
POLITECNICO DI TORINO
Master’s Degree in Communication and Computer

Networks Engineering

Master’s Degree Thesis

Assessment of an open-source mobile
network framework for implementing

Network Slicing

Academic and Company Supervisors

Prof. Claudio Ettore CASETTI

Daniele BREVI

Edoardo BONETTO

Candidate

Giulia BERNARDI

2021-2022

Abstract

With the evolution of wireless communication systems, fitting different scenarios
with the same physical network infrastructure became infeasible and inefficient,
especially with the increasing demand for services and applications. Furthermore,
the typical usage scenarios, such as eMBB, URLLC, and mMTC, require more and
more divergent needs in terms of bandwidth, latency, and reliability. Hence, to
fulfill the market requests, network programmability and virtualization become
fundamental. A key enabler for network customization is Network Slicing (NS),
which allows overlaying the physical infrastructure with multiple virtual networks
and sharing resources efficiently. Therefore, the thesis deals with the inspection of
Network Slicing capabilities through an open-source testbed, deploying a small-scale
mobile network to simulate a typical situation, where eMBB and URLLC services
take place at the same time and share the infrastructure. A cost-efficient way of
testing solutions and exploring new ideas is by deploying open-source testbeds with
functionalities close to real networks. However, despite the numerous proposals
pushed by the industry and academia world, many of them are not easily accessible.
Aiming to find the most suitable testing environment, the initial part of the thesis
deals with a survey of the principal state-of-the-art open-source frameworks which
enable NS. However, among the several solutions, Mosaic5G ecosystem appears to
be the most attractive in terms of openness, flexibility, stage of completion, and
easy interaction. Therefore, the thesis focuses on Mosaic5G framework capabilities,
especially for resource management in RAN segment. Through the testbed deployed,
it has been possible to simulate a mobile network, instantiate network slices
and manage their life cycle according to dynamic consumer needs. Network
performances have been evaluated in different situations, i.e. different numbers
of Users Equipment, scheduling algorithms, or channel conditions, analyzing the
benefits achieved by introducing slicing in the RAN domain. Experimental results
verified the effectiveness of the network slicing approach to satisfy QoS requirements,
especially in reducing URLLC latency. Finally, some policies have been deployed
to help the automation of the slice management process, aiming to reconfigure the
resources on-the-fly and on demand. Mosaic5G resulted to be a powerful tool to
quickly deploy small-scale testbeds for prototyping mobile networks supporting
RAN slicing, testing use-case scenarios, and developing customized applications.

i

Table of Contents

List of Tables v

List of Figures vi

Acronyms ix

1 Introduction 1

2 Network Slicing 5
2.1 Cellular networks: an overview . 5
2.2 Network Slicing . 7

2.2.1 Network Slicing use-cases 11

3 Open-source software for Network Slicing 13
3.1 Indicators: how to choose . 14
3.2 Open-source testbed: projects description 15

3.2.1 Mosaic5G . 16
3.2.2 5GIIK . 18
3.2.3 POSENS . 19
3.2.4 M-CORD . 20
3.2.5 CANONICAL . 21
3.2.6 5G Tactile Internet platform (SEMIoTICS) 22

3.3 Conclusions . 23

4 Overview of Mosaic5G architecture 25
4.1 OpenAirInterface . 28

4.1.1 Description of OAI-RAN features 29
4.1.2 Description of OAI-CN features 30

4.2 FlexRAN . 32
4.2.1 Description of FlexRAN features 33
4.2.2 Software implementation characteristics 34

iii

5 Description of testbed deployment 35
5.1 Core Network . 36
5.2 Radio Access Network . 38
5.3 User Equipment . 40
5.4 FlexRAN . 42

5.4.1 Initialization . 42
5.5 Slice creation . 43

5.5.1 Physical Resource Block . 45
5.5.2 Slicing Scheduler . 49

5.6 Slice orchestration . 51
5.7 UE association . 52
5.8 Monitoring applications . 52

5.8.1 Drone . 53
5.8.2 Statistics and reports . 54

6 Simulations and results 57
6.1 SWOT analysis of Mosaic5G framework 59

6.1.1 Strengths and Weaknesses 60
6.1.2 Opportunities and Threats 61

6.2 Description of configuration parameters 62
6.3 Impact of slicing with Round Robin 64

6.3.1 Analysis of slice occupancy 65
6.3.2 Analysis with different number of UEs 73
6.3.3 Analysis with different percentage of URLLC users 74

6.4 Impact of different scheduling algorithms 75
6.5 Particular case: URLLC UE receives intermittently data 80
6.6 Policy implementation . 83

7 Conclusions 86
7.1 Future works . 88

Bibliography 89

iv

List of Tables

5.1 Resource Allocation Type 0 . 48

6.1 Configuration parameters in a nutshell. 63
6.2 Average Round Trip Time with NS configuration 1 67
6.3 Average Standard Deviation with NS configuration 1 67
6.4 Average Round Trip Time with NS configuration 2 68
6.5 Average Standard Deviation with NS configuration 2 68
6.6 Average Round Trip Time with NS configuration 3 70
6.7 Average Standard Deviation with NS configuration 3 70
6.8 Average Round Trip Time with different numbers of UEs. 73
6.9 Average Standard Deviation with different numbers of UEs. 74
6.10 Average Round Trip Time varying URLLC UEs 75
6.11 Average Standard Deviation varying URLLC UEs 75
6.12 Throughput and losses comparison among schedulers. 77
6.13 Schedulers comparison: average Round Trip Time 78
6.14 Schedulers comparison: average Standard Deviation 78

v

List of Figures

2.1 Cellular network architecture. 6
2.2 Network Slicing over a common physical architecture [3]. 7
2.3 NS multi-tenancy architecture [4]. 8
2.4 RAN architectural options for NS [6]. 9
2.5 Use cases . 11

3.1 Criteria for testbed evaluation [8]. 14
3.2 Comparison of small-scale testbed for network slicing. 16
3.3 Mosaic5G architecture [9]. 17
3.4 5GIIK architecture [2]. 19
3.5 Design of POSENS architecture [6]. 20
3.6 M-CORD architecture [11]. 21
3.7 CANONICAL architecture. 21
3.8 SEMIoTICS architecture: framework layers [15]. 23

4.1 LTE Cellular network. 26
4.2 RAN protocols UP. 27
4.3 RAN protocols CP. 27
4.4 OpenAirInterface Block diagram [17]. 28
4.5 FlexRAN architecture. 33

5.1 Testbed set-up. 36
5.2 Architecture model with CUPS for a combined SGW/PGW [20]. . . 36
5.3 Block-scheme testbed architecture. 37
5.4 LTE Resource Block structure in time and frequency domain. . . . 46
5.5 Bandwidth and RBs . 47
5.6 LTE FDD frame . 47
5.7 Drone Application . 54

6.1 SWOT analysis of Mosaic5G testbed. 59
6.2 Down Link Channel Resource Blocks 65
6.3 Without NS . 71

vi

6.4 With NS config. 2 . 71
6.5 Slice overfilled. 72
6.6 RTT trend with MT: before and after slicing application. 79
6.7 Common shared channel. 81
6.8 Slice isolation. 81
6.9 CQI case: without NS . 82
6.10 CQI case: with NS . 82
6.11 RTT in absence of policy. 84
6.12 RTT when policy is applied. 85

vii

Acronyms

IoT
Internet of Things

V2N
Vehicle-to-Network

SP
Service Provider

NS
Network Slicing

EPC
Evolved Packet Core

RAN
Radio Access Network

UE
User Equipment

CN
Core Network

E2E
End-to-End

LTE
Long Term Evolution

ix

OAI
Open Air Interface

QoS
Quality of Service

SDR
Sofrtware-Defined Radio

BTS
Base Transceiver Station

URLLC
Ultra-Reliable Low Latency Communication

eMBB
enhance Mobile Broadband

mMTC
massive Machine Type Communications

CQI
Channel Quality Indicator

RR
Round Robin

PF
Proportional Fair

MT
Maximum Throughput

RTT
Round Trip Time

DP
Data Plane

x

CP
Control Plane

SDN
Software Defined Network

VIM
Virtualized Infrastructure Manger

VNFM
VNF Manager

NFVO
NFV Orchestrator

CUPS
Control and User Plane Separation

PLMN
Public Land Mobile Network Identifier

MCC
Mobile Country Code

MNC
Mobile Network Code

GUMMEI
Globally Unique MME Identity

TAI
Tracking Area Identity

GUTI
Globally Unique Temporary Identity

nFAPI
Functional Application Platform Interface

xi

PGW
The Packet Gateway

SGW
Service Gateway

MME
Mobility Management Entity

HSS
Home Subscription Server

PDN
Packet Data Networks

E-UTRAN
Evolved UMTS Terrestrial Radio Access Network

PDCP
Packet Data Convergence Protocol

RRC
Radio Resource Control

SO
Slice Orchestrator

RB
Resource Block

RBG
Resource Block Group

RAT
Radio Access Technology

NAS
Non Access Stratum Protocols

xii

RLC
Radio Link Control

MAC
Medium Access Layer

FDD
Frequency Division Duplex

TTI
Transmission Time Interval

xiii

Chapter 1

Introduction

The rapid expansion of cellular networks driven by the exponential growth of
devices number led to spiraling demand for resources difficult to sustain. New
generations of cellular networks arise with the target of supporting denser networks
through their enhancements, although, even more frequently the demand exceeds
the real capacity, which has physical limits. Furthermore, the increasing number
of applications realized to support verticals, such as e-Health, Internet of Things
(IoT), Vehicle-to-Network (V2N), or Green Networking, require customized services
according to the Quality of Service (QoS) requirements of each scenario.

The purpose of offering a different level of services to the users requires the
Service Provider (SP) an on-the-fly programmable platform able to handle the
resources dynamically.
One of the key features enabling flexibility and resource management is Network
Slicing (NS). It allows the SP to supply customized services, providing the number
of resources necessary to satisfy QoS requirements.
Therefore, in such an enhanced and innovative mobile network scenario, arises
the necessity of finding the most efficient way of sharing the resources among the
different services.
In this context, the aim of the thesis deals with the analysis of the network
performances when exploiting an open-source platform supporting Network Slicing
management. Therefore, the early stage of the investigation researches for the
optimal open-source testbed supporting resource control among the currently
available state-of-the-art small-scale projects.

To analyze the effects of resource management in a mobile network, a small-scale
testbed has been deployed. The current landscape of open-source software sup-
porting network slicing includes numerous projects but is difficult to use. Aiming
to find the best option to build the testing environment for the analysis, the
initial part of the thesis investigates the principal open-source frameworks which

1

Introduction

enable end-to-end (E2E) NS. Hence, considering a list of indicators to evaluate the
characteristics, in Chapter 3 multiple state-of-the-art testbeds have been compared.
For its features, its easy deployment, and its maturity, the project preferred resulted
to be Mosaic5G, an ecosystem for building agile 4G/5G Service Platforms.
As it will be explained in Chapter 4, Mosaic5G is the result of a community-led
consortium that created an open-source project integrating multiple platforms,
such as OAI RAN and CN with FlexRAN, Store or ll-MEC.

During the deployment of the testbed, some difficulties have been encountered.
Despite the attractive characteristics described in documents and websites, the
real stage of completion of the software was immature to allow the development of
a complete 5G network supporting NS management E2E. Frameworks enabling
slicing to 5G core and RAN domain were not still released at the beginning
of the work. Therefore, the target changed according to the available software,
deploying an Long Term Evolution (LTE) network supporting NS in RAN domain.
Consequently, this work will analyze a prototype of a service-oriented RAN on top
of the OpenAirInterface and Mosaic5G platforms that brings programmability and
extensibility to the RAN with a range of network applications with the target of
intelligent slicing.
Going further, given some problems with hardware, such as the strict CPU
requirements and the expensive SDR (Software-defined radio) devices, the testbed
was built without a physical BTS (Base Transceiver Station), but leveraging on a
Layer 2 simulator.
The major benefit achieved using a simulation environment, besides the cost
reduction, is the possibility to test a larger number of users, up to 127, to analyze
the network response when densely populated.

Hence, after the deployment and configuration of CN, RAN and UEs through
L2-simulator, FlexRAN module has been built as well.
FlexRAN is an Open-source Implementation of a Flexible and Programmable
Platform for Software-Defined Radio Access Networks that allows flexible and pro-
grammable control of the underlying RAN infrastructure through the introduction
of RAN API and virtualized control functions.
The virtualized control functions can be used thanks to a set of mechanisms
designed to permit the delegation of control functions, such as schedulers and
mobility managers, from the master controller to the base stations at runtime and
the reconfiguration of their parameters on-the-fly in an easy way.
Owing to this run-time programmability, FlexRAN platform turns out to be adapt-
able to the underlying networking conditions and the specific QoS requirements.
Furthermore, it allows the application of different isolated slice configurations to
handle multiple groups of users.

2

Introduction

After making the testbed operative, the testing phase started and all the
results have been shown in Chapter 6. Firstly, it has been conducted a survey
on the Mosaic5G platform usage, understanding how to exploit the numerous
parameters affecting the testbed performances, and different combinations of
those are exploited to analyze the response of the network. Such parameters are
scheduling algorithms, size of resources associated with each slice, service type,
traffic characteristics, and number of users.
In particular, the main idea behind the simulations relies on the need of finding in-
novative solutions to enhance mobile networks for supporting autonomous vehicles.
Thus, a specific use case has been simulated, which includes URLLC (Ultra-Reliable
Low Latency Communication) and eMBB (enhanced Mobile Broadband) services
that share the bandwidth simultaneously. Especially, the experimental section is
driven by the idea of finding a way to prioritize low-latency traffic to reduce the
latency at the eNB.

The evaluation begins with a survey on Round Robin scheduler, testing its
behavior with different slice occupancy, variable number of UEs, and variable
percentage of URLLC devices, showing how and when NS affects the performances
most positively.
Going forward the analysis explores the attitude of the other scheduling algorithms
implemented by the software, such as Proportional Fair (PF) and Maximum
Throughput (MT), examining how the resources are allocated by each of them
when the UEs experience different channel conditions.
In particular, it emerges the optimal response of Proportional Fair in an eM-
BB/URLLC scenario, which prioritize the UEs with the smaller loads for its
implementation. Therefore, some further analyses have been computed to better
understand PF trends in more realistic situations, such as when URLLC users
experience a fluctuating traffic model. The results show a strong improvement to
control the undesired peaks in RTT performances.

To conclude, the last step dealt with the implementation of a policy to autom-
atize the process of resource selection on QoS requirements, such as bandwidth,
latency, etc. In particular, the policy is realized for a typical URLLC/eMBB use
case where mission-critical users download small payloads and rely on an isolated
and fixed slice, while eMBBs receive resources on demand. This approach allows
efficient exploitation of the channel bandwidth, adapting the service level to the
requirements or the status of the network.

With a broader view of the situation, smarter policies tailored to the service
needs can be implemented to reduce the waiting time of users or to improve

3

Introduction

channel utilization. In a world in which even more devices will be connected and
communication rapidly increases, the physical resource limitations become a serious
challenge. Furthermore, the numerous use cases that can be designed thanks to
the 4G/5G enhancements, require different QoS characteristics. Therefore, it is
more and more important to provide customized services sharing dynamically the
physical resource through Network Slicing.

4

Chapter 2

Network Slicing

2.1 Cellular networks: an overview

Cellular networks are high speed and capacity data communication networks for
supporting cellular devices. With the increasing expansion of cellular devices, these
networks are exploited not only for phone calls, but become the principal way of
communication for several verticals, like sensitive business transactions, e-health
emergencies, and mission-critical services.
To support the rapid evolution, the complex architectures of mobile networks
are transitioning from monolithic deployments, based on dedicated hardware and
private firmware and software, to disaggregated networks relying on open source
software running on generic SDR or “agnostic” devices. This software-based design
represents a relatively recent evolution in the context of 4G networks, while for 5G
architectures has been already considered in their early stages.

The main components of last generations cellular network architectures, are
the radio access and core network elements. Moreover, to enable dynamicity,
programmability, resource sharing and edgefication of a network, new networking
principles such as Software-defined Networking (SDN), Network Function Virtual-
ization (NFV),and Multi-access Edge Computing MEC, and Network Slicing have
been introduced [1].
The separation among Radio Access Network (RAN) and Core Network (CN)
remains unaltered both in 4G and 5G architectures, however the actual imple-
mentation and configuration of these components is different. Particularly, they
follow the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE)
and NR1 specifications for the RAN, and the Evolved Packet Core (EPC) and 5G
Core (5GC) for the CN, respectively. Multiple components of LTE EPC that have
been traditionally executed on dedicated hardware, recently have transitioned to

5

Network Slicing

software-based deployments. While as fore the 5GC, instead, has been designed
according to a service-based approach.

Figure 2.1: Cellular network architecture.

Network Function Virtualization (NFV) and Software Defined Networking (SDN)
are the architectural enablers for mobile network virtualization and programmabil-
ity, and consequently Network Slicing. More in details, SDN facilitates network
management through a softwarization approach. It allows the decoupling of Data
Plane (DP) from Control Plane (CP), centralizing network management in the
SDN controller. SDN controller applications can make use of numerous southbound
interfaces (i.e., OpenFlow etc.) to gather network state information and operate on
top of each forwarding device. NFV allows the virtualization of Network Functions
(VNFs) from hardware components, exploiting general-purpose devices. It enhances
the scalability permitting the service provider to distribute new services without
introducing new dedicated hardware devices.
Together, SDN and NFV enable dynamic network resource allocation for hetero-
geneous QoS requirements. In addiction, MEC if used in association to cloud
computing, helps to provide reduce latency of services. In parallel to these technolo-
gies, it is needed an entity which performs resource management and orchestration
efficiently, the so called Management and Network Orchestration (MANO). MANO

6

Network Slicing

is a framework which coordinates physical and virtual networking, storage and com-
pute resources. These resources are required for creating, managing and delivering
services through different slices. ETSI has standardized a NFV MANO framework
that is composed of three functional blocks connected: Virtualized Infrastructure
Manger (VIM), VNF Manager (VNFM) and NFV Orchestrator (NFVO) [2].

2.2 Network Slicing

The huge amount of data necessary to support emerging applications, has resulted
in an exponential increasing demand of resources. Such an enormous quantity,
it is sustainable only by means of a share utilization of the network, though the
division of the physical infrastructure among multiple operators according to their
allocation plans. This technique becomes helpful to reduce the Capital Expenditure
(CAPEX) and Operational Expenditure (OPEX) costs involved from the operators.

Figure 2.2: Network Slicing over a common physical architecture [3].

7

Network Slicing

The new principles of softwarization, virtualization, and resource sharing, on
which new network systems are based, allow the realization of more dynamic
and efficient networks. Such a revolution has been made possible, especially by
network slicing which is a multi-tenancy virtualization technique where network
functionalities are abstracted from hardware and software components, and are
provided to the tenants as slices. Therefore, the evolution of network sharing in
network slicing brings flexibility and dynamicity to resource allocation. Network
slicing allows associating the required amounts of physical resources to different
services, over a common physical infrastructure, simultaneously. The physical
infrastructure is shared across multiple tenants and each of them can exploit
multiple slices.

Figure 2.3: NS multi-tenancy architecture [4].

8

Network Slicing

An E2E network slice is a logical, isolated network, generated by NFs chains,
which covers all network domains (i.e. RAN, the Transport Network (TN), and
Core Network). Each network slice realizes a specific network service according to
QoS requirements, leveraging on the underlying physical common infrastructure.
And it also provides specific functionalities concerning the RAN and the core
part of the network. Each slice is associated with a specific amount of physical
resources and operates as an independent virtual network. Moreover, each tenant
has complete control of its slices, which are completely isolated from other slices
and cannot interact among them. The flexibility of this approach makes it possible
to instantiate different slices dedicated to different applications which require
sustaining multiple QoS, such as carrying different combinations of resources and
priorities at the same time.

Further, Network slicing can operate either on a common shared infrastructure,
constituted by generic hardware resources such as Network Function Virtualization
Infrastructure (NFVI), or on dedicated hardware (i.e. network elements in the
RAN). Focusing on the RAN aspects, the architectural options for RAN slicing
cited in the literature [5] are three, where from the left to the right, the slicing
depth increases. This implies that the deeper the slicing, the less the network
function (NFs) shared among tenants.

Figure 2.4: RAN architectural options for NS [6].

9

Network Slicing

Starting from option 1, the so called "slice-aware shared RAN", it allows a
complete sharing of the RAN, while each tenant is responsible for its CN. The
first solution, which can be addressed as the “basic” solution, provides the smaller
isolation across tenants, but is the option which offers the highest gains in terms of
efficiency.
Moving to option 2, it is found the "slice-specific radio bearer" configuration. In
this solution, the depth of slicing is increased along the network stack, and only
cell-specific functionality is shared: such as the physical (PHY) and medium access
control (MAC) layers in the user plane, and the radio resource control (RRC) in
the control plane.
Option 2 extends the resource isolation among tenants, to the disadvantage of the
increasing complexity at the MAC layer.
Finally, option 3 addressed as "slice-specific RAN", since all the other functionalities
are instantiated specifically for each tenant, while only the air interface is shared
among network slices. Thanks to this solution it is possible to provides the
maximum flexibility: indeed each network slice can be totally customized, down to
the PHY layer. On the other hand, the price to pay for such a freedom, is the tight
synchronization requirements between the multi-tenancy policies implemented by
a common part and the per-slice (dedicated) implementation [6].

As previously mentioned, the combination of NS in all network domains, such
as RAN, TN and CN, allows to an E2E NS system, which is a very important goal
to be achieved. Actually, NS has been well discussed in TN and CN domains, but
not RAN domain.
Sharing the scarce radio resources in the RAN segment between multiple service
providers, while guaranteeing isolation and the customization of functionalities at
the same time, it is challenging.
In the recent years, a number of architectures and slice algorithms emerged, however
the encapsulation of slices within the RAN supporting variable QoS levels results
being still an open problem.

To sum up, the benefits achieved through Network slicing are several. Each slice
can be isolated and in charge of handling a specific traffic class, allocating a different
amount of resources, as well as necessitating different security requirements. These
achievements allow service differentiation at the infrastructure level.
In addition, slicing is controlled by software components, enabling real-time and on-
demand instantiation and reconfiguration, adapting the slices to the time-varying
traffic demand.
Last but not least, it is possible to exploit the underutilized resources in the form
of network slices from the Mobile Virtual Network Operators (MVNOs), in order
to maximize resource utilization and reduce the waste [7].

10

Network Slicing

2.2.1 Network Slicing use-cases

With the rapid growth of wireless systems, it has become more evident how different
classes of services need to be supported. This is driven by business aspects where
third parties, like verticals, require network operators to customize a network on
their services.
The increasing diversity of services carried by a mobile network, expands the areas
of interest to Industry 4.0, vehicular communications, smart grid, augmented reality,
e-Health, and much more.
The complexity of several scenarios is addressed through the standardization of three
generic service types, characterized by very different QoS requirements. These,
are classified as enhanced Mobile BroadBand (eMBB), massive Machine-Type
Communications (mMTC), and Ultra-Reliable and Low-Latency Communications
(URLLC). Each of them aims to achieve performance requirements that can improve
the user experience of current services and facilitate the deployment of new services.

Figure 2.5: Use cases

11

Network Slicing

The three typical 3GPP standardized use-case are characterized as follow:

• eMBB deals with stable connections distinguished by massive data trans-
portation with high peak data rates, without strict latency requirements. It
aims to extend the data rates achieved by 4G broadband applications for
supporting existing services with better quality or allowing new high-data-rate
applications. Services that can take advantage from eMBB are cloud gaming,
augmented reality, 3D and ultra high definition (UHD) videos, etc.

• mMTC supports a massive number of Internet of Things (IoT) devices, which
are active only occasionally and send small quantities of data.

• URLLC is addressed to support low-latency transmissions of small payloads
with strong reliability coming from a limited set of terminals active intermit-
tently, typically depending on outside events. URLLC is considered one of
the most relevant enhancements introduced by new generations, indeed the
latency of a few milliseconds and the high reliability which should support
are expected to be the driving forces behind mission-critical communications,
which include services like self-driving cars and industrial automation, reliable
remote service or vehicles coordination. URLLC could represent potentially
the main enabler of several innovative applications.

12

Chapter 3

Open-source software for
Network Slicing

Slicing has become a key concept in telecommunication systems, since it affects
both the business and performance aspects. In this context, the open source
community is going through the development of different solutions to allow the
integration of slicing algorithms into the 4G and 5G ecosystem.

Besides theoretical aspects for achieving slicing and other networking targets,
research communities have followed practical approaches to evaluate the perfor-
mances of the new concepts in different scenarios. As a result, many prototypes
of system implementation of parts of the mobile network architecture have been
implemented. These are know as testbeds.
Research testbeds allow to evaluate and enhance the network performances, keeping
the deployment costs low and producing a behaviour approximatively comparable
with the real networks. Typically, testbeds can be implemented with the help
of PCs or servers, not requiring a very high amount of resources and without
specialized hardware or software.
Small-scale testbeds are important for research community, since compared with
the large-scale ones are more manageable and cheaper, and require less effort to
been deployed. Therefore, it is easier to troubleshoot and faster to resolve possible
errors.
On the other hand, the practical use cases that can be investigated in small-scale
testbeds are limited.

This chapter will survey the most relevant state-of-the-art open source testbed
designed for implementing network slicing for RAN and core.

13

Open-source software for Network Slicing

3.1 Indicators: how to choose
In order to design an exhaustive testbed able to emulate a real network, many
features should be taken into account [2].

Figure 3.1: Criteria for testbed evaluation [8].

Firstly, the network slicing testbed should support the main enabling technolo-
gies, such as SDN, NFV and cloud computing. Thanks to these functionalities, it
is possible to grant flexibility and dynamicity in the network.
Furthermore, the testbed should support dynamic monitoring capability: manage-
ment, programmability and orchestration of many network functions and services.
That is possible with the presence of the MANO entity.
Another fundamental feature that a research testbed cannot live without, is the
multi-domain support. Indeed, it should provide connectivity around all network
domains (RAN, TN, CN) in order to support network slicing E2E.
Nevertheless, network slicing can be implemented even partially, for example in
one network domain only.
An important aspect for the last network generations is the capability of multiple
tenants of exploiting the same network functionalities, simultaneously. Not simply,
but also the ability to interact and manage the cooperation with them. These

14

Open-source software for Network Slicing

competences represent the multi-tenancy environment.
To continue, the testbed should support different Radio Access Technologies (RATs):
WiFi, LTE, 5G NR should be deployed over the same platform. Such a feature is
called multi-Radio Access Technologies (multi-RAT).
Even if it is not strictly mandatory, the slicing concept should be present in all net-
work domains. In order to perform E2E slice, each slice subnet instances belonging
to a different network domain, has to be chain with the others.
In addiction, another feature essential for the testbed is the openness. Open-source
environments allow to reduce the complexity of setting up a working mobile network
in research world. Thus, an open-source platform is helpful to improve and enhance
the studies.
Others additional equipment that can be interesting in the choice of the testbed,
could be the enabling of Machine-Learning tools. These can be helpful to predict
and verify the channel behaviour in RAN domain when applying network slicing.
Accordingly, it would be possible to schedule the radio resources in an optimized
way, improving the maximization of the usage per slice [1],[8].

3.2 Open-source testbed: projects description

The prototype of a mobile network with network slicing capabilities requires multi-
ple pieces of software. Quickly summarizing them, it is found: the Radio Access
Network (RAN), the Core Network (CN) and the Management and Orchestration
(MANO) part.
The major open source solutions to realize mobile networks in software are built
on GNU Radio development suite and the Ettus Research USRP SDR platforms,
running on Linux-based devices.

As regard for the RAN part, some of the most popular software solutions to run
LTE over SDR are OpenAirlnterface (OAI), openLTE, and srsLTE.
Despite OAI-RAN experiences better performance in terms of throughput and
resource footprint, srsLTE provides a “smaller” source code that makes it easier to
customize.
While for the CN, apart from commercial solutions, the most relevant among open-
source projects are srsEPC provided by srsLTE, a lightweight CN implementation
which is released under the same license. And the CN released by OAI which
provides the same elements for an LTE EPC solution (release 10 with a subset
of release 14) and can be deployed on standard Linux-based device. OAI-CN is
released under a standard Apache v2.0 license.

15

Open-source software for Network Slicing

Figure 3.2: Comparison of small-scale testbed for network slicing.

Plenty of solutions have been pushed from the research world, although many
of them do not include all the design criteria but focus only on single aspects. The
figure below (Fig. 3.2) collects some of the most relevant projects, highlighting
their main functionalities. Among them, the most interesting solutions for our
case (i.e. the one with more features) have been selected. Therefore, the testbeds
implementing slicing and leveraging on most of the network principles to enable
flexibility and programmability will be described in detail.

3.2.1 Mosaic5G
Mosaic5G [9] is an open-source ecosystem with an infrastructure built on OAI-RAN
and OAI-CN, that enables monitoring, control, and programmability of RAN and
CN modules through north-bound APIs. Above this infrastructure there are two
platforms that provide virtualization and slicing, FlexRAN and LL-MEC. These are
the two main controller for RAN, and edge/CN domain. In addition, it introduced
an orchestration based on Juju that support network slicing.
The principal frameworks composing the Mosaic5G architecture include FlexRAN
[10], which is a programmable platform for Software Defined Radio Access Network,

16

Open-source software for Network Slicing

applying the SDN principles at the RAN domain. FlexRAN, working on OAI-RAN
infrastructure, separates the operations between control and the user plane and
allows the centralization of the control in RAN domain. The principal enablers
of this capabilities are the Real Time Controller (RIC), and the RAN runtime.
Then, ll-MEC is an open-source MEC framework for cellular systems 3GPP and
ETSI compliant. This framework combines SDN, edge-computing and abstraction
principles to provide an end-to-end platform where services are executed at the
borders of the network. The principal components are: the Edge Packet Service
(EPS) which controls the core elements through OpenFlow APIs, and the Radio
Network Information Service that interfaces the data plane with the eNBs through
FlexRAN protocol.
Basically, LL-MEC divides the CP and DP traffic at the edge and the CN domain.
That way, MEC functionality is realized. To sum up, FlexRAN and LL-MEC
combined perform SDN functionality at the RAN, at the edge and at the core
domains.

Figure 3.3: Mosaic5G architecture [9].

Furthermore, other frameworks included in Mosaic5G project are OpenStack,
Juju, and JOX, that are adopted as VIM, VNFM, and NFVO, respectively. Open-
Stack is an open source service framework, which provides service reservation and
virtualization. Furthermore, OpenStack is supported by a modular and pluggable
architecture. Juju, instead, is responsible of installation, configuration and com-
munication among services. However, it does not take the actual decisions for a
particular service, but delegates to specific services through a set of scripts named
Charms. A Charm defines the ways to install and run a service, as well as how to
fill up configuration files or react to events. Further, Juju is exploitable for a quick
and efficient deployment, configuration and integration, performing operations in a
wide area of public clouds. JOX supports the lifecycle management of a network
slice and the mobile network orchestration. Inside the JOX core, a set of services is
used to control each network slice, while support the interaction between resource

17

Open-source software for Network Slicing

and service orchestration, VNFM and VIMs simultaneously. [11]

3.2.2 5GIIK

5GIIK [2] is an open source platform which exploits OAI as Core Network, while
employs srsLTE for the RAN part. The code of srsLTE is well-structured and
easily accessible and its library is modular and to increase its performance in the
system, it utilizes single instruction multiple data operations. Moreover, it benefits
from a light implementation, and from different RF front-ends interoperability.
Both CN and RAN are cloud-based VNFs via OSM deployed on two OpenStack
platforms located in different geographical areas, enabling also cross-location. As
NFV orchestrator it relies on Open-Source MANO (OSM), developed in python and
operating on linux. OSM is one of the best in terms of compatibility with different
VIMs and for resource consumption. Moreover OSM employs Docker containers
and solutions cloud-based. Lastly, VIM is implemented by OpenStack, which is
powerful for infrastructure orchestration, scalability and resource utilization.
Furthermore, two Tenant Controllers (TC) for the whole network domains have
been integrated in order to make the design more generic. Hence, 5GIIK testbed
uses 5GEmPOWER as TC for RAN domain, which is RAT agnostic, thus can
manage the virtualized network resources of multiple radio nodes. And M-CORD
as TC for Transport Network and Core Network domains. M-CORD is a cloud
based solution built on SDN and NFV technologies that allows virtualization of
RAN functions (vRAN) and a virtualized CN (vEPC). WIth the integration of
SDN controllers (ONOS) in M-CORD architecture, it is enabled network slicing
E2E.
This testbed provides E2E network slicing by defining specific descriptors in a
hierarchical way at the VNF, network slice levels on CN and RAN domains.
Therefore, 5GIIK is a testbed architecture that grants an E2E network slicing with
MANO capability, supports multi-tenancy and multi-RATs, being at the same time
a cost-efficient design.

18

Open-source software for Network Slicing

Figure 3.4: 5GIIK architecture [2].

3.2.3 POSENS

POSENS [6], [12] is a platform which provides efficient resource management for
the creation of E2E independent and customizable slices. It is an open-source
solution that allows the creation of E2E network slices, deploying the testbed with
commodity hardware and SDR boards.
As it was shown in Chapter 2, there are three RAN architectural options for
implementing NS, each of them with its pros and cons. POSENS in its first release,
has decided to implement the first option, realizing a “slice-aware shared RAN”
solution, which aims to efficiently sharing the network resources between different
tenants.
In particular, POSENS testbed has been deployed with srsLTE as RAN part,
an open source implementation of a UE and the eNB, and OAI as CN without
any modification. A positive characteristic of POSENS is its interoperability:
the solution is able to work with any EPC implementation supporting the S1AP
protocol.
While for the MANO part, POSENS wants to provide per-slice management,
difficult to find in non-commercial world, Therefore, the project deployed its own
orchestration mechanism, exploiting a dedicated software that directly leverages
on the VIM APIs, called POSENS MANO. Moreover MANO chains different NFs
in the network layer to create network slices.

19

Open-source software for Network Slicing

Figure 3.5: Design of POSENS architecture [6].

Therefore, going deeper in POSENS implementation (Fig.3.5), it will be briefly
shown the architectural changes introduced to deploy the “slice-aware shared RAN”
solution, where slices are multiplexed and demultiplexed at the PDCP layer. This
option implies fewer changes in the eNB software implementation, which is one the
principal cause of instabilities in an SDR-based testbed. Furthermore, each slice
has its own RRC module at the UE, without requiring additional functionalities
inside the CN. On the contrary, at the eNB there is only one RRC module, able of
managing multiple non-access stratum (NAS) from different users simultaneously.
Lastly, the main feature of the solution are the “slice coalescer” modules which
can be found at the PDCP layer and above. These modules are responsible for
forwarding the control and data layer information for each slice over a common
shared channel.

3.2.4 M-CORD
This work [11], [13] focuses on the integration between OAI with the M-CORD
platform to deploy LTE network on top of Mobile Central Office Re-architected as
a Datacenter (M-CORD).

M-CORD is another option to manage the RAN and CORE softwarization of 5G
infrastructure, an open solution for 5G networks provided by the open networking
lab (ON-Lab). Several entities are integrated into M-CORD platform, which
emulate a complete network. For example, XOS performs service orchestration and
OpenStack provides the infrastructure for deploying the services via chaining VNFs.
The SDN controller is implemented by Open Network Operating System (ONOS),
that separates CP and DP functionalities. ONOS, via its Southbound Interface
(SBI), is involved in management procedures on TN. M-CORD also provides an

20

Open-source software for Network Slicing

Figure 3.6: M-CORD architecture [11].

interface (GUI) to enabling easy development, modifications and configuration of
the resources.
In particular, [13] proposes a framework which exploits M-CORD architecture
by introducing a slicing mechanism for transport network (TN) between access
and core network. This is possible through an application on top of ONOS which
creates dedicated slices and set up various flows between the access and core network
depending on the service type.

3.2.5 CANONICAL
The next testbed which is presented, is CANONICAL, a solution proposed by
Ubuntu.

Figure 3.7: CANONICAL architecture.

21

Open-source software for Network Slicing

As for the RAN part, CANONICAL relies on OpenRAN, which is a software
for disaggregated and open radio access network, running on an Ubuntu Operating
system. It provides open interfaces between components, which allows general
purpose HW and SW. The solutions can be implemented on Bare Metal, VM or
Container.
The Core Network part, instead, is based on Magma, an open and flexible solu-
tion, which provides a state-of-the-art EPC, with Federation Gateway and Access
Gateway. Magma provides to service operators an cost-effective and simple in-
frastructure to build enhanced mobile networks, and it is designed to be 3GPP
generation and RAN agnostic. However, at the time of writing the 5GC resulted
still under development.
As regard for the community, this software can relies on an active support.
Moreover, it employs Charmed Kubernetes to provide container infrastructure for
RAN and EPC and Charmed OpenStack to facilitate the deployment. MAAS
LXD and MicroK8s merged together, build a micro cloud which allows to run edge
applications as VMs, containers, bare metal and providing all Enhanced Platform
Awareness (EPA) features.

3.2.6 5G Tactile Internet platform (SEMIoTICS)

5G Tactile Internet platform [14] employed the SEMIoTICS architecture to build a
5G NFV-enabled experimental platform. That consists of open-source software,
which leverages on SEMIoTICS framework extending its capabilities with NFV,
SDN, and MEC technologies.

The SEMIoTICS architecture leverages NFV/SDN in a three-layer framework,
which consists of field, network, and backend/cloud. Each layer is composed of
devices with different characteristics compute, storage, and network characteristics.
The aim of SEMIoTICS is to create a 5G platform for providing secure and reliable
E2E services to support industrial IoT applications with a very strict latency. The
Network layer is responsible for management of the testbed virtual domain and it
chains VNFs by utilizing the SDN controller Neutron. Finally, the lower layer, Field
layer, establishes connections between sensors and actuators with the upper layers.
The communication process takes place through the exchange of messages between
virtual SDN switches in the Networking layer and IoT/IIoT gateways in Field
layer. The testbed performance has been assessed with the goal of performing E2E
slicing and dynamic sharing the bandwidth between two VNFs, one for monitoring
purposes and the other for actuating, which are the currently implemented.

22

Open-source software for Network Slicing

Figure 3.8: SEMIoTICS architecture: framework layers [15].

3.3 Conclusions

To conclude the survey about the more attractive open-source software for NS,
many proposals appear interesting and suitable for research purposes to the same
extent.
Therefore, since the potentials of each framework concerning the technical features
are more or less equivalent, other factors are taken into account. So, for instance,
how to deploy or interact with the platforms. Among the open-source projects pre-
viously described, Mosaic5G turned out to be the clearest. From a documentation
point of view, Mosaic5G seemed to be the more mature and the easier in terms
of understanding. Moreover, the platform benefits from a complete integration
between the frameworks, and thanks to the snap-based versions of the software, is
quite easy to build as well.
Mosaic5G is supported by a large and active community, offering rapid and detailed
answers for users and developers, and the website provides detailed documentation,
as well as multiple tutorials for deploying the framework or exploiting the capabili-
ties. In addition, some videos about experiments and explanations are available on

23

Open-source software for Network Slicing

the web. For these reasons Mosaic5G is the testbed preferred.

Overall, the gap between theory and practice for 5G networking is still large.
Even if Network Slicing has been acknowledged as the enabling technology to
support different QoS requirements, the documentation about practical experiments
on the use of this technology is still really poor.
Therefore, despite the good prospects perceived from the literature on Mosaic5G,
the real state of progress of the platform at the beginning of the deployment phase
was different. Most of the frameworks enabling NS in all network domains for a
5G mobile system were in delay.

24

Chapter 4

Overview of Mosaic5G
architecture

Mosaic5G is an ecosystem of open-source platforms for 4G/5G system based
on SDN, NFV and MEC. Mosaic5G is build on top of OpenAirInterface (OAI),
which is an open-source, software-based and standard-compliant mobile network
ecosystem for prototyping LTE and 5G Mobile Networks. The framework Mosaic5G
can be used as an open-source lightweight service delivery platform to deploy easily
a network testbed and explore new idea of applications.

The initial objective of the work dealt with the deployment of an E2E slicing
5G network, focusing on the analysis of slicing impact on user experience. Unfor-
tunately, as mentioned, despite the features promised by documentation, during
the implementation phase it has faced the problem of delayed implementation.
Indeed, the software to realize a 5G mobile network with NS covering all network
domains was still unavailable. In particular, it was available only the framework
for RAN slicing. For this reason, the testbed will be deployed for an LTE system,
implementing NS only in RAN domain.

In order to have a clear picture of the implementation, it will be briefly introduced
the LTE architecture describing the most important elements of 4G cellular network.

25

Overview of Mosaic5G architecture

Figure 4.1: LTE Cellular network.

As regard for EPC, the main components are: The Packet Gateway (PGW)
and Service Gateway (SGW), which are packet gateways to and from the Internet;
the Mobility Management Entity (MME), which handles handovers and the
UE connection life cycle from the core network point of view, and the Home
Subscription Server (HSS), which manages subscriptions and billing.
The EPC is divided into several virtual network functions, each of them providing
specific functionalities, and connected to each other through standardized and
open interfaces.

Deeper in EPC elements functionalities, it states that MME is the control-node
for the LTE access-network. It is responsible for control messages which are
needed to establish a connection with UEs, paging, mobility and tagging procedure,
including retransmissions.
It deals with bearer management and it decides the SGW for a UE at the initial
attach or at intra-LTE handover. Furthermore, it takes care of users authenticating
interacting with the HSS.
It includes the signaling and security features of Non Access Stratum (NAS) and it
handles the generation and allocation of temporary UEs identities as well.
MME checks the authorization of the UE to make use of the service provider’s
Public Land Mobile Network (PLMN) and enforces UE roaming restrictions. The
MME also provides the control plane function, supporting the related protocols,
for mobility between LTE and 2G/3G access networks.
The main function of the SGW, is routing and forwarding data packets and support
the mobility for the user plane among eNB or other 3GPP technologies during
handovers, as well. For idle state User Equipment, the Serving Gateway terminates
the DL transmissions and triggers paging when data arrives for the UE. Moreover,
it stores and manages UE information, and it replicates the user traffic in case of
legitimate interception.

26

Overview of Mosaic5G architecture

The PGW provides connectivity from the UE to external packet data networks
(PDNs). The same UE can have simultaneous connectivity with more than one
PDN Gateway in order to access multiple packet data networks.
The PDN Gateway is responsible for packet filtering and screening, policy enforce-
ment, charging support, lawful interception. Further, PGW acts as anchor for
handover between 3GPP and non-3GPP technologies.

The evolved Node Bases (eNBs), the base stations for LTE, is the main com-
ponents of LTE RAN, and it provides wireless connectivity to the mobile User
Equipments (UEs). The eNBs are typically implemented on dedicated hardware,
and are connected together and to core.

LTE eNB Stack is the key software element of 4G base stations, and its radio
protocol architecture, shown from Fig. 4.2 and 4.3 (from 3GPP TS 36.300 V10.12.0),
is given for the User and the Control plane.

Figure 4.2: RAN protocols UP. Figure 4.3: RAN protocols CP.

Traditionally, the LTE RAN protocol stack for the UP includes: Packet Data
Convergence Control (PDCP), Radio Link Control (RLC) and Medium Access
Layer (MAC). The main functionalities of PDCP are header compression, ci-
phering and integrity protection. RLC operates in 3 modes: Transparent Mode
(TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM). RLC Layer
is responsible for error correction through ARQ transfer of upper layer PDUs,
concatenation, segmentation and reassembly (functions performed only by AM
and UM). The TM transfers data transparently. Finally, MAC protocol deals with
resource allocation, therefore scheduling and allocating resources to multiple logical
channels. While the LTE RAN protocol stack for CP includes also Radio Resource
Control (RRC) and Non Access Stratum (NAS) Protocols. RRC is responsible
for broadcast System Information related to the NAS and AS (Access Stratum),
paging, and for establish, maintain and release an RRC connection between the UE
and E-UTRAN. It occupies also security for functions. NAS supports the mobility
of the UE, as well as the management procedures to establish and maintain IP

27

Overview of Mosaic5G architecture

connectivity between the UE and a PDN GW.

4.1 OpenAirInterface
OpenAirInterface (OAI) is an open source project developed by Eurecom, that
provides 3GPP standard compliant implementations of the main components of
4G and 5G Radio Access and Core Network. Those software run on Software
Defined Radio (SDR) card like the USRP (ETTUS Universal Software Radio
Peripheral). To sum up, OAI framework allows to establish a flexible, interoperable
and standard compliant 4G/5G network .

The main difference of OAI from other similar projects is its unique open-source
license, OAI public license v1.1, which was created by the OAI Software Alliance
(OSA) in 2017. It is a reinterpretation of Apache v2.0 License with additional
clauses, which allows the free utilization of OAI code for non-commercial and
academic research purposes.
This distribution is exploited in order to permit owners of significant patents to
contribute to the OAI source code, while keeping their licences rights.
The highlights of OAI Public Licence are the capabilities of allowing contributions
from 3GPP member companies and permitting at the same time the commercial
exploitation of the code, which is not at all possible with other open-source projects.
[16]

Figure 4.4: OpenAirInterface Block diagram [17].

The OpenAirInterface provides software-based implementations of LTE base
stations (eNBs), UEs and the EPC, compliant with LTE Release 10 standard.

28

Overview of Mosaic5G architecture

4.1.1 Description of OAI-RAN features

Hence, OAI-RAN is the software branch which implements eNBs. The source code
is written in C in order to guarantee real-time performance. Moreover, both the
eNB and UE implentations are compatible with Intelx86 architectures running the
Ubuntu Linux operating system.
As regard for the physical layer implementation of the LTE RAN, it can operate in
Frequency Division Duplexing (FDD) and Time Division Duplexing (TDD) with
5, 10 and 20 MHz channel bandwidths, which correspond to 25, 50, 100 Physical
Resource Blocks (PRBs), respectively.
The transmission modes supported are Single Input Single Output (SISO), transmit
diversity, closed-loop spatial multiplexing, Multi-user Multiple Input, Multiple
Output (MIMO and MU-MIMO), and 2 × 2 MIMO.
Moreover, Channel quality information are reported through standardized Channel
Quality Informations (CQIs) and Precoding Matrix Indicatorss (PMIs). Finally,
OAI-RAN also supports HARQ at the MAC layer.

In DL the channels supported are PSS, SSS, PBCH, PCFICH, PHICH, PDCCH,
PDSCH, PMCH, MPDCCH.
In details, OAI-RAN implements synchronization signals exploited by UEs to collect
symbol and frequency synchronization (Primary and Secondary Synchronization
Signal (PSS),(SSS)), and channels that carry information on the DL configuration
used by the eNB (Physical Broadcast Channel (PBCH)) and on the DL control
channel (Physical Control Format Indicator Channel (PCFICH)).
Moreover, OAI-RAN eNB implements as well, the Physical Downlink Control
Channel (PDCCH), carrying scheduling assignments of the UEs and DL control
information, and the Physical Downlink Shared Channel (PDSCH), which delivers
data for specific UEs. Lastly, ACKs/NACKs for the data received in UL from
the UEs are sent through the Physical Hybrid ARQ Indicator Channel (PHICH),
while broadcast and multicast services are provided through the Physical Multicast
Channel (PMCH).

Further, the UL channels supported are: PRACH, PUSCH, PUCCH, SRS and
DRS.
The Physical Random Access Channel (PRACH), which handles UEs requests to
UL allocation to the base station, and channels carrying reference signals between
UE and eNB. Data from the UEs to the eNB is carried by the Physical Uplink
Shared Channel (PUSCH), while the Physical Uplink Control Channel (PUCCH)
is used to transmit UL control information. [17].

The LTE RAN stack implements the MAC, RLC, PDCP, and RRC layers

29

Overview of Mosaic5G architecture

and provides interfaces to the Core Network with support for IPv4 and IPv6
connectivity. It is possible to find a complete documentation on all the features
supported by each protocol layer in this reference [17].
As for the MAC layer scheduling, OAI-RAN implements three algorithms: a
channel-aware proportional fairness algorithm commonly used in commercial
cellular networks, a greedy and fair Round Robin scheduling algorithms and the
last it aims to maximize the throughput.

It is possible to interface the eNB with both commercial or open source EPCs,
as well as different SDRs. Moreover, both Commercial Off-the-Shelfs (COTSs)
devices and SDRs can be used as UEs.

OAI-RAN also includes two simulation frameworks [18]. The first is the RFsim-
ulator that allows all the tests without a RF board by replacing the radio board
with a software (TCP/IP) communication. The OAI-RAN and the OAI UE can
communicate as if a RF interface was present between them, but without any
real-time clock constraints. Also MIMO is supported by the RFsimulator.
The second simulation framework is a Layer 2 simulator which implements Layer 2
and Layer 3 functionalities only, without the need to interface with any external
SDR device. Being transparent to Layer 1 procedures, this simulation environment
provides a useful tool to evaluate the performance of algorithms and protocols at
the upper-layers.
Using actual radios or even the RFsimulator does not allow testing a large number
of UEs. Therefore, the L2simulator enables the connection between OAI UE and
OAI eNB/gNB through the nFAPI interface defined by the Small Cells Forum
(SCF). By sending nFAPI messages between the eNB and OAI UE, the PHY layer
of OAI is entirely avoid. Normally these messages are sent from the MAC to PHY
layer for further processing.
The OAI L2-Simulator is a flexible tool that can be useful for many purposes,
especially testing the network with a large number of UEs.

4.1.2 Description of OAI-CN features
The other key element of an LTE network is the core which is implemented in the
OAI-CN framework.

As regard for the fundamental functions implemented from OAI-CN, are in-
cluded Network Access Control Functions, such as authentication and authorization,
admission control, policy and charging enforcement. Then, packet routing and
transfer functions, like IP header compression function and packet screening.
Further, there are Mobility Management Functions, which includes functions as

30

Overview of Mosaic5G architecture

reachability management for UE in ECM IDLE state, and security functions and
radio resource management functions as well. Finally, OAI-CN implements Network
Management Functions, such as: GTP C signaling based Load and Overload
Control, load balancing between MME instances, MME control of overload and
PDN Gateway control of overload.

Mosaic5G leverages on OAI-CN, in particular the second version (v2), which is
based on the latest OAI-CN version (develop branch), the one which implements
the Control and User plane separation (CUPS) of EPC nodes. CUPS is one of the
main novelty of 3GPP Release 14, and represents an architectural enhancement
feature that introduces the concept of separation between CP and UP of EPC
nodes, such as SGW, PGW, Traffic Detection Function (TDF).
The division of control and data plane functions of PGW and SGW into different
entities leads the service providers to gain a greater flexibility in dealing with UP
latency. That introduces a new protocol, named Packet Forwarding Control Plane
(PFCP), as the CP-UP interface standard.
CUPS is not a new concept in the wireless world and it has quickly becoming an
integral part of the 5G network development. It allows operators to separate the
EPC into a CP that can sit in a central location, while the UP can be placed closer
to the application it is supporting, to reduce latency and saves resources.
Therefore, SPGW is composed of almost 2 network functions: SPGW-C and
SPGW-U.

The SGW and PGW entities carry packets through the GPRS Tunnelling
Protocol (GTP) for both the user and the control planes. This is done done thanks
to the GPRS Tunneling Protocol User Plane (GTP-U) and the GPRS Tunneling
Protocol Control Plane (GTP-C), which exploit UDP as transport protocol.

As regard for the 3GPP interface implemented by the software, the most relevant
are:

• S1-MME: It allows the flow of S1-AP control application protocol between
E-UTRAN and MME.

• S1-U: It enables the flow of user plane data between E-UTRAN and SGW.

• S6a: It links the MME and the HSS, allowing user authentication and autho-
rization, and the transfer of user subscription.

• S10: It allows the control among different MMEs.

• S11: It is a control plane interface between MME and SGW used to manage
the Evolved Packet System (EPS).

31

Overview of Mosaic5G architecture

• SGi: It enables the connection between the PGW with the Internet.

Concerning the SW and HW requirements to deploy OAI-CN framework, the
target Operative Systems are Ubuntu 18.04 (bionic) server edition and Red Hat
Enterprise Linux 8. As for the hardware characteristics it is required a CPU x86-64
Intel/AMD, while a generic kernel is enough for Linux. Moreover, the deployment
is feasible on PC, servers, containers or Virtual Machines.

4.2 FlexRAN
Mosaic5G offers a solution to provide RAN sharing among service providers, while
guaranteeing isolation and customization. The framework is called FlexRAN [19],
[10], and it is an open-source implementation of a flexible and programmable
platform for a Software-Defined Radio Access Networks.
Software-defined radio access networking (SD-RAN) is the main enabler for RAN
slicing: it permits the decoupling of control and user plane (CP/UP) to control,
program and coordinate multiple nodes through a central controller. Up to now,
SD-RAN offered programmability only through a re-configuration of the network.
However, with a view to enabling the service-oriented vision of next generation,
it is fundamental extend the capabilities of the control plane in order to satisfy
the requirements of each service, similarly to the idea behind network function
virtualization (NFV). Furthermore, making smarter the RAN through data-driven
control.

The FlexRAN platform is constituted by two main components, the FlexRAN
Service and Control Plane and FlexRAN Application plane and it decouples the
RAN control and data planes through a new, custom-tailored southbound API.

The FlexRAN service and control plane follows a hierarchical design which
is composed of a Real-time Controller (RTC) that is connected to a number of
underlying RAN runtime, one for each RAN module. The separation among
control and data plane is supplied by RAN runtime environment which acts as an
abstraction layer with RAN module on one side and RTC and control apps on the
other side. The presence of FlexRAN protocol allows the communication between
RTC and the RAN agent embedded in runtime environment .
RAN control applications, that allow to monitor, control and coordinate the state of
RAN infrastructure, can be developed both on the top of the RAN runtime and RTC
SDK. These applications range from soft real-time application such as monitoring
through statistics reporting, to more sophisticated distributed applications which
can modify the state of the RAN in real-time, like for example the MAC scheduler.
Thanks to the software-defined RAN controller, slices can be dynamically added,
removed or modified through a slice management module in the RAN controller

32

Overview of Mosaic5G architecture

Figure 4.5: FlexRAN architecture.

agent. Furthermore, it is allowed to dynamically change parameters of a slice or its
scheduler. The controller can modify “on-the-fly” the slice scheduling algorithm in
order to fulfill all the slices’ service level agreements (SLA).

4.2.1 Description of FlexRAN features
The separation of RAN control and data plane provided by FlexRAN, leads to
several benefits, such as the reduction of the complexity when developing new
control solutions and allowing operators to open their RAN service environment to
authorized third-parties, promoting openness and innovation which can lead to
fast deployment of innovative applications and services for verticals.

The control plane is placed into a single logically centralized controller, facili-
tating the coordination between base stations and simplifying the development of
advanced control applications. Moreover, FlexRAN supports the deployment of real-
time control applications, like MAC schedulers, with very stringent time constraints.

FlexRAN offers a RAN infrastructure flexible and programmable thanks to the
introduction of RAN API and virtualized control functions, which are responsible of
BS control operations. This allows part of the system’s logic to be easily modified
by replacing or extending the corresponding function without affecting the rest of

33

Overview of Mosaic5G architecture

the system.
The virtualized control functions of FlexRAN are exploited through a set of
mechanisms of delegation of control functions from the master controller to the
BS at runtime which simplify the reconfiguration on-the-fly of parameters. This
feature makes the system very flexible and adaptable to the underlying networking
conditions and to the specific requirements of the network operator.

4.2.2 Software implementation characteristics
The FlexRAN real-time controller, the so called Master, was developed in C++
and currently supports x64 Linux systems. The implementation supports both
hard and soft real-time mode of operation to support different critical issues related
to time of applications and the requirements of the network operators and service
providers. The FlexRAN real-time controller is released under a MIT License.

The FlexRAN Runtime, the Agent, was developed in C on top of OAI LTE
open-source platform and has already been integrated to the current version of
the project. It supports execution environment for local RAN control applications.
The FlexRAN Runtime is released under OAI Public License V1.0 [19].

34

Chapter 5

Description of testbed
deployment

The proposed architecture has been deployed through the Mosaic5G architecture,
which relies on FlexRAN built above the OAI’s open network architecture. At the
moment of writing, as it has been explained in the previous chapters, Mosaic5G
ecosystem did not released yet 5GC and NR frameworks supporting slicing features.
Therefore, the testbed has been deployed with one EPC and one eNB, and the
resource control is extended only at the RAN domain. As soon as a complete 5G
open source network will be released in the future, it could be used to verify the
concept of network slicing under this architecture.

The testbed shown in Fig. 5.1 employs two Linux-based PCs equipped with
i7-8750H CPU at 4.1 GHz. These have been connected each other through an
Ethernet cable. Both the Operative Systems were running Ubuntu. More precisely,
on one PC has been implemented the LTE Core Network and on the other, the
RAN part and the Users Equipment in simulation mode (i.e. Layer 2 Simulator).
The choice of making use of a simulator instead of real Base Station (BS) and UEs,
comes from the necessity to analyse dense networks with a reasonable low budget
for hardware.
Furthermore, in the eNodeB, it has been implemented the two-level scheduler. The
eNodeB is controlled and configured through the FlexRAN protocol. The SO is run
as an application on top of the eNB controller: it allows the slice resource manager
(SRM) to ensure intra-slice traffic scheduling and the resource mapper (RM) to
assign PRBs to UEs according to the mapping provided by the SRM.

35

Description of testbed deployment

Figure 5.1: Testbed set-up.

5.1 Core Network

As for the OAI Core Network, the version exploited in this work has been the
second (OAI-CN v.2), which is based on the latest developed branch. In addiction,
OAI implements a CN such as the serving gateway (SGW) is deployed within the
PDN gateway (PGW), therefore there is no S5 and they are considered as one entity.
The main innovation introduced by the second version OAI-CN, compared with
the previous, is the CUPS (Control and User Plane Separation) implementation.
Hence, the decoupling between Control and User Plane functionalities.

Figure 5.2: Architecture model with CUPS for a combined SGW/PGW [20].

36

Description of testbed deployment

Since the presence of Layer 2 Simulator creates some problems, in order to
deploy a mobile system where users can exchange data without bypassing the LTE
network, the CN requires to be deployed on a separate host from L2 simulator.

Reviewing all the elements which compose the EPC, to instantiate a working
OAI-CN it results that the configuration of some of them have to be modified, while
others are connected with already operative loopback interfaces. In particular,
since CN and RAN modules have been deployed on different machines, after the
installation of the OAI-CN and Layer 2 Simulator frameworks, it is necessary to
modify the interfaces according to the Ethernet ones.

Figure 5.3: Block-scheme testbed architecture.

Firstly, the OAI-HSS database, which is based on Cassandra DB and employs
docker to facilitate the installation and the deployment procedure, is connected to
MME with a loopback interface already configured.
As regard MME entity, it is fundamental to modify in the related configuration file,
the interface assigned to S1-MME channel. Its IP address will be 170.16.1.70/24.
Similarly, for the S1U channel which connects SPGWU with eNB, the new IP

37

Description of testbed deployment

address will be 170.16.1.70/24.
The last interface which requires to be changed is the SGi, which links the gateway
to the Internet world with the address 10.0.0.15/24.
As prelude before, Sx, S6a, S10,S11, SGW, PGW are internal interface to the CN
branch. Hence, the addresses are the default ones, related to the internal network
and assigned to the loopback interfaces.

The testbed requires to be associated with a specific network, identified with
the Public Land Mobile Network Identifier (PLMN). PLMN is a number which
identifies a combination of wireless communication services offered by a specific
operator in a given country. A PLMN typically includes several cellular technologies
offered by a single operator within a country, generally called cellular network. A
PLMN is composed by the Mobile Country Code (MCC) and the Mobile Network
Code (MNC). The MCC is assigned by ITU, while the MNC is assigned by the
National Authority. Substantially, the MCC and MNC are used in order to uniquely
identify a mobile subscriber’s network in a specific country.
Therefore in MME module it necessary to set the proper Globally Unique MME
Identity (GUMMEI) and Tracking Area Identity (TAI) lists. GUMMEI is the
component within the Globally Unique Temporary Identity (GUTI) that uniquely
identifies the MME and TAI is the identity used to identify tracking areas. TAI is
constructed from the MCC, MNC and TAC (Tracking Area Code).
In this case study it has been exploited an MCC equal to 208 and a MNC of 95.

5.2 Radio Access Network
For testing purposes, the Radio Access Network has been deployed without a
physical SDR device, but exploiting the L2 simulator provided by OAI, which
emulates the eNB and UE.
The L2 simulator completely avoids the Physical layer of OAI by sending network
Functional Application Platform Interface (nFAPI) messages between eNB and
OAI UE. Normally, these messages are sent from the MAC to the PHY layer for
further processing. Thanks to the L2 emulator, the eNB and UEs run the full
LTE stack except the PHY layer, allowing to support a larger number of UEs for
scalability purposes, and providing a more stable setup. The snap is based on the
branch mosaic5g-oai-sim.
The nFAPI allows the functional split between the MAC and PHY functions that
enables virtualization of the MAC function. The motivation to the usage of nFAPI
is to encourage competition and innovation among suppliers of platform hardware,
platform software and application software by providing a common API around
which suppliers of each component can compete.

38

Description of testbed deployment

Moreover, the UE executable is able to "simulate" multiple UEs in order to
stimulate the scheduler in the eNB. The reasons behind the choice of using a
simulator of second layer are supporting multiple UEs.

As introduced in core section, eNB should be edited to match the network
configuration as well. Especially, it requires the configuration of two interfaces, to
MME and to SPGW. The first is S1-C is the control interface to exchange message
with MME, the latter is S1-U, a data plane interface for data packets.
Therefore, the configuration file of L2 simulator eNB (eNB.l2sim.conf), has been
modified to match the set up as follow.

Firstly, it is needed the adjustment of ipv4 in section "MME parameters",
substituting this field with MME IP-address used in Core Network.

////////// MME parameters:
mme_ip_address = (

{
ipv4 = "172.16.1.70"; //
ipv6 = "192:168:30::17";
active = "yes";
preference = "ipv4";

}
);

At eNB side, S1-MME is associated with the interface assigned to the cable,
with address 172.16.1.80/24 , the same for the S1U . Consequently, in "Network
Interfaces" section, these fields have been edited accordingly.

NETWORK_INTERFACES :
{

eNB_INTERFACE_NAME_FOR_S1_MME = "enx0000100032f0"; //
eNB_IPV4_ADDRESS_FOR_S1_MME = "172.16.1.80/24"; //
eNB_INTERFACE_NAME_FOR_S1U = "enx0000100032f0"; //
eNB_IPV4_ADDRESS_FOR_S1U = "172.16.1.80/24"; //
eNB_PORT_FOR_S1U = 2152; # Spec 2152
eNB_IPV4_ADDRESS_FOR_X2C = "127.0.16.3/24";
eNB_PORT_FOR_X2C = 36422; # Spec 36422

};

The communication among UEs and eNB in simulation environment, happens
through a tunnel created with the loopback interfaces 127.0.16.1 and 127.0.16.2

39

Description of testbed deployment

with 255.0.0.0 netmask. Therefore, in the same configuration file, in MACRLC
section, remote_s_address and local_s_address have been changed.

MACRLCs = ({
num_cc = 1;
local_s_if_name = "lo";
remote_s_address = "127.0.16.1"; //
local_s_address = "127.0.16.2"; //
local_s_portc = 50001;
remote_s_portc = 50000;
local_s_portd = 50011;
remote_s_portd = 50010;
tr_s_preference = "nfapi";
tr_n_preference = "local_RRC";

});

Also the network configuration should be properly edited to be compliant among
CN, eNB and UEs.

5.3 User Equipment
Last but not least, the UE configuration file should be edited as well. Indeed, in
ue.l2sim.conf, remote and local addresses, related to the tunnel associated with
eNB, have to be changed to match the eNB configuration.

L1s = (
{
num_cc = 1;
tr_n_preference = "nfapi";
local_n_if_name = "lo";
remote_n_address = "127.0.16.2"; //
local_n_address = "127.0.16.1"; //
local_n_portc = 50000;
remote_n_portc = 50001;
local_n_portd = 50010;
remote_n_portd = 50011;
}

);

40

Description of testbed deployment

The final purpose of deploying an EPC is to connect a 4G UEs to internet through
an eNB.
A Cellular Network has a very complicated structure and it is made up of many
different layers. In addition, the network is communicating with many different
users (UEs) at the same time. Therefore, it is needed to configure unique users
IDs which include different fields.
When "burning" a simcard, it is important to decide some parameters, such as
International Mobile Subscriber Identity (IMSI), LTE_KEY and OPC_KEY and
more.
IMSI is a number that uniquely identifies every user of a cellular network. It is
stored as a 64-bit field and is sent by the mobile device to the network. It is also
used for acquiring other details of the mobile in the home location register (HLR)
or as locally copied in the visitor location register. Going deeper, the parameters
that have to be configured are the PLMN, and the SIM details, such as MSIN,
USIM_API_K, OPC.

It should be provided a list of the known PLMNs, with the following parameters:

PLMN0: {
FULLNAME="Test network";
SHORTNAME="OAI4G";
MNC="95";
MCC="208";

};

and for each UE, its characteristics.

UE0:
{

USER: {
IMEI="356113022094149";
MANUFACTURER="EURECOM";
MODEL="LTE Android PC";
PIN="0000";

};

SIM: {
MSIN="0000000001";
USIM_API_K="8BAF473F2F8FD09487CCCBD7097C6862"
OPC="8E27B6AF0E692E750F32667A3B14605D";
MSISDN="33600000001";

};

41

Description of testbed deployment

Home PLMN Selector with Access Technology
HPLMN= "20895";

User controlled PLMN Selector with Access Technology
UCPLMN_LIST = ();

Operator PLMN List
OPLMN_LIST = ("20895");

Operator controlled PLMN Selector with Access Technology
OCPLMN_LIST = ("20895");

Forbidden plmns
FPLMN_LIST = ();

List of Equivalent HPLMNs
EHPLMN_LIST= ();

};

5.4 FlexRAN
After the deployment of CN, eNB and multiple UEs through Layer 2 Simulator, it
is required to install the RAN controller. FlexRAN Real time Controller is then
installed from the Mosaic5G builder and properly configured.

5.4.1 Initialization
In order to be able to run FlexRAN, the master controller node should be initialized
and some permissions have to be granted (see flexran.info):

$ sudo snap connect flexran:log-observe

$ sudo snap connect flexran:process-control

Then, the controller has to be enabled also in the RAN’s configuration, setting
the parameter “FLEXRAN_ENABLED” to “yes”. Moreover, also the IP address need
to be set correctly. In this study case, since the RAN controller has been deployed
on the same machine as for the RAN, the IP address is the local one.

42

Description of testbed deployment

NETWORK_CONTROLLER: {
FLEXRAN_ENABLED = "yes";
FLEXRAN_INTERFACE_NAME = "lo";
FLEXRAN_IPV4_ADDRESS = "127.0.0.1";
[...]

}

5.5 Slice creation
In order to deploy a network which allows slicing management at the RAN side, the
current testbed utilizes FlexRAN Controller. Such an application allows a flexible
and programmable control of the underlying RAN infrastructure, thanks to the
incorporation of specific APIs and the virtualization of some control functions.

One of the innovating feature that FlexRAN made it available, is the slicing
concept at the RAN side.
Through an API endpoint it is possible to create a new slice configuration and to
post it to the underlying agent, as a JSON file.
Therefore, the RAN sharing/slicing policy needs to be defined, and subsequently
sends to the controller through the REST API. This consists in creating a JSON
configuration file ran-sharing.json, defining a radio resource management policy.
The JSON file includes a set of parameters that should be specified in order to
define the slices.
Firstly, it is required to select for the Up Link or the Down Link section. Once
decided the transmission direction to operate with, the selection of the "algorithm"
filed includes "None" or "Static", as parameters. When selecting the first, only one
single slice is created, without any resource separation. There is also the possibility
to choose the algorithm followed by the entity that handles the resources, the
so-called scheduler. In "None" mode only one scheduler manages all the resources

The related JSON file created should be the following.

{
"ul": {

"algorithm": "None",
"scheduler": "Round_robin_ul"

},
"dl": {

"algorithm": "None",
"scheduler": "Round_robin_dl"

}
}

43

Description of testbed deployment

On the other hand, choosing "Static" as algorithm, allows to subdivide the
physical resources in multiple sections, each of them independent and isolated from
the other ones.

{
"ul": {

"algorithm": "Static",
"slices": [

{
"id": 0,
"label": "default",
"static": {

"posLow": 1,
"posHigh": 12

}
},
{

"id": 2,
"label": "two",
"static": {

"posLow": 13,
"posHigh": 23

}
}

]
},
"dl": {

"algorithm": "Static",
"slices": [

{
"id": 0,
"label": "default",
"static": {

"posLow": 0,
"posHigh": 5

}
},
{

"id": 2,
"label": "two",
"static": {

44

Description of testbed deployment

"posLow": 6,
"posHigh": 12

}
}

]
}

}

It is necessary to emphasize that the scheduler (within UL/DL) and the slices
parameters are mutually exclusive, since the first is applied only if no slicing
algorithm is used.
Whenever a slicing configuration is used, some parameters specifying the character-
istics of the slice have to be set.
It is notable that DownLink and Uplink slicing are completely independent from
each other. Indeed, it is possible to have just a DL slice without the corresponding
UL slice, or a large DL slice at the beginning of the RB spectrum with a small
corresponding UL slice at the end of the spectrum.

Moreover, the allocation of the Resource Block of slicing is completely free
within the boundaries of LTE (i.e. respecting some fundamental thing such as the
RBGs in DL.)
Everything is subject to the physical layer restrictions of LTE, which in particular
means that a UE still has to observe the complete bandwidth for control infor-
mation, and it is impossible to modify the actual frequency allocation, but only
resource mapping.
The current 4G MAC slicing strategies only influence, where and how MAC
resources are allocated to (groups of) users. In particular, it does not change
any physical layer parameters, because LTE does not support this. Therefore, no
matter what slicing strategy has been chosen, the duplex spacing is defined by the
bandwidth configuration, which is not related to slicing.

Although, what it is possible to change for slicing configuration is which RBs
are eligible for certain user groups and with which scheduler they will be assigned
to the users. Those are the fundamental parameters to be tuned by the SO to
change the slices accordingly with the traffic requirements.

5.5.1 Physical Resource Block
The FlexRAN Controller provides only static slicing algorithms, meaning that each
slice configured cannot be dynamically shared. The physical resources assigned

45

Description of testbed deployment

to each sub-network are isolated and uniquely exploited by the group of UEs
associated to them.
A resource block (RB) is the smallest unit of resources that can be allocated to
a user. The dimension of a RB is 180 kHz wide in frequency and 1 slot long in
time. In frequency, resource blocks is typically large 12 x 15 kHz subcarriers in an
interval of 1 slot (0.5 ms). For the majority of channels, the number of subcarriers
used per resource block is 12. In LTE the bandwidth is fixed to 180 kHz, since
each sub-carrier has 15 kHz, different from the 5G in which the sub-carrier spacing
varies.

Figure 5.4: LTE Resource Block structure in time and frequency domain.

46

Description of testbed deployment

Frequency units can be expressed in number of subcarriers or resource blocks.
The bandwidths defined by the standard are 1.4, 3, 5, 10, 15, and 20 MHz. The
table below shows how many subcarriers and resource blocks are present in each
bandwidth for Uplink and Downlink.

Figure 5.5: Bandwidth and RBs

In FDD (Frequency Division Duplex) mode, UL and DL frames are both 10 ms
long and are separated both in frequency and time.

Figure 5.6: LTE FDD frame

Resource Allocation Type specifies the modality in which the scheduler allocates
resource blocks for each transmission. Since to give the maximum flexibility of
resource block allocation, it would create too much complicated situations, LTE
standardized some resource allocation types that use predefined procedures. In
particular the resource allocation types in LTE are three: Type 0, 1, 2. The OAI
testbed uses resource allocation type 0 for slicing (i.e. bitmaps).

Resource Allocation Type 0 is the simplest way of allocation resources. First it
divides resource blocks into multiples of groups. These groups of blocks are called
Resource Block Group (RGB). The number of resource block in each group varies
depending on the system bandwidth. It means RBG size gets different depending
on the system bandwidth used. The relationship between RBS size, that is the
number of resource block in a RBG, and the system bandwidth behaves as follows.

47

Description of testbed deployment

System BW RGB size
1.4 1
3 2
5 2
10 3
15 4
20 4

Table 5.1: Resource Allocation Type 0

Therefore, since the testbed is constrained by the limits of the L2 simulator
which allows a bandwidth of 5 MHz, the experiments will be based on a system of
25 PRBs in UpLink. That corresponds, as shown in the table above, to a range of
0 to 12 RGBs in Down Link (the last RBG has only one RB).

Going into detail of slice creation, it has remarked that the allocation of RB
is one of the major parameters to be tuned to create customized portion of the
network on the same physical infrastructure. Therefore, in the JSON file for slice
configuration, the fields posLow and posHigh are numbers intended in terms of
resource block groups (RBG) in DownLink and resource block (RB) in UpLink.
Especially, posLow is the lower (inclusive) starting resource block group for a slice,
while posHigh is the upper (inclusive) starting resource block group for the same
slice. Both of them should not overlap with any other existing or new slice. Those
indexes can assume different values, according to the bandwidth considered by the
system, as shown in table 5.4
Furthermore, it is not checked that the channel bandwidth can actually accom-
modate the slice posLow=100 and posHigh=110. They are valid entry, but never
work, since LTE has a maximum bandwidth of 100 RBs.

It is also important to note that OAI reserves the first and the last 1,2 or 3
RBs, for bandwidths 25, 50 or 100 RBs, respectively, for PUCCH. PUCCH is the
Physical Uplink Control Channel and carries UpLink control information, such as
channel quality information, acknowledgements and scheduling requests.

Last but not least, with regard to the previous JSON slice configuration file,
since the L2 simulator is based on an LTE configuration of 25 RBs, and which is
not shared with other slices, that file defines two active slices with IDs 0 and 3,
each of them with roughly 50% of resources.

48

Description of testbed deployment

5.5.2 Slicing Scheduler
The other important parameter to be configured during the slice creation is the
scheduler associated to every slice. It is independent and can be different for any
sub-network. Currently, the scheduling strategies implemented and available to
testing are Round Robin, Proportional Fair, and Maximum Throughput.

Scheduling is the process of allocating resources in UL and DL for transmitting
data. A scheduler is responsible for resource blocks (RB) allocation among cellular
users according to their requests. MAC scheduling is one of the most important
function of eNB, as well as one of the most challenging due to the latency require-
ments. According to the scheduling algorithm strategies and some parameters (i.e.
information link state, number of sessions, state of the queue etc.), the scheduler
allocates the common resources to the users every transmission time interval (TTI).
Scheduling aims at optimizing radio resource utilization over time and frequency
domain in order to deliver the best possible user experience based on different
criteria. Therefore, scheduling algorithms play an important role to guarantee
quality of service (QoS) parameters in wireless links.

In the RAN standard there is not a specific scheduling algorithm. Since the access
network has the challenging role of dealing with real-time radio resource allocation
serving different users with diverse requirements, the algorithm implementation is
standardized but depends on network requirements.

Another major contributor is the CQI (Channel Quality Indicator) reported by
every UE, which is very helping for the eNB to estimate the Downlink channel
quality.
Therefore, every UE sends to the eNB an indicator, raging from 0 to 15, which
indicates the quality of the channel based on the Signal-To-Noise Ratio (SNR). The
CQI symbol, which is a measurement of the channel status reported by every mobile
user based on its past experience, changes along time according to the channel state.

The CQI provides an estimate of the highest modulation-and-coding scheme
that, if used carefully, would result in a smaller block-error probability. The reason
behind the use of CQI as a feedback quantity instead of, for example, the SNR
directly, is to account for different receiver implementations.

The scheduler algorithms available in FlexRAN are:

• Round Robin (RR);

• Proportional Fair;

• Maximum throughput;

49

Description of testbed deployment

1. Round Robin (RR): Round Robin is one of the most popular scheduling
algorithms in scenarios where multiple agents share a common resource, like
bandwidth. It is applied in a wide variety of environments, including bandwidth
allocation in LAN and mobile networks. Round Robin assigns short time
slices to the users in equal portions and in circular order. Hence, the buffer
is organized in separate queues, served in FIFO manner. These time slices
are typically very short; as such Round Robin scheduling can be alternatively
considered as an equal splitting of the resource among all active jobs. The
advantages of RR are that is instantaneously fair, it assigns all active agents
an equal amount of the resource at any given moment and it is starvation-free
[21].
RR algorithm gives equal scheduling chance to each user in the cell. The
scheduler assigns resources cyclically to the users without taking channel
conditions into account. This is a simple procedure giving the best fairness
when the packet size is constant. Although for variable packet size, the
scheduler before switching to the next queue need to wait the current packet
transmission to finish. This translates into a greater global channel occupancy
for larger packets. In addiction, it does not take care of channel condition,
offering poor performance in terms of cell throughput.

2. Proportional Fair (PF): Proportional-fair scheduling is a compromise-based
scheduling algorithm. Its goal it maintaining a balance between two competing
interests: maximize the total throughput of the network while at the same
time allowing all users at least a minimal level of service. This is done by
assigning each data flow a data rate or a scheduling priority (depending on
the implementation) that is inversely proportional to its anticipated resource
consumption. Therefore, PF scheduling algorithm assigns radio resource to user
with highest instantaneous achievable data rate relative to its past average
data rate. The scheduler can exercise Proportional Fair (PF) scheduling
allocating more resources to a user with relatively better channel quality or to
the user with the lower throughput, so even if a UE has a poor CQI it will
get resource. This offers high cell throughput as well as fairness satisfactorily.
Thus, Proportional Fair (PF) scheduling may be the best option.

3. Maximum Throughput: the scheduler assigns resources to the user with the
best channel quality. This offers excellent cell throughput but it is not fair.

For instance, a way to schedule data transfer is through the use of prioritization
coefficients. Here, it is scheduled the channel for the UE that has the maximum of
the priority function:

P = T α

Rβ
(5.1)

50

Description of testbed deployment

Where T denotes the potentially achievable data rate for the user in the
present time slot, R represents its past average data rate. α and β are the tuning
parameters, to adjust the "fairness" of the scheduler.
Tuning α and β, it is possible to find a balance between serving the best mobiles
(the ones in the best channel conditions) and serving the costly mobiles often
enough to guarantee an acceptable level of performance and avoid starvation.
Theoretically, the best mobiles should be served more often than the low rate users.
Considering the parameters pattern (α = 0 and β = 1) the scheduler acts in a
Round Robin fashion and serves all mobiles equally often, with no regard for
resource consumption. On the other hand, if (α = 1 and β = 0) the scheduler will
always serve the mobile with the best channel conditions (higher CQI). This will
maximize the throughput of the channel, but mobiles with low data rate are not
served at all. That is the way Maximum Throughput acts. Using α ≃ 1 and β ≃ 1
will yield the Proportional Fair scheduling algorithm.

In some studies, it is found that proportional fair gives very good data rate in
most cases. Although round robin gives better individual data rate when the UE
is located too far away from eNodeB, the absolute value of this data rate is not
that high. Thus, the resources are not then properly utilized and so, proportional
fair may still be a better choice. Round robin treats the UE with the best fairness
but proportional fair can maintain a balance between fairness and throughput.

So far, the scheduling algorithms implemented and available in Mosaic5G
environment are just the three presented above, but with a view to the increasing
demanding of networks specialization and selective traffic, many more strategies
of allocation should be developed. Starting from a delay-based scheduler for Low
Latency data, until some algorithms customized for the QoS requirements to be
granted.
The functions implementing these algorithms are only 100-150 longs and it should
not be difficult to modify them in order to change other parameter configurations,
like limiting the MCS, or implement new strategies, to match the target.
For instance, a parameter that could be tuned is Modulation and Coding Scheme,
MCS, index which is directly related with the Modulation scheme and Coding Rate.
This parameter should have a strong impact on the throughput achieved.

5.6 Slice orchestration
The ran-sharing.json file has to be sent when the agent runs, and posted through
the following command:

$ curl -X POST http://172.16.1.80:9999/slice/eNB/-1 --data-

51

Description of testbed deployment

binary@ran-sharing.json

where the IP address specifies the machine on which the eNB runs.

5.7 UE association
Furthermore, UEs have to be associated to a slice. Newly arriving users will
automatically placed in slice 0.
Although, to put a UE with a given IMSI or RNTI in another slice, it is necessary
to create a second JSON file ue-association.json. In this file it is important to
specify the IMSI of the UE and the ID of the slice to associate it with. The IDs of
the UL or DL slice can be different.

{
"ueConfig": [

{
"imsi": <replaceWithYourImsi>,
"dlSliceId": 2,
"ulSliceId": 2

}
]

}

The ue-association.json file has to be sent when the agent runs, and posted through
the following command:

$ curl -XPOST http://192.168.12.45:9999/ue_slice_assoc/eNB/
--data-binary @ue-association.json

5.8 Monitoring applications
In order to control the evolving situation and monitor the status of the eNB and
the UEs, some applications have been exploited.
Mosaic5g makes available the Store, a platform which contains SDKs for facilitated
interaction with the underlying controllers as well as some demo applications. The
Store is entirely written in Python.
The SDK provides a test mode that enables the development of applications
without the need of having a running RAN. For instance, pre-recorded data can be
used to test an application and deploy it later.

52

Description of testbed deployment

Applications can be split into two main classes: technology-dependent or technology-
agnostic.

An example of technology-agnostic application exploited in this work is Drone,
because it only shows data from the controller.
Another important application exploited to monitoring the current status of the
RAN and the UEs is the Stats call, an API that gets RAN statistics, also human-
readable, every TTI.

5.8.1 Drone
The drone application is a web server that can show the status of the RAN
graphically in a web browser. It can be used to display the base stations connected
to FlexRAN, and all the UEs that are connected to each base station. The
parameters of each entity, which are directly passed from the controller, can be
examined. Furthermore, it interacts with FlexRAN through other applications
that can be configured at run-time within the drone application.
From this application, it is further possible to observe run-time a graphical repre-
sentation of the throughput trend for each user. Moreover, many characteristics
can be check, like the slice ID associated to each UE and the number of RGB
associated.
Whenever users connect to the BS, they appear in the dashboard showing some
information, such as the IMSI or the IP address of the corresponding Core Network.
All the arriving UE are automatically put into slice 0.

From within the Mosaic5G root folder, navigate to the drone folder and start it:

$ cd store/sdk/frontend/drone/
$ python drone.py --port=8088 --address=127.0.0.1

Where "port" and "address" specify the web server’s listen port and address.
Opening a browser and navigating to 127.0.0.1:8088 it should be possible to see
the current topology.

The dashboard shows the RAN, FlexRAN is already connected to the BS. The
Core Network is not shown, but it is visible in the "plmnID" section among the
BS information, as for the slice algorithm. It is possible to load a static slicing
algorithm which partitions the resources to groups of users. Moreover, there is the
NetStore that provides RAN applications and a ping Helper that integrates ping
utility in the dashboard. To conclude, Drone application is a very useful tool to
monitor the status of the network, which offers a practical graphical interface to
interact with the ecosystem.

53

Description of testbed deployment

Figure 5.7: Drone Application

5.8.2 Statistics and reports
The FlexRAN controller provides also a northbound RESTful API for issuing
control commands and for obtaining reports and statistics for base stations using
simple HTTP requests.
The complete API documentation is available in the apidocs, at the following link:
https://mosaic5g.io/apidocs/flexran/

Thanks to the FlexRAN northbound API, it is possible to get the RAN status
and configuration of the current Transmission Time Interval (TTI), which is the
time related to encapsulation of data from higher layers into frames for transmission
on the radio link layer. TTI refers to the duration of a transmission on the radio
link. That API allows retrieving the RAN condition for the current TTI related to
all the eNBs connected to the controller. The output can be in a human-readable
format or in JSON file.
In order to access to these statistics, it is simply necessary typing the command:

curl -XGET http://FlexRAN-URL:PORT/stats/conf/eNB/:id?

Where “id” is the ID of the desired BS. This can be one of the following: -1 (last
added agent), the eNB ID (in hex, preceded by "0x", or decimal) or the internal
agent ID which can be obtained through a stats call. Numbers smaller than 1000

54

https://mosaic5g.io/apidocs/flexran/

Description of testbed deployment

are parsed as the agent ID. The predefined value is: -1.

In the specific testbed case, since the controller runs on the same machine of
the eNB, it has been used the following:

curl -XGET http://127.0.0.1:9999/stats/conf/eNB/

To modify an existing configuration, use the endpoint:

curl -XPOST http://127.0.0.1:9999/stats/conf/eNB/
--data-binary @stats.json

There is only one field, the type of statistics to be returned. The type of statistics
to be returned allowed are the following:

• eNB_config: static configuration (for eNB, UE, and LC)

• mac_stats: statistics about various eNB layers (PDCP, RLC, MAC)

• all: both of the above

The values allowed are eNB_config, mac_stats, all. Predefined value is all.

The status of the localhost reports a list of parameters, which includes:

• CQI information

• RRC measurements

• PDCP measurements

• MAC measurements

• GTP information

And the statistic are tracked continuously.
It is available a documentation for all end-points in JSON format, such as the
capabilities of the controller, generated from source.
Giving a brief overview of the statistical reported, there are:

1. CQI information, where CQI stands for Channel Quality Indicator. It is
an indicator carrying the information on how good/bad the communication
channel quality is. CQI is the information that UE sends to the network.

55

Description of testbed deployment

2. The Radio Resource Control (RRC) measurements. RCC is a protocol used
in UMTS, LTE and 5G on the Air interface. It is a Network Layer (L3)
protocol used between UE and Base Station. The major functions performed
by the RRC protocol consist in connection establishment and release, transport
in broadcast system information, establish radio bearer, reconfigure, RRC
connection mobility procedures, paging notification. In particular, between the
statistics reported, there are the Primary Cell Reference Signal Received Power
(RSRP) and the Primary Cell Reference Signal Received Quality (RSRQ).
By means of the signalling functions the RRC can reconfigure UP and CP
according to the network status and Radio Resource Management strategies
to be implemented.

3. Packet Data Convergence Protocol (PDCP) measurements. PDCP is a pro-
tocol specified by 3GPP which located in the Radio Protocol Stack in the
UMTS/LTE/5G air interface above the RLC layer. PDCP provides its services
to the RRC and user plane upper layers. The following services are provided
by PDCP to upper layers: transfer of user plane data, transfer of control plane
data, header compression, ciphering and integrity protection. Therefore the
measurements, includes a list of statistics on packet transmitted and received,
sequence number, frame number, out-of-order packet, etc.

4. MAC measurements. They include several statistics information about schedul-
ing, such as the number of PRBs exploited in UL/DL, or the transport block
size. As well as, Modulation Coding Scheme (MCS) information.

5. GTP information. The status of the localhost reports a sequence of information
related to the tunnelling protocol, such as tunnel-endpoint identifiers, or eNB
and SGW IP addresses.

Moreover, it is present an API which allows to set and get the statistics
configuration for a given Base Station. The configuration governs which set of
statistics are sent and how often from the BS to the controller. The controller will
delete all the current statistics configuration present in the BS and set the new
given ones.

All the information about the specifics API can be found at the following
page: https://mosaic5g.io/apidocs/flexran/flexran_spec_v2.2.3.html#
protocol.flex_dl_info

56

https://mosaic5g.io/apidocs/flexran/flexran_spec_v2.2.3.html#protocol.flex_dl_info
https://mosaic5g.io/apidocs/flexran/flexran_spec_v2.2.3.html#protocol.flex_dl_info

Chapter 6

Simulations and results

The aim of the project focuses on the analysis of the latency performances in an
heterogeneous network when exploiting Network Slicing technique at the RAN.
More in details, the following paragraphs investigate the impact on Users behaviour
under several network scenarios and with different NS configurations. Therefore,
it has been carried out a survey on the Mosaic5G platform usage, understanding
how to exploit the numerous parameters affecting the testbed performances. In
particular, the main idea behind the simulations relies on the need of finding
innovative solution to enhance mobile networks for supporting autonomous vehicles.
To sustain the automotive industry, different categories of devices are required:
some dedicated to constant monitoring, exchanging big quantities of data without
particular constraints on latency and reliability and some related to mission-critical
situations, driven by strict requirements on latency and accountability. In this
respect, the simulations involve the coexistence of two services. As a general rule,
improving the delay for prioritize services is the guiding thread of the tests proposed.

As mentioned above, the final goal is to study the problem of enabling the
coexistence of multiple heterogeneous services within the same Radio Access
Network (RAN) architecture, finding the benefits offered by a sliced RAN. In
particular, the two services of interest for the next simulations are eMBB and
URLLC. Typologies that have been largely discussed in Chapter 2.
In a nutshell, eMBB can be considered a direct extension of the 4G broadband
service. It is characterized by large payloads and by a device activation pattern
that remains stable over an extended time interval. The objective of the eMBB
service is to maximize the data rate, while guaranteeing a moderate reliability. On
the contrary, the URLLC service demands mission-critical, reliable communication,
where a hard latency constraint must be fulfilled.
Service heterogeneity can be accommodated by network slicing,through which each
service is allocated resources to provide performance guarantees and isolation from

57

Simulations and results

the other services.

In order to simulate heterogeneous scenarios and test the variability of the delay
in a multi-services network, a combination of network tools have been exploited.
In particular, from a remote server under the same LAN it will be generated UDP
traffic thanks to the Iperf3 tool. Different session of Down Link data will be started
simultaneously, to contact all the mobiles.
Moreover, the users performances, affected by the scheduler and the resource
association per typology of service, will be analyzed mainly in the shape of Round
Trip Time (RTT), through Ping network tool.

Notably, the RTT is a measure of the time needed to send a signal and receive
back the acknowledgment. Therefore, the measure of the delay by means of RTT,
includes not only the scheduling time in Down Link, but also the Up Link ones.
Anyway since in Up Link no slicing policy has been applied and the scheduler used
is always the same for all the UEs, Round Robin, the waiting time for the UL
queue should not be relevant. Moreover, all the simulations will be considered for
Down Link data.
Round-trip time and Ping time are sometimes considered synonymous. Even if
ping time can provide a good RTT estimate, there is a difference in how the test
have been performed. Indeed, Ping tests are usually performed within a transport
protocol that uses ICMP packets. While RTT is measured at the application
layer (layer 7 of ISO/OSI) and includes additional processing delays caused by
higher-level protocols and applications.

Given that the major point of interest will be the latency of the network caused
by different slice configurations, it is interesting introduce this concept. Latency
is the time required for a data packet to travel from the sending endpoint to the
receiving endpoint (thus only one trip). And many factors may affect this path.
Hence, network latency is closely related to RTT, but different.
Network latency is not definitely equal to half of the RTT, because it may be
asymmetric between any two given endpoints. In addiction, RTT includes the
processing delay at the echo endpoint.
However, considering the network in as steady as possible conditions, the RTT
can be an acceptable measure of the slicing performances. In this sense, the ping
measure has been computed between the mobile users and the Core Network,
in order to avoid the Internet uncontrolled variables. Therefore, only the cable
bandwidth and the processing time affect the measurements.

58

Simulations and results

6.1 SWOT analysis of Mosaic5G framework

Whereas the progress of this project has experienced several problems, it has been
fulfilled a SWOT analysis of the Mosaic5G framework based on the user expertise.
A SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis, is a
planning technique implied to help identifying benefits and drawbacks of a project.
The SWOT analysis divides the examination in 4 categories, including strengths
and weaknesses, opportunities and threats.

Figure 6.1: SWOT analysis of Mosaic5G testbed.

59

Simulations and results

6.1.1 Strengths and Weaknesses

In order to critically evaluate benefits and drawbacks experienced during the
utilization of Mosaic5G framework, the analysis starts focusing on strengths and
weaknesses of the project. Concerning the keys strength are the possibility of
substitute the SDR, Software Defined Radio, the channel and the users, thanks
to the Layer 1 or Layer 2 simulators. Both of them allow to reduce the hardware
costs, creating an efficient testbed to test applications over the network. Especially,
the L2 simulator is particularly efficient from this thesis point of view, because it
permits to reproduce a large number of UEs and test them all together.
Another point in its favor is the facility of deploying the testbed thanks to the
snaps and to the software platforms integration already implemented. Therefore,
the whole building procedure is strongly simplified, becoming just a matter of
configuration. Moreover, the multiple projects, result of different alliances, are
already merged together and totally compatible.
FlexRAN is a very powerful point of strength, allowing flexibility and easily
controlling in real time the eNB. It allows to configure sub-networks runtime with
simplicity, moving UEs on the fly from one slice to another. FlexRAN Controller
leads to a flexible management of the physical resources, through API endpoint
which communicate the configuration to the uderlying agent, in the form of JSON
file. In addiction, also the Store should be highlighted, which contains SDKs
for facilitate the interaction with the underlying controllers, through application
such as Drone. Finally, another good point which could make prefer Mosaic5G
framework on the other solutions is the presence of exhaustive tutorials and
practical explanation on how to use the platforms. Last but not least, the presence
of an active community and an efficient and quick mailing list support to clarify
doubts, helps a lot to develop and interact with the platform.

On the other hand, there are several internal weak spots in Mosaic5G framework.
First of all, the requirements on the CPU to build a performing testbed, which
should not be underestimated to avoid risks of unexpected closure of the running
processes. This kind of problem have been observed using the L2 simulator,
whenever the traffic data started to be closer to the maximum channel capacity.
However the main lack of the simulator, considering the goals of the thesis, is
the limit of the simulated channel bandwidth. Indeed, since the simulator is
implemented with 25 Resource Blocks, the maximum throughput is 17/17.5 Mbps,
which means that with 15 Mbps the channel is almost full. The problem is the
inability of generating congestion situations to test the network underpressure,
making it impossible to create the worst case avoiding the testbed collapse. Which,
for simulation purposes, it is a big deal. Another issue is the difficulty in the usage
of several simulated UEs simultaneously. The framework should provide up to 127

60

Simulations and results

UEs, but actually it is really hard to test them all together. Even considering an
aggregate throughput smaller than the total channel capacity, they are not able to
be activated at the same time, unless with a amount of data considerably small.
But then it is not really useful for experiments. Hence, relying on the experiences,
the testbed works sufficiently well testing until 50/60 users simultaneously.
As regard for FlexRAN, the powerful of a real time and flexible controller for slicing
purposes, is limited by the constraint of fixed sized Resource Blocks. A more
advantageous system should be to adapt the size of the slice on the traffic demand.
Consulting the website of the project Mosaic5G, it seems that similar algorithms,
like the NVS (Network Virtualization Substrate) for an effective virtualization
of wireless resources in cellular networks, are already being implemented but not
yes available for the users. Furthermore, for the purpose of the work, which
deals with the investigation of the situations where NS helps to reduce latency for
mission-critical users, the absence of a delay-based scheduler implementation is a
serious lack. Probably, handling UEs with a delay-based algorithm, could open
the doors to clever and improved management solutions. Therefore, FlexRAN
platform facilitates the development of control solution but at the time of writing,
the capabilities are very limited.
Lastly, the Applications provided by the framework are several, but it misses a
clear documentation on how to use them. Most of them are just mentioned and it
is in not immediate understand their employment.

6.1.2 Opportunities and Threats
As regard for Opportunities, certainly the openness of the source code is a big
advantages whether allows third parties contributions to enhance the project.
Besides the code contribution, as well as an active community of users which share
information each other about ideas, issues encountered and much more, could have
a central role. Indeed, a good opportunity to highlight the potentiality of the
Mosaic5G framework, would be a more interactive community, not only a mailing
list. For instance, a channel where the users can share their works or discuss about
the common problems. Furthermore, the simplicity of the deployment process by
means of snaps and platforms already integrated, can be attractive for users and
developers which can contribute to the enhancement of the platform. Another
opportunity in this context would be the implementation of new algorithms for
handle slices, not only the static one which creates too many limits.

Considering the threats, what can influence the success of the framework is the
participation of the community, users and developers. In addiction the increasing
hardware costs, which influence the industrial production of SDRs, by discouraging
some users to deploy a testbed. Furthermore, another risk could be the lack of a

61

Simulations and results

clear documentation which can dissuade people to make use of the platform. This
is a matter not only of the features available, but also of tutorials, explanation and
documentation on how to use or how to deploy the testbed.
The last threat that it will be mentioned is the status of the other frameworks,
whether their evolution grows faster it could lead to a decay of the concerned
software.

6.2 Description of configuration parameters
In order to analyze the effects related to different configuration of Network Slicing
exploited at the RAN segment, several factors should be taken into account. In
the following list, those parameters will be described.

1. Slice Configuration: one of the most important element that will be considered
is the Resource Blocks distribution. Hence, how to assign the RGBs to each
UE or group of UEs. The channel exploited in simulation environment allows
a total bandwidth of 17/17.5 Mbps, that correspond to an amount of 13 RBG
(12.5), numbered from 0 to 12. Hence, one of the goal of the following tests
will be the management of these resources in order to achieve the best RTT
performance.

2. Number of Users: a second parameter to be tuned is the number of users in
the tested network, in order to analyzed whether the increasing number of
them can influence the scheduling delay. The Moasic5G framework should
support up to 127 UEs, anyway in this experiment will be treat only up to 50
UEs.

3. User typology: not only the total number of UEs which is present in the network
is noteworthy, but also the percentage of mobiles belonging to different services
can influence the results. Therefore, it will be study even the impact of varying
the number of URLLC users, with respect to the eMBBs.

4. Scheduling algorithms: it will be analyzed the way different schedulers affect
the RTT, accordingly with the emulated scenario.

5. CQI: even the quality of the channel can affect the results. It will be take
into account also the behaviour of mobiles experiencing different channel
conditions. This value in a real environment is reported to the BS from each
UE periodically. In this testbed, it is simulated and can be manually set.
It is represented by a number from 0 to 15, where 15 means the mobile is
experiencing perfect channel conditions. The CQI parameter can be set to a
fixed value, or can be randomly generated every TTI.

62

Simulations and results

6. Traffic scenario: different configuration of Down Link traffic are emulated.
Indeed, different typologies of data flows impact the schedulers performances.

Parameter Description Admissible
values

Slice width Associating the number of RGB
dedicated to each slice.

[0-12] RGBs

Number of UEs Mobile users present in the net-
work simulation.

From 0 to 127

Service types Typology of services required by
the UEs

URLLC/eMBB

Algorithm Scheduling algorithm imple-
mented at the eNB. Can be
different for every slice.

RR, PF, MT

CQI Telnet endpoint simulating the
channel status experienced by ev-
ery UE. Can be a static value or
variable along time.

From 0 to 15

Traffic
scenario

Amount of data downloaded by
UEs: allow to simulate different
services.

Up to an ag-
gregate of 17.5
Mbps

Table 6.1: Configuration parameters in a nutshell.

Hence, the first part of the analysis focuses on the study of Round Robin
behaviour. It has been fixed the scheduling algorithm and the typologies of flows,
connected to the users service type. The parameters which have been sequentially
changed are the aggregate traffic in the network related to the slice space, the
whole number of mobiles and the percentage of type of users.

63

Simulations and results

Subsequently, the analysis focused on the comparison among the three different
scheduling algorithms implemented in the Mosaic5G framework: Round Robin,
Proportional Fair and Maximum Throughput.
In particular, the latter, when making decision, consider also the quality of the
channel experienced by each user. Therefore, in order to analyze the behaviour of
them, the network has been emulated generating random CQIs and the schedulers
performances are observed when the two classes of interest, URLLC and eMBB,
are present while the channel state is time-varying.
Lastly, pointing out the great response of Proportional Fair in this particular use
case, it has been deeply studied its trend in more realistic situations. Indeed,
considering the URLLC flows constant at a low data rate is a reasonable simplifica-
tion for the simulation. However, a more accurate simulation of URLLC traffic is
expecting an intermittently low/medium data rate flow. Therefore, it has been
observed the behaviour of slicing in these situations.

As final step, some policies have been implemented to automatize the process
of resource management. The study of the behaviour of the network in different
traffic conditions, will help to understand which policies develop to optimize the
resource management in analogue scenarios.

6.3 Impact of slicing with Round Robin
The initial part of this work deals with the analysis of a network handled by Round
Robin in ideal conditions. Considering ideal conditions, it corresponds to assume
the absence of Noise along the channel, which translates into users experiencing
the maximum bandwidth available. Under this scenario, it will be investigated
the behaviour of Round Robin algorithm when working with different configurations.

The principal case study includes two categories of users, URLLC and eMBB,
which will be simulated with different traffic characteristics.
More in details, the URLLC users, which should represent preemptive messages, like
alarms, are characterized by a small amount of data which have to be transmitted
faster and with an high level of reliability. Therefore, it has been used a download
application of 10 kbit/s for each user. On the other hand, the eMBB mobiles are
characterized by an intense flow of data, which vary depending on the total number
of users and on the limits of simulator. Indeed, the maximum aggregate admissi-
ble data rate is around 17.5 Mbit/s which represents a strong constraint for the tests.

Every simulation will be analyzed in terms of average Round Trip Time and
Standard Deviation (Std Dev) for group of users. Further, to clearly understand

64

Simulations and results

the behaviour, it will be computed the percentage variation ∆% between the results
with and without NS management: this value will represent how large is the gain
of RTT or Std Dev whether positive, or the lack if negative.
In addiction, all the test performed in this section have been computed with
simulations of 800 s, eliminating the 3% of higher and lower values in order to
smooth the results and avoid uncontrolled peaks.

6.3.1 Analysis of slice occupancy

As first scenario, it will be considered a fixed number of users equal to 20, char-
acterized as follow: the 25% belongs to URLLC services and the remaining 75%
to eMBBs. With this setting, it has been investigated the differences on users
performances when Network Slicing is applied or not. In details, in each NS
configurations the whole channel is shared into two different and isolated slices,
each of them handled by a scheduler following the Round Robin fashion. Both
slices are deployed on the same eNB and share the same spectrum. For every
configuration of Resource Blocks, the slice associated to eMBB mobiles, is tested
when filled with different quantity of data.

Figure 6.2: Down Link Channel Resource Blocks

65

Simulations and results

Fig. 6.2 shows the Resource Group Blocks (RGBs) provided by the simulator.
At the time of writing, Mosaic5G has not yet released other slicing modalities,
unless the static one. This means that it is not possible to handle few bits of
bandwidth, thus the resource distribution concerns only blocks of space, 1.4 Mbit/s
large.
In this respect, the slices configurations chosen are:

• NS configuration 1:

– Slice 1 "eMBB": blocks [0-9];

– Slice 2 "URLLC ": blocks [10-12];

• NS configuration 2:

– Slice 1 "eMBB": blocks [0-10];

– Slice 2 "URLLC ": blocks [11-12];

• NS configuration 3:

– Slice 1 "eMBB": blocks [0-11];

– Slice 2 "URLLC ": blocks [12-12];

Each NS configuration is tested with different level of occupancy of eMBB slice,
therefore increasing the the throughput of each eMBB user.

NS configuration 1:

The first configuration of Network Slicing associates 10 RGBs to Slice 1, dedicated
to eMBB users, corresponding to a channel bandwidth of 13.9 Mbit/s. While the
last 3 blocks, from 10 to 12 RGBs, which support a bandwidth of 3.6 Mbit/s, have
been dedicated to Slice 2, for URLLC mobiles.
The behaviour of the system is examined when the channel is filled with quantities
of data equal to the 70%, 80% ,90% and 100% of "eMBB" Slice 1 width.

66

Simulations and results

Occupancy
URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
70 % 19.20 ms 19.08 ms -0.63% 19.99 ms 23.34 ms +16.76%

80 % 19.44 ms 19.03 ms -2.11% 23.66 ms 31.98 ms +35.16%

90 % 21.27 ms 19.00 ms -10.67% 27.71 ms 34.95 ms +26.13%

100 % 22.12 ms 19.1 ms -13.65% 31.97 ms 37.37 ms +16.89%

Table 6.2: Average Round Trip Time with NS configuration 1

Occupancy
URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
70 % 2.17 2 -7.83% 2.13 3.4 +59.62%

80 % 3.8 2.08 -45.26% 8.02 2.75 - 65.70%

90 % 4.65 2.6 -44.09% 14.11 5.38 +61.87%

100 % 3.8 2.39 -37.11% 5.5 7.2 +30.90%

Table 6.3: Average Standard Deviation with NS configuration 1

From Tables 6.2 and 6.3 is pointed out that increasing the "eMBB" slice occu-
pancy, which corresponds to a larger aggregate amount of traffic in the channel, the
gain achieved from URLLC mobiles exploiting slicing is larger. Indeed, resource
isolation allows the low-latency devices to experience always the same queuing
delay, despite the growing eMBB throughput in Download. On the other hand,
eMBB RTTs with NS increases as the traffic conditions get worsen.

NS configuration 2:

The second case analyzes the effect of varying the eMBB slice occupancy when the
second NS configuration is chosen. Hence, 11 blocks have been assigned to the first
slice "eMBB", from 0 to 10, allowing a bandwidth of 15.3 Mbit/s. The last two
blocks, 11 and 12 are associated to URLLC services, which can experience up to

67

Simulations and results

2.2 Mbit/s . The experiment considers different levels of occupancy, such as 70%,
80% , 90% and 100% of 15.3 Mbit/s.
The following test, given the same URLLC aggregate throughput in DL, aims to in-
vestigate the consequences of reducing the resource dedicated to slice 2 ("URLLC"),
while increasing the total amount of data received by eMBB mobiles .

Occupancy
URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
70 % 20.85 ms 18.95 ms -9.35% 24.02 ms 35.9 ms +49.50%

80 % 20.70 ms 18.90 ms -8.70% 24.60 ms 30.99 ms +26.00%

90 % 21.56 ms 18.99 ms -11.92% 27.55 ms 28.93ms +05.01%

100 % 22.93 ms 18.62 ms -17.58% 29.31 ms 72.33 ms +146.8%

Table 6.4: Average Round Trip Time with NS configuration 2

Occupancy
URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
70 % 3.60 2.48 -31.11% 5.87 3.27 - 44.29%

80 % 3.13 2.00 -36.10% 6.80 6.98 +02.65%

90 % 3.83 2.33 -39.16% 14.24 4.1 - 71.21%

100 % 4.25 2.46 -41.98% 6.69 14.47 +116.3%

Table 6.5: Average Standard Deviation with NS configuration 2

68

Simulations and results

As it is shown from results in Tables 6.4 and 6.5, exploiting NS configuration
2, even if the resource allocated to URLLC have been reduced, the benefits of
applying NS are still evident. Indeed, the RTT of low-latency mobiles is almost
the same as the previous case, sign of that the space for this flows of data is still
enough. Or better, the first configuration was leaving too resources to URLLC,
which were wasted.
Comparing the RTTs of the two situations in absence of NS, in the second con-
figuration result slightly higher. This is due to the fact that the traffic flowing
in the channel is increased, leading to an increment in the queuing waiting time,
too. However, as regard for NS scenarios, while URLLCs experience the same
delay, eMBBs need to wait slightly more. That happens even if the amount of data
presents in the network increases proportionally to the Slice 1 space. Reasonably,
it can be a consequence of the larger quantity of packets: even if the proportion
between channel space and traffic is the same as the previous case, the scheduler
handles longer queues. Round Robin algorithm is completely fair in number of
packet per queue, but unfair in terms of bit per time slots. This means that
for variable packet size, before switching to the next queue the current packet
transmission must finish. Therefore, larger packet will globally occupy the channel
more. This is the reason way in NS case for broadband users, the higher the bit/s
per UE, the higher the RTT.
Therefore, this resource management allows to achieve the same URLLC latency
gained in NS configuration 1, while hosting larger quantities of bits.

NS configuration 3:

To conclude, the last resources configuration, which exploits as less as possible
blocks for URLLC slice, such as the 12th block, that support a throughput of
0.7 Mbit/s. The remaining resources, 16.8 Mbit/s, have been associated to the
eMBB slice. Following the previous tracks, the third NS configuration is tested
with multiple occupancy levels of eMBB slice.

69

Simulations and results

Occupancy
URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
70 % 21.37 ms 23.14 ms +8.28% 26.6 ms 28.27 ms +06.28%

80 % 21.43 ms 23.7 ms +10.59% 25.63 ms 28.35 ms +10.61%

90 % 23.36 ms 23.89 ms +2.27% 35.26 ms 28.17 ms - 20.21%

100 % 24.00 ms 23.80 ms -0.83% 43.50 ms 1078 ms +2378%

Table 6.6: Average Round Trip Time with NS configuration 3

Occupancy
URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
70 % 4.34 2.87 -33.87% 7.60 10.59 +39.34%

80 % 4.3 3.3 -23.26% 7.9 8.5 +07.59%

90 % 4.8 3.58 -25.42% 15.67 5.5 - 64.90%

100 % 4.3 3.6 -16.28% 32.84 686 - 1988%

Table 6.7: Average Standard Deviation with NS configuration 3

As it noticeable from the Tab. 6.6 and 6.7, considering the smallest amount
of resources assigned to URLLC users, applying slicing it does not lead to any
improvement. Indeed, the slice considered is too small to allow a better performance.
However, the only positive result is found in the last case (occupancy of 100%)
because the channel conditions without NS have worsened enough, so it becomes
possible to appreciate the benefits of NS. Therefore, if it would be possible to fill
the channel with more data, the gain would be even higher.

To sum up, these analysis have been conducted to prove the proper operation
of the testbed and to highlight the effectiveness of the network slicing approach.
Concluding, it is pointed out that the second NS configuration is the more suitable
for the traffic received by low-latency users in this scenario, leading to the highest
gain without waste. Therefore, with reference to NS configuration 2 and an eMBB
slice filled for the 90%, the behaviour of the RTT along time is shown in Fig.6.3

70

Simulations and results

and 6.4 for the case without and with NS.

Figure 6.3: Without NS Figure 6.4: With NS config. 2

The benefits introduced by NS approach are evident from the graphs above:
when applying resource separation for traffic services, the average RTT of low-
latency mobiles is reduced of some milliseconds, as well as its variability. Indeed,
the values fluctuation range between a narrower interval of values. On the other
hand, in order to support the same large traffic, the RTT of other users is penalized
and increases.

In this case the scheduler handles all the UEs almost at the same way, giving the
same chance to each one. This results in a smooth RTT for all of them. However,
the eMBBs experience an higher RTT (almost 10 ms) most of the time. This is due
to the fact that they are receiving larger packets than URLLC mobiles, therefore
they occupy the channel for a longer period and ICMP packets need to wait more
time.
Moreover, even the standard deviation is reduced. This is a sign of that every
URLLC user in average wait the same amount of time in the scheduling queue
and the variability is more controlled. Differently from the case with absence of
resource management, where the behaviour was more fluctuating. As an evidence
of that, it is possible to notice in Fig. 6.3 that sometimes the medium RTT of
URLLC users reaches, or even overcomes, 30 ms. While exploiting the FlexRAN
controller functionalities, the overall trend it results much more controlled and
stable.

Furthermore, it is compared the behaviour of slicing when exploited carefully or

71

Simulations and results

not.
As regard for the first pair of figures (Fig. 6.3 and Fig. 6.4), they represent the
trend in absence of resource isolation on the left side, and benefits of applying a
clever slices management on the right one. There is an evidence of how the RTT
for URLLC decreases when separating the resources.

Whereas, in the next plots, it has been demonstrated a naughty usage of slicing,
such as assigning the RGBs in an unbalanced way.

Figure 6.5: Slice overfilled.

Hence, if increasing too much the resource blocks assigned to URLLC users,
what it turned out is that the advantage in RTT does not increase consequently.
Indeed, since the amount of data exchanged between low-latency users is just
50 kbit/s in total, assigning an excessive quantity of bandwidth becomes useless.
While, for the other group of devices, it becomes even more complicated having a
good RTT with a channel constantly overfilled.
In particular, while the URLLC group does not report any particular advantage,
as for the eMBB group, reducing too much the eMBB slice, implies a congestion
situation on that part of the channel. As it is possible to state from figure 6.5, the
RTT drastically increases as a sing of engorgement.

To conclude, through these experiments it has been possible to verify the correct
functioning of the testbed and the effectiveness of NS approach in reducing the

72

Simulations and results

URLLC latency. Furthermore, the overall target of these assessments does not deal
with finding the absolute latency profit but, since the simulations involve just a
few users, with understanding how and when NS impacts latency.

6.3.2 Analysis with different number of UEs

After investigating the behavior of different levels of slice occupancy, relying on
previous results, it will be selected the NS configuration 2 and observed the trend
with different numbers of Users.
It will be considered the eMBB slice occupied for the 90%, leading to a channel
bandwidth of 13.77 Mbit/s. While, as for URLLC, the resources associated to
them are 2.2 Mbit/s.
In addiction, the percentage of low-latency UEs is constant, equal to the 25% of
the total amount of mobiles and the data rate downloaded by each URLLC mobile
(10 kbit/s). Last but not least, the scheduler is always the Round Robin.

The following tables represent the Round Trip Time and the Standard Deviation
measured increasing the global number of devices present in the network.

Users
URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
8 18.19 ms 16.50 ms -9.29% 45.89 ms 41.52 ms - 9.52%

12 21.35 ms 18.46 ms -13.54% 42.10 ms 46.20 ms +9.74%
20 23.20 ms 19.19 ms -17.28% 31.70 ms 34.12 ms +7.63%
32 38.64 ms 31.54 ms -18.37% 28.75 ms 45.97 ms +59.89%
40 36.65 ms 31.66 ms -13.62% 31.21 ms 43.24 ms +38.55%
52 51.25 ms 46.48 ms -9.30% 39.90 ms 54.74 ms +37.10%
60 52.62 ms 48.07 ms -8.65% 45.60 ms 69.70 ms +52.85%

Table 6.8: Average Round Trip Time with different numbers of UEs.

73

Simulations and results

Users
URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
8 2.46 9.26 +276.4% 15.6 3.08 -80.26%

12 3.7 2.8 -24.32% 6.7 42.9 +540.3%
20 4.6 2.4 -47.83% 8.2 9.57 +16.71%
32 5.4 2.47 -54.26% 11.02 11.7 +6.17%
40 4.86 2.12 -56.38% 3.86 5.6 +45.08%
52 9.47 6.3 -33.47% 3.64 4.6 +26.37%
60 10.8 8.4 -22.22% 4.65 8.04 +72.90%

Table 6.9: Average Standard Deviation with different numbers of UEs.

Analyzing the results collected in Tab. 6.8, it is pointed out that the gain for
URLLC increases with the number of users up to a maximum, and then decreases
again. That is due to the fact that an increment of the mobiles, can lead to an
increment in the advantages of exploiting NS, but up to a certain point. When
the number of users raises too much, the network becomes more congested and the
gain is less effective.
However, this result is also influenced by the RR scheduler implementation, which
serves the user in sequence so, the higher the number of users, the higher the
waiting time for each of them. Therefore, when NS is applied low-latency users
need to wait for smaller amounts of time since are isolated from eMBB users.

6.3.3 Analysis with different percentage of URLLC users

In the following scenario it is evaluated the network behaviour at the variation
of the number of URLLC users. Therefore, it has been considered a pool of 20
users in total, and observed how the performances changes when the percentage of
URLLC UEs is different.
The scheduling algorithm considered is always Round Robin. And for this traffic
configuration the NS configuration exploited is still the second, with a global
amount of data in the channel equal to the 90% of the eMBB slice width, there-
fore 13.77 Mbit/s aggregate for this users category. Low-latency users receives
always 10 kbit/s each, and what happens for them is reported in the following tables.

74

Simulations and results

UEs URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
5% 22.46 ms 18.57 ms -17.32% 32.16 ms 33.02 ms +2.67%

20% 20.85 ms 19.15 ms -8.15% 25.17 ms 38.29 ms +52.13%
50% 22.02 ms 20.44 ms -7.18% 33.53 ms 34.66 ms +3.37%
70% 21.55 ms 20.57 ms +4.55% 28.84 ms 29.43 ms +2.05%
80% 20.19 ms 21.22 ms +5.10% 42.18 ms 40.28 ms +4.5%
90% 18.37 ms 21.34 ms +16.17% 29.52 ms 51.14 ms +73.24%

Table 6.10: Average Round Trip Time varying URLLC UEs

UEs URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
5% 6.79 4.60 -32.25% 3.94 4.30 +9.14 %

20% 3.83 2.90 -24.28% 5.10 6.70 +31.37%
50% 3.39 1.64 -51.62% 5.33 4.38 -17.82%
70% 6.55 2.30 -64.89% 19.67 9.00 -54.25%
80% 2.68 3.27 +22.01% 20.24 17.75 -12.30%
90% 1.58 3.82 +141.8% 10.56 23.19 +119.6%

Table 6.11: Average Standard Deviation varying URLLC UEs

Therefore, with the increasing of the number of URLLC mobiles in the network,
even if they occupy the channel with a very small amount of data, the advantage
using slicing is reduced, if not even leading to a disadvantage for them.
Indeed, the resources dedicated for low-latency users are always the same, even
when the their percentage in the channel is higher. Maybe in this cases, it would
be better to increase the amount of RGBs associated to URLLC slice.

6.4 Impact of different scheduling algorithms
So far, is has been considered only the Round Robin scheduler, which is the most
fair in term of chances to every user, but it does not consider the instantaneous
throughput or the quality of the channel. Therefore, it will be analyzed the be-
haviour of other algorithms, such as Proportional Fair and Maximum Throughput,

75

Simulations and results

which schedule the mobiles considering also the data rate and the CQI reported by
every user.

Up to this point, the channel conditions have not been considered. Anyway, in
a real environment Noise is present along the channel, worsening the transmissions.
In order to take into account this factor, every UE sends to the eNodeB an
indicator, raging from 0 to 15, which indicates the quality of the channel based on
the Signal-To-Noise Ratio (SNR). This symbol is the Channel Quality Indicator
(CQI), which is a measurement of the channel status reported by every mobile
user based on its past experience, changes along time according to the channel state.

The presence of Noise in a channel it depends on multiple factors, and it becomes
interesting and challenging also study how to improve digital communications for
poor quality channels.
In cellular networks, the users with poor channel quality usually experience poor
QoS. To satisfy QoS requirements of all users, BSs have to adjust their transmitting
power to satisfy users with the poorest QoSs.

The UE is realized to report periodically CQI values, measured from the physical
layers. However, the testbed has been deployed in a L2 simulation environment
thus, bypassing the physical channel. Hence, in order to analyze this scenario
Mosaic5G framework offers a simulation of the channel state, such as a variable
value that affects the channel sensing. Especially, in L2 simulator this control
message can be set through a Telnet endpoint following two modalities:

• Mode 1: select a time-fixed CQI for the UE.

• Mode 2: select a random time-varying CQI, which changes every TTI.

Aiming to evaluate the impact of different scheduling algorithms in a scenario
where broadband services need to coexist with mission-critical ones, and most of the
devices move in space, changing the perceiving bandwidth, the next experiments
have been conducted.

The following simulations consider an environment where each user experiences
a random CQI (Mode 2), generated casually between 0 and 15 every TTI. The
value 15 means the channel is perfect, noiseless. Therefore the bandwidth is the
maximum achievable (17.5 Mbit/s). The lower the CQI value, the narrower the
channel.

Firstly, it has been investigated the differences between the schedulers in terms
of throughput achieved and losses in a traditional situation in absence of NS. The

76

Simulations and results

scenario is populated by 20 devices: the 25 % behaves as low-latency services,
receiving flows of 10 kbit/s, and the remaining 75% collects broadband data at 0.8
Mbit/s each, for a total of 12 Mbit/s. The results in terms of aggregate throughput
and percentage of lost packets for each algorithms are the following.

Alg. URLLC UEs eMBB UEs

Throughput Loss % Throughput Loss %
RR 0.01 Mbps ∼ 0 9.012 Mbps 13.60 %
PF 0.01 Mbps ∼ 0 11.77 Mbps 1.69%
MT 0.01 Mbps ∼ 0 11.96 Mbps 0.45%

Table 6.12: Throughput and losses comparison among schedulers.

As it shows Tab.6.12, while for URLLC UEs the trend is almost the same, as
regard broadband services each algorithms presents some differences.
As expected from their implementation, RR is the one that reaches the smaller
throughput in mean, leading to a large percentage of packets lost, too. Indeed,
RR algorithm does not take into account the CQIs, serving users in order. On
the other hand, MT which schedules CQIs in order of decreasing, is able to
reach almost the maximum bit rate, collecting the lower number of packets
dropped. Finally, PF is implemented to find a balance between channel state
and data rate, thus it experiences a smaller throughput than MT, but still very high.

The previous scenario is then exploited to investigate the behaviour of the
schedulers in terms of RTT, when NS is applied.
This time the total amount of data flowing in the channel is reduced, in order to
avoid crushing the testbed when NS is considered. Therefore, it is found that the
combination of bit-per-second sustainable for eMBB mobiles is 0.51 Mbit/s each
user, for a total of 7.65 Mbit/s. This eMBB aggregate throughput represents the
55% of the "eMBB" slice presents in NS configuration 1, described in Sec. 6.3.1.
The bit-rate for URLLC UEs, instead, remains the same as before.

Under this scenario it will be presented a comparison of the behaviour and the
characteristics of each algorithm, when URLLC and eMBB services occur together.

77

Simulations and results

Alg. URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
RR 24.70 ms 18.96 ms -23.24% 48.57 ms 2360 ms + 4758%
PF 18.76 ms 19.13 ms +1.97% 33.00 ms 49.95 ms +51.36%
MT 32.20 ms 19.09 ms -40.71% 31.36 ms 49.71 ms +58.51%

Table 6.13: Schedulers comparison: average Round Trip Time

Alg. URLLC UEs eMBB UEs

✗ NS ✓ NS ∆% ✗ NS ✓ NS ∆%
RR 3.99 1.91 -52.13% 18.78 910 +4745%
PF 2.22 2.3 +3.60 % 7.65 11.5 +50.33%
MT 11.44 2.37 -79.28% 7.7 10.67 +38.57%

Table 6.14: Schedulers comparison: average Standard Deviation

Comparing the performances of the three schedulers, it turns out that Maximum
Throughput is the one that reflects the higher percentage of gain through NS, while
Proportional Fair achieves the best RTT for mission-critical services also sharing
the channel with eMBB users.
In fact, MT schedules as first the mobiles with the highest CQI without considering
the data-rate. This reflects into a very similar RTT for URLLC and eMBB when
no slicing configuration has been selected, indeed MT algorithm is thought to
maximize the throughput. Therefore, this time the improvement for this use case
is strongly evident. With the same network configuration and the same Down Link
traffic, the latency experienced by the users is shown in the figure 6.6 below.
On the other hand, PF aims to find a balance between best channel conditions and
lower throughput, so that even if a UE has a poor CQI it will get resource. Actually,
the trend of PF, since in this scenario all the UEs get a random CQI, rather than
avoid starvation of UEs with worst channel conditions, results prioritize URLLC
even without NS. This might be justified by the fact that associating a scheduling
priority to each jobs inversely proportional to its past resource consumption, helps
to ensure a minimum level of service in disadvantageous conditions but consider
prioritized also UEs with lower throughput. Therefore, applying slicing in this
context does not lead to any advantage: the RTT measured on average also without
slicing is already almost minimum.
Anyway, to scheduling URLLC users before, the eMBB devices wait more time.
Indeed, their RTT is slightly higher than with MT.

78

Simulations and results

Lastly, the behaviour of RR is the same analyzed in the previous section: indeed
the CQI it is not considered by this algorithm.

Figure 6.6: RTT trend with MT: before and after slicing application.

At the beginning of the plot in Fig. 6.6, there is an evidence of how the average
RTT of URLLC mobiles is really high, reaching 40/50 ms. Indeed, MT algorithm
queues as first the users with the higher CQI in order to transfer as much as possible
data. Therefore the queue of URLLC UEs, even if they receive a very small amount
of data, is very low. However, at time 150s, a slicing configuration has been applied
to the scenario. Since the goal is to preemptive the low-latency mobiles, improving
their experience, a slot of resource blocks has been assigned exclusively to them. It
results that one of the best configuration that reduces the URLLC delay but also
does not penalize too much the other mobiles is assigning 3 RGBs to low-latency
slice and the remaining 10 blocks to high-traffic users. Starting from the moment
in which the proper slice configuration has been enforced, the average RTT for

79

Simulations and results

URLLC mobiles strongly decreases. Furthermore, the trend of these users becomes
constant and no more unexpected peaks are observed.

6.5 Particular case: URLLC UE receives inter-
mittently data

Pointing out the great response of Proportional Fair into limiting the latency for
URLLC users highlighted in the previous cases, it has been considered interesting
studying further its trend, in more realistic situations.
Up to now, mission-critical services have been simulated with constant flows at
low data rate. This was a reasonable simplification for the initial step of the
analysis. However, a more accurate simulation of URLLC traffic is expecting an
intermittently low/medium data rate flow. Therefore, it has been observed the
behaviour of slicing with PF in these situations.

In this context, the following scenario includes 20 UEs, characterized by the
25% acting as URLLC and the remaining 75% of mobiles as eMBBs. This time
while eMBB users are considered downloading at constant data rate (12M total:
0.8 M each UE) (as higher as possible in this channel simulator), the low-latency
devices receive a constant low traffic of 10 kbit/s with some peaks of 2 Mbit/s.

In the first scenario the CQI has been considered constant for all the users
and maximum. Hence, in order to reduce the randomness, it has been considered
an ideal situation where all the users are static and experience the best channel
conditions.
In the following, it will be shown the behaviour of Proportional Fair scheduler in
absence of resource management when URLLC flows are more variable.

80

Simulations and results

Figure 6.7: Common shared channel. Figure 6.8: Slice isolation.

It is clearly visible from the average Round Trip Time plot that until URLLC
UEs download a constant-low traffic, the scheduler performs very well even if all
the resource are commonly accessed. However, as soon as one low-latency mobile
receives a larger flows of data, its latency is strongly penalized, affecting the mean
RTT.
The reason behind this penalization reflects the algorithm implementation that
favours the mobiles with the highest instantaneous achievable data rate relative to
its past average data rate. That in other words, when the channel quality is equal
for all, means giving priority to who has the lower throughput.

Therefore, the test has been repeated considering exactly the same scenario, but
applying resource isolation. The slices configured involve 9 RGBs for eMBB and
the last 4 RGBs for URLLC. That in terms of bandwidth means a maximum space
of 12.6 Mbit/s for the first typology and 4.9 Mbit/s for the other.
Running again the simulation with the same conditions, the eMBB Round Trip
Time suffers the resource reduction, increasing of a ten of milliseconds. While
the URLLC users, thanks to the slice isolation, experience a faster connection,
reducing the scheduler delay.
In Figure 6.8 it is presented the RTT graph when slice management is applied.
The red vertical lines delimit the time of arrival of the URLLC peak of data.

To conclude, owing to resource isolation it is possible to change the behaviour of
the network, enhancing or worsening the delay experienced by the users. Moreover,
a clever analysis of the situations, can help to decide the best structure to apply in
order to achieve the target desired.
As regard, for instance, for this scenario the slices configuration chosen is the more
suitable to limit the RTT increment for low-latency devices, while avoiding the

81

Simulations and results

congestion of eMBB, which are just slightly penalized.

The same situation has been simulated but with random CQIs for all the users.
In addiction, since with lower CQI the channel bandwidth is smaller, it has been
reduced the aggregate throughput eMBB. The results show the same behaviour as
the previous case.

Figure 6.9: CQI case: without NS Figure 6.10: CQI case: with NS

82

Simulations and results

6.6 Policy implementation
Once analyzed and understood the behaviour of slicing in different scenario, the
idea is to automatize the process in a clever manner.
Therefore, it have been implemented some policies, based on the knowledge of RTT
and throughput.

Firstly, it has been developed a program based on the average RTT per group of
users, re-assigning the resources associated on a time-based threshold. The policy
worked but as soon as an high delay was detected, the congestion situation was
already happening. Therefore, the next idea has been to prevent a congestion,
controlling the resource assignment through the throughput experienced at each
user interface, and as soon as the aggregate throughput of a group of users exceeds
the threshold or decreases too much under that, blocks of resources are added or
removed. This is done with the target of handling the channel space in a clever
manner, adapting the resources assigned to each user on its throughput.
Going into details, the throughput at each user interface has been measured
through a tool named TShark.
TShark is a network protocol analyzer that lets you capture packet data from a
live network [22]. Thanks to TShark it has been possible to capture all the packets
arriving during a time window and compute the instantaneous throughput.
The protocol analyzer captures on each user interface, saving the frame number and
the time of arrival, specified by the options "-e ". To reading easier the information,
some filters are set: such as the protocol type UDP, the source address (the server)
and the packets length (1024 Bytes).
From the data collected by this capture, it has been possible to identify the
throughput of each user as a measure of the packets arrived in a window of time.

Therefore, the policy is based on the throughput measured every 1 s, which is
compared with some thresholds verifying if the value still belongs to the expected
interval. The intervals correspond more or less to the RBGs dimension. Whether it
satisfies the expectations, everything is working well and nothing will be changed.
As soon as one of the thresholds is overcame, a command for resource management
is set.
Hence, if the throughput exceeds the higher threshold it means that a user is
receiving a larger quantity of data, which are not fitting anymore in the current
slice. On the other hand, whether the bandwidth is under the lower threshold, the
user is exploiting a portion of channel too large, wasting it.
Therefore, according to this idea, to avoid wasting of bandwidth or allowing an
higher throughput whether necessary, the policy adjust the RGBs of the slice,
accordingly. This makes the resource management more efficient, trying to avoid

83

Simulations and results

congestion or improving the communications.

To demonstrate what explained so far, it will be show a typical case, such
as an incoming call. Considering a scenario with two mobiles, one reserved to
URLLC traffic, and the other representing the eMBB, the first will be associated
to a separate slice, with a dedicated and fixed amount of resources, equal to two
RGBs. The URLLC user will receive a constantly low data rate flow, of 10 kbit/s.
Since this represents the low latency and high reliability traffic, it is exploited
an isolated part of the channel dedicated exclusively to it, to avoid conflict with
high-demanding users.
The eMBB mobile, instead, has been designed downloading at a medium/high
data-rate, like 0.5 Mbit/s, with an higher peak of 4 Mbit/s in the middle of the
transmission. This kind of flow could represent the incoming call that the users is
receiving.

Figure 6.11: RTT in absence of policy.

As it is possible to see from the first graph (Fig. 6.11), if the resource associated
does not change when the call arrives, the RTT drastically increases, sign of intense
congestion.
Moreover, the throughput cannot reach the value desired, since the slice associated
to eMBB is too small. Hence, the maximum achievable bandwidth is 1.4 Mbit/s,

84

Simulations and results

namely 1 RGBs. This means that most of the incoming packets will be dropped
and retransmitted, creating congestion along the channel. The evident drawback is
the performance worsening.

Figure 6.12: RTT when policy is applied.

In order to improve this misbehaviour, the same situation has been tested again
but with the policy activated.
What is observable from the plot (Fig. 6.12) , is that the number of RGBs associated
to the eMBB slice, varying according to the incoming traffic, increasing as son as
the call arrives and decreasing when it ends. The RTT this time is much more
controlled, and congestion is avoided.
As for the URLLC user, its RTT has not been affected by the increasing traffic,
since it exploits another isolated channel.
This occasion, even the throughput experiences an improvement. Since the space
associated is enough to accept all the incoming data, the data rate increases as
much as possible.

85

Chapter 7

Conclusions

Future mobile networks will be required to sustain even more heterogeneous
requirements, in terms of throughput, latency, reliability, availability, as well
as operational requirements such as energy-efficiency and cost-efficiency. This
condition arises from an increasing diversity of services carried by the mobile
network, expanding the areas of interest to Industry 4.0, vehicular communication,
or smart grid. The cornerstones to support these directions are flexibility and
programmability, which are the main principles that allow to support such a
network increasing density over a limited medium shared among multiple tenants,
as well as satisfying different stringent requirements. A key enabler to address this
fast and non homogeneous growth, it will be clearly Network Slicing, that thanks
to its functionalities makes it possible to share a common and limited channel in
a clever manner, assigning or releasing different amount of resources on demand.
However, despite of the huge literature presents on that, the practical solution
implementations are scarce, especially as regard for non commercial world.

Therefore, this work aims to highlight the importance of open-source solutions
for NS purposes, which allows third-parties to deploy testbed for research purposes.
Some benefits offered by these solutions are, first of all, the cost-effectiveness but
also the practical feasibility of deployment. Moreover, making available software
for implement mobile networks testbed which support almost all the features of a
real network, it is very useful to speed up the enhancements and innovations in
telecommunication world.

Furthermore, this thesis examines the capabilities of an open-source framework
for implementing a mobile network supporting end-to-end NS, focusing on the re-
source management at RAN side. Slicing the RAN is a less mature and challenging
to implement in practise, probably due to the shared nature of wireless resources,
and it includes various Radio Access Technology (RAT) parameter configurations,

86

Conclusions

such as time and frequency resources, frame size, etc. Hence, this complicates
the project realization, forcing to simplify the simulations. The goal deals with
the investigation of how change the users experience when exploiting a SD-RAN
architecture. In particular, the final target seeks to analyze the behaviour of the
users when the network is required to support two different use case, URLLC and
eMBB, characterized by extremely different requirements in terms of throughput
and latency. The need of sustain these kind of scenario will be even more frequent
in the future, just thinking about vehicular network or monitoring systems where
critical information have to coexist with control ones.

The possibility of relying on a testing platform allows to understand in advance
how the network behaves under some scenarios and facilitate the deployment of
policies for resource management, maximizing the efficiency.
As the experimental results show, there are a long variety of factors that influence
the network behaviour. A good knowledge of how they affect the performances can
be helpful to predict the repercussions when something changes, or new services
should be supported.

The future of mobile networks deals with customization, offering services even
more tailored on tenants requirements, and Network Slicing leads to a flexible and
on demand resource management, which allows to assign the physical resources
to the services that require more or less bandwidth on the fly. As confirmed by
practical results, Network Slicing affords most of the time a latency reduction for
URLLC services, improving their experience and getting closer to the theoretical
expectations.
Thanks to the knowledge gained with experience in simulation phase, in the final
part of the work it has been possible to deploy and test a policy, which helps
to automatize the process of resource distribution based on services needs. This
permits to improve the users experience, as well as afford to different use cases to
be supported simultaneously.
Moreover, it is highlighted that all the experiments conducted during this thesis are
related to slicing at the eNB, therefore the gain in milliseconds obtained through
these tests might be larger whether considering NS even at the core.

To conclude, the open-source world is fundamental for researchers but finding
feasible platforms implementation for NS purposed is still an open problem. Even
Mosaic5G, which appeared to be the more mature and complete project, it turned
out to be limited under different aspects. Nevertheless, it has been possible to
deploy a working testbed, and despite of the implementation constraints, several
situations have been successfully analyzed. The SD-RAN platform achieved
through FlexRAN, is a powerful tool with a rising future ahead. At the moment of

87

Conclusions

writing, the features actually available with this platform are still limited, but it is
expected to be updated in the near future, merging new scheduling algorithms or
dynamic slice management.

7.1 Future works
Despite the Layer 2 simulator limitations, Mosaic5G software platform results to
be very attractive whether considering the trade-off between cost of deployment
and features.
For its interesting applications, the testbed could be further exploited to analyse
different use cases, including mMTC services in simulations, or to deploy more
intelligent policies, creating algorithms able to deeper analyze the network status
or to use information reported by the UEs, and re-distribute the physical resources
choosing the best trade-off, or favouring a class of service with respect to another.
Moreover, Mosaic5G platform could be deployed to extend the isolation to the CN,
implementing slices E2E, including ll-MEC framework which allows the decoupling
of CP and UP functionalities.

88

Bibliography

[1] Leonardo Bonati, Michele Polese, Salvatore D’Oro, Stefano Basagni, and
Tommaso Melodia. «Open, programmable, and virtualized 5G networks:
State-of-the-art and the road ahead». In: Computer Networks 182 (2020),
p. 107516 (cit. on pp. 5, 15).

[2] Ali Esmaeily, Katina Kralevska, and Danilo Gligoroski. «A Cloud-based
SDN/NFV Testbed for End-to-End Network Slicing in 4G/5G». In: (Apr.
2020) (cit. on pp. 7, 14, 18, 19).

[3] Wanqing Guan, Xiangming Wen, Luhan Wang, Zhaoming Lu, and Yidi Shen.
«A Service-Oriented Deployment Policy of End-to-End Network Slicing Based
on Complex Network Theory». In: IEEE Access PP (Apr. 2018), pp. 1–1.
doi: 10.1109/ACCESS.2018.2822398 (cit. on p. 7).

[4] Mourice O. Ojijo and Olabisi E. Falowo. «A Survey on Slice Admission Control
Strategies and Optimization Schemes in 5G Network». In: IEEE Access 8
(2020), pp. 14977–14990. doi: 10.1109/ACCESS.2020.2967626 (cit. on p. 8).

[5] P. Rost et al. «Network Slicing to Enable Scalability and Flexibility in 5G
Mobile Networks». In: (2017). doi: 10.48550/ARXIV.1704.02129. url:
https://arxiv.org/abs/1704.02129 (cit. on p. 9).

[6] Gines Garcia-Aviles, Marco Gramaglia, Pablo Serrano, and Albert Banchs.
«POSENS: A Practical Open Source Solution for End-to-End Network Slicing».
In: IEEE Wireless Communications 25.5 (2018), pp. 30–37. doi: 10.1109/
MWC.2018.1800050 (cit. on pp. 9, 10, 19, 20).

[7] Dinesh Tamang, Sergio Martiradonna, Andrea Abrardo, Gianluca Mandó,
Gabriele Roncella, and Gennaro Boggia. «Architecting 5G RAN slicing for
location aware vehicle to infrastructure communications: The Autonomous
Tram use case». In: Computer Networks 200 (2021), p. 108501 (cit. on p. 10).

[8] Ali Esmaeily and Katina Kralevska. «Small-Scale 5G Testbeds for Network
Slicing Deployment: A Systematic Review». In: Wireless Communications and
Mobile Computing 2021 (May 2021), pp. 1–26. doi: 10.1155/2021/6655216
(cit. on pp. 14, 15).

89

https://doi.org/10.1109/ACCESS.2018.2822398
https://doi.org/10.1109/ACCESS.2020.2967626
https://doi.org/10.48550/ARXIV.1704.02129
https://arxiv.org/abs/1704.02129
https://doi.org/10.1109/MWC.2018.1800050
https://doi.org/10.1109/MWC.2018.1800050
https://doi.org/10.1155/2021/6655216

BIBLIOGRAPHY

[9] Mosaic5G. url: https://mosaic5g.io (cit. on pp. 16, 17).
[10] Xenofon Foukas, Navid Nikaein, Mohamed Kassem, Mahesh Marina, and

Kimon Kontovasilis. «FlexRAN: A Flexible and Programmable Platform for
Software-Defined Radio Access Networks». In: (Nov. 2016), pp. 427–441. doi:
10.1145/2999572.2999599 (cit. on pp. 16, 32).

[11] Chin-Ya Huang, Chung-Yin Ho, Navid Nikaein, and Ray-Guang Cheng.
«Design and Prototype of A Virtualized 5G Infrastructure Supporting Network
Slicing». In: 2018 IEEE 23rd International Conference on Digital Signal
Processing (DSP) (2018), pp. 1–5 (cit. on pp. 18, 20, 21).

[12] Gines Garcia-Aviles, Marco Gramaglia, Pablo Serrano, Francesco Gringoli,
Sergio Fuente-Pascual, and Ignacio Labrador Pavón. «Experimenting with
open source tools to deploy a multi-service and multi-slice mobile network».
In: Comput. Commun. 150 (2020), pp. 1–12 (cit. on p. 19).

[13] Muhammad Tahir Abbas, Talha Ahmed Khan, Asif Mahmood, Javier Jose
Diaz Rivera, and Wang-Cheol Song. «Introducing network slice management
inside M-CORD-based-5G framework». In: (2018), pp. 1–2. doi: 10.1109/
NOMS.2018.8406113 (cit. on pp. 20, 21).

[14] Prodromos-Vasileios Mekikis, Kostas Ramantas, Angelos Antonopoulos, Elli
Kartsakli, Luis Sanabria-Russo, Jordi Serra, David Pubill, and Christos
Verikoukis. «NFV-Enabled Experimental Platform for 5G Tactile Internet
Support in Industrial Environments». In: IEEE Transactions on Industrial
Informatics 16.3 (2020), pp. 1895–1903. doi: 10.1109/TII.2019.2917914
(cit. on p. 22).

[15] Smart End-to-end Massive IoT Interoperability, Connectivity and Security.
url: https://www.semiotics-project.eu (cit. on p. 23).

[16] Florian Kaltenberger, Aloizio P Silva, Abhimanyu Gosain, Luhan Wang, and
Tien-Thinh Nguyen. «OpenAirInterface: Democratizing innovation in the 5G
Era». In: Computer Networks 176 (2020), p. 107284 (cit. on p. 28).

[17] openairinterface5G. url: https://gitlab.eurecom.fr/oai/openairinter
face5g/blob/master/doc/FEATURE_SET.md (cit. on pp. 28–30).

[18] OAI 5G RAN PROJECT GROUP. url: https://openairinterface.org/
oai-5g-ran-project/ (cit. on p. 30).

[19] Mosaic5G. FLEXRAN: First Open-source Implementation of a Flexible and
Programmable Platform for Software-Defined Radio Access Networks. url:
https://mosaic5g.io/flexran/ (cit. on pp. 32, 34).

[20] OpenAirInterface Core Network: Recent enhancements in OAI EPC. url:
https://www.openairinterface.org/docs/workshop/1stOAINorthAmeri
caWorkshop/Training/GAUTHIER-OAI_WS_2019_NJ_en.pdf (cit. on p. 36).

90

https://mosaic5g.io
https://doi.org/10.1145/2999572.2999599
https://doi.org/10.1109/NOMS.2018.8406113
https://doi.org/10.1109/NOMS.2018.8406113
https://doi.org/10.1109/TII.2019.2917914
https://www.semiotics-project.eu
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/master/doc/FEATURE_SET.md
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/master/doc/FEATURE_SET.md
https://openairinterface.org/oai-5g-ran-project/
https://openairinterface.org/oai-5g-ran-project/
https://mosaic5g.io/flexran/
https://www.openairinterface.org/docs/workshop/1stOAINorthAmericaWorkshop/Training/GAUTHIER-OAI_WS_2019_NJ_en.pdf
https://www.openairinterface.org/docs/workshop/1stOAINorthAmericaWorkshop/Training/GAUTHIER-OAI_WS_2019_NJ_en.pdf

BIBLIOGRAPHY

[21] Benjamin Moseley and Shai Vardi. «The Efficiency-fairness Balance of Round
Robin Scheduling». In: Operations Research Letters 50 1 (2022), pp. 20–27.
(Cit. on p. 50).

[22] tshark(1) Manual Page. url: https://www.wireshark.org/docs/man-
pages/tshark.html (cit. on p. 83).

91

https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Network Slicing
	Cellular networks: an overview
	Network Slicing
	Network Slicing use-cases

	Open-source software for Network Slicing
	Indicators: how to choose
	Open-source testbed: projects description
	Mosaic5G
	5GIIK
	POSENS
	M-CORD
	CANONICAL
	5G Tactile Internet platform (SEMIoTICS)

	Conclusions

	Overview of Mosaic5G architecture
	OpenAirInterface
	Description of OAI-RAN features
	Description of OAI-CN features

	FlexRAN
	Description of FlexRAN features
	Software implementation characteristics

	Description of testbed deployment
	Core Network
	Radio Access Network
	User Equipment
	FlexRAN
	Initialization

	Slice creation
	Physical Resource Block
	Slicing Scheduler

	Slice orchestration
	UE association
	Monitoring applications
	Drone
	Statistics and reports

	Simulations and results
	SWOT analysis of Mosaic5G framework
	Strengths and Weaknesses
	Opportunities and Threats

	Description of configuration parameters
	Impact of slicing with Round Robin
	Analysis of slice occupancy
	Analysis with different number of UEs
	Analysis with different percentage of URLLC users

	Impact of different scheduling algorithms
	Particular case: URLLC UE receives intermittently data
	Policy implementation

	Conclusions
	Future works

	Bibliography

