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Abstract

This master’s thesis work was carried out abroad at the EURO FLIGHT TEST company, based
in Winningen, Germany. The main purpose is to create a mathematical model in MATLAB /
Simulink that allows to simulate the behavior of the BS PRIME aircraft. The company, which has
recently chartered a BS PRIME aircraft, has provided its willingness to support the project, both
during the development phase and during the validation phase. It was in this second phase that
the possibility of performing flight tests with a specialized pilot was of fundamental importance.
This thesis focuses on model validation, comparing the manual and flight test data. It was
necessary to separate the modeling discussion from the validation one for bureaucratic reasons.
It is noted that in order to have a global understanding it is necessary to consider the two parts
as a single work. The work and all the necessary activities, net of the contribution
provided by EURO FLIGHT TEST, were carried out by both candidates: Andrea
Corino and Diego Orio.






Chapter 1

Validation

This second thesis is a continuation of the first thesis "Development of a mathematical model for
the Bs Prime", which focused on modeling, while this one focuses on model validation. According
to the Department of Defense (DOD), modeling means [4]:

A model is defined as “a physical, mathematical, or otherwise logical representation of a system,
entity, phenomenon, or process.” Modeling is the “application of a standard, rigorous, structured
methodology to create and validate” this model

While validation is defined as:

"The process of determining the degree to which a model or simulation is an accurate
representation of the real world from the perspective of the intended uses of the model or
simulation”

In general, in addition to validation, importance is also given to verification. Again according
to the DOD, the latter is defined as:

"The process of determining that a model or simulation implementation accurately represents
the developer’s conceptual description and specification. Verification also evaluates the extent to
which the model or simulation has been developed using sound and established software
engineering techniques”

So to better describe the difference between validation and verification, consider the following
example: a model that closely reflects reality, but has many bugs in the simulation phase, satisfies
validation but not verification; on the other hand, if a model being simulated is free-bug, but
does not faithfully represent reality, it satisfies the verification but not the validation, |2]|. In
this discussion we will not refer to the concept of verification, as the project linked to the thesis
did not have specific technical requirements. For future developments there is the possibility of
inserting this model in a simulation environment, in which case verification will be necessary.
It should be noted that for time and economic reasons, the concept of validation is not to be
intended as a rigorous process that is defined on the basis of particular techniques, but more as a
first comparison. So this means that we will still talk about validation as we refer to the definition,
so we analyze how close the model is to reality, but it is not a complete process. In general, the
validation process is iterative: once the first version of the mathematical model is completed,
simulations are carried out, the data obtained are compared with those of the real aircraft, how
much the model deviates from the latter is analyzed, and the mathematical model is changed



Aero
Design
Data

again, and so on [5, see|. In the following discussion this cycle was covered once, i.e. defined the
first mathematical model, a first validation phase was carried out which led to the definition of
a second mathematical model, more close to the data of the real aircraft. In this discussion, a
first validation of the model was carried out using the performance data present in the flight
manual, then a subsequent validation through flight tests, exploiting the climb performance of

the aircraft.

Mathematical
Model

Results
from
Simulation

Figure 1.1: Block scheme for validation

Aircraft
Performance
Data




Chapter 2

FDC: functions for trim, stability and
ROC

2.1 ACTRIM

The ACTRIM routine allows you to calculate trim conditions. First you will be asked to load
the necessary data from the file, then you can choose the type of stationary flight to be analyzed
(in this discussion, option 1 "Steady wings-level flight" has always been used). Finally, the flight
conditions will be requested: H, V, heading, deltaf, MAP or I". The user has the possibility to
choose whether to keep a certain manifold pressure value fixed or whether to impose the value of
the flight path angle I'. In the second case an initial estimate of the MAP value will be requested,
but the real MAP value at sea level will be output anyway. ACTRIM actually converts the cal-
culation of the trim conditions into a maximum and minimum problem, in which the function of
cost to minimize is: J = 10(4? + 92 + w?) + 100(p? + ¢ + 72). For this process it is possible to
modify appropriately the tolerance, and the maximum number of iterations and function eval-
uations. The cost function has high relevance because, in order to correctly calculate the trim
conditions, it is necessary to ensure that the minimum found is global and not local. Once the
process converges, and the conditions are correctly calculated, it is possible to save them to a
file with the ".TRI" extension. During this project, additional routines were used which, starting
from the ACTRIM code lines, made it possible to automate the calculation of trim conditions
for different flight conditions, or for different initial MAP values. These routines will be better
explained in the section about calculating trim conditions.

2.1.1 Cost function

As mentioned, the cost function for minimization is
J = 10(i* 4 92 + ) + 100(p? + ¢° + 7?) (2.1)

It is different from that used for the Beaver model. To use this specific function it was necessary
to modify ACTRIM by inserting the lines of code to calculate the new terms used. The speed
components in body axes are:

u =V cos acos 3
v="Vsinp (2.2)

w = Vsinacos



The respective derivatives, introduced in ACTRIM for the evaluation of J are:

= Vcosﬁcosa+V(—sinBcosa-B—cosﬁsinoz~d)
v=Vsinf+Vcoss- (2.3)

w:Vcosﬁsina+V(—sinﬂsina‘B—cosﬁcosa-d)

The tollernace used are: tollerance 1073°, MaxFunEvals 5 - 105, ’MaxlIter’ 5 - 10°

2.2  Actrimforcond

This new function introduced in FDC is based on the ACTRIM function, already present. It uses
the same methodologies and the same cost function. Actrimforcond allows to calculate the trim
conditions automatically. It was designed to quickly compare the trim conditions of the model
with those reported in the flight manual, in particular comparisons on engine power. Speeds,
altitudes, flight path angle values, and an initial value of MAP are not requested from the user,
but they must be entered within the code of the function. First it will be asked to load the air-
craft model from the file, then it must be chosen the type of stationary flight to be analyzed (in
this discussion, option 1 "Steady wings-level flight" has always been used). After these requests
the process becomes automatic. The power values calculated by the model, the MAP values, and
the difference between the model power and the actual power are provided as an output. During
this process, it is necessary to ensure that every minimum found is global and not local, as the
importance of finding the correct minimum is crucial.

2.3 Actrim_ forV_ forH

This new function introduced in FDC is based on the ACTRIM function, already present. So it
uses the same methodologies and the same cost function of Actrim. Actrim forV _forH allows
you to calculate the trim conditions without interruption by giving as output vectors that contain
the desired quantities as the altitude and speed vary. The user is only asked to choose the model
and type of stationary flight to be analyzed (in this discussion, option 1 "Steady wings-level
flight" has always been used). The speed and altitude values must be inserted inside the code of
the function itself. The output quantities («, O, dq, 0, and throttle) are recalled by a separate
script with which the graphs can be generated. This function is very important as it can be seen
from the graphs whether trim conditions corresponding to local or global minimums have been
defined.

2.4 CtrimforROC

This new function introduced in FDC is based on the ACTRIM function, already present. So it
uses the same methodologies and the same cost function. CtrimforROC allows you to calculate
the rate of climb in trim conditions without interruption. The speeds are included in the code of
the function. The user is required to load the aircraft model from the file, then it must be chosen
the type of stationary flight to be analyzed (in this discussion, option 1 "Steady wings-level
flight" has always been used). The output is a vector containing the ROC.



2.5 ACLIN

The ACLIN routine allows you to linearize the system of equations around a certain flight
condition. As input, the trim conditions around which the linearization will be carried out will
therefore be required, along a ".DAT" file generated by MODBUILD. Once the linearization has
been carried out, the same routine will give the user the option to generate a reduced matrix
of the system, selecting the variables to be taken into account. This option is what is needed to
separate the longitudinal and lateral-directional dynamics. Also in this case it will be possible to
save the results on a file, with the extension “.LIN”.

2.6 AclinforCG

In order to evaluate the dynamic analysis as the position of the center of gravity varies, and
similarly to what was done with ACTRIM, also in this case a similar routine have been developed
to automate the process: AclinforCG. It works exactly like ACLIN, only that it allows to have as
input an aerodynamic model referred to the datum. In fact, within it the aerodynamic derivatives
are recalculated as the position of the center of gravity varies, thus being able to linearize the
system in an appropriate way. Then the eigenvalues of the linearized system are obtained as the
position of the center of gravity varies. Within the same function, the positions of the center of
gravity are defined. To obtain the eigenvalues referred to the longitudinal or lateral directional
dynamics, the correct state vector must be selected within the code of the function.



Chapter 3
Trim

3.1 Introduction

Once the mathematical modeling part of the aircraft was finished, it was possible to begin a first
validation phase, starting from the analysis of the trim conditions in straight horizontal flight
and climb. A trim condition is a flight condition in which the controls remain fixed and the
sum of forces and moments on the aircraft is zero. The research of the trim condition is a very
important part of the validation of a mathematical model, because it allows to evaluate if what
has been done before is correct.

3.2 Trim condition

The first step to validate the model is to check if it’s actually possible to identify trim conditions
for different values of speed and altitude. Using ACTRIM, several tests were made varying the
flight conditions, and in particular speed, altitude and RPM. Below is an example. First, the
load condition is defined. This is an important step because it influences the TOW, the position
of the center of gravity, and inertias. This is all done in the "primo run fdc.m" routine, where
it is possible to define the mass of pilot, passenger, fuel and luggage. For the purpose of this
example, the following load condition have been used. The same load condition will be used as
a sort of “standard” load configuration.

Mass [kg] Momentum [kg m]

pilot 85 -
passenger 85 -
baggage 0 -
fuel 40 -
empty weight 390 -
TOW 600 648.17

Table 3.1: Load diagram

Afterwards, the ACTRIM routine allows to define the flight conditions, which in this case are:
e Speed 60 m/s

o Altitude 1220 m



e Fngine RPM 5000RPM
e Pz (first estimation) 21 "Hyg

The routine outputs are the state vector X, the derivative of the state vector X and the control
vector U.

1% 60 [m/s] Oe [—2.0889 10" [rad]
a 4.3898 1072 [rad] Sa —5.2442-107%  [rad]
B —5.7228-107°  [rad) Sy —4.5772-107*  [rad]
P 0 [rad/s] oy 0 [rad]
q 0 [rad/s] n 5000 [RPM]
x| 7|2 0 [rad/s]| g || 23.41 ["Hyg]
(0 0 [rad] |’ uw 0 [m/s]
0 4.3898 -107%2  [rad] vw 0 [m/s]
) 0 [rad] ww 0 [m/s]
Te 0 [m] uw 0 [m/s?]
Ye 0 [m] vw 0 [m/s?]
H 1220 [m] ww 0 [m/s?]
(V] [-3.3407-107  [m/s?] ]
e 2.7734-10717  [rad/s]
5 —1.7386 - 1077 [rad/s]
P —4.8762 - 10710 [rad/s?]
q —2.3598 - 10710 [rad/s?]
| T Z | 24686 10716 [rad/s?]
I IRV 0 [rad/s]
9 0 [rad/s]
b 0 [rad/s]
Ze 60 [m/s]
Yo —3.4337-107%  [m/s]
| H | i 0 [m/s] |

IM=38.04 kW £=50%

As it can be seen, the results are actually trim conditions: the incidence has a reasonable value of
about 2.5°, the elevator reaches about 12°, it is correctly deflected upwards and fully falls within
the upper excursion limit of 28°. Similarly, the aileron deflection is very low: this is correct since
in trim conditions the only purpose of ailerons is to compensate the torque generated by the
propeller. The rudder is about two orders of magnitude smaller than the elevator, since it has
to compensate for the very small yaw moment generated by the ailerons. In addition it can be
noted that this condition can be defined as a trim condition since the quantities in the vector X
are in the order of 1078 e 10715, therefore negligible variations.

3.3 Trim validation

Of fundamental importance were the comparisons between the trim conditions calculated with
ACTRIM by using the BS Prime DATCOM model and those reported in the flight manual. The
comparisons were made both in uniform straight flight conditions and in climb conditions. It is
specified that all the tests have been carried out considering a load condition corresponding to



the MTOW, therefore in the most critical condition. For straight horizontal flight conditions, the
flight manual [1, p. 100] provides, through appropriate graphs, the relationship between altitude
and cruising speed for fixed values of RPM and throttle. Wherase in the figure 3.1 the power
level is shown.

10000

37,72 kW
9000 | 4300 RPM

8000

7000 |
/61,20 kw

/

/5000 RPM

6000

5000

H [ft]

4000
3000
2000 |

1000

Vo MVs]

Figure 3.1: Cruise Speed at MTOW 600 Kg

Also from the manual of Bs Prime [1, pp. 96, 97|, only one example with the associated data
(Best Rate-of-Climb Speed (V},), RPM and Power) is provided for the climb conditions. So it will
be used as the only comparison example for the climb. Since the flight regime is subsonic, the
effects of compressibility are neglected as previously done, thus assuming EAS ~ CAS. Then the
true speed is calculated as

TAS = EAS/psi/p (3.1)

As for the climb condition, the ROC is defined, converted to m/s, and used for the calculation
of the flight-path-angle I' as:

I' = arcsin(ROC/V) (3.2)

Remember that all engine data refer to sea level conditions, therefore the following data also
refer to this condition. For more details see thesis "Development of a mathematical model for
the Bs Prime".

3.4 Comparison on requested power between the model 1 and
the flight manual

As already said, the starting point is the Bs prime model obtained with the interpolation of the
derivatives of datcom and those of the Napolitano. The aerodynamic model as seen in the thesis
"Development of a mathematical model for the Bs Prime" is shown in Table 3.2 It is possible
to begin a first validation phase, starting from the analysis of the trim conditions in straight
horizontal flight and climb. The comparison was made only on the power required to maintain
trim conditions. The flight manual does not provide information on other values such as, for



Cpy 00164 | Coy  -0.1198 | Cpy  -0.2036
Cp, 008598 | C., — -5.731 | Cp, -5.831
Co, 3932 | C., 9719 | Cp, 1.288
Coy 2068 | C. 1694 | Cp, -31.35
Cos,  -0.01334 | Co;  -02634 | Cpy,  -0.9516
Cros, 04584 | Coy 07792 | Cpy -0.8073
Crps, 04539
Cy,  -04271 | Gy, -0.03905 | C, 0.1316
Cy,, 00739 | ¢  -041547 | C, ~ -0.055921
C, 03076 | C, 009279 | C,  -0.37982
Cys. 0 Cp,,  -0.1467 | Cp,  0.00161
Cys, 00534 | G, 00033 | Cp, ~ -0.0349
Cy, 0

Table 3.2: Aerodynamic derivatives calculated, model 1

example, the deflection of mobile surfaces. As mentioned, for each condition the manual provides
a combination of RPM and throttle, from which the corresponding power value can be easily
obtained [1, p. 100]. At the same time, the power values required for the mathematical model
were calculated through the ACTRIMforcond routine which, as mentioned, provides the neces-
sary MAP value as output (while the RPMs must be supplied as input). For each combination
of altitude and speed frome Figure 3.1, the obtain power value (IT*) from the engin Operators
Manual [7] , the calculated power value (II), the absolute error (AIl) and the relative one (error)
are shown. Where relative error is error = AII/IT*.

H [ft] 0 2000 4000 6000 8000
Vim/s| 59,16 60,19 6121 62,24 6327
I* kW] 37,72 37,72 37,72 37,72 37,72
IT [kW] 35,24 37,12 39,14 41,27 43,47
ATl [kW] -246 -0.60 142 355 576
error |%] -7 -2 4 9 15

Table 3.3: Horizontal flight 4300 RPM

H [ft] 0 2000 4000 6000 8000
Vm/s| 63,79 65,02 6626 67,49 68,73
IT* [kW] 45,258 45,258 45258 45,258 45,258
I [kW] 42,53 44,85 4713 4988 52,67
AIL (kW] 2,724  -041 2,04 461 741
error |%)| -6 -9 5 1 16

Table 3.4: Horizontal flight 4800 RPM



H [ft] 0 2000 4000 6000 8000
V[m/s] 6688 6791 68,93 69,96 70,99
I [kW] 5120 51,29 5129 51,29 51,29
I [kW] 48,03 50,13 52,3 54,6 57,02
ATl [kW] -326 -1,16 101 3,30 573
error %] -6 -2 2 6 11

Table 3.5: Horizontal flight 5000 RPM

T[] 838 762 675 578 501
Vm/s| 41,15 42,15 432 4539 46,56
I (kW] 67,89 67,89 67,80 67,89 67,89
I [kW] 84,72 84,71 83,26 81,66 80,02
AT [kW] 16,83 16,82 1537 13,77 12,12
error [%] 20 20 18 16 14

Table 3.6: Climb 5500 RPM

As it can be easily seen, the model used does not satisfy the climb conditions. In fact, in
this condition the relative error remains around twenty percent. Being positive means that the
power required to climb, according to the model, is bigger than the one evaluated using the
flight manual and even bigger than the maximum power that the engine is able to produce; in
particular, there’s an average excess of about 15 kW with respect to the model. On the other
hand, for level flight conditions there is a maximum relative error of 15 percent positive. In
general, it can be observed within the same table that: for lower speeds the relative error is
negative, i.e., the model requires less power than the real aircraft; on the other hand, for higher
speeds the relative error becomes positive, i.e., the model requires more power than the real
aircraft. For these reasons, the model thus defined is inevitably affected by errors and it does
not allow to faithfully reproduce the trim conditions. Of course this is not surprising, as many
assumptions were made during the modeling process. Specifically, there may be errors in the
derivatives that derive from the calculations made by DATCOM, an aspect that is also reported
in [9, p. 27| and in [17]; during the same modeling in DATCOM approximations were made on
the shapes; measurement errors may have been introduced by using the caliper on the drawing
and then making the conversions. The idea is to work on the aerodynamic model and change
the aerodynamic derivatives. Also, bear in mind that the aerodynamic derivatives calculated by
datcom do not consider the effects of the propeller.

3.5 Correction on aerodynamic derivatives

From the analysis of the trim conditions, it is evident that the climb conditions are the most
critical: the mathematical model calculates a required power value significantly higher than that
expected by the flight manual, and higher than what the engine can supply. Level flight con-
ditions, on the other hand, are characterized by more acceptable results. In general, the model
obviously requires corrections, if only to ensure that all the flight conditions reported in the
manual can be effectively maintained. Among all the aerodynamic derivatives, we have chosen
to focus on four of them in particular: Cp, Cy, C'gca2 and C%3' This choice is due to the fact
that these are the main coefficients that determine the force along the X axis, and consequently
strongly influence the required power. The idea was to proceed with a trial-and-error approach,
trying to gradually modify the chosen values, and checking each time the difference between the
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results of the model and the data in the manual. The priority was to make sure that the climb
conditions could also be maintained, while at the same time trying to reduce the error for the
other flight conditions as well. The best results were obtained with the following changes: Cy,
was increased by 10%, Cy,, by 30%, Cy_, by 28%, and C_, was set equal to 0. Of course, this
trial-and-error approach, while making it possible to significantly improve the model, makes it
very difficult to arrive at an optimal correspondence with the experimental data.

Cy,  -0.01804 | C,, -0.1198 | Cp,  -0.2036
C,, 01118 | C.,  -5731 | Cp, -5.831
C,, 5.03206 | C., 9719 | Cp, 1.288
Co s 0 C., 1694 | Cp, -31.35
Coy,  -0.01334 | Co,  0.2634 | Ciy,  -0.9516
Cous, 04584 | Cop 07792 | Cpy  -0.8073
C.os, 04539
Cyy  -04271 | G, -0.03905 | C,, 0.1316
Cy, 00739 | Cp  -0.41547 | C, ~ -0.055921
C,, 03076 | C,  0.09279 | C,  -0.37982
Cys. 0 Cis,  -0.1467 | Cn,  0.00161
Cy. 00534 | C, 00033 | Cp,  -0.0349
Cy, 0

Table 3.7: Aerodynamic derivatives modified after trim analysis, model 2

3.6 Comparison on requested power between the model 2 and
the flight manual

The modified model produced more acceptable results, which are reported in the following tables.
For each combination of altitude and speed, the manual power value (IT*), the calculated power
value (IT), the absolute error (AIl) and the relative one (error) are shown. As can be seen in
trim conditions in level flight, the maximum error with the new model is 12 percent, compared
to 15 percent for the previous model. The most load-bearing aspect, however, occurs in climb
conditions, where the error with the new model is below nine percent, against the 20 percent
with the old model.

H [ft] 0 2000 4000 6000 8000
V [m/s] 59,16 60,19 61,21 62,24 63,27
I [kW] 37,72 3772 37,72 37,72 37,72
IT [W] 33,069 34,522 35,998 37,549 39,086
AT kW] -4,651 -3198 -1,722 -0,171 1,366
error [%] -12 -8 -5 0 4

Table 3.8: Horizontal flight 4300 RPM
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H [ft] 0 2000 4000 6000 8000
Vm/s| 63,79 6502 6626 67,49 68,73
IT* [kW] 45,258 45,258 45258 45,258 45,258
I [kW] 41,779 43,816 45937 48,103 50,372
AIl [kW]  -3,479 -1,442 0,679 2,845 5,114
error |%)] -8 -3 2 6 11

Table 3.9: Horizontal flight 4800 RPM

H [ft] 0 2000 4000 6000 8000
Vm/s] 66,88 67,91 68,93 69,96 70,99
I [kW] 51,29 5129 5129 51,29 51,29
II [W] 48,259 50,046 51,848 53,711 55,613
AIL [kW] -3,031 -1,244 0558 2421 4,323
error |%)| -6 -2 1 5 8

Table 3.10: Horizontal flight 5000 RPM

T[] 838 762 675 578 501
Vm/s| 41,15 4215 432 4539 46,56
I [kW] 67,89 67,80 67,89 67,89 67,89
(kW] 7422 73,29 70,939 69,178 66,491
AL [kW] 633 54 3,049 1288 -1,399
error | %] 9 8 4 2 -2

Table 3.11: Climb 5500 RPM

3.7 Comparison of a trim condition between model 1 and 2

Now go back to the example shown in section 3.2, a comparison can now be made by using
model 2. The load conditions and initial conditions (altitude, speed, rpm) are the same as in
the example in the section 3.2. The procedure for obtaining these results is the same as already
described.

1% 60 [m/s] Se [—2.0889 10"  [rad]
a 4.3898 -1072  [rad] Sa —4.7627-107%  [rad]
B —5.1974-107°  [rad) Sr —4.1570-107*  [rad]
P 0 [rad/s] d¢ 0 [rad)
q 0 [rad/s] n 5000 [RPM)|
Yo | " |2 0 [rad/s]| v | P 22.74 ["Hyg]
v 0 [rad] |’ | uw | 0 [m/s]
0 4.3898 -107%2  [rad] vw 0 [m/s]
® 0 [rad] ww 0 [m/s]
Te 0 [m)] uw 0 [m/s?]
Ye 0 [m] vw 0 [m/s?]
H 1220 [m] ww 0 [m/s?]
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1% [ 2.1487-107  [m/s?] ]
o 2371510717 [rad/s]
5 9.1909-10"®  [rad/s]
D 9.9431-107*®  [rad/s?|
q —3.7454 1071 [rad/s?]
Fa 1.9298 - 10716 [rad/s?]
P 0 [rad/s]
9 0 [rad/s]
b 0 [rad/s]
T 60 [m/s]
Y —3.1185-107%  [m/s]
H i 0 [m/s] |

II=3455 kW €=45%

In general, if you compare the results just obtained with those in the 3.2 section, it is possible
to see minimal changes in the results in the state vector X as well as in the vector U, while
some terms in the vector (X ) are decreased by an order of magnitude. What varies instead
is the power and therefore the throttle, in fact they have decreased. By using model 2 the
power is II = 34.55 kW, whereas by model 1 the power is 38.04 kW . These results are in line
with expectations, since in model 2 the force coefficient C, was modified, because it affects the
calculation of the power more markedly.

3.7.1 Trim conditions as speed and altitude vary

In the paragraph about the ACTRIM routine we talked about the possibility that this function
makes an error in the calculation of the trim conditions. This error is due to the process of
minimizing the cost function J, which can lead to the identification of local and not absolute
minimums. A good way to ensure that this does not happen is to analyze the graphs shown in
this section, which show the main quantities as speed and altitude vary. The graphs shown here
refer to the modified mathematical model.

ALPHA
457
3 h 500m
h 1000m
at h 1500m | |
~ h 2000m
\
S b
8 3t : o=
< I - S S
ol
15 i ‘
50 55 60 65
V [m/s]

Figure 3.2: o trim
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All the graphs show a gradual trend, without abrupt variations of the quantities involved.
This is sufficient to verify that no local minimum was found under any of the calculated trim
conditions. In Figure 3.2, the angle of attack is undoubtedly one of the fundamental variables for
studying the flight mechanics of an aircraft, because it measures the inclination of the longitudinal
axis of the aircraft in relation to the direction of the flow. The first effect that can be seen is that
alpha decreases as the speed grows; this was expected, as the lift required to maintain the flight
condition remains the same, so when the speed increases, a lower value for alpha is necessary.
Also, « increases for higher altitudes, as the lift is proportional to density too.

Elevator deflection

15
h 500m
14.5 E h 1000m | -
% h 1500m
14 b L. h 2000m | |
= s ‘\\-.‘
135 S g
“\\ s ~.
S 13 - -
= : e
=" 125} b N .
12t - e
15}
11t
105 : :
50 55 60 65

V [m/s]

Figure 3.3: J, trim deflections

In figure 3.3, the elevator is the control surface that ensures the longitudinal control of the
aircraft, so the angular positions it assumes at different speeds affect the controllability and
stability of the aircraft. As it can be seen, as the speed increases there is a decrease in the
deflection of elevator. This was expected because, while the speed increases, the force generated
by the elevator need to remain constant, so a smaller deflection is required. Also, the value
decreases for higher altitudes, for the same reason explained for a.

3 AILERON deflection

0.29 r
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60 65
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Figure 3.4: §, trim deflections
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In Figure 3.4, control over the roll moment is provided by ailerons. In trim conditions these
surfaces should not have particularly large deflections, but they are however slightly deflected as
they must balance the propeller’s torque. In fact, it is well shown that as the speed increases,
the ailerons tend to deflect more as the torque increases. It should be noted that the deflections
are however small as the ailerons of the Bs Prime are very extended in terms of surface, so small
deflections are enough to produce important control moment.

RUDDER deflection

0.028
h 500m
h 1000m -
0.025 - h 1500m ,.,/
h 2000m 4
&
P
0.024 | ~
= 0023}
@
=,
T 0022}
0.021
0.02 /
0.019 ‘ :
50 55 60 65

V [mis]

Figure 3.5: 9, trim deflections

In Figure 3.5, the rudder provides the control over the aircraft along the Zy,q, axis, which is
used to generate and compensate for the yawing moment. As already observed for the ailerons,
also in this case the rudder must be as close as possible to the neutral position. From the graph
it is possible to see this: its deflection is an order of magnitude lower than the one of the ailerons.
In any case, a minimum deflection is present, as in theory it serves to compensate the effect of
the coupling of the dynamics due to the deflection of the other mobile surfaces. In particular
the deflection increases for higher speed values, exactly as it happens for the ailerons. In fact,
this is aimed at compensating for the yaw effect due to the deflection of the ailerons. In Figure

THROTTLE
66

h 500m
h 1000m .4

h 1500m 7
h 2000m %
62 | //

60

58 |

%

56

50 55 60 65
v [mis]

Figure 3.6: Throttle trim %
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3.6, as already explained in chapter 5, the throttle is obtained as an interpolation function using
only the data available from engine Operators Manual |7]. Therefore this interpolation function
is affected by a certain error, both for the interpolation process and for the fact that the idle
power values have been assumed, as they are absent in the flight manual and in the available
engine documents. So the throttle percentage (£) is given by the following equation:

¢ =0.00136 - Iz, — 2.033 (3.3)

From the Figure 3.6 it is seen that as the speed increases, the percentage of throttle required
increases.

3.8 Maintenance of trim conditions

As already observed, the trim represents a condition for which the sum of moments and forces
on the aircraft are zero, therefore a condition of equilibrium. This means that if this condition
were maintained, the aircraft would have to fly in a uniform straight motion. Therefore, there’s
the need to verify the maintenance of the trim over time. To do this, the complete model of
the Bs Prime in open loop is used, as shown in Figure 5.30. Note that to observe the effective
maintenance of the trim all the external controls that are present in the figure have been excluded.
To proceed with the verification of the maintenance of the trim conditions over time, first it is

B [ uzer0 |
uaero0
Block delta e = *3/} —
— Initial inputs
»-o for aeromod
v
Block delta a = f alpha
uaero beta
»-o p
q
Block delta r *_Vf DSE
Step delta f é—bf ;2
— H
Initial inputs Hdot
- for engmod ~—PMuwind  pb/2V
Stepn Rate Limiter -;——P-o/& q CE;;'\\;
= i
el BS Prime dynamics
Step pz Rate Limiter ;bf

Figure 3.7: BS Prime in openloop

necessary to find the trim conditions using ACRIM. The latter generates the trim vectors: X, X
and U. These vectors are the quantities that the open looop receives as input. Also in this case
reference is made to the trim conditions identified in the previous example. The following figures
show the trajectory of the aircraft and the trend of the parameters: incidence «, sideslip angle
B, TAS and altitude. The time of simulation is 200 seconds.

It can be easily seen how the trim conditions are effectively maintained over time. In fact,
the trajectory is straight and the incidence remains practically constant. At the same time the
speed is maintained as well as the altitude. The variation of g is negligible as can be seen from
the graph. All this suggests that the conditions found globally guarantee the aircraft a condition
of equilibrium.
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Chapter 4

Stability

4.1 Introduction

After the tests for the various trim conditions, the longitudinal and lateral-directional dynamic
response was analyzed, through the calculation of the eigenvalues of the corresponding state
matrices, and through the linearization of the equations of motion. As regards the longitudinal
plane, the solutions expected for the characteristic polynomial of the fourth order are: a pair
of complex and conjugated eigenvalues that corresponds to the phugoid, a periodic mode char-
acterized by the variables V and «, with a much greater period than the other mode; a pair
of complex and conjugated eigenvalues that corresponds to the short-period mode, a periodic
mode characterized by the variables q and #, with a much shorter period than the phugoid. As
regards the lateral-directional plane, the solutions expected for the fourth-order characteristic
polynomial are: a real eigenvalue, much lower than zero, which corresponds to the roll mode
(aperiodic); a second real eigenvalue, with an absolute value closer to zero, which corresponds to
the spiral mode (aperiodic); a complex and conjugated couple of eigenvalues that corresponds to
the Duch roll (periodic).

4.2 Linearization of the equations of motion

The linearization of the equations of motion occurs through the appropriate ACLIN.m routine,
already included in FDC [11]. The process requires a trim condition as input, which can be called
from file, entered manually, or calculated on the spot by calling ACTRIM.m. This trim condition
is used as a starting point around which to linearize the equations. This last aspect allows to sep-
arate the study of the longitudinal dynamics from the lateral-directional one. ACLIN also allows
you to reduce the system state matrix, selecting the variables to be analyzed. The linearization
process is done inside ACLIN by a maltlab function called LINMOD. For the purposes of this
discussion the ACLIN function has been modified: once the aerodynamic model referred to the
datum is received as input, the aerodynamic derivatives are recalculated based on the position
of the center of gravity.

4.2.1 State matrix

Once the state matrix of the linearized system has been obtained, ACLIN provides the possibility
of reducing the system by selecting a limited number of variables; thus a reduced state matrix is
obtained. This allows the variables of longitudinal and lateral-directional dynamics to be isolated
separately, [11, p. 150]. In this discussion, the variables [V « ¢ 6] were used for the longitudinal
dynamics, while for the lateral-directional dynamics [5 p r ¢] were used, [14, p. 205]. The variables
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related to navigation have been completely ignored, since they do not affect the dynamics modes
that we intend to analyze in this chapter. In this discussion, the two reduced matrices will be
denoted as A, and Aj respectively.

4.3

Example of dynamic response analysis

Once the A, and A, matrices have been defined, it is possible to calculate their eigenvalues, so
as to perform a dynamic stability analysis. The load conditions are those reported in the 3.2
section, instead the trim conditions are those reported in the 3.7 section, i.e. using model 2. For
this case, a center of gravity position equal to 28 percent of the mean aerodynamic chord was
considered.

—2.7413-1072  9.4387 2.2083-10~! —9.8029
A — —5.4260 - 1072 —2.9452 1.0838 —8.9574 - 1013
@7 | 3.3442-107%  —17.588 —4.6724 0
0 0 1 0
—2.2093-10"1 4.1078-1072 —9.9121-10"! 1.6322-107!
A= —2.4197-10"  —1.4446 - 10" 2.7422 0
b= 6.1533 3.0652 - 107! —1.1743 0
0 1.0000 4.3927 - 1072 0

In addition, period, natural frequancy, damping, halving time, halving cycles are also calcu-
lated for periodic modes. In the case of aperiodic modes, however, only the halving time can be
calculated.

Longitudinal dynamic

The eigenvalues for the A, matrix are:

—3.8092 + 4.2823i
—3.8092 — 4.2823i
—1.3319-1072 + 1.7676 - 10~ 14
—1.3319-1072 — 1.7676 - 10~ 14

Ao =

Short period: the first pair of complex and conjugated eigenvalues A1 2, as confirmed by
the calculations, defines the short period; the fact that the real part is negative guarantees
that the mode is stable. The following are calculated, being a periodic mode, respectively:
period, halving time, halving cycles.

211 In2 l1/2
T=——-=147s t1jp = ———=0.18 Nijp=-—-"L-=0.12 4.1
Tm(hr2) 2= [Re(h ) V2= @)
The values are in line with those typically expected for small aircraft Natural frequency
and damping can also be calculated, being a periodic mode, as:

~Re(\
wn =/ Im(M2)? + Re(A2)2 = 5.73 rad/s ¢ = ZReus) g 6 (4.2)

n

Phugoid: the second pair of complex and conjugated eigenvalues A3 4, as confirmed by the
following calculations, defines the phugoid; the fact that the real part is negative guarantees
that the mode is stable. The following are calculated, being a periodic mode, respectively:
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period, halving time, halving cycles.

211 In2 12
T= ——— =35.06 s t = =052 N = ‘= =1.46 4.3
Im(3s0) V2= [Reaal) 1/2 (4.3)

The values are in line with those typically expected for small aircraft. Natural frequency
and damping can also be calculated, being a periodic mode, as:
—Re(A
Wy, = \/Im()\374)2 + Re(X3.4)? = 0.177 rad/s (= —felAsa) = 0.075 (4.4)

Wn

Lateral-directional dynamic

The eigenvalues for the A, matrix are:

—1.4418 - 10" 4 0.0000%
—7.0431-107! +2.3725¢
—7.0431- 1071 — 2.3725¢
—1.4716 - 102 + 0.0000%

Ay =

e Roll mode: the first eigenvalue Ay is real, in particular with very negative real part,
therefore stable.

e Dutch roll: the complex conjugated pair Aa 3, defines the Dutch roll motion, character-
ized by the real negative part, therefore it is stable. The following are calculated, being a
periodic mode, respectively: period, halving time, halving cycles.

211 In2 12

T=—"" —9265s 1) = —= _ —0.98 Nyjp= L2037 (45
Im(Xa3) Y27 1Re(Aas)) 2= (4.5)

The values are in line with those typically expected for small aircraft. Natural frequency
and damping can also be calculated, being a periodic mode, as:

_ —Re()\lg)

n

wn = \/Im(Xo)? + Re(Mas)? = 247 rad/s ¢ —0.29 (4.6)

e Spiral mode: the second real eigenvalue A4, is characterized only by the real part. It is
weakly negative, therefore always stable, thus denoting Spiral mode.

The values are in line with those typically expected for small aircraft.

4.4 Influence of C.G. position, weight, speed and altitude on
eigenvlues

The dynamic response of the aircraft depends on several factors: position of center of gravity,
overall weight, flight speed, and altitude. In this section it will be analyzed how these parameters
affect the eigenvalues of the reduced state matrices.

4.4.1 Influence of C.G. position

To analyze the dependence of the dynamic response on the position of the center of gravity, the
AclinforCG function was used. Therefore it was necessary to start from an initial trim condition
that refers to the initial load conditions reported in the section 4.3. The overall weight also
remains unchanged, but the position of the center of gravity has been made to vary. The flight
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manual provides a range of expected values within which the position of the center of gravity
must fall, Table 4.1. The values are provided as a percentage of the mean aerodynamic chord. In
order to test the model, two further positions outside this range were then added to analyze the
eigenvalue trend in a more complete way. The positions used are shown below, both in %MAC
and in m with respect to the datum.

Zeg [T0] 215 24 26 28 30 32 34 36 40 45

Teg [m] 09492 0.9805 1.0055 1.0306 1.0556 1.0806 1.1057 1.1307 1.1808 1.2434

Table 4.1: x4 positions

The analysis of the eigenvalue trend, on the other hand, is carried out through the use of
two types of graphs: the stability diagrams and the Root Locus. The first type shows the real or
imaginary part of the eigenvalues as the derivative C,,, varies, respectively Figures 4.1 and 4.2
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Figure 4.1: Stability diagram (Cy,_,R)

Remember that this derivative is directly proportional to the difference between the position
of the center of gravity and that of the neutral point; therefore, it is in fact a measure of the
position of the center of gravity itself. By convention, the axes of this chart are reversed, in this
way the eigenvalues corresponding to stable modes fall into the first quadrant. In the second
quandrant, dynamic stability is guaranteed, but not static stability; in the fourth the viceversa
occurs; finally, the eigenvalues falling into the third quadrant imply both static and dynamic
instability. The Root Locus, on the other hand, is a simple Cartesian plane on which the complex
eigenvalues are represented, and allows you to immediately view the trend of both the real and
the complex part.

The stability diagrams refer only to the longitudinal dynamics, while the root locus also refer
to the lateral-directional one, as it can be seen in Figurs 4.3 and 4.4.

From Figures 4.3 and 4.4, it can be seen very easily how the retreat of the position of the
center of gravity leads the various modes towards a condition of greater instability: the real part
becomes less negative, yet always remains stable. It is to be noticed that the trend of imaginary
part of the phugoid eigenvalues is opposite to that expected from literature [6], characterized by
an increase in the imaginary part and a decrease in damping.
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Figure 4.3: Root Locus of longitudinal dynamics

This last figure 4.5 represents the expected trend from literature of the eigenvalues of the
longitudinal dynamics. As the position of the center of gravity recedes, and consequently moves
from right to left in the graph, the two pairs of complex and conjugated eigenvalues are replaced
by 4 real eigenvalues, corresponding to 4 non-periodic modes. As we continue to retract the po-
sition of the center of gravity, two of these eigenvalues will tend to couple again, giving rise to a
third periodic mode.

4.4.2 Influence of weight, speed and altitude

The AclinforCG routine linearizes the equations of motion starting from a specific trim condition,
which depends mainly on altitude and speed and, to a lesser extent, on TOW. It is therefore
necessary to analyze how much these quantities influence the model behavior. Even if this function
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makes the center of gravity vary, it is possible to study the dynamic behavior when the conditions
listed above vary, defined a certain position of the center of gravity. In this section, 28 percent
of the mean aerodynamic chord has been chosen as the position, as well as in the 4.3 section.
The initial trim conditions, necessary for the functions, differ here from those used in the other
examples. Two tables are reported below, one for the longitudinal dynamics and one for the lateral

Figure 4.5: Stability diagram from literature

directional dynamics, within which the eigenvalues for the different conditions are inserted.

Short Period Phugoid
600 kg —4.3874 £4.7856 —1.4911-10"% +1.6425- 107!
500 kg —4.3880 4+ 4.8050 —1.3586 - 1072 +£1.8954 - 10!
Om  —4.6548 £4.9347 —1.5933-1072 4 1.6292-10~!
3048 m  —3.4332 £4.2179 —1.1241-1072 4 1.6947 - 10!
30 m/s —2.3055+2.5399 —1.1241-1072 4+ 1.6947 - 10+
76 m/s —5.4736 +5.7958 —1.9672 1072 4 1.4404 - 10!

The tables have been prefered to the Root Locus because the variations are very small in

Table 4.2: Influence on longitudinal dynamics

some cases, therefore they can be better appreciated as values in the Tabel 4.2 and Table 4.3

In the following, the characteristics of the modes in terms of natural frequency, damping and
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Roll mode Dutch roll Spiral Mode
600 kg —1.6611-10" —7.9892-10"!+2.6324 —1.5339-102
500 kg —1.6617-10' —8.0108-10~! +£2.6356 —1.6229 102
Om  —1.7629-10' —8.4304-107'+2.7038 —1.5728 1072
3048 m  —1.2977-10' —6.4436-10"1 £2.3565 —1.3431-10"2
30 m/s —8.9512 —4.9181-1071 £ 1.4548  4.1716- 1073
76 m/s —2.0736-10% —9.8124-10"!'4+3.1610 —1.5012-102

Table 4.3: Influence on latero directional stability

halving time are reported, in isolated tables so as to be able to better notice the differences.

o Weight influence:

Mass [kg] | Short Period Phugoid
¢ wy, [rad/s] ¢ wy, [rad/s]
600 0.65 6.72 0.09 0.165
500 0.67 6.51 0.072 0.19

Table 4.4: Influence of weight on longitudinal dynamics

Mass [kg] | Roll mode | Dutch roll Spiral Mode
tl/? g Wn, [rad/s] t1/2
600 0.042 0.29 2.75 45.19
500 0.042 0.29 2.75 42.71

Table 4.5: Influence of weight on lateral-directional stability

e Altitude influence:

Altitude [m] | Short Period Phugoid
¢ wy, [rad/s] ¢ wy, [rad/s]
0 0.69 6.78 0.097 0.164
3048 0.63 5.44 0.066 0.17

Table 4.6: Influence of altitude on longitudinal dynamics

Altitude [m] | Roll mode | Dutch roll Spiral Mode
t1/2 C Wn, [Tad/S] t1/2
0 0.039 0.30 2.83 44.07
3048 0.053 0.26 2.44 51.6

Table 4.7: Influence of weight on lateral-directional stability

e Speed influence:

As it can be seen, a variation in TOW minimally affects the results. In fact, there are small
differences in the longitudial dynamics, the values on the other hand for the lateral directional
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Speed (TAS) [m/s| | Short Period Phugoid
¢ wy, [rad/s] ¢ wy, [rad/s]
33 0.69 3.34 0.039 0.304
76 0.687 7.97 0.136 0.145

Table 4.8: Influence of speed on longitudinal dynamics

Speed (TAS) [m/s| | Roll mode | Dutch roll Spiral Mode
t1/2 C Wn [rad/s] t1/2
33 0.077 0.32 1.54 not stable
76 0.033 0.30 3.31 46.17

Table 4.9: Influence of speed on lateral-directional stability

remain almost unchanged except for the spiral mode. On the other hand, the differences following
a change in altitude or speed are more evident. In particular it is interesting to note that when
the speed value is very low, 30 m/s, the spiral mode becomes unstable.

4.5 Comparison of dynamics characteristics with similar aircrafts

As mentioned, the calculated eigenvalues and the related dynamics characteristics are in line with
the expected values for ultralight aircrafts. In order to have a further comparison on the results,
it was decided to search for data relating to similar aircrafts. In particular, it was possible to find
some characteristic values for the following aircrafts: BS115, CESSNA 172, DA-20, |9, p. 100].
The first two have an MTOW of around 750 kg, while the third only reaches up to around 530 kg.
However, these are aircraft similar enough to BS prime to be used for comparison. The BS115,
in particular, can be considered an "ancestor" of the BS Prime. The latter was in fact developed
starting from BS115, with the aim of reducing the MTOW to 600 kg, in order to classify the
aircraft as an ultralight. The following tables compare the values that could be found in the
literature. Note that the position of the center of gravity to which the data of BS115, CESSNA
172, DA-20 correspond is not specified in the refrence [9]

e Spiral mode, comparison on halving time |[s]

Aircraft halving time [s]
Cessna 172 34.3
BS115 DATCOM 27.3
DA-20 140
BS Prime 47.1

Table 4.10: Spiral mode

e Dutch Roll, comparison on damping and natural frequency|rad/s].
It must be noted that the regulation requires that the damping must be greater than 0.08,
and that the natural frequency is greater than 1 rad/s

e Short period, comparison on damping
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Aircraft ¢ wy, [rad/s]
Cessna 172 0.1749 2.66

BS115 DATCOM  0.29 1.74
DA-20 0.149 2.17
BS Prime 0.29 247

Table 4.11: Dutch Roll

Aircraft ¢
Cessna, 172 0.685
BS115 DATCOM 0.574
DA-20 0.559
BS Prime 0.66

Table 4.12: Short period

e Phugoid, comparison on damping

Aircraft ¢
Cessna 172 0.104
BS115 DATCOM 0.115
BS115 Flight test 0.156
DA-20 0.056
BS Prime 0.075

Table 4.13: Phugoid

The comparison demonstrates the validity of the results obtained. Unfortunately it was impossible
to make a comparison on Roll mode, due to the difficulty in finding data of this type.
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Chapter 5

Flight test

5.1 Introduction

The possibility of carrying out in-flight tests, using a Blackshape Prime aircraft, was very useful
in order to have a further term of comparison for the mathematical model, in addition to the
aforementioned data obtained from the flight manual. The "EURO FLIGHT TEST" company

has given its willingness to
performance of the aircraft.

Figure 5.1: Classical Flight Tests for Fixed Wing Aircraft

make two flights of about one hour each, in order to analyze the
The tests focused on performance in climb condition, in particular

Test Area Test Categary
Flight Control | 1. Pnmary FCS mech characteristics
System 2. PECS geanng
Mechanical 3. PFCS trim system
Characteristics | 4. Secondary FCS rates. limts
Aircraft  Mass | 5. Weight and Balance
Characteristics
Performance 6. Takeoff performance
7. Climb/Descent performance
8. Cruise perfonmance
9. Level Accel/Decel performance
10. Level Tum performance
11. Stall speeds
Flying Qualities | 12. Steady state trim
13. Longitudinal trim changes
14. Longitudinal short period dynamics
15. Longitudinal phugoid dynamics
16. Static longitudinal stability
17. Maneuvering longitudinal stabality
18. Static lateral-directional stability
19. Dutch Roll dynamics
20. Spiral stabality
21. Lateral control effectiveness
22, Step mputs (long dir)
High Angle of | 23. Stall and buffet charactenstics
Attack 24. Post stall gyrations, departure
Characteristics 25. Spins
Landing. 26. Landing perf. ground effects
ground 27. Ground handling (fax1. brakmg)
handling
Engine 28. Steady state performance
characteristics 29. Start -up transients ( ground and air)
30. Throttle transients
Asymmetric 31. Engine-out performance

Power (mult-
engine arcraft)

32. Engine-out flying qualities
(static & dynamic)

Automatic
Flight Control
System (AFCS)

33. AFCS characteristics
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the cruise acceleration method was used. A fundamental part of the validation process are the
flight tests. They are unanimously recognized and accepted methods. They are divided into two
categories: performance tests and flight quality tests. The former focus on characteristics such as
lift, drag, fuel consumption, etc. Flight quality tests, on the other hand, analyze the characteristics
of stability and controllability that affect the pilot’s workload. A technical flight test list is shown
in Figure 5.1. In this discussion for the validation of the model, only the performance tests were
carried out as already observed, in particular for the climb performance.

Figure 5.2: Vortex generators on BS Prime wing

It is important to note that at the time of the tests, vortex generators were
installed on the aircraft. These components significantly vary the performance of
the aircraft: drag increases, stall speed is slightly reduced, while maximum speed is
significantly lower. It follows that the performance of the aircraft in climb conditions
will also be affected. In particular, the aircraft will find it harder to climb in altitude.
Considering the cruise acceleration tests, however, the greater aerodynamic drag
reduces the acceleration of the aircraft.

5.1.1 Vortex generators

Vortex generators (VGs) are devices that can be installed on the surfaces of aircraft, motor vehi-
cles, rotors or turbines, with the aim of influencing their aerodynamic characteristics. Typically
VGs counsist of thin sheets with a straight or curved shape. When the surface on which they are
mounted is hit by a flow, the VGs divert part of the flow in order to create vortex. The purpose
is to cause a remixing of the boundary layer, which allows the exchange of momentum within it,
and which allows the lower layers to be energized. In the purely aeronautical field, the VGs are
typically installed on the wings, and more precisely between 2% and 15% of the mean aerody-
namic chord. In this way it is possible to delay the separation of the boundary layer, reducing the
stall speed and increasing the effectiveness of the control surfaces. The negative effect is to in-
crease drag, with a consequent increase in consumption and a decrease in the maximum cruising
speed. According to some studies conducted by the Lufthansa flight company, in collaboration
with the German Aerospace Center, the use of VG can help reduce the noise generated by Airbus
A320 aircraft by about 2 dB, eliminating annoying frequencies. In this case, the VGs should be
installed on the lower part of the wing, to reduce the noise generated, during landing, by the
airflow on the fuel tank vents.
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_ STALL AIRSPEED

CONTROLLED
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TURBULENCE

NOTE: AM AIRCRAFT EQUIPPED WITH VORTEX GENERATORS
WILL STALL. BUT AT A LOWER AIRSPEED THAN THE SAME AIRCRAFT WITHOUT VORTEX GENERATORS,

Figure 5.3: Vortex generators on BS Prime wing

5.2 Climb performance

In general terms climb performance is directly linked to excess thrust/power, i.e. the differenece
between thrust/power available and thrust/power required. Whereas thrust/power available de-
pends on the propulsion system and the environment (density, temperature), thrust/power re-
quired depends on weight (induced drag), configuration (parasitic drag) and airspeed (total
drag). In order to determine flight performance data all aspects which have impact on the excess
thrust/power must be taken into consideration. Two important climb performance parameters
are: the Maximum Angle of Climb for obstacle clearance, the Maximim Rate of Climb for max-
imum altitide gain per time, and their associated air speeds V, and Vj, . Excess power is a

\Y
,,,,,,,,,,,,,,,,,,,,,,, y
_____ v _
Definition of Vx and Vy
Time 1 T1=T2

Time 2
Figure 5.4: Vx and Vy definitions

fundamental aspect, as it is necessary for climbing and acceleration. Applying excess power in-
creases the aircraft potential energy or its kinetic energy or both. Understanding the relationship
between climb and acceleration allows mathematical analysis of data. As it can be seen from
equation 5.1, the excess power (Allgycess) is the change of potential and kinetic energy with

respect to time:
AE AK

At T AL

It is possible to rewrite 5.1 in a differential expression:

AI_Iezcess - (51)
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4B | dK

dHezcess = dt + E (52)
Where FE is potential energy in J, and K is kinetic energy in J.
The potential energy can be defined as:

E=m-g-H=W -H (5.3)

Where W is the weight in N, m is the mass in kg, g is the gravitational acceleration in m/s?
and H is the altitude in m. Whereas the kinetic energy is defined as:

1
Kzi-m-VQ (5.4)

Where V' is the speed in m/s. By using the definition of weight as W = m - g, it is possible to
rewrite the 5.5 using 5.3 and 5.4 as

d 1
dnexcess = @(W -H + 5 . W/g : VQ) (55)

Now, using the properties of differentials to 5.5, it is possible to obtain:

aw dH V?dw W .V dV
dll =H—+W—=—4—— 4 —— 5.6
creess at O a T 29 dt + g dt (5.6)
If the relative variation of weight dW/dt is compared to the toltal weight of the aircraft, it is
possible to notice that it is very small during climb, so it is possible to assume that dW/dt ~ 0.
Therefore the equation 5.6 can be rewritten as:
dH W .-V dV

dHeaccess = Wﬁ + T% (57)

Where it is possible to define the new dH/dt quantity as the rate of climb or ROC in m/s. The
quantity dV/dt is the inertial acceleration of the aircraft. Therefore it is important to underline
that V is the true air speed (TAS) of the aircraft in m/s. The excess power can either cause an
acceleration or an altitude increment or both. During the aircraft climb at maximum permissable
power it is possible to assume that the true air speed is constant: this means that dV/dt = 0, so

the excess power becomes:

dH
dHeajcess =W— .
o (5.8)

This means that all the excess power is only used to increase the altitude, so the dllgycess 1S
converted into potential energy.

During the aircraft level acceleration at maximum permissable power, it is possible to assume
that dH/dt = 0, so the excess power becomes:

W Vadv

dll =
Eexrcess g dt

(5.9)
This means that all the excess power is only used for acceleration, so the dllc,cess is converted
into kinetic energy. Thus for small incremets of altitude or speed per small increment of time,
where the excess power does not change due to engine power or propeller characteristics or drag
or weight, it is possible to obtain:

dH Vv

P .1
dt g dt (5.10)
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5.3 Climb performance thest method: Saw Tooth Climb and Level
Acceleration

As already noted, to perform tests on climb performance it was decided to use the Level Ac-
celeration method, as it allows a lower fuel consumption, less weight variation and therefore
more economy.

5.3.1 Saw Tooth Climb

For most general aviation piston engine aircraft the Saw Tooth Climb method establish a climb
of about 1000 ft: once a target altitude is set, it starts from 500 ft below and ends at 500 ft
higher. The aircaft should be in a stable climb with max power setting at the targeted test air
speed about 200 ft below the test band. Test starts when reaching the lower limit of the test
band. The time required to climb A100 ft is recorded. The data are plotted in an Altitude vs.
Time graph. It is not expected to have a perfectly linear correlation between AH and At since
the engine performance will usually decrease with altitude, thus the power available will decrease.
In order to get the rate of climb for the target altitude, a tangent is drawn at the target altitude.
The slope of the tangent AH /At provides the Rate of Climb at target altitude and target air
speed.

JT
-

T~ test altitude + 500 ft

—
e e — — — . — —

—

< test altitude

.

Vo T st w0 N
i S
o~ /' > aircraft stable at test altitude - 700 ft H“‘*"?f;\:-"‘ —
" run 2 run 1 5
Saw tooth climb FTT
4
FA -

At

v
~

Rate of Climb determination

Figure 5.5: Saw Tooth Climb
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5.3.2 Level Acceleration

During a saw tooth climb a few things could change such as the weight, due to fuel consuption,
and the outside temperature. It is possible to consider an alternative and economically more
efficient test method. Recall the equation 5.10 about the correlation between the Rate of Climb
and acceleration at constant altitude, which is a Level Acceleration. Thus, by measuring the air
speed and the corresponding acceleration for an incremental period of time dV/dt at a constant
altitude, it can be analytically obtained the Rate of Climb for various airspeeds at the tested
altitude. To do so the aircraft is stabilized in a climb at max power and with sufficient margin
near to stall speed. When reaching the target altitude the aircraft is levelled of by pushing the
nose down and the excess power will now accelerate the aircraft. Data to be taken are the airspeed
about every b kts of acceleration and the corresponding time. Since the analytics of climb and
acceleration is based on the physics of energy, work and power, all data must be taken as true
data (TAS, tapeline altitude i.e. height).

- Vtrue? !‘:_O____“__-___ __ targeted test altitude

N5 P=P

= max

Figure 5.6: Level acceleration

5.4 Experimental evaluation of neutral point

In trim conditions, one of the fundamental quantities is the deflection of the elevator. This
measurement is complex to obtain, as it is not simply measurable with the goniometer. One
way it is to exploit the direct proportionality between the deflection of the elevator and the
displacement of the stick:
détrim x dSt’rim
dCL,trim dCL,trim

(5.11)

Where s is the displacement of the stick. Typical testing methodology is to find a speed at which
the aircraft can easily be trimmed and record the position of the stick as the starting point. After
that, keeping the altitude constant, the speed is varied by +5 knots and then by + 10 knots,
recording the position of the stick each time. It can be measured with respect to any point of
the cabin, after having equipped oneself with a precise measuring instrument. Then a plot of
the stick displacement s is made as the Cp, varies. Where C7J, is obtained from the TAS (V) and
weight, assuming L = W for constant altitue:

w

CL:1/2~/)-V2-S

(5.12)

Where V' as always is the true air speed (TAS) and p is the density at the altitude where
the test takes place.
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This procedure is repeated for several positions of the center of gravity (at least three), as
in Figure 5.7.

0 CG=1459in.
33K o CG=1437in.
O CG=141.
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\,
1

Lo fad

o -

h —_ L]
T T T

Stick deflection (in.)

(")
T

295+

29

2.85
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Lift coefficient

Figure 5.7: dstpim /dCL trim

Once the curves are obtained, the slope for each line is calculated. These slopes are plotted
as the position of the center of gravity varies. The resulting line intersects the abscissa axis at
the position of the neutral point, as in Figure 5.8.

dsldCy,
=
=h

Neutral point

Q 1 i 'l 1 1 i
136 138 140 142 144 146 148 150 152 154
CG location (inches aft of datum)

Figure 5.8: dCT trim
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5.5 Stability test method

5.5.1 Test method for Phugoid

To test the stability of the phugoid mode [9, p. 42], it is necessary to start from a stable trim
condition, and then a pitch command is given to pitch up or down. The speed must vary by about
10/15 knots. Once this speed perturbation is reached, the stick is returned to neutral position
and the aircraft is allowed to move freely. The data can be collected manually or digitally, using
for example the on-board computer. The data to be carefully analyzed are airspeed and pitch
angle. By plotting these quantities over time it is possible to obtain the characteristic quantities.
First of all, from the graphs it is necessary to identify the peaks corresponding to the time frame
in which the test took place. From them, as Figure 5.9, it is possible first to determine the period
as:

T, =12 —t1 (5.13)

Once the period has been defined, the frequency of the dumped system is identified as:

(5.14)

2.7
Wy = —
d Tp
Since the phugoid is a slow mode and develops over long periods, it is possible to detect the

damping using the transient peak ratio (TPR) method [9, p. 42].

Figure 5.9: Period T}, and TPR

It is calculated using the following formula:

AX; AXoe
TPR = = =... 5.15
AXy AX; (5.15)
This formula is applied for all peaks that can be identified, after which an average value is taken.
The dumping is definde as:

1
¢ = (5.16)
Y (R
log(TPR)
So from the dumping ratio it is possible to define the natural frequency, as
wq
n = 1
w —a (5.17)

5.5.2 Test method for Short Period

Similarly to the phugoid mode, the test method for Short Period starts from a trim condition |9,
p. 23|, then a doublet type elevator command is given. Pulse width and pulse duration may vary
depending on aircraft type. In this case, to identify the characteristic quantities, it is necessary
to plot a over time.
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Figure 5.10: Elevator doublet

5.5.3 Test method for Dutch Roll

Similarly to what was done for short period and phugoid, the test method for Dutch Roll starts
from a stable trim condition [9, p. 24|. A rudder-frequency-sweep is then performed. It consists of
moving the rudder to trigger the oscillation of the Dutch roll. Also in this case the characteristics
are obtained starting from the flight data plots. In this case the damped system frequency is
defined as:

21 - n?®

Wy = ———cucles (5.18)
ttotal
Where n® is the number of cycles and tioq; is the total time. Therefore using the TPR method

cycles

and the equation 5.16 it is possible to calculate the damping, and then after with the 5.17 it is
possible to obtain the natural frequency.

5.5.4 Test method for Roll Mode

The methodology in this case consists in stabilizing the aircraft with a bank angle of 30 or 60
degrees, subsequently an aileron input is applied and maintained until the roll rate stabilizes
[9, p. 25]. When the roll-rate has stabilized, the controls are returned and held in their initial
position.

|
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Figure 5.11: Roll Mode

From the flight data it is possible to obtain the characteristic time 7, defined as the time
needed to reach 63 percent of the stationary value, as shown in the Figure 5.11.
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5.6 Data standardization for Level Acceleration

In the following, the general steps that must be carried out to standardize the data obtained
from the flight tests are set out and described, following the reference [15]. It was decided to
report the description only for those procedures that are used for level acceleration.

5.6.1 Weight correction

The performance in climb necessarily depends on the weight of the aircraft. Performance worsens
as weight increases. For this reason it is advisable to put oneself in a conservative condition, that
is to measure the performance in the worst possible conditions. This means taking the MTOW
as the standard weight. So if the actual weight during testing is different from the MTOW, it is
needed to make a correction to the ROC. In general terms the lifting power is defined as

AFE
In test condition, lifting power is
cq-AH
I = Mtest gAt test (520)
In standard condition, lifting power is
I = Mstand * 9 * A];Istand (521>

At

The power provided by the propulsion system remains constant, independent of weight, so Il =

standard, this leads to:
Miest * G+ AHtest _ Mstand " 9 - AHqest

= 22
At At (5.22)
By rearranging it is possible to obtain:
AH AH es
(), - (1) o
At stand At test Mlstand

5.6.2 Correction for Non-Standard-Engine-Power

As already observed in the thesis "Development of a mathematical model for Bs Prime" the power
generated by the engine varies with the altitude, therefore with the variation of temperature and
density. High temperatures and high altitudes inevitably reduce engine performance. Of course
it is very likely that the temperature and pressure at the test altitude differ from those in the
standard conditions, which determines the need to introduce corrections on the power. In order
to determine the standard engine power, power charts provided by manufacturers are needed.
The precise determination of standard engine power for a piston aircraft however has limitations
which must be understood in order to properly assess the magnitude of possible error:

1. The variable mixture must be set for best power
2. Engine power charts are for dry air only. If the air is humid, power will decrease.

3. The engine configuration must match that of the engine model listed on the chart. Any
changes in compression ratio, ignition system, cooling system or fuel delivery system may
affect the power produced.
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4. The engine must be in good condition. An engine with low compression, leaky valves, weak
ignition system, etc. won’t generate the power predicted by the chart.

5. The quality of fuel may affect engine power.

SEA LEVEL PERFORMANCE ALTITUDE PERFORMANCE CURVE NO. 13549
LYCOMING ENGINE
PERFORMANCE DATA

TO FIND ACTUAL HORSEPOWER FROM ALTITUDE, R.PM., MANIFOLD PRESSURE AND AIR INLET TEMPERATURE.
1. LOCATE A ON FULL THROTTLE ALTITUDE CURVE FOR GIVEN R.P:M MANIFOLD PRESS.
2. LOCATE B ON SEA LEVEL CURVE FOR R.PM. & MANIFOLD

PRESSURE & TRANSFER TO C. MAXIMUM POWER MIXTURE
3.CONNECT A & C BY STRAIGHT LINE AND READ
HORSEPOWER AT GIVEN ALTITUDE D. ABS. DRY MANIFOLD UNLESS OTHERWISE NOTED
MODIFY HORSEPOWER | : |
4 AT D FOR VARIATION OR RATED POWES ENGINE MODEL 10-360-M1A
AIR INLET TEMPERATURE (180 - 2700 R.PM. FULL THROTTLE R.PM COMPRESSION RATIO 8.5:1
T FROM STANDARD = 150

FUEL INJECTOR: PAC RSA-5AD1
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Figure 5.12: Example of engine power charts

Note that the Figure 5.12 is only an example, it is not the actual power charts of the Bs
Prime engine, because the manufacturer has not provided it. It should be remembered that the
Bs Prime is characterized by a 4-cylinder Rotax 912 ULS.

As previously shown there is a direct correlation between power and the altitude increment
by 5.21, after solving for the climb rate it is possible to obtain that:

dH AHear:cess
Al = W 5.24
< dt >c07’rection Wtest ( )

e If a manufacturer provided precise engine power chart is not available, a “thumb” approxi-
mation for Non-Standard- Engine-Power can be made by the following relation:

Hstand Y Ostand (5 25)

Iiest \/ Otest

Where o is the density ratio, calculated by pressure ratio devided by temperature ratio.

e If the pressure altitude remains constant from test day to test day and the temperature
varies, the Non-Standard-Engine-Power may be approximated by:

stand o Tstand (5 26)
Htest Ttest

So the excess power for correction in equation 5.24 is given by:
AHe:ccess = Hstand - Htest (527)

These correction methods require at least a very basic engine power table for sea level conditions
in order to determine the standard power at sea level pressure at standard temperature.
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5.6.3 Correction for Induced Drag

Depending on whether the aircraft is heavier or lighter, a smooth straight-line flight condition
may require a higher or lower « condition, so that lift continues to balance weight. This change
in incidence leads to an induced change in resistance and consequently a change in performance.
In a nutshell, weight affects climbing performance not only in terms of inertia but also in terms of
induced drag. Consequently, excess power is also affected. This difference in excess power Allezcess
will either increase or decrease the climb performance and must be analytically considered in flight
test. Starting from the definition of total drag of a subsonic aircraft:

D = D, + D; (5.28)

Where D, is the parasitic drag, whose drag coefficient Cp, does not cange with weight. The
focus must be on induced drag, defined as:

DZ‘ Zq-S-CDi (5.29)

Where ¢ is the dynamic pressure ¢ = 1/2pV?, Cp, is the induced drag coefficient and S is the
wing surface in m?2. So the variation of induced drag can be written as:

D; = (q -5 CDi)tESt - (q -5 CDi)stand (530)

The induced drag coefficient Cp, can be expressed as a function of the lift coefficient C7:

2
Cp = —CL

_— 5.31
' mg-AR-e ( )

Where AR is the aspect ratio and e is Oswald efficiency. The equation 5.30 can be rewritten by

using 5.31 as: , ,
C C

D= || —L&— — [ —=L£— S 5.32

|:<7T'AR'e>test (ﬂ"AR'e>stand:|q ( )

The lift in flight depends on weight and air speed. To analyze the influence on the lift
coefficient due to the weight variation, for the level flight condition, characteristic of the level
acceleration, the relation could be considered L = W. So from the lift definition it is possible to
obtain:

Wt t 1% tand
CLtest = qgs a’nd CLstand = ;;n (533)
Inserting these elements in the 5.32 and by reworking the terms, it can be obtained:
AD; = (Wiest — Wgana)—— (5.34)
i = test stand qSTFAR c .

The delta in induced drag (AD;) is generating a difference in power. In general, power is defined
as: I = F'- V. Where the force is the delta drag, the velocity is the true air speed thus:

Al = AD; - TAS = Al yeess (5.35)

The AII is the difference in excess power, which can or cannot be used for mechanical lifting of
the standard weight aircraft. Using equation 5.21, 5.34 and 5.35, it is possible to obtain:

dH W2, —W?2 1
Al 22 ) = test stand | (536)
dt Wstand 1/2'ptest -TAS-S-m-AR-e
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5.6.4 Correction for temperature and for climbing/descending

As for the temperature correction, it must be taken into account that the tests are not carried
out under standard conditions. So it is necessary to make the following correction:

dH (dH Tyest
— (=) 2t 5.37
it (dt ) T (5:37)

It must also be taken into account the correction for climbing/descending while accelerating
in order to compensate the exchange of potential and kinetic energy.

A(dl{> _ (Hfinal - Hinitial) . Thest (538)
dt Ataccelerati(m Tsmnd

Where, therefore, the correction takes place only by taking into consideration the altidude at
which the acceleration Hj,;sq; 18 started and the altitude in correspondence of the time in which
the acceleration ended Hfinar . Atacceleration corresponds to the time interval in which the accel-
eration occurred.
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Chapter 6

Flight test data analysis

6.1 Introduction

As already mentioned, the tests focused on performance in climb conditions, and in particular
the cruise acceleration method was used. This method requires the pilot to trim the aircraft for a
low speed value, while maintaining a margin with respect to the stall speed. Then an acceleration
is carried out at a constant altitude, by setting the throttle to the maximum, for a period of time
that can vary from 60 to 90 seconds. The on-board computer stores all the data with a frequency
of 16 Hz, and makes them available in a .csv file.

AL v I
A B C D E F G H | J K L -
1 -1 - - - - - - - - - - M coi] ]
2 [session Time GPS Fix Quality Number of Satellites GPS Date & Time Latitude (deg) Longitude (deg) GPS Altitude (feet) Ground Speed (knots) Ground Track (deg) Mag Var (deg) Cross Track Error (NM) Destination Waypoint 1D Rang
3 1300.12 2 11 2022-06-07 09:27:27 +50.76656  +7.16646 208 0.0 353.7 2.8
4 302.12 2 11 2022-06-07 09:27:29 +50.76656 +7.16645 207 0.0 353.7 -2.8
5 304.12 2 11 2022-06-07 09:27:31 +50.76656 +7.16645 206 0.0 353.7 -2.8
6 306.12 2 11 2022-06-07 09:27:33 +50.76656 +7.16644 205 0.0 353.7 -2.8
7 (308.12 2 11 2022-06-07 09:27:35 +50.76656  +7.16644 204 0.0 353.7 2.8
8 [310.12 2 11 2022-06-07 09:27:37 +50.76656  +7.16644 201 0.0 353.7 238
9 312.12 2 12 2022-06-07 09:27:39 +50.76656  +7.16644 199 0.0 353.7 2.8
10 314.12 2 12 2022-06-07 09:27:41 +50.76655 +7.16644 197 0.0 353.7 -2.8
11 316.12 2 12 2022-06-07 09:27:43 +50.76655 +7.16644 195 0.0 353.7 -2.8
12 318.12 2 12 2022-06-07 09:27:45 +50.76655 +7.16643 194 0.0 353.7 -2.8
13 [320.12 2 12 2022-06-07 09:27:47 +50.76654  +7.16644 192 0.0 353.7 2.8
14 [322.12 2 12 2022-06-07 09:27:49 +50.76654  +7.16644 190 0.0 353.7 2.8
15 324.12 2 12 2022-06-07 09:27:51 +50.76654  +7.16644 188 0.0 353.7 2.8
16 326.12 2 12 2022-06-07 09:27:53 +50.76654  +7.16643 187 0.0 353.7 2.8
17 328.12 2 12 2022-06-07 09:27:55 +50.76654 +7.16643 186 0.0 353.7 -2.8
18 330.12 2 12 2022-06-07 09:27:57 +50.76654 +7.16643 185 0.0 353.7 -2.8
19 332.12 2 12 2022-06-07 09:27:59 +50.76653 +7.16643 184 0.0 353.7 -2.8
20 334.12 2 12 2022-06-07 09:28:01 +50.76653  +7.16643 184 0.0 353.7 2.8
21 336.12 2 12 2022-06-07 09:28:03 +50.76653  +7.16643 183 0.0 353.7 2.8
22 338.12 2 12 2022-06-07 09:28:05 +50.76653  +7.16644 183 0.0 353.7 238
23 340.12 2 12 2022-06-07 09:28:07 +50.76653 +7.16644 183 0.0 353.7 -2.8
24 342.12 2 12 2022-06-07 09:28:09 +50.76653 +7.16644 182 0.0 353.7 -2.8
25 344.12 2 12 2022-06-07 09:28:11 +50.76653 +7.16645 182 0.0 353.7 -2.8
26 346.12 2 12 2022-06-07 09:28:13 +50.76653  +7.16645 182 0.0 353.7 2.8
27 388.12 2 12 2022-06-07 09:28:15 +50.76653  +7.16645 182 0.0 353.7 2.8
28 1350.12 2 2022-06-0709:28:17 +50.76653  +7.16645 181 0.0 353.7 238 v
2022-06-07-DMMBF-SN23026-16 2 4 | Fogliol ® « = >

Figure 6.1: Example of flight test data.csv file

After keeping only the essential data, it is possible to proceed to process the data by switching
to matlab.

6.2 How to evaluate the ROC from the fligfht test data

To calculate the ROC using flight test data, first of all the TAS values can be plotted in a
graph as time changes. Then it is necessary to identify the time span in which the acceleration is
carried out. Once this has been identified, only the time interval of interest is isolated. With the
MATLAB "curve fitting" toolbox it is possible to perform an interpolation to obtain a polynomial
function (in this case a second degree polynomial was chosen), and then the derivative dV/dt is
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Figure 6.2: ROC from TAS graphic

calculated . Then numerically the equation already mentioned is implemented:

dH 'V dVv

6.3 Standardization and correction of data

In the previous chapter, the various techniques required for data standardization were discussed.
Since the actual load condition can be defined in the model implemented in simulink, it is not
necessary to correct the weight: Wand = Wiest. Consequently, the correction on the induced
drag is also not carried out. Since the manufacturer has not provided the engine power chart it
is not possible to make a correction using it. As for the power of the engine, the effects of the
variation of the temperature and altitude are already contemplated in the model of the engine-
propeller through the function . Therefore the function thus obtained must be subjected to
only two corrections: the first takes into account the fact that the temperature at which the tests
were carried out is not the standard one; the second takes into account the fact that, during
acceleration, the altitude does not remain perfectly constant. The final formula used to calculate
the ROC is therefore the following:

dH

VAV AHY T
g dt At T;Eest

6.4 Data processing

During the two hours of flight it was possible to perform nine accelerations at different altitudes,
in order to have an estimate of the performance in several flight conditions. For each of these
accelerations it was possible to produce a comparison graph, plotting at the same time the ROC
deriving from the flight data and the one calculated with the mathematical model. As mentioned,
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the aircraft stores all flight data in a .csv file, which can be opened and processed with excel.
Since the data is stored with a frequency of 16 Hz, the file is large in size. The first step was
therefore to isolate the columns and rows of our interest. For convenience, the columns were
imported into MATLAB as vectors, making it easier for you to view and manipulate the graphs
you need. By analyzing the speed and altitude trends over time, it was possible to precisely

identify the time windows in which the accelerations occurred.
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Figure 6.3: First test session
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Figure 6.4: Second test session

To calculate the ROC with the mathematical model, however, a new routine based on
ACTRIM was used. As input they are entered the altitude at which the test is carried out,
the MAP value (which corresponds to the maximum available, in this case 28 “Hg), the speed
range in the form of a vector, and the RPM. This last value was perhaps the most problem-
atic. The values recorded in the flight data, in fact, were clearly incorrect: in some cases they
exceeded the maximum value of the engine’s maximum RPM, while in others they were too low
to realistically think that the engine could work for those values. In order to enter meaningful
values within the model it was therefore necessary to make an estimate. The value used was 5500
RPM, as in the flight manual [1]. In this case, and unlike what was done for the calculation of
trim conditions in level flight, a flight path angle value equal to zero has not been set; doing so
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the calculated trim conditions will include a certain value of H. This value corresponds to the
ROC searched, and can therefore be compared with that deriving from the flight tests. Using
the procedure described in the previous paragraphs, it was possible to generate nine comparison

graphs.

6.4.1 Example of ROC calculation form flight test data

As mentioned, the first step is to identify the time interval in which the acceleration took place,
using the graph referred to the TAS of the first or second flight test session, Figure 6.3 and Figure
6.4. Once the interval has been defined, it is possible to proceed to create the graph of the speed
variation and of the altitude only for the defined interval.
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Figure 6.5: Acceleration

The second step is to interpolate the speed with a quadratic function, as it approximates the

behavior well.

Results

Linear model Poly2:
f(x) = p1"x"2 + p2*x +
Coefficients (with 95% con
pl= -0.004164 (-0.0
p2 = 10.07 (9.762,
p3 = -6019 (-6200

Goodness of fit:
SSE: 4707
R-square: 0.9621

70

* TAS_avs.tempo_a |
[ | = untitled fit 1

60

TAS_a

40

P e 1140 1160 1180 1200 1220
tempo_a
Table of Fits (G
Fitna..~ Data Fittype SSE R-squa.. DFE Adj R-sq RMSE # Coeff Validat.. Validat.. Validat..
Huntitl. [TAS av.. [paly2  [47066e.. 09621 [1518  |oge20 17608 |3 |

So the speed function is:

Figure 6.6: TAS interpolation

V = —0.004164 - t* + 10.07 - t — 6019

Acceleration a can now be identified as being derived from velocity:

d

a=—V =-0.008328 -t 4+ 10.07

Cdt
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Where t is the time. Now it is possible to proceed to the ROC calculations taking into account the
two corrections to be made: one for the temperature and one for the variation of the altitude. The
correction for the altitude variation as already mentioned is due to acceleration or deceleration,
therefore a passage from potential energy to kinetic and vice versa. Since this is all about energy,
the correction on the altitude concerns only the difference between the starting instant and the
ending instant of acceleration. Where in the example, the change in altitude is 11 m in 100 s

V 11 m Tt d
ROC = ca—  Zstan
(9.81 “~ o0 s> Tiest

Where Tyang is a temperature vector at the altitude defined in ISA conditions, while Ty is a
temperature vector actually recorded during the test.
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Figure 6.7: Test and standard temperature

So the ROC has the following pattern repeated in the Figure 6.8. Note that the ROC to which
no corrections have been made and the standardized one have been plotted.
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Figure 6.8: Test and standard temperature
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6.4.2 Load condition during flight test

Unfortunately, the on-board computer did not record the fuel flow, so it was not possible to take
in account the weight variation during the flight. Therefore, the load conditions at the take-off
weight were used for all the calculations. It must be noted that therefore the standardization on
weight could not have been applied in each test in the absence of the Wy in each phase. It
should be noted that during these tests the pilot was seated in the rear seat and the passenger
in the front seat.

The load conditions for the two test sessions are different:

e Firt sension of flight test:

Mass [kg]
passenger 70
pilot 90
baggage 0
fuel 30
empty weight 390
TOW 590

Table 6.1: Load condition: first session

Then using this conditions, in the appropriate function related to FDC, "primo run
_fde.m", it is possible to obtain the following quantity in Figure 6.9.

-> TOW = 580.0 Eg ok, FUEL =30.0 Kg ok

-> Gravity center coordinates given from datum:

¥g=-1.040 m Yg=0 m Zg=0.066 m

-> Xg given as a percentage of main asrodynamic corde: 28.7¢
20.71< xg MAC <36 satisfies limits

—-> Weight and moment( 603.21 Kgm) are in the range of Weight and Moment Envelope
Moment satisfies the condition 546.51 <Moment< 658.43

-> Moment of inertia:

Ixx=285.06 1Iyy=1640.50 Izz=1853.92 Jxz =-58.34 in EKgm"~2

Ready for trim condition

Figure 6.9: "primo_run _fdc.m" results for first session
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e Second sension of flight test:

Mass [kg]
passenger 65
pilot 90
baggage 0
fuel 35
empty weight 390
TOW 590

Table 6.2: Load condition: second session

Then using this conditions, in the appropriate function related to FDC, "first run fdc.m",
it is possible to obtain the following quantity in Figure 6.10.

-> TOW = 580.0 Kg ok, FUEL =35.0 Kg ok
-» Gravity center coordinates given from datum:
Xg=-1.038 m ¥g=0 m Zg=0.068 m

-» Xg given as a percentage of main aerodynamic corde: 28.58
20.71< xg MAC <36 satisfies limits

-» Weight and moment( 601.%6 Kgm) are in the range of Weight and Moment Envelope
Moment satisfies the condition 546.51 <Moment< 658.43

-> Moment of inertia:
Ixx=287.98 Iyy=1641.54 Izz=1857.3% Jxz =-58.92 in Kgm"2

Ready for trim condition

Figure 6.10: "primo_run _fdc.m" results for second session

These values are used by FDC and in particular by the function CtrimforROC, to calculate
the ROC of the mathematical model of the BS Prime. This quantity is shown in the following
graphs in yellow with the name of "ROC4.". Remember that the position of the center of gravity
x4 is the effective one obtained with the formula of the flight manual [1, p. 114]. The positions of
Yg, 29 and the moment of inertia have been deducted by appropriate hypotheses and arguments
set out in the thesis "Development of a mathematical model for Bs Prime"
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6.4.3 Test point 3000 ft, first session, V),

From the interpolation of the TAS graph it is obtained :

So the acceleration is:

V = —0.004164¢> + 10.07¢ — 6019

a=dV/dt = —0.004164 - 2 - t + 10.07

The ROC is calculated using the 6.3, where the correction on the altitude corresponds to:

TAS [m/s]
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Figure 6.11: TAS and altitude at test point 3000 ft
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6.4.4 Test point 4000 ft, first session, V),

From the interpolation of the TAS graph it is obtained :

So the acceleration is:

The ROC is calculated using the 6.3, where the correction on the altitude corresponds to:
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Figure 6.13: TAS and altitude at test point 4000 ft
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Figure 6.14: ROC at test point 4000 ft
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6.4.5 Test point 5000 ft, first session, V),

From the interpolation of the TAS graph it is obtained :

V = —0.006598¢2 + 21.29¢ — 1.711e - 10*

So the acceleration is:

TAS [mis]

a =dV/dt == —0.006598 - 2 - t + 21.29
The ROC is calculated using the 6.3, where the correction on the altitude corresponds to:
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Figure 6.15: TAS and altitude at test point 5000 ft
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6.4.6 Test point 5000 ft, first session, V,

From the interpolation of the TAS graph it is obtained :

So the acceleration is:

TAS [mis]

a =dV/dt == —0.009727 - 2 - t + 35.99
The ROC is calculated using the 6.3, where the correction on the altitude corresponds to:
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Figure 6.17: TAS and altitude at test point 35.995000 ft
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6.4.7 Test point 4000 ft, first session, V,
From the interpolation of the TAS graph it is obtained :

V = —0.006235t% + 25.64t — 2.628 - 10*

So the acceleration is:
a=dV/dt = —0.006235 -2 - t + 25.64

The ROC is calculated using the 6.3, where the correction on the altitude corresponds to:
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Figure 6.19: TAS and altitude at test point 5000 ft
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Figure 6.20: ROC at test point 4000 ft
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6.4.8 Test point 3000 ft, first session, V,
From the interpolation of the TAS graph it is obtained :

V = —0.007402t> + 36.63t — 4.525 - 10*

So the acceleration is:
a=dV/dt =—0.007402 - 2 - t + 36.63

The ROC is calculated using the 6.3, where the correction on the altitude corresponds to:
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Figure 6.21: TAS and altitude at test point 3000 ft
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6.4.9 Test point 3000 ft, second session

From the interpolation of the TAS graph it is obtained :
V = —0.007831¢* + 14.31¢ — 6466

So the acceleration is:
a=dV/dt =—0.007831 -2t + 14.31

The ROC is calculated using the 6.3, where the correction on the altitude corresponds to:
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Figure 6.23: TAS and altitude at test point 3000 ft
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6.4.10 Test point 4000 ft, second session

From the interpolation of the TAS graph it is obtained :

So the acceleration is:

The ROC is calculated using the 6.3, where the correction on the altitude corresponds to:

V = —0.004401¢> + 9.738¢ — 5318

a=dV/dt = —0.004401 - 2 - t + 9.738
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Figure 6.25: TAS and altitude at test point 4000 ft
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6.4.11 Test point 6000 ft I , second session

From the interpolation of the TAS graph it is obtained :

So the acceleration is:

The ROC is calculated using the 6.3, where the correction on the altitude corresponds to:

V = —0.009448¢t> + 26.25¢ — 1.817 - 10*

a=dV/dt = —0.009448 - 2 - t + 26.25
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6.4.12 Test point 6000 ft II , second session

From the interpolation of the TAS graph it is obtained :

So the acceleration is:

The ROC is calculated using the 6.3, where the correction on the altitude corresponds to:

V = —0.01015¢% + 31.27t — 2.403 - 10*

a=dV/dt = —-0.01015-2 -t + 31.27
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6.5 Comments on the data analyses

It should be noted that the on-board computer did not directly record the power values of
the engine, nor the fuel consumption, with which power values could have been obtained. The
recorded rpm are not reliable values as in some cases for long periods of time they exceed
the maximum value by 1000 RPM. The elevator deflection is not recorded continuously, but
only discreetly and as a percentage. Often this value remains constant for long periods of time.
Therefore, unfortunately not having reliable rpm values and more precise values on the elevator,
it was not possible to make comparisons on simple trim conditions between the aircraft and
the model. At the same time, therefore, it was not possible to verify the graphs made in trim
condition with varying speed and altitude. Flight testing was not conducted with the purpose
of official certification. Having only about two hours of flight, it was only possible to carry out
tests on the performance in climb. Please note that the vortex generators were installed on the
wings, so a decrease in performance is actually expected. In the flight manual, in the performance
chapter [1, p. 97], there are no graphs or values of the ROC as the speed varies. This means that
it is not possible to define a certain error between the values obtained from the flight tests and
those of the flight manual. In it, instead, there is only a graph that allows to obtain a maximum
rate of climb, starting from the altitude and the mass of the aircraft, therefore speed variations
are not taken into account. It follows that the analysis carried out are more qualitative than
quantitative. As already noted, the flight tests were not aimed at certification, so it was not
possible to wait for the optimal day. Unfortunately the weather conditions were not optimal
because of clouds, wind and rain. Therefore, particular attention must be paid when comparing
the ROC obtained from flight tests for different altitudes or speeds. In general, the ROC curve is
expected to decrease as the altitude increases. This is visible in some graphs above, such as the
graphs at 4000 ft and 5000 ft in the 6.4.4 and 6.4.5 sections . In general, the graphs shown above
show how the mathematical model of the Bs Prime differs from the real one. From a qualitative
point of view, it is observed that the ROC calculated by FDC does not show that parabolic-like
trend, which instead characterizes the results of the flight tests. In particular, it can be observed
that the ROCy4. at low speeds does not tend to curve downwards, ie towards lower rates of
climb, but continues to grow or remains approximately constant. Especially in the second test
session, in which the initial speeds were very low, about 30 m/s, the ROC calculated by FDC
shows a sort of inversion: after being almost constant it tends to grow again, as if there was an
inflection point. A possible explanation could be linked to the fact that 30 m/s already represents
a very low speed close to stall, and that the aerodynamic model for the hypotheses made does
not model the stall condition in a suitable way. The maximum values of ROC'4. remain below
or similar to the maximum expected in the graphs in the flight manual [1]
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Chapter 7

Conclusion

As already mentioned, this thesis continued the work set out in the thesis "Development of a
mathematical model for the BS Prime" | with the aim of verifying the reliability of the developed
mathematical model. The results of this discussion showed how the model gives results in line with
expectations, and comparable with the values that characterize similar aircraft. The difference
compared to the real aircraft, which emerged from the performance comparison, makes it clear
that the mathematical model still has too many gaps to be used on a practical level. This is
due to different reasons: for the geometry modeling in DATCOM, the measurements taken with
the caliper are subjected to a certain precision error; DATCOM itself introduces errors on the
derivatives as shown in the reference |9], in particular the effect of the propeller is not taken into
account; in the absence of data, the airfoil was chosen on the basis of some assumptions, therefore,
since it is not the real one, an error is introduced on the value of the aerodynamic derivatives;
in the absence of data, the modeling of the propeller required many assumptions as well as the
calculation of the center of gravity, inertia and mass distribution. Future developments of this
project could lead to a complete validation process. The validation of a mathematical model is
an extremely long and laborious process, which requires enormous experience and considerable
economic resources. It would have been impossible to carry out such work as part of a university
thesis, and without adequate financial coverage. The achieved results shown in this discussion
should therefore be understood as a first step. A complete validation would inevitably lead to
a modification of the mathematical model, trying to obtain more and more precise results. In
addition to the possibility of completing the validation phase, the continuation envisaged for this
project is the application in the context of flight simulation. The EURO FLIGHT TEST company
has a flight simulator integrated with X-plane and Microsoft Simulator software, within which
the mathematical model could be inserted. This would allow pilots to get used to the aircraft
before making actual flights, or simply to practice with specific procedures avoiding the costs
associated with the actual use of the aircraft. From a didactic point of view, the project was
of great interest, and allowed to deepen the knowledge regarding many aspects: aerodynamics,
flight mechanics, modeling, numerical methods, etc. Practical experiences, and in particular that
of in-flight tests, were also invaluable.
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Appendix A

Actrimforcond

% The FDC toolbox. Trim routine ACTRIM.
format short e;

options = [];

turntype = ’'c¢’;

% Display header; welcome to ACTRIM!

%
cle

disp (’The FDC toolbox — ACTRIM’);

disp( )

disp (° 7);

disp (’ This program searches determines a steady—state trimmed—flight condition ’);
disp (’for a non linear aircraft model in Simulink.’);

disp (7 7);

disp (7 7);

% Check if AM, EM, GM1, and GM2 have been defined in the Matlab workspace.

% If not, run DATLOAD to load them from file.

%
if exist (’AM)==0 | exist ('EM)==0 | exist (’GM1)==0 | exist ('GM2)==0
h=newMsgBox ([’ First , the model parameters need to be retrieved from file ’,
"(e.g. AIRCRAFT.DAT). Click ’'’OK’’ or press Enter to continue.’]);

uiwait (h);

datload (’aircraft ’);

end

% 1f model parameters are still not present in the workspace,

% e.g. due to an incorrect datafile, force an abort of ACTRIM.

%
if exist (’AM)==0 | exist (’EM)==0 | exist (’GMI')==0 | exist ('GM2)==0
error ([ ’ERROR: the model parameters are still not present in the workspace! 7,
"Aborting ACTRIM. ’]);

end

% Set xinco (= initial value of the state vector).

%
xinco = [45 0 0 0 0 0 0 0 0 0 0 0],

% Here, all state variables are allowed to vary, so xfix will be set to
% one. Replace this line by:

%
xfix = 1;

Y9I fixstate ;

% The name of the aircraft model to be evaluated will be stored in the
% stringvariable sysname.

%
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disp (’Give name of system with aircraft model’);
disp (’default = beaver’);

sysname = input(’> ’,’s’);
if isempty (sysname)
sysname = ’beaver ’;

end

% Display menu in which the user can choose between a number of trimmed—
% flight conditions and quitting.

%
cle

opt = txtmenu(’Select type of steady—state flight ’,...
"Steady wings—level flight ',’Steady turning flight ’,...
"Steady pull—up’,’ Steady roll ’,’Quit’);

skip = 0; % Do not skip iteration block, unless option ’quit’ is used
% (then skip will be set to 1).
matrnostra = eye(0);

speed = [41.15 42.15 43.2 45.39 46.56]; n = 5500; pot_attesa = 67.89e3;
coeffgamma = 1;

% speed — [66.88 67.91 68.93 69.96 70.99]; n = 5000; pot_attesa — 51.29e3;
% coeffgamma = 0;

% speed = [63.79 65.02 66.26 67.49 68.73]; n = 4800; pot_ attesa = 45.258e3;
% coeffgamma = 0;

% speed = [59.16 60.19 61.21 62.24 63.27]; n = 4300; pot_attesa = 37.72e3;
% coeffgamma = 0;

for cond = 1:1:5

% Define flight condition, depending upon trim option chosen
%
if opt =1 % STEADY WINGS-LEVEL FLIGHT
if cond — 1

V = speed(cond);

H= 0;

psi = 0;

gammatype = 'f7;

gamma — (8.38#%pi/180)*coeffgamma ;

pz = 22;

elseif cond = 2

V = speed(cond);

H= 609.76;

psi = 0;

gammatype = 'f 7;

gamma = (7.62%pi/180)*coeffgamma;

pz = 21;

elseif cond =

V = speed(cond);

H = 1220;
psi = 0;

gammatype = 'f 7;

gamma = (6.75x% pi/180)x*coeffgamma;
pz = 24;

elseif cond =—
V = speed(cond);
H = 1829.27;

psi = 0;
gammatype = 'f7;
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gamma = (5.78+% pi/180)*coeffgamma;
pz = 21;

elseif cond =—

V = speed(cond);

H = 2439;

psi = 0;

gammatype = 'f’7;

gamma = (5.01xpi/180)x*coeffgamma;
pz = 24;

end

phidot =0
psidot = 0;
thetadot = 0

if skip =1 % DEFINE CONFIGURATION OF THE AIRPLANE, IF NOT QUITTING
%
% For the ’'Beaver’ model, the flap angle and engine speed define the
% configuration of the aircraft

%
deltaf = 0;

% G is the centripetal acceleration, used for the coordinated turn
% constraint .

%

G = psidot*xV/9.80665;

%

phi = [];

if opt =— 2 & turntype =— ’u’; % Steady turn, uncoordinated.

phi = input(’Give desired roll angle phi [deg], default = 0: ’)%pi/180;
end

if isempty (phi)

phi = 0;

end

% Note: vtrim contains the first estimation of the non—constant states
% and inputs. The final values will be determined iteratively.

%
if gammatype = ’f’ % gamma in ctrim, pz in vtrim

ctrim = [V H psi gamma G psidot thetadot phidot deltaf n phi]’;
vtrim = [0 0 0 0 0 pz]’;

else % gamma in vtrim, pz in ctrim

ctrim = [V H psi pz G psidot thetadot phidot deltaf n phi]’;
vtrim = [0 0 0 0 0 0]’; % <— initial guess for gamma = 0!
end

% The Simulink system BEAVER or an equivalent aircraft model is called by

% the function call xdot = feval(’beaver’,t,x,u,’outputs’),

%

modfun = [’xdot = feval (’’’,sysname,’’’,0,x,u,’ outputs’’); ’];
modfun = [modfun ’xdot = feval(’’’,sysname,’’’,0,x,u,’’derivs’’);’|;
%

warning off

feval (sysname ,[],[] ,[], > compile ’);

clear ans % (the above feval statement somehow generates an ’ans’ variable)
warning on

% Call minimization routine FMINSEARCH.
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%

cle;

disp (’Searching for stable solution. Wait a moment... " );

disp (7 7);

options = optimset (’Display ’,’ off >, TolX’ ,1e—30,’MaxFunEvals’,5e5,’ MaxIter’ ,5e5);
[vtrimmed , fval ,exitflag ,output] = fminsearch(’accost’,vtrim,options ,...

ctrim ,rolltype ,turntype ,gammatype , modfun)

% Display error message when maximum number of iterations is
% reached before finding converged solution

%
if exitflag = 0

warning (’Maximum number of iterations was exceeded!’);

disp ([’— number of function evaluations: ’ num2str(output.funcCount)]);
disp ([’— number of iterations: ’ num2str(output.iterations)]);

else

disp (’Converged to a trimmed solution...’);

end

% Call subroutine ACCONSTR, which contains the flight —path constraints
% once more to obtain the final values of the inputvector and states.

%

[x,u] = acconstr (vtrimmed , ctrim ,rolltype ,turntype ,gammatype);

% Call a/c model once more, to obtain the time—derivatives of the states
% in trimmed—flight condition.
%

eval (modfun);

% Release compiled aircraft model now that all results are known

%

feval (sysname ,[],[],[],  term’);

%

xinco = x; % Initial value of state vector

xdot0 = xdot; % Initial value of time—derivative of state vector
uaero0 = u(1:4); % Initial value of input vector for aerodynamic model
uprop0 — u(5:6); % Initial value of input vector for engine

% forces and moments model

%

end

Power = 1.7%(uprop0(2)—16.14)*(uprop0(1)—1922);

deltaP = Power—pot attesa;

manetta = 0.00136«Power —2.033;

MAP = uprop0(2);

vettnostro = [Power manetta MAP xinco (1) xinco(2)%180/pi uaero0(1)*180/pi deltaP |;

matrnostra = [matrnostra vettnostro ’];
end % END OF TRIM-LOOP (SKIPPED IF OPTION 5 = QUIT IS SELECTED)
disp ('MAP’)

matrnostra (3 ,:)

disp (’potenza calcolata )
matrnostra (1,:)

disp (’equilibratore ”)
matrnostra (6 ,:)

disp (7 7);
disp (’Ready.’);
disp (7 7);
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Appendix B

Actrim_{froV forH

format short e;
options = [];
turntype = ’'c¢’;
clc

disp (’The FDC toolbox — ACIRIM for H and for V’);

disp( )

disp (7 7);

disp (’ This program searches determines a steady—state trimmed—flight condition ’);
disp (’for a non—linear aircraft model in Simulink, changing V and H’);

disp (7 7);

disp (" 7);

% Check if AM, EM, GM1, and GM2 have been defined in the Matlab workspace.

% If not, run DATLOAD to load them from file.

%
if exist (’AM)==0 | exist (’EM)==0 | exist (’GMI')==0 | exist ('GM2)==0
h=newMsgBox ([’ First , the model parameters need to be retrieved from file ’,
"(e.g. AIRCRAFT.DAT). Click ’'’OK’’ or press Enter to continue.’]);

uiwait (h);

datload (’aircraft 7);

end

% If model parameters are still not present in the workspace,

% e.g. due to an incorrect datafile, force an abort of ACTRIM.

%
if exist (’AM)==0 | exist ('EM)==0 | exist (’GM1)==0 | exist ('GM2)==0
error ([ '’ERROR: the model parameters are still not present in the workspace! 7,
"Aborting ACTRIM. ’]);

end

% Set xinco (= initial value of the state vector).

%
xinco = [45 0 0 0 0 0 0O 0 0 0 0 0];

% Here, all state variables are allowed to vary, so xfix will be set to
% one.

xfix = 1;

%79% fixstate ;

% The name of the aircraft model to be evaluated will be stored in the
% stringvariable sysname.

%
disp (’Give name of system with aircraft model’);
disp (’default = beaver’);

sysname = input(’> ’,’s’);
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if isempty (sysname)
sysname = ’beaver ’;

end

% Display menu in which the user can choose between a number of trimmed—
% flight conditions and quitting.

cle

opt = txtmenu(’Select type of steady—state flight ’ ...

"Steady wings—level flight ’,’Steady turning flight ’ ...

"Steady pull—up’,’ Steady roll ’,’Quit’);

skip = 0; % Do not skip iteration block, unless option ’quit’ is used
% (then skip will be set to 1).

% Define flight condition, depending upon trim option chosen
%
if opt =1 % STEADY WINGS-LEVEL FLIGHT
%
cle

disp (’Steady wings—level flight.’);

disp( )

V = 45

H= 0;

psi = input(’Give heading [deg], default = 0: ’)%pi/180;
if isempty(psi)

psi = 0;

end

ok = 0;

while ok™= 1

gammatype = input (’'Use specified manifold pressure or flight—path angle ([m]/f)? ’,’s’);
if isempty (gammatype)

gammatype = ’'m’;

end

if gammatype == ’f’

gamma = input (’Give flightpath angle [deg], default = 0: ’)xpi/180;
if isempty (gamma)

gamma = 0;

ok = 1;

else

ok=1;

end

elseif gammatype — 'm’

ok = 1;

else

disp (’ Invalid entry. Please choose either ’’m’’, or ’’f’’7);
end

end

phidot
psidot = 0;
thetadot = 0;

\
o

rolltype = ’b’; % No rolling , so for reasons of simplicity the default setting,
% i.e. a body—axes roll , will be used.

TSV

65



if skip =1 % DEFINE CONFIGURATION OF THE AIRPLANE, IF NOT QUITTING
%
deltaf = input(’Give flap angle [deg], default = 0: ’)%pi/180;
if isempty(deltaf)

deltaf = 0;

end

n = input (’Give engine speed [RPM], default = 1800: ’);
if isempty(n)

n = 1800;
end
pz = 20;

% constraint .
%
G = psidot*xV/9.80665;

%
phi = [];

if opt = 2 & turntype == ’'u’; % Steady turn, uncoordinated.

phi = input(’Give desired roll angle phi [deg], default = 0: ’)%pi/180;
end

if isempty (phi)

phi = 0;

end

% Note: vtrim contains the first estimation of the non—constant states
% and inputs. The final values will be determined iteratively.

%

MAP m = eye (0);

deltael _m = eye ;
deltarl _m = eye ;
deltaal _m = eye ;

(

(

(
alphal m = eye (0);

)

)

MAP — [];

deltael = |
deltarl = |
deltaal = |
alphal = []
POTENZA - [|
MANETTA=[];

for H= 500:500:2000

if H=— 500

pz = 24;

else

pz = 22;

end

for V.= 50:3:65;

if gammatype == ’'f’ % gamma in ctrim, pz in vtrim
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ctrim = [V H psi gamma G psidot thetadot phidot deltaf n phi]’;
vtrim = [0 0 0 0 0 pz]’;

else % gamma in vtrim, pz in ctrim

ctrim = [V H psi pz G psidot thetadot phidot deltaf n phi]’;

vtrim = [0 0 0 0 0 0]’; % <— initial guess for gamma = 0!

end

% The Simulink system BEAVER or an equivalent aircraft model is called
%
modfun = [’xdot = feval( ,sysname,’’’,0,x,u,’ ’outputs’’); ’];
modfun = [modfun ’xdot = feval(’’’,sysname,’’’,0,x,u,’ derivs’’);’];

790

% First pre—compile the aircraft model
%
warning off

feval (sysname ,[],[] ,[], > compile ’);

clear ans % (the above feval statement somehow generates an ’ans’ variable)
warning on

% Call minimization routine FMINSEARCH.

options = optimset (’Display ’,’ off >, TolX’ ,1e—30,’MaxFunEvals’,5e5,’ MaxIter’ ,5e5);
[vtrimmed , fval ,exitflag ,output] = fminsearch (’accost’,vtrim,options ,...
ctrim ,rolltype ,turntype ,gammatype , modfun)

% Display error message when maximum number of iterations is
% reached before finding converged solution

%
if exitflag =—

warning ( ’Maximum number of iterations was exceeded!’);

disp ([’— number of function evaluations: ’ num2str(output.funcCount)]);
disp ([’— number of iterations: ’ num2str(output.iterations)]);

else

disp (’Converged to a trimmed solution...’);

end

% Call subroutine ACCONSTR, which contains the flight —path
[x,u] = acconstr (vtrimmed , ctrim ,rolltype ,turntype ,gammatype);

Potenza=(u(6) —5.813)*(u(5) —2392);
Manetta=0.00136xPotenza —2.033;

MANETTA=|MANETTA Manetta |;
POTENZA=[POTENZA Potenza|;
MAP = |MAP u(6)];
deltaal = [deltaal u(2)
deltarl = [deltarl u(3)
1
I

K
I;
].

3

deltael = [deltael u(1)
alphal = [alphal x(2)

Y

% Call a/c model once more, to obtain the time—derivatives of the states
% in trimmed—flight condition.

%
eval (modfun);

% Release compiled aircraft model now that all results are known
%

feval (sysname ,[],[] ,[], term’);
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end

MAP m = [MAP m MAP’];
deltael _m — [deltael m deltael ’];
deltarl m = [deltarl m deltarl ’];
deltaal m = [deltaal m deltaal ’];
alphal m = [alphal m alphal ’];
POTENZA m=[POTENZA m POTENZA’];
MANEITA m—|MANETTA m MANEITA’|;

'
'

MAP = [];

deltael = |

deltarl = |
[

K
I;
deltaal = [];
alphal = [];
POTENZA = [|;
MANETTA= | |;

end

)

disp(

disp (’ End, now run Plot grafici

DE

disp(

disp (" 7);
%
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Appendix C

CtrimforROC

format short e;
options = [];

turntype = ’c’;

% Display header; welcome to ACTRIM!

%

cle

disp (’The FDC toolbox — ACTRIM’);
disp( )i
disp (7 7);

disp (’ This program searches determines a steady—state trimmed—flight condition ’);
disp (’for a non linear aircraft model in Simulink.’);

disp (7 7);
disp (7 7);
if exist (’AM)==0 | exist (’EM)==0 | exist (’GMI')==0 | exist ('GM2)==0

)

h=newMsgBox ([’ First , the model parameters need to be retrieved from file ’,
"(e.g. AIRCRAFT.DAT). Click ’'’OK’’ or press Enter to continue.’]);

uiwait (h);

datload (’aircraft 7);

end

% If model parameters are still not present in the workspace,

% e.g. due to an incorrect datafile, force an abort of ACTRIM.

%
if exist (’AM)==0 | exist ('EM)==0 | exist (’GM1)==0 | exist ('GM2)==0
error ([ '’ERROR: the model parameters are still not present in the workspace! 7,
"Aborting ACTRIM. ’]);

end

xinco = [45 00 0 0 0 00 0 0 0 0]7;

xfix = 1;

Y9I fixstate ;

disp (’Give name of system with aircraft model’);

disp (’default = beaver ’);

sysname = input(’> ’,’s’);
if isempty (sysname)
sysname = ’beaver ’;

end

cle

opt = txtmenu(’Select type of steady—state flight ’ ...
"Steady wings—level flight ’,’Steady turning flight ' ...
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"Steady pull—up’,’ Steady roll ’,’Quit’);

skip = 0; % Do not skip iteration block, unless option ’quit’ is used
% (then skip will be set to 1).

% Define flight condition, depending upon trim option chosen

%

if opt — 1 % STEADY WINGS-LEVEL FLIGHT
%

cle

disp (’Steady wings—level flight.’);

disp( )

V = input (’Give desired airspeed [m/s], default = 45: ’);
if isempty (V)

V = 45;

end

H = input (’Give (initial) altitude [m], default = 0: ’);
if isempty (H)

H= 0;

end

psi = input(’Give heading [deg], default = 0: ’)%pi/180;
if isempty(psi)

psi = 0;

end

ok = 0;

gammatype = ’'m’;

phidot 0;
psidot = 0;
thetadot = 0;

rolltype = ’b’; % No rolling , so for reasons of simplicity the default

% i.e. a body—axes roll, will be used.
end

VA

% DEFINE CONFIGURATION OF THE AIRPLANE, IF NOT QUITTING
%

% For the ’Beaver’ model

deltaf = input(’Give flap angle [deg], default = 0: ’)%pi/180;
if isempty(deltaf)

deltaf = 0;

end

n = input (’Give engine speed [RPM], default = 1800: ’);

if isempty(n)

setting ,

n = 1800;

end

%

if gammatype == ’f’

pz = input (’Give estimate of manifold pressure pz ["Hg], default = 20:

else % gammatype — ’'m’
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pz = input (’Give manifold pressure pz ["Hg|, default = 20: ’);
end

if isempty (pz)

pz = 20;

end

% G is the centripetal acceleration , used for the coordinated turn
% constraint .

%
G = psidot*V/9.80665;

% If steady, uncoordinated , turning condition must be determined, the
% roll angle can be specified freely; equilibrium will be obtained for
% a trimmed—flight sideslip angle, which in this case usually will be
% quite large.

%

phi = [];

if isempty(phi)
phi = 0;

end

D st % sk sk sk sk ok ok sk ok ok ok ok sk sk skok sk skok sk ok ok ok sk ok ok sk ok ok sk sk ok sk sk ok ok ko sk ki ok ok ok skok ok ok ok ok skok K
ROC = [];

deltael = [];

alphal = [];

TAS = [];

for V.= 30:1:60

if gammatype =— ’f’ % gamma in ctrim, pz in vtrim

ctrim = [V H psi gamma G psidot thetadot phidot deltaf n phi]’;
vtrim = [0 0 0 0 0 pz]’;

else % gamma in vtrim, pz in ctrim

ctrim = [V H psi pz G psidot thetadot phidot deltaf n phi]’;
vtrim = [0 0 0 0 0 0]’; % <— initial guess for gamma = 0!
end

% The Simulink system BEAVER or an equivalent aircraft model is called by
modfun = [’xdot = feval (’’’,sysname,’’’,0,x,u,’ outputs’’); ’];
modfun = [modfun ’xdot = feval(’’’,sysname,’’’,0,x,u,’’derivs’’);’];

% First pre—compile the aircraft model (temporarily suppress warnings
% to prevent harmless, but inconvenient messages when the model is

% already compiled).

%
warning off

feval (sysname ,[] ,[],[],  compile’);

clear ans % (the above feval statement somehow generates an
warning on

’ans’ variable)

% Call minimization routine FMINSEARCH.

%

cle;

options = optimset (’Display ’,’ off >, ’TolX’ 1e—30,’MaxFunEvals’ ,5e5,” MaxIter’,5e5);
[vtrimmed , fval ,exitflag ,output] = fminsearch (’accost’,vtrim,options ,...

ctrim ,rolltype ,turntype ,gammatype ,modfun)

% Call subroutine ACCONSTR, which contains the flight —path constraints
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% once more to obtain the final values of the inputvector and states.

%

[x,u] = acconstr (vtrimmed , ctrim ,rolltype ,turntype ,gammatype);

% Call a/c model once more, to obtain the time—derivatives of the states
% in trimmed—flight condition.

%

eval (modfun);

% Release compiled aircraft model now that all results are known
%
feval (sysname ,[],[],[],  term’);
ROC = [ROC xdot (end)]
deltael [deltael u(
alphal = [alphal x(2)
TAS = [TAS x(1)];

)

IDNE
]

)

end
plot (TAS, ROC);
disp(’end’);
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Appendix D

AclinforCG

format short e

skip = 0; % Help variable which is set to 1 if user selects

% QUIT from main menu. If skip = 1, the last part of

% ACLIN, where the actual linearization takes place,

% is skipped.

cle

disp ('FDC toolbox — ACLIN’);

disp( );

disp (’ This program will linearize the nonlinear aircraft model in SIMULINK. ’);
disp (7 7);

% Enter name of the aircraft model.

%

disp (’Enter name of the aircraft model in Simulink (default: BEAVER) ’);
sysname = input(’> ’,’s’);

if isempty (sysname)

sysname = ’beaver ’;

end

0/0/0/0

% Define or load operating point.

%

ok = 0;

while ok =1
%
cle

opt = txtmenu (’Choose one of the following options’
"Load operating point from file ’ ...

"Manually define operating point ’ ...

"Use operating point defined in workspace’ ...

"Run ACTRIM to determine trimmed flight condition ’,...
"Quit 7);

PRI

if opt
%
triload ;
ok = 1;
end

elseif opt — % USE OPERATING POINT FROM WORKSPACE
%

cle
if exist(’xinco’) = 0 | exist(’uaero0’) == 0 | exist (’uprop0’) == 0

1 % LOAD OPERATING POINT
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% Currently , no operating point has been defined in the Matlab
% workspace. Display error message and return to main menu.

%

cle

disp (’ACLIN expects the following variables to be present in the’);
disp (’Matlab workspace:’);

disp (* 7);

disp (’ xinco = state vector in operating point ’);

disp (’ uaero0= vector with aerodynamic control inputs’);

disp (’ uprop0= vector with engine control inputs’);

disp (° 7);

disp (’At least one of these vectors is currently not present, so’);
disp(’linearization cannot proceed!’);

disp (7 7);

disp(’<<<Press a key to return to main menu>>>’);

pause

else

% Ask if current definition of the operating point is correct.
% If not, program will return to main menu.

%

cle

disp (’Current definition of operating point (xinco = states,’);
disp (’uaero0 = aerodynamic inputs, uprop0 = engine inputs):’);
xinco

uaero(

uprop0

answ = input(’Is this correct (y/[n])? ’,’s’);

if isempty(answ) | answ "= ’y’

disp (7 7);

disp(’<<<Press a key to return to main menu>>>’");

pause

else

ok = 1; % If current definition is ok, proceed with

% linearization

end

end

elseif opt = % RUN ACTRIM TO DETERMINE STEADY-STATE TRIMMED-FLIGHT
% CONDITION. Type HELP ACTRIM for more details.

%

%

clear uaero0 uprop0 xinco xdot0 % delete operating point definition
% from workspace (if present)

save aclin.tmp % save remaining variables to temporary file
clear % ... and clear workspace

actrim % run ACTRIM

load aclin.tmp —mat % retrieve variables from temporary file

delete (’aclin .tmp’);

%

if exist(’xinco’) = 0 | exist(’uaero0’) == 0 | exist (’uprop0’) ==
disp (7 7);

disp (’No operating point defined!’);

disp (7 7);
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disp (7 7);

disp(’<<< Press a key to return to main menu >>>’);

pause

else

ok = 1;

end

else % QUIT
%

ok = 1;
skip = 1; % Return to end of program rightaway when quitting.
end

% if skip =1 % If not quitting from ACLIN, proceed with program.
% Else, go to end of program rightaway!

disp (7 7);

disp(’<<< Press a key to proceed with model definition >>>7);

pause

%

if exist (’AM)==0 | exist (’EM)==0 | exist (’GM1)==0 | exist ('GM2)==0
h=newMsgBox ([’ First , the model parameters need to be retrieved from file ’,
"(e.g. AIRCRAFT.DAT). Click ’'’OK’’ or press Enter to continue.’]);

uiwait (h);

datload (’aircraft 7);

end

% If model parameters are still not present in the workspace,

% e.g. due to an incorrect datafile, force an abort of ACLIN.

%
if exist (’AM)==0 | exist ('EM)==0 | exist (’GM1)==0 | exist ('GM2)==0
error ([ ’ERROR: the model parameters are still not present in the workspace! 7,
"Aborting ACLIN. ’]);

end

xfix = 1;

xg_vett = [0.9492 0.9805 1.0055 1.0306 1.0556 1.0806 1.1057 1.1307 1.1808 1.2434];
CMO_vett = —[0.108 0.102 0.09969 0.09731 0.09496 0.09262 0.09024 0.08789 0.08316 0.0772
CMalpha_vett = —[1.589 1.450 1.339 1.228 1.117 1.007 0.8957 0.7848 0.5631 0.2861];
CMalpha2 vett = [0.2401 0.2386 0.2367 0.2354 0.2335 0.234 0.2313 0.2299 0.227 0.2238];
CMq_vett = —[16.57 16.25 16.00 15.76 15.52 15.30 15.08 14.86 14.45 13.98];

CMdeltae vett = —[0.7678 0.7618 0.757 0.7522 0.7473 0.7424 0.7377 0.7328 0.7232 0.7111]:
CLq_vett = [8.492 8.214 7.993 7.77 7.548 7.326 7.104 6.882 6.438 5.884];

CYr_vett = [0.2393 0.2372 0.2356 0.2340 0.2323 0.2307 0.2290 0.2274];

CYp_vett = —0.0839;
Clb_vett = —0.0424;
Clp_ vett = —0.447;

Clr _vett = 0.0759;
Cnb_vett = [0.07426 0.07237 0.07087 0.06935 0.06785 0.06634 0.06433 0.06333];

Cnp vett = —[0.03027 0.03006 0.02987 0.02968 0.02951 0.02933 0.02914 0.02897];
Cnr_vett = —[0.22315 0.22055 0.2185 0.21643 0.2139 0.2111 0.2082 0.2054];
Cndr_vett = —[0.0278 0.0276 0.0274 0.0273 0.0271 0.0269 0.0268 0.0266];
autovalRe = eye (0);

autovallm = eye (0);

dampingCP = [];
dampingPH = [];
pulseCP = [];

75



pulsePH = [];
TCP = [];

PH - ]
tmezziCP = [];
tmezziPH = [];
%xdef = |1 2 5 8];

xdef = [3 4 6 9];

for vett=1:1:(length (CMO_vett)—2)

AM(5,1) = CMO_vett(vett );

AM(5,2) = CMalpha_vett(vett );

AM(5,3) = CMalpha2_vett(vett);

AM(5,9) = CMq_vett(vett);

AM(5,11) = CMdeltae vett(vett);

AM(3,9) = CLq_vett(vett);

AM(2,10) = CYr_vett(vett );

AM(2,8) = CYp_ vett;

AM(4,5) = Clb_vett;

AM(4,8) = Clp_vett;

AM(4,10) = Clr_vett;

AM(6,5) = Cnb_vett(vett );

AM(6,8) = Cnp_vett(vett );

AM(6,10) = Cnr_vett(vett);

AM(6,14) = Cndr_vett(vett);

%

uinco = [uaeroO; upropO; 0; 0; 0; 0; 0; 0];

%

[Aac, Bac, Cac, Dac] = linmod (sysname,xinco ,uinco);
.’.’.""""""'.'.‘.‘.‘.‘.‘.‘.‘....‘0.0.0.0.0.0.0.0.0.0.’.’.’.’.'.'.'.'.'.'.‘.‘.‘.‘.‘.‘.O.......0.‘.0.0.0.0.0.0.0.’.””””"""""""‘.
%

allstates = 0;

ok = 0;

xdef = xdef;

allstates = 1; % Set all states flag.
%

udef = [1 2 3 4 5 6];
allinputs = 0;

%
% Determine new state matrix Aac_s, depending upon element numbers
% selected above.

%

for ii = 1:length (xdef) % ii = row number
for jj = 1l:length (xdef) % jj = column number
Aac_s(ii,jj) = Aac(xdef(ii),xdef(jj));

end

end

% Determine new state matrix Bac_s, depending upon element numbers
% selected above.

%

for ii = 1l:length (xdef) % ii = row number
for jj = 1:length (udef) % jj = column number
Bac_s(ii,jj) = Bac(xdef(ii),udef(jj));

end

end

lambda = eig(Aac_s);

autovalRe = [autovalRe real (lambda)];

autovallm = [autovallm imag(lambda)];
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pulseCP (vett) = sqrt ((imag(lambda
pulsePH (vett) = sqrt ((imag(lambda
dampingCP (vett) = —real (lambda(1)
dampingPH (vett) = —real (lambda(3)
TCP(vett) = 2xpi/imag(lambda(1));
TPH(vett) = 2xpi/imag(lambda(3));
tmezziCP (vett) = log(2)/real (lambda(1));
tmezziPH (vett) =log(2)/real (lambda(3)) ;

07070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070707070,
0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0

% Display results for user.

1)))"2 + (real(lambda(1)))"~2);
3)))"2 + (real(lambda(3)))~2);
/pulseCP (vett );
/pulsePH (vett );

— N~

%

end

autovalRe
disp (7 7);
autovallm

disp ('Ready.’);
disp (7 7);
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Appendix E

First flight test session data analysis

%% diego 3000ft
tempo=VarNamel—VarNamel (1);
TAS=VarName8x(0.514444;
quota=VarName2;
deltae=VarNamel2;
T=VarNamel2+237.15;
inizio=18001;

fine= 19521;

% figure (1)

% plot (tempo , TAS)

% xlabel ("t [s]”)

% ylabel ("TAS [m/s]’)
%

% figure (2)

% plot (tempo, quota)
% xlabel ("t[s]”)

% ylabel ("H [m]’)

%

% figure (3)

% plot (tempo, deltae)

%find indice dal tempo
for i=inizio:1:fine
if tempo(i)==1220

casper=i;

end

end

rho_sl = 1.225; % a livello del mare [kg/m"3]

T _sl = 288.15; % Temperatura a livello del mare [K]
a = —0.0065; % Gradiente termico [K/m]

h = quota./3.28;

% Valutazione della temperatura e della rho al variare della quota
% (fino a tropopausa)

for i = 1:length(h)

T s(i) =T sl + a.xh(i);

rho s(1i) = rho sl.%(T _s(i)./T sl).~4.25;
end

figure (1)
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plot (tempo(inizio:fine),TAS(inizio:fine))
xlabel ('t [s]’)
ylabel (’TAS [m/s]’)

figure (2)

plot (tempo(inizio:fine),quota(inizio:fine)./3.28)
xlabel ("t[s]’)

ylabel ('"H [m]’)

rpm=VarName9;

figure (3)

plot (tempo(inizio:fine) ,T(inizio:fine))
xlabel ("time [s]’)

ylabel ('T [K]’)

hold on

plot (tempo(inizio:fine),T s(inizio:fine))
legend ('T {test}’, T {stand}’)

grid on

TAS_a=TAS(inizio:fine);
tempo_a—tempo(inizio:fine);
T out=T(inizio:fine);

T T s(inizio:fine);

T =T s’;

%funzione che interpola

x—tempo_a;
v_TAS= —0.004164.xx.724+10.07.xx—6019;
a_TAS=-0.004164.%x2.xx+10.07;

ROC= a_TAS.xv_TAS./9.81;
ROC _sROC.*T out./T s—(11)/100.xT out./T_s;

V fdc=40:1:70;

%Vx
m_vett=ROC_s./v_TAS;
i=1;

while v_TAS(i)<max(v_TAS)
m=ROC_s(i)/v_TAS(i);

if m—max(m _vett)
Vx=v_TAS(i)

end

if ROC_s(i)==max(ROC_s)
Vy=v_TAS(i)

end

i=i-+1;

end

ROCfdc=] 5.3889 5.3690 5.3411 5.3047 5.2596
5.1422 5.0819 5.0164 4.9418 4.8580 4.7649
4.5528 4.4480 4.3340 4.2106 4.0779 3.9355
3.4761 3.3117 3.1379 2.9544 2.7612 2.5581
2.1523 1.9352 1.7083 |;

figure (5)
plot (v_TAS,ROC)

79

5.2055

4.6622
3.7835

2.3597

3.6310



hold on

plot (v_TAS,ROC s)

grid on

plot (V_fdc,ROCfdc)

legend ('ROC_{test }’, 'ROC_{sta.}’, ’ROC_{fdc}’)
xlabel ("TAS [m/s]’)

ylabel ('ROC [m/s]’)

title (’"ROC at 915m 5500 rpm’)

%% 4000 ft
tempo=VarNamel—VarNamel (1);
TAS=VarName8x0.514444;
quota=VarName2;
deltae=VarNamel2;
T=VarNamel2+237.15;

inizio= 21441;

fine= 22561;

% figure (1)

% plot (tempo ,TAS)

%

% figure (2)

% plot (tempo, quota)
%

% figure (3)

% plot (tempo, deltae)

%find indice dal tempo
for i=inizio:1:fine
if tempo(i)==1410

casper=i;

end

end

rho_sl = 1.225; % livello del mare [kg/m"3]

T sl = 288.15; % Temperatura a livello del mare [K]
a = —0.0065; % Gradiente termico [K/m]

h = quota./3.28;

% Valutazione della temperatura e della rho al variare della quota
% (fino a tropopausa)
for 1 = 1l:length(h)

T s(i) =T sl + a.xh(i);

rho s(1i) = rho_sl.*%(T _s(i)./T _sl).~4.25;
end

figure (1)

plot (tempo(inizio:fine),TAS(inizio: fine))

xlabel ('t [s]’)

ylabel (’TAS [m/s]’)

figure (2)

plot (tempo(inizio:fine),quota(inizio:fine)./3.28)
xlabel ("t[s]’)

ylabel (’"H [m]’)

rpm=VarName9;
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figure (3)
plot (tempo(inizio:fine),deltae(inizio:fine))

TAS_a=TAS(inizio:fine);
tempo_ a—tempo(inizio:fine);
T out=T(inizio:fine);

T T s(inizio:fine);

T =T s’;

%funzione che interpola

x—tempo_a;
v_TAS= —0.007362.%xx.72+ 20.66.xx—1.442e+04;
a_TAS=-0.007362.%x2.xx+ 20.66;

ROC= a_TAS.xv_TAS./9.81;
ROC_s=ROC.*T_out./T_s—(35)/75.«T_out./T_s;

V fdc=45:1:75;

%Vx

m_vett=ROC_s./v_TAS;

i=1;

while v_TAS(i)<max(v_TAS)
m=ROC_s(i)/v_TAS(i);

if m—max(m _vett)

Vx=v_TAS(i)

end

if ROC_s(i)==max(ROC_s)

Vy=v_TAS(i)

end

i=i-+1;

end

ROCfdc=[5.2500 5.2302 5.2028 5.1674 5.1236 5.0712 5.0100
4.9518 4.8885 4.8165 4.7355 4.6455 4.5463 4.4405

4.3393 4.2291 4.1099 3.9814 3.8438 3.6967 3.5491 3.3992

3.2402 3.0719 2.8942 2.7071 2.5105 2.3183
2.1174 1.9071 1.687];

figure (5)

plot (v_TAS,ROC)

hold on

plot (v_TAS,ROC 5s)

grid on

plot (V_fdec,ROCfdc)

legend ('ROC_{test}’, 'ROC {sta.}’, ’ROC_{fdc}’)
xlabel ("TAS [m/s]’)

ylabel ('ROC [m/s]’)

title ('ROC at 1220m 5500 rpm’)

%% 5000
tempo=VarNamel—VarNamel (1);
TAS=VarName8x(0.514444;
quota=VarName2;
deltae=VarNamel2;
T=VarNamel2+237.15;
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inizio= 24801;
fine= 25761;

%
%
%
%
%
%
%
%

%find

figure (1)
plot (tempo,T)

figure (2)
plot (tempo, quota)

figure (3)
plot (tempo, deltae)

for i=inizio:1:fine
if tempo(i)==1610
casper=i;

end

end

rho sl = 1.225;
T sl = 288.15;

a

— —0.0065;

h = quota./3.28;

indice dal tempo

% livello del mare |[kg/m~3]
% Temperatura a livello del mare [K]
% Gradiente termico |K/m]|

% Valutazione della temperatura e della rho al variare della quota

% (fino a tropopausa)

for 1 = l:length(h)

T s(i) = T_ sl + a.xh(i);

rho_s(i) = rho_sl.%(T_s(i)./T sl).~4.25;
end

figure (1)

plot (tempo(inizio:fine),TAS(inizio:fine))
xlabel ('t [s]’)
ylabel (’TAS [m/s]’)

figure (2)
plot (tempo(inizio:fine),quota(inizio:fine)./3.28)
xlabel ("t[s]’)

ylabel ('"H [m]’)

rpm—VarName9 ;
figure (3)
plot (tempo(inizio:fine) ,rpm(inizio:fine))

tempo_a=tempo(inizio:fine);
T out=T(inizio:fine);
T sT s(inizio:fine);

T =T s’;

%funzione che interpola

X—tempo_a;
v_TAS= —0.006598.%x.72+ 21.29.xx—1.711e+04;

a_TAS=-0.006598.%2.%x+ 21.29;

ROC= a_TAS.xv_TAS./9.81;

ROC_s=ROC.xT _out./T s—(10)/70.xT out./T_s;
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V _fdec=35:1:65;

%Vx
m_vett=ROC_s./v_TAS;
i=1;

while v_TAS(i)<max(v_TAS)
m=ROC_s(i)/v_TAS(i);

if m—max(m_vett)
Vx=v_TAS(i)

end

if ROC s(i)==max(ROC_s)
Vy=v_TAS(i)

end

i=i-+1;

end

ROCfdc=|
5.1789 5.1741 5.1661 5.1534 5.1350 5.1145 5.0946
5.0676 5.0320  4.9904  4.9396  4.8802 4.8240  4.7628
1.6933 4.6151 1.5281 4.4323 4.3300 4.2322 4.1258
4.0105 3.8863 3.7532 3.6109 3.4681 3.3232 3.1693
3.0065 2.8345 2.6534 |;

figure (5)

plot (v_TAS,ROC)

hold on

plot (v_TAS,ROC 5s)

grid on

plot (V_fdc,ROCfdc)

legend ('ROC_{test }’, 'ROC_{sta.}’, ’ROC_{fdc}’)
xlabel ("TAS [m/s]’)

ylabel ('ROC [m/s]’)

title ('ROC at 1524m 5500 rpm’)

%% 5000 ritorno
tempo=VarNamel—VarNamel (1);
TAS=VarName8x(0.514444;
quota=VarName2;
deltae=VarNamel2;
T=VarNamel2+237.15;

inizio= 28721;

fine= 29761;

figure (1)

plot (tempo ,TAS)
figure (2)

plot (tempo, quota)
figure (3)

plot (tempo, deltae)

%find indice dal tempo
for i=inizio:1:fine

if tempo(i)==1795
casper=i;

end
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end

rho_sl = 1.225; % livello del mare [kg/m"3]
T _sl = 288.15; % Temperatura a livello del mare [K]
a = —0.0065; % Gradiente termico [K/m]

h = quota./3.28;

% Valutazione della temperatura e della rho al variare della quota
%(fino a tropopausa)
for 1 = 1l:length(h)

T s(i) =T sl + a.xh(i);

rho_s(i) = rho_sl.%(T_s(i)./T _sl).~4.25;
end

figure (1)

plot (tempo(inizio:fine),TAS(inizio: fine))
xlabel ('t [s]’)
ylabel (’TAS [m/s]’)

figure (2)

plot (tempo(inizio:fine),quota(inizio:fine)./3.28)
xlabel ("t[s]’)

ylabel ("H [m]’)

rpm=VarName9;
figure (3)
plot (tempo(inizio:fine),rpm(inizio:fine))

TAS a=TAS(inizio:fine);
tempo_a=tempo(inizio:fine);
T out=T(inizio:fine);

T sT s(inizio:fine);

T =T s’;

%funzione che interpola

X—tempo_a;
v_TAS= —0.009727.%xx.72+ 35.99 .xx—3.323e+04 ;
a_TAS= —0.009727.%x2.xx+ 35.99;

ROC= a_TAS.xv_TAS./9.81;
ROC_s=ROC.xT _out./T s—(35)/70.xT out./T_s;

V fdc=35:1:65;

%oVx
m_vett=ROC_s./v_TAS;
i=1;

while v_TAS(i)<max(v_TAS)
m=ROC_s(1i)/v_TAS(i);

if m——max(m _vett)
Vx=v_TAS(i)

end

if ROC s(i)==max(ROC_s)
Vy=v_TAS(i)

end

i=i-+1;

end
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ROCfdc=[ 5.1789 5.1741 5.1661 5.1534
5.0946 5.0676 5.0329 4.9904 4.9396
4.6933 4.6151 4.5281 4.4323 4.3300
4.0105 3.8863 3.7532 3.6109 3.4681
3.0065 2.8345 2.6534];

figure (5)

plot (v_TAS,ROC)

hold on

plot (v_TAS,ROC 5s)

grid on

plot (V_fde,ROCfdc)

legend ('ROC_{test}’, 'ROC {sta.}’, ’ROC_{fdc}’)
xlabel ("TAS [m/s]’)

ylabel ('ROC [m/s]’)

title ('ROC at 1524m 5500 rpm’)

%% 4000 ritorno

tempo=VarNamel—VarNamel (1);
TAS=VarName8x(0.514444;
quota=VarName2;
deltae=VarNamel2;
T=VarNamel2+237.15;

inizio= 31681;

fine= 32801;

% figure (1)

% plot (tempo ,TAS)

%

% figure (2)

% plot (tempo, quota)
%

% figure (3)

% plot (tempo, deltae)

%find indice dal tempo
for i=inizio:1:fine

if tempo(i)==2050
casper=i;

end

end

5.1350
4.8802
4.2322

3.3232

rho sl = 1.225; %livello del mare |[kg/m"™3]
T sl = 288.15; % Temperatura a livello del mare [K]

a — 0.0065;
h = quota./3.28;

% Gradiente termico [K/m)]

5.1145
4.8240
4.1258

3.1693

% Valutazione della temperatura e della rho al variare della quota

for i = 1:length(h)

T s(i) = T_sl + a.xh(i);

rho s(i) = rho sl.%(T s(i)./T sl).~4.25;
end

figure (1)

plot (tempo(inizio:fine) ,TAS(inizio: fine))
xlabel ("t [s]’)
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ylabel (’TAS [m/s]’)

figure (2)

plot (tempo(inizio:fine),quota(inizio:fine)./3.28)
xlabel ("t[s]’)

ylabel ("H [m]’)

rpm=VarName9 ;
figure (3)
plot (tempo(inizio:fine) ,rpm(inizio:fine))

TAS a=TAS(inizio:fine);
tempo_a=tempo(inizio:fine);
T out=T(inizio:fine);

T sT s(inizio:fine);

T =T s’;

%funzione che interpola

X—tempo_a;
v_TAS= —0.006235.%x."2+ 25.64.%xx—2.628e+404 ;
a_TAS= —0.006235.%x2.xx+ 25.64;

ROC= a_TAS.xv_TAS./9.81;
ROC_s=ROC.*T _out./T s—(30)/70.xT out./T_s;

V fdc=45:1:75;

%Vx
m_vett=ROC_s./v_TAS;
i=1;

while v_TAS(i)<max(v_TAS)
m=ROC_s(1i)/v_TAS(i);

if m——max(m _vett)
Vx=v_TAS(i)

end

if ROC_s(i)==max(ROC_s)
Vy=v_TAS(i)

end

i=i-+1;

end

ROCfdc=[ 5.2500 5.2302 5.2028 5.1674 5.1236 5.0712
4.9518 4.8885 4.8165 4.7355 4.6455 4.5463 4.4405

4.3393 4.2291 4.1099 3.9814 3.8438 3.6967 3.5491
3.2402 3.0719 2.8942 2.7071 2.5105 2.3183

2.1174 1.9071 1.687];

figure (5)

plot (v_TAS,ROC)

hold on

plot (v_TAS,ROC s)

grid on

plot (V_fdc,ROCfdc)

legend ('ROC_{test }’, 'ROC_{sta.}’, ’ROC_{fdc}’)
xlabel ("TAS [m/s]’)

ylabel ('ROC [m/s]’)

title ("ROC at 1220m 5500 rpm’)
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%% 3000 ritorno
tempo=VarNamel—VarNamel (1);
TAS=VarName8x(0.514444;
quota=VarName2;
deltae=VarNamel2;
T=VarNamel2+237.15;
inizio= 38561;
fine— 39681;

% figure (1)

% plot (tempo , TAS)

%

% figure (2)

% plot (tempo , quota)

%

% figure (3)

% plot (tempo, deltae)

%find indice dal tempo
for i=inizio:1:fine
if tempo(i)==2480

casper=i;

end

end

rho sl = 1.225; % livello del mare [kg/m"3]

T sl = 288.15; % Temperatura a livello del mare [K]
a = —0.0065; % Gradiente termico [K/m]

h = quota./3.28;

% Valutazione della temperatura e della rho al variare della quota
for 1 = 1l:length(h)

T s(i) =T sl + a.xh(i);

rho_s(i) = rho_sl.%(T_s(i)./T _sl).~4.25;
end

figure (1)

plot (tempo(inizio:fine),TAS(inizio: fine))
xlabel ('t [s]’)
ylabel (’"TAS [m/s]’)

figure (2)

plot (tempo(inizio:fine),quota(inizio:fine)./3.28)
xlabel ("t[s]’)

ylabel ("H [m]’)

rpm=VarName9;
figure (3)
plot (tempo(inizio:fine) ,rpm(inizio:fine))

TAS a=TAS(inizio:fine);
tempo_a=tempo(inizio:fine);
T out=T(inizio:fine);

T s=T s(inizio:fine);

T =T s’;

%funzione che interpola
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x—tempo_a;
v_TAS= —0.007402.%xx."2+ 36.63.xx—4.525e+404
a_TAS= —0.007402.%2.xx+ 36.63;

)

ROC= a_TAS.xv_TAS./9.81;
ROC_s=ROC.xT _out./T s—(12)/70.xT out./T_s;

V _fdec=35:1:67;

%Vx
m_vett=ROC_s./v_TAS;
i=1;

while v_TAS(i)<max(v_TAS)
m=ROC_s(i)/v_TAS(i);

if m——max(m _vett)
Vx=v_TAS(i)

end

if ROC s(i)==max(ROC_s)
Vy=v_TAS(1i)

end

i=i-+1;

end

ROCfdc=[ 5.3889 5.3690 5.3411 5.3047 5.2596 5.2055
5.1422 5.0819 5.0164 4.9418 4.8580 4.7649 4.6622
4.5528 4.4480 4.3340 4.2106 4.0779 3.9355 3.7835 3.6310
3.4761 3.3117 3.1379 2.9544 2.7612 2.5581 2.3597
2.1523 1.9352 1.7083

I

figure (5)

plot (v_TAS,ROC)

hold on

plot (v_TAS,ROC_s)

grid on

plot (V_fdc,ROCfdc)

legend ('ROC_{test }’, 'ROC_{sta.}’, ’ROC_{fdc}’)

xlabel ("TAS [m/s]’)

ylabel ('ROC [m/s]’)

title (’"ROC at 915m 3450 rpm’)
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Appendix F

Second flight test session data analysis

%% 4000 ft test andrea
tempo=VarNamel—VarNamel (1);
TAS=VarName8x(0.514444;
quota=VarName2;
deltae=VarNamel2;
T=VarNamel2+237.15;
inizio=16284;

fine=17516;

rho sl = 1.225; % livello del mare [kg/m"3]

T sl = 288.15; % Temperatura a livello del mare [K]
a = 0.0065; % Gradiente termico [K/m]

h = quota./3.28;

% Valutazione della temperatura e della rho al variare della quota
for 1 = 1l:length(h)

T s(i) =T sl + a.xh(i);

rho_s(i) = rho_sl.%(T_s(i)./T _sl).~4.25;
end

figure (1)

plot (tempo(inizio:fine),TAS(inizio: fine))
xlabel ('t [s]’)
ylabel (’TAS [m/s]’)

figure (2)

plot (tempo(inizio:fine),quota(inizio:fine)./3.28)
xlabel ("t[s]’)

ylabel ('"H [m]’)

rpm=VarName9;
figure (3)
plot (tempo(inizio:fine),deltae(inizio:fine))

% figure (1)

% plot (tempo ,TAS)

% xlabel (’time [s]’)
% ylabel (’TAS [m/s]’)
% grid on

% figure (2)

% plot (tempo , quota)
% xlabel (’time [s]’)
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% ylabel ("H |m]’)

% grid on

% figure (3)

% plot (tempo, deltae)

TAS_a=TAS(inizio:fine);
tempo_a=tempo(inizio:fine);
T out=T(inizio:fine);

T T s(inizio:fine);

T =T s’;

%funzione che interpola

X—tempo_a;
v_.TAS= —0.004401.%x.72+4+9.738.%xx—5318;
a TAS=-0.004401.%2.xx+9.738;

ROC= a_TAS.xv_TAS./9.81,;
ROC_sROC.*T_out./T_s;

V fdc=35:1:65;

%Vx
m_vett=ROC_s./v_TAS;
i=1;

while v_TAS(i)<max(v_TAS)
m=ROC_s(1i)/v_TAS(i);

if m——max(m _vett)
Vx=v_TAS(i)

end

if ROC s(i)==max(ROC_s)
Vy=v_TAS(i)

end

i=i-+1;

end

ROCfdc=[ 5.2500 5.2302 5.2028 5.1674
4.9518 4.8885 4.8165 4.7355 4.6455
4.3393 4.2291 4.1099 3.9814 3.8438

3.2402 3.0719 2.8942 2.7071 2.5105
2.1174 1.9071 1.6873

I

figure (5)

plot (v_TAS,ROC)

hold on

plot (v_TAS,ROC s)

grid on

plot (V_fdc,ROCfdc)

legend ('ROC_{test }’, 'ROC_{sta.}’, ’ROC_{fdc}’)
xlabel ("TAS [m/s]’)

ylabel ('ROC [m/s]’)

title ("ROC at 1220m 5500 rpm’)

%% 3000m test andrea
tempo=VarNamel—VarNamel (1);
TAS=VarName8x0.514444;
quota=VarName2;
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deltae=VarNamel2;
T=VarNamel2+237.15;
inizio=13441;

fine— 14401;

rho_sl = 1.225; % aria a livello del mare [kg/m"~3]

T sl = 288.15; % Temperatura a livello del mare [K]
a = —0.0065; % Gradiente termico [K/m]

h = quota./3.28;

% Valutazione della temperatura e della rho al variare della quota
for i = 1:length(h)

T s(i) = T_sl + a.xh(i);

rho_s(i) = rho_sl.%(T_s(i)./T sl).~4.25;
end

figure (1)

plot (tempo(inizio:fine),TAS(inizio: fine))
xlabel ("t [s]’)
ylabel ("TAS [m/s]’)

figure (2)

plot (tempo(inizio:fine),quota(inizio:fine))
xlabel ("t[s]’)

ylabel ('"H [m]’)

rpm=VarName9;
figure (3)
plot (tempo(inizio:fine),deltae(inizio:fine))

%find indice dal tempo
for i=inizio:1:fine

if tempo(i)==900
casper=i;

end

end

TAS_a=TAS(inizio:fine);
tempo_a=tempo(inizio:fine);
T out=T(inizio:fine);

T T s(inizio:fine);

T =T s’;

%funzione che interpola

X—tempo_a;
v_TAS= —0.007831.%xx.72+14.31.xx—6466;
a_TAS= —0.007831.%x2.xx+14.31;

ROC= a_TAS.xv_TAS./9.81,;
ROC_s=ROC.*T _out./T s—(120/3.28)/60.xT out./T_s;%correzione su temperatura e quota

V _fdc=30:1:65;

%Vx

m_vett=ROC_s./v_TAS;

i=1;

while v_TAS(i)<max(v_TAS)
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n=ROC _s(i)/v_TAS(i);

if m=—max(m _vett)
Vx=v_TAS(i)

end

if ROC_s(i)==max(ROC_s)
Vy=v_TAS(i)

end

i=i-+1;

end

ROCfdc=| 5.4466 5.4331 5.4294 5.4299 5.4370 5.4424 5.4439

5.4402 5.4301 5.4130 5.3928 5.3728 5.3448 5.3083

5.2630 5.2088 5.1453 5.0850 5.0194 4.9447 4.8608 4.7676
4.6648 4.5553 4.4504 4.3364 4.2130 4.0801

3.9377 3.7856 3.6330 3.4780 3.3136 3.1397 2.9562 2.7629];

figure (5)

plot (v_TAS,ROC)

hold on

plot (v_TAS,ROC s)

grid on

plot (V_fdc,ROCfdc)

legend ('ROC_{test}’, 'ROC {sta.}’, ’ROC_{fdc}’)
xlabel ("TAS [m/s]’)

ylabel ('ROC [m/s]’)

title ("ROC at 3000 ft 5500rpm’)

%% 6000 m 1
tempo=VarNamel—VarNamel (1);
TAS=VarName8x(0.514444;
quota=VarName2;
deltae=VarNamel2;
T=VarNamel2+237.15;

inizio= 21281;

fine =22241;%26768;
rpm=VarName9;

rho_sl = 1.225; % livello del mare [kg/m"3]
T sl = 288.15; % Temperatura a livello del mare [K]
a = —0.0065; % Gradiente termico [K/m]

h = quota./3.28;

% Valutazione della temperatura e della rho al variare della quota

for i 1:length (h)

T s(i) = T_sl + a.xh(i);

rho_s(i) = rho_sl.%(T_s(i)./T sl).~4.25;
end

figure (1)

plot (tempo(inizio:fine) ,TAS(inizio: fine))

figure (2)

plot (tempo(inizio:fine),quota(inizio:fine))
rpm=VarName9;

figure (3)

plot (tempo(inizio:fine),deltae(inizio:fine))
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%find indice dal tempo
for i=inizio:1:fine

if tempo(i)==1390
casper=i;

end

end

TAS a-TAS(inizio:fine);
tempo_a—tempo(inizio:fine);
T out=T(inizio:fine);

T T s(inizio:fine);

T =T s’;

%funzione che interpola

x—tempo_a;
v_.TAS= —0.009448.%xx.72426.25.xx—1.817e+04 ;
a_TAS= —0.009448.%2.xx+26.25;

ROC= a_TAS.xv_TAS./9.81;
ROC_s=ROC.*T_out./T_s—(140/3.28)/60.xT_out./T_s;

%Vx
m_vett=ROC_s./v_TAS;
i=1;

while v_TAS(i)<max(v_TAS)
n=ROC _s(i)/v_TAS(i);

if m=—max(m _vett)
Vx=v_TAS(1)

end

if ROC_s(i)==max(ROC_s)
Vy=v_TAS(i)

end

i=i-+1;

end

V _fdc=30:1:60;

ROCfde=| 5.2171 5.1519 5.1115 5.0854
5.0535 5.0422 5.0273 5.0074 4.9860
4.8628 4.8133 4.7557 4.7011 4.6420
4.3222 4.2233 4.1288 4.0259 3.9145
3.3899];

figure (5)

plot (v_TAS,ROC)

hold on

plot (v_TAS,ROC s)

grid on

plot (V_fdc,ROCfdc)

legend ('ROC_{test}’, 'ROC {sta.}’, ’ROC_{fdc}’)
xlabel ("TAS [m/s]’)

ylabel (’'ROC [m/s]’)

title ("ROC at 6000 ft 5500rpm’)

%% 6000 m 2
tempo=VarNamel—VarNamel (1);
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TAS=VarName8x(0.514444;
quota=VarName2;
deltae=VarNamel2;
T=VarNamel2+237.15;
inizio=23841;

fine =24721;

rho_sl = 1.225; % livello del mare [kg/m"3]

T_sl = 288.15; % Temperatura a livello del mare [K]
a = —0.0065; % Gradiente termico [K/m]

h = quota./3.28;

% Valutazione della temperatura e della rho al variare della quota (fino a tropopausa)
for i = 1:length(h)

T s(i) =T sl + a.xh(i);

rho s(1i) = rho sl.%(T _s(i)./T _sl).~4.25;
end

figure (1)

plot (tempo(inizio:fine),TAS(inizio: fine))
xlabel ('t [s]’)
ylabel ("TAS [m/s]’)

figure (2)

plot (tempo(inizio:fine),quota(inizio:fine))
xlabel ("t [s]’)

ylabel (’H [m]’)

rpm=VarName9;
figure (3)
plot (tempo(inizio:fine),rpm(inizio:fine))

%find indice dal tempo
for i=inizio:1:fine

if tempo(i)==1545
casper=i;

end

end

TAS a=TAS(inizio:fine);
tempo_a=tempo(inizio:fine);
T out=T(inizio:fine);

T s=T s(inizio:fine);

T s=T s’;

%funzione che interpola

X=tempo_a;
v_TAS= —0.01015 .%*x.72+431.27.%xx—2.403e+04;
a TAS=-0.01015 .%2.%xx+31.27;

ROC= a_TAS.xv_TAS./9.81;
ROC_s=ROC.*T _out./T s—(30/3.28)/55.xT out./T_s;

V_ fdc=30:1:60;

ROCfdc=] 5.2171 5.1519 5.1115 5.0854 5.0723 5.0628
5.0535 5.0422 5.0273 5.0074 4.9860 4.9656 4.9386 4.9045
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4.8628
4.3222
3.3899];

4.8133
4.2233

4.7557
4.1288

figure (5)

plot (v_TAS,ROC)

hold on

plot (v_TAS,ROC s)
grid on

plot (V_fdc,ROCfdc)
legend ('ROC_{test }’,
xlabel ("TAS [m/s]’)
ylabel ('ROC [m/s]’)

'ROC_{sta.}’,

4.7011
4.0259

title ('ROC at 6000 ft 5500rpm’)
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