
POLITECNICO DI TORINO
Master Degree course in Data Science and Engineering

Master Degree Thesis

Assessing the Feasibility and
Performance of Real-Time Semantic

Segmentation in an Industrial IoT use
case

Supervisors
Prof. Andrea Calimera

Candidate
Giacomo Zema

Academic Year 2021-2022



Acknowledgements

Alla mia famiglia, che da sempre mi fa sentire capace di raggiungere qualsiasi traguardo.
Ad Alessandra, il mio futuro.

2



Abstract

Semantic Segmentation is a computer vision task that consists in assigning a label to
every pixel in an input image. A semantic segmentation model outputs a prediction of
the same size as the input, in which each pixel is classified in a particular class. There are
many applications for Semantic Segmentation such as scene understanding in autonomous
driving or robot vision, land cover classification of satellite images, segmentation of medi-
cal images and others. Semantic Segmentation models are often very complex and require
powerful hardware. This clashes with the usage of such models in a resource-constrained
environment such as edge devices in an IoT network. For this reason, the standard ap-
proach when deploying semantic segmentation models in an IoT application is to offload
both training and inference to a cloud server.
While performing training on a server equipped with a GPU is actually a smart choice,
offloading the inference phase can be rather inefficient. The issue regards the transfer
of data from the edge to the server and back, which is highly expensive in terms of en-
ergy and also poses critical issues in terms of scalability, inference time and data security.
Many applications of semantic segmentation on edge devices rely on collecting image data
from cameras or other sources and processing them right after, therefore the inference
phase has real-time requirements that cannot be fulfilled by offloading it to a cloud server.
So, for such applications, a clear solution is to perform the inference on the edge devices.
There are many cases in the literature of real-time semantic segmentation models, but
virtually none of them achieve real-time latency (lower than 33 ms) on less powerful
hardware. The reason behind this circumstance is that these models are evaluated on
really complex datasets, that favor networks with a larger number of parameters and
more elaborate structures.
In this thesis, we explore different types of optimizations that can be applied to a network
to improve its inference latency. The goal is to define an optimization pipeline that can be
used to adapt the performance of a model to the requirements (IoU score and latency) of
a specific task. We structured this pipeline according to the effort required by each step
where with effort we intend both the time required by the operation and the difficulty
of its implementation. The proposed optimizations are grouped into two main branches:
Input Data and Model Topology. The first one is the most immediate and consists in
changing the size of the input images in order to speed up the inference, it doesn’t need
any knowledge of the model and therefore requires the least effort. The second branch
demands a deeper understanding of the underlying network to identify important tuning
knobs related to its different layers and functional blocks.
In the experimental part of this thesis, we selected a specific industrial IoT use case and
a baseline network amongst the several models reviewed in the background chapter. We
ran the experiments on a Raspberry Pi 4 and we studied in detail every optimization
approach and their combinations, gaining meaningful insights that allowed us to propose
an optimization framework that accounts for different levels of effort.
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Chapter 1

Introduction

Semantic Segmentation is a computer vision task that consists in assigning a label to
each pixel in an image (dense prediction). Each label corresponds to a specific class. The
result is an output segmentation map in which, every pixel belonging to an object in the
input image, is assigned a value that represents the class that the object belongs to.
From the output of semantic segmentation, we can derive information about the posi-

Figure 1.1. Semantic Segmentation - credit [29]

tion of an object in the image, its shape, size and orientation. Because of this, semantic
segmentation models are used in a large variety of scenarios.

Scene Understanding is the main application. It attempts to analyze objects in context
with respect to the 3d structure of the scene, its layout, and the spatial, functional and
semantic relationship between the objects. The most popular application of semantic
segmentation for scene understanding is autonomous driving. An autonomous vehicle
must sense its surroundings and act safely to reach a certain target. Performing semantic
segmentation is crucial for interpreting the visual data collected by the cameras in the
vehicle, and this allows the control system to understand the environment and accord-
ingly make the right decision.
Another application is in the field of robotics, Robot vision presents many possible ap-
plications for semantic segmentation, one of which is robotic grasping [1]. Automated
grasping is the process of having a robot manipulator successfully grasp objects in a clut-
tered environment. The grasping procedure consists of 2 steps: the first is to model the
scene and identify the objects and the second step consists in executing the action. For
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Figure 1.2. Example ground truth map from the Cityscapes Dataset [9]

the first part to be successful, the shape and the location of the object must be known
in advance, for this reason, thanks to its pixel-level output, semantic segmentation is a
great tool for this task. Automated grasping is widely deployed in both manufacturing
and service applications of robots.
Another notable application of semantic segmentation is Medical Image Segmentation,
which involves the extraction of regions of interest from MRI or CT scans [31]. This
operation has an important role in diagnosis, pre-operative planning and post-operative
management of patients. In the medical domain, segmentation can also be used to iden-
tify areas of the anatomy required for a particular study, for example, to simulate physical
properties or virtually position CAD-designed implants within a patient.
Semantic segmentation can be used in the screening of microscopic slides, where it refers
to the process of finding the boundaries of cells, cell nuclei and histological structure
with adequate accuracy of images of stained tissue with different markers. Performing an
accurate segmentation of each cell is a difficult task because of the diversity of structures
contained in the images, the intense variation of background, and other issues.
Semantic segmentation can be also used on satellite images. One of the most common
applications is land cover classification [34] which takes as input a multi-spectral satellite
image of an area and outputs the land cover map of the area. Similar tasks are performed
in the context of precision agriculture, where semantic segmentation can be used to iso-
late areas like agricultural parcels.

Figure 1.3. Land Cover Classification on Satellite Images [28]
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Facial recognition is another possible application of semantic segmentation. Semantic
segmentation of faces involves categories such as eyes, nose and mouth in addition to
skin, hair and background. Detailed segmentation of facial features can then be used to
train other computer vision applications to distinguish an individual’s ethnicity age and
expression. Another use for it can be the enhancement of photographic portraits through
depth of field simulation and other processing techniques that require a precise separation
of the face from the rest of the image.
For these applications and many more, the literature presents several datasets that can
be used to train and evaluate semantic segmentation models.

A subset of the applications of semantic segmentation is made of those that require real-
time inference. These are the scenarios in which there is the need to process an image
right after its collection. The real-time requirement reflects constraints regarding the
inference latency. Ideally, the lower the latency the better, but there are certain cases
in which such requirements are stricter. The most immediate example is autonomous
driving. The segmentation of the images is only a part of the pipeline that makes up
this task, so the inference latency of the segmentation model needs to be lower than the
latency constraint of the entire task. Conventionally we define as real-time any operation
that is capable of producing more than 30 frames per second (33ms latency), but there
are some cases in which this value can be too high or way too low. Coming back to au-
tonomous driving, it would probably be better to have more than 100 fps (10ms latency)
in order for the decisions to be made on images updated very frequently, especially as the
speed of the vehicle increases.

The need for a lower latency is not only limited to real-time applications, but also for
energy-constrained environments. In fact, latency is strictly correlated with power con-
sumption. Before data and instruction parallelization, the indicator of power consumption
of an application was entirely dependent on the number of multiplication-accumulation
operations (MACs) that it required. But when more instructions can be executed at the
same time and more data points can be loaded into the CPU memory at once, there
can be cases in which models that require more MACs but better exploit the parallel
architecture, achieve the same or even lower power consumption compared to a model
that does not.
Therefore, a model that is capable of lower inference latency, will draw less power, which
makes it more suitable for deployment in applications for which energy efficiency is crit-
ical.

The domain on which we will focus in this thesis is IoT networks. An IoT network can
have several different configurations, but the most common consists of a large number of
low-power devices collecting data at the edge of the network and a server at the center of
the network, or in the cloud, that gathers the information coming from the edge-devices
and makes decisions. Server and edge-devices are connected through an internet connec-
tion.

Edge-devices can have very different characteristics. They can have a Micro Controller
Unit (MCU), an example of which are ARM Cortex-M series; some of them have proper

7



Introduction

Figure 1.4. ST Microelectronincs Smart Camera Module with the STM32H747 MCU

CPUs, like the 64bit ARM Cortex A72 in the Raspberry Pi (used in this thesis). In some
cases, edge devices can be equipped with an embedded GPU, like the NVIDIA Jetson
family, or custom accelerators specific for deep learning inference, which typically use
spatial or systolic architectures to optimize the highly-parallel MAC kernels that are at
the core of most key neural network layers.

Computer vision models, such as semantic segmentation, are often very complex and
require a large number of computations. This aspect collides with their deployment in
resource-constrained environments such as edge-devices in IoT networks. For this reason,
the standard approach for deep learning in an IoT context is to offload both training and
inference phases to a remote server (or cloud).

Training is an offline task and it makes sense to perform it once in a while on a server
equipped with a GPU, while offloading inference can be problematic. The issues regard
the network connection. Firstly, transferring image data to the server and transferring
back the prediction map is highly energy expensive, which is critical since many IoT
devices are battery-powered. Additionally, image data can contain sensitive information
and this can raise privacy concerns when transferring them over the network. Finally,
offloading the inference phase leads to unpredictable latencies when devices have a slow
or intermittent connection. Therefore, if an application has real-time requirements, of-
floading the inference would make it impossible to meet such requirements, while bringing
the inference to the edge is a way of achieving predictable latencies.

The first step toward real-time semantic segmentation is to choose an adequate model.
There are plenty of such networks in the literature, which employ different design-time
approaches to lower the inference latency. Thanks to these techniques, these models will
be faster compared to not optimized counterparts across different hardware. The issue
is that, obviously, they will not achieve real-time inference on all of the devices on which
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they can be deployed.

For this reason, there are further optimizations that can be implemented after the model
has been designed to bring its performance closer to the requirements of the task, on the
available hardware platform. This is a very vast family of optimizations, ranging from the
manipulation of the model structure through its simplification or its compression [15], to
the quantization of the parameters and the activations to lower bit representations [21]
and many others.

In this thesis, we face the challenge of achieving real-time inference in a semantic seg-
mentation task on an IoT device.
Computer vision tasks on edge-devices, often rely on the collection of image data from
cameras and processing them right after. This means that the inference phase has real-
time requirements, but there aren’t any models that are able to meet such requirements
on less powerful devices. This is because real-time semantic segmentation models are
evaluated on very complex datasets, like Cityscapes [9] or CamVid [3], which present
a high number of classes and images with many objects at different scales. While au-
tonomous vehicles are the main example of the need for real-time segmentation, they are
not representative of a realistic IoT use case. As a matter of fact, modern “self-driving”
cars are equipped with very powerful hardware.

Figure 1.5. Tesla’s latest Full Self Driving (FSD) chip [43]

Even smaller models designed to achieve real-time performance need to have enough pa-
rameters to accurately capture context and detail information from these elaborate input
images.
Typical IoT applications won’t be as demanding as the datasets that these models are
evaluated on. Therefore, there is a large headroom for optimizing models in order to
meet the requirements of the task.
Examples of less demanding semantic segmentation applications can be delivery drones
[2], as the segmentation of aerial views is far less elaborate than busy urban driving
scenes. Other examples are in the robotic domain like grasping [1] or inspection [36].
Both of these tasks do not operate on very complex input images and are performed on
hardware that is resource-constrained in terms of energy or computational power.

In this thesis, we will focus on methods to bring the inference latency of an established
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model under the requirements of a given task on a given dataset.
Starting from an existing model is easier than proposing a brand new one. It does not
require the validation of the new architecture and, most importantly, it makes much more
sense to modify an existing network to adapt it to a specific task, rather than designing
an ad-hoc model just for that task. The amount of work that goes into designing and
testing an original model is not justified if its purpose is to be deployed on just one dataset.

In real-world applications, it is common to take an existing network and deploy it on the
desired data.

Figure 1.6. A Representation of the Optimization System

Our goal is to provide a system of optimizations that allows developers to manipulate
the behavior of a network to meet certain constraints in terms of inference latency while
keeping acceptable accuracy. We structured the systems according to the effort required
by the optimizations it implements. In this context, the term "effort" describes both
the expertise required to implement an optimization technique and the time required
to execute it. In particular, the proposed automatic optimization framework accounts
for different levels of expertise by allowing users to enter from different points based on
their ability to understand the structure of the network. Moreover, users with different
amounts of available time can exit the network at different points. It is not easy to de-
fine time constraints because different baseline models will result in different execution
times for each optimization, therefore there is no way of knowing in advance how much
time the optimization process will take. Time is an important factor especially when the
models are trained on a cloud computing platform whose billing mechanism is based on
the duration of the execution.

In the experimental part of this thesis, we will focus on finding a pipeline of optimizations
that can make up the inner working of such a system. We selected a dataset that repre-
sents a realistic use case for real-time semantic segmentation and a baseline model from
those reviewed in the background chapter. The hardware platform chosen to represent
an edge-device is a Raspberry Pi 4 model-B with 4GB of RAM.
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Out of the possible ways to reduce the inference latency of a network we chose to an-
alyze two main approaches: simplifying the input data and simplifying the structure of
the network. These are completely different in terms of effort, since the first one only
requires handling the input images, while the second requires a deeper understanding
of the baseline architecture in order to feed the system a parametrized network and a
set of hyperparameters and their values. Changing the size of the input is mentioned in
the literature of some real-time segmentation models [35], with the purpose of achieving
better latency on the same network structure while losing some accuracy. Network sim-
plification, on the other hand, is often mentioned as the most effective way of improving
latency without severely impacting accuracy [10], but it is not very well documented, ex-
cept in papers presenting efficient network architectures as an improved version of bigger
and slower models [8] [22] [20].

Each optimization in the analysis corresponds to a version of a baseline model chosen be-
forehand, which will feature different input characteristics, a modified structure, or both.
Every one of these models will be evaluated in terms of inference latency and intersection
over union score (IoU), which is the most effective way to evaluate the output quality of
a semantic segmentation model. The results gathered from the evaluations will be used
to make important considerations on the tuning knobs of each optimization stage and on
the whole optimization pipeline.

In the end, we will be able to understand the way in which each optimization affects the
behavior of the model and how to combine them in order to meet given accuracy and
latency constraints.
Having gone through the optimization pipeline, we will be presented with several varia-
tions of the baseline model that respect the pre-defined accuracy and latency constraints.
The choice of one model will depend on every specific task: if it prefers faster inference
or better accuracy.

As a future development, from the set of experiments performed in this thesis, particularly
the network simplification part, we can gather useful guidelines that can be used to design
a brand-new network architecture. As a matter of fact, especially in the feature extraction
part, many convolutional neural networks share components if not entire backbones.
Therefore, understanding how these components react to different simplifications, can be
useful when integrating them into the structure of a model.
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Chapter 2

Background

In the previous chapter, we have introduced what semantic segmentation is and mentioned
some of its applications in different domains and environments. Now we can explore in
more detail which are the most relevant datasets and explore the defining characteristics
of semantic segmentation models by reviewing the state of the art.

At the end of this chapter, we will also present the leading design-time optimizations for
real-time semantic segmentation models.

2.1 The Datasets
A dataset for semantic segmentation consists in images and the corresponding segmen-
tation maps.
Each dataset presents a certain number of categories and in each image there can be
objects belonging to different classes as well as multiple instances of the same class.
Surveying the literature reveals that the principal datasets can be grouped into the fol-
lowing categories:

• Scene understanding

• Urban driving

• Medical imaging

• Aerial images (satellite and drones)

• Others

2.1.1 MS COCO

The MS COCO (Microsoft Common Objects in COntext) dataset [25], belongs to the
scene understanding category. It contains annotations for several deep learning tasks,
including semantic segmentation. It contains very heterogeneous images that portray
scenes from various context.
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Figure 2.1. Samples from the MS COCO Dataset

The dataset presents 91 classes that form a total of 2.5 million instances in 328k images.
The 91 classes can be grouped into 11 macro-categories:

• person and accessories

• animal

• vehicle

• outdoor objects

• sports

• kitchenware

• food

• furniture

• appliance

• electronics

• indoor objects

2.1.2 Pascal VOC

Pascal Visual Objects Classes (VOC) [12] is another dataset for scene understanding
that features annotations for semantic segmentation and other computer vision tasks. It
presents similar characteristics to COCO, but it is less complex. The segmentation image
set contains 1464 training samples and 1449 testing and validation samples.
Pascal VOC presents 20 classes organized hierarchically, that form 4 macro categories:

• Vehicles

• Household

• Animal

• Person

14
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2.1.3 ADE20K

ADE20K [50] is another scene understanding dataset that has similarities with COCO
and Pascal VOC in ths sense that it represents a wide variety of scenes and a large number
of object categories.
It contains 20,210 images in the training set, 2,000 images in the validation set, and 3,000
images in the testing set. Similarly to COCO and Pascal, the categories are organized in
a hierarchical structure as objects and parts. All the images are exhaustively annotated
with objects and many objects are also annotated with their parts. Parts can have parts
too: for example, the ‘rim’ is a part of a ‘wheel’, which in turn is part of a ‘car’. A ‘knob’
is a part of a ‘door’ that can be part of a ‘cabinet’. The total part hierarchy has a depth
of 3. Overall, it contains 150 object categories, not including parts.
Any image in ADE20K contains at least 5 different objects and up to 273 instances, which
become 419 when counting parts as well. This makes it one of the most complex datasets.

Figure 2.2. Samples from the ADE20K Dataset

2.1.4 Cityscapes

We are treating urban driving scene datasets as a separate category, but they are a subset
of scene understanding datasets. In fact, some of the images from COCO and Pascal are
from driving scenes. The reason why we treat this category separately, is that these
datasets only contain images from the point of view of a vehicle and only present urban
driving scenes, contrary to the huge variety of contexts present in COCO and Pascal.
Cityscapes [9] is comprised of a large, diverse set of stereo video sequences recorded in
streets from 50 different cities across several months. It presents 2 sets of images, the first
consists in 5000 images with high quality pixel annotations, the second consists in 20000
images with coarse annotations. All of the images were shot in good weather conditions,
because the researcher believed that segmentation of driving images with adverse weather
is a task that requires specific measures and a different approach.
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It contains 30 classes belonging to 8 macro-categories:

• Flat

• Human

• Vehicle

• Construction

• Object

• Nature

• Sky

• Void

Figure 2.3. Samples from the Cityscapes Dataset

2.1.5 CamVid

Cambridge-driving Labeled Video Database (CamVid) [3] was introduced as the first
collection of videos with semantic annotations. The database provides ground truth
labels that associate each pixel with one of 32 semantic classes. It contains 367 in the
training set, 101 in the validation set and 233 in the test set. Differently from the datasets
introduced above, in CamVid, classes are not organized hierarchically.
The dataset contains 4 video sequences that were recorded with an HD camera mounted
to the dashboard of a car. One of the sequences was shot at dusk, while the others were
shot in the daylight with sunny weather conditions. The total duration of the sequences
is 22 minutes and 14 seconds.

2.1.6 SYNTHIA

SYNTHIA [38] is an urban driving scene dataset that has a peculiarity: it is a collection
of photo-realistic frames rendered from a virtual city created with the Unity development
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platform.
The dataset contains pixel level annotations for 13 semantic classes:

• misc

• sky

• building

• road

• sidewalk

• fence

• vegetation

• pole

• car

• sign

• pedestrian

• cyclist

• lane-marking

It is divided into 2 complementary set of images, the first one contains 13400 images
from random point of view across the city, while the second one contains 200000 images
captured from the perspective of a car driving in the streets of a virtual city. This dataset
is rarely used as a benchmark for new models, like cityscapes or camvid, but its inclusion
in the training stage has proved to significantly improve performance on datasets that
contain real-life images.

Figure 2.4. Samples from the SYNTHIA Dataset
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2.1.7 BRATS 2015

The multimodal BRAin Tumor Segmentation (BRATS) [31] dataset contains two types
of images: clinical image data and synthetic image data.
The Clinical Image Data consists of 65 multi-contrast MR scans from glioma (the most
frequent primary brain tumor in adults) patients, out of which 14 have been acquired
from low-grade glioma patients and 51 from high-grade glioma patients. The images
represent a mix of pre and post-therapy brain scans.
The Synthetic Data consists of simulated images for 35 high-grade and 30 low grade
gliomas that exhibit comparable tissue contrast properties and segmentation challenges
as the clinical datasets.

Figure 2.5. Samples from the BRATS 2015 Dataset

The simulated images are annotated by the software that generated them, while the
clinical images require manual annotations. The annotations define a “tumor area” that
presents 4 types of intra-tumoral structures: edema, non-enhancing solid core, necrotic
core and non-enhancing core. Because, in many cases, tumor boundaries are difficult
to define clearly, each image has been labeled by several experts and the results were
subsequently fused to obtain a single “consensus segmentation”.

18
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2.1.8 Dubai UAE Dataset

The Dubai UAE dataset as an example of a dataset for semantic segmentation of aerial
imagery. It is a joint project by Humans in the Loop and the Mohammed Bin Rashid
Space Center in Dubai.
The dataset consists in aerial images of Dubai obtained by MBRSC satellites. The images
are annotated for semantic segmentation and contain objects belonging to 6 total classes:

• Buildings

• Land

• Road

• Vegetation

• Water

• Unlabeled

Figure 2.6. A sample annotation from the Dubai UAE Dataset

The total volume of the dataset is 72 images grouped into 6 larger tiles.
Differently than the other domains, there isn’t a predominant dataset for aerial images.
Nonetheless this is one of the most requested applications and one of the most challenging.
In fact, especially for satellite images, there are so many factors at play, that it is very
hard to achieve good accuracy on all classes.
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2.1.9 Other Datasets

Semantic segmentation is not limited to the applications described above. There are
many popular datasets belonging to other categories.

Person-In-Context (PIC) [26] is a dataset for human-centric relation segmentation, which
aims to predict the relations between the humans and the surrounding entities and iden-
tify relation correlated human parts.

The CalCROP21 [13] dataset contains satellite data (at 10 spatial resolution) of the Cen-
tral Valley region in California/ The semantic categories are the crop types grown in that
area.

SUIM (Segmentation of Underwater IMagery) [23] contains over 1500 images with pixel
level annotations for 8 categories of underwater objects (fish, reefs, plants, wrecks/ruins,
robots, sea floor). With a variety of use cases, this dataset opens up promising opportu-
nities for future research in underwater robot vision.

LIP (Look Into Person) [14] is a dataset for Human-Parsing. It contains over 50000 an-
notated images, with 19 semantic classes. In a human parsing task, the classes represent
different parts of the human anatomy and clothing. MHP (Mulitple-Human Parsing) [24]
is also a dataset for human parsing, but, differently from others, it contains images in
which there is always more than one human.

FoodSeg [44] is a large dataset for food image segmentation. It contains 9490 images
annotated with 154 ingredient classes. A dataset like FoodSeg lends itself to many use
cases, like estimation of calories from the picture of a prepared dish, automated checkout
at a self-service restaurant and so on.

Figure 2.7. A sample from the FoodSeg Dataset
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2.2 The State of the Art
Before we analyze what are the state-of-the-art approaches and models for semantic seg-
mentation, it is important to explain which are the challenges of this task and highlight
the difference with other computer vision applications.
In introducing these challenges of segmentation, we need to consider the output of the
models. The fact that the model outputs a prediction map instead of a one-hot encoded
vector means that the features required to produce a prediction need to carry additional
information.

In convolutional models, context information is vital to make accurate predictions. For
tasks like classification, context information is acquired by gradually subsampling the
input image across the structure of the network.
At this point it is useful to introduce the concept of receptive field. This is one of the
basic concepts in convolutional neural networks. The receptive field of a feature in a
CNN is the region in the input space that is used to compute the value of that particular
feature. Therefore, if the receptive field of a feature is small, it means that that feature
does not contain much context information. On the contrary, if the receptive field is large,
it means that a big region of the input was used to compute the value of that feature and
that it embeds more context.
Although subsampling layers are helpful to expand the receptive field, they completely
ignore feature resolution, which is crucial for a pixel-level task like semantic segmentation.

Another challenge in semantic segmentation models is the presence of objects belonging
to the same class represented at different scales within the same image. One example of
this phenomenon can be a Cityscapes image in which there are two vehicles at different
distances from the point of observation, the further vehicle will appear smaller than the
one that is closer while belonging to the same semantic category. Building a model that
is resilient to scale variations is not trivial, especially considering that most classification
models, upon which semantic segmentation networks are based, rely on scale information
to make predictions

The third challenge in the application of convolutional neural networks to semantic seg-
mentation si the reduced localization accuracy. This issue relates to the fact that an
object-centric classifier requires invariance to spatial transformations, inherently reducing
the spatial accuracy. In practical terms, this means that score maps of deep convolutional
networks can predict the presence and the rough position of objects, but cannot clearly
delineate their borders. This happens because the information about the precise (pixel-
level) location of an object in an image is lost as the input image travels through the
layers of the network.
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2.2.1 Fully Convolutional Networks

Fully Convolutional Networks (FCN) are one of the earliest approaches to semantic seg-
mentation.
The idea behind FCNs is to modify existing CNN architectures by replacing all fully-
connected layers with convolutional layers, so that the output is a spatial segmentation
map and not an array of classification scores.

It has been observed how important skip connections are in this kind of models, thanks to
skip connections feature maps from the final layers are up-sampled and fused with feature
maps of earlier layers so that the model combines semantic information from deep layers
with appearance information from shallow layers.
One of the limitations of a simple FCN model is that it does not take into account global
context information as well as some more advanced architectures. This is the reason why
later models integrated particular layers and functional blocks into FCNs.

Considering just the basic definition we can say that all of the models analyzed in this
chapter are Fully Convolutional Networks. In fact, none of them features Fully Connected
layers.

An interesting consequence of eliminating the Fully Connected layers is that there are no
restrictions to the dimensions of the input. In fact, a FCN model that was trained on
512x512 samples can be fed a 256x256 image and it will return a 256x256 prediction map
without functional issues. This does not mean that the output quality will be the same
when changing the input resolution, but that is a topic for later.

An example of a simple Fully Convolutional Networks was introduced in [29].
The main idea is to combine layers of the features hierarchy in order to refine the spatial
precision of the output. To do so, skip connections are added from shallower to deeper
layers.
The purpose of skip connections is that shallower layers have smaller receptive fields and

Figure 2.8. Skip Connections in the FCN model [29]

22



2.2 – The State of the Art

therefore are more suited for local predictions, while layers further down the structure of
the network are able to capture more context information.
The feature maps from the different skip connections are combined at the end of the
network, where they are brought to scale agreement by upsampling the lower resolution
maps, which are then cropped to be aligned with the other layers (portions of the up-
sampled layer that extend beyond the other layers because of padding are removed).
The layer fusion operation is done througn the concatenation of the feaure maps, after
which the prediction map is produced by a pointwise convolution (1x1 kernel size).

2.2.2 Encoder-Decoder Models

In a typical convolutional network, the height and the width of the input image is grad-
ually reduced with convolutional layers and pooling layers. The reduction of these di-
mensions allows deeper filters to focus on a larger receptive field (same size filter, smaller
input image). Moreover, alongside the reduction in height and width there is an increase
in the number of channels, which means that more complex features are extracted from
the image. As we have said before, this comes at the cost of localization accuracy and
feature resolution.
Encoder-decoder models perform downsampling using a classification backbone (encoder)
and then try to reconstruct the lost information in the second module of the network, the
decoder. The decoder’s job is to bring the resolution of the feature maps to the resolution
of the input image and in doing so integrate pixel-level detail information.

Due to the shape of the feature maps across the layers of the network, the model that
introduced the encoder-decoder architercture is called U-Net [37].

The encoder in U-Net consists in a series of convolutional and pooling layers and, in

Figure 2.9. The U-Net structure [37]
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some variation of this model, it consists of a classification backbone like ResNet [16] or
Inception [41]. The fact that the encoder is obtained from a classification model, means
that this portion of the network can be pretrained on a classification dataset like Ima-
geNet to facilitate the training of the complete network on a segmentation task.

The decoder in U-Net has the purpose of enabling precise localization when upsampling
the output of the encoder. The upsampling can be done either by un-pooling layers (bi-
linear upsampling) or transposed convolutions. The difference between the two is that
transposed convolutions are learnable.

An important feature of U-Net is the presence of skip connections between the various
blocks of the encoder and the corresponding blocks in the decoder, whose purpose is to
keep alive information that is important to the segmentation output. This way, detail
information that is present in the feature maps closer to the input, is brought back in the
decoder.

2.2.3 Dilated Convolutions

While it is not a category of models by itself, dilated convolution is one of the core com-
ponents of many semantic segmentation models.
A dilated convolutional layer “inflates” the kernel by inserting holes in between its ele-
ments. The dilation rate l is the hyperparameter that regulates how much the kernel is
widened. The space between two adjacent elements of the kernel after dilation is l-1.
The effect of dilated convolution is that with the same kernel size, it is able to reach a

Figure 2.10. Dilated Convolution [48]

wider portion of the input (wider receptive field), thus capturing more context. It is sim-
ilar to what is achieved by subsampling the input and then performing the convolution.
Only in that case, instead of widening the filter, the input image is shrunk so that the
same filter can cover a wider context.

So, the use of dilated convolution is introduced in semantic segmentation models in
order to widen the receptive field, without loosing resolution by subsampling the input.
In [30] the researchers define the concept of Effective Receptive Field by computing, with
partial derivatives, the impact that each pixel belonging to the theoretical receptive field
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actually has on the output of the layer. In doing so they compare the ERF of Subsampling,
Dilated Convolutions and Simple Convolution. It is clearly visible how dilated convolution
presents a larger effective receptive field compared to simple convolution.

Figure 2.11. Effective Receptive Field visualization [30]
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2.2.4 Pyramid Pooling

We have mentioned that one of the problems with segmentation is the presence of mul-
tiple instances of the same object at different scales.

The Spatial Pyramid Pooling module introduced in [17] partitions the image into divisions
from finer to coarser levels and aggregates local features into them. Such a module allows
to extract information from different scales. In fact, each pyramid level corresponds to a
different scale.

While SPPNet introduced the concept of Pyramid Pooling for classification and object
detection, it was PSPNet [49] to bring it to semantic segmentation. This network uses a
ResNet18 [16] classification backbone (pre-trained on ImageNet) and modifies some of its
convolutional layers by adding a dilation rate. The backbone generates an output feature
map that has 1/8th of the resolution of the input image. This output feature map is
then fed to the Pyramid Scene Parsing Pooling Module that extracts 4 different Pyramid
scales from it. The coarsest scale is obtained through global average pooling (generates a
feature map of resolution 1x1), while the other scales are obtained by dividing the input
feature map into regions (pooling windows) and considering one value representative for
the entire region (max or average). After the pooling operations, the 4 scales are fed to
a pointwise convolutional layer with the purpose of reducing their number of channels
to 1/4th of the original number. Then, the 4 maps are upscaled to the resolution of the
input of the module and are concatenated. The input map of the module is also concate-
nated to the upsampled pyramid scales, obtaining double the number of channels, which
is brought back to normal by another pointwise convolution.

Figure 2.12. Pyramid Scene Parsing Pooling in PSPNet [49]

The Pyramid Scene Parsing Pooling Module produces a final feature map that contains
both local and global context information and is also robust to multi-scale representations
of the same object.
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2.2.5 DeepLabV3 and DeepLabV3+

DeepLab [5] is a model that has gone through several iterations. In its first form, it
introduced the use of Conditional Random Fields as a post-processing tool to improve
the localization performance.

In its third iteration, DeepLabV3 [6] abandoned Conditional Random Fields and intro-
duced a revised architecture that featured Dilated Convolutions and its own flavor of a
Pyramid Pooling Module.

DeepLabV3 uses dilated convolutions to increase the receptive field of a convolutional
kernel, without increasing the output stride of the layer (the ratio between the resolution
of the input image and the resolution of a feature map). Increasing the output stride
results in a reduction in resolution that is detrimental to the quality of the segmentation
output. Employing dilated convolutions allows the network to keep high resolution feature
maps, while still extracting the same amount of context information.
In order to tackle the problem of multi-scale objects, DeepLabV3 uses a modified Pyramid
Pooling Module, called Atrous Spatial Pyramid Pooling module. This module uses 2
parallel branches whose outputs are then concatenated.

Figure 2.13. Scheme of the structure of DeepLabV3 [6]

The first branch concerns image-level features, while the second is the actual pyramid
pooling step.
In the first branch, the last feature map of the network is taken, global average pooling
is applied to it, then it is fed to a pointwise convolution an finally it is upsampled to its
original resolution.
In the second branch, a pointwise convolution is applied to the last feature map of the
network, then three 3x3 dilated convolutions, with 3 different dilation rates (varying on
the output stride, ie. [6, 12, 18] with output stride = 16), are performed to the same
map. The inputs of the 4 convolutions are then concatenated and fed to a pointwise
convolution. Finally the outputs of the 2 branches are also concatenated and fed to a
pointwise convolution.

DeepLabV3+ [7] extends DeepLabV3 by adding a simple, yet effective, decoder module
to refine the segmentation output, especially around object boundaries.
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Figure 2.14. Scheme of the structure of DeepLabV3+ [7]

So this network becomes a combination of all the approaches described in this section: it
is a fully convolutional network, it uses both dilated convolutions and a spatial pyramid
pooling module, and, in its latest revision, it has an encoder-decoder structure.

Furthermore, DeepLabV3+ introduces Depthwise Separable Convolution as an alterna-
tive to traditional strided convolution in order to reduce the computation cost and the
number of parameters. We will look more deeply into depthwise separable convolution in
the following section.
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2.3 Resource Optimization Approaches
In this section we will describe the main design-time optimizations that are integrated
into semantic segmentation models to reduce their computational complexity without
impacting the accuracy of the prediction.

2.3.1 Depthwise Separable Convolution

In standard convolution a convolution between an input of size Df × Df × M and a filter
of size Dk × Dk × M is performed N times, where N is the number of filters, generating
N output maps of size Dg × Dg, so that the shape of the output is Dg × Dg × N .
So the number of multiplications required is: Dk × Dk × M × Dg × Dg × N

Figure 2.15. Depthwise Separable Convolution

With Depthwise Separable Convolution the standard convolution operation is divided
into 2 steps.

The first step is Depthwise Convolution in which the size of the input feature map is
Df × Df × M , and there is one filter of dimension Dk × Dk for each channel of the input
map (M filters in total). Each filter is convolved over the corresponding channel of the
feature map generating an output map with shape Dg × Dg, so depthwise convolution
yields an output map of shape Dg × Dg × M .

The second step is Pointwise Convolution. This operation is equivalent to performing
the linear combination of the M channels of the input. More in detail, the input is the
output of the depthwise convolution (of size Dg × Dg × M), there are N filters of size
1×1×M . The output is obtained by stacking the outputs of all the convolutions between

29



Background

the input maps and the filters. The final output size is the same as standard convolution,
Dg × Dg × N .

The number of multiplications required is given by the sum of the number of multiplica-
tions of the previous steps: Dk × Dk × Dg × Dg × M + Dg × Dg × M × N . The ratio
between the number of multiplications of depthwise separable convolution and traditional
convolution is: (Dk × Dk + N)/(Dk × Dk × N), so as N increases, so does the difference
in efficiency between the two operations.

2.3.2 Grouped Convolution

Grouping takes into account the channel dimension, which increases very rapidly as we
go deeper in the network. In fact, the spatial dimensions still have effect, but as we go
deeper, the channel dimension is the most concerning.

The idea is to divide the feature maps and the filters in g groups. The value of g is an
hyperparameter that has to be chosen experimentally.

The size of the input feature map has shape Df × Df × M and we have N filters, each of
which has shape Dk × Dk × M . We split the M channels of the input feature map into
g groups, each of which has M/g channels. We perform the same operation with the N
filters splitting their channels into g groups. Then, when performing the convolution, for
each one of the N filters, we will consider only one of its splits and convolve it on the
corresponding group of input channels.

Figure 2.16. Standard vs Grouped Convolution

So, in the end, we perform g groups of convolutions between smaller inputs and filters. In
particular, the N filters can be divided into g groups, each of which presenting N/g filters,
and every group is convolved on the corresponding group of input channels. The g groups
of output maps, each of which presenting N/g channels, are concatenated, resulting into
an output of shape Dg × Dg × N .

The gain in efficiency is in the number of parameters used for the convolution, as the
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total number of parameters is reduced by a factor of g.

2.3.3 Channel Shuffling

A Convolutional Neural Network that makes use of grouped convolution, consists of re-
peated building blocks with the same structure.
A limitation of models like this is that they take advantage of group convolution for 3x3
or bigger filters and do not consider 1x1 convolutions. In smaller networks (and especially
in the domain of semantic segmentation) 1x1 convolutions are very common and require
quite a large number of computations.

A way to make these 1x1 convolutions more efficient is to use 1x1 group convolutions
instead. The problem with grouped convolution is that it prevents channels from mixing
across groups, outputs from a certain group only relate to the inputs within the group.
In order to overcome such side effect, a channel shuffling operation is introduced as a way
of helping information flow across channels.
The shuffle operation consists in dividing the existing groups into several subgroups and

Figure 2.17. Channel Shuffling [47]

then feed each group in the next layer with different subgroups.
The ShuffleNet [47] introduces a building block for a network that takes advantage of
this type of group convolution. However the idea behind channel shuffling can be gener-
alized to any type of group convolution, in fact the disadvantage of group convolutions
preventing the information flow across channels is well known and in most architectures
is countered by adding a 1x1 convolution. With channel shuffling this operation can be
avoided, reducing the number of parameters and computations.

Moreover, channel shuffling is differentiable, which means that it can be added into
network structures without any modifications to the training procedure.

2.3.4 Early Downsampling

It is clear that processing large input frames is very computationally expensive, so the
early stages of the network can be very intensive in terms of computations.
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Moreover, the primary role of the initial network layers should be that of feature extrac-
tion and the preprocessing of the input data for the later stages of the architecture, rather
than contributing directly to the prediction.

In the ENet [33] paper, the assumption is that visual information in the input image is
highly spatially redundant and thus it can be compressed into a more efficient smaller
representation without losing vital information.
ENet uses early downsampling as its first two blocks heavily reduce the input size.

The first block takes a 512x512 input image and uses a max pooling operation with a 2x2
window and no overlapping in parallel with a convolutional layer with 13 3x3 filters and
stride 2, the output of the 2 operations are concatenated in a 256x256x16 feature map
The second block is a bottleneck block which carries out a further downsampling with
a 2x2 convolution with stride 2 followed by a 3x3 and a 1x1 convolutions (which do not
alter the size of the feature maps), in parallel with a max pooling operation, the outputs
are then summed to obtain a 128x128x64 feature map.
We can observe how in the first 2 building blocks of the architecture the resolution is
reduced to a quarter of the original image size.

What we can keep in mind from this is that performing the downsampling early in the
network results in lower complexity of the layers that operate on the smaller inputs and
overall the complexity of the network is going to be lower.

2.3.5 Small Size Decoder

Encoder-Decoder architectures can present a symmetric structure, but it is quite easy to
understand how the jobs of the encoder and the decoder are vastly different.

In fact, while the encoder’s job is to pre-process the input, extract features from it and
capture context and scale information (as it happens in classification models), the de-
coder only has to scale up the feature maps produced by the encoder recovering fine detail
information.

Following this intuition, in order to save resources, we can reduce the size of the decoder,
resulting in an asymmetric network architecture that, in most cases can yield results that
are comparable to its symmetric counterpart, keeping the computational cost down.

2.3.6 Factorization of Large Filter Convolutional layers

Total computational cost increases with the square of the kernel size.
The idea, introduced in [42], is to approximate the output of a convolutional layer with
a large filter size using a multi-layer convolutional network with smaller filter size, thus
with fewer parameters.

Factorizing a convolutional layer with a large kernel into multiple convolutional layers
with smaller filter size is preferable for two reasons:
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• Reducing the number of parameters : for example, by stacking three 3 × 3 convo-
lutional layers correspond to the same effective receptive field of a 7 × 7 layer while
reducing the number of parameters to almost half.

• The decision function is made more discriminative by incorporating multiple non-
linear rectification layers instead of a single one

2.3.7 Two-Branch Networks

We have seen how downsampling can lead to improvements in inference time, but causes
a loss in spatial detail, which is crucial in semantic segmentation.

The idea behind two branch networks is to use one shallow branch to capture the spatial
details keeping high resolution feature maps and a deeper branch that uses downsampling
to efficiently extract context information and features useful for the classification output.
A feature fusion operation is performed before the output layer.

Further details of the implementation of this approach are peculiar of the proposed ar-
chitectures that adopt such approach.
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2.4 Real-Time Semantic Segmentation Models

In this section we will explore some of the most popular real-time segmentation models,
highlighting their utilization of the approaches described in the previous section.

2.4.1 DDRNet

The structure of DDRNet [19] consists of two main components: the Deep Dual Resolu-
tion Network and the Deep Aggregation Pyramid Pooling Module.

The Deep Dual Resolution Network is built by adding a high-resolution branch to a
ResNet [16] backbone. This makes it a Dual-Branch architecture.
The high-resolution branch is appended to the convolutional stage in the backbone in
which the resolution of the output feature maps is 1/8th of the input image.
Moreover, the input stem of the original ResNet [16] is modified by factorizing the 7x7
convolutional layers with two 3x3 layers.

Figure 2.18. The DDRNet Model [19]

Two Bilateral Feature Fusion Blocks are added at different points of the network to
exchange information between the two branches. They work by upsampling (bilinear up-
sampling) the feature maps from the low-resolution branch and then summing them with
the feature maps of the high-resolution branch. The same is done after downsampling
(strided convolution)the feature maps from the high-resolution branch.

The Deep Aggregation Pyramid Pooling Module is used to extract contextual information
from low-resolution feature maps. Taking as input feature maps of 1/64th the resolution
of the input image, large pooling windows with exponential strides are used to generate
feature maps of 1/128th, 1/256th, 1/512th of the input image resolution. The input
of the module and image-level information generated by global average pooling are also
utilized. All these feature maps are upsampled and fed to 3x3 convolutional layers to
fuse contextual information of different scales in a hierarchical residual way. The feature
maps are then concatenated and fed to a pointwise convolution before summing them to
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the input of the block.

DDRNet, in its smallest configuration, has 5.7 million trainable parameters. The possible
configurations present different numbers of filters at each convolutional layer.

2.4.2 Fast-SCNN

Fast Segmentation Convolutional Neural Network (Fast-SCNN) [35] is based on the two-
branch architecture and introduces the Learning to Downsample Module.
The building blocks of the network architecture are: the Learning to Downsample Mod-
ule, a Global Feature Extractor and a Segmentation Head.

The Learning to Downsample Module consists of three layers, which are a standard convo-
lution and two depthwise separable convolutional layers, all three have 3x3 convolutional
kernels.

The Global Feature Extractor directly operates on the output of the Learning to Down-
sample module. This is supposed to save computational resources by sharing the down-
sampling performed in the Detail Branch, instead of downsampling in both branches.
The GFE itself is composed by three Inverted Bottleneck Blocks borrowed from Mo-
bileNetV2 [39], which employ depthwise separable convolutions.

A Pyramid Pooling Module, built on the example of PSPNet [49], is added to the end of
the Global Feature Extractor.

The Feature Fusion Module upsamples the output of the Global Feature Extractor to
the same resolution of the output of the Learning to Downsample module, performs a
depthwise separable convolution and then sums the feature maps together.

The Segmentation Head employs two depthwise separable convolutional layers and one
pointwise convolution that brings the number of channels to the number of classes of the
dataset.
In its only configuration, FastSCNN presents 1.12 million trainable parameters.

Figure 2.19. The FastSCNN Model [35]
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2.4.3 BiSeNet

The Bilateral Segmentation Network (BiSeNet) [46] model is a dual branch architecture
with a Spatial Path and a Context Path.

The purpose of the Spatial Path is to preserve the resolution of the input image to encode
enough spatial information. The Spatial Path is composed by three layers, each of which
contains a convolution with stride=2 followed by Batch Normalization and a ReLU ac-
tivation layer. Therefore, this path produces an output feature map whose resolution is
1/8th of the input image resolution.

The Context Path is designed to provide a sufficient receptive field. It employs a lightweight
model, like Xception [8], as a backbone. This model can downsample the input image
to obtain a large receptive field. A global average pooling layer is added at the end of
the lightweght model. Then, the upsampled output of the global average pooling layer is
combined with the output of the lightweight model.

BiSeNet introduces an Attention Refinement Module to refine the features at each stage
of the Context Path. The Attention Refinement Module employs global average pooling
to capture global context and computes an attention vector to guide the feature learning.

At the end of the network, the features from the Spatial and the Context path are fused
together to make a prediction.

In its smallest configuration, BiSeNet presents 5.8 million trainable parameters. The

Figure 2.20. The BiSeNet Model [46]

configurations vary from each other according to the backbone used.
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2.4.4 BiSeNetV2

BiSeNetV2 [45] is a dual-branch network that consists of a Detail Branch and a Semantic
Branch, that are merged by the Bilateral Aggregation Layer.
The Detail Branch is responsible for the spatial details, therefore it presents a shallow

Figure 2.21. The BiSeNetV2 Model [45]

structure with wide channels: high resolution feature maps and low number of channels.
On the contrary, the Semantic Branch is designed to capture high-level semantics (con-
text information), which require a large receptive field.

The Detail Branch contains three stages, each of which consists of a convolutional layer,
followed by batch normalization and a ReLU activation. This way, the branch produces
feature maps that are 1/8th the resolution of the input image.

The Semantic Branch is more complex and it is composed by the following building blocks:
Stem Block, Gather and Expansion Blocks, Context Embedding Block. The Stem Block
is inspired to the Inceptionv4 [40] model and it is used to shrink the feature representation.

The Gather and Expansion Block is inspired to MobilenetV2’s [39] Inverted Bottleneck
Block and it consists of: a 3x3 convolutional layer, a 3x3 depthwise convolution, a 1x1
pointwise convolution. This block can be used with either stride=1 or stride=2. In the
second case, two 3x3 depthwise convolutions are added and one 3x3 depthwise separable
convolution is performed in the shortcut connection. Differently from the Inverted Bot-
tleneck Block, the GE block presents one more 3x3 convolution.

The Context Embedding Block uses global average pooling and a residual connection to
embed the global contextual information efficiently. This module can be thought of as a
Pyramid Pooling module with only one scale.

The Bilateral Aggregation Layer is used to merge the complementary information from
the two branches. It does so by upsampling the output feature map of the Semantic
Branch to match the output of the Detail Branch. The feature fusion is then carried out
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as the element-wise product of the feature maps.

The output of the model is generated by the Segmentation Head, which performs a 3x3
convolution, followed by batch normalization and a ReLU activation layer. I then uses a
1x1 convolution to bring the number of channels to the number of classes of the dataset,
and finally uses bilinear upsampling to bring the prediction maps to the input image
resolution.

BiSeNetV2 presents 3.4 million trainable parameters.
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Chapter 3

Methodology

After having reviewed the literature on the state-of-the-art for semantic segmentation
and real-time semantic segmentation, in this chapter we are going to introduce our ex-
perimental framework, the challenges we are setting up to face and how we plan on doing
so.

3.1 Objective and Scope of the Experiments
In reviewing the literature we have analyzed many models that achieved real-time perfor-
mance on powerful hardware. This means that if there is the need to perform real-time
segmentation, we can do it as long as the hardware is powerful enough. However there are
many instances in which we could benefit from real-time performance on more resource
constrained devices. So the challenge we want to face is indeed bringing real-time per-
formance on “IoT” grade devices. With the term IoT we generally indicate devices that
consume little power and have limited memory and computational resources. In order to
provide an example of such devices we used a Raspberry Pi 4. With the term real-time
inference we indicate inference latencies that are lower than 0.0334, which results in 30
frames per second. Of course this is purely conventional, the number of frames per second
required vary greatly with the task on which the model is deployed. Also in some cases we
aim at the lowest possible inference speed, not because we need a high number of frames
per second, but because we want to draw less power and latency is strictly correlated
with power consumption. In an IoT use case, power draw is crucial, since devices are
often battery-powered.

In order to face this challenge we need to create a framework on which our experiments
are going to be run. Such framework consists in a Dataset, a Training Pipeline and a
Baseline model. In building such framework we will be explaining many critical issues
arising when trying to perform semantic segmentation on IoT devices.

After building the framework we will introduce the methodology of the experiments.
With this thesis we want to propose a pipeline of optimizations that presents incremental
steps with increasing levels of effort. We use the word “effort” with a specific meaning,
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Figure 3.1. The Raspberry Pi 4 model B

we intend an effort in both time and difficulty of understanding and implementation. In
particular saying that a particular optimization requires more effort than another might
mean that it takes longer to implement or that it requires a higher level of expertise and
understanding of the underlying network or all of the above. This pipeline of optimiza-
tions can be “packaged” as an automatic process that takes as input a model with some
constraints and a set of parameters to optimize that are provided by a user. The amount
of parameters and their type will vary according to the level of effort decided by the user.

In the following sections we will cover in detail every step mentioned above.

3.2 The Dataset

The dataset in analysis was downloaded from Kaggle at the following link [https://www.
kaggle.com/datasets/christianvorhemus/industrial-quality-control-of-packages].
It was originally intended for defect detection a classification task. In order to make the
dataset suitable for semantic segmentation we had to annotate each image and to do so
we used the label-studio API [https://labelstud.io/]. The images of the dataset are
RGB and represent a package that is being transported on a conveyor belt, each image
contains only one package at a time. The only classes that we annotated are “package”
and “background”, which makes this a binary segmentation task.

The dataset contains 4oo images, 200 of which show the package from a side angle, while
the rest are taken from a top down angle. Half of the images also contain packages with
defects, but in our segmentation stage these defects appear on the ground truth mask
only when they affect the actual shape of the package, otherwise they do not have any
effect. The resolution of the images is 960x540 pixels and of course the ground truth
maps have the same resolution, but only have one channel.

The reason why our choice fell on this particular dataset is that it represents a very
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Figure 3.2. Samples from the Dataset

realistic use case for real-time semantic segmentation on an edge device. In the litera-
ture explored so far the most recurring dataset when speaking of real-time performance
is either Cityscapes [9] or CamVid [3], which are both urban driving scene datasets. It
is understandable how driving scene segmentation is a task that needs real-time perfor-
mance in the context of autonomous driving: in order to make decisions the computer
needs many images per second and the segmentation model needs to keep up, especially
as the speed of the vehicle increases. However cars that feature this type of technology
are equipped with very powerful hardware that is used to perform the inference. It would
be realistic to force an edge-device, comparable to the raspberry pi used in this the to
perform the same task. A dataset like Cityscapes is too complex with its 19 classes and
cluttered images. State of the art real-time segmentation models already struggle with it,
so it would be difficult to introduce further optimizations without dramatically loosing
accuracy.
For this reason we needed to consider a dataset that represented a scenario in which the
need to achieve real time performance on an IoT device is actually acceptable. Coming
back to the dataset in analysis, it lends itself to many different applications in an indus-
trial context. From simply monitoring packages moving on a conveyor belt, to supplying
information about the shape, orientation and position of the package to a robotic arm
that operates on the same conveyor belt.

We have just explained why we chose this dataset, but it is important to keep in mind
its shortcomings in order to ponder the results that we will get in the experimental part
of this thesis. As said before, the dataset is quite simple, by featuring only one item per
image and only 2 classes. This is both a strength and a weakness, because if on one hand
we need it to be simple in order to apply more aggressive optimisations, if it is too simple
our experiments could be inconclusive.

So, in order to go further with our analysis with this dataset, we need to address these
problems making some important clarifications. The first is that in this thesis we are not
trying to find the best possible model for this dataset, but rather we explore the effects
of different possible optimization strategies on the latency and accuracy of the model
and we use this dataset as an example application of real-time semantic segmentation on
edge devices. We are not interested in the actual performance numbers as much in the
trends formed by this numbers and the difference among models resulting from different
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optimizations. The second thing to note is that if we were to base our analysis on a more
established dataset we would lose the reason why the inference is performed on an edge
device, while with this dataset it is very easy to imagine different real world applications
for a device like the Raspberry Pi used in the experiments with a camera attached to it,
monitoring a conveyor belt or using the output of the semantic segmentation stage as the
base for further actions.

3.3 The Framework

After the dataset has been chosen, since it was intended for image classification, it is
necessary to create the target masks to train the model. To perform this operation we
used the label-studio application, that allowed us to draw polygons corresponding to the
packages portrayed in the image.

3.3.1 Data Augmentation

In order to create a strategy for our task it is important to understand how the various
transformations work and what transformations are suited to each task.

Of course we need to keep in mind that for semantic segmentation the ground truth is an
image itself, so when applying transformations to an input image, the effect of some of
these transformations on the target mask needs to be accounted for. There are pixel-level
transforms which concern color, contrast, brightness and so on, that would not make any
sense if applied to the truth masks because the pixel information of the masks refer to
the class to which that pixel belongs to, while the pixel information of the input image
contains color channel (RGB) information.

The data augmentation API used in this thesis is Albumentations [4]. This library con-
tains 2 types of transforms: pixel-level transforms and spatial-level transforms. Pixel-level
transforms can be applied to any target and the transform will change only the input
image and leave any other input target unchanged. Spatial-level transforms will change
both the input image and the target mask (crop, pad, elastic transform, rotate, transpose,
flip, resize . . . ).
In the state-of-the-art models reviewed in the previous chapter, we have observed the
following data augmentation techniques:

• Random horizontal flip

• Random scale

• Random crop

• Normalization

It is important to point out that the data augmentation techniques to apply depend son
the type of dataset that the model is going to be trained on. The transforms mentioned
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before mostly refer to city driving scenes datasets, while for example a satellite images
dataset could also benefit from random rotations and vertical flipping. For biomedical
image analysis color transformations have shown to help deep networks to generalize
better, along with operations like grid distortions and elastic transforms, since medical
imaging is often dealing with non-rigid structures that have shape variations.

For our particular task, while we could have experimented with many different transforms,
we decided to not introduce too many variables and so we have taken a more conservative
approach with the following transforms:

• Random Crop (Center Crop in val dataset)

• Shift Scale Rotate

• RGB Shift

• Random Brightness and Contrast

• Normalization

The idea is to introduce a bit more variability to our dataset in which all the packages
are of the same colour and approximately of the same size according to the angle the pic-
ture was taken at. With the shift scale and rotate we aimed at creating some variability
regarding the position and the scale of the items in the image.

Figure 3.3. The RGBShift transformation

The last step in dataset preparation regards the handling of the dimensions of the input
images and the different strategies that can be followed. [https://albumentations.ai/
docs/examples/pytorch_semantic_segmentation/].
Differently from general convolutional neural networks, most semantic segmentation mod-
els are Fully Convolutional Networks, which means that they do not present any fully
connected layers. This characteristic allows these networks to accept inputs of different
sizes, eliminating the need to have fixed square input images. However PyTorch requires
all images in a batch to have the same dimension. We decided to use the most used
approach of training the model on a square random crop of size 512x512 pixels. For the
inference instead of cropping the image, we resize it to the same 512x512 resolution, so
the model will output a 512x512 predicted mask which we will resize back to the original
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resolution of 960x540 before computing metrics or visualising the image. We did this by
incorporating information about the original dimensions of the images in the test dataset
class, so when loading images from the test dataset we get the resized image, the resized
mask and a tuple containing the original height and width. We will later use this tuple
to revert the resize operation.

3.3.2 Training Pipeline

The next step in the creation of the framework is setting up a training and testing pipeline.
We will use this very pipeline to train and evaluate every model considered in the exper-
imental part of the thesis. We used the PyTorch API.

For the actual training of the model we used the Adam optimiser. The loss function is
Binary Cross Entropy Loss, which is the standard in semantic segmentation applications.

lossBCE = −(log(p) + (1 − y)log(1 − p))

Additionally, we implemented a Polynomial Learning Rate Scheduler, which was a con-
stant in the implementations of many of the models reviewed in the previous chapter, like
Parsenet [27] or Deeplab [5]. Using this scheduler, the learning rate for the given epoch
is given by the formula:

lr = lr0 ∗ (1 − i

Ti
)power

As far as evaluation metrics go, we will be evaluating the model based on the mean in-
tersection over union (IoU) score, which is more resilient to class imbalance in the input
images.
Class imbalance is an inherent characteristic of semantic segmentation, because objects
belonging to different classes have different sizes. In order to counter this phenomenon,
we can use metrics that take it into account.
The Jaccard index or intersection over union score (IoU) is computed by dividing the
area of the overlap between the predicted segmentation mask and the area of the ground
truth mask, by the union of the two areas.

IoU = A ∩ B

A ∪ B
= TP

TP + FP + FN
=

∑︁
(yi · yî)∑︁

(yi + yî) −
∑︁

(yi · yî)
The perfect segmentation happens when the intersection and the union of the two masks
coincide, in that case the IoU will be equal to 1. On the contrary, in the case in which
there is no overlap between ground truth and prediction, the intersection will be equal
to 0 and so will be the IoU score.
An IoU score is computed for each class and then a mean IoU score is used to evaluate
the performance of the model as a whole. It is interesting, in cases with more than 2
classes, to observe the scores across all the classes, for better understanding of the model’s
behavior.
Of course the other metric that we use to evaluate a model in this thesis is the inference
latency. As a matter of fact our analysis can be seen as an multi-objective optimization
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problem in which we want to achieve the lowest possible latency and the highest possible
IoU score.

Latency is actually a tricky subject, since it heavily depends on the runtime used to run
the inference. In building this framework we decided to export the model in the ONNX
exchange format and use the ONNX Runtime for the inference. The reason behind this
choice is that inference latency obtained using ONNX Runtime was almost twice as fast
compared to the integrated PyTorch runtime.
ONNX is an exchange format designed to allow interoperability between deep learning
frameworks such as PyTorch, Tensorflow, etc. . . ONNX represents a model as a com-
putational graph in which nodes represent operations and the edges are the pathways of
the data. ONNX Runtime is an optimized inference engine that can run across different
hardware platforms, implementing optimizations techniques specific for each hardware
platform.
ONNX Runtime parses through the model to identify optimization opportunities. It ab-
stracts custom accelerators and runtimes to maximise their benefits across an ONNX
models. In particular it partitions the ONNX model graph into subgraphs that align
with available custom accelerators and runtimes and when operators are not supported
by available custom accelerators and runtimes, ONNX provides a default runtime that is
used as a fallback execution, so that any model will run. The hardware architecture of
the Raspberry Pi used in this thesis is ARM64 (Cortex-A72 64bit ARM 8 CPU).
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3.3.3 Model Selection

Now that the training and testing framework is established it is time to use it to train
some models on our dataset and get an understanding of what the performance is like
on the Raspberry Pi. In this stage we will be training some of the models introduced in
the previous chapter and then we will be selecting the baseline model to be used in the
experimental part.
The architectures that we considered in this model selection phase are:

• DeepLabv3

• BiSeNetV2

• FastSCNN

The reasoning behind this selection is that DeepLabv3 represents the state-of-the-art of
semantic segmentation. We specifically selected the version with the MobileNetV2 back-
bone. We then chose BiSeNetv2 [45] and FastSCNN [35] because they achieved a good
balance between IoU score and inference latency on the Cityscapes dataset according to
several surveys [32] [18]. In particular FastSCNN is one of the networks with the fastest
inference, while BiSeNetV2 was able to achieve impressive IoU performance for a real-
time model.

We trained all three networks for 400 epochs on the same training set and evaluated them
measuring the IoU score on the same test set and measuring the average latency on each
single image belonging to the test set.

We can clearly see how, on the Raspberry Pi, the inference latency of DeepLab and

Model Name latency (s) frame rate IoU score
DeepLabV3 (mobilenet) 1.6006 0.6248 0.9788

FastSCNN 0,2200 4.5455 0.9776

BiSeNetV2 1.7427 0.5738 0.9823

BiSeNet is too high, while the IoU score of the 3 models is very similar. For this reason
we decided to use FastSCNN as the baseline for our experiments. A consideration that
we can make is that the ARM processor of the Pi does not feature any Deep Learning
specific hardware acceleration, if we were to consider a different hardware platform our
choice of baseline could be different.

The code regarding the implementation of this framework is available on the GitHub
repository of this thesis. https://github.com/xolotl18/master_thesis
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3.4 Introduction to the Experiments

In the previous sections we have built a framework that we can use to train and evalu-
ate models and measure their inference latency on IoT hardware. Now we are going to
introduce in more details the methods that we intend to apply to face the challenge that
we introduced earlier.

Figure 3.4. Scheme of the Automatic Optimization System

The series of experiments that we are going to introduce in the next sections can be
summed up in an automatic system of optimizations. We have not implemented such
system in this thesis, but we thought it would be an effective way of presenting the con-
tribution of this work.
The proposed automatic system can be used by an end user as a tool that operates on an
existing model and optimizes it by bringing its inference latency under a desired threshold.

We have already proposed this concept alongside the idea of a varying level of effort and
we characterized effort in terms of both time available and user expertise . The way the
effort level can be implemented in the system is to account for different levels of user ex-
pertise in the input stage, so that users that have different levels of understanding of the
structure and inner working of the model will input different data into the system that
will perform different optimizations. The idea behind this is that a more advanced user
is going to be able to identify and feed to the system more tuning knobs, thus generating
a bigger solution space and having better chances of reaching a satisfactory result. On
the other hand, the time aspect of effort is taken care of in the internally, so that users
that do not have as much time as others can exit the optimization process at different
points in time.
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The output of this system is a series of candidate models that feature different values
of the tuning knobs identified by the users. Each of this model will present advantages
and disadvantages and it will be up to the end user to decide which one to implement
according to the requirements of the application at hand.

The concept of an automatic system that explores a series of possible optimizations in
order to find the perfect combination of parameters for a specific task is very vague,
but it is supposed to. We presented the idea of such system in order to introduce the
experimental part of this work. In particular we set out to explore what we think are
some of the optimizations that could be implemented under the hood of the system that
so far we treated like a black box. In the following sections we will introduce what
are the strategies that we can follow in order to bring the inference latency of semantic
segmentation models to real-time values.

48



3.5 – The Optimization Pipeline

3.5 The Optimization Pipeline

The optimizations analyzed in this thesis can be divided in two branches: Input Data and
Model Topology. As the name suggests Input Data Optimization focuses on modifying
the input images, thus feeding the model smaller data that will result in faster infer-
ence. Network Topology Optimization operated directly on the structure of the model by
changing the value of different tuning knobs, producing a smaller model that will occupy
less memory space and run faster.

Figure 3.5. The Optimization Pipeline

We said that the pipeline of optimizations will follow an order defined by the level of
effort that they require. The two main branches differ greatly in effort, as it is clear
that operating on input data does not require any understanding of the structure of the
model, while in order to identify and select a range of possible values for the tuning knob
in the branch of Network Topology Optimization requires a much deeper knowledge of
the baseline network and its functioning blocks.

In our analysis we will present the various stages of optimization belonging to each branch,
following the order dictated by the effort required by each stage.

3.5.1 Input Data Optimization

Before we dive into the description of the actual experiments regarding Input Data Opti-
mization, it is important to make a brief disclaimer on one crucial operation on the model
structure that allowed us to proceed: we had to remove the Pyramid Pooling Module from
the FastSCNN baseline in order to perform these experiments.

We talked about this module in the previous chapter 2. This module was introduced
in the SPPNet paper [17], in order to integrate multi-scale context information in the
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features extracted by the network. Such module works by taking as input feature maps
of a certain size (h*w*c), using average or max pooling layers to change the height and
width of these feature maps to desired Pyramid Scales. Then it performs point-wise con-
volutions on each scale in order to bring down the number of channels to 1/(number of
pyramid scales), it upscales each scale to the original height and width, concatenates the
different feature maps and the original input and finally perform a point-wise convolution
to bring back the number of channels to the original number, so that the dimensions of
the output of the pyramid pooling module are the same as those of its input.

In order to implement such module into a network using the PyTorch API and ac-
cept inputs of different sizes without altering the network for every different input size,
we must implement the AdaptiveAveragePooling layer [https://pytorch.org/docs/
stable/generated/torch.nn.AdaptiveAvgPool2d.html]. This module always returns
feature maps of a certain size regardless of the dimension of the input feature maps. An
issue manifested itself when trying to convert the torch model into the ONNX computa-
tional graph. Unfortunately ONNX does not support the AdaptiveAvgPool2D operator
yet because its output dimension is not a function of the dimension of the input. So
in order to keep this functional block in our baseline network we implemented it using
traditional AvgPool2D layers with fixed window sizes. This means that if we need to
change the height and the width of the input images we also need to change the size of
the pooling windows every time.
So we decided to omit this module entirely from the network for two main reasons.

Firstly if we consider where in the network the module is placed, starting with a base-
line input resolution of 512x512, the size of the feature maps that enter the module is
16x16x128 and the pyramid scales considered are of size: 1x1, 2x2, 4x4, 8x8. There are
no issues with input images of resolutions up to 256x256, but if we want to consider a
smaller input resolution, which is absolutely justifiable, we would have to sacrifice some
of the pyramid scales. As a matter of fact, if we were to feed the model an image with
resolution 128x128, the input of the pyramid pooling module would be of resolution 4x4,
which is lower than 8x8 which is the resolution of one of the pyramid scales.

The second reason for removing this module for this part of the analysis regards its utility.
Pyramid Pooling was introduced in SPPNet [17] to improve the model’s ability to identify
items in the image that belong to the same class but are portrayed in different scales at
the same time. One glaring example is the presence of more than one car in a Cityscapes
image, except that one car is further away than the other and so it looks smaller even if it
is still a car. In particular the goal of Pyramid Pooling in SPPNet was to generate feature
representations of objects which had a fixed size regardless to the dimension of the object
in the input image, thus making the network more robust to size variations in objects
belonging to the same class. The idea is that each pyramid scale would represent a differ-
ent size of sub-images, so that an object that is smaller that another object belonging to
its same category, will look the same when changing the pyramid scale used to represent it.

We question the useless of this module in our analysis because of the characteristics of
the dataset. The packages portrayed in the images of our dataset are roughly of the
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same size and there is always only one package per image, which makes things easier.
Having said this, when operating on the resolution of the input data, we will not be
including the Pyramid Pooling Module in our model. This is a necessary action for this
specific baseline and should not be a problem with other network architectures. In fact
we noticed that BiSeNetV2 [45] had no problem in the ONNX conversion because it does
not feature pyramid pooling. Still we decided to keep FastSCNN as our baseline because
the difference in inference latency with BiSeNetV2 was too large.

Resolution Reduction

For a classification model, changing the resolution of the input images can be a very tricky
subject. On the contrary, for semantic segmentation it is quite a common practice at it
is even mentioned in the FastSCNN paper [35] as a viable option to reduce the inference
latency. The reason why it is possible is that most semantic segmentation models are
Fully Convolutional Networks 2. This means that the absence of Fully Connected layers
is what allows us to change the input resolution without issues in most networks. Of
course there are limits to how far we can go, because feature maps undergo a series of
reduction in height and width and increase in number of channels as they travel across
the network, so the original resolution must be dividable by the various scaling factors.
For example, in our baseline the input image gets reduced by a factor of 32 when it gets
to the smallest feature map, so our input image must be dividable by 32 and also larger
than 32x32 which would make the lowest candidate input resolution 64x64.

But how does the input resolution affect the inference latency of a model? To answer
this question we need to understand the different types of data present in a convolutional
neural network such as our baseline.
We can divide the components of the network into parameters and features. Our net-
work being a Fully Convolutional Network means that its parameters are the filters of
the convolutional layers (trainable parameters) and these are the part of the model that
is saved to disk. The feature maps or activations are the other component. The first
convolutional layer receives an image as input it outputs a number of feature maps equal
to the number of convolutional filters of the layer. The height and width of the feature
maps is determined by the stride and the kernel size of the convolutional layer. The
feature map that was produced by the convolutional layer is then fed as input to the next
convolutional layer.
Changing the resolution of the input we are going to change the size of all feature maps in
the models. Comparing the same model with different input sizes we can clearly observe
how this reduction propagates through the network.

In practice, smaller feature maps mean that the convolutional filters will slide fewer times
across each image which will result in less time spent for each layer of the network.

Going back to the idea of effort that we introduced earlier, changing the input resolution
is rather simple. It is a matter of resizing the input images during data preparation.
However we can differentiate two different approaches that differ in the time spent to
generate the candidate models.
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Block Input Size Output Channels Stride
Conv2D 512x512x3 32 2
DSConv 256x256x32 48 2
DSConv 128x128x48 64 2

bottleneck 64x64x64 64 2
bottleneck 32x32x96 96 2
bottleneck 16x16x128 128 1
Pyramid Pooling 16x16x128 128 -

Feature Fusion 16x16x128 128 -

DSConv 64x64x128 128 1
Conv2D 64x64x128 1 1

Table 3.1. Model with 512x512 Input Resolution

Block Input Size Output Channels Stride
Conv2D 128x128x3 32 2
DSConv 64x64x32 48 2
DSConv 32x32x48 64 2

bottleneck 16x16x64 64 2
bottleneck 8x8x96 96 2
bottleneck 4x4x128 128 1
Pyramid Pooling 4x4x128 128 -

Feature Fusion 4x4x128 128 -

DSConv 16x16x128 128 1
Conv2D 16x16x128 1 1

Table 3.2. Model with 128x128 Input Resolution

The fastest approach is to feed inputs of different sizes to the network without retraining
it. So we would take the model that was trained on 512x512 training images and run
inference on smaller images. The network is going to output maps of the same size as the
input and the inference is going to be faster because of what we have explained earlier.
We are probably going to see some peculiar behavior from a network that is fed a smaller
image after being trained on larger ones. If this approach were to produce acceptable
results in terms of IoU, it would be the fastest possible way to achieve faster inference on
an existing model.

If the no retraining approach were to produce outputs of insufficient quality, one possi-
bility could be retraining the network every time we switch to a lower resolution. This
means that we are going to spend time and computational resources every time we try a
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different input resolution. However our baseline model is fairly compact and the training
phase took about 30 minutes on our hardware. A possible thing that could be done in
order to reduce complexity could be to freeze all the parameters involved in the feature
extraction portion of the network and retrain only the segmentation head. This is a very
compelling strategy when handling bigger models, like DeepLab, that has a very large
number of parameters and requires a lot of graphic memory when training the entire
network.

Reduction of the Number of Input Channels

The other optimization to perform on input data is reducing the number of channels of
the input image. We borrow this idea from super resolution models [11].

The idea is to have an input image of size 512x512x1. In order to reduce the number of
channels to 1, we need to convert the image to the Y’CbCr color space and then select
only the Y’ channel. Y’CbCr is used to separate out a luma signal Y’ and CB and CR
which are the blue-difference and red-difference chroma components. Y’ contains the
most information and is obtained from the RGB channels in the following way:

Y ′ = Kr ∗ R′ + Kg ∗ G′ + Kb ∗ B′

where KR, KG, and KB are ordinarily derived from the definition of the corresponding
RGB space, and required to satisfy Kr + Kg + Kb=1. Also the ’ symbol indicates a
gamma correction, thus R’, G’ and B’ nominally range from 0 to 1, with 0 representing
the minimum intensity and 1 the maximum so the resulting luma value Y’ will have a
nominal range from 0 to 1. The first layer of the network needs to be modified in order
to account for the reduced number of input channels.

Figure 3.6. Conversion to Y’CbCr color space

Reducing the number of input channel should simplify the first convolutional layer, which
will perform less operations. However the output of the first layer is still going to be of
the same size as the output of the network with 3 input channels, because the number of
channels of a feature map depends on the number of filters present in the convolutional
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layer that generated such feature map. This means that the impact of this optimization
will probably be much lower than reducing the height and the width of the input image.
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3.5.2 Model Topology Optimization

Modifying the input data is a simple operation and does not require any modification of
the model. However, if we only change the size of the input data, the number of param-
eters of the model won’t alter the number of parameters of the network, which usually is
pretty high. Neural Networks are often over-parametrized and in many cases it has been
shown that big architectures can be greatly scaled down with negligible accuracy loss,
sometimes even on the same application [22] [20].

Figure 3.7. Illustration of the structure of our baseline model [35]

For this reason we introduce the second branch of optimizations that operate on the ac-
tual structure of the network. Going from the previous branch to this one is a big jump
in terms of “effort”. In fact, in order to modify the structure of a model, one must be able
to understand the function of each building block and to identify which are the possible
tuning knobs for such optimization. As far as the time aspect of the effort, the possible
combinations of tuning knobs can be many and each combination results in a model that
needs to be trained from scratch, which as we have already said, takes quite some time.
Even if the optimizations belonging to this branch require more effort, they are a promis-
ing method of improving the latency while preserving the intersection over union score.
The goal is, by removing some parts of the network and then retraining the model, to
remove redundant information that is not crucial when producing the output. This is
quite an intuitive strategy, which is validated by the fact that the dataset in our analysis
is much simpler than datasets like CamVid [3], Cityscapes [9], COCO [25] and others,
that are used to evaluate semantic segmentation models. Our packages dataset contains
a lot less features, thus it should need less network parameters to extract them.

In the background chapter 2 we have spoken about optimizations that are supposed to
help bring semantic segmentation models closer to real-time performance. The difference
between the techniques introduced then and those described in this section is that in
the background chapter we discussed about design-time optimizations, while here we are
dealing with ways to simplify the structure of an existing model. This does not mean that
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there cannot be any cross-over between the two categories, in fact in the MobileNet pa-
per [20] an optimization proposed was to substitute standard convolutions with depthwise
separable convolutions. However in our analysis we will focus on modifying the layers of
the network instead of substituting them with variations, because we are starting from
an already resource optimized model that already implements some of the techniques
discussed in the background chapter.

There are many ways we can operate on the structure of the network and in this section
we will talk about a few strategies that fit our baseline model FastSCNN. In the literature
there are many times in which Model Simplification is mentioned as the most effective
way to improve inference latency [10], but it is very hard to find actual examples of it. In
this thesis we will explore some general strategies that can be applied to many semantic
segmentation models. These strategies consist in identifying some hyper-parameters that
regard certain aspects of the structure of the network and studying the impact of different
values of these hyper-parameters on the performance of the model.

It is clear how this branch of optimization will have a varying impact depending on the
structure of the network. Different architectures present different tuning knobs and big-
ger networks have more redundant parameters that can be removed without impacting
the quality of their output.

Width Multiplication

The first type of Network Topology Optimization is Width Multiplication. We borrowed
the name from the analogous operation performed in the MobileNet paper [20]. This
optimization consists in reducing the number of output channels of each convolutional
layer in the network by a multiplicative factor “a”, which we call width multiplier.

In this stage we also included the hyper-parameter “t”, which we called expansion rate.
The expansion rate is the scalar that is multiplied to the number of channels of the
input feature maps of the bottleneck block. The expansion rate was introduced in Mo-
bileNetV2 [39] with the Inverted Bottleneck Block, in which in the first convolution,
instead of reducing the number of channels like in the ResNet paper [16], expands the
number of channels of the input by a factor t and brings it back to the original number
after the residual connection.

These two tuning knobs work on our baseline model, but they are also suitable for many
other networks. In fact, width multiplication (a) can be performed on every network
that presents a convolutional layer and those are very common since most state-of-the
art models are Convolutional Neural Networks. The expansion rate (t), on the other
hand, is specific to models that feature the Inverted Bottleneck Block. This makes it less
widely applicable than the width multiplier, but still relevant because, thanks to the suc-
cess of MobileNetV2, the Inverted Bottleneck Block is very popular in real-time semantic
segmentation models [35] [45] and also in bigger networks that can be configured with
MobileNet as a backbone [6].
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Figure 3.8. The Inverted Bottleneck Block [39]

The effect of “a” on the structure of the network concerns both the number of trainable
parameters and the size of the feature maps.
In fact, reducing the number of output channels of a convolutional layer is done by re-
moving some of its filters, therefore the number of parameter of that layer is reduced.
Moreover, this operation will produce smaller feature maps (less wide), which will be
the input for the next layer, which consequently will have smaller filters. The effect of
“t” is similar, but it is limited to the Inverted Bottleneck Blocks, in which the number
of channels is expanded by a factor t, a depth-wise separable convolution is performed
and then a point wise convolution is used to bring the number of channels back to their
original number.

Operator Repetition

In the Operator Repetition phase we identify the layers or modules in the network that
are repeated multiple times or that can be removed safely without affecting the function-
ality of the network.

In order to identify possible tuning knobs fro this phase, it is necessary to have a good
understanding of the structure of the baseline and the function of each layer. Some
blocks might be repeated more times, but before removing some of them it is necessary
to understand the consequences of their removal. In the case of the baseline, there are
3 bottleneck operations that present 3 Inverted Bottleneck Blocks each, in the Context
Branch of the network. So there are 9 bottleneck blocks in sequence. One could think that
the bottleneck block is repeated 9 times and choose to choose this number as an hyper-
parameter for the operator repetition stage. However, looking closer, we understand that
there are 3 groups of bottleneck blocks because each group performs a reduction of the
height and width dimensions of the network with one convolutional layer with stride=2
and kernel size 3x3. This means that if the wrong bottleneck block was removed, the
output resolution would not match the input’s and it would not make sense. So the right
approach is to select the number of blocks inside each group as a tuning knob (r), where
the baseline is r=3.
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Sometimes a layer or a functional block can be removed safely, but this does not always
mean that it should be. In the case of our baseline, the Pyramid Pooling Module is
placed at the end of the Context Branch and the dimensions of its input are the same
as those of its output. If we were to remove it, the size of the output of the network
would stay the same. In this case it is necessary to decide whether the purpose of the
block is too important for it to be removed. As we had to explain previously, due to
its incompatibility with the ONNX export, the purpose of the Pyramid Pooling Block
is not relevant on our dataset, so the block can actually be removed without problems.
By choosing pp = [0, 1] we can analyze if our hypotheses are correct and let the results
decide if pyramid pooling improves the quality of the output or not.

The tuning knobs in this stage are very specific to our baseline, because different models
will present different building blocks. The ideas behind them, however, are widely rele-
vant. In fact, neural networks are repetitive by design and all models contain redundant
layers. This optimization stage consists in identifying elements that can be removed and
understand if doing so has any effect on the quality of the output or on the inference la-
tency on a specific dataset. The goal of this stage is to reduce the baseline to a structure
that is essential for the task at hand.
Comparing the effect on the structure of the network of these tuning knobs to “a” and
“t” from the previous stage, we can make a few considerations. In the case of “r”, there
is no effect on the feature maps flowing through the layers. By changing the value of this
hyper-parameter we simply remove a set of layers from the network, therefore the total
number of parameters is reduced by the amount of parameters that made up those layers,
and we can say the same for “pp”.
It is very easy to see how a bigger model would impacted in a much more significant way,
because the number of superfluous parameters would be much bigger.
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3.6 The Analysis

Summing up, the experiments will following the order:

• Resolution Reduction with no re-training

• Resolution Reduction with re-training

• Input Channel Reduction

• Resolution Reduction and Input Channel Reduction

• Width Multiplication

• Operator Repetition

• Width Multiplication and Operator Repetition

• Input Data Optimization and Model Topology Optimization

Each of the experimental stages consists in a series of models that we will evaluate on the
same test dataset, running inference on a Raspberry Pi 4. For each stage we will visual-
ize the summary for each model, which contains information about the total number of
parameters, the input size, the size of the forward pass and the number of multiplication-
accumulation operations. Then we record the IoU score and the mean latency of each
model and represent it in a table and in a Pareto frontier plot. We used Pareto frontiers
because the choice of a model is a multi-objective optimization problem where the ob-
jectives are inference latency and intersection over union score. Therefore visualizing the
performance of each model as a point in a bi-dimensional space gives us a clear under-
standing of the effect of the optimizations that we are trying to study.

So with our experiments we are actually exploring a solution space in which every combi-
nation of optimizations makes up a model and we are trying to identify the best models in
terms of accuracy-latency trade-off. However, in analyzing the experiments, we won’t be
obsessing over the performance numbers, because we are not actually deploying a model
on this task in the real world. We are interested in studying each optimization and its
effect on the behavior of the model and we want to deduce some general guidelines about
our pipeline.

Throughout the course of this chapter we have mentioned the applicability of the different
optimizations to baselines different from ours. Our analysis would have little to no rele-
vance if the various optimizations were usable for only one specific model. In order to rest
this argument, we will propose a set of optimizations for a different model: BiSeNetV2.

As we said before, when dealing with Fully Convolutional Networks, it is always pos-
sible to change the input resolution, so that strategy can be applied to BiSeNet without
issues. And also the reduction of the input channels can be performed easily, the only
thing to change is the number of input channels of the first layer of the network, which
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Figure 3.9. Illustration of the structure of BiSeNetV2 [45]

is usually a parameter.

For the Model Topology Optimization, we need to dig deeper into the structure of the
network to identify the proper tuning knobs. BiSeNetV2 has almost three times the num-
ber of the parameters of FastSCNN, so these optimizations will be more powerful. The
width multiplication hyper-parameter “a” can be used for this network as well. There
are many convolutional layers, so this optimization is applicable to this model. The pa-
per actually suggests changing the number of channels of the layers in the Segmentation
Head as a way of reducing its complexity. The tuning knob “t” is also applicable in this
model, since it feature its own version of the Inverted Bottleneck Block called the Gather
and Expansion block. This block is used many more times than the bottleneck block in
FastSCNN, so the value of “t” would likely have a bigger impact on the performance of
this network.

For Operator Repetition, we can see how there are some GE blocks that are repeated more
than one time in the Semantic Branch, which can be easily removed without affecting
the output and the same thing can be said for some of the Conv2D layers in the Detail
Branch. BiSeNetV2 features its own interpretation of the Pyramid Pooling Block as the
Context Embedding Block, which can be removed, but it is probably not worth doing so,
because it only presents one pyramid scale and one point-wise convolution, so its impact
on performance is really minimal.
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Chapter 4

Experimental Results

4.1 Experimental Setup
For each model presented in this analysis we used the following procedure. Each model
was trained for 400 epochs on the same train set and then tested on the same test set.
The actual train val test split is 75% 10% 15% respectively.
The best epoch is selected according to the value of the loss computed on the validation
dataset.

The IoU and latency values are obtained by running the model in ONNX format on the
test dataset using ONNX runtime on a Raspberry Pi model 4 (4GB of RAM). Specifically
the inference on the whole test dataset is performed 10 times, the latency is measured on
each single image, then the final latency value for the model is obtained by computing
the mean across all values. The IoU score is computed only on the first of the 10 runs.
The reason we ran the inference for multiple runs is to decrease variability from one ex-
periment to the other when measuring latency.

In order to visualize the result data, we will use tables with the values of inference
latency, frame-rate (computed as the inverse of the latency) and IoU score. We will also
include tables that describe the changes in terms of number of parameters, size of the
forward/backward pass (which contains information about the system memory occupied
by both the feature maps and the parameters), number of Multiplication-Accumulation
operations (MACs), from one model to the other. We will also display Pareto Frontier
plots in which all the models are represented as points in a bi-dimensional space (IoU,
frame-rate) and a frontier consisting of the models with either higher IoU or frame-rate
is displayed. The choice of using the frame-rate instead of the latency for the graph is
simply aesthetic, this way for both quantities in the graph the higher value is better and
this affects the shape of the ideal frontier.
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4.2 The Baseline
Model Description The baseline model achieves an acceptable latency of 0.22 seconds
on the raspberry pi, such latency allows it to perform the segmentation task smoothly
but it is far from the real time goal of 30 fps or 0.0334 seconds.

For this reason in the following stages we will apply different strategies with increasing
effort level to bring the performance closer to real time trying to keep the intersection
over union score as close as possible to that of the baseline.

Block Output chans Stride Repetitions Exp rate
Conv2d 32 2 1 -
DSConv 48 2 1 -
DSConv 64 2 1 -
bottleneck 64 2 3 6
bottleneck 96 2 3 6
bottleneck 128 1 3 6
Pyramid Pooling Module 128 - 1 -
Feature Fusion Module 128 - - -
DSConv 128 1 2 -
Conv2d num_classes (1) 1 1 -

Table 4.1. Model Structure

model # params input (MB) fwd/bwd pass (MB) MACs (M)
FastSCNN 1,122,673 3,15 209,88 830,67

Table 4.2. Model Summary

model mean IoU inference latency (s) frame rate
FastSCNN (baseline) 0.9776 0.22000 4.5454

Table 4.3. Model Performance

62



4.3 – Input Data Optimization

Figure 4.1. Output of the Baseline Model

4.3 Input Data Optimization

4.3.1 Stage 1 - Input Resolution Reduction without retraining

Block Output chans Stride Repetitions Exp rate
Conv2d 32 2 1 -
DSConv 48 2 1 -
DSConv 64 2 1 -
bottleneck 64 2 3 6
bottleneck 96 2 3 6
bottleneck 128 1 3 6
Pyramid Pooling Module 128 - 0 -
Feature Fusion Module 128 - - -
DSConv 128 1 2 -
Conv2d num_classes (1) 1 1 -

Table 4.4. Model Structure

Details on the Experiment For this experiment we have selected 7 possible input
resolutions, starting from the full resolution input that we have observed in the baseline.

As it was previously stated the images in our dataset have a resolution of 960x540 which
is cropped to 512x512 patches for training and resized to 512x512 patches for testing.
From this full resolution we started scaling it down to half (256x256) and then proceeded
in smaller increments. We started with a bigger reduction in the beginning and then
reduced the jump from one resolution to the next after that. The idea is to cover an
exhaustive range of resolutions and push the reduction to its limit, we do so exploring
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more resolutions closer to the bottom end, where we will see the biggest drop in accuracy
and the biggest jump in frame-rate. Ideally we could have explored all 14 resolutions
from 512x512 to 96x96, but it would have required too much training time, especially
considering the upcoming optimization stages. The most important thing to keep in
mind when choosing the input resolution is the scaling that the feature maps will endure
passing across the different layers in the network. In the case of FastSCNN the size of
the smallest feature map is 1/32th of the original input resolution, this means that an
input resolution of 96x96 will result in a smallest feature map of size 3x3. This number
may appear too small, but the idea is that the number of feature maps at that point in
the network will be 128, so having a small h and w dimension should be compensated
by the number of channels and the overall amount of data should still be enough to per-
form segmentation on a less demanding dataset like the one in analysis. As it was stated
and justified in the Methodology chapter, for the input data optimization stage we are
not going to include the Pyramid Pooling Module in the structure of the model [Table4.4]

input res # params input (MB) fwd/bwd pass (MB) MACs (M)
512x512x3 1,122,673 3.15 200,97 826,65

256x256x3 1,122,673 0,79 50,24 206,68

224x224x3 1,122,673 0,6 38,47 158,24

192x192x3 1,122,673 0,44 28,26 116,27

160x160x3 1,122,673 0,31 19,63 80,75

128x128x3 1,122,673 0,2 12,56 51,69

96x96x3 1,122,673 0,11 7,07 29,08

Table 4.5. Model Summaries

In this stage, we explore the optimization that requires the lowest effort. The only thing
that we change from the baseline is the data transformation step for the test dataset
class, in which we resize the input images to the desired resolution. The effort is low
because the training is only performed once, so there is going to be a big reduction in
the time required to run this optimization step, compared to the next step in which we
are going to train the model from scratch for each input resolution.

Before looking at the performance result, we can see from the model summaries [Table
4.5] that the number of parameters stays the same, while the size of the forward/backward
pass decreases with the input size and so does the number of MACs. This is because we
are not touching the actual structure of the network, but by operating on the size of the
input samples, we are affecting the size of the feature maps at each layer of the model.
We expect the performance to degrade greatly as the resolution decreases because the
model used in these experiments is always the same, which has been trained on 512x512
training samples.
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input resolution inference latency (s) frame rate mean IoU
512x512x3 0.2169 4.6104 0.9792

256x256x3 0.0611 16.3667 0.5440

224x224x3 0.0467 21.4133 0.4361

192x192x3 0.0355 28.1690 0.2583

160x160x3 0.0265 37.7358 0.2137

128x128x3 0.0164 60.9756 0.2208

96x96x3 0.0117 85.4701 0.1602

Table 4.6. Performance Data

Comments on the Results The first thing we can observe is the fact that the infer-
ence latency actually decreases far past what we would consider real-time performance
(30 fps or 0.0334 seconds).

So we can see that changing the input resolution is promising in terms of inference speed.
The clear issue is that the drop in intersection over union score is very critical. By de-
creasing the input resolution from the baseline 512x512 to 256x256 the IoU score goes
from 0.9792 (it is higher than the baseline because we did not include the pyramid pooling
module) to 0.5440. At this point the IoU score is already too low and the model is not
usable, while the inference latency is still too high at 0,0611 seconds to be considered
real-time. We get real-time performance only at an input resolution of 160x160 and at
this point the IoU score is only 0,2137, which is far from acceptable and in practical terms
it means that the output of the model has almost nothing to do with the target mask.

Figure 4.2. Output with 256x256 input without retraining

These results allow us to understand the potential of changing the input resolution in
terms of latency gains, but also bring to the conclusion that the accuracy of the output
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is not sufficient and opens the door to the second stage of our analysis which is changing
the input resolution and re-training the model at every change.

Figure 4.3. Pareto Frontier Plot - Stage 1
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4.3.2 Stage 2 - Input Resolution Reduction with retraining

Details on the Experiment From the previous stage we have learned that simply
changing the input resolution keeping the same model trained on bigger samples leads to
unacceptable output quality. In this experiment we will have all the implications from the
previous stage [Tables 4.4 4.5], but we expect an increase in the quality of the predictions
thanks to the re-training of the network.

In literature, for bigger models, there are examples in which in order to use the same
model with input sizes different from the standard input, the only part of the network
that is retrained is the classification head, while the rest of the model, which will act
as a feature extractor, is “frozen”. In the case of FastSCNN we are going to retrain the
entire network, since the number of parameters allows us to do so and we will probably
have some gains in terms of performance. However it is something to keep in mind if the
approach proposed in this thesis is going to be used starting from a baseline with more
parameters.

In the FastSCNN paper, in the last section, it is proposed an input resolution reduction
step in which ½ and ¼ of the original input size are analyzed and the obtained latency
gains and IoU drop are rather interesting, so we are confident that the results obtained
in this experimental stage will be comparable to those obtained in the paper.

input resolution inference latency (s) frame rate mean IoU
512x512x3 0.2177 4.5934 0.9788

256x256x3 0.0639 15.6495 0.9729

224x224x3 0.0467 21.4133 0.9708

192x192x3 0.0350 28.5714 0.9723

160x160x3 0.0260 38.4615 0.9641

128x128x3 0.0165 60.6061 0.9564

96x96x3 0.0119 84.0336 0.9393

Table 4.7. Performance Data

Comments on the Results The situation dramatically changes when re-training is
performed. Now the lowest IoU score is 0.9393 for the input resolution of 96x96. At
192x192 we get very close to real-time performance with an inference latency of 0.0350
(28.5714 fps), while achieving 0.9723 IoU score which is still very close to the baseline of
0.9792. At the next resolution of 160x160 we achieved way past our real time goal with
an inference latency of 0.0260, while the IoU score drops to 0.9641, which is lower than
the baseline but still way higher than the 0.2137 achieved without retraining the model
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in stage 1 [4.3.1].

These results bring us to the first consideration of our analysis: retraining is necessary
when changing input resolutions. Another important thing that we can observe is that,
except for the resolution 224x224, IoU scores always decrease when jumping to a lower
resolution and also inference latency decreases (frames per second increase).

For the dataset in question we observe quite respectable IoU even at the lowest resolution
of 96x96. This might not be always the case and the only way of knowing if a particular
score actually corresponds to acceptable output quality is to visualize a few predicted
masks alongside the ground truth and visually verify if the numbers reflect the actual
output quality.

Figure 4.4. Output with 96x96 input with retraining

In conclusion, retraining a network or part of it when jumping from an input resolution to
a lower one is a necessity. While keeping the same model would mean saving the training
time and the hardware resources, the output would simply be unusable. A way to make
this stage less time and computationally expensive would be to reduce the number of
“candidate resolutions” that make up the solution space, this way we run the risk of not
finding the ideal input resolution, but we can still achieve real-time performance.
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Figure 4.5. Pareto Frontier Plot - Stage 2

4.3.3 Stage 3 - Input Channels Reduction

Details on the Experiment In this stage of the experiment we first compare the
baseline model whose input images have dimension 512x512x3 with a model presenting
the same inner structure [Table 4.4], but that accepts an input of dimension 512x512x1.
This is done by converting the original image to the YCbCr color space and utilizing only
the Y channel, as was explained in the Methodology chapter [3].

After analyzing the difference with the baseline, we go on and inspect the differences
with all the other resolutions from the previous steps in order to assess the difference in
latency and accuracy with this new strategy.

From the model summaries we can observe that in fact the number of MACs is consistently
lower in the case of the one-dimensional input, but not by much, of course this same
behavior is reflected in the forward/backward pass size. As previously stated the number
of parameters does not change because we are still not touching the internal structure of
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input res # params input (MB) fwd/bwd pass (MB) MACs (M)
512x512x1 1,122,097 1,05 200,97 788,9

256x256x1 1,122,097 0,26 50,24 197,24

224x224x1 1,122,097 0,2 38,47 151,02

192x192x1 1,122,097 0,15 28,26 110,96

160x160x1 1,122,097 0,1 19,63 77,06

128x128x1 1,122,097 0,07 12,56 49,33

96x96x3 1,122,097 0,04 7,07 27,76

Table 4.8. Model Summaries

the network.

Comments on the Results In the results of this stage we can see the same trends
that we experienced in the previous stage. When jumping from one resolution to a lower
one, the inference latency always decreases and so does the IoU score.

input resolution inference latency (s) frame rate mean IoU
512x512x1 0.2068 4.8356 0.9715
256x256x1 0.0553 18.0832 0.9542
224x224x1 0.0435 22.9885 0.9458
192x192x1 0.0343 29.1545 0.9335
160x160x1 0.0249 40.1606 0.9227
128x128x1 0.0158 63.2911 0.9219
96x96x1 0.0116 86.2069 0.8974

Table 4.9. Performance Data

Comparing the result of the baseline to the 512x512x1 input size we can observe that
the latter presents indeed faster inference, but if we consider the IoU score it achieves
0.9715 which is lower than the score of 0.9728 achieved by the model with 192x192x3
input size. This is a trend that is constant across the other dimensions. While there
always is a decrease in inference latency going from three channels to one input channel,
the corresponding drop in intersection over union score is much bigger and evaluating a
trade-off between accuracy and latency we can observe that changing the height and the
width of the input images is always a better alternative.

As a matter of fact, analyzing the Pareto frontier with the models from the previous stage
and the models form the current stage, we can observe that the only model belonging to
the frontier with one channel is 96x96x1 because it achieved the lowest latency, but the
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Figure 4.6. Pareto Frontier Plot - Stage 3

rest of them all present 3 input channels, because the slight decrease in latency of the
1-channel inputs is always countered by a bigger drop in intersection over union score
compared to its 3 channel counterpart. So we can observe that 96x96x3 yields much
lower latency compared to 128x128x1, while also resulting in a higher IoU score, it is also
more accurate than the model with input size 160x160x1 which is more than twice as slow.

So from these results we can derive the next consideration of our analysis: decreasing
the number of input channels damages the accuracy of the model more than it decreases
its inference latency. For this reason I would only consider this optimization if we were
searching for the fastest possible network with very low accuracy demands, because for
any other use-case it is always preferable to just lower the input resolution keeping 3
input channels and the RGB color space.
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Figure 4.7. Pareto Frontier Plot - Stages 2 and 3

4.4 Network Topology Optimization

4.4.1 Stage 4 - Width Multiplication

Details on the Experiment This is the first stage in which we start manipulating the
structure of the network, we are entering the second macro branch of our pipeline. With
the term Width Multiplication we refer to the number of channels of any convolutional
layer (methodology chapter), so in the case of FastSCNN we identified 2 tuning knobs for
this particular simplification. The tuning knob a is the actual width multiplier, while t is
the expansion rate of the bottleneck blocks. As previously explained in the methodology
chapter, the expansion rate determines the number of channel of a convolutional layer
that is located inside the bottleneck block, in particular t is multiplied by the number of
channels of the input of the bottleneck block, so it is itself a width multiplier.

We chose a 4 values of a=[0,75, 0.50, 0.25 0.125], the baseline is a=1.0. We sacrifice
some of the combination by starting from 0,75 and not from 1.0 because the effect of
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Block Output chans Stride Repetitions Exp rate
Conv2d 32*a 2 1 -
DSConv 48*a 2 1 -
DSConv 64*a 2 1 -
bottleneck 64*a 2 3 t
bottleneck 96*a 2 3 t
bottleneck 128*a 1 3 t
Pyramid Pooling Module 128*a - 1 -
Feature Fusion Module 128*a - - -
DSConv 128*a 1 2 -
Conv2d num_classes (1) 1 1 -

Table 4.10. Model Structure

t is not as important as that of a and we wanted to save some training time. We can
observe the effect of varying the value of t for all other values of a. We selected the
values [6, 4, 2] for t. We start from the baseline value of 6 and we stop at 2. We could
have gone further and tried the value 1, which means that there is no channel expan-
sion in the bottleneck block, but we decided to avoid this because it would go against
one of the main defining characteristics of the bottleneck block. Two in an acceptable re-
duction from 6 and allows us to keep intact one the functionalities of the bottleneck block.

In this stage, looking at the model summaries, we notice that the input size stays con-
stant, while the number of parameters changes as we change a and t. This is because
we are deleting actual model parameters from the network instead of manipulating the
input data as we did in the previous stages. The size that the saved model takes up in
memory is much lower because the saved parameters are a lot less. The number of MACs
decreases as we decrease both the values of a and t, as we would have expected.

In this stage we are keeping the pyramid pooling module, because this time it does not
interfere with the tuning knobs and in the following stage we will assess its importance
in the model. Out of the model topology optimizations, width multiplication is the most
universally applicable, since the great majority of segmentation models features convolu-
tional layers and with this optimization we are operating on the number of channels in
the convolutional layers.

Comments on the Results Analyzing the behavior of the model when changing the
values of the tuning knobs a and t we can observe that changing the value of a yields the
biggest decrease in inference latency. Changing from one value of a to the next always
leads to an improvement in latency. Keeping the value of t at the baseline 6, we notice
that we can get over the real-time constraint of 30 fps with a latency of 0.0265 when
a=0.125, while the IoU stays at a value of 0.9711. If we compare only this first step
to the previous branch of optimizations we achieve similar latency performance with an
input size of 160x160x3 which resulted in a lower IoU score of 0.9641.
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model a t r pp #params input (MB) fwd pass(MB) MACs (M)
baseline 1 6 3 1 1,122,673 3,15 209,88 830,67

1 0,75 6 3 1 644,917 3,15 157,42 485,61

2 0,5 6 3 1 298,553 3,15 104,96 232,14

3 0,25 6 3 1 83,581 3,15 52,49 70,27

4 0,125 6 3 1 25,367 3,15 26,26 23,69

5 0,75 4 3 1 450,757 3,15 134,61 396,21

6 0,5 4 3 1 208,793 3,15 89,75 191,35

7 0,25 4 3 1 58,541 3,15 44,89 59,28

8 0,125 4 3 1 17,807 3,15 22,46 20,54

9 0,75 2 3 1 256,597 3,15 111,8 306,81

10 0,5 2 3 1 119,033 3,15 74,55 150,56

11 0,25 2 3 1 33,501 3,15 37,29 48,29

12 0,125 2 3 1 10,247 3,15 18,66 17,4

Table 4.11. Model Summaries

Changing the value of t always results in lower inference latency but in some cases it
resulted in even higher intersection over union. However the difference in latency and
IoU score is not as pronounced as it was for a. From the model summary we see that
the number of MACs gets significantly lower from one value of t to the next, as does the
total number of parameters, but this does not reflect as strongly on the value of the IoU
score. In the following stages we will explore the interaction of different values of t with
other tuning knobs.

In this first stage we start to get an understanding on how operating on the structure
of the network is more effective in terms of intersection over union. As a matter of
fact the combination a=0.125 and t=2 yields a frame-rate of 47.1698 and an IoU score
of 0.9686, which is still higher than the IoU of the 160x160x3 model. On the other
hand, the inference latency achieved with lower resolutions is still lower than the lowest
achieved changing just a and t. While 47 frames per second are way past the real time
requirements, in some cases a faster inference could be required, for example in cases in
which the scene changes very fast and an interval of 0.0334 seconds between one frame
and the next could lead to missing important information.
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model name a t r pp inference latency (s) frame rate mean IoU
baseline 1 6 3 1 0.2204 4.5372 0.9777

1 0,75 6 3 1 0.1648 6.0679 0.9771

2 0,5 6 3 1 0.1000 10.0000 0.9782

3 0,25 6 3 1 0.0485 20.6185 0.9762

4 0,125 6 3 1 0.0265 37.7358 0.9711

5 0,75 4 3 1 0.1384 7.2254 0.9778

6 0,5 4 3 1 0.0871 11.4810 0.9773

7 0,25 4 3 1 0.0420 23.8095 0.9738

8 0,125 4 3 1 0.0238 42.0168 0.9716

9 0,75 2 3 1 0.1123 8.9047 0.9788

10 0,5 2 3 1 0.0726 13.7741 0.9774

11 0,25 2 3 1 0.0354 28.2485 0.9740

12 0,125 2 3 1 0.0212 47.1698 0.9686

Table 4.12. Performance Data

4.4.2 Stage 5 - Operator Repetition

Details on the Experiment The term operator repetition indicates a series of tuning
knobs related with layers or functional blocks of the network that are repeated across
the network structure and that can be removed without consequences other than the
reduction of the number of parameters.
In the case of our baseline, FastSCNN, we identified the tuning knobs in r, which is the
number of times the bottleneck block is repeated in the Context Branch and t (0 or 1),
which is the presence of the pyramid pooling block.

From what was already stated in the methodology chapter, we do not expect the presence
of the pyramid pooling block to make a big difference on the behavior of the network in
the case of our dataset. On the other hand the effect of the tuning knob r, for which we
are considering the values [3, 2, 1], can have a strong effect on the performance of the
model, however in the case of our baseline there aren’t many functional blocks to start
with, so changing the value of r is not going to have the same effect as it would in the
case of a bigger and more complex baseline.

From the model summaries we can see that eliminating the pyramid pooling module
only slightly changes the number of MACs and does not change the number of trainable
parameters, while the number of repetitions of the bottleneck block has a much more
sizable effect. However, we can already notice that these quantities are much bigger than
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Figure 4.8. Pareto Frontier Plot - Stage 4

Block Output chans Stride Repetitions Exp rate
Conv2d 32 2 1 -
DSConv 48 2 1 -
DSConv 64 2 1 -
bottleneck 64 2 r 6
bottleneck 96 2 r 6
bottleneck 128 1 r 6
Pyramid Pooling Module 128 - pp -
Feature Fusion Module 128 - - -
DSConv 128 1 2 -
Conv2d num_classes (1) 1 1 -

Table 4.13. Model Structure
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model a t r pp #params input (MB) fwd pass(MB) MACs (M)
baseline 1 6 3 1 1,122,673 3,15 209,88 830,67

13 1 6 3 0 1,122,673 3.15 200,97 826,65

14 1 6 2 1 743,281 3,15 184,32 695,05

15 1 6 2 0 743,281 3,15 175,41 691,03

16 1 6 1 1 363,889 3,15 158,76 559,43

17 1 6 1 0 363,889 3,15 149,85 555,41

Table 4.14. Model Summaries

in the previous stages.

Comments on the Results The first thing that we notice is that the latency achieved
in this step, while lower than the baseline, does not get close to the real-time goal. How-
ever, the intersection over union score stays very high throughout the range of values of
the tuning knobs, even achieving the best score observed so far of 0.9802 in the smallest
model for this stage with r=1 and pp=0.

model name a t r pp inference latency (s) frame rate mean IoU
baseline 1 6 3 1 0.2204 4.5372 0.9777

13 1 6 3 0 0.2391 4.1823 0.9792

14 1 6 2 1 0.1973 5.0684 0.9741

15 1 6 2 0 0.1942 5.1493 0.9750

16 1 6 1 1 0.1643 6.0864 0.9778

17 1 6 1 0 0.1663 6.0132 0.9802

Table 4.15. Performance Data

Thanks to this stage we understand that the presence of the pyramid pooling module
is useless for the dataset in question and at times even detrimental. The difference in
intersection over union is practically negligible but the model without the pyramid pool-
ing module always performed better. In terms of latency the model without the pyramid
pooling module performed better 2 times out of 3, but the difference is always very small.
From this data we have the confirmation of what we assumed in the methodology chapter
based on the characteristics of our dataset.

The repetition of the bottleneck block has much more evident effects on inference latency.
From one value of r to the next there is always a reduction in latency. The intersection
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over union score does not follow the same trend, keeping a high value for every model
tested in this stage and at times being higher with a lower value of r. A possible justifi-
cation of this behavior is that the models analyzed in this stage feature a large number
of parameter and even when reducing the number of bottleneck blocks there are enough
parameters to grant sufficient performance. An interesting analysis that we are going
to carry out in the following stages is regards the interaction of this tuning knob with
models with fewer parameters, combining it with the other tuning knobs that we have
introduced in the previous stages.

Figure 4.9. Pareto Frontier Plot - Stage 5
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4.4.3 Stage 6 - Width Multiplication and Operator Repetition Combi-
nation

width multiplier expansion rate operator repetition pyramid pooling
0.25 6 2 0
0.25 6 1 0
0.25 4 2 0
0.25 4 1 0
0.25 2 2 0
0.25 2 1 0
0.125 6 2 0
0.125 6 1 0
0.125 4 2 0
0.125 4 1 0
0.125 2 2 0
0.125 2 1 0

Table 4.16. Solution Combination - Parameter Matrix

Details on the Experiment Up until this stage we have explored all the possible
combinations of the tuning knobs that were considered at each stage. Now we need to
combine the tuning knobs considered in the previous two stages and we are faced with
the problem of the number of possible combinations. As we have already stated, training
a model requires time and computing resources, so, in order to reduce the amount of
resources used in the experimental part of this thesis we explored a subset of the solution
space.

Block Output chans Stride Repetitions Exp rate
Conv2d 32*a 2 1 -
DSConv 48*a 2 1 -
DSConv 64*a 2 1 -
bottleneck 64*a 2 r t
bottleneck 96*a 2 r t
bottleneck 128*a 1 r t
Pyramid Pooling Module 128*a - 0 -
Feature Fusion Module 128*a - - -
DSConv 128*a 1 2 -
Conv2d num_classes (1) 1 1 -

Table 4.17. Model Structure
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This subspace is defined by selecting a subset of the original set of values of the tun-
ing knobs from the previous stages. In particular, for the width multiplication we used
only the values of 0.25 and 0.125 for a because they were the only values that achieved
performance over the real-time objective. For t we kept all 3 original values of [6, 5,
2], for r we kept the values 2 and 1 and discarded r=3, and we only considered models
without the pyramid pooling module since we assessed its uselessness for the task at hand.

The purpose of this set of experiments is to investigate the interaction of the tuning knobs
that operate on the topology of the network. In the previous stages we have observed
how the number of parameters of the network and multiplication-accumulation opera-
tions change with these optimization strategies and in this stage we want to understand
how the behavior of the network changes when we operate on both width multiplication
and operator repetition at the same time.

model a t r pp #params input (MB) fwd pass(MB) MACs (M)
18 0,25 6 2 0 55,549 3,15 43,88 61,19

19 0,25 6 1 0 27,517 3,15 37,49 51,517

20 0,25 4 2 0 39,805 3,15 38,24 53,44

21 0,25 4 1 0 21,069 3,15 33,82 46,95

22 0,25 2 2 0 24,061 3,15 32,6 45,68

23 0,25 2 1 0 14,621 3,15 30,15 42,44

24 0,125 6 2 0 16,919 3,15 21,95 21,3

25 0,125 6 1 0 8,471 3,15 18,76 18,45

26 0,125 4 2 0 12,151 3,15 19,14 19,1

27 0,125 4 1 0 6,495 3,15 16,92 17,2

28 0,125 2 2 0 7,383 3,15 16,32 16,91

29 0,125 2 1 0 4,519 3,15 15,09 15,96

Table 4.18. Model Summaries

From the model summary we can observe the lowest number of parameters so far of
4519 which is almost 250 times smaller than the original number of parameters of the
baseline (1.12M). Such an extreme reduction is very useful to understand how big the
model needs to be to perform well on the selected task. Combining the two strategies
in the model topology optimization branch it become clear how the effort required by
this branch is much higher not only because of the time required to train all the models,
but also because it requires a deep understanding of the network structure and of the
characteristics and demands of the dataset. In fact, identifying the tuning knobs requires
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a deep knowledge of the architecture of the network and its functionality, while selecting
the possible values of this tuning knobs has more to do with the complexity of the dataset,
which determines how far the simplification of the network can go.

Comments on the Results The results of these experiments are very interesting. We
can immediately see that the width multiplier knob a is the most effective out of the 4, as
we anticipated in the width multiplication stage. As a matter of fact even when combined
with the other 3 tuning knobs, it is still the one that grants the biggest improvement in
inference latency.

model name a t r pp inference latency (s) frame rate mean IoU
18 0.25 6 2 0 0.0435 22.9885 0.9744

19 0.25 6 1 0 0.0383 26.1096 0.9747

20 0.25 4 2 0 0.0380 26.3158 0.9711

21 0.25 4 1 0 0.0352 28.4090 0.9733

22 0.25 2 2 0 0.0344 29.0697 0.9733

23 0.25 2 1 0 0.0320 31.2500 0.9702

24 0.125 6 2 0 0.0243 41.1522 0.9739

25 0.125 6 1 0 0.0224 44.6428 0.9701

26 0.125 4 2 0 0.0219 45.6621 0.9717

27 0.125 4 1 0 0.0203 49.2610 0.9614

28 0.125 2 2 0 0.0209 47.8468 0.9706

29 0.125 2 1 0 0.0201 49.7512 0.9677

Table 4.19. Performance Data

Changing the value of t and r had a similar effect on the performance of the network.
The drop in latency was not as large as for a, but it was still noticeable and the IoU
score stayed at an acceptable value throughout the experiment. However, the behavior of
the intersection over union score was more predictable when going from higher to lower
values of t an r. In the previous stage, changing the value of r to a lower value sometimes
yielded a better IoU score, while this time it always led to a small drop. We explained this
behavior as the network having many parameters to compensate for the simplification
of the context branch by removing some of the bottleneck blocks. In that case having
less parameters could have led to advantages in the training stage a so the performance
slightly improved. In this stage we are starting from models that were already greatly
simplified by reducing the number of channels of the convolutional layers. So, even if the
performance is still more than acceptable, we start to witness the limits of the simplifi-
cations and having less parameters implicates that the network extracts less knowledge
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Figure 4.10. Output with a=1.0 t=2 r=1 pp=0

and the quality of its predictions suffers from it.

Since "a" is the most effective tuning knob by a great margin, the best results achieved
in this stage are not that far from the results obtained in the width multiplication stage.
However, by changing the other knobs we obtain further control on the performance of the
network. For example the combination a=0.125, t=6, r=1 achieves an inference latency
of 0.0243 (41.152 fps) while keeping an IoU score of 0.9739 which in the previous stages
was paired with much slower inference. This trend is well portrayed in the Pareto frontier
plot in which we included all the models considered in the 3 network topology optimiza-
tion stages. While there is not a great jump in inference latency, most of the models on
the frontier are models from this third stage, the most relevant being: [a=0.125, t=2,
r=1][a=0.125, t=2, r=2][a=0.125, t=4, r=2][a=0.125, t=6, r=2], because they all achieve
an inference latency over the real-time objective and also keep a high intersection over
union score.

82



4.5 – Combinations of the Two Macro Branches

Figure 4.11. Pareto Frontier Plot - Stage 6

4.5 Combinations of the Two Macro Branches

Comparison of the Two Macro Branches From the experiments carried out so far
we can make some important considerations between the two macro-branches and the
models obtained during the analysis.

In the Pareto frontier plot above we can clearly notice that the models belonging to the
Input Data Optimization step present on the frontier are located in the left and upper
part of the plot. This means, as we have anticipated, that the fastest overall inference
latency is achieved by using a reduced input resolution. It also means that these mod-
els achieved the worst intersection over union scores out of the models belonging to the
frontier.

The second consideration is that the models belonging to the Network Topology Opti-
mization branch are located to the right of the plot. This means that these simplifications
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managed to achieve higher intersection over union scores. The reasoning behind this be-
havior is that instead of eliminating important knowledge from the input they reduce the
number of parameters in the network, generating a much more essential model that has
an output comparable to that of the full model because of the less demanding nature of
the dataset. It is true that a more complex dataset could present more challenges when
operating on the topology of the network, but it is also true that the very definition of
neural networks accounts for a larger than necessary number of parameters.

Figure 4.12. Pareto Frontier Plot - Stages 2 to 6

Another important consideration about Network Topology Optimization is that the mod-
els produced in this branch are much closer together on the frontier, which means that
operating on the tuning knobs allows for finer control over performance, which cannot
be said for the models belonging to the Input Data Optimization branch, that are much
further apart with large drops in latency always followed by large drops in IoU score. This
means that in cases in which the window created by latency and accuracy constraints is
very narrow, operating exclusively on input resolution might bring to missing the window,
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while operating on the structure of the network has more chances of finding acceptable
solutions.

Finally, from the plot we can see how one can opt for one or the other strategy according
to the constraints of the task. In fact, if the constraint on latency is stricter than the
constraint on accuracy, the most effective strategy is changing the input resolution. On
the other hand, if the accuracy constraint is the stricter manipulating the structure of
the network with the techniques illustrated in these experimental stages is the best way
to keep a higher intersection over union score and also reduce the inference latency by a
considerable amount.
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4.5.1 Stage 7 - Input Data Optimization and Network Topology Opti-
mization Combination

Details on the Experiment This was the most elaborate stage of experiments. Com-
bining models from all of the previous stages resulted in a large number of possible so-
lutions. If we were to analyze each possible combination of the tuning knobs from the
Network Topology Optimization branch with all of the resolutions analyzed in the Input
Data Optimization branch, we would have had to train 490 models, which would have
resulted in a very large amount of time spent training such models and a large amount of
computational and energy resources used in the process. In order to obtain meaningful
information out of the following analysis without going through so many models, we se-
lected the best performing models from stage 6 and the best performing resolutions from
stage 2. The structure of the network is described in Table 4.17.

model input res a t r pp #params input fwd pass MACs (M)
1 512x512 1 6 1 0 363,889 3,15 149,85 555,41

2 512x512 0,25 6 1 0 27,517 3,15 37,49 51,46

3 512x512 0,125 6 2 0 16,919 3,15 21,95 21,3

4 512x512 0,125 4 2 0 12,151 3,15 19,14 19,1

5 512x512 0,125 2 2 0 7,383 3,15 16,32 16,91

6 512x512 0,125 2 1 0 4,519 3,15 15,09 15,96

7 256x256 1 6 1 0 363,889 0,79 37,46 138,86

8 256x256 0,25 6 1 0 27,517 0,79 9,37 12,87

9 256x256 0,125 6 2 0 16,919 0,79 5,49 5,33

10 256x256 0,125 4 2 0 12,151 0,79 4,78 4,78

11 256x256 0,125 2 2 0 7,383 0,79 4,08 4,23

12 256x256 0,125 2 1 0 4,519 0,79 3,77 3,99

13 192x192 1 6 1 0 363,889 0,44 21,07 78,11

14 192x192 0,25 6 1 0 27,517 0,44 5,27 7,24

15 192x192 0,125 6 2 0 16,919 0,44 3,09 3

16 192x192 0,125 4 2 0 12,151 0,44 2,69 2,69

17 192x192 0,125 2 2 0 7,383 0,44 2,38 2,38

18 192x192 0,125 2 1 0 4,519 0,44 2,12 2,24

Table 4.20. Model Summaries I
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model input res a t r pp #params input fwd pass MACs (M)
19 160x160 1 6 1 0 363,889 0,31 14,63 54,25

20 160x160 0,25 6 1 0 27,517 0,31 3,66 5,03

21 160x160 0,125 6 2 0 16,919 0,31 2,14 2,08

22 160x160 0,125 4 2 0 12,151 0,31 1,87 1,87

23 160x160 0,125 2 2 0 7,383 0,31 1,59 1,65

24 160x160 0,125 2 1 0 4,519 0,31 1,47 1,56

25 128x128 1 6 1 0 363,889 0,2 9,37 34,72

26 128x128 0,25 6 1 0 27,517 0,2 2,34 3,22

27 128x128 0,125 6 2 0 16,919 0,2 1,37 1,33

28 128x128 0,125 4 2 0 12,151 0,2 1,2 1,2

29 128x128 0,125 2 2 0 7,383 0,2 1.02 1,06

30 128x128 0,125 2 1 0 4,519 0,2 0,94 1

31 96x96 1 6 1 0 363,889 0,11 5,27 19,53

32 96x96 0,25 6 1 0 27,517 0,11 1,32 1,81

33 96x96 0,125 6 2 0 16,919 0,11 0,77 0,75

34 96x96 0,125 4 2 0 12,151 0,11 0,67 0,67

35 96x96 0,125 2 2 0 7,383 0,11 0,57 0,6

36 96x96 0,125 2 1 0 4,519 0,11 0,53 0,56

Table 4.21. Model Summaries II

In particular we chose 6 models from stage 6, all of which belong to the Pareto frontier
for that stage. The first combination is [a=1.0, t=6, r=1] which is the one that achieved
the best overall intersection over union score; then we have [a=0.25, t=6, r=1], [a=0.125,
t=6, r=2], [a=0.125, t=4, r=2], [a=0.125, t=2, r=2], [a=0.125, t=2, r=1]. The latter cor-
responds to the lowest inference latency recorded in the Network Topology optimization
branch. The first two models did not achieve real-time latency, but including them in the
analysis can still be beneficial for observing how changing the input resolution affects the
simplification of the structure of the model.

We did not include any of the models on the frontier that featured the pyramid pooling
module because of the incompatibility with the input resolution reduction and also be-
cause we assessed that the difference between a model with or without pyramid pooling
is negligible [Table 4.15]. We analyzed all resolutions except for 224x224 because it had
lower accuracy than lower resolutions while having slower inference latency.
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In this “combination” step we chose model structures that appeared on the Pareto curve
in stage 6 [4.4.3] instead of selecting ranges of values for the tuning knobs. The reason
behind this is that in stage 6 we were interested in understanding the way different values
of a, t and r interacted with each other, while now we already know important informa-
tion about the behavior of these tuning knobs and are interested in understanding how
the two branches of optimizations interact with each other and how far we can push the
performance of the baseline combining the two strategies.

Looking at the model summaries we see that lowest number of MACs is reached in the
last model. This value is significant because its value is affected by changes in both the
input data and the structure of the model, while the number of trainable parameters only
changes when the structure of the network changes and the input size changes only when
the input resolution changes. It is also important to understand how also the size of the
forward/backward pass, which describes the amount of system memory required to run
the model, reaches its all time low in this stage. It is remarkable because with a disk
occupation of 0.01MB and a system memory occupation of 0.53MB, the smallest model
is way below the system specifications of our device (raspberry pi 4) and probably could
run on much lower end hardware. This last observation is true for many of the models
in this stage and opens the floor to the discussion on how the combination of all the
possible optimizations in the pipeline can be used to optimize the model to an extreme
that might not be needed for a task like the one presented in this thesis, but could prove
useful for simpler tasks (even outside of the domain of semantic segmentation) running
on less powerful hardware.

Comments on the Results The first thing we can see from these results is that at
least one model for each input resolution appears on the Pareto frontier. This means that
each time we go from a resolution to the next there is always a gain in inference latency,
no matter the network simplifications occurring at the same time.

The second thing that we notice is that we were able to achieve incredibly high frame-
rates. There aren’t many realistic use-case scenarios for a model that runs at over 800
frames per second, but such a fast latency can be interpreted not only in the context of
how many operations can be performed in a time unit, but also in the context of energy
consumption. In fact, with parallelized computing, the amount of energy consumed when
performing a task is no longer dependent on the number of multiplication-accumulation
operations contained in the task, but it is strictly correlated with the latency, so a model
that can perform inference at a very low latency will also consume very little power. If
we put this in the context of a battery-powered edge-device, it means that performing
inference on the same stream of images, the model with the fastest inference will consume
a lot less energy and its battery life will be much longer. Another reason why we would
want faster inference is that, how we have stated in other parts of this thesis, semantic
segmentation is not an end to itself. It is a way for a computer to understand a par-
ticular scene, but its output is almost always the input for some other operation, which
will take some time. So depending on the complexity of these additional operations and
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the nature of the task, it may be necessary to achieve a latency that is much lower than
what we have so far defined as real-time. However while it seems having such a low la-
tency is a good thing, it also brings attention to the importance of an accuracy constraint.

model input res a t r pp inference latency (s) frame rate mean IoU
1 512x512 1 6 1 0 0,1663 6.0132 0,9789

2 512x512 0,25 6 1 0 0,0381 26.2467 0,9733

3 512x512 0,125 6 2 0 0,0244 40.9836 0,9679

4 512x512 0,125 4 2 0 0,0223 44.8430 0,9717

5 512x512 0,125 2 2 0 0,0207 48.3092 0,9703

6 512x512 0,125 2 1 0 0,0205 48.7805 0,9651

7 256x256 1 6 1 0 0,0431 23.2019 0,9711

8 256x256 0,25 6 1 0 0,0091 109.8901 0,9636

9 256x256 0,125 6 2 0 0,0065 153.8462 0,9613

10 256x256 0,125 4 2 0 0,006 166.6667 0,9524

11 256x256 0,125 2 2 0 0,0056 178.5714 0,9541

12 256x256 0,125 2 1 0 0,0053 188.6792 0,9391

13 192x192 1 6 1 0 0,0237 42.1941 0,9703

14 192x192 0,25 6 1 0 0,0053 188.6792 0,9588

15 192x192 0,125 6 2 0 0,004 250.0000 0,9492

16 192x192 0,125 4 2 0 0,0037 270.2703 0,9493

17 192x192 0,125 2 2 0 0,0033 303.0303 0,9476

18 192x192 0,125 2 1 0 0,0031 322.5806 0,9275

Table 4.22. Performance Data I

Speaking of intersection over union, we see interesting values for the resolutions of 512x512
and 256x256, while for the others we start seeing lower values. The reason for this be-
havior is that we have reached a point at which we have so few parameters that every
time we remove something from the network we run the risk of losing crucial information.
Before combining these two main optimization branches we were able to achieve inter-
esting IoU values because in one case the lower input resolution was countered by the
amount of parameters of the network and in the other case the reduction of parameters of
the network did not affect the output quality a lot because most of the parameters were
redundant and a full resolution input image is very rich in information. When combining
these strategies we get closer and closer to the point in which, even for a simple dataset
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model input res a t r pp inference latency (s) frame rate mean IoU
19 160x160 1 6 1 0 0,0161 62.1118 0,9621

20 160x160 0,25 6 1 0 0,0039 256.4103 0,9487

21 160x160 0,125 6 2 0 0,0031 322.5806 0,9386

22 160x160 0,125 4 2 0 0,0028 357.1429 0,9327

23 160x160 0,125 2 2 0 0,0025 400.0000 0,9379

24 160x160 0,125 2 1 0 0,0023 434.7826 0,9317

25 128x128 1 6 1 0 0,0107 93.4579 0,957

26 128x128 0,25 6 1 0 0,0027 370.3704 0,9397

27 128x128 0,125 6 2 0 0,0022 454.5455 0,9143

28 128x128 0,125 4 2 0 0,002 500.0000 0,9255

29 128x128 0,125 2 2 0 0,0018 555.5556 0,9125

30 128x128 0,125 2 1 0 0,0017 588.2353 0,93

31 96x96 1 6 1 0 0,0069 144.9275 0,9387

32 96x96 0,25 6 1 0 0,0019 526.3158 0,9101

33 96x96 0,125 6 2 0 0,0016 625.0000 0,9053

34 96x96 0,125 4 2 0 0,0015 666.6667 0,9051

35 96x96 0,125 2 2 0 0,0014 714.2857 0,9027

36 96x96 0,125 2 1 0 0,0012 833.3333 0,9054

Table 4.23. Performance Data II

like ours, the information flowing through the network is all essential to the task and
reducing it by simplifying the network structure or resizing the input images results in a
substantial loss of output quality.

Another notable thing is that the lowest value for the intersection over union score
achieved in this stage is still higher than the lowest value achieved when using only
one input channel, which confirms our decision to exclude that particular type of opti-
mization from the pipeline.

Analyzing these results more closely we can identify 3 clusters of models in the Pareto
frontier plot. The first one is on the bottom right and corresponds to the models with the
full-size input. The IoU is very high, but the latency is the highest among the clusters.
The second cluster consists in a group of models with input sizes varying from 256x256
to 192x192 that have frame-rates that space from 110 fps (0.0091s latency) to 303 fps
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4.5 – Combinations of the Two Macro Branches

Figure 4.13. Output of the fastest model configuration (n. 36)

(0.0033s latency) and with IoU scores that vary from 0.9636 to 0.9476. This is probably
the most interesting of the clusters because the latency is very low and the IoU score is
still acceptable. The third cluster contains all of the other models, which achieve very low
inference latency values, but also present the most noticeable degradation in intersection
over union. In some way these 3 clusters of models represent the possible preferences in
terms of latency or accuracy. The middle cluster is the most versatile, but there can be
situations in which one of the two extremes may be necessary. And in those cases one
can choose among the different models in the selected cluster in order to further tune the
model for the task at hand.
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Experimental Results

Figure 4.14. Pareto Frontier Plot - Stage 7

4.6 Important Considerations from the Experiments

Having analyzed the results of each experimental stage in detail, we can now gather the
most important considerations that sum up what we learned so far. For the purpose of
this Thesis we have experimented on a single baseline and on one particular dataset, but
the following rules of thumb apply to most use-cases.

The first important observation is that while it is more time and resource consuming,
re-training a model is necessary when changing input resolution. In the case of our base-
line we re-trained the entire network, but with bigger models it is possible to freeze the
parameters of the networks that make up the "feature extraction" portion of the model
and re-train only the classification head, in order to save resources.

Next we discovered how reducing the number of input channels to 1 damages the in-
tersection over union score more than it reduces inference latency. From Table 4.9 and
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4.7 we can clearly see how reducing the input resolution keeping 3 input channels al-
ways provides both faster inference and higher intersection over union score. Therefore
we concluded that the Input Channel Reduction stage is not a suitable optimization for
semantic segmentation.

Moving to the Network Topology Optimization we understood that the optimizations be-
longing to this branch can have a varying degree of effectiveness according to the structure
of the selected baseline. In our case we analyzed a smaller than usual network and we
were able to optimize its performance by a good margin. It is straightforward to say
that if we had started from a bigger baseline, the improvement due to these optimization
would have been even bigger, although it is important to understand that a bigger base-
line after applying the optimization would probably be slower than a smaller baseline
with the same optimizations so the reasoning behind the model selection carried out in
Chapter 3 still stands.

Speaking of Network Topology Optimization, a guideline to identify possible tuning knobs
in a general semantic segmentation model is that Width Multiplication is the most univer-
sally applicable simplification, since it relies on the output channels of the convolutional
layers and most state-of-the-art semantic segmentation models are indeed Fully Con-
volutional Networks. On the other hand the expansion rate t relies of the presence of
bottleneck blocks, which are still very present throughout the literature because of the
popularity of the ResNet backbone for image classification. Operator Repetition should
also be widely applicable, but it requires a deeper model understanding to identify which
functional blocks are repeated or removable.

When comparing the effect of the two optimization branches on the performance of the
baseline model, we clearly visualized 4.12 how reducing the resolution of the input yielded
the fastest inference, but also resulted in bigger drops in intersection over union score.
On the other hand operating on the structure of the network did not bring the latency
as far down, but allowed us to keep a much higher IoU score. It was also interesting
to see how models with different input resolutions were more spaced out on the Pareto
frontier plot, while the models belonging to the second branch were much closer together,
meaning that changing the values of the network topology tuning knobs provides a finer
control over the performance of the model, which can be very useful when accuracy and
latency constraints create a smaller window of acceptable solutions and simply changing
the input resolution could cause to miss such window.

Finally we combined the two macro branches and found out that it is the way to obtain
the largest amount of candidate models. We noticed that the plot 4.14 can be divided
into regions according to the requirements of the task at hand and we can choose models
belonging to the region that better fits such requirements. Faster but less accurate models
will appear in the top left region of the plot, while slower but more accurate models will
be on the bottom right. More balanced results will more likely lay in the middle of the
plot.
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Experimental Results

Figure 4.15. Output of model n. 17 capable of 3.3ms latency
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Chapter 5

Conclusion

When we introduced the experiments, we stated that the purpose of these was to explore
several optimization techniques in order to define a pipeline of optimizations that can
be implemented as an automatic system. After reasoning on the results of the experi-
ments we can put together said pipeline, structured based on the effort level of each stage.

The Input Data Optimization branch, in the definitive pipeline, consists of only the Input
Resolution Reduction with retraining, because we observed that changing the resolution
without retraining degrades the output quality and also because reducing the number of
input channels to 1 proved to be much less effective than changing resolution.
This optimization stage will be the only stage available to Entry-Level users, because it
does not require any understanding of the underlying network structure. It is also the
best options for users that do not have much time available to them, or who want to save
training time.

Contrarily to the Input Data Optimization branch, after the experiments, the Model
Topology Optimization branch keeps all of its stages. This branch requires the users to
be able to identify tuning knobs based on the structure on the network. In particular,
the Width Multiplication stage requires the user to know how to change the number of
output channels of a convolutional network, but it is still less complicated than the Op-
eration Repetition stage, which requires a deeper understanding of the model to find the
functional blocks or the layers that are repeated and can be removed without impacting
the output of the network. Therefore, an intermediate user will be able to use the Input
Resolution Reduction Stage and the Width Multiplication stage, while an expert user
will be able to take advantage of the entire pipeline.
However, we have observed how the Width Multiplication stage is by far the most ef-
fective, therefore, if a user with pressing time constraints is dealing with a segmentation
task that needs further optimization than the Input Resolution Reduction, Width Mul-
tiplication is the next stage to try.

This thesis also lends itself for many possible future developments. In fact, the experi-
mental framework that we built can be used to build a novel model architecture. If we
think about the fact that many models in the literature share building blocks if not entire
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Conclusion

backbones, by evaluating the effect of various optimizations on an existing model, we can
gain insights that can prove useful when designing a network.
Another interesting future development could be to expand the scope of the optimiza-
tion pipeline. In fact, Semantic Segmentation shares many important traits with other
computer vision tasks and it could be very interesting to try and build an optimization
pipeline that can be used across several computer vision tasks.
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