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Abstract

Predicting climate events means having to deal with a complex, nonlinear, chaotic
system, with natural variability in time and space and subject to external forcing.
One of the best ways to approach this problem is through the definition of general
circulation models, which represent climate systems as a group of subsystems that
interact with each other through phenomena. However, they are not always simple
to interpret, and sometimes it is necessary to have easy models to read but precise
enough to be able to hold all the relevant information.
Empirical model reduction (EMR) is a well-established methodology able to build
an efficient model from simple observations of the system. This thesis aims to study
the potential of EMR if used to simulate the dynamics of a set of real climate data.
After an overview of the basic concepts of climate systems, and an examination
of the EMR algorithm, some experiments have been conducted giving the system
different properties. The goal is to understand how the algorithm and the data
influence the resulting model under variation of some properties of the method,
or changing the scenario described by the data. The methodology itself was also
compared with alternative versions with more classic data-driven techniques (like
linear regression) integrated into the algorithm.
The results obtained help to better understand the conditions under which the
empirical model reduction method might be able to substitute a general circulation
model with the least possible loss of information.
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Chapter 1

Introduction

1.1 Context overview

Climate science is surely one of the most discussed topics of the last decades. If
analyzed from a social, economic, or academic point of view, the climate change
problem has surely started to have a deep impact on modern society. In particular,
it is possible to affirm that there has been an exponential growth of interest in
climate research, starting with the establishment of the Intergovernmental Panel on
Climate Change, in charge of the coordination and review of the research activities
on the argument.

Among the climate topics currently subject to research, one stands out: gen-
eral circulation models. The objective is to create models which are capable of
realistically simulating the behavior of a climate system, defining it as a group of
subsystems that interact with each other. However, there are some issues: due to
the numerous subjects and phenomena involved, the climate can be defined as a
chaotic system, out of equilibrium and with complex variability. In order to better
describe the climate phenomena then, it is necessary to develop a realistic and
detailed model, from which it could be really complicated to interpret the results.
Another way is to develop a really simple model, but it might be unable to well
describe the processes.

To overcome this problem, a new methodology has been introduced: empirical
model reduction (EMR) permits to model a physic system and its phenomena as a
series of non-linear ordinary differential equations. They describe both the main
dynamics of the components as well as their residuals, which might keep some
fundamental information. The best part about EMR is that it is a data-driven
process, able to parameterize phenomena only using observations.

The recent researches conducted on EMR have all been used as base artificial
data, generated using existent physics models described by well-known equations,
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Introduction

such as the Lorenz system. There are few documented cases, if any, of the application
of empirical model reduction to real data measures. Since the effectiveness of the
method has been proven, it will be interesting to apply it to existent datasets,
in order to find possible correlations between the components. There are in
fact numerous temporal datasets that provide information about certain climate
dynamics. Usually, they are prepared by universities with the aim of using them
as input in general circulation models.

1.2 Thesis objectives
The main objectives of this thesis project are the following:

• Provide an overview of the climate research conducted in the last decades,
illustrating the core concepts and problems present, as well as the main fields
of study.

• Present the empirical model reduction methodology, in particular the algorithm
used and its core phases.

• Conduct a series of experiments with the EMR algorithm applied to a set of
climate data, varying a series of parameters and commenting on the obtained
results.

• Realize different versions of the algorithm using different machine learning
techniques, and confront the performances with the original one.

1.3 Main issues
Of course, in the development of the project there are some issues to address:

• There isn’t, to date, relevant work about the application of empirical model
reduction to real data. There might be some complications and the results
might not be as good as the ones obtained in other research.

• Due to the high number of applicable variations in the algorithm, it is impos-
sible to proper describe all of them in this project. Therefore, a simplified
version of the algorithm will be used, and only a subset of parameters will be
considered.

• An high number of time series could make the system too complex to be well
modeled. A small amount of data will be then used, limiting the study to four
components.

2



1.4 – Related works

1.4 Related works
There are some relevant works in the fields of climate, physics, and mathematics
which can be studied, in order to better understand the argument.

Talking about climate research, the review realized by Ghil and Lucarini (2020)
[1] is a perfect starting point. It reports some of the most important research on
the subject, in particular the assessment reports developed by IPCC and some of
the more relevant earth system models, like CMIP6 [2]. There have been several
works about climate predictions. Some of them exploit the existing GCM and ESM
to confirm theories and make predictions [3]. Others search alternative ways, above
all machine learning [4], to obtain better predictions [5] and to improve the current
models [6, 7].

Speaking about empirical model reduction, it is surely a topic that has grown
in popularity in the last years. Several papers have been written on the argument,
the majority realized by Ghil, Kondrashov, and Kravtsov [8, 9, 10, 11]. Some of
the most recent works have started to confront EMR with other methods, even
not data-driven. A great example can be found in the paper realized by Santos
Gutiérrez et al. (2021) [12], where EMR is compared to more traditional theory-
based approaches, evaluating their performances when used for reduced models
parametrization.

Finally, it is considered important to cite some promising new research in the
field of dynamical systems: scientific machine learning. The main objective is to
exploit machine learning techniques for describing physical phenomena with neural
networks, realizing neural differential equations [13, 14] and universal differential
equations [15]. Some applications in the field of earth system models are currently
in development1 and soon it will be possible to access promising results.

1For further details: https://github.com/CliMA/ClimaCore.jl
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Chapter 2

Climate Research Overview

Over the years, climate studies have increasingly become a topic of interest, both
from an academic and socio-economic point of view. The availability of a growing
quantity of observational data and models has led to easier and more detailed
access to information. Taking this into account, in 1988 the World Meteorological
Organization (WMO) and the United Nations Environment Programme (UNEP)
established the Intergovernmental Panel on Climate Change (IPCC). The IPCC
aims to review and coordinate the research activities of the scientific community
related to climate change. There are three Working Groups in its structure, each
one focalized on a particular topic, which release assessment reports every 4 to 8
years, summarizing the scientific literature relevant to climate change. Independent
reviews realized by the research community have also been published over the
years, above all the one realized by Ghil and Lucarini (2020) [1], from which will
be extracted some basic climate concepts and explained in the next sections1.

2.1 Basic information on climate science
Overall, climate can be seen as a chaotic system, out of equilibrium and with
complex variability. This is due to a series of factors: to begin with, it is composed
of a series of phenomena like microphysics of clouds, cloud-radiation interactions,
atmospheric and oceanic boundary layers, as well as several scales of turbulence
[16]. In addition, its variability is strongly influenced by small forces alteration,
both from natural and human-induced sources. It is also subjected to the actions of
large-scale agents, which influence the model’s evolution. Above all, the absorption

1Reprinted figures present in the chapter, with permission from Michael Ghil and Valerio
Lucarini (Reviews of Modern Physics, 92.3, p. 035002, 2020). Copyright (2022) by the American
Physical Society.
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Figure 2.1: Surface air temperature record for the last two millennia. Often called
the “hockey stick” it is one of the most discussed graphs in the climate research
community. From Ghil and Lucarini (2020) [1].

of solar radiation through the atmosphere leads to the formation of energy fluxes,
in order to compensate for the energy disequilibrium formed. These fluxes can be
vertical (like infrared radiation directed to the troposphere) in case of a prevalence
of absorption at Earth’s surface and the atmosphere’s lower levels, or horizontal, in
case of major absorption on the low latitudes. The vertical and horizontal fluxes
form together atmospheric circulation which, coupled with the ocean circulation,
reduces the difference between polar and tropics regions, otherwise subject only
to solar radiation absorption. Some theories from Lorenz better describe the
mechanisms of climate circulation. In particular, Lorenz (1955) [17] illustrates
how atmospheric large-scale flows result from the conversion of potential energy
(produced by the atmosphere’s differential heating) into kinetic energy. Citing the
review of Ghil and Lucarini (2020) [1]:
“Overall, the climate system can be seen as a thermal engine capable of transforming
radiative heat into mechanical energy with a given, highly suboptimal efficiency
given the many irreversible processes that make it less than ideal”.

The general dynamic of the climate system phenomenon is usually studied fo-
cusing on aspects of different orders of magnitude, but complementary:

• Wavelike features, like planetary waves, which describe phenomena as the
transport of energy, momentum, and water vapor.

• Particle-like features, like hurricanes, oceanic vortices, and extratropical cy-
clones, which affect the local properties of the climate system.

• Turbulent cascades, responsible for the transfer of energy from large to small
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scales motion.

Neither of these elements, by themselves, provide a comprehensive understanding
of the properties of the climate system.

On top of the difficulties in studying a complex, nonlinear, dynamic system,
some additional obstacles are present in this particular case:

• The presence of well-defined subsystems, like the atmosphere, the ocean, and
the cryosphere, with distinct physical and chemical properties and different
time and space scales.

• Complex processes coupling these subsystems.

• Continuously varying sets of forcings resulted from fluctuations in the solar
radiations and natural and human-induced processes.

• Lack of scale separation between processes, which brings difficulties in the use
of methods like model reduction and parameterization.

• Lack of detailed, homogeneous, high resolution, and long-lasting observations
of climate fields, leading to the reconstruction of missing data using indirect
observations.

• The presence of only one realization of the processes of the climate system.

2.2 The data problem
One of the main difficulties in the study of climate systems is surely the lack of
homogeneous data, or sometimes lack of data at all. In order to be functional,
they need to be of standardized quality, with sufficient temporal coverage and
spatially detailed. With this in mind, observation datasets can be divided into two
categories: instrumental datasets and proxy datasets.

2.2.1 Instrumental datasets
Instrumental data refer to data obtained by instrumental measurements: first,
from the 19th century, with meteorological stations, and then, starting from the
1960s, using remote sensing from satellites (i.e., the Global Observing System
of the WMO). Over the years, measurements have grown in number, covering
now as much as possible of the entire Earth. However, they are usually sparse,
irregular, and of different degrees of accuracy. These problems can be solved with
data assimilation approaches: by combining these observations with theoretical
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dynamical problems, it is possible to obtain the best estimates of the state.
Three types of problems can be formulated and solved with data assimilation:
filtering, smoothing, and prediction. All three of them have the objective of ob-
taining the best possible estimate of a state X(t) given data in a time interval
between t0 and t1; with filtering is calculate the estimate of X(t) at time t = t1,
with smoothing at t0 ≤ t ≤ t1, and with prediction at time t > t1. In Figure 2.2 is
possible to see the structure of a forecast assimilation cycle: at determined times
{tk : k = 1, 2, . . . , N}, the corresponding state X(tk) is calculated by combining
observations from intervals at t < tk with the forecast of the previous state X(tk−1).
In order to take advantage of the latest improvements in the measurement tech-
nology and climate models development, several meteorological centers started to
produce reanalyzes, combining archived data with the current best models and data
assimilation methods since the 1990s. One of the centers involved in the process
of reanalysis, for example, is the European Centre for Medium-Range Weather
Forecasts (ECMWF).

Figure 2.2: Schematic diagram of filtering F, smoothing S, and prediction P;
green solid circles are observations. From Ghil and Lucarini (2020) [1].

2.2.2 Proxy datasets
As previously mentioned, instrumental data have a discrete quantity of limitations,
above all the fact that direct observations of approximately only the last two
centuries are available. It is possible however to indirectly calculate past data
about even millions of years ago, thanks to climate proxies. We define the term
climate proxies as physical characteristics of the past that have been preserved
in various ways and that can be correlated to states of the climate system. Some
examples are coral records, tree rings, marine sediment, and ice core. Proxies
however vary in terms of precision, uncertainties, and temporal coverage and do
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not cover homogeneously the entire Earth. New data assimilation techniques have
been then developed, combining simple models with instrumental and proxy data.
This has been often addressed as a complex and controversial technique. One major
example is the estimation of the globally averaged surface air temperature.

2.3 Climate variability

A perfect way to represent the multiple scales of data in space and time is through
the Stommel diagram [18], plotting an idealized spectral density associated with
the ocean’s variability in logarithmic spatial and temporal scales. In this way, it
is possible to describe spatial-temporal variability and associate it with different
phenomena, such as cyclones or planetary waves. In Figure 2.3 it is possible to
observe that larger spatial scales are associated with larger temporal scales, forming
a “diagonal” plot (except for reaching a planet-size spatial scale, from which only
the temporal scale increases). Also, it is possible to group scales into three groups:
microscale, mesoscale, and synoptic scale. A direct outcome is a complexity in
studying models simulating multiple dynamical ranges. Usually, a solution is to
examine processes in a particular range, freezing processes with slower timescales.
Faster processes, on the other hand, are parameterized. The plot in Figure 2.4
better illustrates climate variability in all timescales, providing semi-quantitative in-
formation on the spectral power calculated from several time series. It is possible to
observe three types of variability: continuous portions (representing stochastically
forced variations), broader peaks (caused by internal modes of variability), and
sharp lines (which correspond to periodically forced variations). One of the most
particular variability phenomena is El Niño, in the Pacific Ocean: once every 2-7
years, the sea-surface temperature increase by one or more degrees. This particular
event is associated with changes in winds and sea-level pressure. Most of the
excitement of scientists in climate variability has been caused by variabilities bigger
than the interannual one: in particular, paleoclimatic variability (on periods from
103 to 106 years) can’t be fully explained and lots of research are conducted on the
topic.
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Figure 2.3: Idealized wavelength-and-frequency power spectra for the climate
system. (a) The original Stommel diagram representing the spectral density (vertical
coordinate) of the ocean’s variability as a function of the spatial and temporal
scale. (b) Diagram qualitatively representing the main features of ocean variability.
(c) The same as (b), describing here the variability of the atmosphere. From Ghil
and Lucarini (2020) [1].
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Figure 2.4: Power spectra of climate variability across timescales. (a) An artist’s
rendering of the composite power spectrum of climate variability for a generic
climatic variable, from hours to millions of years; it shows the amount of variance
in each frequency range. (b) Spectrum of the Central England temperature time
series from 1650 to the present. Each peak in the spectrum is tentatively attributed
to a physical mechanism. From Ghil and Lucarini (2020) [1].

2.4 Climate predictions and climate models
A key area in climate science (and focus on this thesis) is the development of general
circulation models (GCM), which simulate the behavior of a climate system. In
particular, they try to simulate in the best possible way all the climate subsystems
(atmosphere, ocean, and land) and their interactions. They are the base for Earth
system models, which also integrate the biological subsystem. In Figure 2.5 is
possible to examine all the components of an Earth System Model, along with the
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evolution of climate models across the first four IPCC.

Figure 2.5: The Earth system, its components, and its modeling. (a) The NAC
(1986) horrendogram that illustrates the main components of the Earth system and
the interactions among them. (b) Evolution of climate models across the first four
IPCC assessment reports, ranging from the early 1990s to the mid-2000s. From
Ghil and Lucarini (2020) [1].
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One of the main problems with using climate modeling to make predictions is
that simulating chaotic events is subjected to uncertainties of the first kind (as
defined by Lorenz in 1976 [19]): a small error in the initial data can lead to bigger
uncertainties in the prediction. Managing and reducing these uncertainties are
some of the goals in the field of numerical weather predictions (NWPs). One of
the main solutions found right now is the use of slightly perturbed initial states,
which permits to study a probabilistic estimate of the system evolution.
Another problem arises in the presence of uncertainties in the model formulation,
called uncertainties of second kind. They are related to the presence of uncertainties
in key parameters of the climate system (called parametric uncertainties), as well as
a possible poor representation of certain properties (causing structural uncertainties).
Over the years, more and more climate models have been developed; one of the
IPCC reports of 2014 lists about 50 models. Most of these models, however, share
a fair quantity of components, since the main part of them originated from a small
number of atmospheric and oceanic models, and this brings to also similarities in
their behaviors and results. To better manage these resemblances and to improve
comparisons among distinct models, the Program for Climate Model Diagnostics
and Intercomparison (PCMDI), defines a series of standards for the modeling
research through its Climate Model Intercomparison Projects (CMIPs). A typical
series of initial data used for evaluating a climate model for IPCC reports typically
includes:

• A reference state, like a preindustrial state with fixed parameters.

• Industrial era and present-day conditions, including natural and anthropogenic
forcings.

• Future climate scenarios, using a set of future scenarios of greenhouse gas,
aerosol emissions, and land-use change.

Any new variation of data, like greenhouse gases, brings the system to a new
stationary state. An evolution from one state to another is called a scenario.
Each new scenario is a representation of the expected greenhouse gas and aerosol
concentrations, resulting from an industrialization path and change in land use.
The CMIP permitted to bring also standardization of metrics to statistically
estimate the model performance. The validation of a model can be divided into
two distinct operations:

• Model intercomparison, to assess the consistency of different models in the
simulation of certain physical phenomena in a certain time frame.

• Model verification, comparing a model’s output with the corresponding ob-
served or scalar quantities.
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Figure 2.6: State-of-the-art climate model outputs for various climate change
scenarios. (Left) Change in the globally averaged surface temperature as simulated
by climate models included in the IPCC assessment report 2014a. Vertical bands
indicate the range of model outputs. (Right) Spatial patterns of temperature
change, i.e., a 2081–2100 average with respect to the present. From Ghil and
Lucarini (2020) [1].

Choosing the most suitable metric means constructing any suitable function from
the model’s variables. The problem is that variables can have physical relevance
and robustness which can differ widely, and it is impossible to validate them a
priori. So, different metrics are necessary in different cases. Some other issues
which can create problems in the model validation are:

• The presence of three types of attractors: an attractor of the real climate
system, its reconstruction from observations, and the attractors from the
climate model.

• The high dimensionality of the phase space and parameter space of the
attractors.

To address these issues, multivariate metrics and multi-model simulations have
been used, in order to have a better overview of the climate system.

2.5 Climate sensitivity and response theory
One of the main objectives of climate studies has always been predicting the impact
of changes in the climate system’s parameters, like the variation of greenhouse gas
concentration. In particular, it’s indicated as climate sensitivity the evaluation
of the response of the climate system to external perturbations. One of the main
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applications is the projection of temperature changes over the coming years caused
by the increasing concentration of greenhouse gas.
To make a simple example, it’s possible to consider an energy balance model
equation, describing the evolution of surface air temperature. The simplest zero-
dimensional model (with “zero” indicating the number of independent space vari-
ables used to describe the model domain) can represent the evolution of temperature
with the following equation:

c
dT

dt
= R(T ) = Ri(T )−Ro(T )

with T being the surface temperature, c the global atmospheric and oceanic heat
capacity, and R the net radiation, calculated as the difference between the incoming
solar radiation Ri and the outgoing terrestrial radiation Ro. In this context, we
can consider the difference in global annual mean temperature ∆T between two
statistical steady states, with distinct CO2 concentration levels. Assuming that
changing the CO2 concentration corresponds to applying an extra net radiative
forcing ∆R̃ to the system, it will be a corresponding change ∆T so that R(T0 +
∆T ) + ∆R̃ = 0.
Several aspects can affect net radiation, like cloud cover and greenhouse gas
concentration. Above all, the main reference factor is the CO2 concentration. In
fact, it is defined as equilibrium climate sensitivity (ECS) the globally and annually
averaged increase of surface temperature due to the doubling of the concentration of
CO2 with respect to a reference state. Several studies on ECS have been conducted
in the last years, exploiting mainly tools like Earth System Models. Most of this
scientific research has its base on the Ruelle response theory and its derivatives.

2.5.1 Linear response theory and applications on climate
systems

The Ruelle response theory [20] contributed a lot to address problems, like the
study of climate sensitivity, in the setting of dynamical systems theory, rather than
in statistical mechanics. It makes it possible to compute changes in a particular
measure x due to weak perturbations of intensity ϵ. We can then write:

ẋ = F (x, t) = F (x) + ϵX(x, t)

where F (x) is the background dynamics of x and ϵX(x, t) its perturbation.
We can then evaluate the expectation value ⟨Ψ⟩ϵ(t) of a measurable observable
Ψ(x) with the formula:

⟨Ψ⟩ϵ(t) = ⟨Ψ⟩0 +
∞Ø

j=1
ϵj⟨Ψ⟩(j)

0 (t)
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Figure 2.7: Climate sensitivity (a) for an equilibrium model, (b) for a nonequi-
librium oscillatory model, and (c) for a nonequilibrium model featuring chaotic
dynamics and stochastic perturbations. As a forcing (atmospheric CO2 concentra-
tion, blue dash-dotted line) changes suddenly, global temperature (red thick solid
line) undergoes a transition. (a) Only the mean temperature T̄ changes. (b) The
amplitude, frequency, and phase of the oscillation change too. (c) All details of the
invariant measure, as well as the correlations at all orders, are affected. From Ghil
and Lucarini (2020) [1].

In this context, we talk about linear response theory if we apply only a linear
perturbation, with the case j = 1, so:

⟨Ψ⟩ϵ(t) = ⟨Ψ⟩0 + ϵ⟨Ψ⟩(1)
0 (t)

This is a common simplification of the theory due to the fact that, with ϵ < 1, the
component of the formula ϵj⟨Ψ⟩(j)

0 (t) will converge to 0 with j →∞.
Many are the scientific research conducted in the recent years regarding the
verification of linear response theory, one above all realized by Lucarini, Ragone,
and Lunkeit in 2017 [3]. One of the possible future subjects might also be the
application of exact response theory [21] to the study of climate.
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Figure 2.8: Comparison between the climate model simulation (black line) and
response theory prediction (blue line) for a experiment using a PlaSim model. The
CO2 concentration was ramped up by 1% per year to double its initial value. From
Ghil and Lucarini (2020) [1].
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Chapter 3

Empirical Model Reduction

One of the first assumptions discussed in Chapter 2 is the fact that climate systems
are complex, non-linear, and dynamic. In order to better simulate the processes
involved, complex general circulation models are built. However, a few problems
must be taken into account; the first one is in the interpretation of the results:
the evolution of climate phenomena developed in a detailed and realistic model
is more difficult to understand. On the other hand, highly simplified models
can help to better understand isolated processes, but not their interaction. The
second problem is that some unresolved processes involving the dynamical variables
of interest might be difficult to be parameterized and, consequently, lost in the
simulation. It’s important to consider that these observations can be done on any
dynamical system involving stochastic processes. A solution for both problems is
the realization of a model of intermediate complexity, resolving a subset of climate
systems and parameterizing the unresolved part as stochastic processes. Empirical
model reduction (EMR) [8, 10, 11] is a methodology perfect for the scope. It is also
simple to implement since it is able to construct models based almost entirely on
observational data of the system, both in the case of actual observational datasets
or results from high-end simulations. The EMR methodology is typically used to
build multilayer stochastic models, which try to represent the dynamics of a group
of observed and unobserved variables using only available data. An example in
using empirical model reduction can be found in Appendix A, where is applied to
a Lorenz system.

3.1 Definition
A better technical definition of the construction of a EMR model will be shown in
this section. Let’s consider a multivariate time series X = (X1, X2, . . . , Xn) with
n the number of its components. Indicating with X its time mean and x = X−X
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the vector of its anomalies, it is possible to define the evolution of x as:

ẋ = Lx + N (x)

where L is a linear operator and N represents the nonlinear components. With
this in mind, it’s important to consider two aspects: (1) the formula above is really
complicated to resolve, even having its exact form and (2) x is always a sum of
the ideal signal xS and a noise component xN . One of the most efficient ways to
address these problems is through a data-driven approach, but it is necessary to be
careful. As said at the beginning of the chapter, there could be some unobserved
components that contribute to the dynamics of the observed ones and it is important
to take them also into account. With the EMR methodology, it is possible to easily
build an inverse multi-level stochastic model, which relies almost entirely on the
observations, while making assumptions about the underlying dynamic, described
as residual components r. The new model results in a set of ordinary differential
equations, the first one describing the dynamics of the observable variables and the
others its residual components.

dx = Cdt−Lxdt + N (x, x)dt + r1dt,

drl = Cldt + Ml(x, r1, . . . , rl)dt + rl+1dt, 1 ≤ l ≤ L− 1, (EMR)
rLdt ≈ ΣdW

In the equation above the vertical vectors C and Cl, and the matrices L, N , and
Ml represent the coefficients to compute from the observational data. dx and drl

indicate the tendencies of the time series x and rl respectively. They are calculated,
component-wise, with the following formula:

dx(t) = x(t + dt)− x(t),
drl(t) = rl(t + dt)− rl(t), 1 ≤ l ≤ L− 1

As said before, the dynamics related to the unobserved variables, as well as the
noise components, are acknowledged by adding the regression residuals described
with an additional level. Ideally, levels are added until the last residual rL can
be reasonably approximated as spatially correlated white noise with a spatial
covariance matrix Σ. As explained in Appendix A of [11], this can be established
by analyzing the currently last level residual. If well approximated by a white
noise, it should de-correlate at lag dt. Performing the regression of drL−1, all the
coefficients should then approach 0, except the one corresponding to rL−1 which
should be -1. The result is:

drL−1(t) = rL−1(t + dt)− rL−1(t) ≃ −rL−1(t) + rL(t)
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The new residual rL is then a lagged copy of rL−1. The direct consequence is that
the coefficient of determination R2

i of the i-th component of the time series at level
L− 1 becomes:

R2
i = 1−

q
k rL,i(k)q

k(rL−1,i(k + 1)− rL−1,i(k))2

≃ 1−
q

k rL−1,i(k + 1)q
k(r2

L−1,i(k + 1) + r2
L−1,i(k)) ≃ 1− var(rL−1,i)

2var(rL−1,i)
= 0.5

In the end, the best way to determine the best number of levels L is by verifying
when the coefficient of determination converges with all the components of the
time series.

3.2 The empirical model reduction algorithm
In this section will be reported a description of the main steps of the algorithm
used to build an empirical model reduction model given a multivariate time series.
First of all, it is important to notify that the algorithm used in this project is a
simplified version of the original one. Its first version is available as a MATLAB
package on the website of the Department of Atmospheric and Oceanic Sciences of
the University of California, Los Angeles1.

3.2.1 Differences from the original version
The main difference between the original version and the new one is that the code
has been translated entirely to another programming language, from MATLAB
to Python 3. This choice has been made for two main reasons: (1) to exploit
powerful Python libraries like numpy, which permits performance optimizations like
vectorization and multi-threading operations, and (2) to better manage operations
and the analysis of results using Jupyter Notebooks (further details in Chapter
4). In its original form, the empirical model reduction was executed in a MAT-
LAB function, where the coefficients were calculated from the dataset and a new
multivariate time series was constructed from the model.

During the translation, some changes in the algorithm design have been made,
in order to make it simpler for the case of study:

• The possibility of adding an external periodic forcing to the time series has
been removed.

1Package available at the following url: http://research.atmos.ucla.edu/tcd/dkondras/
Software.html
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• The original algorithm gave the possibility to use another method, instead
of the matrix linear equation solving, to calculate the coefficients of the
equations (in this case partial least squares regression). This approach has been
generalized in the new algorithm, giving the possibility to define an alternative
function for calculating the coefficients and passing it as an argument to the
EMR one.

• The residual of the last level rL is always considered as spatially correlated
white noise, following the assumptions of the previous section. In the original
code, other possibilities (like the absence of rL) are considered.

• All the components of the reconstructed simulated data are returned, while in
the original code there was the option to select a subset of them.

• The possibility to execute the empirical model reduction to a sub-sample of the
time series has been added inside the function, while before it was necessary
to perform the action before calling the function.

In addition to these modifications, the code has received some adjustments, in
order to make it more performing and easier to understand.

3.2.2 Algorithm description
An overview of the EMR function can be seen on Algorithm 1. In this section all
the step swill be discussed, dividing them into three parts: the initial setup, the
model construction, and the simulation of the new time series from the model. It’s
important to notify that the program shown is a simplified version, able to build
equations only up to the second degree, while the one used for the tests is able also
to build equations of third and fourth degree.

Input and output

There are six input data given to the function in order to construct an EMR model:

• data, a m× n matrix containing n time series from which construct the new
model.

• n_level, which indicates the number of levels L (main plus residuals) of the
model.

• eq_deg, indicating the degree of the equation of the main level.

• K, which is the coefficient of sub-sampling; depending on its value, one every
K observations are taken into account.
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• n_iter, indicating the number of successful simulations to run.

• lensim, the length of the simulated time series (typically equivalent to m
K

, but
can be longer or shorter as necessary.

The main output data returned from the function are a matrix sim_data, containing
a multivariate time series for each successful simulation, and a matrix with the
coefficients of determination R2 of all the components.

Initial setup

First of all, the initial time series is sampled, selecting one observation every K.
Then, a matrix x is initialized with the values of the time series. It will be updated
during the program execution, containing at the end, for each time t, the values
of the time series of each component and the corresponding residuals r, with the
format:

x =


x1 . . . xn

r1,1 . . . r1,n

. . . . . . . . .
rL−1,1 . . . rL−1,n


Two variables are then declared: A and xA, which will contain respectively all
the coefficients to calculate and their corresponding multipliers. In fact, in order
to construct the differential equations of (EMR) in a more efficient way, all the
coefficients are collected in a unique matrix. The idea is to exploit vector calculus
building the equations in the form:

f0 = C −Lx + N (x, x) = a0 +
nØ

i=1
aixi +

nØ
i=1

Ø
j≥i

ai,jxixj,

fl = Cl + Ml(x, r1, . . . , rl) = arl,0 +
nØ

i=1
arl,ixi +

lØ
j=1

nØ
i=1

arl,(j,i)rj,i, 1 ≤ l ≤ L− 1

and simplifying them with a matrix multiplication for every level l

fl = A[l]× xA[l], 0 ≤ l ≤ L− 1

In this way, it is also easy to calculate the residuals with the formulas

r1 = dx− f0, (r)
rl+1 = drl − fl, 1 ≤ l ≤ L− 1
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The shape of A is determined by the maximum number of coefficents for each
level, which is the higher value between rn

i=1
eq_deg+i

i
(number of coefficients on

the main level equation) and n_level ∗ n + 1 (number of coefficents on the last
residual equation).

EMR model construction

The model construction is performed starting from the first level to the subsequent
ones. First of all, the data of the current level are normalized on each component
using a standard score, by subtracting their mean and dividing them by their
standard deviation. Then their discrete derivative is computed with the formula

dx[t] = x[t + 1, l]− x[t, l]

In order to exploit the vectorized form of (EMR), it is necessary to construct the
matrix xA with the required values, so

xA[l] = [x1, . . . , xn], main level, eq_deg = 1
xA[l] = [x1, . . . , xn, x2

1, . . . , x1xn, . . . x2
n], main level, eq_deg = 2

xA[l] = [x1, . . . , xn, r1,1, . . . , r1,n, . . . , rl−1,n], residual level

We can then calculate the coefficients in A[l] resolving the matrix multiplication
analyzed in the initial setup section, with fl equal to dx in the main level and drl

in the residual ones. In order to resolve the equation, it is possible to calculate the
inverse of xA[l] using the singular value decomposition factorization [22], which
decompose the original matrix into three matrices U , S, and V . S is a diagonal
matrix containing the eigenvalues of xA[l] and U and V are two orthogonal matrices.
On the main level, for example, the coefficients are calculated with the following
equation:

dx′ = dx− µdx, x′
A = xA[l]− µxA,l,

U , S, V T = SV D(x′
A),

A[l] = (x′
A)−1 × dx′ = V × S−1 ×UT × dx′

The parameter a0 is then separately computed with the following formula and
added to A[l].

a0 = µdx −A[l]× µxA,l

Once calculated the coefficients, it is then possible to calculate the residuals with
the formula (r) and storing them into the matrix x for the next level iteration.
Finally, the R2 coefficients for each component are calculated from the residuals r
and the discrete derivative dx.
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Model simulation

Once calculated the EMR coefficents, it is possible to use them to compute a
simulation of the data, which can be compared to the original one in order to study
the model performance. The initial data at time t = 1 are taken from the original
one and saved in a matrix xstep. After that, the vector xA is calculated in the same
way done in the previous section of the algorithm, but adding an initial 1 which will
correspond to the coefficient a0 in the matrix multiplication. After the first step,
an iteration cycle starts. First of all, the data in the current step are exported to
sim_data but, if some value of xstep diverged, the simulation is considered failed
and a new one is initialized. Then, the value of the new time step is calculated.
Starting with the residuals, almost all of them are obtained from xstep, while the
last one is considered, like said previously in the chapter, as a correlated white.
This is possible calculating the Cholesky matrix2 of the residuals on the last level
calculated during the model construction and applying on them the Monte Carlo
method. Then, the next values of xstep are calculated the matrix version of the
formula (EMR). The new values of xA are consequently calculated.

2Another factorization method [22]
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Algorithm 1 Empirical Model Reduction function
Input: data(m×n) = [x1, . . . , xn]

n_level ≥ 1, eq_deg ∈ {1,2}, K ≥ 1, n_iter ≥ 1, lensim ≥ 1
Output: sim_data(lensim×n×n_iter), R2

(n_level×n)

data← data[1 :K :end]
max_iter ← 50, dt← 1
σdata(1×n) ← std(data)
x(n× m

K
×n_level)

x[l = 1]← dataT

dimeq_x = rn
i=1

eq_deg+i
i

, dimeq_r ← n_level ∗ n + 1
dimxa ← max(dimeq_x, dimeq_r)
xA(n_level×dimxa×m), A(n_level×dimxa)
r(n×n_level), σr(n×n_level)
for l ∈ {1, . . . , n_level} do

x[l]← (x[l]− µx,l)/σx,l

for t ∈ {1, . . . , m} do
dx[t]← x[t + 1, l]− x[t, l]

end for
if l==1 then

if eq_degree==1 then
xAc[l] = [x1, . . . , xn]

else
xAc[l] = [x1, . . . , xn, x2

1, . . . , x1xn, . . . x2
n]

end if
else

xAc[l] = [x1, . . . , xn, r1,1, . . . , r1,n, . . . , rl−1,n]
end if
dx′ ← dx− µdx, x′

Ac ← xAc[l]− µxAc,l

U, S, V T ← SV D(x′
Ac)

Ac = (x′
Ac)−1 × dx′ = V × S−1 × UT × dx′

a0 ← µdx − Ac × µxAc,l

A[l] = [a0, Ac], xA[l] = [1, xAc]
r[l]← dx− A[l]× xA[l]
σr[l]← std(r[l])
x[l + 1]← r[l]
R2[l] = 1− (q(r[l])2)/(q

dx2)
end for
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it← 0, iter_tot← 0
while it /= n_iter do

iter_tot← iter_tot + 1
xstep ← x[t = 1]
if l == 1 then

if eq_degree == 1 then
xA[l] = [1, xstep,1, . . . , xstep,n]

else
xA[l] = [1, xstep,1, . . . , xstep,n, x2

step,1, . . . , xstep,1xstep,n, . . . x2
step,n]

end if
else

xA[l] = [1, xstep,1, . . . , xstep,n, rstep,1,1, . . . , rstep,1,n, . . . , rstep,l−1,n]
end if
for t ∈ {1, . . . , lensim} do

sim_data[t, it + 1]← xstep[l = 1]
if xstep diverges then break

rstep[1 : n_level − 1]← xstep[2 : n_level] ∗ σr[1 : n_level − 1]
rstep[n_level]← cholesky(r[n_level]) ∗ σr[n_level] ∗ rand()
for l ∈ {1, . . . , n_level} do

xstep[l]← xstep[l] + (A[l]× xA[l] + rstep[l]) ∗ dt

end for
if l == 1 then

if eq_degree == 1 then
xA[l] = [1, xstep,1, . . . , xstep,n]

else
xA[l] = [1, xstep,1, . . . , xstep,n, x2

step,1, . . . , xstep,1xstep,n, . . . x2
step,n]

end if
else

xA[l] = [1, xstep,1, . . . , xstep,n, rstep,1,1, . . . , rstep,1,n, . . . , rstep,l−1,n]
end if

end for
if sim_data[it + 1] doesn’t diverge then

sim_data[it + 1]← sim_data[it + 1] ∗ σdata

it← it + 1
else

if iter_tot ≥ max_iter then break

end if
end while
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Chapter 4

Used Tools and Libraries

This Chapter provides an overview of the tools and libraries used during the project.
As per Chapter 3, after a brief experimentation on the MATLAB programming
language, it has been decided to move the project to Python 3. Some of the main
reasons were the popularity of the programming language and the presence of a
well developed data ecosystem. All the experiments were conducted on Jupyter
Notebooks, well known in the field of data science and machine learning.
Here follows a list of the most relevant Python libraries used in the project:

• NumPy: library for scientific computing, it provides a multidimensional array
object, derived objects (such as matrices), and methods for fast linear algebra
operations.

• pandas: library that provides high-performance data structures (Series and
DataFrame) and operations for manipulating them.

• SciPy: collection of mathematical algorithms built on NumPy.

• statsmodels: library for the estimation of many different statistical models,
as well as for conducting statistical tests, and statistical data exploration [23].

• matplotlib: library for creating static, animated, and interactive visualiza-
tions.

• seaborn: data visualization library, based on matplotlib and integrated
with pandas and NumPy, which provides a high-level interface for drawing
attractive and informative statistical graphics.

• scikit-learn: machine learning library that provides various tools to support
supervised and unsupervised learning, such as Linear Regression.
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Chapter 5

The Data

This chapter examines the datasets used during the studies on the EMR model. In
particular, it concerns a data exploration on both, followed by an analysis of their
relative common properties. Two datasets have been used for the project:

• Historical CMIP6 GHG Concentrations, containing the surface mole fractions
of 43 different greenhouse gases.

• GISS Surface Temperature Analysis (GISTEMP v4), an estimate of global
surface temperature change using temperature anomalies.

5.1 Greenhouse gases concentrations
The Historical CMIP6 GHG Concentrations dataset [24] provides measures of
atmospheric concentrations (mole fractions) of the big three greenhouse gases (CO2,
CH4, N2O), 17 ozone-depleting substances, and 23 other fluorinated compounds.
The measures were taken with dry air and reported with temporal (monthly and
annual) means, as well as regional (hemisphere and global) means. These data have
been made available by the Australian-German Climate & Energy College of the
University of Melbourne (Australia)1, with the purpose to be used in the Climate
Model Intercomparison Project - Phase 6 (CMIP6) experiments. For the sake of
simplicity, only the three main gases have been considered, analyzing their monthly
mean both on a global and hemisphere scale. Also, even if data are available from
year 0 (being them re-elaborated from real measures), the period of focus will be
on the years 1850-2014, which better represent historical data.

1Dataset available at: https://www.climatecollege.unimelb.edu.au/cmip6
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5.1.1 Data structure
Each GHG monthly mean dataset is composed of eight columns. Five of them
indicating the date of the measure with multiple formats (datetime, year, month,
day, and datenum). The remaining three are data_mean_global, data_mean_nh,
and data_mean_sh, which indicate the concentration measures respectively as
global, north-hemisphere, and south-hemisphere mean. The unity of measure for
CO2 is ppm (parts per million, corresponding to a mole fraction of µmol ∗mol−1)
while for both CH4 and N2O is ppb (parts per billion, corresponding to a mole
fraction of nmol ∗mol−1). In all three datasets, there are no missing values.

5.1.2 Data cleaning and processing
For a better interpretation and elaboration of data, the five temporal attributes are
substituted with a singular feature date, having the format of datetime64 and
indicating the first day of the month of the measure. Also, the features with the
format data_mean_xxx (with xxx indicating the spatial resolution of the measure)
have been renominated to ghg_mean_xxx (with ghg indicating the name of the
respective gas). As an example, the data_mean_global attribute of the CO2
dataset has been renominated to co2_mean_global.

5.2 Surface temperature anomalies
The GISS Surface Temperature Analysis dataset [25, 26] provides estimates of
global surface temperature change between 1881 and 2022. The dataset has been
elaborated by the Goddard Institute for Space Studies of NASA, using as input
two other datasets: NOAA GHCN v4 (from meteorological stations) and ERSST
v5 (regarding ocean areas). The analysis investigates temperature anomalies rather
than absolute temperatures, being the prior better subjects for the purpose (further
details in the Appendix B). By temperature anomalies are indicated deviations
from the normal temperature for a given location and time of year. In this case, the
normal temperature is indicated as the average over the 30 years period 1951-1980
for that place and time of year.

5.2.1 Data structure
There are three initial datasets, each one referring to a different spatial resolution:
global, northern hemisphere, and southern hemisphere. Each dataset is composed
of 142 rows (one for each year) and 19 attributes:

• 1 attribute indicating the year
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• 12 attributes (one for each month) indicating the mean temperature anomalies
value for that specific month

• 4 attributes indicating the seasonal trimesters (December-January-February,
March-April-May, June-July-August, September-October-November)

• 1 attribute indicating the mean value of the solar year (so considering from
January to December of the same year)

• 1 attribute indicating the mean value of the so-called “meteorological year”,
which considers the months between December of the previous year and
November of the year considered.

The unity of measure for all the measures is degree Celsius (°C ). The only missing
values are in the last row, indicating measures of the months in year 2022, year of
realization of this thesis. For a better analysis of the data, the year 2022 will then
not be considered.

5.2.2 Data cleaning and processing
To conform with the GHG data, only the monthly means have been considered.
Also, all the three datasets have been adjusted, in order to have one row for each
monthly measure. The three series have then been combined together. The final
result is a single dataset similar to the GHG ones, with an attribute date for the
date of the measure (the first day of the relative month) and three attributes
temp_mean_global, temp_mean_nh, and temp_mean_sh, indicating the tempera-
ture anomalies respectively as global, north-hemisphere, and south-hemisphere
mean.

5.3 Data analysis techniques
This section describes some of the techniques used in the analysis of the data series,
both in the case of the GHG dataset and the temperature anomalies dataset.

5.3.1 Fourier transform of time series
Given a time series x1, ..., xn its Discrete Fourier Transform (DFT) can be
defined as:

d(ωk) = n−1/2
nØ

t=1
xte

2πiωkt

for k = 0, 1, ..., n− 1, where the frequencies are called the Fourier or fundamental
frequencies [27]. In this way, the time-dependent function describing the time series
is transformed into a frequency-dependent function. Each of the values in the
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outcome series indicates the strength of the corresponding fundamental frequency
and they can also be remapped as the strength of specific periods (simply remapping
from the frequencies using T = 1/f). Understanding the fundamental frequencies
can help to better grasp the seasonalities present in the series (further details in the
next section). In this particular case, it has been used the fft function of numpy,
which applies a particular type of DFT called Fast Fourier Transform (FFT) [28].

5.3.2 STL decomposition
Any time series function can be divided into three core components:

• The trend T , which shows the movement of the series over a long period of
time.

• The seasonality S, which describes the presence of variations that occur at
specific regular intervals and shows a repeating short-term cycle in the series.

• The noise N , which is the remaining random variation in the series.

Considering our original time series X as an additive model, it is possible to describe
the decomposition as

X[t] = T [t] + S[t] + N [t]

with t = 1, ..., n. One of the main decomposition approaches used is called STL
(Seasonal Trend decomposition based on Loess) [29], which can be exploited
in Python 3 thanks to the stl function of statsmodels.

5.3.3 Autocorrelation and partial autocorrelation of time
series

Correlation is a statistical relationship between two random variables or, in this
particular case, between two time series. One of the most used measures for linear
correlation is the Pearson correlation coefficient which, given two random variables
X and Y , can be defined as

ρX,Y = cov(X, Y )
σXσY

where cov(X, Y ) is the covariance of X and Y and σX and σY are the standard
deviations of the two random variables. The Pearson correlation coefficient values
range between −1 and 1, with:

• ρX,Y = 1 indicating a perfect positive correlation between X and Y (when
one increases, so does the other).
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• ρX,Y = −1 indicating a perfect negative correlation between X and Y (when
one increases, the other decreases).

• ρX,Y = 0 indicating no linear dependency between X and Y .

In the case of time series it is not only possible to study the correlation between
different time series, but also between different lagged versions of a singular one
with its original. In this particular case, we talk about Autocorrelation. It is
often studied analyzing the Autocorrelation Function (ACF), which calculates the
autocorrelations in function of the lag k, taking into account also the previous lags
between 0 and k− 1. On the other hand, with the Partial Autocorrelation Function
(PACF), only the correlation with the k-lagged version is taken into account. In
this way, it is possible to better estimate the correlations between lagged versions
of the series and verify the presence of seasonalities in the data.

5.4 Data analysis results
This section reports the results of the data analysis. Some of the figures cited can
be found in Appendix C. The figures also represent the data as described in the
legend.

5.4.1 Carbon dioxide
As a first step, it is possible to plot the three time series to have a general idea
of the behavior of the data. It can be observed that the series overlap, with the
trends that tend to rise. On the other hand, when zooming on a small range of
dates it is possible to observe a variation that seems periodical and that suggests
periodicity in the time series.

In order to deepen this theory, the Fourier transforms of the series are exam-
ined. Figure 5.2 shows that the transforms of the global means and the northern
hemisphere means have similar behaviors, with comparable peaks on the same
fundamental frequencies (or periods). In particular, the most evident is the one at
period≈12, showing an annual periodicity which will be further examined later. On
the other hand, the southern hemisphere data show a particular behavior, having
the 12-months peak replaced by a smaller 6-months one.

Once established the presence of periodicities, it is possible to extract some more
information from the time series, decomposing them. For the sake of simplicity, all
three time series will be studied on cycles of 12 months. The seasonality (Figure
5.3) of the global and north-hemisphere data shows a minimum value in August
and a maximum in April. On the other hand, the southern region appears to be
more irregular, confirming the absence of a steady annual cycle. It must be noted
that the amplitude of the curve in the north-hemisphere data is far bigger than the
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Figure 5.1: CO2 concentrations evolution (top) between 1850 and 2014 and
(bottom) between 2000 and 2002.

one in the south-hemisphere data. This demonstrates a much greater contribution
of the northern region to the global CO2 cyclicity, most likely due to a greater
presence of industrially developed nations. Examining the trends (Figure C.1), all
the three time series show an increase over time, confirming the initial evaluations
of the data behavior. As evident also in the analysis of the other two gases, the
noise component (Figure C.2) presents an unusual behavior: before a certain year
(1959 in the case of CO2) the amplitude tends to be really lower than afterwards.
This is probably caused by the fact that the dataset contains older data that passed
through an elaboration, which might have been more intense.

One last thing which might be interesting to examine is the partial autocorrela-
tion of the data. From Figure C.3 it is possible to observe again the 12-months
periodicity in the behavior of the correlation, with the amplitudes which slowly
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decrease due to the growing trend.

Figure 5.2: Fourier transforms of (from left to right) global, northern hemisphere
and southern hemisphere concentrations of CO2 in function of period.

Figure 5.3: Seasonality components of (from top to bottom) global, northern
hemisphere and southern hemisphere concentrations of CO2 between 2000 and
2002.
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5.4.2 Methane

As for the CO2 analysis, the best point to start is by directly plotting the time
series (Figure 5.4). It is immediately noticeable how the three series are easily
distinguishable. The northern hemisphere data are far higher than the southern
hemisphere ones. This can be attributed once again to a greater presence of
developed nations in the north, which brings not only greater use of methane-based
heating systems but also more emissions due to intensive agriculture and farming.

Figure 5.4: CH4 concentrations evolution (top) between 1850 and 2014 and
(bottom) between 2000 and 2002.

38



5.4 – Data analysis results

By analyzing the Fourier transforms (Figure 5.5), it is possible again to confirm the
presence of a 12-months periodicity, this time also with the southern hemisphere
data. There are also other periodicities noticeable from the transformations of the
three series, above all one with period≈180 months (15 years), with high peaks in
all the three graphs.

Figure 5.5: Fourier transforms of (from left to right) global, northern hemisphere
and southern hemisphere concentrations of CH4 in function of period.

Using the 12 months period, it is possible to extract again the seasonality, the trend,
and the noise of the time series with the STL approach. The seasonality (Figure
5.6) in the global and northern hemisphere data shows similar performances, with
a minimum in July and a maximum in January. This behavior, at least in the
northern hemisphere, might be compatible with the use of methane-based heating
systems during colder periods. The southern hemisphere data show a similar
but delayed behavior, with the peaks at September-October and the minimum at
March-April. The trends, as usual, are rising (Figure C.4).
Finally, the partial autocorrelation (Figure C.4) shows again a 12-months periodic-
ity.
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Figure 5.6: Seasonality components of (from top to bottom) global, northern
hemisphere and southern hemisphere concentrations of CH4 between 2000 and
2002.
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5.4.3 Nitrous oxide
Figure 5.7 shows how, similarly to the CH4 case, the three time series are distin-
guishable, even if not as much as in the previous case. The northern hemisphere
data values are almost always higher than the southern hemisphere ones by 1 ppb.

Figure 5.7: N2O concentrations evolution (top) between 1850 and 2014 and
(bottom) between 2000 and 2002.

The Fourier transforms (Figure 5.8) don’t show many frequency peaks, but only
the usual one with period≈12 months, with all the three time series.
Applying again the STL approach over a 12 months period, the series is decomposed
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Figure 5.8: Fourier transforms of (from left to right) global, northern hemisphere
and southern hemisphere concentrations of N2O in function of period.

into seasonality, trend, and noise. This time, all three series have the maximum
seasonality value (Figure 5.9) in January. On the other hand, global and northern
hemisphere seasonalities have a minimum in August, while the southern hemisphere
one in June. The trends (Figure C.7) are all rising with the same curve, with the
northern hemisphere values slightly higher than the southern hemisphere ones, as
already shown in the first plot.

Figure 5.9: Seasonality components of (from top to bottom) global, northern
hemisphere and southern hemisphere concentrations of N2O between 2000 and
2002.

The partial autocorrelation (Figure C.9) confirms again the 12-months periodicity.
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5.4.4 Temperature anomalies
In Figure 5.10 it is possible to observe how the initial data is considerably more
variable than the GHG ones. Anyway, it is obvious that the trend is rising in all
three cases.

Figure 5.10: Temperature anomalies evolution (top) between 1881 and 2021 and
(bottom) between 2000 and 2002.

Also, the Fourier transforms of the data give significantly different results (Figure
5.11). In fact, numerous peaks are present, spread over various periods. In order
to uniform and better confront the data, also in this case the analysis will be
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conducted over a 12 months period, even if it doesn’t seem to be a particularly
relevant period compared to the others.

Figure 5.11: Fourier transforms of (from left to right) global, northern hemisphere
and southern hemisphere temperature anomalies in function of period.

Using the STL decomposition, the seasonality, trend, and noise over a 12 months
periodicity are obtained. The seasonality (Figure 5.12), from a general overview,
doesn’t seem to be constant. Anyway, a particular cycle behavior is present at the
global and northern hemisphere level: all the maximum peaks seem to be in the
months between October and March while having more stable data in the other
months. The trends of the three series (Figure C.10), even if less stable, tend to
rise, confirming the initial observation of the data. Finally, the noise seems to
correspond to a white one (Figure C.11).

The partial autocorrelation (Figure C.12) seems this time to be more variable
with respect to the lags, even with what seems to be a pattern in the alternation
of positive and negative correlations.
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Figure 5.12: Seasonality components of (from top to bottom) global, northern
hemisphere and southern hemisphere temperature anomalies between 1994 and
2002.
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5.4.5 Cross-analysis
After having studied the three GHG and the temperature anomalies data separately,
it is important to analyze the cross-correlations between them. In this particular
case, they are divided into two groups, global means and northern-southern hemi-
sphere means, confronting them using the Pearson correlation coefficient. In order
to achieve these results, the GHG and temperature anomalies datasets have been
merged, with an inner join over the dates. The new dataset have 13 attributes (one
for dates and 3 spatial means for each measure) and 1608 rows, with a temporal
range between 1881 and 2014. From a first observation of the global means data
(in Figure 5.13), the high correlation between the three GHG is immediately visible.
All three of them in fact have a coefficient greater than 0.95. On the other hand,
all three of them seem to have in any case a strong positive correlation with the
temperature anomalies, probably due to the rising trend in all four series. To gain a
deeper knowledge of the mutual relation between the data, it’s possible to confront
the correlations of the data seasonalities, obtaining them once again with the
STL decomposition. The only relevant information seems to be a strong positive
correlation between N2O and CH4 gases, suggesting similar yearly behaviors.

Figure 5.13: Correlation heatmaps of global data.

After having examined the global means, more detailed relations can be studied
using the northern and southern hemisphere means of all the data. Both the
correlations between the three gases and the gases with temperature anomalies
show to be strongly positive. A particular data that stands out is the less strong cor-
relation between CH4 levels and temperature anomalies in the northern hemisphere,
suggesting a lower contribution of the gas in the temperature rising when compared
to the others. Finally, the seasonalities study shows strong positive correlations
between the three gases behavior in the northern hemisphere, indicating similar
yearly behaviors. Also, some particular results can be found in the strong negative
correlations between the CH4 seasonality in the southern hemisphere and the other
two gases seasonalities in the northern one.
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Figure 5.14: Correlation heatmaps of hemispheres data.

Figure 5.15: Correlation heatmaps of hemispheres data (seasonalities and trends).
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Chapter 6

Empirical Model Reduction:
Experiments and Results

This chapter provides the results obtained by applying the empirical model reduction
method to various versions of the dataset described in Chapter 5. First of all, the
tuning and analysis pipeline, common to all the cases analyzed, will be presented.
The results from the singular data cases analyzed will be then discussed, verifying
the best models for each one of them. For the sake of simplicity, only the global
data of the greenhouse gases and temperature anomalies have been considered.

It is important to note that, in all the cases, the data were derived by a de-
trended version of the original one, using the STL decomposition (discussed in
Chapter 5) to calculate the trends and subtracting them from the original time
series. In this way, the system presents itself as a stochastic process, ideal for an
EMR study.

6.1 The model tuning
As presented in Chapter 3, the EMR function comes with a series of hyperparameters
(like the number of levels of the model) which are fundamental requirements in
order to determine how the algorithm should work. Clearly, varying the parameters
influences the performance and the resulting simulated data.

In machine learning, hyperparameter tuning is a well-known type of optimization
problem, where different combinations of hyperparameters are evaluated in order to
find the set which gives the most performing model. Since the EMR method works
in a similar way, it is possible to study the performance of the models realized
by varying the values of the hyperparameters. In this case, a method called grid
search has been used, by which a series of possible values for the hyperparameters
are used to train models, evaluating the best ones. The hyperparameters subject
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of study were:
• The coefficient of sub-sampling K, using as possible values 1, 3 and 6 (which

correspond to considering all the months, one for trimester and one for
semester).

• The degree of the main level equation eq_deg, considering linear (eq_deg = 1)
and quadratic (eq_deg = 2) EMR models (experiments have shown that, with
eq_deg > 2, it’s not possible to construct a stable model based on the climate
data).

• The number of levels n_level, with values between 1 and 10, studying the
dynamics of a model with up to 9 residual levels.

The length of the reconstructed data has been kept equal to the length of the
original ones (considering the sub-sampling). Also, for all the possible combinations
of hyperparameters, 10 simulations were performed.

The R2 coefficient has been chosen as the evaluation criteria. In particular, since
the model better performs if the coefficient of determination of all the components
is close to 0.5, the cases with the mean of R2 over the components close to 0.5
and the lowest standard deviation are considered as the best performing ones.
However, as shown in Appendix A, a coefficient R2 ≈ 0.5 doesn’t always bring
to a perfect representation of the data. It only indicates the optimal number of
levels needed to build a well performing model. So, in order to better evaluate the
results, some promising cases will be selected for a deeper examination, analyzing
the simulated data themselves, their autocorrelation function, and the probability
density function compared to the original ones.

6.2 Original time series
The first analysis to begin with regards the EMR models constructed using the
original time series. Except for the de-trending, no further modifications were
made.

6.2.1 Results
Table 6.1 reports the results of the model tuning using the original time series. In
particular, the mean and standard deviation values of the R2 coefficient over each
component are reported. Where indicated “x” it means that the data produced by
the model diverged during at least one of the ten simulations.

Generally, the table presents results with R2 mean near 0.5 and a really low
standard deviation. Some particular cases will be better examined in this chapter,
studying the autocorrelation and probability density function of the simulations.

50



6.2 – Original time series

It is important to observe how, increasing the value of K, decreases the maximum
number of levels accepted before a divergence. It is finally interesting to note that
the only way to build a quadratic EMR model with this dataset is through a heavy
sub-sampling, with K = 6. Even in this case, the system was able to build stable
models only with a low quantity of levels.

K = 1 K = 3 K = 6
linear quadratic linear quadratic linear quadratic

L µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2

1 0.74 0.20 x x 0.88 0.18 x x 0.90 0.16 0.91 0.15
2 0.52 0.10 x x 0.63 0.14 x x 0.72 0.17 0.54 0.04
3 0.73 0.13 x x 0.65 0.10 x x 0.56 0.10 x x
4 0.56 0.04 x x 0.57 0.07 x x 0.53 0.08 0.54 0.02
5 0.58 0.04 x x 0.63 0.08 x x x x 0.52 0.01
6 0.70 0.12 x x 0.50 0.08 x x x x x x
7 0.53 0.03 x x 0.49 0.04 x x x x x x
8 0.52 0.02 x x 0.52 0.02 x x x x x x
9 0.52 0.01 x x 0.54 0.04 x x x x x x

10 0.61 0.06 x x x x x x x x x x

Table 6.1: R2 results applying the original dataset. For each combination of
hyperparameters are reported the mean and standard deviation of the R2 values
over the four components. Results in bold indicate cases which are presented in
the following pages, the ones in italic are other interesting cases.
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Case K = 1, linear EMR, n_level = 9

This was the best case K = 1 and a linear EMR, according to the established
metrics.
It is already visible in Figure 6.1(a) how the autocorrelation function behaves
better than in the previous case, keeping a steady correlation with the greenhouse
gases and behavior with the temperature more similar to the original one. The
pdfs shown in Figure 6.1(b) better cover the value distribution of the original data.
Figure 6.2 shows how the simulated GHGs, perfectly fitting initially, manage to
keep a similar behavior over time, although increasing the standard deviation of
the data. Really peculiar is the behavior of the temperature: it perfectly overlaps
the original data for nine months, but afterwards it is not able to well represent
the data dynamics anymore.

(a) ACF (b) pdf

Figure 6.1: Autocorrelation function (a) and probability density function (b) of
the case with K = 1, linear EMR, and n_level = 9.
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Figure 6.2: Comparison between the original data and the simulation of the case
with K = 1, linear EMR, and n_level = 9. The focus periods are 1881-1883 (left)
and 2000-2002 (right).
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Case K = 3, linear EMR, n_level = 8

This case presents an acceptable mean R2 value and a really low standard deviation.
For these reasons it has been taken into account.
Except for the case of temperature anomalies, the autocorrelation functions (Figure
6.3(a)) seem to be perfectly represented. On the other hand, the probability density
functions (Figure 6.3(b)) show poor results, with all the components not well
represented.
The consequences can be seen in Figure 6.4 where the simulation doesn’t perfectly
describe the data, even if performing well initially.
In general, it is possible to agree that this case is not good as the previous one,
with n_level = 6.

(a) ACF (b) pdf

Figure 6.3: Autocorrelation function (a) and probability density function (b) of
the case with K = 3, linear EMR, and n_level = 8.
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Figure 6.4: Comparison between the original data and the simulation of the case
with K = 3, linear EMR, and n_level = 8. The focus periods are 1881-1883 (left)
and 2000-2002 (right).

55



Empirical Model Reduction: Experiments and Results

Case K = 6, linear EMR, n_level = 4

With a sub-sampling of one measure every semester, it is surely more difficult to
well represent the data. This can be already observed in Figure 6.5(a), with the
autocorrelations that slowly tend to reduce themselves increasing the lag. Also, it is
important to notice that the autocorrelation function of the temperature anomalies
is poorly represented. The probability density functions (Figure 6.5(b)) show even
worse results.
These factors are clear signs of a bad reproduction of the data. Figure 6.6 shows
how the simulated signals tend to de-correlate over time.

(a) ACF (b) pdf

Figure 6.5: Autocorrelation function (a) and probability density function (b) of
the case with K = 6, linear EMR, and n_level = 4.
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6.2 – Original time series

Figure 6.6: Comparison between the original data and the simulation of the case
with K = 6, linear EMR, and n_level = 4.
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Case K = 6, quadratic EMR, n_level = 5

Being one of the few cases with a quadratic EMR, this surely is an interesting
subject of study.
While still having a bad simulation of the values distributions, Figure 6.7(a) shows
that in this case the autocorrelation functions were perfectly represented, even with
the temperature measures.
This brings to a good simulation of the data (Figure 6.8), although with some
difficulties in maintaining it similar to the original over a long period of time.
In general, this case showed to be more promising than the linear one.

(a) ACF (b) pdf

Figure 6.7: Autocorrelation function (a) and probability density function (b) of
the case with K = 6, quadratic EMR, and n_level = 5.

58



6.2 – Original time series

Figure 6.8: Comparison between the original data and the simulation of the case
with K = 6, quadratic EMR, and n_level = 5. The focus periods are 1881-1883
(left) and 2000-2002 (right).
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6.3 Alternative versions of the original time se-
ries

One singular behavior found during the analysis of the datasets in Chapter 5 could
be seen in the noise component of the greenhouse gases time series. As shown in
Appendix C, the noises of all three components have a particular behavior: before
a certain date they show a really low amplitude, as compared to a higher one
afterwards. This peculiarity, probably caused by the re-elaboration of the data,
may have affected the performance of the EMR model. In order to establish if some
solution were necessary, three new datasets have been built from the original one.

The first one is identical to the original one, but only the period 1985-2014 is
considered. From the year 1985, in fact, the noise component has approximately a
higher amplitude for all the components. A drawback is that it is a really small
dataset, with 360 data per component against more than 1600 in the original one.

The second dataset substitutes the original noise with a uniform artificial noise
(called “noise of type 1”). It is based on four white noises (one per each component)
but with a modification. Each noise is given a standard deviation equal to the ones
of the original noise.

The third and last dataset also has an artificial noise (called “noise of type 2”).
In this case, the base is still a white noise, but it has been transformed so that its
maximum amplitude is equal to the one of the original one. Essentially, a noise
with the same amplitude as the higher part of the original one has been generated.

In the next sections, the results obtained from applying the three new datasets
will be reported in the same way as done with the original time series. To begin
with, it will be reported a general overview of the coefficients R2. Then, an in-depth
focus will be dedicated to some particular cases.
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6.3.1 Results with the time series 1985-2014
Table 6.2 presents the results obtained considering only the period between 1985
and 2014 in the EMR algorithm. It is already visible how the algorithm has
difficulties in stabilizing the model, with R2 values much higher and more variable
than the ones in the previous case.

Another piece of information is the difference in results regarding the coefficient
of sub-sampling K and the equation degree if compared to Table 6.1. For example,
quadratic EMR models are supported both with K = 1 and K = 3. This could have
been the result of the shorter time series used, having fewer chances of divergences
in a small period of time.

As done with the original dataset, some deeper examinations will be conducted,
studying the autocorrelation functions and probability density functions of the
simulated data.

K = 1 K = 3 K = 6
linear quadratic linear quadratic linear quadratic

L µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2

1 0.78 0.21 x x 0.88 0.17 x x 0.90 0.16 x x
2 0.55 0.03 x x 0.71 0.12 x x 0.83 0.16 x x
3 0.70 0.11 0.55 0.03 0.51 0.07 0.53 0.05 0.63 0.06 x x
4 0.49 0.03 0.54 0.04 0.56 0.03 0.56 0.02 0.56 0.03 x x
5 0.63 0.06 x x 0.65 0.13 0.56 0.04 0.54 0.04 x x
6 0.64 0.09 x x 0.55 0.06 0.57 0.04 0.59 0.03 x x
7 0.58 0.06 x x 0.52 0.05 0.52 0.02 0.60 0.03 x x
8 0.51 0.01 x x 0.54 0.03 0.55 0.01 0.59 0.07 x x
9 0.52 0.01 x x 0.52 0.02 0.56 0.03 0.61 0.07 x x

10 0.64 0.09 x x 0.56 0.03 0.52 0.01 0.65 0.08 x x

Table 6.2: R2 results applying the 1985-2014 dataset. For each combination of
hyperparameters are reported the mean and standard deviation of the R2 values
over the four components. Results in bold indicate cases which are presented in
the following pages, the ones in italic are other interesting cases.
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Case K = 1, linear EMR, n_level = 8

This might be the best case obtained using the current dataset.
The autocorrelation (Figure 6.9(a)) seems to be steady over time with the GHGs
components. Notwithstanding the temperature anomalies, the dynamics are finely
represented. Good results can be found even with the probability density functions
(Figure 6.9(a)).
The direct consequence is a system able to nicely simulate the base signal over
time, as shown in Figure 6.10.

(a) ACF (b) pdf

Figure 6.9: Autocorrelation function (a) and probability density function (b) of
the case with K = 1, linear EMR, and n_level = 8.
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6.3 – Alternative versions of the original time series

Figure 6.10: Comparison between the 1985-2014 dataset and the simulation of the
case with K = 1, linear EMR, and n_level = 8. The focus periods are 1985-1987
(left) and 2012-2014 (right).
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Case K = 3, linear EMR, n_level = 9

By applying a sub-sampling with K = 3 the results seem to be good.
The pdf (Figure 6.11(b)) is really precise with low variations. Also, the ACF is
able to remain similar to the base one, even for temperature signals.
The resulting simulation keeps really similar dynamics to the original one, except
with temperature. On the other hand, the simulation of this last component seems
to overlap with the original longer than in other cases.

(a) ACF (b) pdf

Figure 6.11: Autocorrelation function (a) and probability density function (b) of
the case with K = 3, linear EMR, and n_level = 9.
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Figure 6.12: Comparison between the 1985-2014 dataset and the simulation of the
case with K = 3, linear EMR, and n_level = 9. The focus periods are 1985-1987
(left) and 2012-2014 (right).
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Case K = 3, quadratic EMR, n_level = 10

Unlike the linear EMR model discussed in the last case, the quadratic model seems
not to be able to describe nicely the time series.
The autocorrelation function, shown in Figure 6.13(a), seems to deform over time
if compared to the original one. The pdfs are also not precise as in the last case.
The resulting simulation, although initially precise, deforms over time.

(a) ACF (b) pdf

Figure 6.13: Autocorrelation function (a) and probability density function (b) of
the case with K = 3, quadratic EMR, and n_level = 10.
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Figure 6.14: Comparison between the 1985-2014 dataset and the simulation of
the case with K = 3, quadratic EMR, and n_level = 10. The focus periods are
1985-1987 (left) and 2012-2014 (right).
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6.3.2 Results with the artificial noise of type 1
The application of an artificial noise of type 1 brought results surely similar to the
ones produced using the base dataset. It was impossible to build stable quadratic
models without an intensive sub-sampling. It is also interesting to note how, with
K = 1, the average R2 coefficients are fairly high. This suggests some struggles of
the algorithm into finding an optimal number of levels.

Once again, some particular cases have been selected (in bold and italic in Table
6.3) and will be examined in the following pages.

K = 1 K = 3 K = 6
linear quadratic linear quadratic linear quadratic

L µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2

1 0.74 0.17 x x 0.87 0.20 x x 0.91 0.15 0.92 0.14
2 0.47 0.08 x x 0.63 0.13 x x 0.68 0.22 x x
3 0.67 0.11 x x 0.72 0.19 x x 0.50 0.01 0.51 0.02
4 0.65 0.08 x x 0.50 0.06 x x 0.52 0.03 x x
5 0.57 0.05 x x 0.49 0.02 x x 0.51 0.00 x x
6 0.54 0.05 x x 0.52 0.02 x x x x x x
7 0.55 0.04 x x 0.52 0.02 x x 0.51 0.01 x x
8 0.59 0.09 x x 0.52 0.02 x x x x x x
9 0.61 0.11 x x x x x x x x x x

10 0.56 0.05 x x x x x x x x x x

Table 6.3: R2 results applying the dataset with artificial noise of type 1. For each
combination of hyperparameters are reported the mean and standard deviation of
the R2 values over the four components. Results in bold indicate cases which are
presented in the following pages, the ones in italic are other interesting cases.
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6.3 – Alternative versions of the original time series

Case K = 1, linear EMR, n_level = 6

Being this the best case with K = 1, it surely shows that the EMR is unable to
build linear models using the complete version of this dataset.
While the probability density functions are discrete, Figure 6.15(a) shows autocor-
relation functions which decrease over time.
The direct consequence, visible in Figure 6.16 is a model unable to stay precise in
the long term.

(a) ACF (b) pdf

Figure 6.15: Autocorrelation function (a) and probability density function (b) of
the case with K = 1, linear EMR, and n_level = 6.
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Figure 6.16: Comparison between the 1985-2014 dataset and the simulation of the
case with K = 1, linear EMR, and n_level = 6. The focus periods are 1985-1987
(left) and 2012-2014 (right).
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Case K = 3, linear EMR, n_level = 5

Applying a sub-sampling with K = 3, it is possible to see some improvements in
the signal representation.
The probability density functions are not perfect, and the ACFs show some odd
results (like the one with CH4).
Anyway, the final outcome seems to be a signal finely reproduced over time.

(a) ACF (b) pdf

Figure 6.17: Autocorrelation function (a) and probability density function (b) of
the case with K = 3, linear EMR, and n_level = 5.
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Figure 6.18: Comparison between the 1985-2014 dataset and the simulation of the
case with K = 3, linear EMR, and n_level = 5. The focus periods are 1985-1987
(left) and 2012-2014 (right).
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Case K = 6, linear EMR, n_level = 5

Using a sub-sampling even higher than the last case, the results do not seem to
improve.
The autocorrelation functions (Figure 6.19(a)) slightly decrease in amplitude over
time, and the pdfs are not able to well represent the base signal.
The resulting model shown in Figure 6.20, is unable to well represent data over
time.

(a) ACF (b) pdf

Figure 6.19: Autocorrelation function (a) and probability density function (b) of
the case with K = 6, linear EMR, and n_level = 5.
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Figure 6.20: Comparison between the 1985-2014 dataset and the simulation of the
case with K = 6, linear EMR, and n_level = 5. The focus periods are 1985-1987
(left) and 2012-2014 (right).
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6.3.3 Results with the artificial noise of type 2
Similar results to the ones obtained with the noise of type 1 have been obtained
with noise of type 2 as well. However, one major difference can be found in Table
6.4: with a high number of levels, the algorithm seems able to build quadratic
models without the necessity of sampling the time series. Moreover, the statistics
seem to reveal promising models of the data. In general, the R2 mean value seems
to be better than the ones in the previous section.

For the last time in this chapter, some relevant cases will be examined, in order
to better understand when the algorithm is able to build a well-performing model.

K = 1 K = 3 K = 6
linear quadratic linear quadratic linear quadratic

L µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2

1 0.72 0.16 x x 0.85 0.20 x x 0.89 0.17 0.90 0.16
2 0.45 0.09 x x 0.62 0.15 x x 0.68 0.21 0.53 0.07
3 0.63 0.08 x x 0.71 0.20 x x 0.50 0.06 0.53 0.02
4 0.62 0.08 x x 0.49 0.06 x x 0.52 0.02 0.50 0.01
5 0.55 0.04 x x 0.49 0.01 x x 0.51 0.01 x x
6 0.53 0.04 0.53 0.04 0.52 0.02 x x 0.51 0.01 x x
7 0.57 0.07 0.53 0.03 0.52 0.01 x x 0.50 0.00 x x
8 0.60 0.09 0.52 0.01 x x x x x x x x
9 0.61 0.11 0.51 0.01 x x x x x x x x

10 0.55 0.05 0.51 0.01 x x x x x x x x

Table 6.4: R2 results applying the dataset with artificial noise of type 2. For each
combination of hyperparameters are reported the mean and standard deviation of
the R2 values over the four components. Results in bold indicate cases which are
presented in the following pages, the ones in italic are other interesting cases.
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Case K = 1, quadratic EMR, n_level = 9

While Figure 6.21(b) shows that the case model makes a great job in simulating the
distribution of the data, it is impossible to say the same about the autocorrelation
functions. With all three GHGs, the functions reduce their amplitudes and expand
their periods over time.
In the end, the model is unable to well represent the original data, as seen in Figure
6.22.
Unfortunately, the theories elaborated while analyzing the R2 coefficients turned
out to be false.

(a) ACF (b) pdf

Figure 6.21: Autocorrelation function (a) and probability density function (b) of
the case with K = 1, quadratic EMR, and n_level = 9.
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6.3 – Alternative versions of the original time series

Figure 6.22: Comparison between the 1985-2014 dataset and the simulation of
the case with K = 1, quadratic EMR, and n_level = 9. The focus periods are
1985-1987 (left) and 2012-2014 (right).
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Case K = 3, linear EMR, n_level = 5

As usual, using a lighter sampling it is possible to have some improvements in the
models. Using this case as an example, it is possible to see in Figure 6.24 a nice
representation of the base data, even if not perfect.
It must be underlined that these results have been generated with ACFs and pdfs
not really precise, in particular looking at some of the correlation functions in
Figure 6.23(a).

(a) ACF (b) pdf

Figure 6.23: Autocorrelation function (a) and probability density function (b) of
the case with K = 3, linear EMR, and n_level = 5.
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Figure 6.24: Comparison between the 1985-2014 dataset and the simulation of the
case with K = 3, linear EMR, and n_level = 5. The focus periods are 1985-1987
(left) and 2012-2014 (right).
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Case K = 6, linear EMR, n_level = 7

While having some precise ACFs of the simulations, the main problems of this case
seem to be regarding the probability density function. In particular, the model
appears to be completely unable to describe the temperature anomalies, at least
from what is possible to observe from the functions.
Figure 6.26 confirms the theory, with temperature data completely different from
the base ones. An unexpected outcome is that the model seems to have difficulties
also representing methane data.

(a) ACF (b) pdf

Figure 6.25: Autocorrelation function (a) and probability density function (b) of
the case with K = 6, linear EMR, and n_level = 7.
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Figure 6.26: Comparison between the 1985-2014 dataset and the simulation of the
case with K = 6, linear EMR, and n_level = 7. The focus periods are 1985-1987
(left) and 2012-2014 (right).
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Case K = 6, quadratic EMR, n_level = 4

In the case of K = 6, the quadratic model seems to bring far better results than
the linear one.
While not having optimal probability density functions, Figure 6.27(a) shows a
great capacity in the representation of the autocorrelations, even in the case of
temperature anomalies.
By studying directly the data in Figure 6.28, it is possible to see that the model is
able to nicely simulate the dynamics over time, in particular regarding the ones
relative to the CO2 and CH4 components.

(a) ACF (b) pdf

Figure 6.27: Autocorrelation function (a) and probability density function (b) of
the case with K = 6, quadratic EMR, and n_level = 4.
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Figure 6.28: Comparison between the 1985-2014 dataset and the simulation of
the case with K = 6, quadratic EMR, and n_level = 4. The focus periods are
1985-1987 (left) and 2012-2014 (right).
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6.4 Final remarks
Based on the current results, the empirical model reduction methodology seems
to be suitable to reproduce the dynamics of the climate data which were used.
Having analyzed several cases using different datasets and different combinations
of hyperparameters, it is possible to report some initial observations.

To begin with, the algorithm seems to be more able in modeling data with a
marked seasonality. In many cases, the simulation of the greenhouse gas concen-
trations is more stable for a longer time. On the other hand, the temperature
anomalies seem more difficult to study: often the autocorrelation functions overlap
the original ones for only the first year, and this can be confirmed also observing
the data themselves. Due to the difficulties in reproducing it nicely, along with
the fact that often the pdf of the temperature is well represented as a gaussian
function with mean value equal to 0, it is conceivable that the algorithm classifies
the temperature data as a noise signal.

While on the subject of ACFs and pdfs, it is important to note how fine
representations of the autocorrelations are more important than a nice estimation
of the values in the data. In all the cases with a precise simulation of the original
data, was more common to have a precise autocorrelation function than a probability
density function. In general, the ACFs of the greenhouse gases have to remain
constant and don’t decrease faster than necessary. Otherwise, the model signal
amplitude might become lower and lower up to be equal to 0.

Another important observation is the relationship between the parameters K
and n_level. With lower values of K (so if the sampling is less intensive) a higher
quantity of levels is necessary in order to obtain the best results. It might be
correlated to the length of the time series: longer signals (consequences of lower
values of K) are more difficult to model, and a higher quantity of residual levels
might be useful for the purpose.

Finally, the best models were obtained with K equal to 1 and 3. Using climate
data, it is easy to see why. With K = 1 the time series consists of one measure for
each month, while with K = 3 they consist of four measures for each year: January,
April, July, and October. These four months are in the middle of the four seasonal
trimesters, so they are well suited to describe the seasons’ cycle.

6.4.1 Results with alternative versions
By applying variations in the signals used it is possible to better understand the
inner dynamics of the algorithm and the data themselves.

The resulting models perform generally better than the complete time series
when considering only the period 1985-2014. One of the reasons might probably be
that it is easier to build a model which needs to simulate a shorter signal.
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6.4 – Final remarks

Moving forward, the application of an artificial noise surely had particular effects
on the construction of models, like the possibility to build quadratic models with
K = 1. However, the results showed performances generally far lower than the
ones on the original dataset. The main hypothesis is that what was supposed to be
only a random noise component in the signal was carrying important information
for the system dynamics. It is possible that the replacement of the noise with an
artificial one might have removed these dynamics, thus bringing difficulties in the
modeling.
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Chapter 7

Linear Regression applied to
Empirical Model Reduction

The core step in the empirical model reduction method is the calculation of the
model coefficients, in order to describe the time series evolution using the equations(
EMR). In the Algorithm 1, this step is executed by resolving, for each level l, the
matrix equation:

dx[l] = A[l]× xA[l],
A[l] = dx[l]× x−1

A [l], 0 ≤ l ≤ L− 1
Of course, this is the most direct and suitable solution, but other options can be
taken into consideration.

In this chapter, some of these solutions will be evaluated. Like in Chapter
6, multiple models obtained with different combinations of hyperparameters will
be calculated. Then, some particular cases will be further examined, analyzing
the simulated data themselves, their autocorrelation function, and the probability
density function compared to the original ones.

7.1 Linear regression
Linear regression [30] is a quite simple machine learning approach. It assumes the
presence of a linear relationship between a predictor variable X and a quantitative
response Y . This linear relationship, in its simplest form, can be written as:

Y ≈ β0 + β1X

Given m observation pairs (x1, y1), . . . , (xm, ym) the objective of linear regression
is to calculate estimations β̂0 and β̂1 of the model coefficients such that

yi ≈ β̂0 + β̂1xi, i ∈ {1, . . . , m}
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In order to determine the best coefficients, it is necessary to calculate how close the
model is in predicting the observations. One of the most common way is through
the ordinary least-squares estimation, which defines the best coefficients as the
ones which minimizes the residual sum of squares between the true observations
and the estimations:

J(β̂0, β̂1) =
mØ

i=1
(yi − ŷi)2 =

mØ
i=1

(yi − β̂0 − β̂1xi)2

The function above is called cost function.
In the case of multiple predictors variables, the process is called multiple linear

regression. Since in the EMR algorithm, the model is simplified with the matrix
multiplication

fl = A[l]× xA[l], 0 ≤ l ≤ L− 1

it is possible to apply the linear regression approach in order to calculate the model
coefficients. To do this in the Python environment, it has been used the library
scikit-learn, in particular its functions relative to linear models.

7.1.1 Results using linear regression

Table 7.1 reports the results obtained using linear regression for the calculation
of the coefficients. What is easy to observe is that they are, in terms of R2

coefficient, almost identical to the original ones (Table 6.1). This shows that the
level construction was essentially the same, with some particular exceptions. The
first one is with K = 1, linear EMR, and n_level = 2, case already examined in
the previous chapter. Even having the same standard deviation, the case shows to
have a lower mean R2, closer to the optimal value 0.5. The other change is with
the quadratic EMR and K = 6: the model with 5 levels (which was the best case
with these hyperparameters using the original method) is no longer stable. Instead,
the new best case is with 3 levels, previously unstable.

As in the previous chapter, some particular cases will be closely examined, this
time also commenting on their performances with respect to their counterparts
using the original algorithm.
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7.1 – Linear regression

K = 1 K = 3 K = 6
linear quadratic linear quadratic linear quadratic

L µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2

1 0.74 0.20 x x 0.88 0.18 x x 0.90 0.16 0.91 0.15
2 0.49 0.10 x x 0.63 0.14 x x 0.72 0.17 0.54 0.04
3 0.73 0.13 x x 0.65 0.10 x x 0.56 0.10 0.51 0.02
4 0.56 0.04 x x 0.57 0.07 x x 0.53 0.08 0.54 0.02
5 0.58 0.04 x x 0.63 0.08 x x x x x x
6 0.70 0.12 x x 0.50 0.08 x x x x x x
7 0.53 0.03 x x 0.49 0.04 x x x x x x
8 0.52 0.02 x x 0.52 0.02 x x x x x x
9 0.52 0.01 x x 0.54 0.04 x x x x x x

10 0.61 0.06 x x x x x x x x x x

Table 7.1: R2 results using linear regression. For each combination of hyper-
parameters are reported the mean and standard deviation of the R2 values over
the four components. Results in bold indicate cases which are presented in the
following pages, the ones in italic are other interesting cases.
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Case K = 1, linear EMR, n_level = 9

As per the original algorithm, this was the best case with a linear EMR and K = 1.
The probability density function seems to be slightly better than the original
counterpart, having a value distribution more similar to the base data. However,
Figure 7.1(a) shows that the autocorrelation functions are far worse, with distant
mean values and higher standard deviations.
The differences in the ACFs are visible also in the data reconstruction, where the
amplitude of the simulation signal decreases over time.

(a) ACF (b) pdf

Figure 7.1: Autocorrelation function (a) and probability density function (b) of
the case using linear regression with K = 1, linear EMR, and n_level = 9.
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7.1 – Linear regression

Figure 7.2: Comparison between the original data and the simulation of the case
using linear regression with K = 1, linear EMR, and n_level = 9. The focus
periods are 1881-1883 (left) and 2000-2002 (right).
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Case K = 3, linear EMR, n_level = 6

There is not much to say about this case. The functions describing the results
are essentially the same as the one in the original algorithm, with probably just
slightly better pdfs.
The only relevant aspect might be a better representation of the temperature data,
having however also a higher standard deviation.

(a) ACF (b) pdf

Figure 7.3: Autocorrelation function (a) and probability density function (b) of
the case using linear regression with K = 3, linear EMR, and n_level = 6.
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7.1 – Linear regression

Figure 7.4: Comparison between the original data and the simulation of the case
using linear regression with K = 3, linear EMR, and n_level = 6. The focus
periods are 1881-1883 (left) and 2000-2002 (right).
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Case K = 6, quadratic EMR, n_level = 3

The results of this model have shown to be much worse than the original ones.
Figure 7.5(a) shows that the autocorrelation function of the GHGs seems to be a
bit better, with a slower reduction of the amplitude of the function. However, in
the case of temperature anomalies, the representation is much worse.
In the end, the simulated signal is not able to reproduce the base data in all the
three components, with the amplitudes of the signal that become almost linear
over time.

(a) ACF (b) pdf

Figure 7.5: Autocorrelation function (a) and probability density function (b) of
the case using linear regression with K = 6, quadratic EMR, and n_level = 3.
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Figure 7.6: Comparison between the original data and the simulation of the case
using linear regression with K = 6, quadratic EMR, and n_level = 3. The focus
periods are 1881-1883 (left) and 2000-2002 (right).
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7.2 Ridge and lasso regressions
One of the main issues which can happen during a model training is overfitting: in
this case, the model built performs too well with the training observations and brings
poor results with any test data used. In order to mitigate this problem, a process
called regularization is used. Through a reduction of the magnitude of the model
coefficients, it permits to prevent overfitting and reduces the model complexity.
Even in the case of an EMR model, which on paper is supposed to fit the original
data in the best possible way, it might be interesting to apply some regularization
techniques in the model building, thus bringing a better understanding of the
dynamics of the empirical model reduction method. A more stable model might
help to better forecast future values in the simulations.

In this section, two types of linear regression process with regularization will be
used: ridge regression and lasso regression. Both of them rely on adding a penalty
in the cost function, proportional to the model coefficients magnitude.

With a ridge regression [31], a L2 regularization is applied, adding to the cost
function a penalty equivalent to the square of the value of the coefficients.

Jr(β̂) =
mØ

i=1
(yi − ŷi)2 + α

nØ
j=0

β̂j

2

On the other hand, with a lasso regression [32], a L1 regularization is used, adding
a penalty equivalent to the absolute value of the coefficients.

Jl(β̂) =
mØ

i=1
(yi − ŷi)2 + α

nØ
j=0

---β̂j

---
The coefficient α, present in both formulas, is called the penalty term and it
determines the impact of the penalization in the regression. Multiple values of α
will be used in order to determine how the regularization might influence the final
results, while the value of K will be kept fixed to 1.

7.2.1 Results using ridge regression
Table 7.2 reports the results obtained using a ridge regression. Comparing them
with the results obtained using linear regression, is possible to distinguish them
into two categories. With small-medium α values, the R2 values have shown results
that are identical to the previous ones. However, with α = 100, which brings high
penalization in the regression, there are few changes. Above all, there are few
stable quadratic models.

In this section, the same case (linear EMR and n_level = 9) will be examined,
varying the value of alpha and comparing it to the linear regression case. Also, one
of the quadratic cases will be studied.
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α = 0.01 α = 1 α = 100
linear quadratic linear quadratic linear quadratic

L µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2

1 0.74 0.20 x x 0.74 0.20 x x 0.73 0.20 x x
2 0.49 0.10 x x 0.49 0.10 x x 0.54 0.11 0.53 0.04
3 0.73 0.13 x x 0.73 0.13 x x 0.73 0.13 x x
4 0.56 0.04 x x 0.56 0.04 x x 0.56 0.04 0.54 0.04
5 0.58 0.04 x x 0.58 0.04 x x 0.58 0.04 x x
6 0.70 0.12 x x 0.70 0.12 x x 0.70 0.12 x x
7 0.53 0.03 x x 0.53 0.03 x x 0.53 0.03 x x
8 0.52 0.02 x x 0.52 0.02 x x 0.52 0.02 x x
9 0.52 0.01 x x 0.52 0.01 x x 0.52 0.01 x x

10 0.61 0.06 x x 0.61 0.06 x x 0.61 0.06 x x

Table 7.2: R2 results using ridge regression. For each combination of hyperparam-
eters are reported the mean and standard deviation of the R2 values over the four
components. Results in bold indicate cases which are presented in the following
pages, the ones in italic are other interesting cases.
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Case α = 0.01, linear EMR, n_level = 9

This first case already shows how even a small regularization is able to bring results.
Overall, both the ACFs and the pdfs are more precise than the ones obtained
using linear regression. In particular, the autocorrelation functions (Figure 7.7(a))
are far more stable, with an amplitude more constant in time and lower standard
deviations.
Figure 7.8 shows how all these factors bring in the end to more precise simulations.

If the results are compared to their counterparts using the original algorithm
(Figures 6.1-6.2) the results are quite similar. Both the ACFs and pdfs of the
simulations seem to be better when ridge regression is used. On the other hand, by
examining directly the signals, it is possible to see that the cases perform better or
worse according to the single component.

(a) ACF (b) pdf

Figure 7.7: Autocorrelation function (a) and probability density function (b) of
the case using ridge regression with α = 0.01, linear EMR, and n_level = 9.
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Figure 7.8: Comparison between the original data and the simulation of the case
using ridge regression with α = 0.01, linear EMR, and n_level = 9. The focus
periods are 1881-1883 (left) and 2000-2002 (right).
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Case α = 1, linear EMR, n_level = 9

Increasing the penalization, the results seem to get worse even if not as bad as the
ones using just linear regression.
Both the ACFs and the pdfs have higher standard deviations. However, the model
seems to be able to simulate the data nicely.

(a) ACF (b) pdf

Figure 7.9: Autocorrelation function (a) and probability density function (b) of
the case using ridge regression with α = 1, linear EMR, and n_level = 9.
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Figure 7.10: Comparison between the original data and the simulation of the
case using ridge regression with α = 1, linear EMR, and n_level = 9. The focus
periods are 1881-1883 (left) and 2000-2002 (right).
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Case α = 100, linear EMR, n_level = 9

A further increase of the value of α, which means applying a high penalization,
brings results better than with α = 1. However, they don’t seem to be as good as
the ones with α = 0.01.
The autocorrelation functions fit well and the pdfs have just standard deviations
which are slightly bigger than the ones with α = 0.01.
Anyway, the simulations are pretty good, with just a small translation of the
periodic cycle which develops over time, as shown in Figure 7.12.

(a) ACF (b) pdf

Figure 7.11: Autocorrelation function (a) and probability density function (b) of
the case using ridge regression with α = 100, linear EMR, and n_level = 9.
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Figure 7.12: Comparison between the original data and the simulation of the
case using ridge regression with α = 100, linear EMR, and n_level = 9. The focus
periods are 1881-1883 (left) and 2000-2002 (right).
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7.2.2 Results using lasso regression
The results of Table 7.3, compared to the ones obtained using ridge regression, are
quite singular. While there are minor changes with a small value of α, applying
a higher penalization brings an odd behavior: not only the quadratic models are
present, but their R2 coefficients are identical to the ones of the linear models.
A possible hypothesis might be that the coefficients relative to the quadratic
components of the EMR equations become so small that the model is considered
almost identical to a linear one. Anyway, only by examining the cases more deeply,
it is possible to establish if there are distinctions between the cases.

In this section, as with the results of ridge regression, the cases with n_level = 9
will be examined and compared to the linear regression ones, this time by varying
both the value of α and the degree of the model. The particular case with α = 0.01,
quadratic EMR, and n_level = 4 will also be considered.

α = 0.01 α = 1 α = 100
linear quadratic linear quadratic linear quadratic

L µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2 µR2 σR2

1 0.74 0.20 x x x x x x x x x x
2 0.53 0.10 x x 0.83 0.04 0.83 0.04 0.83 0.04 0.83 0.04
3 0.73 0.13 x x 0.73 0.13 0.73 0.13 0.73 0.13 0.73 0.13
4 0.56 0.04 0.54 0.06 0.56 0.04 0.56 0.04 0.56 0.04 0.56 0.04
5 0.58 0.04 x x 0.58 0.04 0.58 0.04 0.58 0.04 0.58 0.04
6 0.70 0.12 x x 0.70 0.12 0.70 0.12 0.70 0.12 0.70 0.12
7 0.53 0.03 x x 0.53 0.03 0.53 0.03 0.53 0.03 0.53 0.03
8 0.52 0.02 x x 0.52 0.02 0.52 0.02 0.52 0.02 0.52 0.02
9 0.52 0.01 x x 0.52 0.01 0.52 0.01 0.52 0.01 0.52 0.01

10 0.61 0.06 x x 0.61 0.06 0.61 0.06 0.61 0.06 0.61 0.06

Table 7.3: R2 results using lasso regression. For each combination of hyperparam-
eters are reported the mean and standard deviation of the R2 values over the four
components. Results in bold indicate cases which are presented in the following
pages, the ones in italic are other interesting cases.
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Case α = 0.01, linear EMR, n_level = 9

Once again the results show that the presence of regularization improves the quality
of the model developed. The ACFs and the pdfs are far better than the ones
obtained with linear regression. This improvement is also visible comparing the
simulations.

This model shares similar results to the same case using ridge regression, with
precise autocorrelation functions and a nice representation of the data, even when
compared to the original model of Figure 6.1(a).

(a) ACF (b) pdf

Figure 7.13: Autocorrelation function (a) and probability density function (b) of
the case using lasso regression with α = 0.01, linear EMR, and n_level = 9.
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Figure 7.14: Comparison between the original data and the simulation of the
case using lasso regression with α = 0.01, linear EMR, and n_level = 9. The focus
periods are 1881-1883 (left) and 2000-2002 (right).
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Case α = 1, linear EMR, n_level = 9

Lasso regression shows to be unable to represent the model using medium or high
penalization, as shown in the cases here below. This is the first example.
While the ACFs seem to be really precise, the probability density functions, visible
in Figure 7.15(b), showed to be pretty poor in representing the data. The result is
a model which is unable to correctly represent the signals.

(a) ACF (b) pdf

Figure 7.15: Autocorrelation function (a) and probability density function (b) of
the case using lasso regression with α = 1, linear EMR, and n_level = 9.
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Figure 7.16: Comparison between the original data and the simulation of the
case using lasso regression with α = 1, linear EMR, and n_level = 9. The focus
periods are 1881-1883 (left) and 2000-2002 (right).
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Case α = 1, quadratic EMR, n_level = 9

This case confirms the results obtained as in Table 7.3, specifically that the quadratic
models were similar to the linear ones.
Both the ACFs and the pdfs are almost identical to the ones of the linear model.
This brings the same results in the simulation, having a poor representation of the
data.

(a) ACF (b) pdf

Figure 7.17: Autocorrelation function (a) and probability density function (b) of
the case using lasso regression with α = 1, quadratic EMR, and n_level = 9.
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Figure 7.18: Comparison between the original data and the simulation of the
case using lasso regression with α = 1, quadratic EMR, and n_level = 9. The
focus periods are 1881-1883 (left) and 2000-2002 (right).
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7.3 Final remarks
The analysis of alternative methods to calculate the model coefficients has surely
been fruitful. It was possible to see many different results varying the method
applied and the hyperparameters. The multiple linear regression was surely the
method with the worst results. In particular, the cases with K = 1 were unable to
build models as good as the ones of the original algorithm. Only the linear model
with K = 3 was able to show similar results to its counterpart.

Speaking instead about the application of regularizations, the outcomes were
surely more promising. While having almost no impact when choosing the optimal
number of levels, it was possible to see different effects in the models themselves.

The models obtained with ridge regression have been shown to obtain really
impressive results with both low and high penalizations, but having the best ones
in the first case. On the other hand, lasso regression has brought good results,
equal to the ones obtained with ridge regression, only applying a small penalization.
With values of α higher than 1, the models became all similar and inaccurate.

In the end, ridge regression has proven to be the best method among the three
analyzed in this chapter. The models were fairly the more accurate, and the best
case (α = 0.01, linear EMR, and n_level = 9) could even compete, in terms of
performances, with the counterpart built with the original algorithm.
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Chapter 8

Conclusions

The objective of this thesis project was to make an exhaustive analysis of the
empirical model reduction methodology, and in particular its application on climate
data and models. Since it represents an emerging and little discussed argument,
there was ample margin for experimentation, combining it with alternative methods
and examining the outcomes. Also, its application to climate data permitted to
better understand the dynamics involved in general circulation model and earth
system models.

An exhaustive analysis of the core concepts of climate research has been reported.
In particular, topics like the climate variability, the climate sensitivity and the
definition of climate models for simulations were discussed. The empirical model
reduction methodology has then been presented, relating the principal theory
concepts. The algorithm used has also been described, reporting the principal
parameters and the steps executed.

An exhaustive analysis on the data has been performed prior to the experiments
with the algorithm. There were four time series involved, three describing the
concentrations of the three principal greenhouse gases (CO2, CH4, and N2O) and
the last one presenting the temperature anomalies evolution over the years. Both
global and hemisphere means data were available, but only the first ones were
used for the experiments. The data exploration involved a phase of cleaning and
processing, in order to uniform all the data structures, followed by a phase of
analysis of the data properties using Fourier transforms, STL decomposition and
analysis of the partial autocorrelation functions. The results permitted to reveal a
clear distinction between the GHGs (where there was a solid annual seasonality)
and the temperature data. This might be due to the fact that the gases data,
meant to be used in an earth system model, have been processed before with
data assimilation methods. Finally, the four time series were directly compared
examining their correlations to each other and revealing a strong correlation between
the temperature and the gases concentrations and among the gases themselves.
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Conclusions

After this initial analysis, the experiments themselves were conducted with
the EMR algorithm, and various results compared as they changed with different
combinations of parameters. The same experiments were then performed with
modified versions of the dataset, in particular one using recent data and two with
artificial noise. Some of the results obtained were surely promising, with models
able to faithfully reproduce the signals. In general, linear models revealed to be the
more stable and precise than the quadratic ones, indicating a likely presence of linear
relations between the four components. However, the quadratic models were able
to better represent the data distribution, with probability density functions more
similar to the original ones. It was also possible to discover an inverse proportion
between the number of levels of the model and the coefficient of sub-sampling.
Finally, the experiments executed with the other versions of the dataset brought
further interesting results. Above all, the odd behaviours obtained using data with
artificial noise lead one to think that the original noise of the data was bringing
some fundamental information and that substituting it has brought to the deletion
of that information.

The original algorithm was then compared to alternative versions, where regres-
sions techniques were used in order to calculate the model coefficients. The linear
regression method revealed to be unusable for the intended purpose, having low
performances in all cases. On the other hand, the application of regularization
surely brought much better results. In particular, the models obtained using ridge
regression were particularly stable and able to have similar performances with the
original algorithm.

In the end, the empirical model reduction confirmed to be an approach with
great potential. Some of the models were able to simulate the original data with
precision even for long periods. However, all the results revealed major problems
with the time series regarding temperature anomalies which, in almost all the cases,
were poorly represented. Based on some information, like the fact that the pdf of
the data is similar to a Gaussian function centered in zero and the general behavior
of the data, it is conceivable that the algorithm recognized the signal as a noise
and treated it that way. In this situation it is important to reiterate that the
temperature data weren’t originally intended to be used for model construction.

8.1 Possible future improvements
There are of course many ways in which the project might be further developed,
many of them discarded for lack of time or for keeping the analysis and the report
more simple. For example, it might be interesting to consider a larger range of
possible values for the hyperparameters, such as analyzing models developed up
to 20, 30, or even 50 levels. Another possibility is to construct a model not based
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on the global evolution of the data but on the hemisphere ones, both at the same
time. There are many phenomena present in the two hemispheres which interact
with each other and surely some of them might reflect on the models. The last
example might be adding other climate data, like the mean precipitation or mean
pressure evolution, and see if the algorithm is able to catch relationships with the
other components.

As for the algorithm, it might be interesting to build other versions using
different methods to calculate the model coefficients, for example, partial least
squares regression or principal component regression. Another way might be using
neural differential equations or universal differential equations to describe one of
the levels, perhaps the main or the last one.

One potential topic is surely time series forecasting. There are already many
state-of-the-art models present, like ARIMA, and it might be interesting to compare
their performances to the one of the EMR approach.

Finally, using an EMR model as a substitute for part of a general circulation
model might help to understand how well the first one is able to work with respect
to the second one.
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Appendix A

Empirical Model Reduction
applied to a Lorenz System

The Lorenz system is a system composed of three ordinary differential equations
first studied by Edward Lorenz in 1963 [33]. The three equations (known as Lorenz
equations) define a simplified mathematical model for atmospheric convection. They
describe in particular the rate of change of three variables. The three equations
are:

dx1

dt
= σ(x2 − x1)

dx2

dt
= x1(ρ− x3)− x2

dx3

dt
= x1x2 − βx3

where x1 denotes the rate of convection, x2 the horizontal temperature variations,
and x3 the vertical temperature variations. The constants σ, ρ and β are parameters
defined as Prandtl number, Rayleigh number and a geometric factor. Using the set
of values σ = 3, ρ = 28 and β = 8/3, the Lorenz system shows chaotic behaviors,
making the system perfect to be used as example of implementing the empirical
model reduction as seen in recent publications [12, 8].
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Figure A.1: Trajectories of the Lorenz system in a three-dimensional phase space
with σ = 3, ρ = 28 and β = 8/3.
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A.1 Empirical model reduction results
Since the Lorenz equations are quadratics, it will be interesting to analyze the
system trying to build both linear and quadratic EMR models. The experiments
were conducted on a Lorenz time series of length 300000, with dt = 0.01 and
sub-sampling with K = 3, having at the end 100000 data for each component. Two
cases have been studied, one with eq_deg = 1 and one with eq_deg = 2. It has
been initially studied, for both cases, the coefficients R2 on levels up to the 10th
one, in order to find the smaller best one.

As shown in Figure A.2, the quadratic model converges to a stable form already
after 4 levels, with the best option around 6. This result is easy to imagine, due
to the quadratic nature of the Lorenz equations. On the other hand, even with
some difficulties, the linear models seem to converge, although with some more
levels. To better analyze these results, the best linear case (with 8 levels) and the
best quadratic case (with 6 levels) are compared through their autocorrelation and
probability distribution functions.

While having some similar behaviors on the first two components, the ACF
(Figure A.3) of the EMR model shows that the linear model has more difficulties
to maintain the behavior of x3 than the quadratic one, converging faster to 0.

Examining the probability distribution functions of the components (Figure A.4)
it is possible to observe that, even with some imperfections, the quadratic model is
able to better cover the value distribution of the original data.

In conclusion, the Lorenz model confirms to be better represented by a quadratic
EMR model. However, it is not able to maintain the same behavior of the original
data for long, de-correlating after a certain period of time.

Figure A.2: R2 coefficients of the linear (left) and quadratic (right) EMR model
construction.
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Figure A.3: Comparison of autocorrelation functions between original data and
linear (left) and quadratic (right) EMR simulations.

Figure A.4: Comparison of probability density functions between original data
and linear (left) and quadratic (right) EMR simulations.
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Appendix B

Temperature Anomalies

Temperature anomalies are deviations from the normal temperature for a given
location and time of year. In the GISS analysis dataset, the “normal” value always
means the average over the 30-year period 1951-1980 for the place and time of year
of the measure. Anomalies means are calculated from station anomalies and not
from the current absolute mean and the “normal period” mean for that region, but
from station temperature anomalies. It must be noted that seasonalities and trends
do not depend on the referenced period choice. If the absolute temperature in a
specific measure station is higher than a month or a year ago, so are its anomalies
regardless of the period chosen.

In general, computing absolute temperature means bringing significant difficulties
and large uncertainties [34]. Absolute temperature has significant fluctuations over
short distances, while monthly or annual temperature anomalies are able to better
represent also larger regions. In general, it has been demonstrated that temperature
anomalies are strongly correlated to distances of the order of 1000 km.
Another reason to use temperature anomalies instead of absolute temperature is
related to the use of spatial means. Just averaging the available temperatures
would give results highly dependent on the particular locations. On the GISTEMP
dataset website [26] is present an example that better represents the case.

“Assume, e.g., that a station at the bottom of a mountain sent in reports
continuously starting in 1880 and assume that a station was built near the top of
that mountain and started reporting in 1900. Since those new temperatures are
much lower than the temperatures from the station in the valley, averaging the two
temperature series would create a substantial temperature drop starting in 1900.”
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Appendix C

Data Analysis Images

C.1 Carbon dioxide

Figure C.1: Trend components of (from top to bottom) global, northern hemi-
sphere and southern hemisphere concentrations of CO2.
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Data Analysis Images

Figure C.2: Noise components of (from top to bottom) global, northern hemisphere
and southern hemisphere concentrations of CO2.

Figure C.3: Partial autocorrelation of CO2 global concentrations.
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C.2 – Methane

C.2 Methane

Figure C.4: Trend components of (from top to bottom) global, northern hemi-
sphere and southern hemisphere concentrations of CH4.

Figure C.5: Noise components of (from top to bottom) global, northern hemisphere
and southern hemisphere concentrations of CH4.
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Data Analysis Images

Figure C.6: Partial autocorrelation of CH4 global concentrations.
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C.3 – Nitrous oxide

C.3 Nitrous oxide

Figure C.7: Trend components of (from top to bottom) global, northern hemi-
sphere and southern hemisphere concentrations of N2O.

Figure C.8: Noise components of (from top to bottom) global, northern hemisphere
and southern hemisphere concentrations of N2O.
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Data Analysis Images

Figure C.9: Partial autocorrelation of N2O global concentrations.
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C.4 – Temperature anomalies

C.4 Temperature anomalies

Figure C.10: Trend components of (from top to bottom) global, northern hemi-
sphere and southern hemisphere temperature anomalies.

Figure C.11: Noise components of (from top to bottom) global, northern hemi-
sphere and southern hemisphere temperature anomalies.

129



Data Analysis Images

Figure C.12: Partial autocorrelation of global temperature anomalies.
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