POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

0’%‘._ _,,_% v Politecnico

B ijjs ’
\..lllll |II:|||||!:::‘ e .::!!IIII"I“ |||"’" d I Torl no
A\
\ \\ 1859 t.'.’

Master’s Degree Thesis

Analysis and assessment of
neural-network-based text

comprehension quiz generation

algorithms
Supervisors Candidate
Prof. Maurizio MORISIO Marco CASCHETTO

Prof. Simone LEONARDI

July 2022

Summary

Artificial neural networks allowed to achieve extraordinary results in diverse fields,
but one where they made a real breakthrough in is natural language processing,
allowing to build models that could help automatising processes related to natural
language.

As part of a company project in Fluentify - online teaching platform -, this study has
been conducted with two main goals: from one side, discovering and analysing the
latest state-of-the-art technologies to deal with the problem of understanding the
main topics of a given text, generating meaningful multiple-choice questions related
to those topics and also identifying wrong answers automatically; on the other hand,
applying and testing such models on a series of text paragraphs and evaluating the
results in order to detect how well they perform and how they can be improved.
Even though all these steps already have several possible state-of-the-art solutions,
composing them together was the real challenge, as not every workflow proved to
be effective in reaching the ultimate goal of obtaining meaningful exercises.

The first chapter of this thesis gives an overview about the context, explaining
the issues and the needs related to natural language processing tasks and its main
applications in the real world.

The second chapter goes through the neural networks development, with particular
attention to sequence-to-sequence problems (translation, question answering, or,
more generally, every question related to converting an input sequence to an output

11

one), with a focus on transformers models, which represent the current state-of-
the-art architecture that deals with such tasks.

The third chapter describes the algorithms used for the experimental tests, and
gives details on the specific models that underlie them.

The fourth chapter illustrates how these tests have been conducted, explaining the
reasons behind the proposed evaluation criteria and the obtained results. More
specifically, several texts, with completely different topics but clustered by their
length - from short (less than 500 words) to long (more than 1000 words) - have
been fed into three algorithms, which have then been assessed by means of custom
human-based criteria that looked at both questions and answers to detect how they
performed.

The fifth and last chapter shows the conclusions and the future developments of
the work, with particular respect to the possible further optimisations that the
suggested workflow could apply in order to maximise performance according to the

specific company goals.

II1

Table of Contents

List of Tables

List of Figures

Acronyms

1 Introduction

1.1 General context
1.2 NLP . ..
1.21 History o o
1.2.2 Applications

2 Architecture

2.1 Neural networks
2.2 Long short-term memory
2.3 Transformers

3 Libraries and models

3.1 First library
3.1.1 Text summarising Lo
3.1.2 Keywords extracting
3.1.3 Sentence Mapping
3.1.4 Generating distractorso

VII

VIII

3.2 Second library
3.3 Third libraryo

4 Tests

4.1 Evaluation
4.2 Results
4.2.1 First library

4.2.2 Second library
4.2.3 'Third library

5 Conclusion

References

VI

43
44
45
46
51
57

63

65

List of Tables

4.1 b _bert lresults.
4.2 b t5 2results
4.3 lib t5 3results.

VII

List of Figures

2.1 Artificial neuron 10
2.2 Neural network layers oL 11
2.3 Recurrent neural network stepo 12
2.4 Long short-term memory unit 14
2.5 Encoder-decoder 17
2.6 Attention model [7] 18
2.7 Transformer architecture [8] L 20
2.8 Scaled dot-product attention [8]o 22
2.9 Multi-head attention [8] oL 23

VIII

Acronyms

Al

Artificial Intelligence
NLP

Natural Language Processing
FNN

Feedforward Neural Network
RNN

Recurrent Neural Network
Seq2Seq

Sequence-to-Sequence
LSTM

Long short-term memory
GRU

Gated Recurrent Units

BERT

Bidirectional Encoder Representations from Transformers

MLM

Masked Language Model

T5

Text-to-Text Transfer Transformer

SQUAD

Stanford Question Answering Dataset

MS MARCO

Microsoft MAchine Reading Comprehension

RACE

ReAding Comprehension dataset from Examinations

CoQA

Conversational Question Answering Challenge

BLEU

Bilingual Evaluation Understudy Score

XI

Chapter 1

Introduction

1.1 General context

In the last years e-learning has increasingly developed, and it changed the way
education is approached, being now an essential tool for either students, teachers
or companies. As a matter of fact, cutting edge technologies have enriched the
educational context with new possibilities and improvements, some of which can

be listed as follows:

« interaction between the parties does no longer require physical presence,

allowing people from all over the world to meet in virtual classrooms

 learners can access educational material anytime, needing just a connection to

internet and very small devices to carry on huge amount of data

e learning paths can be structured according to the learner’s needs to give them

a fully personalised experience

« automatic tools like language translators or spelling and grammar checkers

are life-saver when it comes to learning a new language

« online platforms make data collecting easier, thus resulting in a better under-
standing of potential deficiencies, in order to make improvements and increase

1

Introduction

the course efficiency;

« scalable infrastructures allow contents to be simultaneously accessed by thou-

sands of students, in order to face educators shortage issues

In this context, an important role is played by Artificial Intelligence (AI). As of
today, lots of fields take advantage of Al, and it seems hard not to find areas where
this is not used; however, despite its large affect on everyday life, it is undeniable
that this process is at the very beginning and that there is, nevertheless, room for
improvement.

Among the diverse fields Artificial Intelligence is related to, Natural Language
Processing is certainly one of the most complex to work on, but, at the same time,

extremely powerful and useful when it comes to e-learning.

1.2 NLP

Natural Language Processing (NLP) is used to refer to a field of research that
involves computer science, Al and linguistic to let computers properly understand
natural language, i.e. language used by humans, both written and spoken. This
goal is achieved through algorithms that must be able to analyse and comprehend
human language on every matter: words and their meaning with respect to the
context they are used, phrases and their grammar structure, sentiment of the

sentences, etc.

1.2.1 History

A recent work by P. Johri et al. [1] gives a good summary about the way NLP
started and developed through the last century.

The first attempts on this matter can be found in mid-1930s, when some patents
for translating machines made their appearance. The goal was to use bilingual

2

Introduction

dictionaries to map words between languages, but, despite the effort on using
innovating approaches that could not struggle with the grammar of the language,
those systems did not have concrete use and remained just abstract concepts. It
was during World War II that NLP was successfully used in a practical context: on
one side, Germans built a machine called "Enigma" to encrypt messages and create
a secret code to facilitate their communications, whereas, on the other one, British
came up with a computer able to decrypt Enigma codes. Soon after, in 1950, in his
article "Computing Machinery and Intelligence" [2], Alan Turing proposed a new
criterion to assess level of intelligence of machines, called "Turing test": the test
aimed to determine whether a computer could actually think as a human or not.
Further studies and attempts were made during the following decades, with several
and different approaches; however, they were all based on handwritten rules that
struggled to deal with real-world situations due to the huge complexity and variety
of human language structures; indeed, fixed rules were not able to understand
the proper words meaning or grammar of the sentences, thus giving insufficient
results. A real revolution only happened in late 1980s, with introduction of machine
learning and focus on statistical and probabilistic models that allowed to overcome
such ambiguity: algorithms did not have to match hand-written patterns anymore;
instead, they learned from the context and made proper choices on a decision
tree-like structure by taking advantage of the probabilistic model. Due to the
successful results, research relied on that for years, until deep learning and neural
networks came up at the end of the first decade of 2000, resulting in techniques
that are still used today and provide the current state-of-the-art results. Deep
learning based approach has really proved to be the right way to work with NLP,
giving the possibility to reach a better understanding of the text through a deep
awareness of the neighbouring objects.

It is not accidental that deep learning-based NLP unleashed its real power only in
recent years. Indeed, there are mainly two reasons for that.

First of all, these algorithms proved to be extremely burdensome when it came to

Introduction

hardware requirements. Processors did not use to be as high performance and fast as
today, that is, computational cost and time to perform such tasks were not feasible.
This was a real limit for NLP - and deep learning, more generally - development,
and technological progress for sure helped on reaching big results. Not only was
the hardware availability inadequate, but also, in order for these deep learning
algorithms to work well, tons of data were needed. Before digital transformation and
introduction of online services, the amount of information produced was scarce and
insufficient to be effective in terms of Natural Language Processing development.
However, today is different: first of all, with advent of social media and personal
devices, average user has become an active player, constantly producing data by
explicitly uploading new contents, generating transactions for purchase or sell
activities, etc. At the same time, conversion into digital of lots of material that
used to be stored only physically as papers - especially banks, private companies
or public administration related - and computerisation of business processes have
exponentially increased the available data. Last, but not least, Internet of Things.
Thanks to that, billions of smart devices are connected to internet, allowing to

massively generate and transmit data every second.

1.2.2 Applications

As previously stated, Natural Language Processing is widely used today, as several
are the tools available to help accomplishing different tasks. They can find utility
among both private users, who take advantage of these during everyday life, and
business companies, that keep implementing such tools to gain valuable insights
and enrich the product with features to excel among the competitors.

Some of the main techniques based on NLP and their applications are:
o Auto-correction & Auto-complete
o Chatbots & Virtual Assistants

¢ Machine Translation

Introduction

o Sentiment Analysis

e Speech Recognition

o Targeted Advertising

o Text Classification

o Text Extraction & Named Entity Recognition

e Text Summarisation

Auto-correction & Auto-complete

Features like autocorrection and automplete are among the most used, and almost
everyone takes advantage of them every day.

Autocomplete, also known as auto prediction, allows people to save time by guessing
what they are going to write and suggesting words or sentences. This is widely
used on search engines, but it founds application also on emails clients to speed up
emails composition.

Autocorrection, on the other hand, is able to detect any grammar or spelling
mistakes during writing and to give hints to the user in order to fix or rephrase

what is pointed out as incorrect.

Chatbots & Virtual Assistants

Chatbots and virtual assistants give people the feeling to interact with real human
beings thanks to their deep use of machine learning. Standard assistants use sets
of pre-defined rules to answer questions; Al based, instead, improve their efficiency
as the interact with the users: the more they are used, the more they learn and
understand to detect the question and the right way to answer. Well-known
Google Assistant, Amazon Alexa and Apple Siri are perfect examples of what
virtual assistants can achieve, using Speech Recognition (1.2.2), Natural Language
Understanding and Natural Language Processing to successfully perform and reach

5

Introduction

top level results. Chatbots are mainly used by companies to automatise most of the
customer support requests, allowing them to reduce the cost for customer support
representatives, to speed up the response times - chatbots can be available anytime

-, and to make company processes easier.

Machine Translation

Machine Translation goal is to translate amounts of text from a source language
to a different target one while keeping the meaning intact. As mentioned in 1.2.1,
machine translation represents one of the first attempts to apply Natural Language
Processing. Since then, translations systems have changed a lot in relation to
the technology used, until current state-of-the-art results have been accomplished
thanks to Neural Machine Translation.

Companies use this NLP application to reach users from all over the world and

help their business processes.

Sentiment Analysis

Sentiment Analysis helps analysing and interpreting human language with relation
to its sentiments and intentions. As a matter of fact, it can be tough for machines to
fully understand natural language for several reasons: first of all, human expressions
sometimes have meanings beyond their literal one, thus resulting in expressions
that computers might find hard to recognise. Moreover, people tend to use irony or
sarcasm, or they even give the sentence a certain tone that machines do not catch.
Sentiment analysis, through Natural language Understanding, an NLP sub-field,
allows to overcome these language barriers and to obtain optimal results in diverse
areas; companies, above all, make the most of it by applying it to their customers’
emotions and fully get their thinking. For instance, this can be used to measure
how much a user is satisfied about a specific product to detect their feeling about
the company and get insights about what can be improved. Another common

usage of Sentiment Analysis is the monitoring of users interactions, especially to

6

Introduction

prevent disputes on social media by detecting and hiding the negative comments.

Speech Recognition

Speech recognition is a technology that allows to interpret voice input data and
re-model it in a new format that can be read and understood by machines. .

Applications for such process are diverse. As already mentioned in 1.2.2, speech
recognition is used by voice assistants to detect instructions in spoken language, but
several other applications are used, especially in business, like speech-to-text that
converts oral communications into text for writing emails, translating, language

analysis, transcribing calls, etc.

Text Classification

Manually processing an unstructured text and categorising it can be a hard and
time-consuming operation, since natural language is extremely rich in terms of
content diversity. For this reason, text classification systems have been developed
to automatise these processes and make it easier to complete some tasks. Thanks
to text classification, language is ordered and classified into predefined categories
through specific tags. Email clients use this to properly divide emails in sections

and filter them.

Text Extraction & Named Entity Recognition

Especially used in hiring and recruitment departments, as it prevents human
resources from manually going through hundreds of resumes, text extraction ease
the job of extrapolating meaningful information from a text, avoiding people to
scan all the data before finding the relevant ones. In order for it to work, entities
must be mapped properly, together with the relationships between them, and this
can be accomplished through automated processes like Keywords Extraction and
Named Entity Recognition.

Keywords Extraction aims to seek the relevant (key words) inside a text, which

7

Introduction

can be useful to detect the context. Named Entity Recognition, on the other hand,
helps identifying the named entities and classifying them in predefined categories

such as numbers, places, objects, names, etc.

Text Summarisation

This automation is used to condense a generic text into a shorter version: it reduces
and simplifies the paragraph while keeping the key informational elements and the
main topic. A double approach can be followed to accomplish this task: extraction
based, which cuts down large amount of content by keeping key sentences without
any further processing, and abstraction based, that, in order to summarise the text,
rephrases expressions and alters the original text.

This is usually used when working with large contents, as in legal documentation
or in scientific papers, or with other NLP tasks like question answering and text

classification.

Targeted Advertising

Targeted Advertising is the process of showing advertisements to users based on
their previous research, though Natural Language Processing techniques.

This NLP application works by looking at different properties. First of all, it uses
keyword matching to compare keywords or phrases associated with ads with the
keywords related to the text searched by the user. If there is a match, then there
is a very high probability that the customer is interested in products shown in the
advertisement. Secondly, the process takes in consideration also the websites and
pages the users has interacted with.

This approach is extensively used by companies today, as it helps them saving

money and showing products only to customers who are actually interested in.

Chapter 2

Architecture

2.1 Neural networks

As stated in 1.2.1, development of Natural Language Processing had a breakthrough
when models used to represent the language began to make use of neural networks.
Firstly proposed by McCulloch and Pitts in 1943 [3], neural networks aim to mimic
the behaviour of human brain as a set of neurons interconnected between each other
in a network that allows transit of information. In order for such representation to
be possible, artificial neural networks are made of nodes, each designated to receive

data as input, make some computation and forward the new output.

9

Architecture

activation
function
— —

inputs weights bias

output

i__(P

Figure 2.1: Artificial neuron

As visible in 2.1, a node is made of the following components:

inputs: input data fed into the current node

o weights: coefficients combined together with the inputs to assign significance

by either amplifying or dampening them
o bias: value that might be added to shift the result of the previous computation

o activation function: function to add non-linearity and help determining

whether the signal should progress or not

Artificial neurons are organised in layers. A typical representation is the one
shown in 2.2, where information transit from one layer to another. There always
is an input layer, where input data are entered, some internal layers where actual
computation is performed and a last one containing the final results (which is
usually a single node, but it is not mandatory); therefore, each layer’s input is
given by the previous layer’s output.

10

Architecture

input hidden output
layer layers layer
— I 1 —

O
OO0

Figure 2.2: Neural network layers

N

X

N7
>

"c <)
I:
»‘» /
S

An artificial network were information is channeled from one way to another
is called Feedforward Neural Network (FNN). FNNs are pretty straightforward,
having nodes that only analyse the current input and have no clue about what
has already been computed: this means that information goes straight from the
input layers to the hidden ones and from these to the output layer, and it never
crosses a node more than once. This is not true for Recurrent Neural Networks. In
a RNN, nodes work in a more effective way: not only do they consider the current
input, but they also make use of the past evaluations to reach context awareness
and make smarter predictions. This concept is represented in 2.3, where output for
step k is not influenced by just weights applied at the current inputs, but also by
the hidden state coming from the previous step. As a consequence, there will not
be a fixed output for a given input, but, instead, this might change according to
the hidden state.

11

Architecture

k-1 k+1

Figure 2.3: Recurrent neural network step

Recurrent Neural Network can vary depending on how many input or output

layers are present:

One-to-One, the simplest one, behaves as a normal neural network having a

single input and a single output

+ Omne-to-Many, with a single input and multiple outputs (e.g. image captioning,

having an image as input and several data that describe that image as output)

o Many-to-One, when input has not a fixes size, but output does. Sentiment
analysis is a perfect example of such structure, as it takes multiple input data
(sequence of words) and always give a single output as a number that describes

the sentiment of the sentence (usually from -1 to 1)

o Many-to-many, which can have input and output of the same length (like
in Named Entity Recognition) or not (like in Machine Translation); these
are usually referred as Sequence-to-Sequence (Seq2Seq), meaning that they
convert sequences of inputs into sequences of outputs, regardless their size

12

Architecture

2.2 Long short-term memory

Although these models are able to maintain information in memory over time,
thanks to the feedback loops in the recurrent layer, they may still struggle when
it comes to work with data that need long context dependencies, suffering from a
problem known as "vanishing gradient" [4]. As a matter of fact, as the number of
layers that use an activation function increases, gradient of the loss function - with
respect to the weights - tends to approach values close to zero and to become working
less effectively. In order to address this issue and be able to solve problems that
require long-term temporal dependencies, Hochreiter and Schmidhuber [5] improved
vanilla RNN units and made them more sophisticated by adding complexity to
their structure. The basic concept of the newtorks that make use of such special
components, called Long short-term memory, are pretty much the same as normal
RNN, but their units are based on a memory and multiple gates that allow the
flow of information to be controlled in a better and more accurate way. In contrast
with standard RNN units, which have a very simple configuration with a single
neural network layer, LSTM ones are based on four different layers, as it can be

seen in the following image where:

o is a sigmoid function

tanh is a tanh function

+ and x are operands that represent, respectively, sum and multiplication

C are values in the cell state (long term memory)

h are values in the hidden state (short term memory)

e X are input values

W are the weights

b are biases

13

Architecture

ht
cell state
T |
Ct-1 @ Ct

—
o) tanh P tanh
h : o O h
t-1 ' U t
forget gate]r;;;;{ é;’;e— -------------------- output gate
X

Figure 2.4: Long short-term memory unit

The module is made of several layers:

1. forget gate layer: the job of this first layer is to decide which information of
the cell state must be kept or not, in order to remove the useless one. This
procedure is done by looking at the current input x; and the previous hidden
state h;_; and using a sigmoid function to return values between 0 and 1 that
will be applied to the numbers from the cell state: a value close to 0 means
that the information is going to be discarded, whilst one close to 1 means that
it is going to remain in the cell state.

The following formula summarises the process:

fe=o0Wy - [hi1, 2] + by)
14

Architecture

2. input gate layer: this is the layer where cell state update is actually performed
with the new values. It is made of two parts: the first one is a sigmoid similar
to the forget layer’s one, and decides which values will be updated; the second
one is a tanh layer that defines candidate values to be added to the state.
Outputs from the two will be combined together and will define the update

on the state:
i =o(W; - [h—v,] + b;)
ét = tanh(WC . [ht—la Z’t] + bC)

3. cell state layer: with outputs coming from the previous steps, cell state can
be computed. Its values are firstly multiplied by the result of the forget layer,
and, after that, the remaining ones will be added to the new values computed

in input gate as follows:
Cy = fix Cry + i+ C

4. output gate layer: this is the last layer, where the hidden state is computed.
It takes the result of the previous computations and returns to the next step
a filtered version after having manipulated it with a sigmoid function (applied
to the previous hidden state and to the current input) and a tanh one (in
order for the values to be included between -1 and 1). Formulas that describe

this last process are the following:
op =W, - [h—1, 2] + b,)

hy = oy * tanh(C})

2.3 Transformers

LSTM units (or variants like the Gated Recurrent Units) are extensively used in
Sequence-to-Sequence prediction problems, like Machine Translation or Question

15

Architecture

Generation ones. Sequence-to-Sequence models, which were introduced for the first
time by Google in 2014 [6] can be built on different architectures, but one approach
that proved to be very effective is the Encoder-Decoder.

Encoder-Decoder is a learning model made of two main RNN components, the
encoder and the decoder, with an intermediate vector in between. As the name
suggests, task of the encoder is to process each token of an input sequence and
encode it in order to create a vector of values that will be the intermediate state.
This vector, also known as context vector, is built in a way that helps encapsulat-
ing the whole meaning of all the input elements and gives the decoder as much
information as possible to make accurate predictions; the decoder, as a matter of
fact, after having been fed with the final states of the encoder, takes these values

and processes them to generate the output sequence.

16

Architecture

Output sequence

1

Decoder

J10}99A }X8JU0D

Encoder

Input sequence

Figure 2.5: Encoder-decoder

The structure defined above really helps performing great with Sequence-to-
Sequence problems where input and output lengths vary, but it still has some
limitations: since the context vector contains all the information related to the
input sequence, as the length of the latter increase, the more likely becomes for
the model to forget or miss part of the information that was initially present. This
results in encoder-decoder model struggling to perform well when sentences are
too long, with intermediate vector representing a point of congestion. To overcome
such issue, known as long-range dependency problem, Bahdanau et al. [7] proposed
a new model based on an innovative mechanism, called attention, that allows to
free the encoder-decoder architecture from the fixed-length internal representation.
The goal is achieved in two ways: from one side, instead of just preserving the

17

Architecture

hidden state of the last step, all the intermediate outputs at each encoding stage
are kept; on the other hand, the decoder performs an extra step assigning a relative
importance to the various input parts in order to only consider the useful ones,

otherwise there would be too much information to pick from.

X X X X

Figure 2.6: Attention model [7]

Figure 2.6 illustrates the model described before, where sequential RNNs/LSTMs
of the encoder are replaced by bidirectional LSTMs to both include preceding and
following data in current annotation and further steps are performed in order to let
the context vector reaching full awareness about connections between output and

input. The context vector is built taking in consideration the following elements:

 alignment scores: a score is computed to define how well the input at position
7 matches the current output at position ¢ and tells how much of each source
hidden state should be considered for each output; the alignment model
is represented by a function a implemented through a FNN and takes in

consideration both the hidden state h; and the previous output s;_1:

er; = a(si—1, hy)

18

Architecture

» weights: a softmax operation is applied to the alignment scores to normalise

them and computing the weights used for the context vector:

ot = softmax(ey ;)

Therefore, the context vector is computed through a weighted sum of all the

encoder hidden states as shown in the following formula:

T
Cy = ZZ‘:1 at,ihi

To sum up, the proposed architecture, which takes advantage of attention mech-
anism, allows to deal with the encoder-decoder limitation of long sequences by
looking at all the states of the encoder, each one accordingly weighted, to access
information about all the elements of the input sequence, instead of just paying
attention to the last one.

Attention concept has been used a lot in NLP tasks, especially translation or
question answering, and several studies have been conducted to improve its perfor-
mance. The biggest flaw of such model is that it is very high demanding when it
comes to long input sequences, as it handles them word-by-word in a sequential
fashion, thus requiring -1 steps before performing the t-th one. This is obviously
an obstacle towards parallelisation, being not only time consuming, but also highly
computationally inefficient. A solution for this problem has been offered by Vaswani
et al. in a paper called "Attention is all you need" [8], where they propose a new
infrastructure for the attention model, called "transformer". This novel architecture
implements different solutions to overcome the discussed issue, achieving current

state-of-the-art results in several NLP applications, and its model is depicted below:

19

Architecture

Cutput
Probabilities
- B
Add & Morm
Feed
Forward
') Add & Narm
r—'— .
cle bl i Multi-Head
Feed Attertion
Forward 7 ¥ M 2
N —
(—rl Add & Norm I e
Multi-Head Multi-Head
Attention Attention
tr L
C‘_ J \ —)
Fositional Posilional
i D <> :
Encoding] Encoding
Input Cutput
Embedding Embedding
Inpuis Cutpuls

(shifted right)

Figure 2.7: Transformer architecture [8]

Transformers are still based on encoder-decoder architecture, having an encoding
and a decoding components, connected in some way between each other. The
differences are related to how the components are structured inside, as well as the
transformations applied to the data before access them.

First thing to notice is that input data is conveniently transformed and mapped
before accessing encoder and decoder; as a matter of fact, as visible in the picture

above, two different modules precede these blocks: the embedding and the positional

20

Architecture

encoding. The embedding block is widely used in NLP applications and it is used to
map each token into embeddings of the same size, as this helps representation and
understanding the similar ones. Positional encoding, instead, is used to account for
the words order in the input sequence; without that, the model would not be able
to perform differently for permutation of the same words, thus the need to add to
the embedding vectors a representation of the position of the words. An example
of function to compute positional encoding is the following, which applies sine and

cosine for, respectively, even and odd positions:
P Efpos i) = sin (pos /10000%/4medel)
PE(pos2i+1) = cos (pos/ 100002/ dmedel)

where pos is position of the word inside the sequence, d the size of the word
embedding and 7 refers to each of the d individual dimensions of the embedding.
This specific choice allows to both prevent the numbers exploding for long sentences
if positions were simply increasing integers, as well as keeping consistent meaning
across different sentences if positions are in range [0,1].
After embedding and positional encoding blocks, data reaches encoder, which differs
from the one described before for several reasons.
First of all, the transformer encoder is internally stacked and composed of multiple
encoder layers (6 in the original paper); each of them is identical in structure and it
is broken down into two sub-layers: a self-attention one and a Feedforward Neural
Network. A self-attention model allows inputs to interact with each other in order
to find out who they should pay more attention to and discover clues that can help
lead to a better encoding of the current one. The process to compute self-attention

layer output can be divided in some steps:

« creation of query (Q), key (K) and value (V) vectors by multiplication of

embedding with 3 pre-trained matrices

 calculation of a score: given a certain word the module is trying to compute

the self-attention for, a score is calculated for each token of the input sequence

21

Architecture

with respect to that specific word to express how much attention must be put
on the former when analysing the latter. This is done through the dot product
of the query vector with the key one

o division of the score by the the square root of the dimension of the key vectors

to stabilise the gradients

« application of a softmax function to the value computed by the previous steps

to normalise it

o multiplication of the softmaxed attention score for each input by its corre-

sponding value (from value vector)

summation of the weighted values
These operations can be condensed in the following formula:
Attention(Q, K, V) = softmax(QKT /\/d},)V

See figure 2.8 for a visual representation of the process.

Figure 2.8: Scaled dot-product attention [§]

The result of such process would then be fed to a Feedforward Neural Network
that applies two linear transformations, but in practice, before doing that, the at-
tention process is improved with the innovative concept of "multi-headed attention",

22

Architecture

which consists on creating N different attention heads (N > 1, usually 8), each with
different weight matrices, to allow the process to jointly use different representation
subspaces of queries, keys, and values. Since the Feedforward Neural Network is
expecting a single matrix, the obtained matrices only need to be concatenated and

multiplied by an additional weight matrix.

Linear

Concat

~ - -
Linear Lirear Linear

K Q

Figure 2.9: Multi-head attention [8]

Both the multi-head attention layer and the feedforward one have also a residual
connection around them, and are followed by a layer normalisation step.
The second main component of the transformer architecture is the decoder, which
shares several similarities with the encoder. As a matter of fact, it also consists of a
stack of multiple layers with three sub-layers inside: the first one receives as input
the output of the decoder stack at the previous step, accordingly embedded and
added with positional encoding as the inputs of the encoder stack. Nevertheless,
this first sub-layer operates in a slightly different way than the one in the encoder,
as it is only allowed to attend to earlier positions in the output sequence. This
is achieved with a mask over the future positions by setting their matrix values
to —oo before the softmax step. The second sub-layer is called "encoder decoder
attention layer" and differs from the encoder corresponding one, too, since it takes
the keys and values from the output of the encoder stack, but it creates the query

matrix from the previous decoder sub-layer. Along with these two sub-layers there

23

Architecture

is a third one, which is a fully connected Feedforward Neural Network, and residual
connections are employed around them, together with a normalisation layer just
right after.

Finally, the output of the decoder stack is received by the last block, the "Linear
Layer", which projects the vector of floats obtained from the previous computations
into a larger one ("logits vector') to generate, together with the following softmax

layer, a prediction for the next word.

24

Chapter 3

Libraries and models

In order to generate multiple-choice questions, a research on transformer-based
models that could handle such task has been conducted, leveraging state-of-the-art
Natural Language Processing techniques that are going to be properly explained.
Three different sets of algorithms have been used to run the tests and they will
be identified, respectively, as lib_bert 1, ltb_t5 2 and lib_t5 3. All of them are
based on transformer models, even though they differ from they way these models

are structured or trained.

3.1 First library

The first analised and tested library was build by Ramsri Goutham Golla [9].
The entry point of this algorithm is a text paragraph and the following steps are

performed in order to generate multiple-choice questions:
1. summarising the text
2. extracting keywords from the summarised text
3. mapping keywords with sentences from summarised text

4. generating distractors

25

Libraries and models

An important note about this first approach is that questions are not real
questions, but only sentences picked from the text with a blank space instead of

the missing keyword.

3.1.1 Text summarising

To summarise the text, the process leverages "bert-extractive-summarizer"', which
is based on BERT.

BERT, acronym for Bidirectional Encoder Representations from Transformers, is an
open-source machine learning framework for NLP, designed upon transformers by
Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova [10]; however,
it differs from traditional transformers for several reasons.

First of all, BERT offers bidirectional capability by only taking advantage of the
encoder stack, which allows to attend to tokens on both left and right (traditional
transformers decoder are uni-directional). Also, BERT is based on two main steps:
pre-training and fine-tuning. During pre-training, the model is trained on unlabeled

data over two different NLP tasks:

» Masked Language Model (MLM), that aims to hide a word in a sentence and
then have the program predict what word has been hidden (masked) based on

the hidden word’s context to avoid misleading connection between words

o Next Sentence Prediction, to let the program predict whether two given
sentences have a logical, sequential connection or whether their relationship is

simply random.

BERT has been pre-trained on a large corpus comprising the Toronto Book Corpus
and Wikipedia.

For fine-tuning, the BERT model is first initialised with the pre-trained parameters,
and all of the parameters are fine-tuned using labeled data from the downstream
tasks. Each downstream task has separate fine-tuned models, even though they
are initialized with the same pre-trained parameters.

26

Libraries and models

Here follows the procedure for the text summarising:

Listing 3.1: text summarising

from summarizer import Summarizer

model = Summarizer ()

result = model(original_ text, min_length=60, max_length = 500 |, ratio
= 0.4)

summarized_text = ’’.join(result)

3.1.2 Keywords extracting

Keywords extracting is performed through python keywords extractor. Only nouns
are taken by the algorithm, with a cap of 20, and only keywords that are present

in the summarised text are kept, as visible in the following code snippet:

Listing 3.2: keyword extractor

import pprint
import itertools
import re

import pke

s|import string

from nltk.corpus import stopwords

def get_nouns_multipartite (text):

out =[]

extractor = pke.unsupervised.MultipartiteRank ()

extractor .load document (input=text)

not contain punctuation marks or stopwords as candidates.
pos = {’PROPN’}

#pos = {’VERB’, 'ADJ’, 'NOUN’}

stoplist = list (string.punctuation)

stoplist += [’—ltb—", '—rrb—', ’'—lcb—", ’'—rcb—’, ’'—Isb—’, ’'—rsh—’
]

stoplist += stopwords.words(’english)

27

Libraries and models

19 extractor.candidate_selection (pos=pos, stoplist=stoplist)
20 # 4. build the Multipartite graph and rank candidates using
random walk ,

21 # alpha controls the weight adjustment mechanism, see

TopicRank for

22 # threshold /method parameters.

23 extractor.candidate weighting (alpha=1.1,

24 threshold =0.75,

25 method="average ’)
26 keyphrases = extractor.get_n_ best(n=20)

28 for key in keyphrases:

29 out . append (key [0])

31 return out

33| keywords = get_nouns_multipartite (full_text)

s1| print (keywords)

35| filtered _keys =[]

36| for keyword in keywords:

37 if keyword.lower () in summarized_text.lower():
38 filtered__keys.append (keyword)

39

1(

print (filtered keys)

3.1.3 Sentence Mapping

Third step is a sentence mapping to map each selected keyword from the previous
step to a sentence from the summarised text, keeping only the ones with a length

lower than 20 letters. The following python code will describe the process:

Listing 3.3: sentence mapping

from nltk.tokenize import sent_tokenize

ol from flashtext import KeywordProcessor

28

Libraries and models

def tokenize_ sentences(text):
sentences = [sent_tokenize(text)]
sentences = [y for x in sentences for y in x|
Remove any short sentences less than 20 letters.
sentences = [sentence.strip () for sentence in sentences if len(
sentence) > 20]
return sentences
def get_ sentences_for_ keyword (keywords, sentences):
keyword_processor = KeywordProcessor ()
keyword_sentences = {}
for word in keywords:
keyword_sentences [word] = []
keyword_ processor.add_keyword (word)
for sentence in sentences:
keywords_ found = keyword_ processor.extract_keywords(sentence)
for key in keywords_ found:
keyword_sentences [key].append (sentence)

for key in keyword sentences.keys():

values = keyword_sentences[key]
values = sorted (values, key=len, reverse=True)
keyword_sentences [key| = values

return keyword_ sentences
sentences = tokenize_sentences (summarized_text)
keyword_sentence_mapping = get_sentences_for_keyword (filtered keys,

sentences)

| print (keyword_sentence_mapping)

3.1.4 Generating distractors

The last step consists of generating wrong answers (distractors) to choose from.
In order to achieve this goal, two different approaches are used: Wordnet and
Conceptnet.

Wordnet [11] is a database of English words used by the algorithm to get the sense
29

Libraries and models

of a word and, if successful, to find its hypernym to look for hyponyms related
to that. In case Wordnet fails, the process relies on Conceptnet, a multilingual
knowledge base, representing words and phrases that people use and the common-
sense relationships between them. Even though Conceptnet does not have provision
to disambiguate between different word sense, it will try to get distractors for
the given word with the picked one. The high level algorithm can be seen in the

following lines:

Listing 3.4: distractors generation

key_distractor_list = {}

for keyword in keyword sentence mapping:
wordsense = get_ wordsense (keyword__sentence_mapping [keyword][0] ,
keyword)
if wordsense:
distractors = get_ distractors__wordnet (wordsense ,keyword)

if len(distractors) ==0:

distractors = get_distractors_conceptnet (keyword)
if len(distractors) != 0:
key_distractor_list [keyword] = distractors
else:
distractors = get_distractors_conceptnet (keyword)
if len(distractors) != 0:
key_distractor_list [keyword] = distractors

3.2 Second library

Library lib_t5 2 has been developed by the same author of the previous one along
with some other contributors [12], but works differently. Transformers play still a
main role in it, but in a new variant called T5 (Text-to-Text Transfer Transformer)

[13], which has proved to achieve state-of-the-art results on multiple NLP tasks
30

Libraries and models

like question answering, summarisation or machin translation.

T5 is an encoder-decoder model whose main feature is conversion of all NLP
problems into a text-to-text format where the input and output are always strings;
this allows for the use of the same model, loss function and hyperparameters etc.
across diverse set of tasks.

Another important tool this library takes also advantage of is Sense2vec [14], a
neural network model that generates vector space representations of words from
large corpora. It does this by creating embeddings for ”senses”, given that a sense
is a word combined with a label i.e. the information that represents the context in
which the word is used. This label can be a Entity Name, POS Tag, Polarity, etc.
In this context, it is used to generate distractors.

Regarding the training, the model, which actually is an extended tool that deals
not only with generation of multiple-choice questions, but also boolean ones, FAQs

and paraphrasing, has been trained on different datasets:

» Quora Question pairs [15], a dataset of duplicate question pairs used to train

and test models of semantic equivalence

« BoolQ [16], a question answering dataset for yes/no questions (irrelevant in

this context)

» SQUAD [17], acronym for Stanford Question Answering Dataset, a reading
comprehension dataset, consisting of questions posed by crowdworkers on
Wikipedia articles, where the answer to every question is a segment of text,
or span, from the corresponding reading passage, or the question might be

unanswerable

« MS MARCO (Microsoft MAchine Reading Comprehension) [18], a collection

of datasets focused on deep learning in search

The first step that this algorithm performs is tokenising the text into sentences

through the tokenize sentences function, which, together with that, takes care of

31

M

Libraries and models

filtering the sentences by keeping only the ones with a length greater than 20. This

first step is shown in the code below:

Listing 3.5: tokenise sentences

def tokenize sentences(text):
sentences = [sent_tokenize(text)]
sentences = [y for x in sentences for y in x|
Remove any short sentences less than 20 letters.
sentences = [sentence.strip () for sentence in sentences if
len (sentence) > 20]

return sentences

After that, as in the library lib_bert 1, the process continues by extracting the
keywords from a reduced version of the original text, obtained by concatenating
the sentences retrieved in the previous step. Here is the get keywords function

that achieves that:

Listing 3.6: tokenise sentences

def get_keywords(nlp,text ,max_keywords,s2v, fdist ,
normalized levenshtein ,no_of sentences):
doc = nlp(text)

max_ keywords = int (max_keywords)

keywords = get_nouns_multipartite (text)
keywords = sorted (keywords, key=lambda x: fdist [x])
keywords = filter__phrases (keywords, max_keywords,

normalized_levenshtein)
phrase_keys = get_ phrases(doc)
filtered _phrases = filter__phrases(phrase_keys, max_keywords,

normalized_levenshtein)

total phrases = keywords + filtered_ phrases

32

N
¥

I§)

Libraries and models

total phrases_filtered = filter phrases(total phrases, min(

max__keywords, 2xno_of sentences),normalized_ levenshtein)

answers = []

for answer in total phrases_ filtered:

if answer not in answers and MCQs_ available(answer s2v):

answers . append (answer)

answers = answers [: max_keywords]

return answers

Later, such keywords are simply mapped with the sentences:

Listing 3.7: tokenise sentences

def get_sentences_for_ keyword (keywords, sentences):
keyword processor = KeywordProcessor ()
keyword_sentences = {}
for word in keywords:
word = word.strip ()
keyword_sentences [word] = []
keyword_processor.add_keyword (word)

for sentence in sentences:

keywords_ found = keyword_ processor.extract__keywords (

sentence)
for key in keywords_found:

keyword__sentences [key].append(sentence)

for key in keyword_sentences.keys():

values = keyword_sentences [key]
values = sorted(values, key=len, reverse=True)
keyword_sentences [key] = values

delete_keys = []
for k in keyword_sentences.keys():

if len(keyword_sentences[k]) = O0:
33

Libraries and models

delete__keys.append (k)
for del _key in delete_keys:
del keyword_sentences[del_key]

return keyword_ sentences

Eventually, the questions are generated from the computed keyword-sentence

mapping

Listing 3.8: tokenise sentences

def generate_questions_mecq(keyword_sent__mapping,device , tokenizer ,
model , sense2vec ,normalized__levenshtein):
batch_text = []
answers = keyword_sent_mapping. keys ()

for answer in answers:

txt = keyword_sent_mapping[answer]
context = "context: " 4+ txt
text = context + " " 4+ "answer: " 4+ answer + " </s>'

batch_text.append (text)

encoding = tokenizer.batch encode_ plus(batch_ text,

pad_to_max_length=True, return_tensors="pt")

print ("Running model for generation")
input_ids, attention_masks = encoding["input_ids"].to(device)

, encoding["attention mask"].to(device)

with torch.no_grad():
outs = model. generate (input_ids=input_ids,
attention_mask=attention_masks,

max__length=150)

output_array ={}

output_array["questions'] =[]

Libraries and models

print (outs)
for index, val in enumerate(answers):
individual__question ={}
out = outs[index, :]
dec = tokenizer.decode(out, skip_ special tokens=True,

clean_up_ tokenization_ spaces=True)

Question = dec.replace("question:", "")

Question = Question.strip ()

individual__question["question_statement'] = Question
individual__question["question_type"] = "MOQ'
individual _question ["answer"'] = val
individual__question["id"] = index+1
individual__question["options"], individual_question["
options__algorithm"] = get_options(val, sense2vec)
individual__question["options"] = filter_phrases(
individual__question["options"], 10,normalized_levenshtein)

index = 3

individual question["extra options"]= individual question
["options"][index :]

individual__question["options"] = individual__question["
options"] [:index]

individual question["context"] = keyword_ sent_mapping[val

if len(individual question["options"]) >0:

output_array["questions"].append(individual question)

return output__array

The following code describes the main function that starts with an input text
and performs the calls to the previous methods to achieve the goal of generating

multiple-choice questions:

35

Libraries and models

Listing 3.9: main algorithm

def predict_mcq(self , payload):
start = time.time ()
inp = {
"input__text": payload.get("input_text"),

"max_questions': payload.get("max questions", 4)

text = inp[input_text’]

sentences = tokenize sentences(text)
joiner = " "
modified text = joiner.join(sentences)

keywords = get_keywords(self.nlp,modified_ text ,inp[’
max__questions’],self.s2v self.fdist ,self.normalized_levenshtein ,

len (sentences))

keyword__sentence_mapping = get_sentences_for_keyword (keywords

, sentences)

for k in keyword_sentence_mapping.keys():

text__snippet = ".join (keyword_sentence_mapping[k][:3])

keyword _sentence mapping [k] = text_ snippet

final__output = {}

if len (keyword_ sentence_ mapping.keys()) = 0:
return final_ output

else:
try:

36

Libraries and models

generated questions = generate_questions_mecq(
keyword__sentence_mapping, self .device ,self.tokenizer ,self.model,

self.s2v,self .normalized levenshtein)

except:

return final output

end = time.time ()
final _output["'statement'] = modified_text
final_output|['"questions"] = generated__questions|"

questions"]

final _output["time taken"] = end—start

if torch.device=—"cuda’:

torch.cuda.empty_cache ()

return final output

3.3 Third library

The third and last tested library, lzb_t5 3, is based on the same technology that
underlies the previous one, as the core of this implementation still relies on T5
transformers. There are some differences in this approach, though, as it makes
use of a QA evaluator to rank the computed question-answer pairs and it also
finetunes the model with two different datasets. As a matter of fact, together with
SQUAD and MS MARCO that are used for library lib_t5 2 too, the model has

been pretrained with the following datasets:

« RACE (ReAding Comprehension dataset from Examinations) [19], a machine
reading comprehension dataset consisting of nearly 28000 passages and 100000
questions from English exams in China, designed for middle school and high
school students

37

Libraries and models

o CoQA, a large-scale dataset to build Conversational Question Answering

Challenge systems containing 127,000+ questions with answers collected from

8000+ conversations

The process starts by generating a list of model inputs from the input text, in
the following form: "answer token <answer text> context token <context text>",
where the answer is a string extracted from the text, and the context is the wider

text surrounding the context. This is done through the _ prepare qg inputs MC

function, that, by taking advantage of the Spacy library [20], performs Named

Entity Recognition (1.2.2) on the text and uses extracted entities as candidate

answers for multiple-choice questions. Sentences are used as context, and entities

as answers. Returns a tuple of (model inputs, answers).

Listing 3.10: preparing answers

def _ prepare_qg_inputs_MC(self , sentences: List[str]) —> Tuple]
List [str], List[str]]:
spacy_nlp = en_core_web_sm.load ()
docs = list (spacy_nlp.pipe(sentences, disable=["parser"]))
inputs_ from_ text = []

answers_ from_ text = []

for doc, sentence in zip(docs, sentences):
entities = doc.ents

if entities:

for entity in entities:
qg_input = f"{self . ANSWER _TOKEN} {entity} {self.
CONTEXT TOKEN} {sentence}"
answers = self._ get MC_answers(entity , docs)
inputs_ from_ text.append(qg_input)

answers_ from_ text.append (answers)

return inputs_from_text, answers_from_ text

38

20

28

29

30

38

39

40

41

48

49

Libraries and models

def _get_ MC_answers(self , correct_answer: Any, docs: Any) —> List
[Mapping [str, Any]]:

"""Finds a set of alternative answers for a multiple—choice
question. Will attempt to find

alternatives of the same entity type as correct_answer if
possible.

entities = []
for doc in docs:
entities.extend ([{"text": e.text, "label ": e.label }

for e in doc.ents])

remove duplicate elements

entities__json = [json.dumps(kv) for kv in entities]
pool = set(entities_json)
num_ choices = (

min (4, len(pool)) — 1

) # —1 because we already have the correct answer

add the correct answer

final choices = []
correct label = correct answer.label
final_choices.append({"answer": correct_answer.text, "correct
": True})
pool.remove (
json .dumps({"text": correct_answer.text,
"label ": correct_answer.label_ })

find answers with the same NER label

matches = [e for e in pool if correct_label in e]

if we don’t have enough then add some other random answers

if len(matches) < num_ choices:

39

Libraries and models

choices = matches
pool = pool.difference (set(choices))
choices.extend (random.sample (pool, num_ choices — len (
choices)))
else:

choices = random.sample(matches, num_ choices)
choices = [json.loads(s) for s in choices]
for choice in choices:
final__choices.append ({"answer": choice["text"], "correct'

False})

random . shuffle (final_choices)

return

The answers and context pairs obtained so far are then used to generate the

questions, as shown in the following lines of code:

Listing 3.11: preparing questions

def generate_questions_from_inputs(self, qg_ inputs: List) —> List
[str]:

generated__questions = []
for qg_input in qg_inputs:
question = self. generate question(qg input)

generated__questions.append(question)

return generated_ questions

This implementation also provides a QA evaluator, which evaluates the quality
of question-answer pairs by assigning them a score and ranking and filtering them
based on their quality.

The following script shows how the main algorithm works and how it combines

together the functions described above:

40

Libraries and models

Listing 3.12: main algorithm

def generate(

self |
article: str,
use__evaluator: bool = True,
num_ questions: bool = None,
answer_style: str = "all'
) — List:
qg_inputs, qg_answers = self.generate_qg_inputs(article ,

answer_style)

generated questions = self.generate_questions_from_ inputs(
qg_inputs)
message = "{} questions doesn’t match {} answers".format (

len (generated questions), len(qg_ answers)

)

assert len (generated questions) = len(qg_answers), message

if use evaluator:
print ("Evaluating QA pairs...\n")
encoded qa_ pairs = self.qa_evaluator.encode_qa_ pairs(
generated__questions, qg_answers

)

scores = self.qa_evaluator.get_scores(encoded__qa_ pairs)

if num_ questions:
qa_list = self._get_ranked_qa_ pairs(
generated__questions, qg_answers, scores,
num__questions
)
else:
qa_list = self._get_ranked_qa_ pairs(

generated_questions, qg_answers, scores

41

34

36

Libraries and models

else:
print ("Skipping evaluation step.\n")

qa_ list = self._ get_all qa_pairs(generated_questions,

qg_answers)

return qa_ list

42

Chapter 4

Tests

The libraries explored in chapter 3 work differently from each other, but all of them
are supposed to give a similar output when run: a question-answers pair, with one
correct answer and some other wrong to mislead the choice.

In order to test and evaluate these tools, a series of text paragraphs has been
fed into them and the result has been manually evaluated assigning a score to
determine how well they performed and possibly detect what they lacked.

The testing process has been conducted with paragraphs of different length. The
idea behind this choice was to understand whether the models performed differently
depending on their length, as the initial though was that the longer the text, the
more data was available for the language understanding process. Three different

thresholds have been established for such purpose, searching text paragraphs with:

e length greater than 1000 words; text with such length will be identified from

now on as 'long texts'
e length between 500 and 1000 words; these will be called "medium texts"

o length lower than 500 words; the expression "short texts" will be used from

now on to refer to them

The three libraries have been tested with a total of thirty paragraphs, ten for
43

Tests

each length. These texts have been chosen without any specific filter on the topic,
and they have been taken from public online sources like BBC, CNN, National
Geographic, etc.

4.1 Evaluation

As to the evaluation process, two possibilities have been taken in consideration:
using an automated system or a human-based one. There are, actually, several algo-
rithms that automatise the process of rating sentence that has machine-translated
from one natural language to another, giving a score that represents the similarity
of that sentence to a human one (the higher the similarity, the higher the quality
of the generated text). Among those, on of the most used is BLEU (Bilingual
Evaluation Understudy Score) [21]. Many question generation systems take ad-
vantage of BLEU metric to assess the quality of their output, but some studies
show that these metrics are ill-suited for such purposes (e.g. Nema and Khapra'’s
study [22]). For this reason a human-based evaluation system has been proposed
to give a score to the models output. In particular, a double metric has been
chosen to separately evaluate questions and answers, starting with a score of ten
and decreasing it according to whether some specific conditions were respected or
not. The idea behind this choice was to help understanding which areas were more
critical, in order to focus and improve them.

For the questions, grammar, semantic and general sense of the phrase are the

criteria used to assess them. Specifically, these are the details about the points:

o -3 for missing answer: three points have been deducted if the question does

not really have an answer from the text

e 0 to -3 for grammar: up to three points subtracted from the final score if the

sentence is grammatically incorrect

44

Tests

o 0 to -4 for general sense: up to four points deducted if the question does not

make sense, either related to the context or not

As to the answers, criteria followed to give a score were based on looking at the
presence of the correct answer, the number of distractors and their sense. Here

follow the details for score assignment:

o -3 for missing correct answer: if, among the given answers, the correct one

was missing, the total score was reduced by three points

o -1 for each missing distractor: given that distractors are the wrong answers to
choose from, one point for each missing distractor has been removed (up to
three points, as the questions were meant to have a total of four answers, the

right one and three distractors)

e 0to -4 for distractors sense: up to four points deducted from the total according
to how the distractors make sense; ideally, one point for each distractor plus
an extra one in case of bad result, but there was not a real strict univocal

relation between each distractor and the deducted points

4.2 Results

Results for the tests on the three libraries are shown in the following sections. Each
section displays a table with the obtained data, distinguishing the results for each

category of texts (long, medium and short) and showing the following data:

e () Num__ Avg will refer to the average number of questions obtained per text.

Parameters have been set to generate ten questions per text
o () Score_Avg will refer to the average score assigned to the generated questions
o A_Score_Avg will refer to the average score assigned to the generated answers

o () _Duplicated will refer to the average number of duplicated questions

45

Tests

4.2.1 First library

Long texts Medium texts Short texts
@ _Num__ Avg 5.8 3.20 3.20
Q_Score_ Avg 10 10 10
A Score_Avg 7.85 7.99 7.94
Q_Duplicated Avg 0,40 0.50 1.60

Table 4.1: [ib bert 1 results

The table 4.1 shows the results obtained by the library lib_bert 1 with different
length texts and gives interesting points for reflection.
First of all, it can be noticed that the average number of questions drastically
decreased when moving from long texts to medium and short ones. Since the
number of questions is strongly related to the number of keywords - as questions
are simply sentences containing the extracted keywords -, such values represent the
difficulty of the algorithm to find valuable keywords from texts with a length below
a certain threshold - 1000 words in this case. One important fact related to the
number of questions is also that some text paragraphs gave no result when running
the algorithm: in particular, the text that had no output was exactly one among
the medium ones, and there were two among the short ones, which significantly
lowered the final computed average.
Another information that can be retrieved from this data is the extremely high
values for the average questions score. This is actually no surprising, as the ques-
tions were phrases taken form the text, so no generation had been performed in

that case, thus resulting in no processing for the model.

46

Tests

The third analised parameter is the average answers score. The table shows more
than sufficient results for the answers, meaning that the system was able to return
good answers and distractors for the given question. Values slightly varies from
long to short texts, almost reaching a score of 8 out of 10; no trend can be found
in this case.

Regarding the duplicated questions, short texts showed a lot of duplicated questions
with respect to the other types, proving how challenge is for this algorithm to find

keywords and sentences for the questions.

The following examples give more details on how the model performed, show-

ing both successful attempts and sentences the model struggled with.

Successful attempts:

Context:
After his parents divorced, Obama’s mother married another foreign student

at the University of Hawaii, Lolo Soetoro of Indonesia.

Generated MC-question:
1) After his parents divorced, Obama’s mother married another foreign

student at the University of Hawaii, Lolo Soetoro of
a Philippines
b East Timor
¢ Indochina

d Indonesia

Question score: 10

Answers score: 10

47

Tests

Context:
Evidence from paleontology indicates that the penguins and the order
Procellariiformes (albatrosses, shearwaters, and petrels) had a common

origin.

Generated MC-question:

1) Some, such as the Adélie penguin, carry in their bodies trace amounts of
pollutants, albeit in lower quantities than are found in many birds that live
closer to humans. Evidence from paleontology indicates that the penguins
and the order (albatrosses, shearwaters, and petrels) had a

common origin.
a Procellariiformes
b Acanthopterygii
¢ Actiniaria
d Acarina

Question score: 10

Answers score: 10

These multiple-choice questions obtained the maximum score for the answers (as
well as the questions), being able to understand and offer reasonable alternatives

to them: a country for the first one, and an animal group for the second one.

Failing attempts:
48

Tests

Context:
Otherwise, Etruscan literature is evidenced only in references by later Roman
authors. The Architecture of the ancient Etruscans was derived from that of

the Greeks, and went on to influence that of early Rome.

Generated MC-question:
1) Otherwise, Etruscan literature is evidenced only in references by later
Roman authors. The Architecture of the ancient Etruscans was derived from

that of the Greeks, and went on to influence that of early
a High Command
b Rome
¢ Rome

d

Question score: 10

Answers score: 5 (-1 for missing distractor, -4 for distractors)

The question above has several issues. First of all, the algorithm managed to
produce only three distractors (they were supposed to be four). Also, the generated
answers show that the system failed to detect the right sense for the selected
keyword: not only was one answer - the correct one - duplicated, but also the other

one was out of context and with no relation with the topic of the text.

Another problem encountered in the results is the repetition of the same sentences

with different hidden keywords:
49

Tests

Context:
On a Thursday night in December, most of the audience was from a black or

ethnic minority background.

Generated MC-questions:
1) On a night in December, most of the audience was from a

black or ethnic minority background.
a Friday
b Thursday
c Feria
d Monday

Question score: 10
Answers score: 9 (-1 for distractors)
2) On a Thursday night in , most of the audience was from a

black or ethnic minority background.
a December
b December
¢ April
d August

Question score: 10

Answers score: 9 (-1 for distractors)

Such behaviour is not correct and it has to be prevented for two main reasons:

in first case, obviously, showing the same question twice (or more) means that the

50

Tests

total amount of useful questions is lower than the expected one; secondly, given
the nature of these questions - which, as already said, are an exact copy of the
sentences inside the text-, having duplicated questions also means that the missing
keyword from one of them can be understood from the others and vice-versa, thus

making the purpose of the quiz useless.

4.2.2 Second library

Long texts Medium texts Short texts
@ _Num_ Avg 7.2 4.8 5.8
Q_Score_Avg 7.97 8.21 8.17
A_Score_ Avg 5.25 6.15 5.89
Q_Duplicated Avg 0 0 0.4

Table 4.2: [:b t5 2 results

The table 4.2 with results from library lib t5 2 does really present different
data with respect to the ones of lib_bert 1.
Firstly, the average number of questions increased significantly, especially for
medium and short texts, which now presents higher values by far. However, the
trend already seen for the previous library is maintained, with fewer generated
questions for medium and short texts (even though the latter are higher than the
former). Going into details, this combination of algorithm and architecture did not
present any outputs with no data, giving always at least one result even for short
texts, which are usually harder to be understood by NLP applications as they offer

less context.

51

Tests

While the number of questions showed better values, on the other hand the average
questions score in this case is lower. As a matter of fact, the generated questions,
which are not phrases taken from the text anymore, sometimes proved to lack
general sense or to not have an answer that could have been guessed from the text.
The values for this parameter are still sufficient and high enough to be considered
good, ensuring a score of 8 out of 10.

One more parameter to take in consideration is the average score for the answers.
This is actually the worst for this set of tests, as it presents values slightly above
the sufficiency, with scores assessed around 5-6 out of 10. The reasons behind this

low score are several, but among them there are:

o the algorithm struggled to detect the proper sense for the keyword, thus giving

distractors not really related to what the question was asking

e an upstream issue on the question side, as sometimes the question was expressed
in a way that it did not have a real answer that could have been detected

from the available text

 the selected keyword was too specific and so the model was not able to find

enough alternative answers

Lastly, as to the average number of duplicated questions, it must be said that it is
optimal, with no duplicated questions for both long and medium texts, and very

few for the short ones.

Here follow some outputs from this library.

Successful attempts:

52

Tests

Context:

Legend has it that Annie Oakley was such a skilled sharpshooter that she
singlehandedly foiled train robberies, shot bears and panthers, and killed a
wolf that already had her in its grip—or so claimed one 1887 novel based on

her life titled The Rifle Queen.
Generated MC-question:
1) What animal did Annie kill that already had her in its grip?
a Wolf
b Bear
¢ Coyote
d Lion

Question score: 10

Answers score: 10

53

Tests

Context:
Dolphins are regarded as the friendliest creatures in the sea and stories of

them helping drowning sailors have been common since Roman times.
Generated MC-question:
1) What are the friendliest creatures in the sea?

a Dolphins

b Killer whales

¢ Orcas

d Sharks

Question score: 10

Answers score: 10

Again, as for the first library results, these generated pairs show how the system
took advantage of Named Entity Recognition to assign an entity to the keyword

and select alternative ones as possible choices for the answer.

Failing attempts:
54

Tests

Context:
In 1853, a young tailor from Germany, called Levi Strauss, began working in
San Francisco; Levi sold thick canvas to miners; the miners used the canvas

to make tents.
Generated MC-question:
1) Who did Levi sell canvas to?
a Mining power
b Miners
¢ Block rewards
d Hashrate

Question score: 10

Answers score: 6 (-4 for distractors)

The question just illustrated is a clear example of misleading keywords, for
which the system might detect the wrong sense. In the context of the original text,
the word "Miners" refers to people that used to work in the mines, but the model
actually retrieved the wrong meaning (cryptocurrency related). As a consequence,

all the distractors were linked to that meaning, thus offering answers out of context.

59

Tests

Context:

Right now, apps such as VRchat work on a kind of self-regulating report
system when it comes to moderation: players who continually receive
complaints about their behaviour gradually lose privileges, and you can mute
or block other users if they’re annoying or harassing you. [...]

Given how endemic toxicity is online, from Twitter to Facebook to Call
of Duty, I do not have high confidence that Meta or indeed anyone in the
big tech world has either the will or the means to make the online world
universally pleasant and safe. |[...]

Once the headset is on you can browse from a few hundred apps and games
designed for VR, many of which are social spaces designed for chatting to

other people.

Generated MC-question:
1) What are VRchat?

a Apps

b Single App

d

Question score: 10

Answers score: 6 (-2 for missing distractors, -4 for distractors)

In this case the correct answer - apps - is present, but the library could not
produce sufficient alternative answers.

56

Tests

4.2.3 Third library

Long texts Medium texts Short texts
@ _Num__ Avg 10 10 7
Q_Score_ Avg 9.02 8.06 7.68
A Score_Avg 5.72 5.54 4.58
Q_ Duplicated_Avg 1 1 0.4

Table 4.3: [ib t5 3 results

Finally, the data about the tests conducted with the third library (lib_t5_3)
are visible in table 4.3.
This approach proved to be the best for the number of generated questions. As
a matter of fact, the library has been able to produce the maximum amount of
required questions for both long and medium texts, and an average of 7 for the
short ones, which, by far, outdoes the first two tested systems.
Despite the big amount of generated questions, the average score representing their
quality assessed on optimal values, reaching a value of 9 for the long texts, and
8.06 and 7.68 for, respectively, the medium and short ones. Considering that these
questions have been automatically produced and formulated, these values are good
news and coherent to the ones already seen in 4.2.2. The results, though, seem to
show a direct proportionality between the length of the text and the score of the
generated questions.
The similarity with the second library can be seen also in the third row of the same
table, where the scores about the answers are shown. These values are significantly

lower than the others of the same table, with a trend already seen in the previous

57

Tests

section. The only difference is related to the scores of tests run on the short texts,

which in this case could not overpass 4.58.

Successful attempts:

Context:
In 1853, a young tailor from Germany, called Levi Strauss, began working in

San Francisco
Generated MC-question:
1) Where did Levi Strauss come from?
a San Francisco
b USA
¢ Germany
d France

Question score: 10

Answers score: 10

58

Tests

Context:
His Walden 7 housing project, which stands as a monumental terracotta
termite mound on the outskirts of Barcelona, seems as radical today as when

it was built in 1975.
Generated MC-question:
1) When was the Walden 7 housing project built?
a Today
b 1975
c 80s
d 2017

Question score: 10

Answers score: 9 (-1 for distractors)

Failing attempts:
59

Tests

Context:

They range from about 35 cm (14 inches) in height and approzimately 1 kg
(about 2 pounds) in weight in the blue, or fairy, penguin (Eudyptula minor)
to 115 cm (45 inches) and 25 to 40 kg (55 to 90 pounds) in the emperor
penguin (Aptenodytes forsteri).

Generated MC-question:

1) How much weight is the emperor penguin?
a 55 to 90 pounds
b approximately 1 kg (correct)
¢ 14 inches
d 25 to 40 kg
Question score: 10 Answers score: 5 (-3 for wrong correct answer, -2 for
distractors)
2) How much weight is the emperor penguin?
a b metres
b 160 km
¢ 55 to 90 pounds (correct)
d 6 feet

Question score: 10 Answers score: 6 (-4 for distractors)

60

Tests

3) How much weight is the emperor penguin?
a 45 inches
b 5 metres
¢ 2 pounds (correct)
d 110 km
Question score: 10 Answers score: 3 (-3 for wrong correct answer, -4 for
distractors)
4) How much weight is the emperor penguin?
a 25 to 40 kg (correct)
b 160 km
¢ 55 to 90 pounds
d approximately 1 kg

Question score: 10 Answers score: 7 (-3 for distractors)

In this case the algorithm failed multiple times, generating four questions asking
the same thing but with different answers. The question itself is fine, but not
only is the same question repeated more than once, but also the answers were
incorrect: in two cases the picked correct answer is not the right one (questions 1
and 3), and some of the distractors were senseless (the question is asking about
weight, but the answers contain length measurements). Also, as it can be noticed in
questions 1 and 4, the same question contained multiple correct answers, as the text
provided a double measurement and the model took both. This is a behaviour that

also happened with the previous libraries, as often the process showed alternative

61

Tests

choices that were equally right.

62

Chapter 5

Conclusion

The goal of this project was to explore the architecture behind Natural Language
Processing tasks, with particular focus on the ones to automatically generate
multiple-choice questions, and to test them in order to understand how well hey
performed.

The study helped understanding the development of neural networks with respect
to Natural Language Processing applications, with a continuous evolution from
Feedforward Neural Network to Encoder-Decoder model, until reaching the trans-
formers architecture that underlies state-of-the-art results for such subject.
Furthermore, several variants of these models have been tested on text paragraphs
of different lengths, in order to asses their performance and highlight their strengths
and weaknesses. More specifically, what arose from such analysis is that the process
of generating questions from given input texts works pretty well, despite sometimes
formulating them in a way that could bring up ambiguity or asking for answers
that can not really be guessed from the original context.

Concerning the generated answers, instead, the algorithm still encounters issues
and struggles with complex sentences, proving not to be reliable enough to always
guarantee a sufficient number of meaningful and reasonable answers. In particular,

the analised systems worked well with a specific set of keywords (months, places,

63

Conclusion

animals, etc.), but struggled with the ones that could be misconceived as they
presented more than a single meaning. In order to improve this task, more test
should be performed with different models and approaches (e.g., question answering
techniques could be combined with the ones used in this project).

Additionally, the tests showed that some of the generated questions were sometimes
duplicated, which can be solved by improving and refining the process that selects
the keywords (avoiding the ones that lead to the same sentences), as well as some
post-processing to filter out the results that do not match the expected constraints.
The project will continue with further attempts in this direction, as the final goal
would be for the process to be able to work with conversational texts in order to

automatically produce quizzes for students after their language lessons.

64

References

Prashant Johri, Sunil K. Khatri, Ahmad T. Al-Taani, Munish Sabharwal,
Shakhzod Suvanov, and Avneesh Kumar. «Natural Language Processing:
History, Evolution, Application, and Future Work». In: Proceedings of 3rd
International Conference on Computing Informatics and Networks. Ed. by
Ajith Abraham, Oscar Castillo, and Deepali Virmani. Singapore: Springer
Singapore, 2021, pp. 365-375. 1SBN: 978-981-15-9712-1 (cit. on p. 2).

A. M. Turing. «Computing machinery and intelligence». In: Mind LIX (Oct.
1950), pp. 433-460. DOI: https://academic.oup.com/mind/article/LIX/
236/433/986238 (cit. on p. 3).

Warren S McCulloch and Walter Pitts. «A logical calculus of the ideas
immanent in nervous activity». In: The bulletin of mathematical biophysics

5.4 (1943), pp. 115-133 (cit. on p. 9).

Sepp Hochreiter. «The Vanishing Gradient Problem During Learning Re-
current Neural Nets and Problem Solutions.» In: International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 6.2 (1998), pp. 107-116.
URL: http://dblp.uni-trier.de/db/journals/ijufks/ijufks6.html#
Hochreiter98 (cit. on p. 13).

Sepp Hochreiter and Jiirgen Schmidhuber. «Long Short-Term Memory». In:
Neural Computation 9.8 (1997), pp. 17351780 (cit. on p. 13).

65

https://doi.org/https://academic.oup.com/mind/article/LIX/236/433/986238
https://doi.org/https://academic.oup.com/mind/article/LIX/236/433/986238
http://dblp.uni-trier.de/db/journals/ijufks/ijufks6.html#Hochreiter98
http://dblp.uni-trier.de/db/journals/ijufks/ijufks6.html#Hochreiter98

REFERENCES

[10]

[11]

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. «Sequence to Sequence Learn-
ing with Neural Networks». In: Advances in Neural Information Processing
Systems. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q.
Weinberger. Vol. 27. Curran Associates, Inc., 2014. URL: https://proceedin
gs.neurips.cc/paper/2014/file/al4acb5a4f27472c5d894ec1c3c743d2-
Paper.pdf (cit. on p. 16).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. «Neural machine
translation by jointly learning to align and translate». In: arXiv preprint

arXiv:1409.0473 (2014) (cit. on pp. 17, 18).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. «Attention Is All
You Need». In: CoRR abs/1706.03762 (2017). arXiv: 1706 . 03762. URL:
http://arxiv.org/abs/1706.03762 (cit. on pp. 19, 20, 22, 23).

Ramsri Goutham Golla. Generatey,CQ)gFE RTy ordnetconceptnet. URL: ht
tps://github . com/ramsrigouthamg /Generate MCQ _BERT _Wordnet _
Conceptnet/pulls (cit. on p. 25).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. « BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, June 2019, pp. 4171-4186. DOI: 10.18653/v1/N19-
1423. URL: https://aclanthology.org/N19-1423 (cit. on p. 26).

George A. Miller. «WordNet: A Lexical Database for English». In: Human
Language Technology: Proceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.1994. URL: https://aclanthology.org/H94-1111
(cit. on p. 29).

66

https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://github.com/ramsrigouthamg/Generate_MCQ_BERT_Wordnet_Conceptnet/pulls
https://github.com/ramsrigouthamg/Generate_MCQ_BERT_Wordnet_Conceptnet/pulls
https://github.com/ramsrigouthamg/Generate_MCQ_BERT_Wordnet_Conceptnet/pulls
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/H94-1111

REFERENCES

[12]

[13]

[15]

[16]

[17]

[18]

Ramsri Goutham Golla, Parth Chokhra, and Vaibhav Tiwari. Questgen AL

URL: https://github.com/ramsrigouthamg/Questgen.ai (cit. on p. 30).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. «Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer». In: CoRR
abs/1910.10683 (2019). arXiv: 1910.10683. URL: http://arxiv.org/abs/
1910.10683 (cit. on p. 30).

Andrew Trask, Phil Michalak, and John Liu. «sense2vec - A Fast and Accurate
Method for Word Sense Disambiguation In Neural Word Embeddings». In:
CoRR abs/1511.06388 (2015). arXiv: 1511.06388. URL: http://arxiv.org/
abs/1511.06388 (cit. on p. 31).

Lakshay Sharma, Laura Graesser, Nikita Nangia, and Utku Evci. «Natural
Language Understanding with the Quora Question Pairs Dataset». In: CoRR
abs/1907.01041 (2019). arXiv: 1907.01041. URL: http://arxiv.org/abs/
1907.01041 (cit. on p. 31).

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael
Collins, and Kristina Toutanova. «BoolQ: Exploring the Surprising Difficulty
of Natural Yes/No Questions». In: CoRR abs/1905.10044 (2019). arXiv:
1905.10044. URL: http://arxiv.org/abs/1905.10044 (cit. on p. 31).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. «SQuAD!
100,000+ Questions for Machine Comprehension of Text». In: Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing.

Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp. 2383~

2392. DOI: 10.18653/v1/D16-1264. URL: https://aclanthology.org/D16-

1264 (cit. on p. 31).

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. «MS MARCO: A Human Generated MAchine

67

https://github.com/ramsrigouthamg/Questgen.ai
https://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1511.06388
http://arxiv.org/abs/1511.06388
http://arxiv.org/abs/1511.06388
https://arxiv.org/abs/1907.01041
http://arxiv.org/abs/1907.01041
http://arxiv.org/abs/1907.01041
https://arxiv.org/abs/1905.10044
http://arxiv.org/abs/1905.10044
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264

REFERENCES

[19]

[21]

[22]

Reading COmprehension Dataset». In: CoRR abs/1611.09268 (2016). arXiv:
1611.09268. URL: http://arxiv.org/abs/1611.09268 (cit. on p. 31).

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy.
«RACE: Large-scale ReAding Comprehension Dataset From Examinationsy.
In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. Copenhagen, Denmark: Association for Computational
Linguistics, Sept. 2017, pp. 785-794. DOI: 10.18653/v1/D17-1082. URL:
https://aclanthology.org/D17-1082 (cit. on p. 37).

Matthew Honnibal and Ines Montani. «spaCy 2: Natural language understand-
ing with Bloom embeddings, convolutional neural networks and incremental

parsing». To appear. 2017 (cit. on p. 38).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. «Bleu: a
Method for Automatic Evaluation of Machine Translation». In: Proceedings
of the 40th Annual Meeting of the Association for Computational Linguistics.
Philadelphia, Pennsylvania, USA: Association for Computational Linguistics,
July 2002, pp. 311-318. por: 10.3115/1073083 . 1073135. URL: https:
//aclanthology.org/P02-1040 (cit. on p. 44).

Preksha Nema and Mitesh M. Khapra. «Towards a Better Metric for Evalu-
ating Question Generation Systemsy. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing. Brussels, Belgium:
Association for Computational Linguistics, Oct. 2018, pp. 3950-3959. DOTI:
10.18653/v1/D18-1429. URL: https://aclanthology.org/D18- 1429
(cit. on p. 44).

68

https://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://doi.org/10.18653/v1/D17-1082
https://aclanthology.org/D17-1082
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://doi.org/10.18653/v1/D18-1429
https://aclanthology.org/D18-1429

	List of Tables
	List of Figures
	Acronyms
	Introduction
	General context
	NLP
	History
	Applications

	Architecture
	Neural networks
	LSTM
	Transformers

	Libraries and models
	First library
	Text summarising
	Keywords extracting
	Sentence Mapping
	Generating distractors

	Second library
	Third library

	Tests
	Evaluation
	Results
	First library
	Second library
	Third library

	Conclusion
	References

