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Summary

The formation of the Solar System can be traced back to 4.5 billion years ago. The
original cloud of interstellar gas and dust began to collapse, leading to the formation
of the Sun and then all the other celestial bodies. Some of them did not evolve into
planets and maintained an almost completely pure state. They are called small
bodies of our Solar System and include asteroids, comets and meteoroids. Some of
these bodies can enter the Earth’s atmosphere and cause the striking phenomenon
of meteor ; if a fraction of the body can reach the surface of the planet it is called
meteorite. The study of meteorites is very important because these fragments of
small celestial bodies reveal much about the history of our Solar System, and their
classification based on structure and composition provides information about what
kind of objects exist in our system. These objects may have unusual orbits that
pose a threat to life on Earth. Thus, the more information we have, the better we
can develop techniques to deflect potentially dangerous bodies. Camera networks
such as PRISMA have emerged with the precise goal of observing bright meteors
and determining the fall trajectory of the object causing the visible phenomenon
in order to delineate the impact area. The currently working detection system
is based on an open-source project called FRIPON/freeture, which implements a
motion detection algorithm. Due to the high number of false positives generated
by the system, a different solution is needed. As part of the PRISMA project, we
aim to develop a neural network for real-time detection of transient atmospheric
events caused by meteoroids entering the atmosphere. To accomplish this task
given the high resolution of the images collected by the cameras and the small
size of the target object, the key strategy is to use a model or combination of
models capable of extracting the informative regions on the input and using only
these to perform a binary classification task. Using these guidelines, two different
families of models are compared: Deep Attention-Sampling and Differentiable Patch
Selection models are designed to learn which regions are important in the input
images and extract some square patches to perform the binary classification task.
At first, the performance and limitations of these models are evaluated on two
synthetic datasets called needle MNIST and megapixel MNIST, both based on the
famous MNIST dataset of handwritten digits; then the best solution for the task-
specific dataset is investigated. From an initial dataset of video recordings 38 fireball
events and 38 non-fireball events are selected, then 3 events for each class are
excluded for the final test, and two datasets are created. The first dataset consists
of manually cropped 56x56 images representing parts of events and is used to find
the best feature extraction network, the part of the models that uses the important
regions (patches) to classify the whole input image. The training strategy is 7-fold
cross-validation, and several techniques are tested to deal with the class imbalance
problem: class weights, oversampling, focal loss function, transfer learning and fine
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tuning on FASHION MNIST. The weights of the best architecture trained with the
best strategy are stored and then loaded into the final models. The second dataset
consists of 1296x966 images created from 2s windows with an overlap of 1/4s. The
final models are trained on this second dataset using a train validation test strategy
and the oversampling method. Both datasets are augmented by a factor of 8 using
the same offline data augmentation. One problem that mainly affects the second
dataset is the high number of noisy positive class images generated from the original
events. Of the two models, the Deep Attention-Sampling model appears to give the
best results, but a more detailed analysis reveals its weaknesses: the number of
noisy positive class images prevents learning the correct informative regions, and
the model associates the noisy extracted patches with the positive class.
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Chapter 1

Introduction

This first chapter presents some information and concepts necessary to contextualize
the work. First, a brief overview of the history of our Solar System is given to
introduce the components that characterize it. Then we focus on the small bodies,
in particular asteriods and meteoroids, highlighting why they are so important. The
information to write this part are taken mainly from the NASA website [27] and
the astonomy book [22]. Finally the PRISMA project is described.
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Chapter 1. Introduction

1.1 Brief history of the Solar System

The planetary system in which we live is called the Solar System and is located
in an outer spiral arm of our galaxy, the Milky Way. Modern astronomers date its
formation back to 4.5 billion years ago and claim that during the first phase of the
solar nebula’s formation, there was a cloud of interstellar gas and dust that began
to spin and collapse, possibly due to the shock wave of an exploding star called
a supernova. At the center of the swirling disk, increasing gravity attracted more
and more matter, leading to the formation of the Sun, which reached the minimum
temperature necessary to trigger nuclear fusion reactions, releasing an enormous
amount of energy. Even though the Sun eventually absorbed more than 99% of
the available matter, the remaining material further out in the disk also clumped
together, forming the planetesimals1. Some of them continued to grow to their
present size, accumulating the smaller masses and becoming large moons, dwarf
planets and planets. In other cases, the planetesimals did not evolved into planets:
the Asteroid Main Belt, the Kuiper Belt, and the Oort Cloud are made up of pieces
of the early Solar System that never quite merged into a planet. These celestial
bodies can be divided into two categories: some of them are composed mainly of
metals and rocky material and form the asteroids, while others are composed mainly
of dust and ice and form the comet nuclei.

Figure 1.1: Solar system map

The planets that formed in our Solar System are divided into rocky planets (Mer-
cury, Venus, Earth and Mars) and gas planets (Jupiter, Saturn, Uranus, Neptune).
The first category developed in a region of the early solar nebula where the proxim-
ity of the Sun suppressed the existence of volatile elements. The second category,
on the other hand, is characterised by low mass density and the distance from the
Sun allowed these planets to keep massive gas envelopes enclosing their rather small
solid cores. In addition to the actual planets there are the dwarf planets. The five
best known dwarf planets are Ceres, Pluto, Haumea, Makemake and Eris. With
the exception of Ceres, which is in the asteroid belt, the others are in the Kuiper

1bodies of solid materials formed in the earliest planetary nebulae that have grown large enough
to begin to draw other materials to them by gravitational attraction
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Chapter 1. Introduction

belt. They are called dwarf planets because, although they are massive and orbit
the Sun, they have not cleared their orbital path compared to the proper planets.
The following image provides a view of the Solar System.

1.2 The small bodies of the solar system
The small bodies of our Solar System, namely asteroids, comets and meteoroids,
play an important role. As stated earlier, billions of small space rocks did not
evolve into planets during the formation of the Solar System, and amazingly, they
have maintained an almost completely pristine state during these 4.5 billion years.
The importance of studying these small worlds lies in several reasons:

• they tell a lot about the history of our Solar System and provide us with useful
information to reconstruct the events that led to the formation of our world.
The discovery of the amino acid glycine2 in comet dust supports the theory
that some catalyst substances of life arrived on Earth through meteorite and
comet impacts;

• their study lets us understand how human expansion in space can be affected
by the available resources and the hazards in the Solar System;

• most important is the study of their composition and structure to classify
what kind of objects exist in the Solar System. This is because it is known
that asteroid and comet impacts may be one of the main causes of the mass
extinction events on our planet. These bodies can have unusual orbits and
some of them pose a threat to life on Earth. So the more we know about
them, the better we can track them and develop techniques to deflect the
potentially dangerous bodies.

2amino acid used by living things to synthesize proteins
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Chapter 1. Introduction

1.3 Meteoroids, meteors and meteorites
All this information can also be gathered directly from where we are, simply by
examining the remains of the impact of small "space rocks". It is now necessary to
introduce some vocabulary to make things clear.

Figure 1.2: Meteoroid, meteor and meteorite are referred to the same space body
at different stages of its falling

Meteoroids are objects in space ranging in size from dust grains to small asteroids
that could crash into our planet as they orbit. If a meteoroid crashes into the Earth’s
atmosphere, friction with the air creates the meteor phenomenon commonly known
as "shooting stars". The meteor phenomenon results from the body’s friction with
the air: during its fall to the planet’s surface, the friction with the increasingly
dense atmospheric layers causes the meteoroid to overheat. The kinetic energy is
converted into thermal energy, which is distributed between the body itself and the
atoms of the atmosphere. The energy released is sufficient to ionize a large number
of atoms, leaving the body with an ion tail as it falls. The process of recombination
of ions and electrons whose charges are opposite produces the luminous phenomenon
we can observe. Because the recombination takes some time, the bright tail can last
for a few seconds. Less cohesive meteoroids may break up into several blocks, each
of which generates a different meteor. If the original object is large enough and
the velocity is not too high, a portion of it may reach the Earth’s surface. When
the velocity of the body drops below 3-4 km/s, a cooling process begins and the
emission of visible radiation stops, the body enters the so-called dark flight phase.
What survives the fall is called a meteorite. A meteorite is usually no more than
5% of the original object, and its size varies usually from that of a pebble to that
of a fist. If the meteor is at least as bright as Venus, it is called a fireball or bolide.
Sometimes, in the case of small asteroids with a diameter larger than 10 m (extreme
cases), the meteor phenomenon may be particularly bright (brighter than the Sun)
and the meteoroid may completely disintegrate or even explode during the fall; in
this case, the meteoroid is called a superbolide.
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Chapter 1. Introduction

1.4 PRISMA and FRIPON projects

Figure 1.3: PRISMA station locations in
Italy.
red: currently working station
purple: station under maintenance
yellow: station being installed
light yellow: station being purchased

The PRISMA [28] network was
launched in 2016. The acronym stands
for Prima Rete Italiana per la Sorveg-
lianza sistematica di Meteore ed Atmos-
fera, meaning First Italian Network for
the Sistematic Monitoring of Meteors
and Atmosphere, and is led by INAF,
the National Institute for Astrophysics.
The project aims to realize an Italian
network of all-sky cameras to observe
bright meteors (fireballs and bolides)
and to determine the orbit of the objects
that cause these phenomena, to delin-
eate the impact areas with a high de-
gree of precision [2] in order to recover
the meteorites (if any) and, at the same
time, to progressively increase the num-
ber of monitoring stations throughout
the Italian territory to ensure a com-
plete coverage of the sky. The distance
between two stations of the network is
maximum 80/100 km to ensure that the
network works properly and covers the
whole country. The network sistem-
atic monitoring action can also be used
to collect data about cloud cover and

Transient Luminous Events3 (TLEs) in the atmosphere in order to validate mete-
orologic models. Anyone can participate in this project, which involves research
centers, universities, groups of amateur astronomers, astronomical and meteorolog-
ical observatories, schools, etc., but purchase of the station’s hardware is required.
PRISMA is a partner of FRIPON [26][3], (Fireball Recovery and InterPlanetary
Observation Network), an international European collaboration. It was launched
in 2014 and is led by l’Observatorire de Paris, the Muséum National d’Histoire
Naturelle, the Université Paris-Sud, the Université Aix Marseille, and the Centre
National de la Recherche Scientifique.

The station hardware includes the Basler ace acA1300-30gm4 camera sensor
and a mini-PC called PRISMA node. The camera is connected to the PC via a
1GB Ethernet interface and transmits images at 30fps. In addition to a calibration
process, the node also collects images in a buffer and processes them when an event is
detected. The detection software currently used is based on the open source project
freeture5: the software was developed by FRIPON, supports various camera types,

3Family of short-lived electrical-breakdown phenomena that occur well above the altitudes of
normal lightning and storm clouds.

4Camera datasheet can be downloaded from the following link https://www.baslerweb.com/
en/downloads/document-downloads/basler-ace-aca1300-30gm-emva-data/,
accessed 28/06/2022.

5https://github.com/fripon/freeture, accessed 28/06/2022

5

https://www.baslerweb.com/en/downloads/document-downloads/basler-ace-aca1300-30gm-emva-data/
https://www.baslerweb.com/en/downloads/document-downloads/basler-ace-aca1300-30gm-emva-data/
https://github.com/fripon/freeture


Chapter 1. Introduction

and produces output in FITS6 format. It detects motion by subtracting adjacent
frames, but produces a significant number of false positives.

6FITS (Flexible Image Transport System) is a portable file standard widely used in the astron-
omy community to store images and tables.
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Chapter 2

Artificial Intelligence and
Convolutional Neural Networks

The goal of this chapter is to introduce concepts related to artificial intelligence,
emphasizing in particular the role of machine learning and deep learning. First, the
goal of machine learning and the main types of learning are described. Then, the
first model inspired by the human brain will be the basis for further exploration
of concepts related to deep learning, focusing on the classification task. In this
setting, Convolutional Neural Networks, abbreviated as CNNs play the most im-
portant role, and their main components will be analyzed. Towards the end of the
chapter, we will focus more on the training side: how the training dataset can be
partitioned to correctly evaluate the model, the problem of overfitting the training
data, what evaluation metrics can be used in a binary classification task and some
of the best known regularization techniques that help in mitigating the overfitting
of the training data. The information to write this chapter are mainly drawn from
the deep leaning book [7], the machine learning books [19] and [23] and other web
resources that will be accordingly cited.
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2.1 Overview on AI
Artificial Intelligence, usually abbreviated AI, is a broad scientific field of research
that seeks to develop machines that resemble human-like intelligence. A more tech-
nical definition of AI is "the field of study of intelligent agents", which is any system
that perceives its environment and performs actions that maximize its chances of
achieving its goals [29]. Since their beginnings in the 1950s, AI applications have
been able to successfully solve problems that are difficult for humans but easy for
machines because they can rely on a set of mathematical rules. In contrast they
have a much harder time solving tasks that are easy for humans, and the reason is
that they are difficult to describe formally (e.g. recognizing faces in images). Per-
forming these intuitive actions requires an enormous amount of knowledge about
the world, and machines must be able to acquire that knowledge in order to make
intelligent decisions. The subfield of AI that aims to mimic the human cognitive
ability to "learn" is referred to as Machine Learning, abbreviated as ML. Roughly
speaking, the process of learning for a machine involves extracting patterns from
raw data, whose representation strongly influences how ML algorithms work. By
representation is meant any piece of information that is associated with the same
real-world entity that the data describes. This information is commonly known
as features. In figure 2.1, we can see how formulating the same problem using a
different representation makes it solvable.

Figure 2.1: Same data are represented using cartesian coordinates (left) and polar
coordinates (right). If we wanted to draw a line that separates the two classes, it is
impossible with the cartesian representation.

Many tasks require the use of features that are unknown in advance and cannot
be designed by hand. The solution to this problem is an approach called represen-
tation learning, which consists of using ML algorithms to learn how to extract a
good set of features from the data. This idea forms the basis for Deep Learning, ab-
breviated as DL, a subfield of ML that has become one of the most promising areas
of research. The main idea is to create a hierarchy of representations where more
abstract features that encode complex concepts are expressed in terms of features
that encode simpler concepts ([7] pp. 1-8). DL has many practical applications,
such as human speech understanding (Siri and Alexa), recommendation systems
(Amazon, Netflix), self-driving cars (Tesla), medical diagnosis, etc., but it is not
a new concept [29]. Indeed, its popularity has seen ups and downs throughout its
history, and the main reason for that is the lack of data and hardware resources,
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which is no longer a problem today. The various AI approaches presented in this
section are summarized in figure 2.2.

Figure 2.2: Summary of the AI approaches. Each approach is splitted into multiple
functional blocks. The grey blocks are intended to be parts that learn from data.
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2.2 Machine Learning
Learning frameworks and tasks

ML comprises the whole set of methods we can use to discover patterns in data, and
use these patterns to predict future data. It is usually divided into two different
approaches ([19] pp. 1-3):

• supervised learning: as stated earlier, we define the learning process as
"using expertise to gain experience". In the context of supervised learning
this means that the environment acts as a supervisor, providing additional
information, missing at test time, to the already existing "experience" (the
training examples) ([23] pp. 22-23). The acquired expertise in this setting
is aimed to predict this missing information. Formally, the goal is to learn
f̂ , the approximation of an unknown underlaying mapping f from inputs x
to outputs y, given a labeled dataset of pairs D = {(xi, yi)}Ni=1, where D is
the training set, N is the number of training examples, and the additional
information is given by the labels yi. Label availability means we can define
a metric to compare predictions to the actual label and measure an error. In
practice each input xi is fed into the learning algorithm which produce an
output ŷi = f̂(xi) and is able to update the input/output relationship f̂ ac-
cording the error measured between ŷi and yi. Model training is guided by the
reduction of the error metric, and eventually it is hoped that the predictions
and real-world results will be close enough for the learning algorithm to be
useful for all input sets that may be encountered in the real-world application
the model was trained for (that is called generalization).

• unsupervised learning: in this context, we are only provided with the
training samples D = {xi}Ni=1 and the goal of the algorithm is to discover
knowledge by finding interesting patterns in the data. With respect to the
supervised learning setting the problem is much less well defined, as a matter
of fact we do not know in advance what kind of patters we are looking for,
and there is no obvious metric that can be used to evaluate the errors.

Supervised learning is the framework in which the work of this thesis is devel-
oped. In particular, a learning algorithm performs a different task depending on
the nature of the output variable: when yi is categorical (yi ∈ {1, . . . , C}) the
problem is called classification, and when yi is real-valued, the problem is called
regression. The classification task is the one we are interested in: when C = 2 it is
called binary classification and usually yi ∈ {0, 1}, when C > 2 and the classes are
mutually exclusive it is called multi-class classification, and when C > 2 and the
classes are not mutually exclusive it is called multi-label classification.

Now that we have an idea about the concepts of ML and DL, we can dive into
the latter one, starting from the first intuitions that inspired this type of models.
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2.3 The roots of Deep Learning

2.3.1 Perceptron

The history of DL begins in the 1940s-1960s, when it was addressed by the name cy-
bernetics. During that time, the first artificial neuron was created, a mathematical
model inspired by the structure of biological neurons. It is far from being a realistic
formalization of a real neuron, but it is an example of how reverse engineering can
be used to formalize the concept of intelligence. In 1958, Frank Rosemblatt imple-
mented the perceptron, a trainable single artificial neuron inspired by the biological
learning theories of Warren McCulloch and Walter Pitts.

Figure 2.3: Comparison between the structure of a biological neuron (on the left)
and an artificial neuron (on the right).

The perceptron model is a precursor to the sigmoid neuron, which is the main
component of neural networks, but for now we will stick with the former. The
model takes multiple real value inputs x1, . . . , xn, and outputs a single binary
value. Computing the output involves introducing weights w1, . . . , wn that express
the importance of the corresponding input. In algebraic terms, the decision rule is:

output =

{
0 if

∑
i wixi ≤ threshold,

1 if
∑

i wixi > threshold
(2.1)

If we change the values of the weights and the threshold, we can tailor the
decision rule to our needs. We can make the decision rule clearer by using vector
notation and moving the threshold to the right-hand side of the inequality and
replacing it with a term known as perceptron bias. The perceptron learning rule is
rewritten as follows:

output = f(w · x− b) =

{
0 if w · x− b ≤ 0,

1 if w · x− b > 0
(2.2)

Where f is called activation function and in this case it is the step function. The
perceptron lies in the category of linear models and performs a binary classification
task. Given a dataset whose elements are linearly separable, tuning the weighting
values and bias means finding the expression of a particular hyperplane capable of
linearly separating the data into two classes. The solution is not optimal, but if
the data is linearly separable, it can be found algorithmically. The bias term can
also be included as w0 in the weight vector and the f argument can be rewritten as
w′ · x′ where w′ = [w0, w1, . . . , wn]

⊤ and x′ = [1, x1, . . . , xn]
⊤.
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Algorithm 1 Perceptron Learning Algorithm
P ← inputs with label 1;
N ← inputs with label 0;
Initialize w′ randomly
while !convengence do

Pick x′ ∈ P ∪N ;
if x′ ∈ P and w′ · x′ < 0 then

w′ = w′ + x′;
end if
if x′ ∈ N and w′ · x′ ≥ 0 then

w′ = w′ − x′;
end if

end while▷ The algorithm converges when all the inputs are classified correctly

The weights can be initialized randomly or with zeros, and the algorithm es-
sentially modifies the separable hyperplane to avoid misclassification. The final
solution w is a vector of weights that is a linear combination of all misclassified
data points.

2.3.2 The sigmoid neuron and the MultiLayer Perceptron

The second important phase in the history of DL is in the 1980s-1990s, when it was
addressed under the name connectionism. The main idea of connectionism is that a
large number of simple computational units can achieve intelligent behaviour when
networked together. To create a network of artificial neurons, called Feedforward
Neural Network(FNN)), we can group perceptrons into different layers and use the
output of a previous layer as input to the following layer, as shown in figure 2.4.

Figure 2.4: Example of an Artificial Neural Network. The first layer is called input
layer, the last layer is called output layer, all the layers in between are called hidden
layers (the middle one in the picture).

The input layer simply takes the inputs and passes them to each artificial neu-
ron in the hidden layer. The output layer is represented by only one neuron for
simplicity. The information in the network flows in a single direction, from input to
output, without returning. In fact, the network is represented as a Directed Acyclic
Graph. Intuitively, combining multiple perceptrons in a network structure leverages
the contribution of each of them to perform more complex tasks. For our network
to be trainable, a small variation in the value of each weight and bias should result
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in a small variation in the output. In this way, we can slowly tune the weights of the
network to achieve the desired output behavior. The problem with the perceptron
model is that the step function activation can result in a completely unpredictable
change in the output when the value of a parameter is changed slightly. This leads to
the definition of a smooth activation function, which has the nice property of being
derivable. This activation function is called sigmoid and an artificial neuron with
this type of activation is called sigmoid neuron. The sigmoid neuron behaves such
as the perceptron but now the computed output is given by the sigmoid function

σ(w · x− b) =
1

1 + e−(w·x−b)
(2.3)

and is a continuous value in the range (0, 1). Not only does this activation allow
for small variations of the output given small variations of the network parameters,
but from a practical point of view, the mathematical properties of the exponential
function are useful when computing partial derivatives during the learning process.

Figure 2.5: Sigmoid σ (blue) and step (orange) activation functions. The former is
a smoothed version of the latter.

The single sigmoid neuron is a linear model that performs a binary classification
task called logistic regression from a statistical point of view. To perform the clas-
sification with a continuous output, a threshold is set (usually 0.5), and for values
above the threshold, the predicted label is 1, otherwise 0. A neural network consist-
ing of sigmoid neurons is called MultiLayer Perceptron (MLP), the first universal
function approximator model.
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2.3.3 The MLP learning process

So far, we have understood the basic operating principles of a neural network,
but how can we train it? Well, as mentioned earlier, we need a labeled dataset
D = {(xi, yi)}Ni=1 and we also need to define a cost function7 that we call L. For
completeness, we define the mapping function fΘ associated with the MLP network,
where Θ is the vector of trainable parameters. The cost function evaluates the
amount of error between the predicted value fΘ(xi) and the actual value yi. The
goal of the learning process is to minimize

L =
1

N

N∑
i=1

L
(
fΘ(xi), yi

)
(2.4)

that is the empirical risk computed for our training set. In deep learning jar-
gon, empirical risk is usually called loss, while in machine learning theory it is an
alternative name of the cost function. Whatever you call it, from now on L will
denote an average error, while L will denote the error evaluated for a single input
example. The explicit expression of L depends on the specific task we are perform-
ing and encodes our knowledge of the problem. The change in empirical risk as the
parameters vary can be evaluated as follows.

∆L ≈ ∂L

∂Θ1

∆Θ1 + . . .+
∂L

∂ΘP

∆ΘP = ∇L ·∆Θ (2.5)

P is the total number of parameters in the network, ∆Θp is the variation of the
p-th parameter, and ∇L is the gradient of empirical risk with respect to parameters
Θ. The training process updates the parameter values to reach the minima of the
empirical risk. The optimization algorithm is called Gradien Descent : the idea be-
hind this algorithm is that at each training step, we can obtain information about
the local structure of the hypersurface on which we are moving by computing the
gradient of the empirical risk. Since we know that the gradient indicates the direc-
tion of maximum increase, we can take small steps in the exact opposite direction
to ensure that we are moving in the direction of maximum decrease. Formally we
have that

∆Θ = −η∇L (2.6)

Θ→ Θ′ = Θ− η∇L (2.7)

where η is called the learning rate and measure the step size and the relation
2.7 is the update rule. More precisely, the parameters Θ are weights and biases for
each neuron in each layer, so we can call wl

i,j the j-th weight of the i-th neuron in
the l-th layer and bli the bias of the i-th neuron in the l-th layer. The update rule
for weights and biases can be expressed as follows.

wl
i,j → w′l

i,j = wl
i,j − η

∂L

∂wl
i,j

(2.8)

bli → b′li = bli − η
∂L

∂bli
(2.9)

7In machine learning theory is also called loss or objective function.
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In practice, at each training step, the empirical risk is calculated only for a
sample of the input data, called a mini-batch. Given a random sample B =
{(X1, Y1), . . . , (Xm, Ym)} of size m of training data we have the following.

1

m

∑
(X,Y )∈B

L
(
fΘ(X), Y

)
≈ 1

N

N∑
i=1

L
(
fΘ(xi), yi

)
= L (2.10)

This approach is useful to speed up training, although the gradient evaluated is
an approximated version of the actual maximum increase direction. How good the
approximation is depends on the size of the mini-batch. The larger the mini-batch,
the better the approximation, but the slower the training will be. The update rule
is

wl
i,j → w′l

i,j = wl
i,j −

η

m

∑
(X,Y )∈B

L
(
fΘ(X), Y

)
∂wl

i,j

(2.11)

bli → b′li = bli −
η

m

∑
(X,Y )∈B

L
(
fΘ(X), Y

)
∂bli

(2.12)

This variant of gradient descent is called Stochastic Gradient Descent, abbre-
viated as SGD, and is widely used in practice. SGD is the basis for many other
optimization algorithms that have been developed over time, one of the most famous
is the Adam optimizer that can be found in Appendix C. The fast algorithm used
to compute the derivatives is called backpropagation and was developed in the era of
connectionism. The central idea of this algorithm is to exploit the graph structure
of the network in combination with the chain rule of the derivative. As depicted in
figure 2.6, each simple operation performed in the network can be considered as an
operational node: from left to right we have the input signals used to perform the
operation (multiplication, addition, activation function) and the generated output
that is passed forward in the network to other operational nodes, from right to left
we have as input the upstream gradient that is multiplied by the local gradient of
the operational node to generate a downstream gradient that is passed backward in
the network.

The local gradient of the operational node depends on the particular operation
and the input signal values. Training the network means repeating several times
the following two steps :

• forward step: a data mini-batch is fed into the network, which computes
the output and evaluates the average error. The data (neuron activations)
flow from left to right

• backward step: the partial derivatives, which are necessary for the update
of the parameters, are calculated with the backpropagation algorithm. The
data (gradients) flow from right to left.
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Figure 2.6: The graphic representation of an operational node where h is the oper-
ation, x and y are the inputs, z is the output, ∂L

∂z
is the upstream gradient, ∂z

∂x
and

∂z
∂y

constitute the local gradients computed with respect to the inputs and ∂L
∂x

and
∂L
∂y

constitute the downstream gradient. Blue arrows represent the data flow during
the forward pass, red arrows the gradient flow during the backward pass.

2.4 Convolutional Networks
Towards deeper and deeper networks

Convolutional networks ([7] ch. 9, [20] ch. Deep Learning), also called Convolutional
Neural Networks (CNNs), are a specialized case of neural nets that are used in
dealing with grid-like data, such as time series (1D grid) or images (2D grid). The
name convolution is improperly referred to the operation of computing the result
of a sliding filter applied to the input data, which mathematically is called cross-
correlation, and in discrete time can be written as

RIK [m, n] = (I ⋆ K)[m, n]
def
=

+∞∑
j=−∞

+∞∑
i=−∞

I[i, j] ·K[m+ i, n+ j] (2.13)

where I is a 2D image and K is a 2D filter called kernel. A network that
uses such an operation is called a convolutional network. This type of network is
designed to exploit the spatial correlation typical of images by leveraging on the
ideas of sparse interactions, parameter sharing, and equivariant representation.

These ideas come from neuroscience experiments conducted in the 1960s to
understand how the mammalian visual system works. A simplified view of the brain
visual function is based primarily on the primary visual cortex V1, an area of the
brain located at the back of the head that begins performing advanced processing
of visual input. Some important features of this area have inspired the ideas that
convolutional networks exploit:

• V1 is arranged in a spatial map that mimics the structure of the image

• V1 consists of many simple cells whose response can be approximately de-
scribed by a linear function applied to a spatially bounded receptive field
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• V1 also constists of complex cells whose response is invariant to spatial shifts
in the position of a feature

The simplistic view assumes that these basic blocks of feature recognition and
pooling are stacked on top of each other to form a deep structure, that is the
approach used by Kunihiko Fukushima to design the Neocognitron [5], a precursor of
the CNNs. However, convolutional networks today cannot yet replicate the level of
generalization that brain cells can achieve, despite the similarities cited above, there
are many mechanisms that neuroscience cannot yet explain, and even influences
from entirely different fields (optimization or statistics), that led to the creation of
such convolutional networks. One of the most interesting features that research is
trying to replicate is the attention mechanism that is inherently embedded in our
visual system: while neural networks are fed with images representing all objects
at the same resolution, only a small region on the retina in our eyes, called fovea, is
capable of collecting high-resolution data, being responsible for the so called central
sharp vision. The fovea is employed for accurate vision in the direction where it is
pointed and sees only the central two degrees of the visual field. We will now look
at the three most important components in a convolutional network, namely the
convolutional layer, the activation function, the pooling layer, the fully connected
layer and the loss function.

2.4.1 Convolutional layer

Standard Convolution

We can think of an input image as a grid of input neurons and the first layer of
neurons as a set of filters. Each filter focuses on a different square, small portion
of the input image called receptive field, unlike MLPs where each neuron considers
all the available inputs. The receptive fields of all filters have the same size and are
overlapped and regularly spaced. The spacing value is referred to as stride. This is
what we mean by "sparse interactions", which indirectly allows the deeper layers to
interact with a large portion of the input, according to the hierarchical modeling of
concept complexity mentioned earlier. Another condition is that all these filters have
the same weights, which is what we meant by "patameters sharing". Combined with
the idea of sparse interactions, this allows for a massive reduction in the number of
weights and can be implemented as a sliding filter, as depicted in figure 2.7, namely
the cross-correlation defined in equation 2.13.

A sliding filter that essentially searches for the same feature across the entire
image in different positions makes perfect sense in an image processing context,
and means the network will be equivariant to translations of target subjects in the
input images. This is because what we have called "concepts", or "features", are
essentially parts of the image that the filters recognize when they fire, from the first
layer that look for corners and edges to the deeper layers that combine the previous
activations to recognize more complex parts of the image, e.g. parts of faces, if we
are trying to accomplish a face recognition task.
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Figure 2.7: Representation of the 2D convolution between a 2D input and a 2D
kernel. The green matrix is the input, the yellow region is the receptive field of the
kernel and the red values are the kernel values. The stride in this simple case is 1.
The result of the operation applied at each position corresponds to the dot product
between the flatten kernel and the flatten interested input region.

As a rule, in each convolutional layer the inputs and outputs are actually 3D
data structures called tensors and the third dimension is called channels. The main
reason for this is that a generic convolutional layer consists of several 3D kernels,
each of which has the same width and height, the kernel size, and a number of
channels equal to the number of input channels. The filter can move along width
and height dimensions, as in the 2D input case depicted in figure 2.7, and at each
step the operation performed is the sum of all channel-wise dot products between
the kernel and the image region to which the filter is applied. The output of each
kernel applied to the entire input and modified by the activation function is a 2D
feature map and all feature maps together form the output of the convolutional
layer, whose number of channels is equal to the number of kernels.

Figure 2.8: 2D convolution between a DF × DK ×M input and a convolutional
layer with N DK ×DK ×M kernels. The output is a D′

F ×D′
F ×N tensor.

18



Chapter 2. Artificial Intelligence and Convolutional Neural Networks

Depthwise Separable Convolution

This particular type of convolution is introduced in [13], with the aim of drastically
reducing the computational cost and number of parameters of a model. Suppose
we are in the situation showm in figure 2.8, with the standard convolution we have
a computational cost (number of multiplications) of DK · DK · M · D′

F · D′
F · N

that depends mainly on the size of the filters and the output feature maps. The
depthwise separable convolution factorises the standard convolution into a depthwise
convolution and a pointwise convolution.

With the depthwise convolution, a single 2D filter is applied to each input chan-
nel, which performs a type of channel filtering.

Figure 2.9: Depthwise convolution

The computational cost of the depthwise convolution is DK ·DK ·D′
F ·D′

F ·M .
Then the pointwise convolution applies 1× 1 convolutions to combine the infor-

mation along the channels to create new features.

Figure 2.10: Pointwise convolution

The computational cost of the pointwise convolution is M ·D′
F ·D′

F ·N .
The gain we obtained can be measured as

DK ·DK ·D′
F ·D′

F ·M +M ·D′
F ·D′

F ·N
DK ·DK ·M ·D′

F ·D′
F ·N

=
1

N
+

1

D2
K
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2.4.2 Activation functions

To learn complex nonlinear mappings and better fit the data for a neural network,
it is necessary to introduce nonlinear activation functions [11]. A good activation
function must necessarily have the following properties:

• low computational cost

• it should be differentiable to allow the use of the backpropagation algorithm
to update the parameters

• it should prevent the gradient from vanishing for input values far from zero

Sigmoid and tanh

Two common activation functions used with FNNs are simgoid σ and tanh. They
have a similar form, but the sigmoid returns a value in the range (0, +1), which
can be interpreted as a probability distribution over a binary variable, while the
latter returns a value between (−1, +1). The two activations are not suitable
for training deep newtorks, since the derivative computed for values far from zero
is small and can cause the vanishing gradient problem: during backpropagation,
upstream gradients whose modulus is smaller than 1 lead to the computation of
smaller and smaller gradient values, which stop the learning process.

σ(x) =
1

1 + e−x
tanh(x) =

ex − e−x

ex + e−x
(2.14)

Figure 2.11: Sigmoid (red) and tanh (orange) activation functions.
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ReLU and Leaky ReLU

With the CNNs a common activation function is the Rectified Linear Unit (ReLU),
which fires only when the input value is greater than zero. The drawback of this
function is that it cannot map a negative value, which limits the network’s ability
to learn. A possible solution is represented by the LeakyReLU activation function,
which can also map negative values, weighted by a user-specified parameter α.

ReLU(x) =

{
0 if x ≤ 0

x if x > 0
LeakyReLU(x; α) =

{
αx if x ≤ 0

x if x > 0
(2.15)

Figure 2.12: ReLU (blue) and LeakyReLU (green, α = 0.1) activation functions.

Softmax

Another common activation function used both in FNNs and CNNs is the Softmax
activation. This activation is used in the output layer of a neural network for
multi-class classification problems and can be considered as a generalization of the
sigmoid function. It is used to express a probability distribution over a discrete
variable with k possible values and its expression is the following:

softmax : Rk → {x ∈ Rk|xi > 0,
k∑

i=1

xi = 1} (2.16)

softmax(x)j =
exj∑k
i=1 e

xi

. (2.17)
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2.4.3 Pooling layer

Usually convolutional layers are followed by a pooling layer which further modify
the output of the activation function. The main purpose of the pooling layer is
to generate a concentrated version of a feature map by applying a function which
summarize a d × d region with some statistic. A common procedure for pooling
is known as max-pooling, which takes the maximum activation value of the region,
but there are also other versions such as the average-pooling, which computes the
average activation value of the region, and L2-pooling, which computes the squared
root of the sum of the squared activation values.

Figure 2.13: Max-pooling and average-pooling applied on the same feature map.
The pool size is 2× 2 and the stride is 2.

Conceptually, regardless the exact expression, performing the pooling operation
means enforcing a representantion that is invariant to small translations. From a
more practical point of view it helps to reduce the number of parameters needed in
later layers.

The components described are combined to form the automatic feature extraction
block of a CNN architecture, followed by the classification block. This block usually
consists of one or more fully connected layers and, in the context of classification,
and the Softmax activation function.

2.4.4 Fully connected layer

The fully connected layer, also called densely connected layer, is a type of layer used
both in FNNs and CNNs. In the context of a FNN, it is the main layer that defines
the entire network that consists of different sized fully connected layers stacked on
top of each other, while in the context of a CNN it is usually used to define the
classification block of the network. The characteristic of this layer is that each
neuron is connected to all the outputs of the previous layer.
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2.4.5 Cross-Entropy loss

One of the most common cost functions used for classification problems is the so
called Cross-Entropy loss. When evaluated on a single training instance this cost
function can be expressed as

CE = −
C∑
c=1

yc log(ac), with ac = f(sc) (2.18)

where C is the number of classes, yc is the c-th component of the ground truth
vector y, sc is the c-th component of the score vector s generated by the network
before the activation function, f is the activation function and ac its ouput when
applied to sc, with c ∈ {1, . . . , C}. The groundtruth label of each training instance
is one-hot encoded into a groundtruth vector, i.e. c → y = [y1, . . . , yC ] such that
only the yc component is 1 and all the others are 0.

e.g. with C = 3 we have the following labeling.

gt label 0→ y = [1, 0, 0]⊤

gt label 1→ y = [0, 1, 0]⊤

gt label 2→ y = [0, 0, 1]⊤

We can now analyze more in detail this cost function under different settings.

Multi-label classification

In the case of multi-label classification the predicted vector a is computed with
sigmoid activation functions, so we have that 0 < ac < 1 for each c. The models
predict for a single data instance all the classes c that satisfy ac > threshold, where
the threshold value is usually 0.5.

Looking at the expression 2.18, we can now better understand its behaviour:
CE is positive and only evaluates the error for the correct class, the lower the score
for the correct class, the higher the error, and complementarily, the higher the score,
the lower the error.

Multi-class classification

In the multi-class classification case the predicted vector a is computed with the
softmax activation, thus can be interpreted as a probability distribution, i.e.

ac = p(y = c|x) and ŷ = argmax
c=1,...,C

p(y = c|x) (2.19)

where ŷ is the unique predicted label and y it the groundtruth label. In this
context the cost function is called Categorical Cross-Entropy loss.
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Binary classification

In the binary classification case the score is a scalar value s generated by a single
sigmoid neuron that outputs the probability that the input instance belongs to the
positive class. In this situation the cost function is called Binary Cross-Entropy
loss and can be expressed as follow.

BCE = −y log
(
p(y = 1|x)

)
− (1− y) log

(
1− p(y = 1|x)

)
(2.20)

The predicted label ŷ is 1 if p(y = 1|x) > threshold where the threshold value
is usually 0.5.

The broader picture

The idea of cross-entropy is taken from the information theory field and has a
nice probabilistic interpretation. In information theory given a source that gener-
ates events represented by a discrete random variable X that follows a probability
distribution described by P (X = x) = p(x), the Entropy H(p) in equation 2.21
measures the average number of symbols needed to transmit the events without
any loss of information, and is the best transmission model we can use. This aver-
age number of symbols can be more generally intended as a measure of the level of
uncertainty linked to P . Intuitively the uniform distribution where all the events
have the same probability has the higher level of uncertainty, while in all the other
cases the most probable events (lower information) can be encoded with a smaller
number of symbols in order to reduce the cost of transmission.

H(p) = EX∼p(x)[I(X)] =
∑
x

p(x) log

(
1

p(x)

)
(2.21)

Given the same set of events, When we use a transmission model optimized for a
probability distribution Q, to encode events generated by a probability distribution
P , the average amount of symbols needed to transmit the events is measure by the
Cross-Entropy H(p, q).

H(p, q) =
∑
x

p(x) log

(
1

q(x)

)
= −

∑
x

p(x) log
(
q(x)

)
(2.22)

H(p) ≤ H(p, q), and the equality holds if p(x) = q(x). In our context, for the
multi-class and binary classification settings, the two distributions are represented
by the one-hot encoded label vector, which has the role of p(x), and the output class
distribution generated by the network, which has the role of q(x). Miniminizing the
Cross-Entropy means the learning model is trained to output the q(x) that better
approximates the p(x).
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2.5 Performance assessment and model selection
In order to train our model, we need to define an evaluation metric that tells us how
well the model is doing its job. We are interested in obtaining an optimal value
for the evaluation metric when the model is tested with previously unseen data,
which unfortunately is not available at training time. Looking at the performance
measured from the training data may seem a good alternative at first glance, but
it is misleading due to the overfitting phenomenon: especially for deep learning
models, which may have a large number of parameters, if the training data set is
not large enough, the model will also learn noisy patterns typical of the available
data and perform poorly when tested with unseen data. To avoid this problem, the
available data can be partitioned using different approaches:

• Train-Test splits - The available data is split into two datasets, the training
data, which is usually 80% of the original data, and the test dataset, the
remaining 20%. The CNN is trained on the training dataset for several epochs.
An epoch ends when the entire training dataset has been fed into the network,
which updates the parameters to minimize the overall loss. At the end of
training, the performance of the model is evaluated against the test data.
Optimal performance on the training data and poor performance on the test
data means that the model has overfitted the training data. Finally, after the
performance has been evaluated, the model is trained with the combination
of training and test data and then deployed.

• Train-Validation-Test splits - The available data is now divided into three
parts: the training dataset, the validation dataset and the test dataset. The
proportion varies depending on the size of the dataset, but is usually 50%,
25%, 25% or 70%, 10%, 20%. Training is performed using the training dataset
and the validation dataset, while the test dataset remains unobserved during
training. At the end of each epoch, the model is validated against the vali-
dation data, with its behaviour observed. Finally, when we are satisfied with
the performance of the validation, the model is trained using the combination
of training and validation data and the final evaluation is performed using the
test dataset.

• K-folds cross-validation - If the available dataset has a reduced size, we are
interested in retaining most of the data for training. The dataset is divided
into k equal parts, the model is trained on k−1 and evaluated on the remaining
part. The procedure is repeated until all parts are used as the validation
dataset and finally the performances measured for each of the k parts are
averaged. The model is finally trained on all available data.

The results of the validation dataset can also be used for model selection, i.e. for
selecting the final model from different model types based on the results measured
by the evaluation metric. The evaluation metric is selected according to the specific
task. For classification, there are a number of different metrics that can be used.
For a binary classification task, such as the one performed in this thesis, a number
of different metrics can be easily derived from the so-called confusion matrix.
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predicted

class

P N

actual

class

P TP FN

N FP TN

Table 2.1: Confusion matrix for a binary classification problem.

In table 2.5 the two classes are called P (positive) and N (negative). The
components of the matrix are:

• True Positives (TP ): number of elements correctly classified as Positive

• False negatives (FN): number of elements wrongly classified as Negative

• False Positives (FP ): number of elements wrongly classified as Positive

• True Negatives (TN): number of elements correctly classified as Negative

From these four measures we can derive the following metrics and curves:

Accuracy

Measure of the rate of right predictions the model is able to do. The denominator
is equal to the total number of elements of the dataset.

ACC =
TP + TN

TP + FN + FP + TN
(2.23)

Recall or True Positive Rate

Measure of the hit rate, i.e. how many positive labelled elements the model can
recognize over the total positive class.

TPR =
TP

TP + FN
(2.24)

Specificity or True Negative Rate

Measures how many negative labelled elements the model can recognize over the
total negative class.

TNR =
TN

TN + FP
(2.25)

Fall-Out or False Positive Rate

Measures how many elements the model misclassify as positives among the whole
negative class.

FPR =
FP

FP + TN
= 1− TNR (2.26)
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Precision or Positive Predictive Value

Measures how precise the model is, i.e. the proportion of true positive elements the
model recognize among all the positive predictions it makes.

PPV =
TP

TP + FP
(2.27)

False Discovery Rate

Measures the proportion of false positive among all the positive predictions the
model makes, the lower the better.

FDR =
FP

FP + TP
= 1− PPV (2.28)

F1 score

Harmonic mean between Precision and Recall.

F1 = 2 · PPV · TPR

PPV + TPR
(2.29)

Receiver Operating Characteristic curve

As mentioned in the previous sections, the binary classifier makes its prediction
based on a threshold. This means that a change in the threshold affects the con-
fusion matrix described above. The Receiver Operating Chatacteristic curve, com-
monly referred to as the ROC curve, visually illustrates how the confusion matrix
changes when the threshold is changed, from 1 (all examples are classified as neg-
ative) to 0 (all examples are classified as positive). In the following figure we can
see what a typical ROC curve should look like.

Figure 2.14: Typical ROC curve shapes.
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For each threshold, each point on the curve has coordinates (FPR, TPR). The
closer the curve is to the upper left corner, the better the classifier. The upper
left corner represents the perfect classifier, which is able to correctly classify all
positive elements (TPR = 1), without making any type-1 error (FPR = 0). A
good classifier should always produce a ROC curve that lies above the red line.
If this is not the case, it means that the classifier performs worse than random
guessing. The ROC curve can also be used to compare the performance of different
classifiers by comparing the AUC (Area Under the Curve) values: the higher the
AUC value, the better the classification model.

Precision-Recall curve

It is recommended for unbalanced domains where the ROC curve might offer an
overly optimistic view of performance. As in the case of the ROC curve, the output
threshold is varied between 0 and 1 and both precision and recall are calculated
for each value, then the corresponding point of coordinates (recall, precision) is
plotted.

Figure 2.15: Precision-Recall curve shapes.

In figure 2.15, the perfect classifier is represented by the point (1, 1), i.e. it is
able to detect all class elements without committing an error. The baseline of the
classifier is calculated when the classifier always predicts the positive class, i.e. the
recall value is 1 and the precision value depends on the number of positive class
elements with respect to the total number of elements. Also in this case, the AUC
value can be used to compare the performance of the different classifiers.
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2.6 Regularization techniques
It is a set of techniques that aim to reduce the complexity of the model by setting
some limits, or making some prior assumptions, to mitigate overfitting. The most
common are:

• Dropout layer - A special layer that operates only in training mode, ran-
domly removing connections between fully connected layers according to a
predetermined probability value. The network learns more robust features.

Figure 2.16: Neral network before and after dropout application.

• Data augmentation - A series of transformations (rotation, mirroring, crop-
ping, brightness and contrast variations) applied to the available data to in-
crease the size of the dataset. The choice of transformations depends on the
task and can be applied online (during training) or offline, literally creating
an enlarged version of the dataset before training.

• Early Stopping - Stopping the training when the monitored metric stops
improving prevent overfitting.

• Weight Decay (L2 regularization) - Additional penalty term added to the
term computed by the loss function, corresponding to the squared norm of the
network weights multiplied by a factor λ that modulates the regularisation
term.

L̃ = L+
λ

2
∥w∥22

This additional term has the effect of shrinking the weights during backprop-
agation preventing the network from overfitting the training data as well as
the exploding gradient problem.
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Previous work

To improve the quality of the data collected, the meteor observing community has
begun to use digital megapixel sensors that produce images with more than one
million pixels. As image sizes grow, so does the processing load on detection sys-
tems. This increasing load and the need to respond in real time to capture fast
events have resulted in the need to revise the detection pipeline to increase com-
putational efficiency. With the proliferation of low-cost cameras, meteor detection
networks have sought to automate as many steps in the pipeline as possible, with
an emphasis on those steps that require human intervention.

The introduction of deep learning solutions into fireball detection pipeline is
a very new field that has only been explored in recent years. In this chapter, a
typical meteor processing pipeline is described and an overview of some proposed
deep learning solutions is given.
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3.1 Meteor detection pipeline
In [10]. Gural P. S. describes the main blocks in a typical meteor image processing
system pipeline:

• Capture - Collection of video frames from a camera to a local storage device.

• Compression - Optional compression of raw data for compact transmission.

• Detection - This stage aims at indentifying the position of the meteor (if
any) through a series of operation: clean-up preprocessing of imagery data,
background estimation, fast thresholding algorithms for pixel exceedances,
streak detection algorithms, centroid estimation.

• Calibration - Mapping of positional measurements from focal plane to ce-
lestial coordinates and photometric calibration to convert instrumental mag-
nitudes to calibrated apperent magnitudes.

• Confirmation/Classification - Manual review or use of machine learning
algorithms to filter out false positives.

• Aggregation - Combination of multi-camera measurements to associate sev-
eral tracklets to the same observed object.

• Trajectory - Estimation of the 3-dimensional atmospheric track and motion
dynamics of the object .

• Orbit - Estimation of the Keplerian orbital parameters.

3.2 Insertion of neural networks in the pipeline
In the described pipeline neural networks have the goal of minimizing human su-
pervision, and so far they have been mainly used in the confirmation/classification
step for false alarms mitigation.

In [6], Yuri Galindo and Ana Carolina Lorena use different approaches to perform
transfer learning and show that choosing an appropriate pre-training dataset leads
to better results. The dataset they work with was provided by the EXOSS Citizen
Science Organization, a non-profit organization that studies and monitors meteors
in Brazil. It consists of 1000 meteor images and 660 non-meteor images. The
transfer learning approach is justified by the use of a small dataset and is applied to
different deep ResNet architectures (namely 18, 34, 50 and 101 layers) pre-trained on
ImageNet and Fashion-MNIST. To evaluate the network performances the authors
use a 10-folds stratified cross validation approach. The best result of 4% error
rate is obtained with a ResNet18 pre-trained on Fashion-MNIST, in combination
with a final fine-tuning of the total network weights on the meteors dataset. The
application of run-time data augmentation seems to worsen the results.

In [25] Martin C. Towner describes the detection system developed for the Desert
Fireball Network (DFN) data processing pipeline. The data are collected with a
Nikon D810 taking 25 s exposures every 30 s. Dataset provided by DFN consists of
200 tiles representing meteor streaks, coming from 50 manually selected 7360x4912
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images, and 200 negative examples representing background noise or unindentifi-
able parts of meteor streaks. The dataset in then augmented by a factor of 8 by
replication of the available data applying flip or rotation transformations and is
split into train set (60%), cross validation set (20%) and test set (20%). The arti-
cle compares a traditional approach and a neural network-based detection method.
Both methods are executed after nightly data collection and must be able to pro-
cess daily data onsite. The traditional approach is essentially a chain of increasingly
computationally intensive image processing operations on fewer and fewer pixels.
After the input image is tiled, each tile is compared to the same tile in the previous
image and a thresholding operation is used to remove irrelevant tiles. Then, the
Hough transform is used to generate line coordinates, which are subsequently fil-
tered. Regarding the neural network approach, it begins with a preprocessing aimed
at reducing the background noise of the images. In this step, as in the previous
one, a thresholding method is applied to a pair of consecutive preprocessed and
then tiled images. For a couple of consecutive images A and B, A is blurred and
subtracted from B and vice versa. Binary dilation is applied to the new pair and
the resulting images are compared. Each processed image is resized by a factor of
1/2 applying bilinear interpolation and divided into 25x25 adjacent tiles. Each tile
is classified by a small FNN that has an input of size 625, 10 hidden neurons, and
single output neuron in order to perform binary classification. The model uses a
cross entropy loss function in training and the coordinates of the positively classified
tiles (coordinates of the central pixel) are then treated as in the classical approach.
The results of the neural network show a 14% error rate with a high number of false
positive detections.

In [9], Peter S. Gural shows two different applications of neural networks to per-
form post-detection automated screening. The dataset, consisting of about 100,000
meteor observations and 100,000 non-meteor observations, is provided by the Cam-
eras for All-sky Meteor Surveillance (CAMS) networks and includes two products
generated by the processing pipeline. The first product is a dataset of compressed
640x480 image files containing images of 256-frame maximum temporal pixels called
maxpixel images and other information for each pixel, such as the maximum value
frame number, average value and standard deviation. The second product is a
dataset of .txt files containing frame-by-frame track measurements consisting of
frame number, coordinates of the centroid position of the meteor streak, and spa-
tially integrated intensities around the streak. In order to correctly evaluate the
model performances the 85% of the dataset is used to train the models, the 5%
to validate them and the 10% to perform the final test. Peter Gural emphasises
the need to achieve a high Recall, i.e., the percentage of correctly classified mete-
ors, while keeping the number of false-positive predictions low. The collected time
series measurements in the second source are used to train a Recurrent Neural Net-
work (RNN) model that can achieve a Recall value of 98.1% and a False Detection
Rate of only 2.1%. The image dataset is used to train a CNN that achieves the
best results with 99.94% Recall and 0.4% False Discovery Rate. From the original
images the centroid position information is used to get 64x64 patches containing
meteor streaks. The network consists of three convolutional layers, each followed
by a non-linear activation and a maxpooling layer, and a final fully connected layer
with softmax activation. They observed that the network converges in only three
epochs. To improve Recall, they decided to lower the decision threshold to 0.2 after
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softmax activation, achieving 99.99% Recall and 0.9% False Discovery Rate.
In table 3.1 we can see a recap of the methodologies and best models developed

in the works briefly described in this section.

Author No. meteors No. non meteors Augmentation Image size Evaluation approach Model type

Galindo 1,000 660 run-time - 10-folds stratified
cross validation ResNet

Towner 200 200 offline
x8 expansion 25x25

60% train
20% validation

20% test

small
FNN

Gural 100,000 100,000 - 64x64
85% train

5% validation
10% test

small
CNN

Table 3.1: Recap of methodologies and models used in the reported works

3.3 Takeaways and intuitions
From the preceding works, we can get an idea of what we are up against when
performing this particular binary classification task. First of all, as a rule of thumb,
if we want to train a model from scratch to get good results, we should have about
5000 examples for each class. If this is not the case, the transfer learning procedure
used in [6] might mitigate the problem. The second clue we can draw is that a good
preprocessing strategy to remove background noise and static lights is an important
step before feeding the network. The classification task is not very complex, we are
dealing with high-contrast greyscale images that do not contain many informative
parts, so we can assume that we do not need to use a deep model. In [9] Gural
shows that just using the spatial information in the maxpixel images to train a
small CNN leads to really promising results. The use of a shallow model is also
important to achieve real-time processing. The main challenge we have to face in
order to successfully develop a real-time meteorite detector is that the direct use of
the entire image makes the problem intractable and resizing the image is an option
only if too much resolution is not lost, because the informative part usuful for the
classification is in a small area of the whole input image. In the next chapter a
possible solution to this problem is presented. To this end, we use two models
found in the literature that are able to simultaneously learn to recognise important
regions of the input image and correctly classify the image based only on these
regions.
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Attention models

With the advent of high-resolution imagery, the meteor observing community must
confront practical computational issues when using computer vision models to au-
tomate the detection step: analysing full-resolution imagery is impossible for a
real-time application, and downsizing before processing can remove some important
details degrading the performance. Computational complexity, and thus process-
ing time, can be reduced by exploiting the fact that not all parts of the image are
equally important in many image processing tasks. In addition, the regions of inter-
est could be processed in more detail. The decision process that determines which
regions are worth keeping and which should be discarded is non-trivial and highly
task dependent. In general, the relevant regions must be identified first: a suitable
formulation for the problem is "given a regular grid of equally sized patches, decide
which patches to process". This discrete formulation makes the problem unsuitable
for end-to-end learning. Angelos Katharopoulos and François Fleuret in [16] and
Jean-Baptiste Cordonnier and Aravindh Mahendrain (and others) in [4] provide
different solutions to overcome this problem.

In the next section, we will describe the general structure of the model archi-
tecture. Then we will look at the theoretical background of the two models giving
some specific implementation details.
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4.1 The general architecture

Suppose we perform a classification task with L distinct classes, the network Ψ̃Θ(·)
in figure 4.1 can classify the high-resolution images by evaluating, selecting, and
finally processing the most important regions, and is a good approximation of the
ΨΘ(·) network that processes all available regions. The model architecture can be
divided into different functional blocks, which are shown in the following figure.

Figure 4.1: Functional blocks of the network.

where Θ = Θs ∪Θf ∪Θa ∪Θc are the trainable parameters of the network. The
model takes in input the high-resolution image xh ∈ RHh×Wh×C and predicts the
vector of probabilities

ypr = Ψ̃Θ(xh) ∈ RL. (4.1)

Low-resolution image

Given a high-resolution image xh, a corresponding low-resolution version

xl = Vs(xh) ∈ RHl×Wl×C (4.2)

is computed as a scaled view at scale s, where 0 < s < 1, Hl = ⌊s · Hh⌋ and
Wl = ⌊s ·Wh⌋, with ⌊·⌋ being a round down approximation.

Scorer network

The scorer network generates a score grid xs of dimensions Hs×Ws, given in input
the low-resolution xl, namely

xs = sΘs(xl) ∈ RHs×Ws . (4.3)

We call N = Hs ·Ws the total number of patches that can be extracted from
the high-resolution input.

35



Chapter 4. Attention models

Patch selection module

The patch selection module pΩ(·, ·) performs the selection of K score values accord-
ing to a certain principle, then maps the position indices of the selected values to
the corresponding patches on the high-resolution image xh and finally returns the
K patches into a tensor xp of dimensions K ×Hp ×Wp ×C, where HP ×Wp is the
size of the patches

xp = pΩ(xs, xh) ∈ RK×Hp×Wp×C (4.4)

where the set of parameters Ω is not made by trainable parameters. The logic
behind this module changes between the two proposed solutions and will be inves-
tigated in the next section.

Feature newtork

The feature newtork takes in input the extracted patches xp and for each one com-
putes a D-dimensional representation, collecting them into a matrix f of dimension
K ×D.

f = fΘf
(xp) ∈ RK×D (4.5)

Aggregation module

The aggregation module takes in input the features in the f matrix and pools this
information into a S-dimensional vector

fa = aΘa(f) ∈ RS. (4.6)

The aggregation modules can perform a simple operation such as taking the
mean of the K features, in that case S = D, or can be a more complex block such
as a transformer.

Classifier

The classifier cΘc(·) is the last part of the network, it takes in input the global
information of the K extracted patches embedded into a S-dimensional vector and
produces a vector of probabilities

ypr = cΘc(fa) ∈ RL. (4.7)
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4.2 Deep Attention-Sampling Model
The Deep Attention-Sampling models (ATS) is a category of models developed by
Angelos Katharopoulos and François Fleuret in [16]. The authors’ official imple-
mentation is available at [15]. We first give a general overview of the ATS approach
and then trace it back to the problem described above.

4.2.1 General view of ATS

Suppose to have an input target-pair x, y from a dataset and a network ΓΦ(·)
parametrized by Φ. Suppose now we can express the network as an intermediate
representation hΦh

(·) given in input to a classifier gΦg(·), namely

ΓΦ(x) = gΦg(hΦh
(x)) (4.8)

where hΦh
(x) ∈ RN×D is a matrix of N D-dimensional features and Φh ∪

Φg ⊆ Φ, the set of all trainable parameters. Employing an attention mecha-
nism at the intermediate representation hΦh

(·) means defining a function aΦa(x) ∈
RN s.t.

∑N
i=1 aΦa(x)i = 1 and aΦa(x)i ≥ 0 ∀i ∈ {1, . . . , N}, and then change the

definition of the network ΓΦ(·) as follow

ΓΦ(x) = gΦg

( N∑
i=1

aΦa(x)i · hΦh
(x)i

)
(4.9)

where
∑N

i=1 aΦa(x)i ·hΦh
(x)i ∈ RD is a weighted sum of all the N D-dimensional

features. By definition aΦa(·) is a multinomial distribution over N discrete elements
and if we consider the population represented by the N features, we have that the
weighted sum corresponds to the population mean

N∑
i=1

aΦa(x)i · hΦh
(x)i = EI∼a(x)[hΦh

(x)I ]. (4.10)

We can now rewrite the whole network as

ΓΦ(x) = gΦg

( N∑
i=1

aΦa(x)i · hΦh
(x)i

)
= gΦg

(
EI∼a(x)[hΦh

(x)I ]
)

(4.11)

where Φ = Φa ∪Φh ∪Φg represents all the parameters of the modified network.

Sampling with replacement

As a consequence of equation 4.11, we can avoid computing all the N features
approximanting the expectation with a Monte Carlo estimate, i.e. we sample a
set Q = {qi ∼ aΦa(x)|i ∈ {1, . . . , K}} of K i.i.d. indices according the attention
distribution and use the unbiased point estimator of the features population mean

EI∼a(x)[hΦh
(x)I ] ≈

1

K

K∑
i=1

hΦh
(x)qi (4.12)
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to approximate the neural network with

ΓΦ(x) ≈ Γ̃Φ(x) = gΦg

(
1

K

K∑
i=1

hΦh
(x)qi

)
. (4.13)

In Appendix A it is shown that this approximation is the best possible one, i.e.
the one with minimum variance, when we have no information about the L2 norm
∥hΦh

(x)i∥2, which means that we can impose the features to a uniform norm.
The attention function can be implemented as a shallow neural network, which

is addressed as attention network. This means that we need to compute the gradient
of loss with respect to the parameters of the attention network by sampling the set
of indices Q. To do this, we need to define the gradient of the unbiased estimator
4.12 with respect to the parameters of the network. In Appendix A it is shown that
we can use a Monte Carlo estimator to approximate it as follows

∂

∂ϕ

1

K

K∑
i=1

hΦh
(x)qi ≈

1

K

K∑
i=i

[
∂
∂ϕ
[aΦa(x)qi · hΦh

(x)qi ]

aΦa(x)qi

]
. (4.14)

Sampling without replacement

To avoid sampling the same elements more than once, the authors propose a
formulation of the problem when sampling is done without replacement. The
process of sampling is described as follows: the first index i1 is sampled with
probability p1(i) = aΦa(x)i, then the second index i2 is sampled with probabil-
ity p2(i|i1) =

aΦa (x)i∑
j ̸=i1

aΦa (x)j
and so on. Following this procedure, we take the K-th

index, given I = {i1, . . . , iK−1}, with probability

pK(i|i1, . . . , iK−1) =
aΦa(x)i∑

j /∈I
aΦa(x)j

. (4.15)

In the process described, each time an index is sampled it is no longer available
and the probability distribution must be renormalised according to the remaining
cumulative probability. This means we cannot simply average the features of the
extracted patches to get an unbiased estimator of 4.10. The authors suggest the
following estimator

K−1∑
j=1

aΦa(x)IjhΦh
(x)Ij + hΦh

(x)IK
∑

t/∈{I1, ... IK−1}

aΦa(x)t (4.16)

and demonstrate that it is unbiased (see Appendix A), i.e.

E
I1, ..., IK

[K−1∑
j=1

aΦa(x)IjhΦh
(x)Ij + hΦh

(x)IK
∑

t/∈{I1, ... IK−1}

aΦa(x)t

]
= EI∼a(x)[hΦh

(x)I ]

(4.17)
with I1, . . . , IK sampled according p1(i), . . . , pK(i|i1, . . . , iK−1). Looking at the

official implementation, the estimator used in practice seems to be different. For
this reason, the full theoretical analysis from the reference article is not reproduced
here. More details about the implementation can be found in the next section.
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4.2.2 ATS in practice

We can now interpret the network architecture described in section 4.1 from the
ATS point of view.

The input

the general input x is represented by the single high-resolution image xh

The attention network

The attention netwotk is implemented by the scorer sΘs(·) and the attention distri-
bution is computed on xl.

The patch selection module

The patch selection module is implemented as a combination of three operations:

• the first one is a sampling function sampleK(·) that samples K indices ∈
{1, . . . , N} according the flatten attention map s = flatten(xs) ∈ RN (or
attention distribution) computed by the scorer, and returns the correspond-
ing 2D coordinates on the bidimensional attention map for each element, as
illustrated in the following image.

Figure 4.2: Sampling of 2 indices from an attention map of 16 elements, and con-
version from index value to coordinates on the 2D attention map.

sampleK(s) =


ih1 iw1
ih2 iw2
...

...
ihK iwK

 = i ∈ RK×2. (4.18)

In the case of sampling without replacement the sampling operation is per-
formed with the Gumble-Max trick [14], explained in detail in Appendix A;

• the second operation is a mapping function mΩm(·) = ⌊m′
Ωm

(·)⌉, that maps the
sampled indices to the corresponding locations on the high-resolution input,
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i.e. the top-left corner of the patches we want to retrieve, and then round the
results to the nearest integer values:

m′
Ωm

(j) =


jh1 jw1
jh2 jw2
...

...
jhM jwM

 ·
[

Hl−r
Hs
· Hh

Hl
Wl−r
Ws
· Wh

Wl

]
(4.19)

+1M ·
[
r·Hh

2·Hl
+ Hl−r

2Hs
· Hh

Hl
− Hp

2
r·Wh

2·Wl
+ Wl−r

2Ws
· Wh

Wl
− Wp

2

]
∈ RM×2 (4.20)

where 1M = [1, . . . , 1]⊤ ∈ RM , Ωm = {Hh, Wh, Hl, Wl, Hs, Ws, r},
(Hh, Wh) are related to the high-resolution image size, (Hl, Wl) are related to
the low-resolution image size, (Hs, Ws) are related to the output size of the
scorer (the attention distribution), (Hp, Wp) are related to the patch size and
r is a parameter that can be useful to trim the spacing between the elements
of the extraction grid. More details about this mapping function can be found
in Appendix A;

• the third operation is an extraction function eΩe(·, ·) that, given in input the
high-resolution image xh and the generic top-left corner coordinates
k = [[kh

1 , kw
1 ], [kh

2 , kw
2 ], · · · , [kh

O, kw
O]]

⊤ of O patches on the high-resolution
image, extracts the corresponding patches returning a tensor of size O×Hp×
Wp × C

eΩe(xh, k) ∈ RO×Hp×Wp×C (4.21)

where Ωe = {Hp, Wp}.
To sum up, for the ATS case we have

pΩ(xs, xh) = eΩe(xh, mΩm(sampleK(s)))) (4.22)

with Ω = {K} ∪ Ωm ∪ Ωe.

The aggregation module

The aggregation module is differentiable and its implementation changes depending
on how the sampling is done, i.e. with or without replacement. In the ATS formu-
lation, this module takes both the D-dimensional features of the extracted patches
and the sampled score probabilities as input (although non explicit in the general
architecture in Figure 4.1), because they are needed to compute the gradients in the
backward pass: given the K patches and the corresponding attention distribution
values derived from sampling the indices, we call fi = fΘf

(xp)i ∈ RD the i-th row
of the feature matrix f and si ∈ [0, 1] the corresponding attention (score) value.
When sampling is done without replacement, the authors’ proposed implementa-
tion does not seem to follow exactly what they wrote in the reference article. The
derivation of the gradients is also more difficult in relation to the case of sampling
with replacement and there is no clear link between the theoretical justification and
the proposed implementation, so only the implemented expressions in relation to
the case of sampling without replacement are reported.
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• Forward pass - For the forward pass the module implements the unbiased
estimator 4.12, that in the sampling with replacement case is

aΘa(f) =
1

K

K∑
i=1

fi. (4.23)

For the case of sampling without replacement the expression implemented by
the module is

aΘa(f) =
1

K

[
f1 (4.24)

+ (s1f1 + f2w1) (4.25)
+ (s1f1 + s2f2 + f3w2) (4.26)
+ . . . (4.27)
+ (s1f1 + s2f2 + . . .+ sK−1fK−1 + fKwK−1)

]
(4.28)

=
1

K

[
f1 + 1K>1

K∑
i=2

( i−1∑
j=1

sjfj + fiwi−1

)]
(4.29)

where 1K>1 is 1 if K > 1 else 0 and wr = 1−
∑r

i=1 si, with r ∈ [1, 2, . . . , K−
1]. In both cases Θa = ∅, i.e. there are no trainable parameters in the
aggregation module.

• Backward pass - We define gs and gf as the downstream gradients computed
for the scorer network (or attention network) and the feature network, and
u ∈ RD as the upstream gradient, which has the same form as the output of
the aggregation module.

For the case of sampling with replacement, the implemented gradients can
be derived in a similar way as was the case in equation 4.14, but the gen-
eral trainable parameter ϕ is replaced accordingly by the output of the two
networks, giving the following expressions:

gs = u⊤ 1

K


f1
s1...
fK
sK

 , gf =
1

K
1Du

⊤ (4.30)

where 1D = [1, . . . , 1]⊤ ∈ RD.

For the case of sampling without replacement the gradients are computed as
follows:
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gs = u⊤ 1

K


f1
s1

w1

s2
(s1f1 + w1f2) + f1 − f2

w2

s3
(s1f1 + s2f2 + w2f3) + f1 + f2 − 2f3

...
sK

wK−1
(
∑K−1

i=1 sifi + wK−1fK) +
∑K−1

i=1 fi − (K − 1)fK

 , (4.31)

gf =
1

K



1 + (K − 1)s1
w1 + (K − 2)s2
w2 + (K − 3)s3

...
wK−2 + sK−1

wK−1


u⊤. (4.32)

Loss function

The training is driven by the following expression

L′
Θ(xh, y) = LΘ(xh, y)− λH(sθs(xl)) (4.33)

where L is a general loss function, in our case the binary cross entropy loss, H is
the entropy of the attention distribution and λ is a hyperparameter that weights the
effect of the regularization term. The goal of the regularization term is to promote
exploration of the patch space.

4.3 Differentiable Patch Selection Model
The Differentiable Patch Selection model (DPS) is proposed by Jean-Baptiste Cor-
donnier and Aravindh Mahendrain (and others) in [4] and formalizes the patch
selection as the Top-K problem that, given x ∈ RN , can be defined as follows:

Top-K(x) = y ∈ RK (4.34)

where y contains the indices of the K largest entries in x. Using the perturbed
maximum method [1], a differentiable Top-K is implemented and used in the patch
selection module. For our purpose, the Top-K operation is defined so that the in-
dices are ordered, i.e. y1 < y2 < . . . < yK . Without this constraint, the output
could be permuted, breaking the perturbed optimizer method. For the next sec-
tions, it is convenient to represent the yi’s as the N dimensional indicator vectors
{Iy1 , Iy2 , . . . , IyK}, which are combined in a matrix Y = [Iy1 , Iy2 , . . . , IyK ] ∈ RN×K ,
so that if we take the tensor of all available patches P ∈ RN×Hp×Wp×C , the extracted
patches can be written simply as xp = Y⊤P.

In the following sections we will first see how the perturbed maximum method
works and then we will see how to use it to define a differentiable Top-K operation.

The official implementation is available at [8] and is implemented using FLAX8

and JAX9. For the purposes of this work, a Tensorflow version is proposed.
8FLAX is a high-performance neural network library and ecosystem for JAX that is designed

for flexibility, https://github.com/google/flax
9JAX is a recent machine/deep learning library developed by DeepMind. Unlike Tensorflow,
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4.3.1 Differentiable perturbed optimizers

The approach described in this section is used to convert discrete optimizers into
differentiable operations. The method perturbs the input of a discrete solver with
random noise and considers the perturbed solutions of the problem: the formal
expectations of the perturbed solutions are differentiable.

Definition 4.3.1 (Convex hull) A set X in Euclidean space is defined convex if
it contains the line segments connecting each pait of points. The convex hull of the
set X is the (unique) minimal convex set containing X .

Given a finite set of distinct points Y ∈ Rd and C its convex hull, consider the
following general discrete optimization problem parametrized by an input θ ∈ Rd

as follows:

F (θ) = max
y∈C
⟨y, θ⟩ (4.35)

y⋆(θ) = argmax
y∈C

⟨y, θ⟩ = ∇θF (θ) (4.36)

where the problem is a linear problem (LP). y⋆(θ) in equation 4.36 is piecewise
constant, i.e. its gradient is zero or undefined. To solve this problem, we can use
the stochastic smoothing, which is defined in [12, chapter 8] as follows:

Definition 4.3.2 (Stochastic Smoothing) Let f : RN → R be a function. We
define f̃(·; Dη) to be the stochastic smoothing of f with distribution D and scaling
factor η > 0. The function value at G is obtained as:

f̃(G; Dη) := Ez′∼Dη [f(G+ z′)] = Ez∼D[f(G+ ηz)] (4.37)

where we adopt the convention that if z has a distribution D then the distribution
of ηz is denoted by Dη.

We essentially draw a random noise vector Z from a distribution U described
by a density µ(z) ∝ exp (−ν(z)) on Rd, and add ϵZ to θ, where ϵ is a temperature
parameter. This induces a probability distribution P on Y ∈ Y and lets us model
the phenomena where agents have optimal y ∈ Y based on an uncertain knowledge
of θ. Using stochastic smoothing, we can define smooth versions of the equations
4.35 and 4.36, as follows:

Definition 4.3.3 For all θ ∈ Rd, and ϵ > 0, we define the perturbed maximum
as

F̃ (θ; Uϵ) = EZ∼U [F (θ + ϵZ)] = EZ∼U

[
max
y∈C
⟨y, θ + ϵZ⟩

]
(4.38)

and, the perturbed maximizer as

ỹ⋆(θ; Uϵ) = EZ∼U [y
⋆(θ + ϵZ)] = EZ∼U

[
argmax

y∈C
⟨y, θ + ϵZ⟩

]
(4.39)

= EZ∼U

[
∇θmax

y∈C
⟨y, θ + ϵZ⟩

]
= ∇θF̃ (θ; Uϵ). (4.40)

JAX is not an official Google product and is used for research purposes, https://github.com/
google/jax
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A useful property of the stochastic smoothing is that under certain conditions it
is always differentiable, as claimed in the following lemma, also reported from [12,
chapter 8]:

Lemma 4.3.1 (Exponential Family Smoothing) Suppose D is a distribution
oven RN with a probability density function of the form µ(X) = exp(−ν(X))/A
for some normalization constant A. Let f : RN → R be a function, f̃(·; D) its
stochastic smoothing and z a random sample drawn from D, then, for any twice
differentiable ν we have:

∇f̃(G;D) = EZ∼D[f(G+ Z)∇zν(Z)] (4.41)

∇2f̃(G;D) = EZ∼D[f(G+ Z)(∇zν(Z)∇zν(Z)
⊤ −∇2

zν(Z))]. (4.42)

Further more if f is convex, we have

∇2f̃(G;D) = EZ∼D[∇f(G+ Z)∇zν(Z)]. (4.43)

The proof of the lemma can be seen in Appendix B. When the result of the
previous lemma is adapted to our perturbed optimizer framework described at the
beginning of this section, we have the following result.

Proposition 4.3.1 For noise Z drawn from a distribution U whose PDF is
µ(Z) ∝ exp (−ν(Z)) where ν is twice differentiable, the following holds:

F̃ (θ; Uϵ) = EZ∼U [F (θ + ϵZ)] (4.44)

ỹ⋆(θ; Uϵ) = ∇θF̃ (θ; Uϵ) = EZ∼U [F (θ + ϵZ)∇zν(Z)/ϵ] (4.45)
Jθỹ

⋆(θ; Uϵ) = EZ∼U [F (θ + ϵZ)(∇zν(Z)∇zν(Z)
⊤ −∇2

zν(Z))/ϵ
2] (4.46)

= EZ∼U [y
⋆(θ + ϵZ)∇zν(Z)/ϵ] (4.47)

with Jθỹ
⋆(θ; Uϵ) the Jacobian matrix of ỹ⋆(·; Uϵ) at θ.

For completeness the demostration of the lemma is reported in Appendix B.
In conclusion, the derivatives are simple expectations that can be evaluated with
Monte Carlo estimates.

4.3.2 Differentiable Top-K

Patch selection as Top-K with sorted indices is equivalent to find a solution for the
following linear program

max
Y∈C
⟨Y, s1⊤

K⟩ (4.48)

where s = flatten(xs) ∈ RN , s1⊤
K ∈ RN×K are th score replicated K times and

⟨⟩ flattens the matrices before computing the dot product. The constraint set is
defined as

C = {Y ∈ RN×K :Yn,k ≥ 0, 1⊤Y = 1, Y1 ≤ 1, (4.49)
N∑
i=1

iYi,k <
N∑
j=1

jYj,k′ ∀k < k′} (4.50)
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where the first condition states that Y is filled with non-negative entries and each
column has a total weight of 1, and the last condition states that the indices must be
sorted. As long as the columns of s1⊤

K are always identical, we must apply the noise
directly to s before duplicating it in the K columns, and the index-sorted Top-K
operator returning indicator vectors is a solution to the linear program described
by 4.48, i.e.

argmax
Y∈C

⟨Y, s1⊤
K⟩ ≡ ISITop-K(s) (4.51)

where ISI stands for Indicators of Sorted Indices, meaning it returns the indicator
vectors of the sorted integer indices.

4.3.3 Differentiable Patch Selection Model in practice

We can now interpret the network architecture described in section 4.1 from the
DPS point of view:

The scorer network

The output xs of the scorer sΘs(·) cannot be interpreted as a probability distribu-
tion, but is simply normalized to obtain values in the range [0, 1] thanks to the
following normalization function:

normalize(x) =
x−min(x)

max(x)−min(x)
(4.52)

The patch selection module

The patch selection module is implemented as a combination of two operations:

• the first operation is a submodule called DTop-K(·) that takes in input the
flatten scores s and implements the differentiable Top-K as follows:

– Forward pass - Assume that the noise Z is drawn from a standard
multivariate normal distribution N , and that the set of constraints C is
the one described by the constraints 4.49 and 4.50, then the forward pass
should perform the following operation

Yσ = EZ∼N

[
argmax

Y∈C
⟨Y, (s+ σZ)1⊤

K⟩
]

(4.53)

that in practice is approximated as follows

Yσ ≈
1

M

M∑
i=1

ISITop-K(s+ σZ(i)). (4.54)

In order to meet the memory contraints, M is set to 250 in the experi-
ments.
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– Backward pass - The Jacobian associated with the above forward pass
is given by the equation 4.47, and if the noise distribution is a standard
multivariate normal distribution, it has the following form:

JsYσ = EZ∼N

[
argmax

Y∈C
⟨Y, (s+ σZ)1⊤

K⟩Z⊤/σ

]
. (4.55)

In practice it is approximated as follows

JsYσ ≈
1

M

M∑
i=1

ISITop-K(s+ σZ(i))Z(i)⊤/σ; (4.56)

• the second operation extracts all the patches from the input image, as in the
ATS case, into a tensor P ∈ RN×Hp×Wp×C and returns the results of the patch
selection module, that can be finally expressed as

pΩ(xs, xh) = Y⊤
σ P ∈ RK×Hp×Wp×C . (4.57)

The parameters Ω and the extraction operation are exactly the same as in
the ATS case, but now the entire set of initial coordinates of the patches is
passed to the extraction function.

In the forward pass described by the equation 4.54, the result of the ISITop-K(·)
is a matrix of one-hot indicator vectors, but the mean Yσ may be far from one-hot.
This means that in the early phase of training, the K patches extracted by the
patch selection module resemble a weighted sum of all available patches. To avoid
memory problems, this process is implemented cyclically and parallelized along the
batch dimension, updating an intermediate result step by step until all patches have
been extracted and the final result can be returned.

The DTop-K(·) is only used during training, in inference mode it is replaced
by the hard Top-K operation. To bridge the gap between training and inference
resulting from this replacement, both the σ parameter and the learning rate are
reduced to 0 during training. In this way, the newtork ends with hard Top-K
selection and we avoid exploding gradients that might result from the Jacobian
expression 4.56 where σ is in the denominator, because when the learning rate is 0,
gradients no longer flow back into the network.

The mapping function that maps the indices of the flatten-score elements to the
corresponding patch positions on the high-resolution image is implemented differ-
ently from the one used in the ATS case (equation 4.20). In the authors’ proposed
implementation, the high-resolution image is zero padded along the height and
width dimensions with

[
⌊(Hp−Hh/Hs)/2⌉, ⌊(Wp−Wh/Ws)/2⌉

]
zeros and then the

following mapping is used, which is only given for a single index for clarity:

i 7→
[⌊ i

Ws

⌋Hh

Ws

, (imodWa)
Wh

Ws

]
(4.58)

where
(⌊

i
Ws

⌋
, imodWs

)
are the height and width coordinates on xs of the

same element indexed by i on the flat scores s, and both Hh/Hs and Wh/Ws are
the scale values related to the height and width dimensions computed from the
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scores map xs for the high-resolution image xh. In the implementation proposed
for this work, we do not need to pad the high-resolution image with zeros because
the extraction function is written to handle negative coordinate inputs and simply
fills these locations with zeros when the patches are returned. This means that
the actual mapping function used in the current implementation subtracts from the
mapping 4.58 the offsets that result from padding the image with zeros, namely:

i 7→
[⌊ i

Ws

⌋Hh

Ws

, (imodWa)
Wh

Ws

]
−
[⌊(

Hp −
Hh

Hs

)1
2

⌉
,
⌊(

Wp −
Wh

Ws

)1
2

⌉]
. (4.59)

In Appendix B is reported a toy example of the mapping.

Aggregation module

The aggregation module is implemented as in the ATS model, i.e. it simply calcu-
lates the mean of the features returned by the feature network. The operation is
still differetiable but does not require a user-defined definition of the gradients, the
standard operations are automatically differentiated by Tensorflow.

Loss function

The model is trained with a binary cross-entropy loss plus the same regularization
term used for the ATS case. The loss expression is given by equation 4.33.

4.4 Extraction function
The extraction function is a custom Tensorflow operation written in C++ with
both a CPU and GPU implementation based on the CUDA programming model.
Tensorflow provides instructions for creating custom ops, which can be found at [24].
The custom op is able to extract a certain number of patches from all the images
in a batch, specifying the starting points of each patch and taking advantage of the
parallelization offered by a GPU. More specifically, in our case, a number of blocks
#blocks = batch_size · #patches is used, so there are 1024 threads10 that works
in parallel to extract each patch 11. The GPU kernel version of the op must be
compiled with the NVIDIA compiler nvcc and it may be necessary to specify the
-arch argument, i.e. the GPU architecture type code, for a successful compilation.
Even though Tensorflow already provides some ops for performing slicing of tensors,
such a custom op12 is not yet officially implemented.

10Single execution unit running the kernel (function running on a GPU). Each thread is associ-
ated with a single core in the GPU.

11The hierarchy of threads is organized as follows: threads ⊂ blocks ⊂ grid, i.e. threads are
grouped into blocks (maximum 1024 threads per block), which in turn are grouped into a grid.
Each abstraction layer of the hierarchy can be organized into a 1D, 2D, or 3D data structure, and
each thread can be uniquely addressed.

12The official implementation of ATS provides a version of this custom op but the original GPU
kernel does not make good use of parallelization.
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Datasets

To understand the potential and weaknesses of the two proposed models, different
datasets were defined. This chapter presents all the datasets that were defined from
the exploratory phase to the final result and explains the objective of each dataset.
In the first part of this work, we will use two syntethic datasets to get an idea of
how the models behave in different situations. We will refer to these two types of
datasets as Needle MNIST (NMNIST) and Megapixel MNIST (MPMNIST). As for
the final dataset, it was created starting from a set of video recordings of events
collected by the current detection system and then elaborated in different ways,
which will be explained in detail later in this chapter.
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5.1 Megapixel MNIST
Used by the authors of ATS, Megapixel MNIST is a synthetic dataset based on
the popular MNIST dataset of 28 × 28 handwritten digits. It is used to simulate
a situation suitable for the application of the ATS model, i.e. the classification of
a noisy image, considering only the important regions. The images of the dataset
are created starting from a blank canvas with predefined dimensions, which is then
filled with digits from the MNIST dataset and specially created noisy patterns.
Each image has a size w×h of 1500× 1500 and contains five digits, three instances
of the target class, two instances of digits from other randomly selected classes, and
50 noisy samples. The dataset contains a training split of 5000 items and a test
split of 1000 items and is used to perform a classification task with 10 classes.

Figure 5.1: Data items taken from MPMNIST.
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5.2 Needle MNIST
The NMNIST dataset is proposed in [21] and is a synthetic dataset created starting
from the MNIST dataset. It is mainly used to simulate applications where the
informative part of the image is much smaller than the image itself. The images of
the dataset are created starting from a blank canvas with predefined dimensions,
which is then filled with digits from the MNIST dataset. More specifically, each
image has a size w × h of 1296 × 966 and contains at least one target digit with
probability 0.5. The task is a binary classification, as the one we should perform on
the final dataset, so the images with at least one target digit are labelled as 1. The
target digits are selected among the images of class 3 in the MNIST dataset, and
with a probability of 0.5, two of them can occur in the same image. In addition to
the target digits, there are a varying number of distortions that are random samples
from classes other than 3 from MNIST. Three versions of this dataset were created:

• NMNIST_0 each image contains 0 distortions, only the target digits a
present, if any

• NMNIST_5 contains 5 distortions besides the taget digits

• NMNIST_10 contains 10 distortions besides the target digits.

Each of these datasets contains a train split with 6000 elements and a test
split with 1500 elements. The main purpose of these datasets is to see how the
performance of the models deteriorates as more and more elements similar to the
informative ones appear in the same image. Below is an example an item taken
from NMNIST_5.

Figure 5.2: Data items taken from NMNIST_05, the class 1 image on the right
contains two instancies of the target digit 3. The distortions are randomly placed
without overlapping.
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5.3 PRISMA dataset

5.3.1 Data exploration

The creation of the Fireballs dataset begins with a series of events collected by
PRISMA/FRIPON. Each event is a folder, identified by the name of the viewing
location and the date and time, and has the following format

SITE_yymmddThhmmss_UT.

Most folders contain both a subfolder called fits2D, which collects all the frames
in FITS format, and a video.avi of the event; sometimes only one of the two is
available. In addition, a .txt file containing the frame numbers and the coordinates
of the detected object is also available.

Initially, the events are manually divided into fireballs and non-fireballs, i.e. the
recorded event did not contain anything noteworthy or an aircraft was probably
recorded. From the selection we could identify 38 fireballs events and 38 non-
fireballs events.

We can now go through an exploratory phase to better understand the data
we are dealing with. First of all, we have two different sources of information, the
fits2D folder and the video.avi file. The fits2D folder contains raw data: the image
is retrieved using the Python library astropy13, which we can use to extract the
image stored in uint16 format with resolution 1296×966. The video.avi is only used
when fits2D is not available and the frames can be extracted by the Python library
opencv14, which lets us obtain the images stored in uint8 format with resolution
1280 × 960. The difference between the two data sources will be discussed in the
next section. In the following figure we see the two sources in relation to the class
label.

Figure 5.3: Count of events per class vs data sources. 1 corresponds to fireball and
0 to non-fireball.

13https://www.astropy.org/
14https://opencv.org/
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In addition to the differences in the data sources, it is also worth examining
the number of frames. In the following histograms we see the number of events,
divided by class, for a given number of frames; this takes into account both the
total number of frames collected and the number of frames for which the system
believes that there is the detected object (this information can be taken from the
.txt file).

Figure 5.4: Count of events vs number of total frames.

Figure 5.5: Count of events vs number of frames with detected object.

From the histograms above, it can be seen that the number of frames associated
with a non-fireball event, both overall and object-wise, is generally higher than the
number of frames of fireball events. The reason for this is probably that non-fireball
events such as aircrafts tend to be longer than real fireball events, which can last a
few seconds at most. This will result in the definition af an unbalanced dataset.
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5.3.2 Dataset creation

Before processing the data to define useful datasets, 3 events were randomly selected
for each class and set aside to determine the final test set. Then three different data
sets are created from the data provided: small56x56_augmented,
small28x28_augmented and final_augmented.

small56x56_augmented (small28x28_augmented)

Figure 5.6: maxpixel image created for a
non-fireball event.

This dataset is created with the aim of
selecting a good feature network archi-
tecture. The feature network is
then trained on this dataset and the
weights are loaded into the correspond-
ing layers in the overall model. The
images in this dataset are created in
the following way: all the frames that
the currently working recognition sys-
tem associates with an object recogni-
tion are merged, considering the max-
imum pixel value, so that the bright
stripe of the object is visible, if present,
the result is called maxpixel image. Be-
fore the maxpixel image is calculated,
the frames are preprocessed by dividing
each pixel by the maximum pixel value

in the frame and multiplying by 255: this process is mainly necessary to make the
visible objects from the two different sources comparable, because just by converting
uin16 to unit8, the detections from fits2D are much less visible than the detections
from video.avi.

Then, several crops of the stripe of size 56 × 56 are manually selected and
stored. Finally, the dataset is enlarged by a factor of 8 by applying the following
data augmentation: horizontal flip, vertical flip, both horizontal and vertical flip
and random translation applied to the original and the flipped versions of each crop.

Figure 5.7: Sample of images from small56x56augmented.

The dataset small28x28augmented is created simply by resizing the images to
28x28, and is used in the feature network selection process in order to evaluate a
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possible reduction in inference time and to see if the reduction in size has negligible
effect on the performances.

final_augmented

Figure 5.8: Example of a single 2 seconds
window processing, from top to bottom:
maxpixel image (MP), median image (M),
maxpixel - median (MP-M)

This dataset is created to train and val-
idate both the ATS and DPS models.
Each frame is processed as in the previ-
ous case to make the events from the
two data sources comparable. In ad-
dition, the frames from the video.avi
source are resized to 1296× 966, which
is the final size of the images created.
The creation pipeline is intentionally
simple and simulates a pre-processing
that can be used in the real applica-
tion. The total number of frames of
each event is processed as follows: a
window of frames of about 2 seconds
(65 frames) is used to calculate both
the maxpixel image and the median im-
age, which is subtracted from the first
to delete or at least attenuate the fixed
lights ant the background; the goal is to
remove as many noisy elements as pos-
sible and the windows overlap by about
0.5 seconds (15 frames). The size of the
window is sufficient to visualize a kind
of strip (when visible) that can be ex-
tracted from the models into a patch,
and the overlap of 15 frames is neces-
sary to avoid too similar images in the
dataset, also considering that they will
be manually filtered at the end. On the
right you can see an example of a frames
window preprocessing. Of the available
events, some are used to define a vali-
dation set to validate the performance
of the models during training. Three
sets are finally defined: a training set,
a validation set and a test set. Each
of these sets is manually filtered to re-
tain the most informative images and
then enlarged by a factor of 8, using the
same data augmentation as in the previ-
ous case, except that the random trans-
lation is now a maximum of 100 pixels
in each direction.
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To conclude this chapter, in the following table are reported the number of items
for each class in the two datasets.

fireballs non-fireballs
small56x56augmented 448 928

train 696 4344
validation 176 1088final_augmented

test 112 504

Table 5.1: Number of elements in the datasets.

The datasets are clearly unbalanced, moreover the majority of the elements in
the positive class is created starting from quite noisy video recordings, that could
represents a bias when training the final models. An example of a noisy positive
class item is reported below.

Figure 5.9: Example of a positive class item that shows the presence of a noisy
pattern.
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Tests and experimental results

This chapter describes the methodology used to train and test ATS and DPS on the
datasets presented in the previous chapter. Each training session is performed by
means of Google Colab with the Adam optimizer [17] (more details in Appendix C)
to update the network weights and, in the DPS case, a cosine decay scheduler with
linear warmup is also used to allow the learning rate to decay slowly to zero. Before
starting the training we need to set a number of model and training hyperparame-
ters:

• the scale factor used to compute the low resolution image

• the patch size, that is a single value because we extract square patches

• the number of patches to be extracted

• the λ regularizer strength in the loss expression 4.33

• both the σ noise strength value and the number of noise samples M
used in the differentiable TopK implementation given by 4.54 (only on DPS)

• concerning the optimizer, learning rate, clipnorm (only on ATS) and clip-
value (only on DPS)14

• concerning the scheduler, warmup ratio (only on DPS)

• concerning the training, number of epochs and batch size.

For each case are reported the specific scorer network and feature network architec-
tures, the training approach, the evaluation metric and the final result.

14clipnorm for ATS and clipvalue for DPS are used as optimizer hyperparameters in their official
implementation
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6.1 Synthetic datasets
As mentioned earlier, the training with the synthetic datasets only has the purpose
of evaluating the behaviour of the model and to show its limitations.

6.1.1 ATS

The architectures used for the scorer network and the feature network are the same
as those used in the ATS article [16] and shown below.

Figure 6.1: Scorer network and feature network architectures used in the ATS model
when trained on the synthetic datasets.
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For the convolutional layers in the scorer network, the padding parameter is set
to same (same input-output dimensions), while for the convolutional layers in the
feature network, the padding is set to valid (no pad), the stride is always 1. Sam-
pleSoftmax is a user-defined activation that performs the softmax also considering
the channel dimension. L2Nornalize is a user-defined layer that performs the nor-
malization of the features calculated for each patch, as required by the formulation
in the previous chapter.

In the following table are shown the hyperparameter values used with the syn-
thetic datasets.

MPMNIST NMNIST_0 NMNIST_5 NMNIST_10
scale 0.12 0.125 0.125 0.125

num patches 10 10 10 10
patch size 50 50 50 50

regularizer strength 0.01 0.005 0.005 0.005
learning rate 0.001 0.001 0.001 0.001

clip norm 1 1 1 1
epochs 180 9 76 91

batch size 128 128 128 128

Table 6.1: ATS hyperparameters used with synthetic datasets

The whole model is trained three times on the same training dataset and the
results are eventually averaged. Accuracy is a good metric for the type of task for
which the datasets were created, as the classes are balanced. The input images are
simply scaled between 0 and 1 by dividing by 255, which is the maximum value
each pixel can take. In the following images are represented both average loss and
accuracy curves computed on the training set.

Figure 6.2: Average training accuracy and loss curves on MPMNIST.
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Figure 6.3: Average accuracy and loss curves on NMNIST_0, NMNIST_5 and
NMNIST_10.

In the previous figures, the light blue curves refer to the individual runs, while
the dark blue curve represents their average. In general, training for this model can
be difficult because to improve its predictive ability the feature network needs to be
fed with good patches and the scorer network needs the other to correctly classify
the patches. From the figures 6.2 and 6.3 it can be seen that the ATS tends not to
improve up to a certain point: the reason for this behaviour is that the good patches
need to be sampled a few times in a row before the scorer network understands that
these regions are more important than others.

In the following table, both the average loss and the average accuracy, as mea-
sured on the training set and the test set, are given with their standard deviation15.

MPMNIST NMNIST_0 NMNIST_5 NMNIST_10
train 0.899± 0.041 0.986± 0.000 0.880± 0.008 0.860± 0.008accuracy test 0.759± 0.011 0.986± 0.000 0.865± 0.006 0.842± 0.011
train 0.396± 0.168 0.189± 0.028 0.310± 0.006 0.414± 0.020loss test 0.753± 0.039 0.189± 0.028 0.337± 0.004 0.439± 0.012

Table 6.2: Training and test results for the synthetic datasets. The average values
and the standard deviation are computed on three runs.

From the reported results, it appears that in the case of NMNIST, the perfor-
mance decreases as the number of distortions in the images increases. To better
understand the behaviour of the model during training, both attention map and

15In article [16], the exact results for NMNIST training are not given in a table, instead loss and
error (1 - accuracy) charts for a single ATS run can be viewed at https://github.com/idiap/
attention-sampling/tree/master/docs/img, accessed 17/06/2022.
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patches computed on some previously stored images are collected and showed be-
low.

Figure 6.4: On the top left a MPMNIST input image taken from the training set, on
the top right the attention map computed by the score network on the last epoch,
below the extracted patches.

In the case of NMNIST the attention map clearly highlights the regions that
contains a class label 9 in the input image and the patches are extracted consistently.
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Figure 6.5: On the top left a NMNIST_5 input image taken from the training
set, on the top right the attention map computed by the score network on the last
epoch, below the extracted patches.

In the case of NMNIST_5, the attention map can distinguish the background
from the digits, but does not focus only on the regions containing the target digit
3 in the input image, even if one of the two instances receives a higher attention.
Only two of the extracted ten patches contain the target digit 3. This suggests us
that the lower the noise in the input image, the better the model can focus on the
informative regions.
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6.1.2 DPS

In the architectures used for the scorer network and the feature network there are
some minor differencies with respect to those of the ATS case.

Figure 6.6: Scorer network and feature network architectures used in the DPS model
when trained on the synthetic datasets.

In the scorer network, the SampleSoftmax is replaced by a standard tanh activa-
tion function, followed by a Maxpooling layer. The latter has the effect of reducing
the output size of the scorer, which is beneficial from a memory consumption point
of view and avoids an OOM error during the training. In the feature network, the
L2Normalize layer can be omitted.
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The following table shows the hyperparameter values used with the synthetic
datasets.

MPMNIST NMNIST_0 NMNIST_5 NMNIST_10
scale 0.12 0.125 0.125 0.125

num patches 10 10 10 10
patch size 50 50 50 50

regularizer strength 0.01 0.01 0.01 0.01
noise strength 0.05 0.05 0.05 0.05
num samples 250 250 250 250
learning rate 0.001 0.001 0.001 0.001

clip value 0.05 1 1 1
warmup ratio 0.1 0. 0. 0.

epochs 20 2 10 20
batch size 64 64 64 64

Table 6.3: DPS hyperparameters used with synthetic datasets

In the reference article [4] the authors use 500 noise sample but to meet the
memory constraints of Google Colab their number is reduced to 250; also the batch
size is reduced to 64 for the same reason. The warmup ratio does not seems to
particularly affect the training, both warmup ratio and clipvalue are setted to a
value that let the model converge to a solution.

In the following images are represented both average loss and accuracy curves
computed on the training set.

Figure 6.7: Average training accuracy and loss curves on MPMNIST.

The charts show that the model starts learning from the beginning thanks to
the weighted average of the patches computed by the Differentiable-TopK during
the first training steps. In terms of variability, the DPS seems to be more stable
than the ATS, on the other hand, training takes much longer.
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Figure 6.8: Average training accuracy and loss curves on NMNIST_0, NMNIST_5,
NMNIST_10.

The following table shows both average accuracy and loss computed on training
and test sets.

MPMNIST NMNIST_0 NMNIST_5 NMNIST_10
train 0.840± 0.009 0.997± 0.001 0.872± 0.024 0.823± 0.028accuracy test 0.765± 0.029 0.994± 0.000 0.869± 0.021 0.834± 0.014
train 0.435± 0.023 0.238± 0.017 0.248± 0.050 0.330± 0.038loss test 0.763± 0.107 0.246± 0.017 0.249± 0.048 0.308± 0.027

Table 6.4: Training and test results for the synthetic datasets. The average values
and the standard deviation are computed on three runs.

The accuracy results of ATS and DPS are comparable when looking at their
standard deviations.
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For completeness, the attention and the patches extracted from some images are
reported below. The images are the same as in the ATS case.

Figure 6.9: On the top left a MPMNIST input image taken from the training set, on
the top right the attention map computed by the score network on the last epoch,
below the extracted patches.

As in the ATS case the more important regions are those that contains the class
label digit 9. The output of the scorer is now smaller so the patches are less densely
distributed and this can be seen from the extracted patches: only four of them
contain the 9 digit.
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Figure 6.10: On the top left a NMNIST_5 input image taken from the training
set, on the top right the attention map computed by the score network on the last
epoch, below the extracted patches.

As for the ATS case the DPS can distinguish the background from the actual
digits but cannot focus only on the two instancies of the tarfet digit 3, even if one
of them gets a higher attention.
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6.2 PRISMA dataset

6.2.1 Feature network selection

The selection of a good feature network is made using the small56x56_augmented
and small28x28_augmented datasets presented in the previous chapter. The deci-
sion to select the feature network separately has several reasons: first, both ATS
and DPS require a certain amount of time to train, which, combined with the lim-
ited resources provided by Google Colab, prevents a comprehensive study in this
direction; second, we need to consider that it may be beneficial for training the
entire network if it starts with a set of pre-trained weights for the feature network;
furthermore, if the models are ultimately not suitable for the task, we can be sure
that we at least have a network that can classify the patches well, and we need to
reconsider another strategy for patch extraction.

In the first part of this analysis, the two small datasets with manually selected
patches are used to find out which of the following scenarios is better in terms of
processing time and classification capability of the feature network: keeping the
high-resolution images as they are, extracting 56× 56 patches, or resizing the high-
resolution images by a factor of 1/2, extracting 28 × 28 patches. All the average
processing times reported in this section are measured when Google Colab provides
us with the NVIDIA Tesla K80 GPU.

In order to retain the most of the data, the feature network models are trained
with a K-fold cross-validation with K=7. Due to the fact that the datasets are
unbalanced, the metrics precision, recall and AUC-PR are used to evaluate the
models. For each model, the number of parameters that can be trained and the
average processing time measured when a batch of 10 images is input (a maximum
of 10 patches are selected for the whole model) are also given. The general structure
of the feature network is shown in figure 6.11.

The first step consists in defining different variants of the proposed architecture,
obtained by varying the number of filters f of the convolutional layers, the type
of convolution ( Standard Convolution vs. Depthwise Separable Convolution ), the
number of blocks and the number of units in the first dense layer (omitted when
zero). For all convolutional layers, the stride is set to 1, the padding is set to same
and the kernel size is set to 3. Ten configurations, five for each convolution type,
are randomly defined. After a suitable architecture is found, four more configu-
rations are defined manually to refine the result. The following tables list all the
configurations for each type of convolution. The yellow configurations are randomly
defined, the blue ones manually defined.

Standard Convolution
model name model 0 model 1 model 2 model 3 model 4 model 5 model 6 model 7 model 8
no. blocks 4 4 2 3 2 3 3 3 3

no. filters

32
128
128
32

64
128
128
128

128
64

64
64
64

64
64

16
32
64

32
32
64

64
64
64

64
64
64

no. dense units 0 256 0 0 0 256 256 256 128

Table 6.5: Architecture configurations for the Standard Convolution.
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Depthwise Separable Convolution
model name model 0 model 1 model 2 model 3 model 4
no. blocks 2 4 3 2 2

no. filters 32
128

64
128
64
64

128
128
32

128
128

128
64

no. dense units 256 256 256 0 0

Table 6.6: Architecture configurations for the Depthwise Separable Convolution.

Figure 6.11: General feature network architecture used during the selection process.
W stands for weights, B for bias, P for pool size and U for units.
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In the previous tables, the configurations highlighted in yellow are used to define
the first 10 models. In the first place, the average inference time for a batch of 10
images is measured both for image size 56× 56 and 28× 28.

Figure 6.12: Average inference time measured on 1000 repetitions.

The chart shows that the difference between the average inference times for the
two sizes of the input image is negligible. Maintaining the original resolution of
the high resolution images during the final experiments may be advantageous, so
from now on only the small56x56_augmented dataset will be used. Comparing
the evaluation metrics of the ten models we can see that when using the standard
convolution there are better performances.

Figure 6.13: Evaluation metrics for the first ten models. The values collected at
each different fold are averaged. The standard deviation is encoded into the bars
height.

The diagram shows that the best models are model_0, model_1 and model_3,
which is also the fastest among the three. It makes sense to look for a configu-
ration of the network that is a refined version of model_3. For this reason, the
configurations highlighted in blue in table 6.5 have been defined.
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After the new define models are trained with the same procedure, the collected
results of all the models that use the Standard Convolution, whose configurations
are reported in table 6.5, can be compared.

Figure 6.14: Evaluation metrics for all the models that use the Standard Convolu-
tion.

The previous diagram shows that both precision and AUC-PR are quite high, so
we can use the recall metric as discriminative metric, and also include information
about the number of parameters and the average processing time in the following
chart.

Figure 6.15: Relational chart that shows average inference time vs number of train-
able parameters of the Standard Convolution models, encoding the recall into the
cicle size.

The configuration used to define the model_8 is a good balance between evalu-
ation metrics, inference time and number of trainable parameters. In the following
table are reported the results of all the models evaluate so far.
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convolution type model name no. parameters inference time (ms) accuracy precision recall AUC-PR
model 0 221825 6.2± 1.0 0.941± 0.016 0.97± 0.032 0.846± 0.037 0.982± 0.01
model 1 402945 7.0± 1.2 0.964± 0.011 0.968± 0.028 0.922± 0.026 0.991± 0.008
model 2 75137 4.4± 0.8 0.876± 0.022 0.984± 0.015 0.632± 0.073 0.961± 0.018
model 3 74561 5.2± 1.0 0.922± 0.015 0.962± 0.024 0.792± 0.035 0.964± 0.015
model 4 37633 4.2± 1.0 0.882± 0.013 0.95± 0.022 0.672± 0.033 0.939± 0.017
model 5 40193 5.2± 0.9 0.932± 0.021 0.94± 0.031 0.844± 0.044 0.96± 0.021
model 6 44961 5.2± 0.8 0.942± 0.013 0.943± 0.023 0.875± 0.038 0.963± 0.013
model 7 91393 5.7± 2.9 0.945± 0.02 0.954± 0.025 0.875± 0.058 0.984± 0.01

Standard
Convolution

model 8 82945 5.3± 0.9 0.948± 0.008 0.96± 0.029 0.879± 0.018 0.983± 0.006
model 0 37866 6.0± 1.0 0.888± 0.033 0.882± 0.061 0.761± 0.082 0.906± 0.036
model 1 40074 9.0± 1.3 0.846± 0.021 0.758± 0.062 0.79± 0.046 0.841± 0.041
model 2 31914 7.5± 1.2 0.871± 0.033 0.821± 0.078 0.79± 0.101 0.888± 0.037
model 3 18058 5.4± 1.0 0.831± 0.028 0.936± 0.045 0.518± 0.079 0.875± 0.036

Depthwise
Separable

Convolution
model 4 9738 5.4± 0.9 0.847± 0.025 0.945± 0.047 0.565± 0.067 0.872± 0.022

Table 6.7: Summary table of all the models defined so far, the model_8 with
Standard Convolution is the best among them.

So far we have found a good architecture for the feature network of the whole
model. Starting from this architecture, firstly we try to add the Dropout regular-
ization after the first Dense layer defining three different dropout levels:

• model_0: 0.1,

• model_1: 0.2,

• model_2: 0.4.

Three different methods of dealing with the problem of class imbalance are
explored to improve performance and find an approach that can also be used in
training the whole final models (ATS and DPS) on the final_augmented dataset:

• Class weight - Errors of the two classes are weighted differently according
the following weights

wneg =
ntot

nneg

· 0.5 (6.1)

wpos =
ntot

npos

· 0.5 (6.2)

where ntot is the size of the training set, nneg and npos the number of elements
of the negative (no fireball) and positive (fireball) class. This way the errors on
the elements of the minority class, the positive in our case, are more penalized.

• Oversampling - The elements of the minority class in the training set are
randomly resampled with replacement until the size of the minority class is
equal to the size of the majority class, this way the classes in the training set
are balanced.

• Focal Loss function - The Focal Loss function is proposed in [18] and ad-
dresses class imbalance during training applying a modulating term to the
cross-entropy loss in order to focus learning on hard misclassified examples
according the following expression

FL(pt) = −α(1− pt)
γlog(pt). (6.3)
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where pt is the predicted probability of the true class. It is essentially a
dynamically scaled cross-entropy loss, where the scaling factor decays to zero
as confidence in the correct class increases. The different combinations of
(α, γ) tested are:

– model_0: (0.1, 2),
– model_1: (0.1, 5),
– model_2: (0.1, 7),
– model_3: (0.25, 2),
– model_4: (0.25, 5),
– model_5: (0.25, 7),
– model_6: (0.5, 2),
– model_7: (0.5, 5),
– model_8: (0.5, 7).

• Transfer learning and fine tuning - The best found architecture (Standard
Convolution model_8) is pre-trained on the FASHION MNIST dataset for 10
epochs, using the Adam optimizer with learning rate 0.0001 and batch size 64.
The weights are saved and then loaded before training it with an oversampling
approach on the small56x56_augmented for 20 epochs, the loaded parameters
are freezed, only the last dense layer is trained at first. Eventually the whole
network is unfreezed and a final fine tuning of other 10 epochs is done.

The following table shows all the results for the improvement experiments.

improvement model name accuracy precision recall AUC-PR
Standard Conv model 8 0.948± 0.008 0.96± 0.029 0.879± 0.018 0.983± 0.006

Dropout model 0 0.94± 0.014 0.948± 0.035 0.866± 0.033 0.977± 0.011
model 1 0.94± 0.008 0.947± 0.02 0.864± 0.02 0.979± 0.007
model 2 0.94± 0.015 0.951± 0.027 0.859± 0.034 0.974± 0.011

Class weight model 0 0.956± 0.009 0.927± 0.032 0.94± 0.023 0.985± 0.008
Oversampling model 0 0.985± 0.006 0.974± 0.021 0.982± 0.013 0.997± 0.003

model 0 0.927± 0.019 0.981± 0.031 0.79± 0.046 0.983± 0.014
model 1 0.941± 0.015 0.984± 0.015 0.833± 0.044 0.987± 0.006
model 2 0.933± 0.017 0.997± 0.007 0.797± 0.053 0.987± 0.008
model 3 0.941± 0.007 0.967± 0.032 0.85± 0.046 0.986± 0.004
model 4 0.943± 0.024 0.963± 0.03 0.859± 0.067 0.986± 0.01
model 5 0.937± 0.024 0.972± 0.021 0.833± 0.079 0.985± 0.011
model 6 0.951± 0.019 0.949± 0.014 0.9± 0.064 0.987± 0.006
model 7 0.949± 0.017 0.938± 0.028 0.904± 0.037 0.983± 0.007

Focal Loss

model 8 0.932± 0.012 0.933± 0.031 0.855± 0.03 0.974± 0.011
Transfer learning model 0 0.821± 0.032 0.684± 0.061 0.857± 0.019 0.816± 0.035

Fine tuning model 0 0.975± 0.01 0.943± 0.022 0.984± 0.012 0.991± 0.004

Table 6.8: The green row shows the baseline results of the best found architecture
before the improvements. The red row shows the improvement the yield the best
results.

The oversampling approach produces the best results, so it will be the approach
also used when training the final models. The feature network architecture we
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selected before is eventually trained on the entire small56x56_augmented dataset
with the oversampling of the positive class and then the trained weights are saved.

6.2.2 ATS and DPS

Due to the high number of hyperparameters and the training duration, the explo-
ration of the best configuration is made varying only the patch size, the number
of extracted patches, the number of epochs and the scorer architecture, while the
other hyperparameters are fixed to values that allow the model to converge. In
the following tables can be observed the fixed hyperparameters values, the scorer
network architectures and the configurations used to train the models.

ATS DPS
scale 0.15 0.125

regularizer strength 0.01 0.01
noise strength - 0.5
num samples - 100
learning rate 0.0005 0.0005

clipnorm 1 -
clip value - 0.5

warmup ration - 0.
batch size 64 64

Table 6.9: Fixed hyperparameters for ATS and DPS

ATS DPS
scorer_0 scorer_1 scorer_2 scorer_0 scorer_1

Conv 3× 3, 8 Conv 3× 3, 8 Conv 3× 3, 8 Conv 3× 3, 8 Conv 3× 3, 8
Conv 3× 3, 8 Conv 3× 3, 8 Conv 3× 3, 16 Conv 3× 3, 8 Conv 3× 3, 8
Conv 3× 3, 8 Conv 3× 3, 8 Conv 3× 3, 32 Conv 3× 3, 8 Conv 3× 3, 8
Conv 3× 3, 1 Conv 3× 3, 1 Conv 3× 3, 1 Conv 3× 3, 1 Conv 3× 3, 1

SampleSoftmax MaxPooling 3 SampleSoftmax MaxPooling 2 MaxPooling 3
SampleSoftmax

Table 6.10: Scorer network architectures used in ATS and DPS models. The con-
volutional layers, excluded the last one in the ATS models, are followed by a tanh
activation function and have the padding parameter set to same.
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model name scorer network patch size num. patches num. epochs
ats_prisma_set0 scorer_0 56 10 17
ats_prisma_set1 scorer_0 64 10 21
ats_prisma_set2 scorer _1 64 5 13
ats_prisma_set3 scorer_1 56 5 13
ats_prisma_set4 scorer_2 56 10 20
ats_prisma_set4_fw scorer_2 56 10 17+3
dps_prisma_set0 scorer_0 56 10 7
dps_prisma_set1 scorer_1 56 5 10
dps_prisma_set2 scorer_1 64 5 10

Table 6.11: Different hyperparameters configurations used to train ATS and DPS
models. The ats_prisma_set4_fw uses the same configuration of ats_prisma_set4
but the feature network weights saved in the feature network selection step are
loaded: only the conv layers weights are loaded and freezed during the 17 epochs
training, eventually a finetuning of 3 epochs is done with the learning rate lowered
to 0.0001.

All the models are trained with the oversampling of the minority class (the
fireball class) and for each configurations the results over 3 runs are collected. The
DPS training is much more time and memory resources consuming than ATS, this
is the reason why this last solution is better explored. The following charts reports
the average value of the metrics and their standard deviation.

Figure 6.16: Evaluation metrics for all the final ATS models.

The previous chart shows that the ats_prisma_set4_fw gives the best results,
still the gap between precision and recall is quite high, which means the model
tends to predict a number of false positives. Given the similarity of the metric
measures, the best model is the one with the higher recall value in this case.
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Figure 6.17: Evaluation metrics for all the final DPS models.

The best DPS model dps_prisma_set1 can reach much lower perfromances than
the ATS best solution. For the DPS models the best models is the one that has at
least the precision higher than 0.5.

The following table summarizes all the validation results of the final ATS and
DPS models.

model name no.
params

inference
time (ms) accuracy precision recall AUC-PR

ats_prisma_set0 84266 12.192±1.155 0.935±0.006 0.689±0.021 0.975±0.018 0.826±0.025
ats_prisma_set1 84266 12.347±1.320 0.936±0.009 0.694±0.020 0.972±0.044 0.838±0.011
ats_prisma_set2 84266 12.263±1.264 0.934±0.007 0.688±0.013 0.962±0.042 0.802±0.008
ats_prisma_set3 84266 12.155±1.171 0.931±0.007 0.678±0.024 0.956±0.018 0.779±0.025
ats_prisma_set4 89122 12.803±3.605 0.945±0.002 0.721±0.008 0.989±0.015 0.821±0.021
ats_prisma_set4_fw 89122 12.471±1.345 0.944±0.001 0.716±0.003 0.992±0.007 0.823±0.014
dps_prisma_set0 84266 12.171±1.370 0.236±0.046 0.149±0.005 0.955±0.044 0.493±0.016
dps_prisma_set1 84266 11.956±1.230 0.874±0.015 0.544±0.046 0.655±0.023 0.563±0.036
dps_prisma_set2 84266 12.104±1.275 0.791±0.086 0.409±0.122 0.763±0.111 0.526±0.013

Table 6.12: Final validation results summary, the best model is highlighted in red.

Concernings the inference times, they are comparable and are measured on a
Nvidia Tesla T4 GPU: unfortunately the GPU are assigned automatically by Google
Colab and during this last period the Nvidia Tesla K80 was never provided.
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To better understand how the best model works we can observe some of the
false positives reported below.

Figure 6.18: False positives on the validation with ats_prisma_set4_fw run 0.
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These false positive suggest that the performance of the best model are biased
due to the fact that the positive class is made primarily by noisy items. The over-
sampling method probably highlights this behaviour, and instead of encouraging
the selection of the actual informative regions, it promotes the classification of the
positive class based only on the noisy patches that characterizes the class. As a
demostration of this intuition, a noisy positive class items and its attention map is
reported below.

Figure 6.19: Attention and patches evaluated by ats_set4_fw (run 0) on a noisy
positive class item.

The model is finally trained on the combination of training and validation set
for the evaluation on the test set, which, as expected, reveals the weaknesses of the
model. The performance evaluated on the test are:

• accuracy: 0.907

• precision: 0.982

• recall: 0.500

• AUC-PR: 0.602.

The recall value is 0.500 because half of the positive test items are noisy images,
that are recognized by the model for the reason previously explained, the other half
positive class items are not noisy and are misclassified as non-fireballs.
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Conclusion and future work

The creation of a real-time meteor detector remains an open problem. Although the
two proposed models have not shown reliable performances for an actual application,
the strategy of focusing only on the informative regions to perform the classification
is an important goal to achieve in order to reduce the inference time for such large
input images. A solution in this sense could be to abandon the idea of a model that
automatically detects which regions are relevant and to use a supervised approach
where the scorer and the feature network are treated as two separate entities: at
this point, to select a good scorer, a similar training approach as for the object
detection models can be used without the need to predict the bounding box, i.e.,
we should be able to classify the interesting/non-interesting regions of the scaled
input given the ground truth "label" as a 2D array of 1s and 0s created knowing
the position of the object in the image. The cost function for the single image could
be the sum of the binary cross-entropy over all regions of the image. If the noisy
images in the dataset are a problem and the noisy pattern appears to be constant,
an appropriate approach could be similar to the one currently used to process the
frames, but applied to the MP-M shown in 5.8, i.e., every 10 or 20 seconds, a MP
image can be placed in a buffer of predetermined size, and when it is filled, the
median image MMP can be calculated and subtracted from the next noisy MP-M.
One of the provided events was long enough to provide an example, shown in figures
7.1, 7.2 and 7.3. Of course, the risk of the proprosed preprocessing changing the
original informative region too much may affect the results and should be carefully
considered.
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Figure 7.1: MP and M are the maxpixel and the median images computed over a
buffer of 65 frames.
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Figure 7.2: MP-M is the current preprocessed image, MMP is the median image
computed over a buffer of 7 maxpixel images.
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Figure 7.3: MP-M-MMP is the result of the new proposed preprocessing to atten-
uate the noise.
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Attention-Sampling models

A.1 Minimum variance approximation

In this section we show that sampling K i.i.d. indices and using the unbiased
estimator of the sample mean is an optimal approximation of the expected value of
the population of features.

Let us denote by P a discrete probability distribution on the N feature vectors
with probabilities pi. We want to select the sample from P in such a way that the
variance is minimized, i.e. we search P ⋆ in such a way that

P ⋆ = argmin
P

VI∼P

[
aΦa(x)I · hΦh

(x)I
pI

]
(A.1)

where we divide by pI to ensure that the expectation remains the same regardless
of P . This property can be easily verified as follows

EI∼P

[
aΦa(x)I · hΦh

(x)I
pI

]
(A.2)

=
N∑
i=1

pi ·
aΦa(x)i · hΦh

(x)i
pi

(A.3)

=
N∑
i=1

aΦa(x)i · hΦh
(x)i (A.4)

= EI∼a(x)[hΦh
(x)I ]. (A.5)
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We can now continue with our derivation as follows:

argmin
P

VI∼P

[
aΦa(x)I · hΦh

(x)I
pI

]
(A.6)

= argmin
P

{
EI∼P

[(
aΦa(x)I

pI

)2

· ∥hΦh
(x)I∥22

]
−

(
EI∼P

[
aΦa(x)I · hΦh

(x)I
pI

])2}
(A.7)

= argmin
P

EI∼P

[(
aΦa(x)I

pI

)2

· ∥hΦh
(x)I∥22

]
(A.8)

= argmin
P

N∑
i=1

pi ·
aΦa(x)

2
i

p2i
· ∥hΦh

(x)i∥22 (A.9)

= argmin
P

N∑
i=1

aΦa(x)
2
i

pi
· ∥hΦh

(x)i∥22. (A.10)

The minimum of the last expression is:

p⋆i ∝ aΦa(x)i · ∥hΦh
(x)i∥2. (A.11)

This means that the selection of i.i.d indices according to the attention distri-
bution of is optimal when we have no information about the norm of the features,
which is set at 1.

A.2 Sampling with replacement
Gradients derivation

In this section we show the derivation of equation 4.14 by means of the Monte Carlo
approximation and the multiply by one trick:

∂

∂ϕ

1

K

K∑
i=1

hΦh
(x)qi (A.12)

≈ ∂

∂ϕ

N∑
i=1

aΦa(x)i · hΦh
(x)i (A.13)

=
N∑
i=1

∂

∂ϕ
[aΦa(x)i · hΦh

(x)i] (A.14)

=
N∑
i=1

aΦa(x)i
aΦa(x)i

· ∂

∂ϕ
[aΦa(x)i · hΦh

(x)i] (A.15)

= EI∼a(x)

[
∂
∂ϕ
[aΦa(x)I · hΦh

(x)I ]

aΦa(x)I

]
(A.16)

≈ 1

K

K∑
i=1

∂
∂ϕ
[aΦa(x)qi · hΦh

(x)qi ]

aΦa(x)qi
. (A.17)
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A.3 Sampling without replacement
Unbiased estimator

In this section is provided the proof of equation 4.17.

E
I1, ..., IK

[
K−1∑
j=1

aΦa(x)IjhΦh
(x)Ij + hΦh

(x)IK
∑

t/∈{I1, ... IK−1}

aΦa(x)t

]
= (A.18)

E
I1, ..., IK−1

[
K−1∑
j=1

aΦa(x)IjhΦh
(x)Ij + EIK

[
hΦh

(x)IK
∑

t/∈{I1, ... IK−1}

aΦa(x)t

]]
= (A.19)

E
I1, ..., IK−1

[
K−1∑
j=1

aΦa(x)IjhΦh
(x)Ij+

∑
iK /∈{I1,...,IK−1}

pK(iK)

(
hΦh

(x)iK
∑

t/∈{I1, ... IK−1}

aΦa(x)t

)]
= (A.20)

E
I1, ..., IK−1

[
K−1∑
j=1

aΦa(x)IjhΦh
(x)Ij+

∑
iK /∈{I1,...,IK−1}

aΦa(x)ik∑
t/∈{I1, ... IK−1}

aΦa(x)t

(
hΦh

(x)iK
∑

t/∈{I1, ... IK−1}

aΦa(x)t

)]
= (A.21)

E
I1, ..., IK−1

[
K−1∑
j=1

aΦa(x)IjhΦh
(x)Ij +

∑
iK /∈{I1,...,IK−1}

aΦa(x)ikhΦh
(x)iK

]
= (A.22)

E
I1, ..., IK−1

[
N∑
i=1

aΦa(x)IihΦh
(x)Ii

]
= (A.23)

N∑
i=1

aΦa(x)IihΦh
(x)Ii = (A.24)

EI∼a(x)[hΦh
(x)I ] (A.25)
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A.4 Gumbel-max trick
Categorical distribution

A categorical distribution is used to assign probabilities to N distinct classes, and
can be parametrized with normalized probabilities π, unnormalized probabilities θ,
or unnormalized log-probabilities (or logits) log(θ) = a/T , where T is a temperature
parameter that controls the distribution entropy (in many cases T = 1). The
probabilities πi;T for i ∈ D = {1, . . . , N} are given by

πi;T =
θi;T∑
j∈D θj;T

=
eai/T∑
j∈D eaj/T

. (A.26)

This expression is also known as softmax function.

Gumble distribution

The Gumble distribution is a type I instance of the generalized extreme value dis-
tribution, developed within the extreme value theory, the statistical framework to
make inferences about the probability of very rare or extreme events. A Gumble
random variable is parametrized by two parameters: location µ ∈ R and scale
β ∈ R+

0 . The probability density function (PDF) and cumulative density function
(CDF) are given by

f(x) =
1

β
· e−

x−µ
β · e−e

−x−µ
β (PDF), (A.27)

F (x) = e−e
−x−µ

β (CDF). (A.28)

When a random variable follow a Gumble distribution we write

Gµ,β ∼ Gumble(µ, β) (A.29)

where G := G0,1.

The trick

The Gumble-max trick is used to draw a sample from a categorical distribution
Cat(θ) parametrized by the unnormalized probabilities θ ∈ R+N

0 , and works by
adding i.i.d. Gumbel noise samples to the unnormalized log-probabilities and then
selecting the index with the maximum value, which in turn follows a Gumbel dis-
tribution. The trick can be expressed as follows

I = argmax
i∈D

{log θi +G(i)} ∼ Cat(π). (A.30)

where π = θ∑
i∈D θi

and the arguments Glog θi := log θi+G(i) are shifted indepen-
det Gumbels, usually called perturbed logits. Sampling using the Gumbel-max trick
is like sampling from the categorical distribution Cat(π). In order to demostrate
the trick we need to show that P [I = w] = πw. Intuitively we can start with consid-
ering that I = w ⇔ Glog θw > Glog θi ∀i ∈ D′, with D′ = D\w, and we can factorize
the probability that all Glog θi are smaller than M := Glog θw
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P [I = w] = EM

[
p(Glog θi < M ∀i ∈ D′)

]
(A.31)

= EM

[ ∏
i∈D′

p(Glog θi < M)

]
(A.32)

=

∫ +∞

−∞
fw(m)

∏
i∈D′

p(Glog θi < m) dm (A.33)

=

∫ +∞

−∞
fw(m)

∏
i∈D′

e−elog θi−m

dm (A.34)

=

∫ +∞

−∞
fw(m) · e−

∑
i∈D′ elog θi−m

dm (A.35)

=

∫ +∞

−∞
elog θw−m−elog θw−m · e−

∑
i∈D′ elog θi−m

dm (A.36)

=

∫ +∞

−∞
elog θw−m−elog θw−m · e−

∑
i∈D′ elog θi−m

dm (A.37)

=

∫ +∞

−∞
elog θw−m · e−

∑
i∈D elog θi−m

dm (A.38)

=

∫ +∞

−∞
θw · e−m · e−e−m

∑
i∈D θi dm (A.39)

= πw · Z
∫ +∞

−∞
e−m · e−e−m·Z dm (A.40)

= πw · Z ·
1

Z
(A.41)

= πw (A.42)

with Z =
∑

i∈D θi.
Sampling without replacement means we want to draw a sequence of k samples

without repetition. This procedure can be implemented by removing from the
sampling domain the sampled element, renormalizing the distribution and continue
to draw the next element from the updated domain. For large domains this might
be intractable and a good alternative is to use the Gumble-max trick on the updated
domain. When we apply the Gumble-max trick repeatedly for sampling without
relacement, the N perturbed logits can be reused for all the k samples meaning we
can simply select the top-k perturbed logits computed in a single step.
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A.5 Mapping function
In this section you will learn more about the mapping function mΩm(·) expressed in
equation 4.20. Assuming that a general pair of height and width p = (hi, wi) is the
corresponding position on the attention map for the sampled index i, the mapping
for that single element is

(hi, wi) 7→ (⌊h̃i⌉, ⌊w̃i⌉) (A.43)

where

h̃i = hi ·
Hl − r

Hs

· Hh

Hl

+
r ·Hh

2 ·Hl

+
Hl − r

2Hs

· Hh

Hl

− Hp

2
(A.44)

=

(
hi ·

Hl − r

Hs

+
r

2
+

Hl − r

2Hs

)
· Hh

Hl

− Hp

2
(A.45)

=

((
hi +

1

2

)
· Hl − r

Hs

+
r

2

)
· Hh

Hl

− Hp

2
; (A.46)

w̃i = wi ·
Wl − r

Ws

· Wh

Wl

+
r ·Wh

2 ·Wl

+
Wl − r

2Ws

· Wh

Wl

− Wp

2
(A.47)

=

(
wi ·

Wl − r

Ws

+
r

2
+

Wl − r

2Ws

)
· Wh

Wl

− Wp

2
(A.48)

=

((
wi +

1

2

)
· Wl − r

Ws

+
r

2

)
· Wh

Wl

− Wp

2
(A.49)

When r = 0 the previous expressions become

h̃i =

(
hi +

1

2

)
· Hl

Hs

· Hh

Hl

− Hp

2
=

(
hi +

1

2

)
· Hh

Hs

− Hp

2
; (A.50)

w̃i =

(
wi +

1

2

)
· Wl

Ws

· Wh

Wl

− Wp

2
=

(
wi +

1

2

)
· Wh

Ws

− Wp

2
. (A.51)

The result obtained is easy to interpret: if r = 0, 1/2 is added to find the
centre of the location, and the result is multiplied by the scale factor from the
high-resolution image to the scorer output to find the corresponding location on
the high-resolution image, and finally half the patch size is subtracted to find the
coordinates of the upper left corner of the patch.

When r > 0, the equations A.46 and A.49 are a two-step mapping: the first
step is from the points on the attention map to the corresponding locations on the
low-resolution image, and the second step is from the low-resolution to the high-
resolution image. Considering only the height coordinate of the mapped point, the
first mapping step is given by

(
hi +

1
2

)
· Hl−r

Hs
+ r

2
, where the parameter r can be set

equal to ⌊rf/2⌉, where rf is the receptive field of the scorer newtork. Essentially,
we map the positions on the attention map to a regular grid centred on the low-
resolution image and taking into account the receptive field of the scorer network.
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Differentiable Patch Selector Model

B.1 Lemma proof
From the definition of stochastic smoothing we have that

f̃(G; D) = Ez∼D[f(G+ z)] =

∫ +∞

−∞
f(G+ z)µ(z)dz =

∫ +∞

−∞
f(G̃)µ(G̃−G)dG̃

(B.1)
where the last equality is obtained with the change of variable G+ z = G̃ and

∇Gf̃(G; D) = −
∫ +∞

−∞
f(G̃)∇Gµ(G̃−G)dG̃ (B.2)

∇2
Gf̃(G; D) =

∫ +∞

−∞
f(G̃)∇2

Gµ(G̃−G)dG̃. (B.3)

Moreover, if ν is twice-differentiable is straightforward to obtain ∇µ = −µ∇ν
and ∇2µ = (∇ν∇ν⊤ − ∇2ν)µ. Plugging them into B.2 and B.3, and taking into
account that z = G̃ −G, we can easily derive the first two results of the lemma,
namely equations 4.41 and 4.42. The third result given by 4.43 can be obtained by
direct differentiation of B.2: swapping the expectation with the gradient is possible
because f is convex and µ continuous everywhere.
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B.2 Mapping function
In this section is presetend a toy example aiming at clarifying any doubts. Suppose
we have the following parameters

(Hh, Wh) = (21, 24)

(Hs, Ws) = (7, 8)

(Hp, Wp) = (7, 7)(
Hh

Hp

,
Wh

Wa

)
= (3, 3)

(Hpad, Wpad) =

(⌊(
Hp −

Hh

Hs

)1
2

⌉
,
⌊(

Wp −
Wh

Ws

)1
2

⌉)
= (2, 2)

N = Hs ·Ws = 56

idx on s coords. on xs patch start (zero pad) patch start (non-zero pad)
0 (0,0) (0,0) (-2,-2)
3 (0,3) (0,9) (-2,7)
37 (4,5) (12,15) (10,13)

Where:

• the first column contains the index i of elements in s

• second column is computed with
(⌊

i
Ws

⌋
, imodWs

)
• the third column is computed with the zero-pad mapping proposed by the

authors and reported in equation 4.58

• the third column is computed with the mapping used in this work reported
in equation 4.59

In the first and second rows of the table, the mapping to the initial position
of the patch is a negative position. Starting from these positions, the extraction
function copies only those pixels into the patch that are in an actually available
position of the high resolution image. The other positions indexed by negative
coodinates are filled with zeros because they are outside the actual image area.
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Adam optimizer

Adam is an adaptive learning rate optimization algorithm widely used in deep
learning applications. It scales the learning rate by estimating the second-order
momentum of the gradients and uses the momentum by estimating the first-order
momentum of the gradients. These two features promote faster convergence towards
the global minima of the cost function. The approximation is made by means of an
exponential weighted average of the gradients evaluated on the mini-batches. To
estimates the moments at the currents step indexed as t Adam utilizes the following
estimators

mt = β1mt−1 + (1− β1)gt (C.1)
vt = β2vt−1 + (1− β2)g

2
t (C.2)

where the square operation is meant to be element-wise and gt are the gradients
of the cost function with respect the trainable parameters. Being the previous esti-
mates biased towards the values 0, their initialization values at t = 0, an unbiased
version is computed as follows

m̂t =
mt

1− βt
1

(C.3)

v̂t =
vt

1− βt
2

. (C.4)

The updating rule implemented by Adam is

θt = θt−1 − α · m̂t√
v̂t + ϵ

(C.5)

where α is the stepsize and ϵ a small number to avoid division by zero.
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