations. 

This list is obviously not complete, but its aim is to be a first direction for future investigation. 
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