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Summary

Over the past 20 years, data has increased on a large scale [1]. This data takes
many forms, such as text, audio, video and images.
Companies and governments are interested in extracting the value present in data,
and they have announced their intentions to accelerate research and applications
in this field [2].
However, said data is often unstructured and does not convey meaningful infor-
mation. Hence, many data analysis methods have arisen. For instance, methods
like deep learning can glean meaningful information from images by labelling them.
This information can help companies and governments make educated decisions by
providing helpful insights.
In particular, the process of managing image data and labelling it is called image
classification, and in some cases, it can surpass human-level accuracy [3]. The
computing system used to classify images is called a neural network, and the process
through which the neural network learns to label the pictures is called training.
Training a neural network is a process that generally requires a copious quantity of
data to perform satisfactorily. Unfortunately, this requirement leads to training
times for neural networks that are pretty long, and the availability of such an
amount of data is often an issue.
Transfer learning addresses some of these obstacles. Transfer learning is a technique
within the machine learning field whose objective is improving the accuracy of
a given task via pretraining while reducing the amount of data needed. This
pretraining step precedes the actual task and entails training a neural network
on a similar assignment on an unrelated domain. For example, in the context of
image classification, the pretraining step could consist of training a model on a
generic image dataset such as ImageNet, while the training proper is a task where
the network must recognise several different races of cats and dogs. The neural
network can perform better on the pets dataset because of the visual features learnt
in the previous phase. However, the pretraining step still requires a dataset of
a considerable dimension; therefore, the computational cost of creating a neural
network remains a problem.
This thesis introduces a novel way of optimising transfer learning, particularly
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image classification tasks training time. The proposed approach selects a subset of
images from the source dataset via a semantic approach, thus reducing the extent
of data needed.
Specifically, a lexical database chooses the most relevant source dataset categories
by determining the semantic distance between classes and choosing the target
categories closest to the source classes.
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Chapter 1

Introduction

The generation of data such as text, audio and video has rapidly increased over the
past 20 years [1]. This data contains information that can help make educated deci-
sions by providing helpful insights. Hence, there is much interest in extracting the
value present in data. For example, companies and governments have announced
their intentions to accelerate research and applications in this field [2].
However, said data is often unstructured and does not convey meaningful infor-
mation in its raw form. Therefore, data analysis methods are employed to extract
meaningful information from datasets. This thesis deals with deep learning methods
that look at images and assigns a label to them. This process of managing image
data and labelling it is called image classification, and in some cases, it can surpass
human-level accuracy [3].
The computing system used to classify images is called a neural network, and the
process through which the neural network learns to label the pictures is called
training. Image classification is a machine learning task that relies on convolutional
neural networks (CNN). Unlike the manual selection of image features, CNNs
provide an automated and efficient way of identifying image parts most suited for
visual categorisation. This is indeed the main property of convolutional neural net-
works. Throughout their training, these models learn not only which images belong
to which class but also they grasp which parts of the image are most predictive
for categorisation purposes. These image parts used for categorisation are called
features. The initial convolutional layers produce lower-level features and tend to
identify more straightforward visual concepts such as edges. Higher-level features
are an output of later convolutional layers, and the information they convey is
much more complex, such as patterns or objects.
One of the main issues with CNNs as of the current state of the art is that they need
copious amounts of data to achieve satisfactory accuracy. This leads to training
times that take up ample resources such as time, energy and data.
A commonly utilised technique in data science is transfer learning, and we use
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Introduction

this to solve the problems mentioned earlier. Transfer learning is a method which
uses a neural network that has been previously trained on a large dataset (source
dataset) and uses this past knowledge to aid in a new classification endeavour with
new data(target dataset). In this way, the amount of data needed for a specific
classification task is reduced, and one only needs to find a suitable dataset for
pretraining.
ImageNet has been one of the most frequently utilised source datasets, and this
thesis explores why this is so. Answering some of the assumptions made about
it gives insight into how one might address creating suitable datasets for source
training. [4] provides interesting results; in one of the experiments, they find out
that Imagenet has performance issues with specific target categories and not with
others.
Optimising a neural network can be done at different phases of creating a model but
mainly during inference and training. Indeed some techniques have been developed
to reduce resource consumption during inference. Inference refers to the stage
where an ML model makes predictions; for instance, inference means taking an
image and predicting its correct class in the context of image recognition. The low
power image recognition challenge [5] is a testament to all the work being carried
out in this field. Moreover, advances in recent years have primarily focused on
this; as a result, there is less literature dealing with the optimisation of visual
recognition during training.
Nevertheless, some techniques have been developed over the years to reduce the
volume of images needed to train a source dataset. Some of these methods propose
a selective approach when choosing the entries for the pretraining phase. In partic-
ular, some rely on automatically learning the importance of classes via optimisation
problems like [6], where a weight vector is learned, and each vector entry assigns
importance to certain parts of the source dataset. In other works, like [7], features
from each target image are extracted via a neural network, and via these features,
the authors seek to find its nearest neighbours in the source dataset.
Similarly, our efforts are focused on selecting a subset of the source dataset. How-
ever, the selection is made via a semantic analysis of the categories. In addition to
our methods, we also explore how other works in literature have dealt with selective
training of the source dataset.
Our approach might seem more superficial than the techniques mentioned above
used by other related works. Moreover, while automating the data selection process
has its merits, it is also computationally expensive. Additionally, one needs to
already possess the data for these other techniques, while this is not needed in our
paper. And having a semantic approach results in having a list of classes which are
most pertinent to the target task; this allows any data-gathering efforts to be more
focused on the most related and impactful categories.
On the other hand, the target dataset will be dealing with a particular domain.
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This type of visual classification is called FGVC (fine-grained visual categorisation),
a specialised computer vision domain. FGVC has its own set of issues given the
specificity of the categories (e.g. classifying different bird species). We will expound
on how the issues of FGVC have been addressed so far by the state-of-the-art, and
we will introduce the novel methodology mentioned above that seeks to mitigate
the obstacles in fine-grained computer vision.
This methodology exploits two main insights proven by past research. The first is
that transfer learning dramatically benefits from having a source dataset that is
visually similar to the target [8]. The second comes from paper [9]; the researchers
in this latter paper concluded that there exists a correlation between visual and
semantic similarity.
With the insights provided by these two papers, we hypothesise that performing a
semantic selection via a lexical database on the categories of the source dataset
can improve the performance of the target classification task. More specifically,
the lexical database provides a measure of semantic distance between two classes.
The main idea is to define a measure of distance between a source category and
the target domain via the distance function available in the semantic database.
After this, the source classes most similar to the target domain are selected for
pretraining.
We will find the most semantically pertinent classes in the source dataset, train the
source dataset with only those and afterwards transfer the learned weights into the
new task. Finally, some further experiments are performed in order to ascertain
the validity of our findings.
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Chapter 2

Background

The generation of data such as text, audio and video has rapidly increased over
the past 20 years [1] through technological advancements such as IoT (internet of
things) and social networks. This data contains information that can help make
educated decisions by providing helpful insights. For example, social media data
can provide ads tailored for users, leading to more effective advertising. On the
other hand, data generated by sensors in IoT devices can tell manufacturers how
to enhance the performance of their products.
Hence, there is much interest in extracting the value present in data. For example,
companies and governments have announced their intentions to accelerate research
and applications in this field [2].
However, data is unstructured and does not convey meaningful information without
prior examination. Therefore, data analysis methods are employed to extract
meaningful information from datasets. The most modern techniques rely on neural
networks and machine learning. Neural networks are the computing system used
to examine and learn from data. Analysis and data can have different scopes. This
thesis deals with deep learning methods that look at images and assigns a label
to them. This process of managing image data and labelling it is called image
classification, and in some cases, it can surpass human-level accuracy [3].
Image classification forms part of a greater field of machine learning called Com-
puter vision. Computer vision is a specific branch of Machine Learning that handles
images and extracts meaningful information from them. In particular, image clas-
sification tasks a neural network with recognising the subject of an image and
providing a class prediction for it.
Amongst the image classification practices, there is an approach called supervised
learning. Here the neural network uses training data consisting of an image and a
label. With the help of labels, the ML model can develop an inferred function [10]
to predict output values for unseen images.
Indeed, this latter approach and the existence of high-quality labelled datasets
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have been one of the most prominent factors in increasing the performance and
accuracy of deep learning models [11]. In this context, a model that has seen
significant large-scale adoption is the convolutional neural network or CNN for
short. A CNN is composed of three main types of layers: (i) the convolutional
layers, (ii) the pooling layers, (iii) and the fully connected layers. The convolutional
layers convolve the image with several different kernels to generate these feature
maps. Such feature maps encode essential information that the fully connected
layer will later use to classify the image. The earlier convolutional layers produce
feature maps that encode low-level features such as edges, whereas the later layers
encode high-level information. This is illustrated in the figure 2.1. The pooling
layer reduces the width and height dimension on the feature maps produced by
the convolution layers (leaving the depth untouched). This provides the benefit of
reducing the computational overhead for the later layers and avoiding overfitting.
Lastly comes the fully connected layer that converts the 2d feature maps into a 1d
feature vector that can be used for classification.
Machine learning is a costly endeavour and expensive in terms of the energy it
consumes and the data it needs. Much effort has been put into making neural net-
works more efficient, and optimisation is done at mainly two stages of development.
Optimisation at an inference level and during the training phase.
Inference optimisation makes networks less energetically expensive while categoris-
ing images (or whatever the task may be). The low power image recognition
challenge [5] has resulted in many techniques dealing with power usage. These
mainly consist of specialised NN architectures such as MobileNet and quantisation,
which approximates neural networks using floating-point numbers into lower bit
numbers.
On the other hand, this thesis focuses on making the training process more efficient,
specifically by dealing with the data needed to train the model. Often the amount
of data needed for training a CNN is unfeasible to obtain for a certain specific task.
Gathering data, especially for supervised learning, is often monetarily expensive
and time-consuming because data must be labelled, requiring people to define
the class for each image manually. Transfer learning is an ML technique that
addresses these problems by reducing the need to collect data.

2.1 Transfer Learning
According to [13] "Transfer learning aims to improve the performance of target
learning on target domains by transferring the knowledge contained in different
but related source domains"
In other words, transfer learning trains a learner on two different tasks. The
training for the first task provides valuable information for the second training.
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Figure 2.1: Taken from [12]. This figure illustrates how convolutional neural
networks extract information from an image. The complexity of the features
increases as we analyse features from later and later convolutional layers. The
low-level features usually represent basic concepts such as lines, corners and edges.
Mid-level features are more elaborate and frequently capture information such as
object parts. And finally, high-level features tend to capture the whole object

For example, the learner might be trained at first with a generic dataset that
contains multiple classes of fauna and then subsequently is trained in multiple
visual categories of dog races with a more domain-specific dataset.
In this example, one would call the first and second datasets the source and target
datasets, respectively.
Usually, there is much more data available for the source dataset, and the source
and target classes often share low-level representations. As explained earlier, a
CNN learns features through its convolutional layers. By pretraining the model on
a dataset, the convolutional layers learn filters which are used as the starting point
for the training on the second dataset. Starting training in such a way allows the
model to converge much faster and, as a result, have much better accuracy.
In such a way, transfer learning has proven to be very useful in mitigating the
need for large quantities of data. It is common practice to use a learner that has
been previously trained on a large source dataset to perform visual classification
on a much smaller set of images. A common choice for a source is ImageNet.
Therefore, when presented with a certain classification problem with a scarcity
of data, one can often overcome the problem presented by the limited supply of
images via pretraining.
The ImageNet [14] as mentioned earlier, is a dataset that holds great importance
in the realm of transfer learning and machine learning in general. It was created in
2009, and it contains more than 14 million images and 21.841 classes. ImageNet’s
classes are organised in a way that follows the semantic hierarchy of a lexical
database for the English language called Wordnet [15]. Wordnet is a lexical
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database where verbs, nouns and adjectives are grouped into synsets, and in such
arrangement, a single entry in the database is called a synset. For instance, the
words "car" and "automobile" belong to the same synset. Synsets relate to each other
via a semantic hierarchy which puts the most generic words such as "vertebrate"
on top and more specific words like "Burmese cat" closer to the bottom like shown
in the figure 2.2.
Furthermore, semantically similar words are close to each other within this hierar-
chy. Now that the structure of ImagenNet is clear, we proceed to describe how the
construction of this dataset came about. There were two main steps:
Firstly, candidate images were collected by querying search engines. In order to
further populate the dataset with more images, parent synsets were appended to
the original queries. For instance "whippet" → "whippet dog". More results were
obtained by translating the query into different languages.
Lastly, the candidate images obtained during the last step were manually selected
via Amazon mechanical Turks. This is a service in which anyone can pay to
outsource several types of tasks to humans, such as individually labelling images.
In this case, several Turks were employed to label a specific image, and an image
was considered correctly labelled when the majority of them agreed on the class.
For more generic classes such as cat, fewer people were asked to classify the images,
whereas for more difficult classes such as "Burmese cat", more users were hired.
This process elucidates how costly creating a large-scale dataset is, and from 2009 to
today, the Imagenet dataset has grown and evolved, becoming ever more extensive
and complex. As of the day of writing this thesis, there are two main versions of
the ImageNet dataset: ImageNet 21k consisting of more than 14 million images
and ImageNet 1k, which is much easier to manage with a little bit over 1.2 million
images. This latter version is the most commonly used since training the 21k
version is impractical for most people. An annual competition called Imagenet
Large Scale Visual Recognition Challenge uses ImageNet1k (ILSVRC) [16]. This
challenge contains three possible different tasks: Image Classification task, Single
Object Classification task, and Object Detection Task.

Table 2.1: [16] shows the different versions of Imagenet ILSVRC over the years.

Year Train images Val images Test images

(per class) (per class)

ILSVRC2010 1,261,406 (668–3047) 50,000 (50) 150,000 (150)

ILSVRC2011 1,229,413 (384–1300) 50,000 (50) 150,000 (150)

ILSVRC2012-2014 1,281,167 (732–1300) 50,000 (50) 150,000 (150)
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Figure 2.2: Example of Imagenet’s semantic hierarchy. Furthermore this illustrates
the hypernym/hyponym taxonomy. Simply put a hypernym is a more generic word
than another given word. In this figure, "plant root" is a hypernym to "radish"
and "carrot". Conversely a hyponym is more specific. "Radish" and "carrot" are
hyponyms to "plant root".

2.2 Is Imagenet a Good Choice for a Source
Dataset?

Given the noteworthiness of ImageNet, we will explore why it has been so commonly
used over the years. Imagenet is broadly adopted as a source dataset for transfer
learning, and it is widely believed that models that obtain high accuracy on
ImageNet will be able to perform well on new domains. Is this hypothesis true?
What features are learnt by pretraining with it, and are they particularly beneficial?
The first research article [4] deals with the former question. And this paper studies
the correlation between obtaining a high accuracy on the ImageNet dataset and
other tasks.
The experiments are three: one is taking the features from a model pre-trained
on ImageNet and using them on a new task; the objective is to confirm whether
the features learnt through pretraining are decisive for other domains. Number
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two finetunes an ImageNet pre-trained network. Lastly, number three trains a
model from scratch on the target dataset. A model trained from scratch means
that there is no prior training. The purpose of these last two experiments is to
prove the hypothesis that pre-trained models perform better by comparing them
to models trained from scratch. The third experiment, in particular, demonstrates
that machine learning architectures that perform well on the source dataset tend
to perform well on the target, too.
The datasets used vary in domain and scope, there are more generic datasets
like: CIFAR-10[17], CIFAR-101[17], PASCAL VOC 2007[18], Caltech-101[19].
Datasets more focused on fine grained recognition were also used such as: Food-
101[20],Birdsnap [21],Stanford Cars [22], FGVCA Aircraft [23] , Oxford-IIIT Pets
[24]. And other texture classification datasets.
For the first experiment fixed features from pretraining are used in a new task; a
logistic regressor then takes these features as input. The results show a strong
correlation between how the model performs while training ImageNet and the
accuracy of the logistic regression classification. Therefore, features learnt with
ImageNet are generally transferable. However, there is a caveat when finetuning
instead of using logistic regression. Finetuning allows the model to learn features
from the source domain, yet such features are not fixed; they can be changed while
training with the target data.
The second and third experiments, in fact, reveal that while transfer accuracy is
correlated to the ImageNet top-1 accuracy, improvement was surprisingly marginal
in the datasets Stanford Cars and FGVC AIR in comparison to training from
scratch.

Table 2.2: Improvement in performance for FGVC datasets while using Inception
v4 in the paper [4].

Dataset Pre-training From Scratch

FGVC Aircraft 93.7% 92.7%

Stanford Cars 89.0 88.8%

These two datasets share several things in common: they’re both dealing with fine
grained classes and their labels are not well represented in ImageNet. Imagenet
has 12,455 images for cars; however, it only has ten high-level car categories, such
as "sports car". On the other hand, Stanford cars has 8,144 images with 196 classes
categorised by make, model, and year. Furthermore, both of them have less than
10,000 images, a number that is much smaller than most datasets that are used to
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train CNNs.
Another interesting result is that other FGVC datasets, such as OxfordFlowers102,
OxfordPets, Birdsnap, and Food-101, do not have the same performance issues.
ImageNet has most of the pet classes present in OxfordPets; it also has 59 bird
classes and 45 classes that pertain to the Food-101 images.
The authors conclude that there is the benefits of pretraining for fine-grained tasks
dwindle as the divergence between source and target labels increases.
Lastly, the third experiment, where datasets are trained from scratch, provides
further insights. The first one is that even if the target datasets are trained on
a randomly initialised model, there is a correlation with the accuracy of a model
pre-trained on ImageNet. Additionally, as was shown previously, some tasks barely
benefit in terms of accuracy from pretraining. Nevertheless, there is a considerable
benefit in the amount of time needed to reach the same comparable accuracy.
To the speed of each technique, the authors calculated the number of steps and
epochs required to reach the 90% of maximum odds of correct classification (defined
in 2.1) achieved at any number of steps. Subsequently, the geometric mean across
datasets was calculated.

log ncorrect

nincorrect

exp (∆) (2.1)

Finetunting reached the 90% threshold in 24 epochs/1151 steps, while training
from scratch reached the same goal in 44 epochs/19531 steps. Finetuning speeds
up the training process by 17 times.
Therefore the results of this paper are significant to our research, mainly because
they prove that similarity between the source and target labels helps improve
performance. Another useful finding is that even if we are dealing with a dataset
that does not benefit much in terms of accuracy, there is still an improvement in
terms of time to convergence.

The paper [25] delves into several similar questions by using Imagenet as a
source for transfer learning.
One of these questions asks whether or not the amount of pretraining data affects
performance. In our methodology, we will be attempting to reduce the amount of
data during the source training. Therefore the answer to this query is interesting.
In order to carry out this experiment, the authors use AlexNet as a model. They
also train said model with 50, 125, 250, 500 and 1000 images for each of the 1000
categories in ImageNet. These pre-trained networks are then finetuned with the
datasets PASCAL-DET, PASCAL-ACT-CLS and SUN-CLS.
Their results suggest that diminishing the amount of data during pretraining does
not significantly affect the target task’s accuracy.
We think this result is compelling since our optimisation strategy is to select and
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reduce data without negatively impacting the performance.
Another important outcome of this paper is analysing how Imagenet relates to
fine-grained recognition tasks. Imagenet has very specific classes, such as different
dog breeds, within its 1000 classes.
More specific Imagenet classes were clustered into their hypernyms until the total
number of remaining classes lowered from 1000 to a lesser number of classes. A
term’s hypernym is a word that is more generic and broader than the term itself.
E.g. "primate" is a hypernym to "chimpanzee" and "human". For this analysis,
specific concepts like "poodle" were incorporated into more generic classes like "dog",
as shown in the figure 2.4. The hierarchy followed was the hypernym/hyponym
taxonomy from wordnet.
The image 2.3 shows the relationship between the number of classes and the
accuracy during classification in the target task. 486 training classes leave the
target performance unaltered, whereas there is a sharp drop in accuracy when
going under 79 classes. The overall conclusion for this experiment is that, while
there is some benefit in pretraining with more fine classes, as long as one does not
go under a critical amount of classes, there are diminishing returns in increasing
the total categories. In particular, going beyond 127 classes for these experiments
seemed to yield only a negligible increase in accuracy.
Subsequently, there are experiments dealing with how the number of classes affects
the learning of features.
The first of these analyses answers whether learning from general classes helps grasp
fine-grained features. Like in the previous experiment, this was done by pretraining
on the same data but with more generalised classes and then proceeding to categorise
the target domain. The k-NN (k nearest neighbours) algorithm categorised target
domain images based on the features from the FC7 layer (AlexNet). The k nearest
neighbours algorithm is a method of categorising data that analyses the nearest
k-neighbours in space for a specific data point. The most prevalent class is the
class that corresponds to the predicted label 2.5. At any rate, the outcome of this
is that by training with only 127 classes, the performance of the k-NN algorithm
lowers only by 15% in comparison to the baseline (features obtained by pretraining
on the original classes).
After these conclusions, the opposite query arises: is training with fine-grained
classes beneficial for coarse recognition? The experiment shows a mixed outcome.
Some classes, such as mammal, fruit or bird, have very similar sub-classes and
therefore identifying the hypernym class is done with excellent accuracy. On the
other hand, classes like tool, fabric and fungus do not have this beneficial response
due to the sub-classes being so disparate.
Lastly, the authors observe that the number of images and the reduction in the
number of classes have a negligible effect. They speculate that these might be
because the target tasks, PASCAL and SUN, might be too similar to the categories
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in ImageNet.

Figure 2.3: How accuracy in classification is influenced by the number of classes
in the source dataset in [25]. The imagenet performance is measured by returning
the model’s fc layer to 1000 classes and finetuning accordingly.

Figure 2.4: Process via which imagenet labels were transformed from specific
categories into coarser more generic concepts in [25]

.
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Figure 2.5: The green dot is the data-point that needs to be classified in this
KNN example. If k = 5, then three of its neighbours are blue, and only two are
red. By majority vote, the green dot is classified as blue in this particular instance.
This method is used in [25] to analyse what features are learnt by pretraining on
classes that are less fine-grained and more coarse. Image taken from [26].

2.3 FGVC

FGVC stands for fine-grained visual categorisation, which is a subfield of image
classification where one must distinguish between visual categories that are more
domain-specific (e.g. classifying different bird species).
Several problems make this task harder than the average image classification task:
First, since these sub-categories are very specific, datasets tend to be fewer and
smaller. Creating a dataset of this type often requires expert-level domain knowl-
edge; therefore, it is more challenging to collect data for fine-grained datasets than
it is to collect data from more general datasets like ImageNet.
Second, there is the sizeable intra-class variation: As shown in the figure 2.6, images
belonging to the same class might appear very visually different.
Thirdly there is the problem of slight inter-class variation: Most of the time, there
are few visual differences between classes. Backgrounds, for instance, tend to
aggravate this problem since they are often redundant. If we are dealing with an
FGVC problem that tries to classify birds.

We will now go into some of the standard practices and methodologies used by the
state-of-the-art FGVC algorithms. According to a 2020 survey on FGVC [27] the
most recurrent datasets in this field are: CUB200-2011. [28]: 11,788 images and
200 classes of birds. It is one of the most commonly used datasets in FGVC.
FGVC Aircraft [23]:10,000 images and 100 different aircraft types.
Stanford Dog [29]: 20,580 images and 120 dog species.
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Figure 2.6: Intra and inter class variation, taken from [27]

Stanford Cars [22] 16,185 images and 196 brands of cars.
Oxford Flowers [30] 8,182 images and 102 flower types.
Furthermore, there are two main methods for classifying images in these datasets:
the strongly supervised and the weakly supervised categorisation methods.

In strongly supervised categorisation methods and fine-grained tasks, de-
tecting objects and analysing local information is of crucial importance because
differences between images appear in small visual subtleties .
It is for this reason that most FGVC algorithms function in the following way:
The first step is locating the essential parts of the object. Secondly, one proceeds
to align the positions of the parts identified in the previous step. Finally, it is
possible to extract the features for classification. Part detection and object detec-
tion often relies on the RCNN algorithm. The RCNN algorithm is similar to the
CNN algorithm, only this time, the process consists of two stages. The first stage
identifies portions in an image that might contain an object. In the second stage,
the image portions are fed into a CNN architecture to learn significant features
automatically. The problem with this type of approach is that it requires image
data with bounding boxes. Unfortunately, this information is seldom available in
practical applications.
Weakly supervised algorithms have been developed as an alternative when fully
annotated datasets are unavailable. These algorithms only use category labels or
text descriptions.
The main hurdle is detecting the crucial parts of an image, and the classification
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algorithms can be divided into four categories:
(i) Part based approaches: two main techniques are used in this case.
Attention bases mechanisms where the main idea is to give more weight to more
critical parts of the images to focus on more discriminative regions automatically.
Clustering: segmentation of an image via grouping pixels that share common
characteristics such as colour, intensity and texture. The figure 2.7 is an example
of using such a technique.
(ii) End to end visual coding approaches: this approach aims to enhance the
visual information contained within the images. It does this by using high-order
mixing of CNN features. In other words, instead of using the traditional global
average pooling, one can use the bi-linear pooling method. This has proven to
enrich the discriminative power of the feature maps.
(iii) Approaches with external information: The idea for this method is to
use additional information such as web images, knowledge graphs or text.
Large datasets are not always available for FGVC tasks; therefore, using web images
with readily available labels has been proposed as a solution. The biggest issue
with this is the fact that labels are often noisy. Experimental results are trying to
minimise the harmful effect of this data.
Another solution is utilising knowledge graphs. These knowledge graphs are data
structures that illustrate the semantic relationships between categories.

Figure 2.7: Example of segmentation taken from [31].Segmentation clusters
pixels that share common characteristics to separate objects within an image. The
algorithm identified four main segments in this image: water, grass, tiger and dirt.
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Related Works

3.1 Semantic and visual similarity

The current thesis originates from the conclusions in [9] which primarily studies
the relationship between visual and semantic similarity. Is our premise of using
semantic similarity as a substitute for visual similarity valid? We think that [9]
answers this question thoroughly.
This paper deals with four main issues:
The first is: Within a taxonomic hierarchy, like the one provided by ImageNet,
what is the relationship between the size of the semantic domain and the nature of
visual variability? In other words, would a more generic class, such as animal, have
more visual variability than a more specific class like "dog"?
Secondly, the authors try to provide a visual prototype for each category. This
analysis considers that within cognitive science, most humans agree on a single
prototype for some categories like "bird". For example, most people would agree
that a bird can fly and is feathered. However, this agreement on prototypes does
not hold for more generic categories. Thirdly, the relationship between semantic
and visual similarity is studied. This examination relies on the cognitive psychology
terms: category and super-category.
A category is a grouping of similar objects, and a super-category is a grouping of
similar categories.
The fourth question is whether or not these categories belonging to the same
super-category share visual similarities. Are the images of cows more visually
similar to dogs (with which they share the mammal super-category), or is it equally
similar to pictures of cars?
Lastly, there is proving that visual similarity inversely correlates to the broadness of
a semantic category. In other words, can computer algorithms successfully classify
across semantically different domains? Or is the visual similarity too scarce in
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order for this to be possible across semantic boundaries?
In order to study how visually different images within a particular category are and
answer the first question, a GIST representation is used. The GIST representation
is a descriptor for an image, which provides a visual summary of the picture in
question. It essentially uses a series of Gabor filters (a type of linear filter) and
combines them into a histogram. The way in which these histograms are generated
is as follows: First, images are segmented into k blocks, and each pixel in this
segment goes through the Gabor filter. Next, each pixel generates a vector of values
ai as a response. Finally, vectors in the same blocks are summed as shown in figure
3.1.

v =
Ø
i∈Bj

ai

where Bj is a particular block. Lastly, the k descriptors of all blocks are concatenated
to give the GIST descriptor.

descriptor = [v1, ..., vk]

Figure 3.1: As seen in this here, the first step after normalisation is to divide the
image into blocks. Denoted by the image being split into several different squares
in the figure. Each pixel generates an array of values. Each square generates an
array by summing the individual pixel arrays, and these arrays of the squares are
concatenated at the end to form the GIST descriptor.

This GIST descriptor helps define another metric: the rs visual scale of a
category S. The visual scale gives us an idea of how visually different images in a
class are; the bigger the number, the more different and disparate the images are
within a given category. The visual scale is the average distance between the mean
GIST descriptor of a category µS and the GIST descriptor of all images in S.

rS = 1
|S|

Ø
I∈S

D(I, µs)
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Where D(I, µs) is the squared Euclidean distance between a given image I and µs.
This experiment concludes that as the depth increases and as categories become
more and more specific, the visual variability decreases.

Figure 3.2: This image shows the relationship between the semantic depth of
images and their average distance. This means that images in finer and more
specific categories like poodle are more visually consistent and similar to images in
broader categories like mammal.

Following this is the study of the relationship between semantic and visual similarity.
What sort of visual relationship do semantically similar classes have to each other?
Or vice-versa.
The Jiang and Conrath semantic similarity measure [32] is used for this next
experiment. The definition for such a metric between two categories, S and T , is
the following:

DJC(S, T ) = 2log(p(lso(S, T )) − (log(p(S)) + log(p(T )))

where p(S) is the percentage of all images in S, lso(S, T ) is the lowest specific
common ancestor between S and T .For instance in 2.2 the lso for "surface" and
"cage" is "artifact.artefact". Subsequently, the visual distance between two categories
is defined as follows:

DV (S, T ) = 1
|T |

Ø
I∈T

D(µS, I)

µs is the mean descriptor of class S. The formula above computes the average
distance between µs and all of the images in the T category. The authors then go
on to perform an analysis of the relationship between DJC and DV . Such analysis
splits into two parts. The first part deals with full images (FI), which are images
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that include the background, and bounding box images (BB), which only focus on
the object of the category, excluding all other elements such as the background.
(i) At low semantic distances: FI images tend to have pretty similar backgrounds
(for instance, cows and goats). Therefore this explains the lower DV compared to
its bounding box counterpart.
(ii) At medium semantic distances: Full images start to have a more diverse
background, and the slope increases.
(iii) At high semantic distances: categories appear in extremely different environ-
ments, therefore the high slope for FF. On the other hand, there is a convergence for
BB pictures, indicative of the fact that at this point, all images are equally dissimilar.

Figure 3.3: Plot of how visual distances change in relation to semantic distance.
It varies depending on the type of descriptor used. However, the general trend is
the same for each descriptor: as semantic distance increases, so does the distance
at a visual level. Within the bounded box task (b), the visual distance increases
much more rapidly.

And finally, the last question relates to the visual broadness in categories.
In order to study this concept, the authors introduce a new definition of "class". All
pairs of categories (S, T ) with a semantic distance smaller than a certain quantity
X, DJC(S, T ) ≤ x are considered as belonging to the same class. Conversely
(S ′, T ′) pairs such that DJC(S ′, T ′) > x belong to different classes. x is called the
semantic span. Given these definitions, the average within-class visual distance is
smaller than the average between-class visual distance, as shown in the figure 3.4.
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Figure 3.4: Red and green lines represent the within-class and between-class
visual distance respectively. The blue line represents the difference between the
two. Within class distance consistently rises as the semantic span increases.

3.2 Training Source Datasets on more Domain
Specific Classes

Since finding large-scale FGVC datasets is often unfeasible, it is common practice
to pre-train neural networks on more general data, such as ImageNet.
The paper [8] tackles the question: how can we design models for FGVC that
perform well with generic pretraining given that we know our target task?
The technique proposed is to select a subset of the source dataset that is visually
similar to the target task.
Prior to this paper, other work had explored the connection between transfer
learning and domain similarity.
[33] demonstrates that random splits are better than man-made object splits when
dealing with transfer learning in ImageNet.
[34] adds 512 relevant categories to ImageNet, and it improves the performance of
the dataset PASCAL VOC.
[35] uses a combined dataset of ImageNet and places as a source and obtains a
better accuracy on some visual recognition tasks.
The novelty of [8] is that while other studies only finetune the final layer, this
finetunes every single layer. As explained before, CNNs consist, amongst other
things, of fully connected layers and convolutional layers. Finetuning on the final
layer entails freezing the convolutional layers. Therefore, features do not change
during the training of the target task. This latter experiment changes the FC (fully
connected) layer and the prior convolutional layers.
Secondly, [8] provides a way to quantify the visual similarity between two domains.
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Given a source domain S and a target domain T , the distance between two images
s ∈ S and t ∈ T is:

d(s, t) = ||g(s) − g(t)||

This formula is nothing other than the euclidean distance between their feature
representations. These feature representations are obtained through g(·) which
is the feature extractor for the image, or as we have referred to before: the
convolutional layers. More specifically, the features in this paper are the output
from the penultimate layer of a ResNet-101.
Furthermore, the authors ignore the effects of domain scale (the number of images).
As a matter of fact, in general, more images increase the performance of transfer
learning. However, the positive effects of domain scale are only logarithmic [36].
Therefore the number of images is not such an unreasonable assumption.
Having defined the distances between images, it is now possible to define the
distance between domains. The distance between the source domain S and the
target domain T is the least amount of work needed to move the images from S to
T . Such a definition of domain similarity can be calculated via the Earth Mover’s
Distance (EMD) [37] [38].
Further simplifying the image features is done to make the computations more
feasible. All image features within one category become, via simplification, the
mean of their features. Using these definitions and simplifications, the Earth
Mover’s Distance between S and T is:

d(S, T ) = EMD(S, T ) =
qm,n

i=1,j=1 fi,jdi,jqm,n
i=1,j=1 fi,j

where di,j = ||g(si) − g(tj)|| and the optimal flow fi,j is the least amount of total
work by solving the EMD optimisation problem. Given all of this, the domain
similarity is defined as follows:

sim(S, T ) = e−γd(S,T ) (3.1)

where γ is a parameter set to 0.01.

21



Related Works

Figure 3.5: Representation of domain similarity via EMD. Red and Green mean
source and target domain, respectively. The size of the circle is the normalised
number of images.

The authors then use the definition of 3.1 to select a subset from the source domain
that best transfers into the target domain. The strategy used is a greedy strategy
where each category si in the source has its similarity measured to the target domain
sim({(si,1)}, T ) 3.1. Within the realm of computer science, a greedy strategy refers
to an algorithm that does not guarantee whether our solution will be optimal. The
optimal solution, in this case, could be found by trying every possible subset as
input for pretraining and then measuring the accuracy of the target task. This is
unfeasible and computationally costly.
Hence, the greedy strategy employed here was to select the top k categories with
the most similarity and use them for pretraining. To this end, Imagenet and the
iNaturalist [39] datasets are used. Additionally, there is another pretraining that
makes use of both datasets combined. Two different ways of selecting a subset are
essential for this latter method. Subset A was created by including the top 200
ImageNet + iNaturalist categories for each of the 7 target FGVC datasets. Subset
B on the other hand, used the 400 most similar categories for CUB200, NABirds,
100 categories for Stanford and 50 categories for Stanford cards and Aircraft.
Except for Food-101 there is always better transfer learning performance when
pretraining from a similar source.
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Figure 3.6: The number show the top-1 accuracy. In green and red are the
particularly good and bad performances respectively. Overall the datasets selected
based on domain similarity result in a good performance for every target task.

3.3 Other Methods of Source Data Selection that
are not Semantic

Another example of being selective with pretraining data comes from the natural
language processing (NLP) side of machine learning. Natural language processing
concerns itself with analysing language through neural networks. Notably, [6] deals
mainly with the issues faced by heterogeneous transfer learning, but some insights
can prove pertinent to this thesis.
Heterogeneous transfer learning is characterised by having different feature spaces
for source and target dataset [40]. An example of different feature spaces in NLP
is having two texts written in different languages.
The authors of this paper propose, amongst other things, the selection of a subset
of the source dataset to improve accuracy in the target task.
The proposed technique is to have a weight vector {αk}k = 1...K over a data set.
This weight vector represents the importance of that particular entry. In order to
make optimisation more feasible, the dataset is organised into k clusters S1, ..., Sk

via the k-means algorithm. The optimisation of the problem is as follows:

min
a,Wf ,Wg ,Wh

µ
KØ

k=1

αk

|LSk
|

· LHR:K(Sk) + LHR(T ) + R(W ) (3.2)

where
αk = exp (ak)qK

K=1 exp (ak)
, 0 < αk < 1

and
LHR:k(Sk) =

Ø
i∈LSk

Ø
ỹ /=y

(i)
s

max[0, ϵ − f(g(xi
S)) · (y(i)

s − ỹ)T ]

f and g are transforms that encode the different target and source features into
a common latent space. Latent spaces mitigate the problem of having different
feature spaces. E.g. when dealing with two languages, finding a latent space means
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that a neural network views the words "cane" (in Italian) and "dog" with similar
features.
a is a learnable parameter that defines the importance of each class cluster,
LHR:K(Sk) is a hinge loss for the cluster in the source task, LSk

is a set of source
indices for a cluster. Finally, µ is a hyper-parameter that only penalises optimising
for the source task.
The authors applied this technique and others in the context of a hetero-lingual
classification task. The table in figure 3.7 shows that the proposed mechanism
(CTHL:2fc+ATT+AE) outperforms other baselines. The attention (AE) mecha-
nism does improve the performance. AE refers to an auto-encoder technique, and
2fc indicates that the architecture has two fully connected layers at the end. The

Figure 3.7: Results for the hetero-lingual classification task. The proposed
attention mechanism provides the best results. This suggests that not all source
data is equally important for the finetuning process.

datasets used were RCV-1 [41], 20 News Groups [42] and Reuters Multilingual [43].

Another paper that handles a similar issue is [7] deals with creating a subset of
the source dataset to improve the target task’s performance.
The technique proposed here is called selective joint finetuning.
This technique measures similarity between the source and target dataset images
through low-level features. The authors state that this might be better than using
high-level semantic information because the specificity of the target task might lie
precisely on the low-level features (such as the fur on pets for the Stanford Dogs
dataset).
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There are two ways of acquiring these low-level features: The first is through the
response of a Gabor filter, which is particularly good at recognising textures. And
the second is through using the output from the kernels of different convolutional
layers of an AlexNet network trained on ImageNet.
Each bin contains roughly the same number of pixels in these feature histograms.
The histograms of all filter responses are then made into a feature vector for a
particular image xi. Such a process is entirely analogous to how the GIST features
were constructed, as mentioned previously.
These descriptors are also calculated for the target domain. For each training image
in the target domain xt

i, the nearest neighbours are sought in the source domain.
The distance between two images xt

i (target) and xs
j (source) is the following:

H(xt
i, xs

j) =
DØ

h=1
wh[κ(ϕ(i,t)

h , ϕ
(j,s)
h ) + κ(ϕ(j,s)

h , ϕi,t
h )]

Where wh = 1/Nh and Nh is the number of kernels in a particular layer. This is
done to normalise the result among different convolutional layers, which might have
a different number of kernels. ϕi,t

h and ϕ
(j,s)
h are the kernel histograms for images xt

i

and xs
j .

κ(·, ·) is the KL-divergence, a function that measures how different two probability
distributions are.
Furthermore, particular special attention is given to instances that are hard to
classify. The uncertainty of classification is given by the metric:

Hm
i = −

CØ
c=1

pm
i,c log(pm

i,c)

C is the number of classes and pi,cm is the probability that the i-th training example
belongs to the class c after m iterations.
Training samples with high uncertainty have a higher number of nearest neighbours
in order to help in their classification.
For the experiments, the authors used a Resnet-152 architecture with the pretrain-
ing of [44]. Source and training data are initially mixed into mini-batches. After
an average pooling layer, the source and target are split, and each of them is sent
to a separate soft-max classifier.
The data used is the ImageNet ILSVRC 2012 training set as source domain for
Stanford Dogs [29] , Oxford Flowers [30] and Caltech 256 [45]. A combination of
ImageNet and Places [46] was used as a source for preraining MIT Indoor 67[47].
We are partiularly interested in the results pertaining to Stanford Dogs and
OxfordFlowers-102 since they deal with a fine grained visual recognition task. From
the results of table 3.2 it is clear that the selective usage of a source dataset is
beneficial. However the authors themselves state that the selection of a source
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Table 3.1: Classification Results for paper [7]

Dataset Method Mean Acccuracy

StanfordDogs Join fine-tuning with all source samples 85.6%

StanfordDogs Selective joint fine-tuning 90.2%

OxfordFlowers Join fine-tuning with all source samples 93.4%

OxfordFlowers Selective joint fine-tuning 94.7%

domain (and its subset) for a specific target task is still an open problem for future
investigation.

Next, we peruse the paper [48], the authors have three main points they wish to
elucidate.
The first one is that more pretraining data does not necessarily help.
Secondly, matching source and target dataset distribution is helpful. This
is done by weighting all data in the source to give more importance to relevant
images. Finally, fine-grained tasks require fine-grained pretraining. The
pretraining step needs to capture the correct discriminative features to classify
during the target dataset.
In order to compute the importance of each label, the authors train the model M .
The first step is to pre-train such a model with the source dataset. Subsequently,
the target domain images are fed into this model. What is particular about this
method is that the model does not change at this phase; its layers, even the fully
connected, remain frozen. The model is receiving target images at input while still
predicting source labels. This model M is the first piece of the puzzle to calculate
labels’ importance.
The next step is to come up with a way of estimating the importance of each
label in the source dataset. In order to do this, the paper starts analysing the
expected value of the loss function. This latter concept is also known as risk
in machine learning, and it gives us an idea of the common mistakes a model makes;
by minimising the risk, one can improve the neural network.
The objective, therefore, is to define a risk function for the target problem that
is a function of the source dataset. However, this is troublesome because of the
differences in how data is distributed in the source and target domain. During
pretraining the neural network is trying to optimise parameters θ in order to
minimise the expected value of the loss function Ex,y∼Ds [L(fθ(x), y)]. The problem
with this is that the distribution at pretraining time Ds is often different than the
one for the target dataset Dt.
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Since the objective is to optimise, taking into consideration the distribution Dt

while finetuning, we consider the loss function:

Ex,y∼Dt [L(fθ(x), y)] =
Ø
x,y

Pt(x, y)L(fθ(x), y)

Ps and Pt are the distributions of the source and target datasets, respectively.
Subsequently, the loss is rewritten in order to include the source Ds:

=
Ø
x,y

Ps(x, y)Pt(x, y)
Ps(x, y)L(fθ(x), y)

=
Ø
x,y

Ps(x, y) Pt(y)Pt(x|y)
Ps(y)Ps(x|y)L(fθ(x), y)

Furthermore the assumption Ps(x|y) ≈ Pt(x|y). This is a reasonable assumption
since it says that the distribution in the target and source dataset is similar given a
certain label. The "dog" class is probably similar regardless of the dataset in which
it is.

≈
Ø
x,y

Ps(x, y)Pt(y)
Ps(y)L(fθ(x), y)

= Ex,y∼Ds [
Pt(y)
Ps(y)L(fθ(x), y)]

So far, the assumption is that target and source share the same labels. The authors
solve this problem by estimating both Pt(y) and Ps(y) for the labels in the source
domain. These values represent distributions over the target and source dataset,
respectively.
Ps(y) was estimated by the times a label appears by the total number of data entries
in the source dataset. On the other hand, Pt(y) is obtained by using the predictions
of model M and averaging them. This last step computes the probabilities of
source labels on target domain examples.
This methodology was tested using the Inception v3[49] and the AmoebaNet-B
models[50].

3.4 Oxford Pets State of the Art
We also rely on the results and techniques shown in [51]. This paper deals with a
classification task with adversarial examples that have been injected with noise.
However, the main point of interest here is the authors’ results and techniques
when dealing with the regular Oxford pets data- without any noise.
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Table 3.2: Classification Results for paper [7] with Inception v3

Pre-training Birdsnap Oxford
Pets

Stanford
Cars

FGVC
Aircraft

Food-101 CIFAR-10

Imagenet-Entire Dataset 77.2 93.2 91.5 88.8 88.7 97.4

Imagenet-Adaptive Transfer 76.6 94.1 92.1 87.8 88.9 97.7

Random Initialization 75.2 80.8 92.1 88.3 86.4 95.7

Table 3.3: Classification Results for paper [7] with Amoeba. The best published
results refers to results from other papers

Pre-training Birdsnap Oxford
Pets

Stanford
Cars

FGVC
Aircraft

Food-101 CIFAR-10

Imagenet-Entire Dataset 80.0 94.5 94.2 90.7 91.7 98.0

Imagenet-Adaptive Transfer 80.7 95.1 93.5 89.2 91.5 98.0

Best Published Results 82.9 95.9 94.6 94.5 93.0 99.0

Oxford pets is a dataset introduced by the paper [24]. This collection of images
contains 7349 pictures of 37 breeds of cats and dogs. This dataset was initially
introduced to research the problem of fine-grained image categorisation.
In the paper [51], the source dataset is ImageNet, and the target dataset is Oxford-
Pets which is trained with an adamW optimiser with a oneCycle scheduler while
freezing the weight layers of the NN for the first 4 epochs and unfreezing them for
the remaining 4. This setup reaches a 93.10 accuracy.
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Methodology

We explore methods of reducing the amount of data needed for the source dataset
while lessening the negative impact on the performance of the target task.
In order to achieve this, we select source dataset instances that are particularly
relevant to the target task. As noted in the related works section, there are different
ways of selecting categories during the pretraining phase. We opt for a method
that analyses semantic relationships between source and target classes. Papers like
[7] have noted the shortcomings of a semantic-based selection: this method might
ignore important underlying low-level features spread across semantically unrelated
categories. There is, however, an advantage in using linguistic relations. Knowing
which categories to select for the source domain training before the pretraining
dataset is possible.
Our method makes it so that if the target task is known, the creation of the source
dataset can be focused only on the classes identified by the semantic selection
process.
Such an objective is achievable via a lexical database for English (or whatever
language the task requires). The database, as mentioned earlier, must possess
links and semantic relationships between words organised via a tree graph with a
hierarchical structure.
Semantic relationships allow the usage of several metrics for quantifying the simi-
larity between words; There exist several useful metrics: path and wup similarity
are two possibilities. These are based on the structure of a taxonomic hierarchy.
This hierarchy views morphemes as nodes in a tree graph, as in in 2.2. The path
similarity formula is the following:

similaritypath = 1
distance(s1, s2) + 1

The distance word refers to the shortest path length between the two words whose
similarity is being measured s1 and s2. The similarity scores range from 1 to 0,
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where 1 represents identity. The wup similarity formula, on the other hand, is the
following:

similaritywup = 2 · depth(lcs(s1, s2))
depth(s1)depth(s2)

In this case, lcs is the least common subsumer. In other words, their most specific
common ancestor.
We use these metrics to analyse the source dataset classes or even the morphemes in
the lexical database if the source dataset is unavailable. The first step is to delineate
into a list of words lt, which is the domain of the target dataset. For example, if
the target domain is animal-related like Oxford-Pets, the chosen words could be
nouns related to pets like "dog, cat".Another case is "flower" for Oxford-Flowers, or
"food, fruits, vegetables" for Food-101.
This array of terms can consist of any arbitrary number n of words. The list of
words can even be all of the categories for the target dataset.
The next step is to calculate each source morpheme’s mi similarity to each word wj

in lt, and this, in turn, produces a list of similarity values for each mi in the source:

l(s,i) = {similarity(mi, w1), ..., similarity(mi, wn)}

We define the similarity of each source morpheme mi to the target domain as:

si = max(l(si))

The experimenter chooses the similarity that each pretraining class must have
to be selected via a threshold t. Having a higher threshold implies selecting
source categories with a stronger semantic relationship to the list of words lt. Any
class whose similarity to the source domain is lower than t is excluded from the
pretraining phase.
For instance, we have t = 0.15 and Oxford-Pets as our target. The morpheme that
we are trying to analyse is "speedboat".

similaritypath(speedboat,dog) = 0.067

similaritypath(speedboat,cat) = 0.05

l(s,i) = 0.067. And therefore given t the class "speedboat" is not considered relevant
enough to include in the pretraining.
On the other hand, the class "collie" is included in the dataset because it has a
similarity of 0.25 with "dog" and 0.125 with "cat".
After selecting the appropriate classes, the first category uses all images from such
categories as input.
This data is separated into a training and a validation dataset. Furthermore,
transformations modify the data before the neural network begins its training
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process. The transformations used for the training dataset are similar to the
default data augmentation done for the FastAI framework: RandomResizedCrop
zooms the image, resizes it and then it crops it. Resize resizes the image into a
given dimension. RandomHorizontalFlip flips the image along its horizontal axis
with a given probability specified by the user. Next, RandomRotation accepts
two numbers representing an image’s minimum and maximum rotation. Then,
ColorJitter randomly affects the brightness and saturation of an image. With a
given probability, RandomPerspective changes an image’s perspective. Lastly, the
transforms change the image into a tensor (ToTensor) format, and the tensor is
normalised (Normalisation). The validation transforms are fewer. These are Resize,
ToTensor and Normalization.
With this data, we are now ready to input tensor images into the model, which in
this case was the ResNet-34. The model undergoes training for a certain amount
of epochs, and no layer is frozen at this stage. While the network is being trained,
the model uses the validation dataset after each epoch to measure its accuracy.
The model’s output is a tensor whose size equals the number of classes selected.
It is a one-hot encoded tensor of zeroes and ones. This training step results in a
model whose weights are saved.
Subsequently, we take this same model with the weights learnt from the previous
step and replace the final fully-connected layer with another fully connected layer
whose length equals the number of classes in the target dataset.
Then this new model is trained with the same methodology with which the authors
of [51] trained their ResNet. This methodology takes the model and only trains
the fully connected layers for the first half of the training epochs. Subsequently,
both convolutional and fully connected layers are trained.
As aforementioned, the first experiment selects all images of the relevant classes.
However, additional experimentations explore the effect of the number of images
chosen and the classes chosen.
The second experiment measures the impact of class selection on the overall
performance by using balanced classes. We took some of the results from the
previous experiments, maintained the number of photos they originally used and
then modified the classes employed to 1.000. We compared the most promising
outcomes of the previous experiment with a pretraining done on the same number
of images but with all classes from the source dataset.
Each class i was as balanced as possible. However, this was not always possible
since the number of images n chosen was not divisible by the number of classes m.
Therefore the number of images xi was determined in the following way:

xi =

⌊m/n⌋, for i > m mod n

⌊m/n⌋ + 1, for i ≤ m mod n
(4.1)
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Essentially what this means is that we perform an integer division of the classes
by the images. This results in a remainder r = m mod n most of the time. This
integer division has a remainder which is distributed by giving the first r classes
one extra image.
A following third analysis involves selecting a certain amount of classes through
a given threshold. This selection process of categories is entirely identical to
the one outlined in the first experiment, except now the number of selected
images is arbitrary. The entries chosen per category is as balanced as possible
sometimes. However, this is not achievable since certain types of images are
sometimes underrepresented.
The algorithm selects images in the following way. There is a number n of images
we want to select and m number of categories. These classes have already been
selected through the process described above. So the first step is to compute:

x = ⌊m/n⌋

This cannot be the number of images per category because x · m does not
necessarily equal n, and not every category has x images; some have less. The
methodology, therefore, is as follows. Initially, each class i is assigned yi images:

yi = min(x, zi)

where zi is the total number of images for class i, then we define r, which is the
difference between the number of images we desire and the ones we would have if
each category were assigned yi entries.

r =
nØ

i=1
(x − yi)

The images are now distinguished into two sets. The first set consists of underrep-
resented classes belonging to set A with several images less than x. The second
is overrepresented categories (set B) with more images than x. The number of
images for A remains yi, for B however, we must perform further computations.
The number of images for the categories in set B needs to b increased in order
to get to a total number of images that is equal to n, such a thing is done in the
following way.

x′
i∈B =

⌊z/|B|⌋, for i > |B| mod z
⌊z/|B|⌋ + 1, for i ≤ |B| mod z

(4.2)

where z:
z = r +

Ø
i∈B

yi
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and |B| is the number of categories that belong to the set B.
The number of images that could not be taken from the A set is taken from each
class of B so that it is as balanced as possible. This might not always be possible
since ⌊r/|B|⌋ is not necessarily an integer. The remaining k = |B| mod z images
are redistributed equally amongst the first k classes.

Figure 4.1: Pipeline for training the source dataset. The class selection phase is
the novel part introduced by our method. In this example Collie has a similarity of
0.25 to the target domain, so if the threshold is equal to or lower than 0.25 collie is
utilised in training.

Figure 4.2: Pipeline for the target domain training.
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Chapter 5

Experimental Setup

The hardware utilised is an NVIDIA Corporation GP102 [TITAN Xp] on an Ubuntu
"18.04.6 LTS (Bionic Beaver)" machine.
The software employed was Pytorch version 1.10.1+cu102 and Pytorch Lightning
version 1.5.3. The source dataset is the ILSVRC ImageNet, and there are two
target datasets: the first one is the Oxford-Pets [24] and the second one is Oxford-
Flowers102 [30].
Oxford-Pets has a total of 37 classes; 25 dog classes and 12 cat classes.
Oxford-Flowers102 has a total of 102 flower classes.
The training of the ILSVRC ImageNet dataset uses the following hyperparameters:
batch size =65,optimiser = SGD , scheduler = OneCycle with maximum learning
rate = 0.05, training epochs = 50, learning rate = 0.05, image resolution = 224.
The source training utilises the dataset’s standard training and validation split.
Moreover, not every image was used, and some, if not most, were filtered by the
semantic filtering algorithm proposed in the previous chapter. The amount of
images filtered depends on the "threshold" hyperparameter.
The threshold hyperparameter determines the number of classes, except for the
balanced source training experiments, 6.5 and 6.5. These two experiments utilise
all of the 1000 ImageNet classes. Conversely, the experiment 6.3 varies its number
of classes while preserving the number of images at 210.273. On the other hand,
target training uses another set of hyperparameters: batch size = 64, optimiser
= AdamW, scheduler = OneCycle with maximum learning rate = 0.001, training
epochs = 8, learning rate = 0.001, image resolution = 224. These hyperparameters
are mostly similar to the ones used in [51].
Furthermore, like in [51], we split the Oxford-Pets dataset into 5912 training
images and 1478 test images. For the Oxford-Flower102 dataset, we utilised the
split already provided: 1020 training examples and 6149 test images. Lastly,
there are the hyperparameters utilised for the transforms: RandomRezisedCrop
utilises size=224 and scale=(0.91,1.0). The scale parameter is responsible for
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zooming the image and size rescales it to the desired size. Resize has a size
= (224,224). RandomHorizontalFlip uses p=0.5, which represents the proba-
bility of horizontally flipping an image.RandomRotation(degrees=10) randomly
selects a number between [-10,10] which represents the degree rotation for the im-
age. ColorJitter utilises (brightness=0.2,contrast=0.2,p=0.75).RandomPerspective
has(distortion_scale=0.2, p=0.75), where distortion_scale regulates the degree of
distortion. Normalize uses (mean=[0.485,0.456,0.406], std=[0.22,0.224,0.225]).
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Chapter 6

Results

The tables 6.1 and 6.4 show the results for the the method proposed in this thesis.
Alongside our proposed techniques, there are two other experiments in these tables.
No TL shows the outcomes of not using any transfer learning, while the TL standard,
as the name suggests, employs the traditional techniques for transfer learning.
6.1 displays information about Oxford-Pets’s target domain. Unsurprisingly, No
TL has the worst accuracy at 62.65% while TL standard holds the best at 93.17%.
On the other hand, all TL Proposed rows display lower accuracies than TL standard
but get reasonably close to the performance achieved by standard transfer learning.
Moreover, every experiment surpasses No TL’s accuracy.
However, the benefit of semantic selection and our contribution is most apparent in
the savings column. This column quantifies the diminishment of iterations needed
for the pretraining phase. "Savings" has the following definition:

1 − source iterations
28,826,257

28,826,257 is the number of iterations needed to pre-train the Pytorch ResNet-34
model. This number came about in the following manner: 1,281,167 is the number
of images in the ImageNet training dataset. 8 is the number of cores used to train
the ResNet34 model. 32 is the batch size and 90 is the number of training epochs.
Therefore the final calculation is the following:

iterations = images

batch_size
∗ cores ∗ epochs

A higher threshold yields higher savings since fewer images and classes are selectable
as source training input. Moreover, lower thresholds produce a higher accuracy,
but there are diminishing returns. The difference in accuracy between (path=0.25)
and (path=0.10) is a mere 0.08%, yet the disparity amongst savings is much higher
at 14.34%. Beyond a certain threshold, there is not much benefit to increasing the
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number of source images.
The similarity metric is also noteworthy. The wup experimentations use threshold
numbers that allow them to get as close to the source image values for the path
experiments. However, the algorithm selects classes, and it is not practicable to
directly select the number of images desired. Therefore the direct comparison
between wup and path is not possible. However, we can still derive specific consid-
erations. Wup is less predictable as a metric.Path follows the trend of increasing
accuracy as the threshold decreases. Contrarily wup does not reliably follow such
a trend. In the table 6.1 (wup=0.67) has a higher accuracy than (wup=0.66), on
the other hand in 6.4 lower wup values yield higher accuracies.
In 6.1 ,(Path=0,125) has 342,442 images, (Wup=0.67) has 314.001 and (Wup=0.66)
has 400,892. Path’s accuracy surpasses the two wup thresholds.Consequently, "path"
is the metric that we focus on in the later experiments.
Table 6.4 shows the next set of outcomes. It performs the same TL experiments as be-
fore but uses the Oxford-Flowers102 as the target dataset. TL Proposed(path=0.15)
and TL Proposed(wup=0.74) have lower accuracy than the No TL row. This result
suggests that 7800 images are too few, leading to a drop in performance. The
rest of the experiments surpass the no-transfer learning baseline. The table shows
other path thresholds not present in the Oxford-Pets results (path=0.085, 0.083
and 0.075) to analyse what happens with a comparable number of images. The
delta accuracies are still lower than that of 6.1.
The outcomes of the following experiment examine the impact of class selection
on accuracy. We took results with the hyperparameters path=[0.15,0.125,0.10]
from 6.1 and 6.4. These results maintained the number of photos originally used;
however, the number of classes employed changed to 1,000. The original number of
images was distributed among the 1.000 classes in a balanced way. This analysis
is reported in 6.2 and 6.5, they refer to the Oxford-Pets and Oxford-Flowers102
datasets respectively.
For the Oxford-Pets dataset, the consequences of category selection are straight-
forward. First, semantic filtering of categories is beneficial; every entry’s delta
accuracy is positive. Suppose one is working with a certain amount of images. In
that case, it is more advantageous to have the source images be visually similar to
the target domain rather than having more categories.
On the other hand, the balanced classes experiment shows another situation entirely
when dealing with the Oxford-Flowers102 dataset. In this case, the Proposed TL
is damaging the categorisation accuracy. Transfer learning performs better when
using 1,000 ImageNet classes instead of appointing them.
Several other studies mentioned in the previous sections provide an answer. In
particular, [4] mentions that the improvement in accuracy by pretraining from
scratch was particularly poor for classes that were not well represented in ImageNet.
Unfortunately, despite our process of selecting the source dataset, we could not
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mitigate this issue. Indeed, ImageNet has only two classes that are hyponyms of
the word flower: yellow lady’s slipper and daisy. On the other hand, the number
of dog classes in ImageNet is 108, and the number of canines is 120. At the same
time, the number of cats and felines is 6 and 10, respectively.
Lastly, there is the third experiment. The table 6.3 shows its results. It confirms
that performance increases when the source dataset has sufficient images pertinent
to the target. Conversely, adding more classes while maintaining the same number
of images is harmful. The only exception is path=0.125. The difference in classes
between path=0.125 and path=0.15 is 102. These 102 classes contain categories
such as "dalmatian", "boxer", and "Madagascar cat", all extremely relevant to the
target task.
The performance benefits as long as the classes added continue being relevant to
the final training phase. Thresholds below 0.125 add images and categories that
increasingly become more semantically distant from the visual domain of "dogs"
and "cats". Accordingly, performance decreases.

Table 6.1: Comparison of the accuracy between the standard transfer learning
technique and our proposed techniques.
The similarity metric and the similarity threshold are respectively written in
between parenthesis in TL Proposed().
The definition of savings is 1 − source iterations

28,826,257 , where the denominator represents the
number of iterations in the standard pretraining for ImageNet.
Furthermore, Delta Accuracy is the difference between each row’s accuracy and
the accuracy of the No TL experiment.

Source Dataset=Imagenet, Target Dataset=Oxford-Pets

- Source
Classes

Source
Images Savings Accuracy Delta

Accuracy

No TL 0 0 - 62.65% 0%

TL Standard 1.000 1.281.167 0% 93.17% +30.52%

TL Proposed(path=0.15) 166 210273 99.43% 88.70% +26.05%

TL Proposed(path=0.125) 268 342442 99.07% 90.46% +27.81%

TL Proposed(path=0.10) 411 526226 98.57% 90.53% +27.88%

TL Proposed(wup=0.67) 246 314001 99.15% 90.19% +27.54%

TL Proposed(wup=0.66) 313 400892 98.91% 89.65% +27.00%
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Table 6.2: Every experiment in this table utilised all of the 1000 classes in
ImageNet. The Delta accuracy refers to the difference in accuracy between the TL
Proposed and the TL Balanced experiment that has the same number of source
images.

Balanced Classes

Source Dataset=Imagenet, Target Dataset=Oxford-Pets

Source Images TL Proposed TL Proposed
Accuracy

TL Balanced
Accuracy Delta Accuracy

210273 path=0.15 88.70% 81.66% +6.44%

342442 path=0.125 90.46% 85.52% +4.94%

526226 path=0.10 90.53% 86.33% +4.20%

Table 6.3: This table pertains to an experiment where the source images remain
fixed at 210.273, the number of images in TL Proposed(path=0.15).
The Delta Accuracy refers to the difference in Accuracy between TL Pro-
posed(path=0,15) and all of the other runs.

210.273 Source Images

Source Dataset=Imagenet, Target Dataset=Oxford-Pets

Source Classes Accuracy Delta Accuracy

TL Proposed(path=0,15) 166 88.70% -

TL Fixed(path=0,125) 268 89.38% +0.68%

TL Fixed(path=0,01) 411 86.40% -2.3%

TL Fixed(path=0,075) 830 83.56% -5.14%

TL Fixed(path=0,05) 997 81.94% -6.76%
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Table 6.4: The definition of savings is 1 − source iterations
28,826,257 , where the denominator

represents the number of iterations in the standard pretraining for ImageNet.
Furthermore, Delta Accuracy is the difference between the accuracy and the
accuracy of the No TL row.

Source Dataset=Imagenet, Target Dataset=Oxford-Flowers102

Source
Classes

Source
Images Savings Accuracy Delta

Accuracy

No TL 0 0 - 47.52% 0%

TL Standard 1.000 1,281,167 0% 84.05% +33.53%

TL Proposed(path=0,15) 6 7,800 99.98% 22.74% -24-78%

TL Proposed(path=0,125) 31 39,881 99.89% 49.02% +1.5%

TL Proposed(path=0,10) 77 98,827 99.73% 56.59% +9.07%

TL Proposed(path=0.085) 123 156,720 99.58% 61.00% +13.48%

TL Proposed(path=0.083) 247 316,133 99.14% 60.77% +13.25%

TL Proposed(path=0.075) 423 540,393 98.54% 62.16% +14.64%

TL Proposed(wup=0,74) 6 7,800 99.98% 26.26% -21.26%

TL Proposed(wup=0,61) 36 46,381 99.87% 51.81% +4.29%

TL Proposed(wup=0,55) 76 97,574 99.74% 55.93% +8.41%
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Table 6.5: Every experiment in this table utilised all of the 1000 classes in
ImageNet. The Delta accuracy refers to the difference in accuracy between the TL
Proposed and the TL Balanced experiment that has the same number of source
images.

Balanced Classes

Source Dataset=Imagenet, Target Dataset=Oxford-Flowers102

Source Images TL Proposed TL Proposed
Accuracy

TL Balanced
Accuracy Delta Accuracy

7.800 path=0.15 22.74% 34.92% -12.18%

39.881 path=0.125 49.02% 56.22% -7.18%

98.827 path=0.10 56.59% 63.32% -6.73%

56.720 path=0.085 61.00% 65.18% -4.18%

16.133 path=0.083 60.77% 67.18% -6.41%

40.393 path=0.075 62.16% 63.44% -1.28%
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Conclusions

This thesis analysed ways of optimising transfer learning problems in machine
learning. Specifically, we proposed a method for reducing the number of images
needed for the pretraining phase. The proposed approach is not a silver bullet;
however, it provides flexibility and options for experimenters who need to diminish
the amount of source training data.
A diminished pretraining time is particularly beneficial for researchers developing
or experimenting on different ML architectures. The most lengthy part of training
a model is the source pretraining phase. This method can expedite research
significantly by reducing the time needed for the pretraining step.
The threshold hyperparameter controls the minimum semantic distance for a class
to be accepted into the pretraining phase. It can vary according to the specific
needs of the research. For example, the threshold can be higher or lower depending
on whether researchers need resource efficiency or higher performance. These
decisions are compromises since, as seen in the previous chapters, resource efficiency
comes at the cost of accuracy and vice-versa. With the aid of our technique, such
compromises are less harmful than the alternative of reducing the number of images
used at the source.
Furthermore, the third experiment showed that increasing the number of classes
can sometimes be beneficial even if the number of images remains the same.
Nevertheless, there is a caveat that concerns the source dataset’s nature. The
experiments show that the number of source classes pertinent to the target task
must be sufficient. Unfortunately, ImageNet did not have enough "flower" classes,
and therefore this method could not be applied with success. Consequently, we
conclude that our technique works best when there are enough categories in the
source dataset relevant to the target domain. When trying this approach on a
dataset like Oxford-Pets, it is possible to use less data while sacrificing minimal
accuracy.
As previously mentioned, this approach is also helpful in creating source datasets
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from scratch. Using the target categories as input for the semantic selection
algorithm, one can generate a list of pertinent classes that are helpful in the source
dataset.
Moreover, this thesis concentrated on filtering categories from a single source.
However, an open question is whether this technique can work if applied to several
source datasets at the same time? [8] is a paper that incorporates several distinct
source datasets to create only one. The paper authors reach their best performances
by utilising a source dataset merging relevant classes from ImageNet and iNaturalist.
Further research could try to semantically filter classes from different datasets and
combine them into one.
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