
POLITECNICO DI TORINO

Master’s Degree in Aerospace Engineering

REAL-TIME AUTONOMOUS TRAJECTORY

OPTIMIZATION IN CISLUNAR SPACE USING

NEURAL NETWORKS

Supervisors Candidate
Prof. Manuela Battipede Stefano Coco
Prof. Maruthi R. Akella

Academic Year 2021/2022

Abstract

The cislunar space is a dynamically rich environment, in which the classical two-
body assumption falls, and trajectories are significantly impacted by multi-body
effects. Due to these considerations, trajectory optimization for cislunar applica-
tions presents major challenges due to increased computational effort, and thereby
presenting a bottleneck for autonomous on-board implementations. Neural networks
have been extensively proved to be excellent function approximators, even when the
underlying mathematics is extremely complex. In this work, the aim is to explore
the development and implementation of a simple and computationally inexpensive
feedforward neural network that can serve as an on-board tool for the estimation of
optimal trajectories between any two points (i.e., prescribed boundary conditions)
within the cislunar space. For this purpose, a first phase of data collection has
been performed, during which several optimal control problems between two repeat-
ing natural orbits have been transcribed into two-point boundary value problems,
according to the so-called indirect method, and then solved using off-the-shelf nu-
merical optimization packages such as MATLAB built-in function bvp4c. The data
gathered have then been used to train and validate a neural network that can map
the relationship between the boundary states and the initial costates (or adjoints) of
the indirect formulation, considering a transfer time both fixed and left free. The re-
sults obtained show that a simple network can approximate the initial costates with
a high degree of accuracy. From those predictions, the control history can also be
easily obtained; however, in some cases, the prediction on just the initial adjoints is
not sufficient to reconstruct the entire optimal control vector because of error propa-
gation: some possible solutions to this problem, without incurring too much penalty
upon the computational speed, are then discussed.

i

Acknowledgements

I would like to express my deepest gratitude to my supervisor at The University
of Texas at Austin, Professor Maruthi Akella, for hosting me in his research group
during these months; it has been an honor to work under his experienced and yet very
kind guide. I would also like to extend my thanks to my supervisor at Politecnico
di Torino, Prof. Manuela Battipede, for supporting me in having this experience
abroad.

A special thank goes to my colleague Simone, with whom I shared this incredible
experience in the USA. Living alone more than 9700 km far from home can be quite
daunting, but having a friend by your side makes it totally different.

I will never be grateful enough to my family for all the support they have given
to me: my parents, who have always encouraged me to follow my heart, supporting
me in my every choice without hesitation; my sister Eliana, for the endless brotherly
love she has shown me continuously for 21 years now; my grandma Cettina and my
aunt Gabriella, for all the support provided to my parents to make my dreams come
true.

There are no words to express how much I am thankful to Eleonora for her
immeasurable patience during these years of long-distance relationship. Thank you
for always being by my side and believing in my dreams; you have been the brightest
lighthouse on stormy nights.

Last, but certainly not least, I want to thank the man to whom this thesis is
dedicated: my grandfather Salvatore, who gave his all for me and for my education.
It is above all thanks to him that I have been able to live the great experiences I
lived in the last years. I am sure that, as a professor but especially as a grandfather,
he would have been very proud to see how far I have come.

Per aspera ad astra

Ringraziamenti

Vorrei esprimere la mia più profonda gratitudine nei confronti del mio supervisore a
The University of Texas at Austin, il professore Maruthi Akella, per avermi accolto
all’interno del suo gruppo di ricerca in questi mesi; è stato un onore poter lavorare
sotto la sua guida esperta e sempre cordiale. Vorrei estendere i ringraziamenti anche
alla mia relatrice al Politecnico di Torino, la professoressa Manuela Battipede, per
avermi aiutato a intraprendere questa esperienza all’estero.

Un ringraziamento speciale va indubbiamente al mio collega Simone, con il quale
ho avuto il piacere di condividere questa esperienza negli USA. Vivere da solo a più
di 9700 km da casa può essere spaventoso, ma avere un amico accanto ha reso le cose
decisamente diverse.

Non sarò mai abbastanza grato alla mia famiglia per tutto il supporto datomi:
i miei genitori, che mi hanno sempre incoraggiato a seguire il mio cuore, soste-
nendo qualsiasi mia scelta senza mai esitare; mia sorella Eliana, per l’illimitato amore
fraterno che continua a dimostrarmi da 21 anni a questa parte; mia nonna Cettina e
mia zia Gabriella, per tutto l’aiuto dato ai miei genitori per far s̀ı che io realizzassi i
miei sogni.

Non ci sono parole per descrivere quanto sia grato a Eleonora per la sua incom-
mensurabile pazienza dimostrata in questi anni di relazione a distanza. Grazie per
essere sempre al mio fianco e per credere nei miei sogni; sei stata il faro più luminoso
durante le notti di tempesta.

Per ultimo, ma certamente non per importanza, voglio ringraziare l’uomo al quale
ho scelto di dedicare questa tesi: mio nonno Salvatore, che ha dato tutto per me e
per la mia istruzione. È soprattutto grazie a lui se ho avuto la possibilità di vivere
le esperienze di questi ultimi anni. Sono certo che, come professore ma anche e
soprattutto come nonno, sarebbe stato molto fiero di vedere dove sono arrivato.

Per aspera ad astra

Contents

List of Figures ix

List of Tables xi

Introduction 1

1 Cislunar Environment 3
1.1 The Circular Restricted Three Body Problem 3

1.1.1 Jacobi Integral . 5
1.2 Libration Points . 5
1.3 Repeating Natural Orbits . 6

1.3.1 Distant Retrograde Orbit . 6
1.3.2 Halo and Near Rectilinear Halo Orbit 7

2 Optimal Control Problem 9
2.1 General Formulation . 9
2.2 Solving Methods . 10

2.2.1 Indirect Method . 10
2.2.2 Direct Method . 11

3 Neural Networks 13
3.1 Architecture of a NN . 13
3.2 Network Training . 16

3.2.1 Gradient Descent and Adam Optimizer 16
3.2.2 Levenberg-Marquardt Algorithm 18

4 Methodology 21
4.1 OCP Formulation . 21

4.1.1 Fixed-time Problem . 22

vii

4.1.2 Free-time Problem . 22
4.2 Data Collection . 23

4.2.1 Fixed-time Problem . 24
4.2.2 Free-time Problem . 24

4.3 Neural Network Training . 26

5 DRO-to-DRO Transfer 29
5.1 Collection Phase . 29
5.2 Network Training . 31
5.3 Results . 33

5.3.1 On-Board Implementation . 36

6 Halo-to-Halo Transfer 45
6.1 Collection Phase . 45
6.2 Network Training . 47
6.3 Results . 48

6.3.1 On-Board Implementation . 48

7 Conclusions 55
7.1 Summary . 55
7.2 Future Works . 55

References 57

viii

List of Figures

1.1 Reference frame in the CR3BP . 4
1.2 Lagrangian points of the Earth-Moon system 6
1.3 A sampling of repeating natural orbit families in the Earth-Moon system 7
1.4 The DRO family . 8
1.5 L2 halo family with the bounds of the NRHOs delineated in white . . 8

3.1 Structure of a feedforward neural network 14
3.2 Typical activation functions: (a) linear, (b) step, (c) Rectified Linear

Unit (ReLU), (d) sigmoid . 15
3.3 Schematic illustration of the error surface over weight space 17
3.4 Descent in weight space (a) for small learning rate; (b) for large learn-

ing rate; (c) for large learning rate with momentum 18

5.1 The two DROs selected, represented in the rotating frame with non-
dimensional units . 30

5.2 MATLAB NN performance for the fixed-time (a) and free-time (b)
problem in terms of MSE . 34

5.3 Keras NN performance for the fixed-time (a) and free-time (b) problem
in terms of MSE . 35

5.4 Representative sample of the collected trajectories for the fixed (a)
and free (b) time problem . 36

5.5 Trajectory and controls of the fixed-time problem reconstructed from
initial costates predicted with an error of 3.49%. Comparison between
optimal solution, simple propagation of the predictions and propaga-
tion corrected by bvp4c . 38

5.6 Trajectory and controls of the fixed-time problem reconstructed from
initial costates predicted with an error of 0.97%. Comparison between
optimal solution, simple propagation of the predictions and propaga-
tion corrected by bvp4c . 39

ix

5.7 Trajectory and controls of the free-time problem reconstructed from
initial costates predicted with an error of 0.15%. Comparison between
optimal solution, simple propagation of the predictions and propaga-
tion corrected by bvp4c . 40

5.8 Trajectory and controls of the free-time problem reconstructed from
initial costates predicted with an error of 0.16%. Comparison between
optimal solution, simple propagation of the predictions and propaga-
tion corrected by bvp4c . 41

5.9 Trajectory and controls of the free-time problem reconstructed from
initial costates predicted with an error of 0.34%. Comparison between
bvp4c provided with a forward propagation guess (a) and a forward
+ backward propagation guess(b) . 42

5.10 Trajectory and controls of the free-time problem reconstructed from
initial costates predicted with an error of 0.18%. Comparison between
bvp4c provided with a forward propagation guess (a) and a forward
+ backward propagation guess(b) . 43

6.1 The two Halo selected, represented in the rotating frame with non-
dimensional units . 46

6.2 MATLAB NN performance for the fixed-time problem in terms of MSE 49
6.3 Keras NN performance for the fixed-time problem in terms of MSE . 49
6.4 Trajectory and controls of the fixed-time problem reconstructed from

initial costates predicted with an error of 2.75%. Comparison between
optimal solution, simple propagation of the predictions and propaga-
tion corrected by bvp4c . 51

6.5 Trajectory and controls of the fixed-time problem reconstructed from
initial costates predicted with an error of 15.42%. Comparison be-
tween optimal solution, simple propagation of the predictions and
propagation corrected by bvp4c . 52

6.6 Trajectory and controls of the free-time problem reconstructed from
initial costates predicted with an error of 0.92%. Comparison between
bvp4c provided with a forward propagation guess (a) and a forward
+ backward propagation guess(b) . 53

6.7 Trajectory and controls of the free-time problem reconstructed from
initial costates predicted with an error of 1.32%. Comparison between
bvp4c provided with a forward propagation guess (a) and a forward
+ backward propagation guess(b) . 54

x

List of Tables

5.1 Initial states and properties of the two DROs chosen 30
5.2 MATLAB NN settings . 32
5.3 Keras NN settings . 32
5.4 Stopping conditions . 32
5.5 Results of the NN training . 33

6.1 Initial states and properties of the two DROs chosen 46
6.2 MATLAB and Keras NN settings . 47
6.3 Stopping conditions . 47
6.4 Results of the NN training . 48

xi

Acronyms

AdaGrad Adaptive Gradient Descent. 18

Adam Adaptive Moment Estimation. 18

ANN Artificial Neural Network. 13

CR3BP Circular Restricted 3-Body Problem. 2–6

DRO Distant Retrograde Orbit. 6, 7, 29, 45, 47, 48

GD Gradient Descent. 16, 18

HBVP Hamiltonian Boundary Value Problem. 11

KKT Karush-Kuhn-Tucker. 11

MSE Mean Squared Error. 16, 33, 48

nd non-dimensional. 30, 46

NLP Nonlinear Programming. 11

NN Neural Network. xi, 1, 2, 13, 16, 18, 23, 24, 26, 28, 29, 31–33, 36, 47, 48, 55, 56

NRHO Near Rectilinear Halo Orbit. 7, 8

OCP Optimal Control Problem. 2, 9–11, 21, 22, 24, 25, 27, 29, 56

ODE Ordinary Differential Equation. 22

PMP Pontryagin’s Minimum Principle. 10, 22

xiii

ReLU Rectified Linear Unit. 15

RL Reinforcement Learning. 1

SGD Stochastic Gradient Descent. 17

TPBVP Two-Point Boundary Value Problem. 21–23, 37, 50, 55

xiv

Nomenclature

Physics Constants

G Gravitational constant 6.674 08× 10−11m3 kg−1 s−2

l∗ Earth-Moon reference distance [1] 389 703 km

m1 Earth mass 5.972× 1024 kg

m2 Moon mass 7.347 673 09× 1022 kg

Other Symbols

H augmented Hamiltonian

λ⃗ Costates vector

u⃗ Control vector in the rotating frame

x⃗ States vector

C Jacobi integral

xv

Al nonno Turi

Introduction

In the last few years, the interest for cislunar space has grown exponentially, espe-
cially in view of the NASA Artemis program [2], which aims to bring again humans
on the Moon with also the establishment of an orbiting station named Gateway.

The environment near the Moon is dynamically rich, and the trajectory opti-
mization problem becomes highly dimensional and highly nonlinear, thus requiring
a lot of computational effort. Autonomy will be an indispensable feature for next-
generation spacecrafts, especially for those used for manned missions, and clearly
it cannot be achieved using the classical optimization methods due to the limited
computational resources available on board.

To overcome this problem, an interesting approach could be to take advantage of
Neural Networks and their properties, such as the ability of being excellent function
approximators without requiring too much computational speed. Several researches
have been conducted to explore the usefulness of NNs for autonomous guidance,
showing, besides their efficacy, that the amount of resources required by each pre-
diction is indeed negligible. A popular solution is to use Reinforcement Learning
(RL) [3–5], which consists in training a so-called agent to act on the environment in
such a way to produce the desired result. Although this method has shown promis-
ing results, the learning process is based only on a statistical approach and does not
involve the physics behind the problem.

For the three-body dynamics that characterizes the cislunar environment, a bet-
ter solution is to use a feedforward network trained with supervised learning: in such
manner, if on one hand it is necessary to solve several optimal control problems to
gather enough data for the training, on the other hand the network learns from a
set of data hat has been created taking into consideration the dynamics behind the
problem. Some studies have been made in this direction for two-body trajectory
optimization [6–8], for corrections on perturbed three-body trajectories [9], for ap-
plications to the missed thrust problem [10] and even for an optimal landing on an
asteroid [11].

However, a thorough search of the relevant literature has not shown any attempt

1

2 INTRODUCTION

to use Neural Networks to perform trajectory optimization in cislunar space. In
this thesis, the capabilities of simple feedforward NNs as onboard estimation tools
for optimal trajectories in the cislunar space are investigated. Using the indirect
optimization to gather offline a significant amount of data, the goal is to train a
network to map the complex relationship existing between the boundary states of
an optimal trajectory and the initial costates (or adjoints), from which the optimal
control history can be reconstructed. Although the computational effort required
to solve several optimization problem is high, once the NN is deployed it can be
executed without any problem by the on-board computer.

The work is organized as follows: in the first three chapters an overview of the
theory behind the problem is provided, starting from the Circular Restricted 3-Body
Problem, continuing through the Optimal Control Problem and finishing with a gen-
eral analysis of Neural Networks; in the fourth chapter the methodology adopted is
presented, with a special focus on the algorithms implemented for the data collection;
in the fifth and the sixth chapter the implementation of the two cases of study is
discussed, along with an analysis of the results obtained. Finally, the seventh chapter
draws the conclusions and takes a look on what could be improved by future works.

Chapter 1

Cislunar Environment

In this chapter, the cislunar environment is introduced, with a dissertation on the
main dynamical model used: the circular restricted three-body problem. After an
introduction on the assumptions and on the reference system used, the equations of
motion are presented and discussed. The focus is then moved on the libration points
and especially on the main repeating natural orbits that have been studied in this
work.

1.1 The Circular Restricted Three Body Problem

The term cislunar space describes the volume of space influenced by the Earth and/or
the Moon [12]. Within this region, the assumptions made in the two-body dynamics
fall, because of the gravitational influence of a third body, the Moon. As a result,
trajectories are no longer described as conics and their geometrical representation
becomes generally non-trivial.

The model that is most commonly used to represent this kind of dynamics is
called the Circular Restricted 3-Body Problem (CR3BP). The assumptions made
are the following:

1. there are three bodies (Earth, Moon and spacecraft in the case considered);

2. the three bodies are point masses;

3. the mass of the spacecraft is negligible if compared to the masses of the other
two bodies;

4. the Earth and the Moon orbit around their common center of mass in a uniform
circular motion.

3

4 CHAPTER 1. CISLUNAR ENVIRONMENT

Figure 1.1: Reference frame in the CR3BP. Retrieved from [13]

The reference system adopted is a non-inertial frame rotating with the Earth and
Moon, with origin in the barycenter of the Earth-Moon system, the x-axis pointing
towards the Moon, the z-axis along the angular momentum and the y-axis according
to the right-handed rule (Fig. 1.1).

The dynamics of the CR3BP is governed by the following second order-controlled
differential system [14]:

ẍ = 2ẏ + x− 1−µ
r31

(x+ µ)− µ
r32
(x− 1 + µ) + εu1

ÿ = −2ẋ+ y − 1−µ
r31

y − µ
r32
y + εu2

z̈ = −1−µ
r31

z − µ
r32
z + εu3

(1.1)

where µ = m2

m1+m2
is the mass ratio of the two primaries, while

r⃗1 = (x+ µ)x⃗+ yy⃗ + zz⃗ r⃗2 = (x− 1 + µ)x⃗+ yy⃗ + zz⃗

are the Earth-spacecraft and Moon-spacecraft vectors respectively.
It is important to underline that all the physical quantities in Eq. 1.1 are made

non-dimensional by using the distance between the primaries l∗ as the characteristic
length, the sum of the two primary masses m∗ = m1 +m2 as the reference mass and

1.2. LIBRATION POINTS 5

the characteristic time τ ∗ =
√

l∗3

Gm∗ . The quantity ε =
(

l∗2

m∗G

)
Tmax

m
is the maximum

thrust-mass ratio in the dimensionless system of units. Written like this, the control
vector u⃗ =

[
u1 u2 u3

]
in the rotating frame is such that |u⃗| ≤ 1.

1.1.1 Jacobi Integral

In the three-body problem, unlike the two-body, the energy and the momentum
are not conserved. Instead, considering the uncontrolled CR3BP, and defining the
potential function Vµ (x, y, z) = −1−µ

r1
− µ

r2
− 1

2
(x2 + y2), it can be found [14] that

the only conserved quantity is the Jacobi integral, defined as:

C = −
(
ẋ2 + ẏ2 + ż2

)
− 2Vµ (x, y, z) (1.2)

1.2 Libration Points

Although the equations (1.1) have no general closed-form solution, they admit five
different equilibrium points, called Lagrangian points or libration points. These
points, are characterized by stationary position and velocity in the rotating frame
and thereby they can be found nulling the velocity and the acceleration terms in 1.1,
obtaining the following scalar equations:

− xeq = −
1− µ

r31
(xeq + µ)− µ

r32
(xeq − 1 + µ) (1.3)

− yeq = −
1− µ

r31
yeq −

µ

r32
yeq (1.4)

0 = −1− µ

r31
zeq −

µ

r32
zeq (1.5)

From Equation 1.5, it is zeq = 0, meaning that all the equilibrium points are in
the orbital plane of the primaries. Furthermore, when r1 = r2 = 1 the other two
equations are the identity: two of the Lagrangian points are located at vertices of two
equilateral triangles, with the other two vertices occupied by the primaries. Three
other equilibrium points can be found forcing yeq = 0, and so they are all located on
the x axis and called collinear points. A clear representation in the rotating frame
is given in Figure 1.2.

Of these libration points, only L4 and L5 are stable, meaning that any small
mass placed in there would oscillate about the equilibrium point when perturbed.
Conversely, L1, L2 and L3 are unstable, and any spacecraft positioned there requires

6 CHAPTER 1. CISLUNAR ENVIRONMENT

Figure 1.2: Lagrangian points of the Earth-Moon system [15]

station keeping maneuvers. Although L4 and L5 are stable according to the CR3BP,
in reality they are destabilized by the influence of the Sun’s gravity; therefore, even
for these two points station keeping maneuvers are required.

1.3 Repeating Natural Orbits

Although, as stated before, trajectories in the CR3BP are in general no more rep-
resented by simple geometrical shapes, there are some particular orbits that repeat
themselves within a fixed time period, called repeating natural orbits.

These orbits are classified into different families, illustrated in Figure 1.3. Except
for the Halo family, all the others reside in the orbital plane of the Moon.

1.3.1 Distant Retrograde Orbit

The Distant Retrograde Orbit (DRO) family, whose existence was demonstrated by
the French astronomer Hénon [16] in 1969, has been of great interest in the last
years, especially as potential parking orbits for the missions involved in the Artemis

1.3. REPEATING NATURAL ORBITS 7

Figure 1.3: A sampling of repeating natural orbit families in the Earth-Moon system
[12]

program [17]. Shown in Figure 1.4, this planar family intersects with the Earth-
Moon line at two points, called near-side and far-side. The DROs have a variable
amplitude, with shapes that become more irregular as the distance from the Moon
increases. An interesting observation is that, for the DROs that surround both the
Lagrangian points L1 and L2, two adjacent Lyapunov orbits associated to the two
libration points exist, representing in some cases potential transfer orbits.

1.3.2 Halo and Near Rectilinear Halo Orbit

The term ”halo” has been used for the first time by Robert Farquhar in his Ph.D.
thesis [19] for a family of three-dimensional quasi-periodic orbits around the La-
grangian point L2 in the Earth-Moon system. In 1984, Howell [20] demonstrated
numerically that, for a wide range of mass ratios µ, halo orbits exist near the three
collinear libration points (L1, L2 and L3) and most of the families contain a range
of stable orbits. Near L1, the stable range moves closer to the libration point, while
near L2 and L3 it moves closer to the nearest mass.

Halo orbits bifurcate from in-plane Lyapunov orbits and expand out-of-plane
until they are nearly polar [21] as they move away from the libration point toward
the closest primary [22]. These nearly polar orbits are called Near Rectilinear Halo
Orbits (NRHOs) and a representation is given in Figure 1.5. NRHOs are favorable
for transfers to the lunar surface and they offer good eclipse avoidance properties,
which are the main reasons why they are of great interest for future crewed missions
in the vicinity of the Moon, like those of the Artemis program or the Lunar Gateway.

8 CHAPTER 1. CISLUNAR ENVIRONMENT

Figure 1.4: The DRO family [18]

Figure 1.5: L2 halo family with the bounds of the NRHOs delineated in white.
Retrieved from [23]

Chapter 2

Optimal Control Problem

In the following chapter the theory behind the optimal control problem is provided,
along with a brief discussion on the two principal approaches used for its resolution:
direct and indirect.

2.1 General Formulation

In order to perform a trajectory optimization, it is necessary to solve an Optimal
Control Problem (OCP), which is posed as follows [24]: to determine the state (equiv-
alently, the trajectory or path) x⃗(t) ∈ Rn, the control u⃗(t) ∈ Rm and the vector of
static parameters p⃗ ∈ Rq that optimizes the performance index :

J = Φ [x⃗ (t0) , t0, x⃗ (tf) , tf ; p⃗] +

∫ tf

t0

L[x⃗(t), u⃗(t), t; p⃗]dt (2.1)

subject to the dynamic constraints,

˙⃗x(t) = f⃗ [x⃗(t), u⃗(t), t; p⃗] (2.2)

the path constraints

C⃗min ≤ C⃗[x⃗(t), u⃗(t), t; p⃗] ≤ C⃗max (2.3)

and the boundary conditions

ϕmin ≤ ϕ [x⃗ (t0) , t0, x⃗ (tf) , tf ; p⃗] ≤ ϕmax (2.4)

9

10 CHAPTER 2. OPTIMAL CONTROL PROBLEM

2.2 Solving Methods

Unless the problem is really simple, an analytical solution to the OCP cannot be
found; therefore it must be solved numerically. The numerical approaches developed
in order to accomplish this goal can be broadly divided into two categories: direct
methods and indirect methods.

2.2.1 Indirect Method

In indirect optimization, the first-order optimality conditions of the OCP given in
Eqs. (2.1)-(2.4) are determined using the calculus of variations. While in ordinary
calculus the objective is to determine points that optimize a function, calculus of
variations aims to determine functions that optimize a function of a function. An
important tool is the augmented Hamiltonian H, defined as

H(x⃗, λ⃗, µ⃗, u⃗, t) = L+ λ⃗⊤f⃗ − µ⃗⊤C⃗ (2.5)

where λ⃗(t) ∈ Rn is the costate or adjoint and µ⃗(t) ∈ Rc is the Lagrange multiplier
associated with the path constraints. Considering an Optimal Control Problem with
no static parameters, the first-order optimality conditions are given as follows [25]:

˙⃗x =

[
∂H
∂λ⃗

]⊤
,

˙⃗
λ = −

[
∂H
∂x⃗

]⊤
(2.6)

called Hamiltonian system;

u⃗∗ = argmin
u⃗∈U
H (2.7)

which is the Pontryagin’s Minimum Principle (PMP), where U is the feasible control
set;

ϕ (x⃗ (t0) , t0, x⃗ (tf) , tf) = 0⃗ (2.8)

which are the boundary conditions;

λ⃗ (t0) = −
∂Φ

∂x⃗ (t0)
+ ν⃗⊤ ∂ϕ

∂x⃗ (t0)
, λ⃗ (tf) =

∂Φ

∂x⃗ (tf)
− ν⃗⊤ ∂ϕ

∂x⃗ (tf)
(2.9)

called transversality conditions, where ν⃗ ∈ Rq is the Lagrange multiplier associated
with the boundary conditions;

2.2. SOLVING METHODS 11

H (t0) =
∂Φ

∂to
− ν⃗⊤ ∂ϕ

∂t0
, H (tf) = −

∂Φ

∂tf
+ ν⃗⊤ ∂ϕ

∂tf
(2.10)

µj(t) = 0, when Cj(x⃗, u⃗, t) < 0, j = 1, . . . , c

µj(t) ≤ 0, when Cj(x⃗, u⃗, t) = 0, j = 1, . . . , c
(2.11)

with these last equations called complementary slackness conditions.
The Hamiltonian system, together with the boundary, transversality and com-

plementary slackness conditions, is called Hamiltonian Boundary Value Problem

(HBVP). Any solution
(
x⃗ (t) , u⃗ (t) , λ⃗ (t) , µ⃗ (t) , ν⃗

)
is called an extremal and is de-

termined numerically.
Therefore, the original OCP is reformulated as a multiple-point boundary value

problem, and it can be solved with a variety of methods, such as shooting, collocation,
etc. . . [9, 24,26–28]

The main advantage of indirect methods is that they are characterized by an ex-
tremely good numerical accuracy; furthermore, they exhibit a very quick convergence
by virtue of the fact that they rely on the Newton method. However, there are also
some drawbacks: first of all, deriving analytical expressions for first-order necessary
conditions can be puzzling; second, extremal solutions are often very sensitive to
the initial guess provided. This last problem can be challenging, especially because
supplying a good guess on the adjoints is not an intuitive task.

2.2.2 Direct Method

In direct optimization problems, the state and/or the control are approximated in
a finite-dimensional representation [29], reducing the OCP to a Nonlinear Program-
ming (NLP) problem. The NLP is then solved satisfying the Karush-Kuhn-Tucker
(KKT) conditions. The complete formulation of the NLP problem is beyond the
scope of this thesis, and the reader can found more about it in the literature [24,26].

The main benefits of direct methods are that they do not require an analytical
expression for the necessary conditions and that the solution is less sensitive to the
initial guess provided, also because the formulation does not involve any costates.
However, compared to indirect methods, the direct approach is worse both in pre-
cision and performance, requiring a large amount of memory for the computation.
Moreover, the discretized OCP often possesses several local minima, which can be
critical when searching for the solution.

Chapter 3

Neural Networks

In the following chapter the theory of neural networks is presented, with a focus on
the training process and the main algorithms used for this purpose.

3.1 Architecture of a NN

The inspiration for Artificial Neural Network (ANN), most commonly simply called
Neural Network (NN), comes from their biological counterpart.

The structure of a simple feedforward network is represented in Figure 3.1; it
consists of an input layer, an output layer and a certain number of hidden layers.
Each layer is then constituted of fundamental units, called neurons. A neuron can
be considered as a nonlinear function which transforms a set of input variables li into
an output variable li+1 [30]. Each input is first multiplied by a parameter wk called
weight, then all the weighted inputs are summed up as follows:

a =
n∑

k=1

wklk + b (3.1)

where b is known as bias. The bias can also be thought as a special weight with the
unity as its associated input, such that Eq. (3.1) becomes:

a =
n∑

k=0

wklk (3.2)

where, as already stated, l0 = 1. The output of the neuron is eventually obtained by
means of a so-called activation function g so that li+1 = g(a). In Figure 3.2 there
are some commonly used activation functions.

13

14 CHAPTER 3. NEURAL NETWORKS

…

…
…

…

Activation

function

b

x1

x2

xn

y

li,1

li,2

…

li,n

w1

w2

w3

li+1,k

…
…

Figure 3.1: Structure of a feedforward neural network. Retrieved from [6]

3.1. ARCHITECTURE OF A NN 15

Figure 3.2: Typical activation functions: (a) linear, (b) step, (c) Rectified Linear
Unit (ReLU), (d) sigmoid. Retrieved from [30]

16 CHAPTER 3. NEURAL NETWORKS

3.2 Network Training

A feedforward NN can be treated as a nonlinear mathematical function which trans-
forms a set of input variables into a set of output variables by means of a complex
relationship defined by the weights and the biases of the neurons. The process of
determining their values is called learning or training, and it can be divided into two
broad categories [31]:

• supervised learning, in which the network is trained by providing it with inputs
and their corresponding outputs;

• unsupervised learning, in which there is not a set of categories into which the
input are classified a priori. Instead, the system must discover particular pat-
terns within the inputs.

There is also a third category, called reinforcement learning, where the NN, here
called agent, acts on the environment, which provides feedback in the form of a
reward based on the actions taken. A more in-depth survey on the vast field of
reinforcement learning can be found at [32].

The training of a Neural Network is performed by searching a set of values for
the weights and the biases which minimizes some error function, which usually is the
Mean Squared Error (MSE), defined as:

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2

(3.3)

where Yi are the observed values and Ŷi the predicted values.
The error function can be represented as an error surface over the weight space,

as showed in Figure 3.3. Usually, for multilayer networks, the error function is highly
nonlinear and the surface has very complex shapes with many local minima in which
the training algorithm can fall depending on the starting point chosen.

3.2.1 Gradient Descent and Adam Optimizer

Essentially, training a neural network requires solving an optimization problem with
the error as the objective function, and one of the most widely used methods is Gra-
dient Descent (GD). The training begins initializing the weight vector with random
values; at each iteration, the weight vector is modified in such a way to follow the
direction of the negative of the gradient. In mathematical terms it can be written:

w (t) = w (t− 1)− η
∂E

∂w
(3.4)

3.2. NETWORK TRAINING 17

Figure 3.3: Schematic illustration of the error surface over weight space. Retrieved
from [30]

where η is the learning rate. When increased, the learning rate ensures a faster
training, but, if too large, it could lead to ample oscillations around the minimum.
When the gradient is near zero within a certain tolerance, the training ends.

When the gradient at each iteration is computed on the entire training dataset,
the algorithm is called batch gradient descent. Using the entire training batch can
be very slow, leading even to memory issues when the dataset is particularly large.
The Stochastic Gradient Descent (SGD) can overcome this issue: a single data point
is extracted randomly from the entire dataset and the error on that data point is
used to estimate the true gradient. This process makes the estimated gradient noisy
and causes the optimizer to jump from a local minimum to another, increasing the
chance of finding a global optimum, but making the convergence more difficult.

A strategy to reduce oscillations when searching for a solution, even when the
learning rate is large, is to update the weight vector as a linear combination of the
previous update:

∆w (t+ 1) = α∆w (t)− η∇E (3.5)

such that

w(t+ 1) = w(t) + ∆w(t+ 1) = w(t)− η∇E + α∆w(t) (3.6)

18 CHAPTER 3. NEURAL NETWORKS

c

b
a

Figure 3.4: Descent in weight space (a) for small learning rate; (b) for large learning
rate; (c) for large learning rate with momentum. Retrieved from [31]

This method is known as Gradient Descent with Momentum, and its effects compared
with the classic GD are showed in Figure 3.4.

All the learning algorithms mentioned above have a constant learning rate at
each iteration. To overcome this, an algorithm called Adaptive Gradient Descent
(AdaGrad) has been developed by Duchi, Hazan and Singer [33]: for every update,
each weight receives its own learning rate according to a computation based on the
outer product of the gradients from all previous time steps. The main problem of
this algorithm is that the learning rate becomes infinitesimally small; this weakness
has been solved by another algorithm, called RMSprop.

The combination of AdaGrad and RMSprop is one of the most popular optimizer
for NN training, called Adam (Adaptive Moment Estimation), and it is summarized
in Algorithm 1.

3.2.2 Levenberg-Marquardt Algorithm

Another powerful training method that has to be mentioned is the Levenberg-
Marquardt algorithm [35], which joins together the Gauss-Newton algorithm and
the gradient descent method. Being the error function in the form of a sum of
squares, the Hessian matrix can be approximated as [36]:

H = J⊤J (3.7)

while the gradient can be computed as

g = J⊤e (3.8)

where J is the Jacobian matrix, containing the first derivatives of the network errors
with respect to the weight and the biases, and e is the vector of the network errors.

3.2. NETWORK TRAINING 19

Algorithm 1 Adam algorithm [34]

Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
while θt not converged do

t← t+ 1
gt ← ∇θft (θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)
m̂t ← mt/ (1− βt

1) (Compute bias-corrected first moment estimate)
v̂t ← vt/ (1− βt

2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/

(√
v̂t + ϵ

)
(Update parameters)

end while
return θt (Resulting parameters)

The Levenberg-Marquardt algorithm can be written as follows:

wk+1 = wk −
[
J⊤J + µJ

]−1
J⊤e (3.9)

When the scalar parameter µ is equal to zero, this is the Newton’s method; when µ
is large, the method shifts to the gradient descent. At each step, if the performance
function is reduced, the parameter µ is decreased, shifting toward Newton’s method,
which is faster and more accurate near a minimum. If, instead, the objective function
increases, µ is increased too.

Chapter 4

Methodology

This chapter gives a deeper insight on the methods used in this thesis. In the
first section, the optimal control problem is formulated, highlighting the differences
between the fixed-time and the free-time cases. The second section presents the
algorithm used for the data collection, while the third and last part of the chapter
provides an overview on the training phase.

4.1 OCP Formulation

The first step is to set up the Optimal Control Problem. The problem analyzed in
this work is the minimum energy, in which the aim is to minimize the integrated
control energy

E =

∫ tf

t0

u2dt (4.1)

Usually, in spacecraft trajectory optimization, the objective would be to find the
minimum fuel solution, but, especially for non-trivial problems like the one examined,
it is much easier to converge on the minimum energy solution.

Two different approaches are studied: in the first the transfer time is a fixed
parameter, while in the second it is left free. In both cases, the OCP is transcribed
into a Two-Point Boundary Value Problem (TPBVP) using the indirect method,
as showed in section 2.2.1. To accomplish this task, the MATLAB 2021b Symbolic
Math Toolbox is used, especially because the nature of the problem makes really
difficult, if not impossible in some cases, to compute all the derivatives involved.

21

22 CHAPTER 4. METHODOLOGY

4.1.1 Fixed-time Problem

To solve the OCP numerically, the dynamics system in Eq. (1.1) must be rewritten
as a first-order ODE system:

ẋ = vx
ẏ = vy
ż = vz
v̇x = 2vy + x− 1−µ

r31
(x+ µ)− µ

r32
(x− 1 + µ) + εu1

v̇y = −2vx + y − 1−µ
r31

y − µ
r32
y + εu2

v̇z = −1−µ
r31

z − µ
r32
z + εu3

(4.2)

which, along with the costates differential equations obtained differentiating the
Hamiltonian with respect to the state vector, constitutes the Hamiltonian system
(see Eq. (2.6)). The three components of the control vector u⃗ can be found using
the Pontryagin’s Minimum Principle, expressed in Equation (2.7).

Once the problem has been transcribed into a TPBVP, it has been solved using
MATLAB 2021b bvp4c function, which implements a collocation method using the
3-stage Lobatto IIIa formula. The boundary conditions are the initial and final states
chosen.

4.1.2 Free-time Problem

When the time is left as a free parameter, the formulation needs some slight changes
[37]. A new free parameter is defined:

τ =
t

tf
(4.3)

where tf is the final time (equal to the transfer time when t0 = 0). Substituting into
(4.2), it becomes:

4.2. DATA COLLECTION 23

∂x
∂τ

= tfvx

∂y
∂τ

= tfvy

∂z
∂τ

= tfvz

∂vx
∂τ

= tf

[
2vy + x− 1−µ

r31
(x+ µ)− µ

r32
(x− 1 + µ) + εu1

]
∂vy
∂τ

= tf

[
−2vx + y − 1−µ

r31
y − µ

r32
y + εu2

]
∂vz
∂τ

= tf

[
−1−µ

r31
z − µ

r32
z + εu3

]

(4.4)

and the cost function becomes:

E = tf

∫ 1

0

u2dτ (4.5)

The transfer time has become a free parameter of the TPBVP, and it can be
handled by bvp4c. With this extra parameter, the solver requires an additional
boundary condition, which can be found from the transversality condition

H (tf) = ν⃗⊤ ∂ϕ

∂tf
(4.6)

that must be zero because the terminal boundary condition, in the application con-
sidered, is independent of time.

4.2 Data Collection

The aim of this work is to train a Neural Network that, given the initial and final
states vectors as inputs, provides the initial costates vector as an output; from that,
it would then be possible to reconstruct the optimal control history. Training a
NN requires a large amount of data that should be able to accurately describe the
problem at hand: for this reason, the data collection process is a critical phase that
must produce a training batch whose quality has to be as high as possible. In this
study, the aim of the data collection phase is to solve several optimal trajectories
between two orbits, varying the initial and final point in order to cover as much as
possible the entire state space.

24 CHAPTER 4. METHODOLOGY

Solving an OCP numerically requires an initial guess on the solution provided by
the user. As already stated in section 2.2.1, one of the main problems of indirect
methods is that they are very sensitive to this initial guess: this means that even
a small difference could lead to very different solutions. Finding a good method
to estimate the initial guesses, especially those on the costates, is an open problem
and many different approaches have been proposed by others, such as using particle
swarm optimization [38] or providing the solution obtained from a direct method
[9, 39]. In this work, two similar strategies are followed, depending on the problem
to solve (fixed-time and free-time). A full description is provided in the next two
subsections.

4.2.1 Fixed-time Problem

In the three-body problem, it is no more possible to describe orbits with some kind
of analytical expression, therefore the only way to define them is as a set of points.
For this reason, the data collection starts with a discretization of both the initial and
final orbit into a certain amount of points.

The objective is to find an optimal trajectory between each pair of points at
different transfer times. The first OCP is solved several times with random initial
guesses; eventually, only the solution associated with the minimum energy is saved.
This process is executed with the purpose of avoiding local minima. Then, the
optimization problem is solved for different transfer times, using as initial guess at
each step the solution of the previous one.

The procedure is repeated for each new pair of initial and final points, following
the scheme presented more in depth in Algorithm 2.

Even following this strategy, it happens that, for some neighboring points, the
indirect method falls into different local minimum. This leads to completely different
solutions with only a slight change of the boundary conditions or transfer time,
causing problems during the training phase because the Neural Network struggles to
learn. To overcome this, at the end of the collection phase, a data cleaning process
is performed: acting on the initial costates collected, the outliers are removed using
the MATLAB 2021b rmoutliers function. By default, an outlier is a value that is
more than three scaled median absolute deviations away from the median [40].

4.2.2 Free-time Problem

The data collection process for the free-time optimization problem adhere to the same
logic followed for the fixed-time; however, being the transfer time a free parameter,

4.2. DATA COLLECTION 25

Algorithm 2 Data collection process for the fixed-time problem

Initial orbit discretized in n1 points
Final orbit discretized in n2 points
Define a set of transfer times tf = [tfmin; tfmax]
for each point of the final orbit do

x⃗f = [xf yf zf vxf vyf vzf] (Define the final state vector)
for each point of the initial orbit do

x⃗i = [xi yi zi vxi vyi vzi] (Define the initial state vector)
tf ← tfmin

while OCP not converging do
Solve OCP k times with random initial guesses on the costates
if no OCP converged then

Increment tf
else

Save the solution with the minimum energy value
end if

end while
for each transfer time tf do

Solve OCP using the previous saved solution as initial guess
if OCP did not converge then

Solve the OCP k times with random initial guesses
if no OCP converged then

Skip to the next tf
else

Save the solution with the minimum energy value
end if

else
Save solution

end if
end for

end for
end for
Save initial costates λ⃗0 from each saved solution
Clean data removing outliers from λ⃗0

Save x⃗i, x⃗f and tf corresponding at each λ⃗0 saved

26 CHAPTER 4. METHODOLOGY

some slight changes to the algorithm are necessary. The main difference is how the
initial guess from the previous solution is provided at each step: every time that
all the trajectories between a fixed initial state and all the final states have been
optimized, the guess given to the new initial point is the trajectory between the
previous initial point and the first of the final states considered. The full process can
be found in Algorithm 3.

For the free-time problem, the transfer time is no more a concern, therefore the
Neural Network is trained receiving as inputs only the initial and final state vectors,
while the expected output is always the vector of initial costates.

4.3 Neural Network Training

Once the training data have been properly collected, the neural network needs to
be set up. The first and most important thing to define when creating a NN is of
course the number of hidden layers and the number of neurons in each of them,
called respectively width and depth. This is usually an iterative process, because
the right dimensions of the network depend on how complex the problem is and
how many data are provided during the training. Having a bigger network can help
learning more complex relationships, but increases the training time and could lead
to overfitting.

A Neural Network is overfitting when it is learning too much details about the
training data, losing the ability to generalize. This occurs when the NN is too
complex or when the training is carried out for too long. One simple approach to
overcome this issue is to split the dataset into two different groups: the larger group
is called training set and it is the one from which the network actually learns; the
smaller group is called validation set and it is used to monitor whether the network
is still generalizing well or not. When the error on the validation set starts growing,
the network is probably starting to overfit and the training should be stopped.

In order to improve the performance during the training of a Neural Network,
another important operation should be executed: input data need to be normalized
or standardized. Normalization refers to rescaling the data to a common range,
while standardization refers to transforming the data such that their mean value and
their standard deviation are equal to 0 and 1 respectively. In this work, the input
data have been rescaled to the range [−1; 1] using the MATLAB 2021b mapminmax
function, which normalizes the maximum and minimum values of each input to the

4.3. NEURAL NETWORK TRAINING 27

Algorithm 3 Data collection process for the free-time problem

Initial orbit discretized in n1 points
Final orbit discretized in n2 points
solfirst = [] (Initialize the solution vector of the first pair of points)
Solve the OCP between the first pair of points k times
solfirst ← sol (Save the solution with the minimum energy value)
for each point of the initial orbit do

sol← solfirst (Update the solution vector that will be used as initial guess)
x⃗i = [xi yi zi vxi vyi vzi] (Define the initial state vector)
for each point of the final orbit do

x⃗f = [xf yf zf vxf vyf vzf] (Define the final state vector)
Solve OCP using sol as initial guess
if x⃗f is the first of the final states then

solfirst ← sol (Save the solution for the next update of the initial point)
end if
if OCP did not converge then

Solve OCP k times with random guesses
if no solution is found then

Skip to the next point
else

Save solution with the minimum energy as sol
end if

else
Save solution as sol

end if
end for

end for
Save initial costates λ⃗0 from each saved solution
Clean data removing outliers from λ⃗0

Save x⃗i and x⃗f corresponding at each λ⃗0 saved

28 CHAPTER 4. METHODOLOGY

specified range [bmin; bmax] according to the following expression [41]:

a⃗resc = (bmax − bmin)
a⃗− amin

amax − amin

+ bmin (4.7)

where a⃗ is the original input vector, while a⃗resc is the rescaled one.
Other things that need to be set before starting with the training are the activa-

tion functions, the training algorithm and its parameters. These settings are usually
tuned depending on the problem, therefore they will be analyzed more in detail in
the next chapters.

In this work, the Neural Networks have been built and trained using two different
softwares:

• MATLAB 2021b Deep Learning Toolbox with the feedforwardnet function [42];

• Keras, an API for the Python library Tensorflow [43].

Chapter 5

DRO-to-DRO Transfer

In this chapter the first case of study, which is the transfer between two Distant
Retrograde Orbits, is discussed. The parameters used for the data collection phase
are first presented, followed by those implemented during the NN training. Finally,
the results are presented and discussed. Both the collection and the training have
been performed on a laptop with an Intel® CoreTM i7-4720HQ processor and 16 GB
DDR3 RAM.

5.1 Collection Phase

The properties of the two selected orbits are listed in Table 5.1. The shape of these
DROs is very simple and similar to elliptical and circular orbits of the two-body
problem, as it is possible to observe in Figure 5.1.

For the data collection phase in the fixed-time problem, the initial orbit has
been discretized into 100 points and the final orbit into 4 points, while 200 transfer
times between 3 and 10 days have been considered. The number of iterations with
random guesses is set to 50. The total number of maximum optimized trajectories
is then 80000; by setting a precision of 10−12, the number of converged problems is
79791. Considering the data cleaning phase, the number of samples useful for the
training is 56245, meaning that the 29.5% of the original data has been discarded.
The algorithm took 14 hours and 30 minutes to complete the collection phase for the
fixed-time problem.

For the free-time problem, the first orbit has been discretized into 100 points
and the final orbit into 478 points. Having the transfer time as a free parameter makes
the problem even more sensible to the initial guess provided, therefore the number
of iterations when solving the OCP with random guesses has been set to 500. The

29

30 CHAPTER 5. DRO-TO-DRO TRANSFER

Table 5.1: Initial states and properties of the two DROs chosen. Data from [1]

Initial orbit Final orbit

x0[nd] 0.80376855 0.89833535
y0[nd] 0 0
z0[nd] 0 0
vx0[nd] −7.95452647× 10−13 5.75368086× 10−16

vy0[nd] 0.52173241 0.47591169
vz0[nd] 0 0
C[nd] 2.92729225 3.02193216

Period [days] 14.37775865 5.80412814

0.7 0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.3

-0.2

-0.1

0

0.1

0.2

y
 [

n
d

]

L1 L2

Moon

Initial orbit

Final orbit

Figure 5.1: The two DROs selected, represented in the rotating frame with non-
dimensional units

5.2. NETWORK TRAINING 31

number of maximum optimized trajectories is then 47800, each of which converges
with a precision smaller than 10−12; when applying the data cleaning process, the
27.8% of samples are discarded as outliers, leading to a final number of 34511 useful
training data. The data collection phase for the free-time problem took almost 5
hours to complete.

5.2 Network Training

As already stated in section 4.3, the Neural Network training phase has been carried
out with two different softwares: MATLAB Deep Learning Toolbox and Keras, a
Tensorflow API.

An overview of the parameters used for the networks in both the fixed and free
time problem can be found in Table 5.2 and 5.3. The values have been chosen after
a trial and error process aimed to obtain the best performance possible.

The whole dataset has been split randomly into training, validation and test
subsets, according to the percentages expressed in Table 5.2 and 5.3. The randomized
division is performed to prevent the network from learning particular patterns given
by similar contiguous data.

The training algorithm exploited by the Keras NN is Adam, which has already
been described in section 3.2.1, while the one used by the MATLAB NN is the
Levenberg-Marquardt algorithm, illustrated in section 3.2.2. While the MATLAB
network has been trained using the default parameters, in Keras they have been
tuned with a trial and error process. In particular, the learning rate has been set to
exponentially decay according to the scheme

ηdecayed = η0λ
step

decaysteps (5.1)

where η0 is the initial learning rate, chosen as 0.0005, and λ is the decay rate, which
has been set 0.97 for the fixed-time problem and 0.83 for the free-time. The decay
steps value used in both problems is 10000.

In both the networks, the training process is automatically stopped either when a
maximum number of epochs is reached or when the validation loss does not improve
(or worsen) for more than a certain number of epochs, whose value is called patience.
A summary of the stopping conditions assigned in this work can be found in Table
5.4.

32 CHAPTER 5. DRO-TO-DRO TRANSFER

Table 5.2: MATLAB NN settings

FIXED-TIME FREE-TIME

Data splitting
Training 70% 58%
Validation 15% 21%
Test 15% 21%

nhidden layers 2 2

nneurons

input layer 13 12
hidden layer 25 25
output layer 6 7

Training algorithm Levenberg-Marquardt

Activation function
hidden layer tanh
Output layer linear

Table 5.3: Keras NN settings

FIXED-TIME FREE-TIME

Data splitting
Training 60% 60%
Validation 20% 26%
Test 20% 14%

nhidden layers 3 3

nneurons

input layer 13 12
hidden layer 45 55
output layer 6 7

Training algorithm Adam

Activation function
hidden layer tanh
Output layer linear

Table 5.4: Stopping conditions

MATLAB Keras
Fixed-time Free-Time Fixed-time Free-Time

Max epoch 1000 1000 2000 1000
Patience 6 6 100 50

5.3. RESULTS 33

Table 5.5: Results of the NN training

FIXED-TIME FREE-TIME
MATLAB Keras MATLAB Keras

Training time 2h 55min 32min 53sec 17min 27sec 4min
Training epochs 598 1493 82 243
Minimum MSE reached 2.19× 10−5 1.46× 10−5 3.46× 10−4 3.70× 10−4

Test data with errrel < 5% 92.87% 96.39% 99.69% 99.65%
Test data with errrel < 1% 46% 74.2% 99.28% 98.80%

5.3 Results

The learning process of a neural network usually starts assigning random weights
and biases; this means that every time that a NN is trained, the results obtained
can be slightly different depending on the particular set of weights from which the
process started. Therefore, it is good habit to train the same network several times
and eventually save the one that shows the best performance.

Table 5.5 shows the best results obtained at the end of the training phase for each
network. The time spent varies depending both on the problem and on the selected
architecture; in general, the Adam algorithm implemented in Tensorflow seems to be
faster than Levenberg-Marquardt.

The performance of each network has been evaluated on the training set in terms
of Mean Squared Error and on the test data in terms of relative percent error on the
output vector, defined as:

errrel =
∥y⃗pred − y⃗∥
∥y⃗∥

· 100 (5.2)

where y⃗pred is the vector containing the predictions of the NN, while y⃗ are the corre-
sponding exact values.

The performance in terms of MSE during the training is showed in Figure 5.2 for
MATLAB and 5.3 for Keras.

It is clear from the results obtained how a simple Neural Network is able to
approximate the initial costates with a high degree of accuracy. For the fixed-time
problem, the network built and trained with Keras behaves better, predicting more
than the 96% of the test data with an accuracy higher than 95%. However, the best
performance is showed by both the NNs trained on the free-time problem which,
with a faster training time, predict almost the entire test batch with a relative error
below 1%.

34 CHAPTER 5. DRO-TO-DRO TRANSFER

0 100 200 300 400 500

Epochs

10
-4

10
-2

10
0

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r
 (

M
S

E
)

Train

Validation

Test

(a)

0 10 20 30 40 50 60 70 80

Epochs

10
-4

10
-3

10
-2

10
-1

10
0

10
1

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r
 (

M
S

E
)

Train

Validation

Test

(b)

Figure 5.2: MATLAB NN performance for the fixed-time (a) and free-time (b) prob-
lem in terms of MSE

5.3. RESULTS 35

0 200 400 600 800 1000 1200 1400 1600
Epochs

10−4

10−3

10−2

M
ea

n
Sq

ua
re
d
Er
ro
r (
M
SE

)

Train
Validation

(a)

0 50 100 150 200 250
Epochs

10−3

10−2

10−1

M
ea

n
Sq

ua
re
d
Er
ro
r (
M
SE

)

Train
Validation

(b)

Figure 5.3: Keras NN performance for the fixed-time (a) and free-time (b) problem
in terms of MSE

36 CHAPTER 5. DRO-TO-DRO TRANSFER

0.7 0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
 [

n
d

]

(a)

0.7 0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
 [

n
d

]

(b)

Figure 5.4: Representative sample of the collected trajectories for the fixed (a) and
free (b) time problem

The reason why the network trained on the free-time problem performs better is
a direct consequence of the different data collection performed for the two problems.
In fact, due to the parametrization of the transfer time, in the free-time problem the
trajectories found are similar to each other; conversely, the fixed-time problem has
been solved for different assigned transfer times, leading to a set of solutions of differ-
ent types. An explanatory example is given by Figure 5.4, in which a representative
sample of the optimal trajectories collected is given.

5.3.1 On-Board Implementation

The results obtained proved that a Neural Network can be trained to predict the
initial costates of an optimal trajectory between two points with an excellent degree
of accuracy. Even if the computational effort required by the data collection and
training phase is huge, once the network is deployed the amount of resources needed
for the predictions is negligible. This makes NNs a very promising tool that could
be installed directly on-board a spacecraft without further burdening the limited
computational load of the on-board computer.

However, predicting only the initial costates makes it necessary to propagate them
in order to reconstruct the optimal control history. An obstacle to this approach is
indeed the error propagation: because of the dynamics that characterizes the cislunar
environment, even when the initial costates are predicted with a very small error,
this propagates making the actual control history and trajectory diverging from the

5.3. RESULTS 37

optimal one. To overcome this problem, a potential solution could be to use the
propagated prediction as initial guess for bvp4c. When the guess provided is close
to the optimal solution, the TPBVP solver is able to find it in less than 1 second.
Some examples showing the efficacy of this method are presented in Figure 5.5 and
5.6 for the fixed-time problem and in Figure 5.7 and 5.8 for the free-time.

However, even trying to apply this correction with bvp4c, there are still some
cases in which this may not be enough, especially when the transfer time is a free
parameter. A strategy that has shown promising results is to train a neural network
that predicts also the final adjoints of the optimal control problem. Once such a
network is deployed, the initial costates predicted are propagated forward up to
half the transfer time, while the final costates are propagated backward at the same
extent; the two halves are then joined together (even if they have a discontinuity) and
given as initial guess to bvp4c. This approach, in addition to being not too much
demanding from the computational point of view, seems to significantly help the
predictions to converge, as it can be seen in Figure 5.9 and in Figure 5.10. However,
further studies are needed to determine whether this approach can be effective and
feasible for an on-board implementation.

38 CHAPTER 5. DRO-TO-DRO TRANSFER

0.7 0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
 [
n
d
]

t
f
 = 8.56 days

Optimal Solution

NN Prediction

NN Prediction + bvp4c

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Non-dimensional time

-8

-6

-4

-2

0

2

4

u
 [
m

N
]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

Figure 5.5: Trajectory and controls of the fixed-time problem reconstructed from
initial costates predicted with an error of 3.49%. Comparison between optimal solu-
tion, simple propagation of the predictions and propagation corrected by bvp4c

5.3. RESULTS 39

0.7 0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
 [
n
d
]

t
f
 = 7.61 days

Optimal Solution

NN Prediction

NN Prediction + bvp4c

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Non-dimensional time

-25

-20

-15

-10

-5

0

5

10

u
 [
m

N
]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

Figure 5.6: Trajectory and controls of the fixed-time problem reconstructed from
initial costates predicted with an error of 0.97%. Comparison between optimal solu-
tion, simple propagation of the predictions and propagation corrected by bvp4c

40 CHAPTER 5. DRO-TO-DRO TRANSFER

0.7 0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
 [
n
d
]

t
f
 = 13.45

Optimal Solution

NN Prediction

NN Prediction + bvp4c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional time

-1.5

-1

-0.5

0

0.5

1

u
 [
m

N
]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

Figure 5.7: Trajectory and controls of the free-time problem reconstructed from ini-
tial costates predicted with an error of 0.15%. Comparison between optimal solution,
simple propagation of the predictions and propagation corrected by bvp4c

5.3. RESULTS 41

0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
y
 [
n
d
]

t
f
 = 12.97

Optimal Solution

NN Prediction

NN Prediction + bvp4c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional time

-1

-0.5

0

0.5

1

1.5

2

2.5

3

u
 [
m

N
]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

Figure 5.8: Trajectory and controls of the free-time problem reconstructed from ini-
tial costates predicted with an error of 0.16%. Comparison between optimal solution,
simple propagation of the predictions and propagation corrected by bvp4c

42 CHAPTER 5. DRO-TO-DRO TRANSFER

0.7 0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
 [

n
d

]

t
f
 = 14.79

Optimal Solution

NN Prediction

NN Prediction + bvp4c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional time

-20

-15

-10

-5

0

5

10

15

20

25

u
 [

m
N

]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

(a)

0.7 0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
 [

n
d

]

t
f
 = 14.79

Optimal Solution

NN Prediction

NN Prediction + bvp4c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional time

-15

-10

-5

0

5

10

15

20

u
 [

m
N

]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

(b)

Figure 5.9: Trajectory and controls of the free-time problem reconstructed from
initial costates predicted with an error of 0.34%. Comparison between bvp4c provided
with a forward propagation guess (a) and a forward + backward propagation guess(b)

5.3. RESULTS 43

0.7 0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
 [

n
d

]

t
f
 = 13.46

Optimal Solution

NN Prediction

NN Prediction + bvp4c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional time

-30

-25

-20

-15

-10

-5

0

5

10

15

u
 [

m
N

]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

(a)

0.7 0.8 0.9 1 1.1 1.2 1.3

x [nd]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
 [

n
d

]

t
f
 = 13.46

Optimal Solution

NN Prediction

NN Prediction + bvp4c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Non-dimensional time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

u
 [

m
N

]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

(b)

Figure 5.10: Trajectory and controls of the free-time problem reconstructed from
initial costates predicted with an error of 0.18%. Comparison between bvp4c provided
with a forward propagation guess (a) and a forward + backward propagation guess(b)

Chapter 6

Halo-to-Halo Transfer

The maneuver analyzed in the upcoming chapter is a transfer from a northern Halo
orbit in L1 to another northern Halo in L2. Following the same structure of the
previous chapter, the orbit chosen and the data collection phase are first described,
then the network training is discussed and the results are showed and analyzed.
Again, all the computations have been performed on a laptop with an Intel® CoreTM

i7-4720HQ processor and 16 GB DDR3 RAM.

6.1 Collection Phase

The properties of the two orbits selected for the transfer are listed in Table 6.1, while
a representation in the three dimensional space is given in Figure 6.1.

The data collection of the fixed-time problem has been performed discretizing
the initial and the final orbit in 90 and 3 points respectively, while 300 transfer times
have been used within the range spanning from 3 to 20 days. When using random
guesses, the number of iterations is set to 50 like the DRO-to-DRO study case. Out
of 81000 trajectories, 80610 went to convergence with a precision of 10−12, and after
the cleaning phase, 28% of the data have been discarded, leading to a final number
of trajectories which is 58287. The data collection lasted 11 hours and 34 minutes.

The free-time problem, instead, showed some issues: the complexity of the
Halo makes the problem too much sensible to the initial guess, and the strategy
followed in the DRO-to-DRO transfer does not converges anymore. The outcome
is that the data collection algorithm proposed takes too much time to collect even
very few trajectories, because it performs the restart with random guesses at almost
each iteration. Such behavior makes it impossible to collect enough data within a
reasonable time frame. Further studies need to be done to find a better way to

45

46 CHAPTER 6. HALO-TO-HALO TRANSFER

Table 6.1: Initial states and properties of the two DROs chosen. Data from [1]

Initial orbit Final orbit

x0[nd] 0.82620188 1.17350479
y0[nd] 0 0
z0[nd] 0.08457723 0.07961391
vx0[nd] −9.16501897× 10−16 −1.85959853× 10−15

vy0[nd] 0.19882738 −0.18431374
vz0[nd] −5.73763531× 10−16 5.02413524× 10−15

C[nd] 3.12102303 3.12603226
Period [days] 12.31851396 14.90090502

Figure 6.1: The two Halo selected, represented in the rotating frame with non-
dimensional units

6.2. NETWORK TRAINING 47

Table 6.2: MATLAB and Keras NN settings

MATLAB Keras

Data splitting
Training 70% 60%
Validation 15% 25%
Test 15% 15%

nhidden layers 2 4

nneurons

input layer 13 13
hidden layer 30 40
output layer 6 6

Training algorithm Levenberg-Marquardt Adam

Activation function
hidden layer tanh
Output layer linear

Table 6.3: Stopping conditions

MATLAB Keras

Max epoch 1000 1500
Patience 6 100

provide the initial guess to the indirect method when the time is a free parameter.

6.2 Network Training

The Neural Network training has been carried out using both Matlab and Keras, like
for the transfer between the two DROs; the parameters chosen have been summarized
in Table 6.2. Unlike MATLAB, for which everything have been left to its default
values, the training of the Keras network required some degree of customization. The
learning rate has been chosen to exponentially decay (see Eq. 5.1), with the following
parameters: the initial learning rate η0 and the decay steps value have been set to
0.0005 and 10000, while the decay rate λ has been chosen to be 0.96; the stopping
conditions selected for the two networks can be found in Table 6.3.

48 CHAPTER 6. HALO-TO-HALO TRANSFER

Table 6.4: Results of the NN training

FIXED-TIME
MATLAB Keras

Training time 5h 57min 25min 55sec
Training epochs 416 1041
Minimum MSE reached 2.15× 10−5 9.55× 10−6

Test data with errrel < 5% 69.63% 87.23%
Test data with errrel < 1% 1.86% 20.07%

6.3 Results

Table 6.4 summarizes the results obtained after the training, while the peformance
in terms of MSE can be observed in Figure 6.2 and 6.3. It can be noted that both the
two networks are performing worse compared to those trained on the DRO-to-DRO
transfer. This is probably because of the increased complexity of the orbits consid-
ered: unlike DROs, Halo are three-dimensional, meaning that the two components
of the state vector linked to the third dimension (z and vz) are no more constant
and equal to zero. In the case of planar orbits, the network had to learn from a 13-
dimensional vector in which only 9 components were actually varying, while now it
receives an input vector in which each of the 13 components is different and changes
along the orbit.

The performance can be improved increasing the size of the training batch, gath-
ering more data during the collection phase. Further studies are indeed needed to
explore in what measure the size of the batch can influence the training performance.

6.3.1 On-Board Implementation

Even if with degraded performance with respect to the planar transfer between
DROs, the Neural Networks trained, especially the Keras one, still perform good
enough to be evaluated for a possible on-board integration. As discussed for the
planar transfer between two DROs, a simple forward propagation of the predicted
costates is not enough, because the error introduced by the network propagates as
well, making the actual trajectory to diverge with respect the optimal one. It has
been already verified how, using this propagation as an initial guess for bvp4c, the
solver can find the optimal control history without using too much computational
resources. Figure 6.4 shows the effect of this strategy on a transfer between the two

6.3. RESULTS 49

0 50 100 150 200 250 300 350 400

Epochs

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r
 (

M
S

E
)

Train

Validation

Test

Figure 6.2: MATLAB NN performance for the fixed-time problem in terms of MSE

0 200 400 600 800 1000
Epochs

10−5

10−4

10−3

M
ea

n
Sq

ua
re
d
Er
ro
r (
M
SE

)

Train
Validation

Figure 6.3: Keras NN performance for the fixed-time problem in terms of MSE

50 CHAPTER 6. HALO-TO-HALO TRANSFER

Halo when the error on the initial costates is about 2.75%; like the planar case, the
solver restored successfully the optimal trajectory. This strategy seems to remain
valid even with higher errors, as it can be seen in Figure 6.5.

Unfortunately, a low percent error on the predictions does not necessarily guar-
antee the success of this method. In the previous chapter, the solution proposed
was to train a new neural network that could predict also the final costates of each
optimal trajectory. Once this new network is deployed, two different propagations
are performed: the initial costates are propagated forward up to half the transfer
time, while the final costates are propagated backward to the same extent. These
two halves of the trajectory are then joined and used as initial guess for the TPBVP
solver. This approach has been also tried on the Halo-to-Halo transfer, and the result
obtained are showed in Figure 6.6 and 6.7. Both cases have a very low prediction
error, but, using a simple forward propagation, the solver still does not converge
to the optimal solution; when using the forward + backward propagation method,
instead, the optimal transfer is successfully recovered, with a lower computational
speed thanks to the better guess provided.

Notwithstanding the good performance showed by the proposed approach, further
studies are indeed needed to better analyze the on-board feasibility of such method.

6.3. RESULTS 51

0 0.5 1 1.5 2 2.5 3 3.5

Non-dimensional time

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

u
 [
m

N
]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

u
z

(opt)

u
z

(NN)

u
z

(NN+bvp4c)

Figure 6.4: Trajectory and controls of the fixed-time problem reconstructed from
initial costates predicted with an error of 2.75%. Comparison between optimal solu-
tion, simple propagation of the predictions and propagation corrected by bvp4c

52 CHAPTER 6. HALO-TO-HALO TRANSFER

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Non-dimensional time

-2

-1

0

1

2

3

4

5

6

u
 [
m

N
]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

u
z

(opt)

u
z

(NN)

u
z

(NN+bvp4c)

Figure 6.5: Trajectory and controls of the fixed-time problem reconstructed from
initial costates predicted with an error of 15.42%. Comparison between optimal
solution, simple propagation of the predictions and propagation corrected by bvp4c

6.3. RESULTS 53

0 0.5 1 1.5 2 2.5 3

Non-dimensional time

-4

-2

0

2

4

6

8

u
 [

m
N

]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

u
z

(opt)

u
z

(NN)

u
z

(NN+bvp4c)

(a)

0 0.5 1 1.5 2 2.5 3

Non-dimensional time

-4

-3

-2

-1

0

1

2

3

4

u
 [

m
N

]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

u
z

(opt)

u
z

(NN)

u
z

(NN+bvp4c)

(b)

Figure 6.6: Trajectory and controls of the free-time problem reconstructed from
initial costates predicted with an error of 0.92%. Comparison between bvp4c provided
with a forward propagation guess (a) and a forward + backward propagation guess(b)

54 CHAPTER 6. HALO-TO-HALO TRANSFER

0 0.5 1 1.5 2 2.5 3 3.5

Non-dimensional time

-6

-4

-2

0

2

4

6

8

u
 [

m
N

]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

u
z

(opt)

u
z

(NN)

u
z

(NN+bvp4c)

(a)

0 0.5 1 1.5 2 2.5 3 3.5

Non-dimensional time

-6

-4

-2

0

2

4

6

u
 [

m
N

]

u
x

(opt)

u
x

(NN)

u
x

(NN+bvp4c)

u
y

(opt)

u
y

(NN)

u
y

(NN+bvp4c)

u
z

(opt)

u
z

(NN)

u
z

(NN+bvp4c)

(b)

Figure 6.7: Trajectory and controls of the free-time problem reconstructed from
initial costates predicted with an error of 1.32%. Comparison between bvp4c provided
with a forward propagation guess (a) and a forward + backward propagation guess(b)

Chapter 7

Conclusions

7.1 Summary

The main goal of this thesis has been to investigate the usefulness of Neural Net-
works as computationally inexpensive estimators for optimal trajectories in the cis-
lunar space. A significant part of the work consisted of gathering the training data,
using an indirect optimization technique. Training a Neural Network can be expen-
sive in terms of time and resources, especially considering the data collection phase;
however, once the network has been trained and deployed, the computational effort
that requires is almost negligible. This work successfully demonstrated that such a
tool can be very efficient in predicting the initial costates of the indirect method.
However, having only the initial adjoints makes it necessary to propagate them in
order to obtain the entire optimal control vector. Since the error also propagates, a
strategy based on using again the TPBVP solver has been proposed: after propa-
gating the initial costates found, the trajectory obtained is given as initial guess and
“corrected” by the solver itself. It has been shown how the computational effort is
still modest due to the fact that the guess provided is very close to the solution.

7.2 Future Works

This study showed the potentiality of onboard Neural Networks, revealing also some
drawbacks. First of all, the data collection phase has been proven to be the most
critical part, and it should be further investigated and improved in future works. In
particular, better strategies capable of providing good initial guesses to the indirect
method should be developed, especially when trying to solve the free-time problem

55

56 CHAPTER 7. CONCLUSIONS

between three-dimensional orbits. This is an open problem, and some existing strate-
gies have been already mentioned in chapter 4; none of them, however, has ever been
used to collect a large amount of trajectories, which is why the feasibility of each of
those methods needs to be further evaluated.

As already stated in chapter 4, this work focused the analysis on the minimum
energy problem because it is easier to handle and shows excellent convergence proper-
ties. However, when designing a real mission, the goal is usually to find the minimum
fuel solution; future works could expand the OCP formulation trying to solve the
minimum fuel problem and then training a network to predict the initial costates of
the minimum fuel trajectory.

As seen in the results, predicting only the initial costates causes an error on the
final trajectory because of the error propagation, and a solution based on applying
a correction using bvp4c has been proposed. Obviously, there are other strategies
that could be followed to solve this problem, like training a network to predict the
entire optimal control history. Another approach could be to train the NN to map
the relationship between a generic state and the correspondent costate: in such a
way the network could act like a controller, giving at each period of time the right
command to the propulsion system. A deeper investigation could highlight both
strong points and weaknesses of these proposed strategies.

References

[1] NASA JPL. Three-body periodic orbits. https://ssd.jpl.nasa.gov/tools/
periodic_orbits.html#/periodic. [Online; accessed 5-May-2022].

[2] NASA. Nasa artemis. https://www.nasa.gov/specials/artemis/. [Online;
accessed 06-Jul-2022].

[3] Lorenzo Federici, Andrea Scorsoglio, Alessandro Zavoli, and Roberto Furfaro.
Autonomous guidance for cislunar orbit transfers via reinforcement learning. In
AAS/AIAA Astrodynamics Specialist Conference, 2021.

[4] Daniel Daniel Martin Miller. Low-thrust Spacecraft guidance and control using
proximal policy optimization. PhD thesis, Massachusetts Institute of Technology,
2020.

[5] Daniel Miller and Richard Linares. Low-thrust optimal control via reinforcement
learning. In 29th AAS/AIAA Space Flight Mechanics Meeting, pages 1–18.
American Astronautical Society Ka’anapali, Hawaii, 2019.

[6] Haiyang Li, Shiyu Chen, Dario Izzo, and Hexi Baoyin. Deep networks as approx-
imators of optimal transfers solutions in multitarget missions. arXiv preprint
arXiv:1902.00250, 2019.

[7] Haiyang Li, Hexi Baoyin, and Francesco Topputo. Neural networks in time-
optimal low-thrust interplanetary transfers. IEEE Access, 7:156413–156419,
2019.

[8] Lin Cheng, Zhenbo Wang, Fanghua Jiang, and Chengyang Zhou. Real-time
optimal control for spacecraft orbit transfer via multiscale deep neural net-
works. IEEE Transactions on Aerospace and Electronic Systems, 55(5):2436–
2450, 2018.

57

https://ssd.jpl.nasa.gov/tools/periodic_orbits.html#/periodic
https://ssd.jpl.nasa.gov/tools/periodic_orbits.html#/periodic
https://www.nasa.gov/specials/artemis/

58 REFERENCES

[9] Nathan Luis Olin Parrish. Low thrust trajectory optimization in cislunar and
translunar space. PhD thesis, University of Colorado at Boulder, 2018.

[10] Ari Rubinsztejn, Rohan Sood, and Frank E Laipert. Neural network optimal
control in astrodynamics: Application to the missed thrust problem. Acta as-
tronautica, 176:192–203, 2020.

[11] Lin Cheng, Zhenbo Wang, Fanghua Jiang, and Junfeng Li. Fast generation of
optimal asteroid landing trajectories using deep neural networks. IEEE Trans-
actions on Aerospace and Electronic Systems, 56(4):2642–2655, 2019.

[12] MJ Holzinger, CC Chow, and P Garretson. A Primer on Cislunar Space. Air
Force Research Laboratory, 2021.

[13] Howard Curtis. Orbital mechanics for engineering students. Butterworth-
Heinemann, 2005.

[14] Bilel Daoud. On the optimal control of the circular restricted three body problem.
PhD thesis, Université de Bourgogne, 2011.

[15] Claudio Maccone. The lunar farside radio lab study of iaa. In 53rd International
Astronautical Congress (Houston, Texas) October, pages 10–19, 2002.

[16] Michel Hénon. Numerical exploration of the restricted problem. vi. hill’s case:
Non-periodic orbits. Astronomy and Astrophysics, 9:24–36, 1970.

[17] Laura Rochon, Johnson Space Center, NASA. Orion will go the distance
in retrograde orbit during artemis i. https://www.nasa.gov/feature/

orion-will-go-the-distance-in-retrograde-orbit-during-artemis-i.
[Online; accessed 14-June-2022].

[18] Ruikang Zhang, Yue Wang, Hao Zhang, and Chen Zhang. Transfers from dis-
tant retrograde orbits to low lunar orbits. Celestial Mechanics and Dynamical
Astronomy, 132(8):1–30, 2020.

[19] Robert Willard Farquhar. The control and use of libration-point satellites. Stan-
ford University, 1969.

[20] Kathleen Connor Howell. Three-dimensional, periodic,‘halo’orbits. Celestial
mechanics, 32(1):53–71, 1984.

https://www.nasa.gov/feature/orion-will-go-the-distance-in-retrograde-orbit-during-artemis-i
https://www.nasa.gov/feature/orion-will-go-the-distance-in-retrograde-orbit-during-artemis-i

REFERENCES 59

[21] Diane Davis, Sagar Bhatt, Kathleen Howell, Jiann-Woei Jang, Ryan Whitley,
Fred Clark, Davide Guzzetti, Emily Zimovan, and Gregg Barton. Orbit main-
tenance and navigation of human spacecraft at cislunar near rectilinear halo
orbits. In AAS/AIAA Space Flight Mechanics Meeting, number JSC-CN-38626,
2017.

[22] KC Howell and JV Breakwell. Almost rectilinear halo orbits. Celestial mechan-
ics, 32(1):29–52, 1984.

[23] Emily M Zimovan, Kathleen C Howell, and Diane C Davis. Near rectilinear
halo orbits and their application in cis-lunar space. In 3rd IAA Conference on
Dynamics and Control of Space Systems, Moscow, Russia, volume 20, page 40,
2017.

[24] Anil V Rao. A survey of numerical methods for optimal control. Advances in
the Astronautical Sciences, 135(1):497–528, 2009.

[25] Arthur E Bryson and Yu-Chi Ho. Applied optimal control: optimization, esti-
mation, and control. Routledge, 2018.

[26] John T Betts. Survey of numerical methods for trajectory optimization. Journal
of guidance, control, and dynamics, 21(2):193–207, 1998.

[27] Andrzej Karbowski. Matlab implementation of direct and indirect shooting
methods to solve an optimal control problem with state constraints. Journal of
Automation, Mobile Robotics and Intelligent Systems, pages 43–50, 2021.

[28] Xuezhong Wang. Solving optimal control problems with matlab: Indirect meth-
ods. ISE Dept., NCSU, Raleigh, NC, 27695, 2009.

[29] Emmanuel Trélat. Optimal control and applications to aerospace: some results
and challenges. Journal of Optimization Theory and Applications, 154(3):713–
758, 2012.

[30] Chris M Bishop. Neural networks and their applications. Review of scientific
instruments, 65(6):1803–1832, 1994.

[31] Ben Krose and Patrick van der Smagt. An introduction to neural networks.
2011.

[32] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

60 REFERENCES

[33] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of machine learning
research, 12(7), 2011.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[35] Donald W Marquardt. An algorithm for least-squares estimation of nonlinear
parameters. Journal of the society for Industrial and Applied Mathematics,
11(2):431–441, 1963.

[36] The MathWorks, Inc. Matlab trainlm. https://www.mathworks.com/help/

deeplearning/ref/trainlm.html. [Online; accessed 20-Jun-2022].

[37] Jinsung Lee and Jaemyung Ahn. Homotopic approach of free-final-time
continuous-low-thrust trajectory optimization. In 2020 AAS/AIAA Astrody-
namics Specialist Virtual Lake Tahoe Conference. American Astronautical So-
ciety, 2020.

[38] Fanghua Jiang, Hexi Baoyin, and Junfeng Li. Practical techniques for low-thrust
trajectory optimization with homotopic approach. Journal of guidance, control,
and dynamics, 35(1):245–258, 2012.

[39] Gao Tang, Fanghua Jiang, and Junfeng Li. Fuel-optimal low-thrust trajectory
optimization using indirect method and successive convex programming. IEEE
Transactions on Aerospace and Electronic Systems, 54(4):2053–2066, 2018.

[40] The MathWorks, Inc. Matlab rmoutliers. https://www.mathworks.com/help/
matlab/ref/rmoutliers.html. [Online; accessed 17-Jun-2022].

[41] The MathWorks, Inc. Matlab mapminmax. https://www.mathworks.com/

help/deeplearning/ref/mapminmax.html. [Online; accessed 18-Jun-2022].

[42] The MathWorks, Inc. Matlab feedforwardnet. https://www.mathworks.com/

help/deeplearning/ref/feedforwardnet.html. [Online; accessed 18-Jun-
2022].

[43] François Chollet et al. Keras. https://keras.io, 2015. [Online; accessed
19-Jun-2022].

https://www.mathworks.com/help/deeplearning/ref/trainlm.html
https://www.mathworks.com/help/deeplearning/ref/trainlm.html
https://www.mathworks.com/help/matlab/ref/rmoutliers.html
https://www.mathworks.com/help/matlab/ref/rmoutliers.html
https://www.mathworks.com/help/deeplearning/ref/mapminmax.html
https://www.mathworks.com/help/deeplearning/ref/mapminmax.html
https://www.mathworks.com/help/deeplearning/ref/feedforwardnet.html
https://www.mathworks.com/help/deeplearning/ref/feedforwardnet.html
https://keras.io

	List of Figures
	List of Tables
	Introduction
	Cislunar Environment
	The Circular Restricted Three Body Problem
	Jacobi Integral

	Libration Points
	Repeating Natural Orbits
	Distant Retrograde Orbit
	Halo and Near Rectilinear Halo Orbit

	Optimal Control Problem
	General Formulation
	Solving Methods
	Indirect Method
	Direct Method

	Neural Networks
	Architecture of a NN
	Network Training
	Gradient Descent and Adam Optimizer
	Levenberg-Marquardt Algorithm

	Methodology
	OCP Formulation
	Fixed-time Problem
	Free-time Problem

	Data Collection
	Fixed-time Problem
	Free-time Problem

	Neural Network Training

	DRO-to-DRO Transfer
	Collection Phase
	Network Training
	Results
	On-Board Implementation

	Halo-to-Halo Transfer
	Collection Phase
	Network Training
	Results
	On-Board Implementation

	Conclusions
	Summary
	Future Works

	References

