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Abstract

In most current professional indoor antenna measurement systems, the far-field distance is
often too large for a practical shielded and anechoic chamber; hence, the measurement is
done in the near field region, and the collected data computationally processed to yield the
desired far field pattern; this process is called the "Near-Field to Far-Field transformation".
The cost of a measurement is proportional to the number of samples to be measured; the
minimum number of necessary samples is ruled by a result equivalent to the sampling the-
orem for signals, and usually called the Nyquist limit.

In this work, the number of necessary near-field samples is reduced beyond the Nyquist
limit by adding information on the geometry of the antenna under test (AUT), and by
simulations of parts of the AUT.

This endeavor is made specific for an array antenna, composed of several (nearly) iden-
tical antennas interconnected by a network called beam-forming network. The approach
is based on the equivalence theorem and on a technique called inverse source; the latter
yields the fields on a given source from field samples measured outwards. The on-surface
fields on individual antennas (called equivalent currents) are used as basic building blocks
to describe the far-field radiation.

The relative reconstruction error with respect to the reference and different methods are
discussed.



Summary

Fast antenna measurement has been very popular in the last decade. New progress in
communication systems requires more complex antenna designs that imply increasing man-
ufacturing and testing stages during which many sources of error can affect the antennas
final prototype, degrading its overall performance and then it requires new design steps to
detect and fix these manufacturing errors. This work of thesis aims to reduce the number
of sampling points needed for antenna testing below the Nyquist limit by integrating the
missing information from numerical simulation, based on the theory, of the AUT. The
reconstruction algorithm compensates for the missing information with a-priori knowledge
of the antenna under test (e.g. the antenna geometry) to reach a proper hybridization of
measurements and simulations.
The work will be organized as follow. In chapter 1 there will be a brief introduction to
antenna background and simulations. Then in chapter 2 it will be introduced the theory
behind the NF and FF reconstruction process based on the work reported in [1]. In chap-
ter 3 and chapter 4 it will be presented the reconstruction process applied to two different
cases: a 2x1 strip dipole array and a 4x1 patch array. The dipole reconstruction repre-
sents a very ideal case which will be functioning as a test run for the code. In this part
of the work there will not be dedicated much attention to the robustness of the methods
themselves nor to the reduction of measurement points used (i.e. trying to reconstruct
the full array FF with the minimum number of sampled points for the single element di-
mension), instead, it will function as a verification of the feasibility of the reconstruction
process. The main purpose of this thesis will be presented in chapter 4, where it will be
simulated a linear array patch antenna with 4 elements and exploited different setups for
the measurement and try to reduce the sampled data as much as possible while observing
the obtained results.
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"In so far as a scientific statement speaks
about reality, it must be falsifiable: and in so
far as it is not falsifiable, it does not speak
about reality."
[Karl R. Popper, The Logic of Scientific
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Chapter 1

Introduction

Fast antenna measurement has been very popular in the last decade. New progress in
communication systems requires more complex antenna designs that imply increasing man-
ufacturing and testing stages during which many sources of error can affect the antenna’s
final prototype, degrading its overall performance and then it requires new design steps to
detect and fix these manufacturing errors. This work of thesis aims to reduce the number
of sampling points needed for antenna testing below the Nyquist limit by integrating the
missing information from numerical simulation, based on the theory, of the AUT.
The antenna near the field is defined as the field in the proximity of the AUT (i.e. with a
distance < λ1) and is strongly related to the physical currents of the radiating object. So
an accurate measure of the near field provides an advantageous mapping of the far field
and currents distribution on the antenna.

The work will be organized as follow. In the next section, after a brief introduction to
antenna background, it will be introduced the theory behind the NF and FF reconstruc-
tion process based on the work reported in [1]. Then Chapter 1 and Chapter 2, it will
present the reconstruction process applied to two different cases: a 2 x 1 strip dipole array
and a 4 x 1 patch array. The dipole reconstruction represents a very ideal case which will
be functioning as a test run for the code. In this part of the work, there will not be dedi-
cated much attention to the robustness of the methods themselves nor to the reduction of
measurement points used (i.e. trying to reconstruct the full array FF with the minimum
number of sampled points for the single element dimension), instead, it will function as a
verification of the feasibility of the reconstruction process. Then, as a second part of the
work, it will be simulated a linear array patch antenna with 4 elements and exploited dif-
ferent setups for the measurement and try to reduce the sampled data as much as possible
while observing the obtained results.
Finally, the main purpose of this thesis will be presented in chapter 4 where the recon-
struction of the electric field of a real antenna will be compared to the simulation results
to check the validity of this method.

1λ represent the wavelength which is defined as the ratio of the speed of light in vacuum over the
frequency, λ = c0

f
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Introduction

To compare the success and validity of the reconstruction, it was compared the inten-
sity of the electric field on a sphere around the AUT and also the plots of its main cuts:
fixing on the spherical coordinates system in Figure 1.1 the angle ϕ = 0◦ and ϕ = 90◦, the
resulting two dimensional plots are in function of θ. The plot results are always represented
with the reference field exported from CST Studio simulations.

Figure 1.1. Representation of the radiated field in spherical coordinates system.

The main parameter is the reconstruction error which indicates the relative difference
between the reconstructed field versus the reference one.

1.1 Antenna background
Before introducing the theory an overview of antennas and their characteristic parameters
has to be done. The IEEE Standard Definitions of Terms for Antennas (IEEE Std 145-
1983) defines the antenna as " a means for radiating or receiving radio waves".
Antennas are a key component in wireless communications systems which provide the
necessary coupling between circuit and open space allowing the transfer of information
between a TX2 and an RX3 via free-space radiation propagation. The TX antenna is the
element that is fed by a power source and transforms the electromagnetic field into free-
space electromagnetic waves. The RX antenna, instead, transform the incident wave into
power along the transmission line linked to the receiver system.

2The acronym TX stands for Transmitting
3The acronym RX stands for Receiving
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1.1 – Antenna background

The radiation intensity is defined as the power which is radiated per unit solid angle 4.
In the far field zone the radiation can be expressed as:

U(θ, ϕ) = r2

2η
|E(r, θ, ϕ)|2 (1.1)

where E(r, θ, ϕ) is the electric field in spherical coordinates, η = Z = sqrt(η0ηr)/(ϵ0ϵr) is
the medium characteristic impedance and r is the distance.

Directivity

The antenna directivity is defined as the ratio between the antenna radiation intensity,
U , and the isotropic radiation intensity, U0, in a given direction.

D = U

U0
= 4πU

Prad
, U0 = Prad

4π
(1.2)

Gain

The antenna gain is defined as the ratio between the field radiation intensity and the
isotropic radiation intensity. (source: Antenna Theory: Analysis and Design: A. Balanis
[2])

G = 4π
U(θ, ϕ)

Prad
(1.3)

1.1.1 Field Regions

The radiating space surrounding an antenna is divided into two main regions: Near-Field
and Far-Field. The radiating Near-Field region (Fresnel) is defined as the sphere with
radius R2 = 2D2/λ, where D is the largest dimension of the AUT and λ the wavelength.
Instead, the closest space surrounding the antenna is called the reactive Near-Field region
defined inside the sphere with radius R1 = 0.62

√
D3/λ.

4In geometry a solid angle is the measure of the amount of the field of view (i.e. the amount of
the observable world that can be seen at a precise moment) from a particular point of view of a given
object. (source: Wikipedia)
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Introduction

Figure 1.2. Fields regions.

The Far-Field region (Fraunhofer) is defined as the region where the field distribution of
the antenna is independent of the distance from the antenna, which exists from a distance
greater than 2D2/λ. When the distance |R| is small (i.e. a few wavelengths) the coupling
aspect is affected by the instantaneous distribution of charge over the antenna surface. As
the distance increases the radiated power is no longer dominated by these effects. That is
the way the antenna radiation pattern characterization takes place in far-field.

1.1.2 Radiation pattern

The radiation pattern of an antenna is defined as "a mathematical function or a graphical
representation of the radiation properties of the antenna as a function of space coordi-
nates.." [2]. The antenna radiation pattern is graphically represented in Figure 1.3 as a
function of spherical coordinates.
The antenna pattern is usually been analyzed by looking at its electric and magnetic field
planes (E-field, H-field), where the E- and H- field lie one, respectively. These planes are
orthogonal to each other because the two fields are orthogonal to each other as well.

14



1.1 – Antenna background

Figure 1.3. Two-dimensional normalized field pattern.

Antenna’s radiation pattern can be subdivided in regions that present local maximum
separated by points where the radiation drop to zero, called nulls. These radiation portions
are called lobes and they can be classified as follows:

• MAIN LOBE: is the radiation major lobe containing the direction of the maximum
radiation.

• SIDE LOBE: is a lobe that points in any direction other than the main one.

• SLL: Secondary Lobes Level is defined as the value of the side lobe adjacent to the
main beam.

15



Introduction

Figure 1.4. Two dimensional plot of normalized field pattern in dB.

Another important parameter related to the radiation pattern of an antenna is the
beamwidth that represents the angular distance between two identical points at the opposite
side of the main lobe.

• HPBW: the angular separation in which the radiation pattern decreases by -3dB
from the peak of the main lobe.

• FNBW: the angular span between the first pattern nulls adjacent to the main lobe.

1.1.3 Measurement properties of antennas

Antennas can be described by their mass and physical size. When they are connected with
an active electric circuit, antennas manifest electrical properties, then they became able
to radiate or receive radio waves. The main measurable characteristic of an antenna is
its ability to radiate power in a given direction. Antennas do not radiate equally in every
direction, therefore the variation in the ratio of radiated power is the parameter to be
measured. Using a spherical coordinate system where the antenna is placed a the centre,
its radiation pattern, both electric and magnetic field, can be characterized as a function
of the angle θ and ϕ.

Antenna measurements

The antenna test range objective is to characterize an antenna in a known configuration
to the extent to which its coupling can be predicted in other situations.
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1.2 – Microstrip Antennas

1.2 Microstrip Antennas

Microstrip antennas have been very popular in the 1970s for space applications and today
are been used also in commercial fields. These types of antennas consist of a metallic
patch on a grounded substrate. The patch can take different shapes but the rectangular
and circular ones are the most used due to their simple fabrication and analysis process,
and also their attractive radiation characteristics. Microstrip antennas are compatible with
PCB5 design and MMIC6 design. They are very versatile in terms of resonant frequency,
pattern polarization and impedance. These types of antennas can be found on the surface
of high-performance aircraft, satellites, missiles, cars and smartphones.

Figure 1.5. Geometrical representation of a microstrip patch rectangular antenna.

1.2.1 Array Antennas

By applying a set of patch antennas it is possible to achieve better radiation characteristics
for many applications. Array antennas are geometrical aggregation of radiating elements
such that the radiation from the elements adds up to give a maximum radiation intensity
in a specific direction.

5PCB stands for Printed Circuit Board, it is a laminated sandwich structure of conductive and
insulating layers.

6MMIC stands for Monolithic Microwave Integrated Circuit which is a type of integrated circuit (IC)
device that operates at microwave frequencies (300 MHz to 300 GHz).
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Figure 1.6. The Eurofighter Typhoon combat aircraft with its nose fairing removed, re-
vealing its Euroradar CAPTOR AESA radar antenna. Active Electronically Scanned Ar-
ray (AESA) is a computer-controlled phased antenna array, which means that the beam
of radio waves can be steered to different directions. (source: Wikipedia)

Figure 1.7. Fujikura 28 GHz PAAM (Phased Antenna Array Module) for 5G millimeters
wave (mmWave) applications. (source: Fujikura website)

Array antennas are constituted by a feeding network (Beam Forming Network BFN)
and a set of radiating parts, which in the case discussed in this thesis it is a 4 square
patch antennas. The reconstruction process involves only the electric field of the AUT.
The radiation pattern of the array when all its parts are fed is a linear combination of the
single patterns of each patch antenna.
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1.2 – Microstrip Antennas

Figure 1.8. Beam Forming Network representation with each individual exiting
currents for each element of the array.

Electric field of the total array:

En(r, θ, ϕ) =
∑

n

InEn(r, θ, ϕ) (1.4)

I1, I2, I3, I4 are the feeding currents from the BFN. Neglecting inter-element coupling:

En(r, θ, ϕ) = −jZ0

2λ
4πg(Rn)Inhen

(R̂n)g(Rn) = e−jkRn

4πRn
(1.5)

Rn = RnR̂n is the position of the observation points, hen
the effective height of the n-th

element.

1.2.2 Far-Field Approximation
At FF the distance between each radiating objects is much smaller than the distance at
which the field is calculated, so the following approximation stands |rn| << r.
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g(Rn) = e−jkRn

4πRn
= 1

Rn

e−jkRn

4π
(1.6)

Then follow the approximation 1
Rn

≈ 1
r .

g(Rn) = e−jkRn

4πRn
= e−jkr

4πr
exp(jkr̂ · rn) (1.7)

Then for identical equi-oriented and equi-polarized radiating elements:

E(r, θ, ϕ) ≈ −j
Z04π

2λ

e−jkr

4πr
he(θ, ϕ)

∑
n

Inexp(jkr̂ · rn) (1.8)

For the design of an antenna array starting from the single element, it is important to choose
an appropriate inter-element distance d which characterizes the gain and directivity of
the full antenna structure. Also the larger the number of elements, the more complex the
BFN.

1.3 Antenna simulations
To have the best characterization of the AUT, both the single element on which there are
calculated the surface current density coefficients and the linear array, it was used a high-
performance 3D EM analysis software, CST Studio Suite. The simulations of the radiating
objects were used for extrapolating the E-field at NF and FF to MATLAB.
Numerical simulations need to be compared with real data. To have a realistic reference of
the problem, the data obtained from the simulation software CST was put in comparison
with the same data exported in MATLAB. The electric field components, in spherical and
cartesian coordinates, have been re-computed and evaluated. The single patch antenna
has been synthesized by using CST and simulating its electric field inside a finite region of
space of 20λ × 20λ. The post-processing toolbox allows exporting field values in arbitrary
positions in space, by choosing a coordinate system. The exported field has been evaluated
at 5λ, 10λ and 20λ.

coordinate system spherical
normal R
stepsize λ

sphere radius 5λ
theta -180:180
phi -90:90

Table 1.1. Post-processing toolbox parameters

Defining the parameters in Table 1.1 the post-processing toolbox creates a sphere of
samples with arbitrary radius and stepsize, Figure 1.9.
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1.3 – Antenna simulations

Figure 1.9. Field export in arbitrary coordinates from CST Studio. 2D Field evaluation
toolbox (left), observation points on a sphere around the AUT (right).

For each component of the E-field, R, Theta and Phi it was exported separately their
real and imaginary parts, plus a .xyz file containing the selected observation points, dis-
played as red dots in Figure 1.10.

Figure 1.10. Field export in arbitrary coordinates from CST: 1953 observation points.
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Here is reported a comparison between the exported E-field in 2450 arbitrary points
on a sphere around the AUT, with a radius equal to 5λ, from the CST simulation, with
the same radiated field but evaluated at far-field directly from the CST 3D plot. This
representation was used to verify that the data used for the reconstruction of the dipole
currents and field was reliable, at least shape-wise because the field values are not exactly
the same in FF and NF.

Figure 1.11. Exported E-field Theta component, Eθ, represented in NF in MATLAB
(left) and compared to CST 3D plot in FF (right)

Figure 1.12. Exported E-field Phi component, Eϕ, represented in NF in MATLAB (left)
and compared to CST 3D plot in FF (right)

In Table 1.3 is reported the relative error of each field components between the exported
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1.4 – Simulation Accuracy

version in spherical coordinates and the one converted in cartesian coordinates.

∆Eθ 1.80991̇0−5
∆Eϕ 1.81271̇0−5
∆Eρ 1.33511̇0−4

Table 1.2. Approximation error between spherical coordinate components and cartesian
components represented in spherical coordinates.

1.4 Simulation Accuracy
It is also important to specify the limits of the simulation environments which will be
the possible source of systematic errors. Starting from the structure of the patch antenna
itself which is one of the most complex radiating objects to represent and analyze. To get
accurate results from these simulations is important to choose the correct mesh parameters.
CST provides different mesh, and geometry models:

• Hexaedral

• Tetrahedral

and a set of electromagnetic simulation solvers:

• Time Domain

• Frequency Domain

• Eigenmode

A fine Hexaedral mesh with a Time Domain solver was used to carry out all the
simulation data used in this thesis. Another important aspect to take into account is
the characterization of the radiated field of a patch antenna which is one of the more
complex structures to analyze. The main aspect of this work is the reduction of the
number of sampled points on a sphere around the AUT to calculate the antenna currents
and its FF. Therefore the accuracy of the selected points plays a very important role in
the reconstruction process. Unfortunately, it is not possible to manually select the best
sampling points with the Post-processing toolbox in CST. So the choice was entirely given
to the software and this could also have been a source of error in the reconstruction process
of the entire array.
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Chapter 2

Inverse Equivalent
Surface-Source Problem

The inverse equivalent surface-source (IESS) formulation is depicted in Figure 2.1. The
reconstruction process presented in this thesis, for the NF of the simulated antenna, is
based on the work from [1], which proposes a solution of the IESSP (Inverse Equivalent
Surface-Source Problem) with different forms of side constraints such as the Love condi-
tion. The source reconstruction problem aims to obtain currents with a known location
that radiate vector field information.

The solution adopted in this work is based on a reconstruction via equivalence currents
on a closed surface around the radiating object. The currents are obtained by applying
the inverse-source method with Love’s constraint. The NF-to-FF transformation then
is exploited to represent the resulting E-field in FF. The problem is formulated in terms
of linear integral equations and has been addressed by several works in the past years.
In [3] is reported a unified framework of the various possible formulations of the source
reconstruction problem.

2.1 General Equivalence Problem

Here is summarized the general equivalence problem discussed in [3]. The problem de-
scribed in Figure 2.1 aims to find sources on the closed reconstruction surface, denoted by
ΣR, that radiate the input electric field tangent to the measurement surface denoted by
ΣM . Defining E

′
−, H

′
− as the fields inside the reconstruction surface ΣR, and E

′
+, H

′
+ as

the fields outside ΣR, the equivalence currents on the closed surface can be expressed as:
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Inverse Equivalent Surface-Source Problem

Figure 2.1. Illustration of the Equivalence Theorem, original (left) and general (right).

{
Jeq = n̂ × [H+(r) − H ′

−(r)]
Meq = −n̂ × [E+(r) − E′

−(r)]
, r ∈ ΣR (2.1)

By using the free-space radiation operator L, M which will be referred to as EJ and
EM respectevely in the reconstruction equations.{

L =
∫ ∫ ∫

Vω
δ(r − rm) ·

∫ ∫
ΣR

G
E
J (r, r′) · β(r′)

Z da′dv

M =
∫ ∫ ∫

Vω
δ(r − rm) ·

∫ ∫
ΣR

G
E
M (r, r′) · β(r′)da′dv

(2.2)

With G the Gram matrix, defined as:

G =
∫ ∫

ΣR

βS(r) · βp(r′) da′da (2.3)

Then it is possible to express the electric field as:

E(r) = −η0L(Jeq; r) + K(Meq; r) , η0 =
√

µ0/ϵ0, k0 = ω
√

µ0ϵ0 (2.4)

Love’s constraint

The Love equivalence formulation takes the fields inside the reconstruction surface as null,
and the surface currents are chosen to sustain the exterior fields E

′
+, H

′
+. If it is set the

interior fields equal to zero, the result is Love’s form of the Equivalence Principle.{
n̂ × H+(r) = JLOV E

eq

−n̂ × E+(r) = MLOV E
eq

, r ∈ ΣR (2.5)
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2.2 – Method of Moments

With Love’s equivalence, fields on the boundary are obtained directly from the equiva-
lent currents, which is very important for antenna diagnostics because the resultant fields
and currents distribution can be used as a comparison with the initial design of the AUT to
identify the parts of the antenna that have faults or present discrepancies. Fields radiated
by the currents on ΣR in the region external to ΣM are obtained by using Green’s function
of the free space.

n̂ × E(r) = n̂ × [−η0L(Jeq; r) + K(Meq; r)] , r ∈ ΣM (2.6)
Computing Love’s equivalent currents Jeq = n̂ × H and Jeq = −n̂ × E on σR that

radiate the same fields inside σR as the original one. Then, to obtain the actual fields on
the reconstruction surface ΣR directly from the current in 2.5, the zero fields of Love’s
equation must be enforced.

n̂ × E−(r) = lim
r→Σ−

R

n̂ × [η0L(JLOV E
eq ; r) + K(MLOV E

eq ; r)] = 0 (2.7a)

n̂ × H−(r) = lim
r→Σ−

R

n̂ × [− 1
η0

L(MLOV E
eq ; r) − K(JLOV E

eq ; r)] = 0 (2.7b)

2.2 Method of Moments
The Method of Moments is a numerical method in computational electromagnetics. It is
a frequency-domain-based method which involves the projection of an integral equation
into a system of linear equations, by applying specific boundary conditions. It uses a
discrete mesh and finite element methods to model a surface (e.g. the reconstruction
surface ΣR), with the linear combination of pre-defined basis functions. The coefficients
of these functions are the unknowns which will be the focus of the reconstruction method
presented in this thesis. Given a deterministic problem the idea is to reduce a functional
equation into a matrix equation.

L(f) = g (2.8)
L is the operator, f is the field (unknown) and g represent the source. The expansion of
f in a series of functions in the domain of L:

f =
∑

n

αnfn , fn : basisfunctions (2.9)

A finite summation of fn gives an approximate solution:∑
n

αnL(fn) = g (2.10)

Assuming the inner product < f, g > has been determined and a set of weighted functions
( or testing functions) w1, w2, w3, ... in the domain of L then taking the inner product with
each Wm:

f =
∑

n

αn < wm, Lfn >=< wm, g > (2.11)

The choice of wn = fn is known as Galerkin’s method. The approach used in [3] uses
the Point-Matching method which is equivalent to using Dirac delta functions as testing
functions.
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2.3 Basis functions
The solution proposed in [1] involves the EFIE (Electric Field Integral Equation) with the
Method of Moments (M.o.M.) in order to resolve scattering problems on arbitrarily shaped
surfaces. Therefore the surface representation is the first step toward the discretization
of the transmission equation 2.13. In this thesis, it was used a rectangular-shaped recon-
struction surface which contains the AUT. This surface, which it will be called ΣR from
this point forward, is constituted by a set of basis functions.

2.3.1 RWG basis functions
For the solution of the IESSP (Integral Equation Surface-Source Problem), it was used
the low-order Rao Wilton-Glisson (RWG) basis function [4] represents the electric and
magnetic surface current densities discretization.

Figure 2.2. RWG basis function representation.

Each basis function is associated with a couple of cells T +
n , T −

n , defined by a set of three
plus three vertices and an interior edge. It is defined by the following:

fn(r) =


ln

2A+
n

ρ+
n , r ∈ T +

n

ln
2A−

n
ρ−

n , r ∈ T −
n

0 , otherwise

, r ∈ ΣR (2.12)

• ln is the length of the edge.

• An is the area of the triangle.

• ρn is the position vector.
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2.4 – IESSS : Inverse equivalent surface-source solution

The basis function fn was used to approximate the surface currents in 2.15.

Figure 2.3. Rectangular surface represented with RWG basis functions.

2.4 IESSS : Inverse equivalent surface-source solution

In this section, it will be explained briefly the theory behind the code that performs the
IESSP (Inverse Equivalent Surface-Source Problem) developed on [1]. JΣR

and MΣR
are

the equivalent electric and magnetic surface densities on a closed surface ΣR around the
antenna under test (AUT) which contains all the radiation sources. The equivalent current
densities JΣR

and MΣR
are the unknown quantities which should be determined.
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Inverse Equivalent Surface-Source Problem

Figure 2.4. Closed surface around the AUT, r′; source locations, r: observation locations.

Transmission equation:

U(rm) =
∫ ∫ ∫

Vω

δ(r − rm) ·
∫ ∫

ΣR

[GE
J (r, r′) · JΣR

(r′) + G
E
M (r, r′) · MΣR

(r′)]da′dv (2.13)

ΣR is discretized via standar Method of Momenths (M.o.M.) by projection into vector
Dirac-delta functions which are the actual position and direction of the field samples on
ΣM (Point Matching). Imposing the Love condition for all observation points, it results
that the surface current densities can be found by resolving these new equivalences:

JLOV E
ΣR

(r′) = n̂ × H(r′) (2.14a)
MLOV E

ΣR
(r′) = −n̂ × E(r′) (2.14b)

Discretization of electric and magnetic surface current densities by low-order RWG basis
function β.

JLOV E
ΣR

(r′) =
∑

p

Jpβp(r′) (2.15a)

MLOV E
ΣR

(r′) =
∑

q

Mqβq(r′) (2.15b)

Eventually the IESSP can be expressed like the following:[
EJθ EM θ

EJϕ EMϕ

] [
J
M

]
=

[
Um

]
=

[
Eθ

NF,REF

Eϕ
NF,REF

]
(2.16)
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2.4 – IESSS : Inverse equivalent surface-source solution

EJ and EM are the free-space radiation matrices calculated on the observed points r′
m and

from now on they will be referred to as:

EJ =
[
EJθ

EJϕ

]
, EM =

[
EM θ

EMϕ

]
(2.17)

The inverse equivalent surface-source problem has more unknown coefficients than equa-
tions, it is then solved by applying the least mean square elements that give the surface
current density coefficients J and M .
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Chapter 3

Dipole reconstruction

This chapter introduces the reconstruction process through a simplified case of a linear
array made of two dipoles. As specified in the introduction there will be no sampling
points reduction. The main objective is to verify the correctness and applicability of the
method proposed in Chapter 2. The single strip dipole is represented in Figure 3.1, and
the resulting simulation data was exported as explained before with 1953 sampled points
on a sphere with radius 5λ = 1.499 m.

Figure 3.1. Reconstruction surface ΣR of a single dipole.
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Dipole reconstruction

Figure 3.2. Sampled points on a sphere at the observation distance of 5λ around the AUT.

Now the geometry of the reconstruction problem has been defined. The same parameters
for ΣR will be used for each element of the array:

• δ = λ0/2

• mesh density = λ0/5

Several simulations of the same radiating object with different mesh densities (which will
be not reported here) have demonstrated that a value of λ0/5 is enough to represent the
field at FF. Finer density values were not necessary and it will only result in an increasing
computation cost. The same thing is valid for the distance δ, which represents the gap
between the actual dimensions of the AUT and the reconstruction surface around it. As
explained in chapter 2, by resolving the discrete Love-constraint equation in a least-square
sense, it is possible to compute the coefficients JLOV E

eq , MLOV E
eq to calculate the equivalent

surface currents on ΣR (Figure 3.3).

[
EJ EM

] [
JLOV E

eq

MLOV E
eq

]
=

[
EREF

θ

EREF
ϕ

]
(3.1)
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Dipole reconstruction

Figure 3.3. Surface density equivalent currents reconstructed on ΣR.

Discrete electric and magnetic surface density currents by RWG basis functions:


JLOV E

eq =
∑
n

Jn · fn

MLOV E
eq =

∑
n

Mn · η0 · fn

(3.2)

EJ , EM are the free-space radiation matrices. The E-field of the single radiating dipole
at the center of the observed points (or sampled points) is reconstructed.

[
ENF,REC

]
=

[
EJ EM

] [
JLOV E

eq

η0MLOV E
eq

]
(3.3)
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Dipole reconstruction

Figure 3.4. NF reference (left) and NF reconstructed (right) represented as intensity
points (in dB) on a sphere with radius equal to the distance if the observation locations.

Figure 3.5. NF reference (left) and NF reconstructed (right) cuts at ϕ = 90◦.

Here is reported the relative reconstruction error.

∆e = |∥ENF,REF ∥ − ∥ENF,REC∥|
∥ENF,REF ∥

= 0.055% (3.4)

Now knowing the relation between NF and FF it is possible to transpose the electric
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Dipole reconstruction

field in far-field by applying the method proposed in [3], which will be reported briefly
below for the sake of clarity. The NF-to-FF transformation can be obtained from the
electric current coefficients calculated at NF (JLOV E

eq , MLOV E
eq ).

E0,F F (r̂) = C

∫
ejk0r̂·r′

J(r′)dr′ (3.5)

Then for each element it is possible to translate the FF in 3.6:

ET,F F (r̂) = C

∫
ejk0r̂·(r′−r0+r0)J(r′ − r0)d(r′ − r0) (3.6)

Applying the transformation for the electric and magnetic current coefficients, the resulting
electric and magnetic radiation matrix (EJF F , EMF F ) are used to express the component
Eθ and Eϕ of the electric field at FF.

EF F,REC =
√

|Eθ|2 + |Eϕ|2 (3.7)

Finally exploiting the solution in 3.6 the resulting FF is reported in Figure 3, Figure3.7
and Figure 3.8.

Figure 3.6. FF radiation pattern, reference (left) and reconstructed (right).
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Dipole reconstruction

Figure 3.7. FF pattern cut at ϕ = 0◦, reference (blue) and reconstructed (red).

Figure 3.8. FF pattern cut at ϕ = 90◦, reference (left) and reconstructed (right).

∆e = |∥EF F,REF ∥ − ∥EF F,REC∥|
∥EF F,REF ∥

= 4.14% (3.8)
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3.1 – Dipole array reconstruction

3.1 Dipole array reconstruction

Figure 3.9. Strip dipole array model from CST simulation (left) and recon-
struction surface (right).

In this section, it will be explained the main topic of this thesis, which is the reconstruction
of the radiation pattern of the array from the coefficients evaluated on the single element.
First of all it should be possible to translate the equivalent currents, JLOV E

eq and MLOV E
eq ,

on each element in space, or, likewise, to translate the reconstruction surface (ΣR1 and
ΣR2inF igure3.10) in each position of the elements of the array, and then calculate their
relative discrete radiation matrix (EJ1, EJ2, EM1, EM2), to apply the equivalence cur-
rents. Follows an example showing the reconstructed NF for both dipoles constituting the
array elements.

Figure 3.10. Reconstruction surfaces shifted for each element of the strip dipole array.

39



Dipole reconstruction

Figure 3.11. Electric field intensity for each element of the linear array.

Then for exciting each single elements, both with electric current (J) and magnetic
currents (M), to consider their radiating contribution independently from each other, it
was formulated the matrix defined as αSHIF T .

[
αSHIF T

]
=


J1 0 0 0
0 0 J2 0
0 M1 0 0
0 0 0 M2

 (3.9)

From now on the matrix containing the equivalent currents shifted in order to excite each
single array elements will be referred as αSHIF T , and it will have 2N columns with N the
number of array elements. The new coefficients α1, . . . , α4 have been solved in least-square
sense:

[
EJ1 EJ2 EM1 EM2

] [
αSHIF T

] [
α1, . . . , α4

]
=

[
Eθ

NF,REF

Eϕ
NF,REF

]
(3.10)

Then they were used to reconstruct the array NF. The results are shown in Figure 3.12
and Figure 3.13.
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3.1 – Dipole array reconstruction

Figure 3.12. Electric field intensity of the linear array, reference NF (left) and
reconstructed NF (right).

Figure 3.13. Electric field pattern of the linear array at ϕ = 90◦, reference NF
(blue) and reconstructed NF (red).
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Dipole reconstruction

3.2 Auxiliary sources

3.2.1 NF difference

Looking at the previous results it seems that the reconstruction error is much higher com-
pared to the single patch case. This could be due to the radiated fields in the Beam Forming
Network (BFN). In order to compensate for possible BFN dispersion and reconstruction
error, it was analyzed the difference between the measured electric field, ENF,REF , and the
reconstructed electric field, ENF,REC .

ENF,DIF F = (Eθ
NF,REF − Eθ

NF,REC) · θ̂ + (Eϕ
NF,REF − Eϕ

NF,REC) · ϕ̂ (3.11)

Applying the inverse-source using as reconstruction surface the rectangle in Figure 3.9,
which contains all the antenna array elements, it was possible to compute the equivalent
current JDIF F

eq , MDIF F
eq and reconstruct the electric field difference.

Figure 3.14. Electric field difference with the reference.

Figure 3.14 shows the current hotspots1 from the reconstructed field ENF,DIF F , which
may represent the reconstruction error of the linear array.

1The term hotspots refer to the region on the surface where the currents present the highest values.
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3.2 – Auxiliary sources

Figure 3.15. J (electric) and M (magnetic) current hotspots represented as colored points
on the reconstruction surface for the entire dipole array.

Now, before proceeding to the next step and implementing the auxiliary sources, it is
necessary to verify that the exact electric field of the 4-element linear array can be obtained
from the sum of the electric field reconstructed by shifting the equivalent currents, and the
electric field difference, in the near-field.

ENF,REF ≈ (Eθ
NF,DIF F + Eθ

NF,REC) · θ̂ + (Eϕ
NF,DIF F + Eϕ

NF,REC) · ϕ̂ (3.12)

Figure 3.16. Sum between the electric field difference with the reconstructed electric field,
at NF, to confirm the reconstruction error.

The sum gave a good result, then it should be possible to compensate for the recon-
struction error with auxiliary sources on the perimeter of the reconstruction surface of the
linear array.
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Dipole reconstruction

3.2.2 Auxiliary sources

The objective is to enlarge the linear space of expansion functions whose coefficients have
to be determined in the discrete linear system of equations to facilitate the coefficient
solution via the least-square method. The reconstruction with additional sources should
be addressed in the following way:

[[
EJ, EM

] [
αSHIF T

] [
α1, . . . α4

]
,
[
EJAUX , EMAUX

]]
[α] =

[
Eθ

NF,REF

Eϕ
NF,REF

]
(3.13)

with EJ = EJ1, EJ2, EM = EM1, EM2 and EJAUX = EJAUX,1, . . . , EJAUX,N , EMAUX

= EMAUX,1, . . . , EMAUX,N , N the number of auxiliary sources.

Figure 3.17. Representation of a singular auxiliary source constituted by 11 RWG basis
functions, l is the sources dimension and is equal to λ/5.

The source was placed around the AUT following the dimension of the reconstruction
surface for the full array antenna (Figure 3.9) in such a way to cover all the sides equally.
Running the inverse-source code for the N auxiliary sources to obtain the N radiation
matrix defined as EJAUX

n , EMAUX
n , where n is the n-th auxiliary source and performing

the least square element to find the coefficients defined as αAUX , it gives an accurate
reconstruction of the NF of the dipole array with acceptable relative error.
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3.2 – Auxiliary sources

Figure 3.18. Representation of a distribution of auxiliary sources (red) around
the array. NAUX = 24.

Figure 3.19. E-field reconstruction with 24 auxiliary sources at 5 · 10−4 tolerance.

Figure 3.20. E-field reconstruction with 24 auxiliary sources at 10−6 tolerance.
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Dipole reconstruction

Figure 3.21. Representation of a distribution of auxiliary sources (red) around
the array. NAUX = 54.

Figure 3.22. E-field reconstruction with 54 auxiliary sources for a given tolerance of 10−6.
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3.2 – Auxiliary sources

Figure 3.23. Representation of a distribution of auxiliary sources (red) around
the array. NAUX = 96.

Figure 3.24. E-field reconstruction with 96 auxiliary sources for a given tolerance of 10−6.

NAUX auxiliary source reconstruction
24 ∆e = 0.28%, tol = 5 · 10−4

24 ∆e = 0%, tol = 10−6

54 ∆e = 0.1%, tol = 10−6

96 ∆e = 0.008%, tol = 10−6

Table 3.1. Comparison between different distribution of auxiliary sources for the FF
reconstruction of the linear array.
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Dipole reconstruction

3.3 FF reconstruction methods comparison
The method proposed in this thesis seems to work in the case of a strip dipole array which
is a very ideal one. Also, the number of sampled points used in this reconstruction (1953
samples) is much more than necessary to represent the array far-field. Thus it is expected
that the reconstruction error for the direct inverse-source method (i.e. applying the method
proposed for the reconstruction of the single element but using the full array) will present
the best reconstruction error due to the elevated number of points.

All three methods for the reconstruction of the 2 x 1 strip dipole array electric field are
reported below to compare their reconstruction error ∆e.

• inverse-source linear array

Figure 3.25. Direct inverse-source reconstruction of the entire array, reconstruction sur-
face (left) and FF cut at ϕ = 90◦ (right).
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3.3 – FF reconstruction methods comparison

• reconstruction without auxiliary sources

Figure 3.26. Reconstruction only by translating the reconstruction surface, ΣR1, ΣR2
(left), and FF reconstructed at ϕ = 90◦ (right).

• reconstruction with auxiliary sources

Figure 3.27. Reconstruction with auxiliary sources. Sources distribution (left)
and FF cut at ϕ = 90◦ (right).
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Dipole reconstruction

To summarise the results obtained in this chapter are presented in the table below and
as was expected, in this case, the inverse-source method applied to a surface enclosing the
entire array presents the best results.

Nevertheless, with the reconstruction using auxiliary sources, which is the main method
proposed by this thesis, it was possible to achieve a very similar reconstruction error. This
comparison will be presented also in the next chapter with the reconstruction of a real
patch antenna array without the over-sampled number of points chosen in this case but
with the minimum number of points necessary to represent only one element. Then the
comparison between reconstruction methods will be more appropriate.

method FF reconstruction
inverse-source ∆e = 3.87%, tol = 10−6

translating ΣR ∆e = 9.01%, tol = 10−6

with auxiliary sources ∆e = 4.54%, tol = 10−6

Table 3.2. Comparison between different distribution of auxiliary sources for the FF
reconstruction of the linear array.
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Chapter 4

Antenna Array Reconstruction

The objective of this chapter will be to obtain a reasonable reconstruction of the single
element FF radiation pattern (in terms of relative reconstruction error and pattern shape)
with the minimum number of sampled points for the single element. Then the information
extrapolated from the aforementioned reconstruction it was used as a base for the char-
acterization of the full array radiation pattern, as already seen in chapter 3. After that,
there will be presented also a reconstruction with the minimum number of points needed
for the representation of the full array structure (4 patch antennas and BFN).

4.1 Antenna design

W 147 mm
L 147 mm
h 1.5 mm
t 0.1 mm
ϵr 1
f0 1 GHz
d 239.83 mm

Table 4.1. Antenna design parameters.

The design of an antenna linear array with 4 equi-spaced elements. The simulations from
this structure will be used as reference for the reconstruction of the entire field radiation
pattern from the single element in Figure 4.1.
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Antenna Array Reconstruction

Figure 4.1. Single patch antenna structure (left) and electric field radiation
pattern in far field (right).

Figure 4.2. Linear array antenna structure (left) and electric field radiation
pattern in far field (right).

52



4.1 – Antenna design

4.1.1 Subsampling
The minimum number of sampling points is defined as a function of the minimum sphere
which contains the antenna element as:

N = ⌈ 4πR2

(λ/2)2 ⌉ (4.1)

Figure 4.3. Minimum sphere around the AUT.

In table 4.2 are reported the number of sampling points chosen from the formula in 4.1
to characterize the reconstruction problems.

N theory (eq.4.1) CST export
PATCH 28 28
ARRAY 177 190

Table 4.2. Minimum number of sampling points from theoretical formula and the actual
sampling points exported form CST.

In the next sections, it will be presented the same reconstruction process used in chapter
3 for the strip dipole array applied at the patch antenna array in Figure 4.1, for 28 sampled
points, and 190 sampled points. Both reconstructions were performed using the E-field
exported from the CST simulations at a distance of 5λ from the AUT, which is equal to
1.499 m.
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Antenna Array Reconstruction

Figure 4.4. Sampled point around the microstrip patch antenna, at distance 5λ, reported
in MATLAB. 28 points (left), 190 points (right).

4.2 Reconstruction with 28 points

Here is presented the surface reconstruction (ΣR) for the single element: a microstrip patch
antenna.

Figure 4.5. Single patch reconstruction surface (ΣR), δ is the gap, in red the actual
dimension of the metal patch, and in blue the dimension of the substrate.
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4.2 – Reconstruction with 28 points

Before proceeding into the reconstruction, having a limited amount of samples, it must
be discussed the characterization of the reconstruction surface, more specifically its geom-
etry and implicitly its area. The area of the surface A(ΣR) in the representation in Figure
4.1 is in function of the parameter δ. From the work discussed in [7], it results that the
complexity of the reduced-order model and consequently the number of unknowns is given
by the area of the reconstruction surface around the AUT. Defining N as the number of
sampling needed for an accurate FF representation:

N = A(ΣR)
(λ/2)2 (4.2)

it is then easily deduced that the complexity of the FF reconstruction problem can be
simplified by decreasing the area of the surface ΣR. This particular attention to the first
steps of the process is given because the accurate characterization of the single element
is been noted to be of particular relevance in the outcome of the final result. The lower
the error of the single element FF reconstruction, the lower the relative error of the array
reconstruction. It was performed an analysis changing the value of δ to verify the statement
discussed in [7].

Figure 4.6. Representation at the two main cut ϕ = 0◦, ϕ = 90◦

As a result, the statement has found to be applicable even in this case and it was selected
the value of δ = λ/8 (i.e. the one that gives the smaller area A(ΣR)) for a reconstruction
error of the FF of 2.10%. The relative NF reconstruction is reported in Figure 4.6 with a
relative reconstruction error of 0.037%.
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Antenna Array Reconstruction

Figure 4.7. Representation at the two main cut ϕ = 0◦, ϕ = 90◦

4.2.1 Linear array reconstruction

Figure 4.8. Linear array reconstruction surface (ΣR).

The reconstruction of the linear array is addressed. As explained in chapter 3 for the
reconstruction of the strip dipole array, the idea is to calculate the NF for each element by
shifting the reconstruction surface ΣR, calculating the radiation matrix on each position
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4.2 – Reconstruction with 28 points

and then using the surface density coefficients evaluated in the previous section, from the
single microstrip patch antenna, to characterize each individual element radiation pattern.
This is basically the "a-priori" knowledge of the antenna that can be used to compensate for
the missing information due to under-sampling with respect to the linear array dimension
(i.e. using 28 sampling points to represent the radiation pattern in FF of an antenna which
needs at least ≈ 177 points). In Figure 4.9 is represented each element of the linear array
with its relative reconstruction surface and the electric and magnetic currents on their
surface.

Figure 4.9. Representation of each single element reconstruction surface and their rela-
tive reconstructed surface currents (JLOV E

eq , MLOV E
eq ), and the reconstructed near fields

ENF,RECn, with n as the number of element in the array.
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Antenna Array Reconstruction

In Figure 4.10 and Figure 4.11 are reported the results obtained only by translation of
he reconstruction surface using the coefficients evaluated from the single element.

Figure 4.10. E-field NF reconstruction only by translation, of the linear array,
cuts at ϕ = 0◦ and ϕ = 90◦.

Figure 4.11. E-field FF reconstruction only by translation, of the linear array,
cuts at ϕ = 0◦ and ϕ = 90◦.
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4.2 – Reconstruction with 28 points

Here are the relative matrix operations. The coefficients α1, . . . , α8 are obtained apply-
ing the least square method with respect to the reference NF of the linear array.

[
EJθ

1 . . . EJθ
4 EM θ

1 . . . EM θ
4

EJϕ
1 . . . EJϕ

4 EMϕ
1 . . . EMϕ

4

]


J1 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . J4 0
0 M1 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 M4


[
α1 . . . α8

]
=

[
Eθ

NF,REF

Eϕ
NF,REF

]

(4.3)

αSHIF T =



J1 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . J4 0
0 M1 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 M4


(4.4)

The radiation matrices in FF are already evaluated considering the Love’s coefficients, so
in order to sum each effect independently it was used a unitary "shifting matrix" is defined
as:

αu
SHIF T =



1 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 1 0
0 1 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 1


(4.5)

Then the reconstructed FF only by translation of each single element radiation matrix was
obtained from the following equation:

EF F,REC =
[
EJθ

F F 1 . . . EJθ
F F 4 EM θ

F F 1 . . . EM θ
F F 4

EJϕ
F F 1 . . . EJϕ

F F 4 EMϕ
F F 1 . . . EMϕ

F F 4

]
[αu

SHIF T ][α1, . . . , α8] (4.6)
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Antenna Array Reconstruction

Acronym Explanation
JLOV E

eq Equivalent surface electric current
MLOV E

eq Equivalent surface magnetic current
ENF,REF electric field near-field reference
ENF,REC electric field near-field reconstructed
EF F,REF electric field far-field reference
EF F,REC electric field far-field reconstructed

[α] unknown coefficients in the least mean square system of equations

Table 4.3. List of acronyms used in the reconstruction equations.

4.2.2 Auxiliary sources

For a better approximation of the antenna array radiation pattern, it is necessary to add
auxiliary sources that compensate for the reconstruction error coming from the error in
the single element FF reconstruction and possible BFN leakages. The reconstruction with
auxiliary sources is already been discussed in the strip dipole case in chapter 3. Here is
reported the electric field difference ENF,DIF F and the sum to verify the process feasibility.
Then some auxiliary source distributions are presented with their reconstructed fields and
discussed.

ENF,REF ≈ ENF,REC + ENF,DIF F (4.7)

Figure 4.12. E-field NF difference of the linear array, cuts at ϕ = 0◦ and ϕ = 90◦.
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4.2 – Reconstruction with 28 points

Figure 4.13. E-field NF sum, cuts at ϕ = 0◦ and ϕ = 90◦.

NAUX = 64 704 basis functions ∆e = 4.83%
NAUX = 42 462 basis functions ∆e = 5.61%
NAUX = 16 176 basis functions ∆e = 7.73%

Table 4.4. Auxiliary sources and their relative FF reconstruction error.

There have been studied three cases reported in Table 4.4 with the resulting relative
reconstruction errors. It must be said that for the solution of the coefficients [α] which
represent the reconstructed NF of the linear array as:

[[
EJ, EM

] [
αSHIF T

] [
α1, . . . α8

]
,
[
EJAUX , EMAUX

]]
[α] =

[
Eθ

NF,REF

Eϕ
NF,REF

]
(4.8)

with EJ = EJ1, . . . , EJ4, EM = EM1, . . . , EM4 and EJAUX = EJAUX,1, . . . , EJAUX,N ,
EMAUX = EMAUX,1, . . . , EMAUX,N , N the number of auxiliary sources. It was used the
least square method in MATLAB (lsqr function) with a fixed tolerance of 10−2. Due to the
complexity of the radiation pattern of the AUT, lower tolerances lead to increasing errors
in the FF reconstruction, instead, they work fine at NF. For the strip dipole case, there
was no problem in the FF reconstruction even at 10−6 tolerance. This could be due to
the shape of its pattern, hence the problem unknowns, which is less complex with respect
to a patch antenna. The results presented in this chapter will be all considered with a
tolerance of 10−2 giving an acceptable value of residual after the application of the least
mean square algorithm.
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Antenna Array Reconstruction

Figure 4.14. Distribution of 24 auxiliary sources around the linear array (left),
FF pattern reconstructed (right).

Figure 4.15. Distribution of 42 auxiliary sources around the linear array (left),
FF pattern reconstructed (right).
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4.2 – Reconstruction with 28 points

Figure 4.16. Distribution of 64 auxiliary sources around the linear array (left),
FF pattern reconstructed (right).

Figure 4.17. E-field NF reconstructed versus the reference E-field of the linear array for
all the previous auxiliary source configurations.
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Antenna Array Reconstruction

Figure 4.18. FF reconstructed normalized in directivity for each auxiliary source config-
urations with their relative reconstruction error.

To have a better understanding of the results just presented, it can be useful to compare
them with the reconstruction of the linear array antenna by applying the inverse source on
a reconstruction surface containing all the array, Figure 4.19, and with the reconstruction
by using only the auxiliary sources, hence without the four elements translated, Figure
4.20.

Figure 4.19. FF reconstruction with inverse-source of the linear array using
28 sampled points.
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4.3 – Reconstruction with 190 points

Figure 4.20. FF reconstruction of the linear array considering only the informa-
tion from the auxiliary sources.

Table 4.5 reports the previous method’s reconstruction errors.

inverse-source ∆e = 6.24%
ΣR translation ∆e = 14.73%

ΣR translation + 42 AUX sources ∆e = 5.61%

Table 4.5. Reconstruction errors results at 28 sampled points of all three
reconstruction methods.

4.3 Reconstruction with 190 points

Now as a comparison with the previous results, it will be exploited the reconstruction of
the linear array by using the minimum number of points needed for the characterization
of the full array FF (i.e. 190 samples1). It is expected that the reconstruction error of the
single patch and the linear array will be lower with respect to the under-sampled case (28
points). In Figure 4.21 and Figure 4.22 is reported the reconstructed E-field in NF and FF
of the single patch antenna with a reconstruction error of 0.42% in NF and 2.31% in FF.

1The number of minimum sampled points is actually 177 but with the sampler, in CST the nearest
sampling value was 190.
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Antenna Array Reconstruction

Figure 4.21. NF reconstructed (red) and NF reference (blue) of the single patch
using 190 sampled points.

Figure 4.22. FF reconstructed (red) and FF reference (blue) of the single patch
using 190 sampled points.

Using the same method as the previous section the reconstructed FF of the full array
is presented and put in comparison with the other two methods.
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4.3 – Reconstruction with 190 points

• 1 - Inverse-source

Figure 4.23. FF reconstruction normalize in directivity from applying the inverse-
source to all the array structure.

• 2 - ΣR translation

Figure 4.24. FF reconstruction normalize in directivity from translation of the re-
construction surface in each array element position, using the coefficients evaluated
from the single element.
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Antenna Array Reconstruction

• 3 - ΣR translation + auxiliary sources

Figure 4.25. FF reconstruction normalize in directivity using the translating
element and auxiliary sources.

From Table 4.6, where there are reported the previous results with their reconstruction
errors, as was expected, it can be seen that by increasing the sampled points the recon-
struction error of method 1. and method 3., both decreases.

28 points 190 points
inverse-source ∆e = 49.6% ∆e = 6.24%
ΣR translation ∆e = 14.73% ∆e = 11.81%

ΣR translation + 42 AUX sources ∆e = 5.61% ∆e = 4.69%

Table 4.6. Reconstruction errors results between 28 and 190 sampled points.

4.3.1 Reconstruction with only auxiliary sources
The reconstruction process discussed in this thesis exploits the repetition design geome-
try of array antennas, compensating the missing information and making the equivalence
currents radiate in all the other elements by translating the reconstruction surface. Even
though this reconstruction method does not succeed, the information extrapolation from
it was added to the auxiliary sources information to perform a better result. Therefore it
should be questioned whether or not the first information (i.e. the one from the transla-
tion of reconstruction surfaces) is even necessary. So it was performed a reconstruction of
the same linear array radiation pattern with the inverse-source technique was applied to a
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4.3 – Reconstruction with 190 points

single auxiliary source and then translated in each position to reconstruct the array FF.
The results are shown in Figure 4.26 and demonstrate that the information derived from
the array elements cannot be neglected.

Figure 4.26. FF reconstruction normalize in directivity using only auxiliary
sources (28 sampled points).
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Chapter 5

Conclusion

Array antennas are complex structures created by arranging nearly identical antennas in
an array (e.g., same geometry and same electromagnetic characteristics). An antenna ra-
diation pattern could be reconstructed with a smaller number of samples by compensating
for the missing information with a-priori knowledge derived from the single element the-
oretical characteristics. The reduction of sampling points for fast antenna measurements
represents a great time reduction and, consequently, a cost-efficient alternative, even with
a small percentage of error. In fact for the antenna characterization during the fabrication
and test procedure, could be sufficient for the evaluation of the main lobe, second levels
lobe (SLL) and eventually the back lobe.

The reconstruction of a 1GHz linear array FF with a relative reconstruction error of 5.61%
was obtained after a simulation of ≈ 4.48 hours performed on a workstation with a CPU
Intel Xenon at 2 GHz, 2 core and 192 GB of RAM. This result, compared to the recon-
struction of the linear array FF using 190 samples with 6.24% of reconstruction error,
shows a possible application (at least theoretical) for a new method of fast-antenna testing
at NF. In Figure 5.2 is presented the reconstruction method with different sampled points
between 28 and 190, with fixed amount of auxiliary sources, NAUX = 16. It is noticeable
how the reconstruction error sharply decreases with an increasing number of points.
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Conclusion

Figure 5.1. FF reconstruction normalize in directivity for 28, 32 and 98 sampled points
with their relative reconstruction error, using 16 auxiliary sources.

Figure 5.2. FF reconstruction normalize in directivity for 28, 32 and 98 sampled points
with their relative reconstruction error, using 42 auxiliary sources.

In the design and prefabrication process of a complex antenna array, this method could
ease the measurement setup and time giving an arbitrary approximation of the prototype
characteristics in FF. The final result is presented in Figure 5.3 comparing the standard
method for antenna measurement (inverse-source with 190 sampled points), and the new
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Conclusion

method discussed in this thesis: the reconstruction translating the reconstruction surfaces
of the single element sampled at 28 points, plus the auxiliary sources.

Figure 5.3. FF reconstruction normalize in directivity comparing the standard method
with the new one proposed in this thesis.

5.0.1 Research limitations
A few limitations should be enlightened from the antenna simulations on which this work
was based and the reconstruction process itself. Starting from the former, the simulated
antenna materials were mainly idealistic such as the microstrip patch antenna substrate,
vacuum with ϵr = 1 and the metal patch modelled as PEC (Perfect Electric Conductor).
Although this could affect only the first part of the process, hence the single element FF
reconstruction error. The reconstruction process for the full array still stands itself. As
the sampled points used for the NF reconstruction, these were extrapolated directly from
CST Studio using its Post-Processing toolbox which automatically calculates the sample
positions given a sampling step size. That it is not always accurate, in fact with the pos-
sibility to arbitrary select the best samples positions the reconstruction error in FF could
be even smaller, leading to a better array reconstruction. Finally, for future research, it
would be necessary to improve the auxiliary source distribution by minimizing the basis
function number to optimize the computation.

Nevertheless, the feasibility of this process was demonstrated at a theoretical level and
the possibility of future adjustments could lead to a better measurement solution for fast-
antenna testing.
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Appendix A
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A.1 Surface Equivalence Principle Review
In electromagnetism, the surface equivalence principle or surface equivalence theorem re-
lates to an arbitrary current distribution within an imaginary closed surface with an equiv-
alent source on the surface. It is also known as the field equivalence principle, Huygens’
equivalence principle or simply as the equivalence principle. Being a more rigorous re-
formulation of the HuygensFresnel principle, it is often used to simplify the analysis of
radiating structures such as antennas. The equivalence principle is depicted in Figure A.1.

Figure A.1. Surface equivalence principle representation.

Expressing the exterior fields as Vext and the interior fields as Vint, the following equa-
tions stand:

Vint + Vext,

{
− ÷ ×E = jωµH

÷ × H = jωϵE + Jsrc

(A.1)

only Vext,

{
−∇ × E = jωµH + δ(P − P Σ)(E × n̂)|Σ
∇ × H = jωϵE + Jsrc + δ(P − P Σ)(n̂ × H)|Σ

(A.2)

Certain formulations of the principle are also known as Love equivalence principle and
Schelkunoff equivalence principle, after Augustus Edward Hough Love and Sergei Alexan-
der Schelkunoff, respectively. From the equation in A.2 it can be formulated the equivalent
surface electric current A.3, and equivalent surface magnetic current A.4.

JS = (n̂ × H)|Σ [A/m] (A.3)

MS = (E × n̂)|Σ [V/m] (A.4)
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A.2 – The Least Square Method

A.2 The Least Square Method
A least-square method is an approach to approximate the solution of a system of equations
in which there are more equations than unknowns, by minimizing the sum of the square
of the residuals from the results of each individual’s equation. The objective is to adjust
the parameters of a model function f(x, β) to best fit a set of data.
The goal is to find the parameter m that best fits the data. The fit of a model is measured
by its residual r, which is defined as the difference between the value predicted from the
model and the observed value of the dependent variable.

ri = yi − f(xi, β) (A.5)

Minimizing the sum S of the squared residual, the least-squares method finds the optimal
values.

S =
N∑

i=1
r2

i (A.6)

A.3 Time domain solver overview
A time-domain solver calculates the development of electromagnetic fields through time
at discrete locations and discrete-time samples. In CST Studio Suite there are available
two high frequency time domain solvers: Finite Integration Technique (FIT), called
Transient Solver, and the one based on Transmission Line Method (TLM), referred
to as TLM Solver. Both solvers work on hexahedral mesh grids.

Transient Solver

The Transient Solver is based on the Finite Integration Technique, and it calculates the
fields step by step in time by exploiting the Leap-Frog updating scheme. The value of the
maximum usable time step is related to the minimum mesh step used in the definition of
the problem’s mesh. This implies that the higher the mesh resolution of one small detail,
the higher the total simulation time.

The Finite Integration Technique (FIT)

The Finite Integration Technique is a numerical method first proposed by Weiland in
1976/1977 which provides a universal spatial discretization scheme that can be applied to
various electromagnetic problems in the time or frequency domain.
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