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Chapter 1

Introduction

In today’s connected world, security is a constant concern. Any compromise to integrity,
authentication, confidentiality, and availability makes software insecure. Software systems
can be attacked to steal information, monitor content, introduce vulnerabilities, and dam-
age its behavior.
The challenging aspect of this field is that there is no dividing line between what is con-
sidered safe and what is not, so the idea of software security involves a proactive approach
in its resolution: "Security is a process, not a product" 1.

Although there are innumerable types of attacks, two main categories can be distin-
guished: internal and external.
Most external attacks happen to steal confidential information through the use of malware
such as worms, Trojan horses, and phishing, but also to make a service unusable for a
certain period of time, such as DoS or DDoS.

On the other hand, internal attacks involve software users themselves. The adversary is
no longer a third party between two trusted parties, but rather one of them with physical,
local, or remote access to the target software. The goals of a MATE (Man-At-The-End)
attack include violating the confidentiality of algorithms or other data inside of a soft-
ware program and/or the integrity of the software behavior as intended by the developer.
Practically, any device under the control of an end user that runs proprietary software is
exposed to MATE attacks[1]. Software developers are also afraid of the prospect that a
competitor can extract proprietary algorithms and data structures from their applications
to incorporate them into their own programs [2]. In this scenario, there are two general
ways to protect intellectual property: legally or technically.

Legally means getting copyrights or signing legal contracts against creating duplicates,
but in many cases it does not represent the best choice, especially for small companies or
even worse for single developers, due to the cost and maintenance of such a solution.

1Bruce Schneier, Crypto-Gram, 2005
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Technically means the owners of the software will make reverse engineering of their
code impossible or at least not feasible in terms of time and resources. One of the most
promising techniques to limit the effect of a reverse engineering attack is code obfuscation.

Obfuscation consists of code transformations that make a program more difficult to
understand by changing its structure while preserving the original functionalities [3]. This
means that we pass the code we want to protect through a obfuscator, which is a program
that performs semantic-preserving code manipulation to transform the original code into
a much more complex version.

It must be said that code obfuscation cannot always completely protect an application
from malicious attacks. Moreover, it is not mandatory for an attacker to retrieve the orig-
inal source code of the application, as it is sufficient for the reverse-engineered code to be
at least comprehensible to the malicious user. In fact, given enough time, effort and deter-
mination, a competent programmer will always be able to reverse engineer any application
[2].
This last sentence would seem to nullify everything previously said about protection against
MATE attacks: What could be the point of applying obfuscation to code if, with the right
resources, it is possible to overcome that obstacle and trace back, if not to the original
code, at least to an equally comprehensible version of it?
Time is the answer: since it is not possible to protect code for an indefinite period of time,
obfuscation is aimed at those specific applications that need immediate and maximum pro-
tection as soon as they are released and for a short period, after which it would no longer
be worth attacking. For example, a newly released film needs protection only during the
first few weeks, as most of the revenue is concentrated in that time period. The same
applies to a game or in-game content available for a limited period, such as skins.

The downside of this technique is definitely the drop in performance of obfuscated pro-
grams: building a more complex version of the application means that the obfuscator has
to add more and more complex computations, many of which introduce loops or data
structures with the sole purpose of confusing the attacker: the execution time required for
an obfuscated program will always be greater than its original version.

The steps generally followed when applying obfuscation to the code consist of applying
as much protection as possible and running the code to see if performance is acceptable.
If it is too slow, go back to remove some transformations and try running it again. This is
done until a fair compromise between protection and performance is found.
This process can be repeated an indefinite number of times, resulting in thousands of code
executions and taking hours and hours to reach a solution.
This results in the release of the application to the public with a not inconsiderable delay,
causing a considerable loss of profit.

In this scenario, being able to understand a priori whether these performance losses
may be negligible, or whether the impact of one or more transformations is too costly in
terms of time and resources, could be a game changer:developers would be able to figure
out which techniques to apply without running the code, saving a great deal of time and
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being able to release their applications sooner.

Therefore, the objective of this thesis is to build a machine learning model capable of
predicting the overhead caused by the application of various obfuscation techniques before
they are applied to the code under analysis .

The necessary data on the execution of vanilla and obfuscated programs, needed to
construct a complete dataset, were collected by another student during the development
of his thesis [4]. In his work, each selected program was executed with a set of different
inputs to collect a wide variety of execution traces. Subsequently, each application was
obfuscated using Tigress2, a tool developed by the University of Arizona. In the end, in-
formation on time measurements was taken by running these obfuscated applications, as
previously done for their vanilla counterparts. This whole process led to the creation of a
large data collection.

Although having a huge quantity of execution traces, the challenging part was creating
a complete dataset, making them suitable for a machine learning model: this was the start-
ing point of this thesis work. The first step was to clean the traces by removing unnecessary
information and to retain only the relevant data. Since the obfuscation tool used work on
individual functions and since a single trace lists all the instructions regarding the overall
execution of one application with some specific inputs, the next step was to decompose
the trace, reconstructing the call tree and identifying all the functions that are executed
within it.
Parallelly, to correlate each function with its obfuscated counterpart, information con-
cerning the overhead caused by the application of certain previously chosen obfuscation
techniques was computed by correlating the time measurement regarding vanilla applica-
tions with their obfuscated counterpart. Subsequently, this information was added to the
traces.
In this way, each trace will represent a single function, with the sequence of the instruction
executed and the overhead values at the end.

The choice of the network was obviously influenced by the type of data.
Due to the sequential nature of the data, in which each instruction is linked to the next
by a well-defined temporal relation, the choice of a traditional neural network would not
be correct, as a conventional architecture cannot handle temporal sequences: this scenario
requires a different solution.
in particular, a type of architecture capable of exhibiting temporal dynamic behavior will
be required, in which the various inputs will depend not only on the current data under
analysis, but also on the previous history.

The proposed solution involves the use of a particular architecture, called Long-Short
Term Memory (LSTM).
To deal with the vast but limited memory of LSTM, various steps were necessary to reduce

2https://tigress.wtf/index.html

5

https://tigress.wtf/index.html


Introduction

the length of the traces, including simplifying and compressing the instructions.

Subsequent selection of only data with consistent and coherent values led to the re-
jection of a part of the dataset that would otherwise have contributed to an increased
probability of network errors.

Finally, after having defined an LSTM network, the constructed dataset was used to
train and evaluate the model.

1.1 Thesis organization
The remainder of the thesis is structured as follows:

• Chapters 2 and 3 describe the background theory needed to understand the topics
touched on in the thesis;

• Chapter 4 describes the state-of-the-art and existing work related to the main topics
of this thesis;

• Chapter 5 describes the possible fields of application of obfuscation and the associated
problems in its practical use, formalizing the motivations that led to the development
of the topic proposed in this work;

• Chapter 6 discusses the problem of overhead prediction, outlining its design principles;

• Chapter 7 analyzes in detail every aspect of the solution presented in this thesis. The
implementation solutions and the problems addressed were explained in depth;

• Chapter 8 explains the results of the work and proposes some ideas for future im-
provements.
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Chapter 2

Background on data collection

The purpose of this chapter is to introduce the reader to the main topics related the data
collection phase, as well as all topics related to the construction of the dataset.

An important part of this work, related to data collection, involves the execution of
various programs, as well as the application of obfuscation and run-time tracking.
The development of this solution was the result of a complex work carried out by Stefano
Alberto in his thesis [4] .
Since the data produced by him will be the basis on which the entire work of this thesis
will rest, understanding how they were generated and their structure is crucial. To fully
understand the various steps that led to the collection of information concerning the exe-
cution and fuzzing of programs, it is necessary to introduce a few technical topics, such as
obfuscation and fuzzing, which are shown below.

2.1 Obfuscation
Any software, regardless of how secure and well designed it is, will be distributed in the
form of executable code. People who have legal access to this code will have full control
over the system and have the possibility to inspect it, running all types of tool such as
disassemblers, simulators, decompilers, etc.

The reasons for reverse engineering a program may be multiple: for example, an attacker
might be interested in extracting secret information that should not be revealed, such as
cryptographic keys or algorithms that are considered a trade secret. Another reason for re-
verse engineering may be the alteration of the code to modify its behavior, making hidden
functionalities of the program accessible, or unlocking functionalities that were originally
blocked for certain types of devices.

Despite technological progress, protecting against MATE attacks can be very challeng-
ing for many reasons. Firstly, the attacker is human, so he uses motivation and creativity
to reverse engineer the code. Furthermore, having white-box and limitless access to soft-
ware can create opportunities for theft of intellectual property through software piracy, as
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well as security breaches by allowing attackers to discover vulnerabilities in an application.
Finally, all protections focus on delaying the attacker until a certain period of time and not
making the code unhackable, which is still extremely complex to do today. Subsequently,
no piece of software is likely to survive unscathed for a long period of time.

In this scenario, however, an attractive attempt to protect is represented by software
obfuscation. Software Obfuscation refers to a large number of semantic-preserving trans-
formation techniques aimed at changing the form of the code in such a way as to prevent
the understanding of its algorithms and data structures or to prevent the extraction of
some valuable information from it. It makes a program more difficult to understand and
reverse engineer, without affecting the original software behaviour.
The level of security from reverse engineering that an obfuscator adds to an application
depends on [2]:

• the sophistication of the transformation used by the obfuscator;

• the power of the available deobfuscation algorithms;

• the amount of resources available by the deobfuscator.

Collberg et al.[2] gives a more formal definition of an obfuscating transformation:

Let P
T−→ P ′ be a transformation of a source code P into a target program P ′.

P
T−→ P ′ is an obfuscating transformation, if P and P ′ have the same observable behavior.

More precisely, in order of P
T−→ P ′ to be a legal obfuscating transformation, the following

conditions must hold:

1. If P fails to terminate or terminates with an error condition, then P ′ may or may not
terminate.

2. Otherwise, P ′ must terminate and produce the same output as P .

Observable behavior means what the user expects from the code; hence, the obfuscated
code may have side effects that are not in common with the original program, such as
creating new files or sending messages. As P ′ turns out to be a more complex version of
P , the obfuscated program will always be slower and / or more resource-consuming than
the vanilla one. This leads to performance degradation that is often not negligible.

Obfuscation methods are classified according to the information they target [2].

• Layout obfuscation: this transformation targets the appearance of the code. It may
manipulate indentation, variable names, add or delete comments used in the code.
The removed information or the changes in formatting cannot be recovered, so the
original code cannot be reconstructed from the obfuscated version. Generally, it intro-
duces minimal confusion to the attacker, as there is very little semantics introduced
by the formatting of the code;

• Data obfuscation: this transformation targets the data structure of a program either
by replacing the name of a variable with a complex expression or manipulating the
form in which the data are stored. Example are:
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– storage obfuscation, in which unnatural storage methods are chosen for the data;
– encoding obfuscation, in which the encodings of the variables are changed, like

replacing a variable with an expression;
– aggregation obfuscation, in which it is altered how data are grouped together,

like splitting an array into many sub-arrays.

The effectiveness of all these techniques varies depending on the number of variables
changed and the complexity of the changes made;

• Control obfuscation: Its purpose is to modify the control-flow1 of a program with
transformations that keep the basic logic of the application unchanged. These trans-
formations may affect aggregation, ordering, or computation of the control-flow:

– Control aggregation transformations break up computations that logically belong
together or merge computations that do not;

– Control ordering transformations randomize the order in which computations are
performed;

– Control computation transformations insert new code or make some algorithmic
change to the source of the application [2].

• Preventive obfuscation: different types of transformation in which the purpose is to
make known automatic deobfuscation techniques more difficult or to exploit known
weaknesses in deobfuscators.

The chosen obfuscation transformations are:

• code flattening

• opaque predicate

Code flattening

Code Flattening transformations are special types of transformation that obscure the
control-flow structures of the source code of the application by hiding its real structure.
In particular, it targets branches as they are constructs that can be easily detected by
the attacker since they have a similar structure in most programming languages. Once
identified, the entire control flow of the program can be easily reconstructed.
The first step in flattening a function consists in splitting the code in single basic blocks.
Then, all the basic blocks are put next to each other by destroying the original nested
structure, using, for example, a switch case statement, and then insert this structure into
a loop.
In this way, it is possible to make it difficult to identify the targets of the various jumps
and, consequently, reconstruct the control flow graph of the application. Figure 2.1 shows
a visual representation of code flattening, while Figure 2.2 shows a simple example.

1the order in which individual statements, instructions or function calls of an imperative program
are executed or evaluated
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Figure 2.1: Visual representation of flatten transformation

Figure 2.2: Example of flatten transformation

Opaque predicate

The obfuscation transformation involving the addition of opaque predicates, as the previous
one, belongs to all those transformations that aim to obfuscate the control-flow of the source
code. In this case, opaque predicates, opaque variables, and other misleading constructs
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are introduced to confuse the decompilers. A variable V is opaque if it has some property
q that is known a priori to the obfuscator, but that is difficult for the deobfuscator to
deduce. Similarly, a predicate P is opaque if a deobfuscator can deduce its outcome with
great difficulty, while this outcome is well known by the obfuscator [2].
The strength of the technique and the increase in the execution time of the application
added by these transformations depend on the complexity of the opaque predicates and
their positioning in the code. Figure 2.3 shows a visual representation of the addition of
an opaque predicate, while Figure 2.4 shows a simple example.

Figure 2.3: Visual representation of opaque transformation

Figure 2.4: Example of opaque predicate

Final considerations on code obfuscation

In conclusion, obfuscation makes the program more difficult for an attacker to understand,
as its real code and its real logic is drowned in large amounts of dead and bogus code.
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However, it should be noted that there is no guarantee that the obfuscated code will be
completely immune to reverse engineering. In fact, given enough time and resources, an
attacker will always be able to retrieve useful information from the obfuscated code.

Moreover, although research in this field is progressing, measuring the quality and
strength of obfuscation transformations remains an open challenge as it is not yet clear
how to evaluate or how good these techniques are, and, furthermore, many of the existing
measures of complexity are very vague or based partly on human cognitive abilities, such
as potency, a measure of how a human reader will be confused in reading a obfuscated
code.
On the other hand, code analysis tools are also becoming increasingly sophisticated, imple-
menting techniques that even make it possible to partially reconstruct code from potentially
obfuscated binaries.

However, while theoretical results indicate that provably secure obfuscation in general
is impossible, its widespread application in malware and commercial software shows that
it is nevertheless popular in practice [5].

2.2 Test cases generation (fuzzing)

A program may consist of numerous paths that are only taken under certain circumstances
and in the presence of certain data. It may contain loops that are repeated more or less
times, depending on the conditions previously fulfilled. It may even contain dead paths
that can cause unexpected interruption of the application.
In general, it can be said that the behavior of a program is highly dependent on the input
data on which it will run.

For this reason, to obtain a good description of the behavior of a program, firstly, it is
necessary to find a set of input data that allows for the most complete execution possible,
looking for all possible combinations so that as many paths as possible can be explored.
For this purpose, a fuzzer was used.

Fuzzing is an automated software testing technique that is generally used to find coding
errors or unexpected behavior. It consists of randomly feeding invalid and unexpected
inputs and data into a computer program to determine its failure if it happens. This
makes it possible to verify the integrity of a program and to better ensure the absence of
any kind of vulnerability.
Once the program has been fed with these data, it is monitored, and if an exception or a
crash occurs, then the input is saved. This so-called interesting case can then be analyzed
to find which part of the code is responsible for the crash. Figure 2.5 shows the main steps
of a standard fuzzer.
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Figure 2.5: Fuzzing process

The principal advantage of using such technique is that a program can be tested without
human intervention: a fuzzer can be left running for a long period of time, during which
only those cases where errors have been found in the code will be notified.
The main categories into which fuzzing can be divided are [6]:

• Blackbox Fuzzing: the fuzzer tries to generate possible inputs without knowing the
structure of the program. It basically feeds the program with random data and tries
to use its output to try to understand what is happening inside, thus creating a
smarter and more efficient input. This implementation is fast but relatively shallow:
lack of knowledge about the application and random mutations of input data make
it very unlikely that certain code paths will be reached in the tested code;

• Whitebox Fuzzing: the fuzzer tries to determine which are the best inputs to generate
by analyzing the internal structure of the code. The aim is to maximize code coverage,
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i.e. how many paths are reached. Whenever a conditional instruction such as if or
while is executed, the code splits into a branch where the instruction is true and
another where it is false. The purpose is that if there is an error hidden in some
branch, the fuzzer must be able to reach it. To perform this kind of analysis, the
program must be instrumented during compilation, i.e. calling a special function
every time a branch is run, which logs it as having been run. This solution is certainly
more effective than the first, but high overhead is introduced due to program analysis;

• Graybox Fuzzing: This approach tries to find a compromise between the respective
pros and cons of the approaches mentioned above. It uses lightweight code instru-
mentation instead of full analysis to calculate code coverage and track the program’s
state. The input space is explored through mutation. Starting with seed inputs, the
fuzzer mutates them using a predefined set of generic mutation operators. The out-
puts are then examined to determine whether they are sufficient interesting and, in
these cases, the inputs that generated them will be further mutated to explore more
different solutions.

The proposed solution uses AFL2, a feedback-based fuzzer. It is a Graybox fuzzer that
uses information on code coverage to generate new inputs. In this way, it can cover more
paths in the software than a normal fuzzer.

However, since the original objective of this work was to collect data on program exe-
cution, the fuzzer was not used in a standard way but rather to collect a set of inputs for
an application and build a test suite.

2.3 Data collection
This section aims to go into more detail regarding the collection of data concerning the
execution of various programs and their performance when obfuscated. As explained pre-
viously, these results were achieved by Stefano Alberto [4]. The detailed workflow of the
dataset creation can be seen in Figure 2.6

2https://github.com/google/AFL

14

https://github.com/google/AFL


Background on data collection

Figure 2.6: Data collection

2.3.1 Application selection

The first step was obviously the choice of the application to analyze.
They should be as heterogeneous as possible, so that very different execution traces can
be obtained. This will help to collect as much information as possible and thus better
generalize the dataset.
In addition, they will be subject to certain constraints: in fact, a program will only be
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suitable if it meets the following requirements:

• open source, to apply code obfuscation without breaking the license terms of the
application;

• written in C language: the obfuscation tool chosen, Tigress, is language-dependent
because it needs to perform transformations on the application’s source code. Specif-
ically it allows the application of various obfuscation techniques on C code, even if it
can show problems when used with code that has advanced C language features. In
particular, therefore, Tigress works with programs written with the C99 version of
the C language;

• compatible with Tigress, otherwise it cannot be obfuscated;

• deterministic and repeatable execution: since each execution must be traced for dif-
ferent versions of the same application, it is indispensable that the task execution
depends only on the given input and not on external factors that could change be-
tween different runs.

To obtain realistic data about real world scenarios, only real software is used.

The chosen application where reported in Table 2.1.

Program Name Description Lines Of Code
aha Converts ANSI colors to HTM 1075
ascii Interactive ASCII name and synonym chart 445

colorize Colorizes text on terminal with ANSI escape sequences 1490
d48 Disassembler for 8048/8041 code 5669
d52 Disassembler for 8052 code 7015
dz80 Disassembler for Z80/8080/8085 code 6517

id3ren id3 tagger and renamer 2038
prips Prints the IP addresses in a given range 524

Table 2.1: Selected programs

2.3.2 Application build
Once the set of applications to be analyzed has been chosen, the next mandatory step is
to build the source files for these applications. This phase involves the use of a compiler,
usually GCC3, which, in summary, translates the source code of an application, i.e., the
written code, into object code, which represents a sequence of statements in the machine

3https://gcc.gnu.org/
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language.
This process consists of 4 steps:

• preprocessing: at this stage, all comments are removed from the source code, all
header files (.h) are included, and the macros are replaced with their values. The
output is a ".i" file;

• compiling: the compiler takes the ".i" file and generates a ".s" file, which contains
assembly code;

• assembling: the assembler transforms the assembly code into binary code, producing
an object file ".o";

• linking: the linker links all object files from all source codes of the initial application
and links all function calls with their definitions. In the end, the executable file is
generated.

However, it is possible to tune the behavior of a compiler through a set of options
that affect the workflow of building phases, for example, executing only some of the steps
listed before and the single phase, i.e., changing some aspects of preprocessing or compiling
phases.
The relevant option to take into account for this work will be the optimization option and
the instrumentation option, which refer to the compilation phase and will allow custom
implementations to be generated.
Since the building of an application can require some specific options depending on appli-
cation requirements, in general, what is done is providing a makefile, a specific file that
describes the steps needed to build the entire application.
Each application is built multiple times to generate different binaries that will be used in
different subsequent steps. A custom compilation is needed for the fuzzing phase, to add
the instrumentation needed by the fuzzer to trace the application, and, accordingly, to
choose how to mutate the generated input. The build commands also need to be modified
to address a problem regarding the application of the obfuscation.
Since generally, when complex applications are built, several files .c are generated, but
Tigress needs only one file .c to perform a single obfuscation transformation, some options
had to be modified via a makefile to merge the various files .c into a single one.
Then, each application is compiled without instrumentation to generate the binaries used
in the profiling step.
The output is a set of compiled binaries.

2.3.3 Fuzzing
As explained in Section 2.2, a program may consist of numerous paths that are only taken
under certain circumstances and in the presence of certain data.
Choosing input data randomly, without considering the structure and semantics of the
code, could lead to the execution of only certain paths or worse, to the raising of some
exception or the premature termination of the code. All this would lead to the extraction
of traces with poor information inside, which would then be useless later.
The chosen strategy to deal with this problem involves the use of a feedback-based fuzzer to
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generate a set of test cases for each of the selected applications, and, in particular, AFL4,
which is one of the most popular.
Since AFL requires a custom build to understand the structure of the application and
the execution path of every run, the first step involves the use of a special AFL utility to
build the C source code with the required instrumentation. In particular, the instrumented
binaries are obtained by simply using the command "afl-gcc" instead of "gcc". It is now
possible to run the fuzzer through all selected applications.

The general AFL algorithm can be summarized as follows:

1. Load user-supplied initial test cases into the queue;

2. Take next input file from the queue;

3. Attempt to trim the test case to the smallest size that does not alter the measured
behavior of the program;

4. Repeatedly mutate the file using a balanced and well-researched variety of traditional
fuzzing strategies;

5. If any of the generated mutations resulted in a new state transition recorded by the
instrumentation, add mutated output as a new entry in the queue;

6. Go to 2.

Therefore, with the initial test cases provided by the user, the fuzzing process can start.
The instrumented application is run multiple times with new mutated inputs. Every time
an input is considered interesting by the fuzzer (a crash or a timeout happens), it is saved
in the queue to be mutated when generating other inputs.
However, the main purpose of a fuzzer is to report to the user unexpected behaviors of the
application under analysis; therefore, since the aim of this phase is instead to build a good
set of test cases to cover as many execution paths as possible, a different approach needs
to be used. This new approach consists of changing the operating logic of the fuzzer so
that whenever a new path is found in the code, the input that generated it is saved and
stored in a dedicated folder.
Additionally, to cleanly terminate the execution of the fuzzer, a threshold of saved test
cases was inserted beyond which execution must stop. Without this addition, the fuzzer
would have continued to run until a certain number of crashes were reached, which was
not intended in this case. The whole logic of the fuzzing process is shown in Figure 2.7.

2.3.4 Obfuscation
This section aims to explain the various steps needed to practically obfuscate the source
code of the selected applications using the Tigress obfuscator.

4https://github.com/google/AFL
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Figure 2.7: AFL loop

One of the peculiarities of Tigress is that it can obfuscate a single function at a time.
Since for the purpose of this work this feature represents a limitation, to address this prob-
lem, each obfuscation technique chosen is applied to all the functions defined in the source
code. In this way, it is possible to collect information about each function of a program in
a single run.
Another constraint imposed by the obfuscator is, as explained in Section 2.3.2, that it can
be used only on a single C file. The solution, as discussed, consists of merging all .c files
into a single one.
Finally, to properly use Tigress, the header file tigress.h must be included in the source
code, and the function init_tigress must first be invoked in the code. With this last step,
it is possible to run the obfuscator without problems.

2.3.5 Execution tracing
Once all the applications were built and a set of input cases was generated for each one,
the next step is to run all the applications to extract useful information on their execution

19



Background on data collection

and performance.
A trace will contain a complete representation of an execution of a specific application
with a specific set of inputs among those generated by the fuzzer. This was done by
implementing a custom solution in which all needed information was extracted from the
execution. Instruction after instruction, the information about the executed function, the
offset from the beginning of the function, and the actual executed instruction (in the form
of an opcode) are saved in the output file.
This procedure was repeated for each test case of a program and for all programs, choosing
to ignore functions called up by standard libraries to keep track only of functions written
specifically for the program under analysis.
It should be noted that these extractions were only carried out for unprotected files, i.e.,
those where no obfuscation transformation was applied. This is for the simple reason that
the network that will be built later must be able to predict the overhead added by the
application of obfuscation before applying it. Therefore, the starting point will be the
vanilla version of the program.

2.3.6 Performance extraction
So far, each generated trace represents the execution of a program with a specific set of
inputs. This means that for a single program, there will be as many traces as the possible
inputs previously found by the fuzzer. As they are, these traces are still far from being
used in a machine learning model, but can already be seen, in some ways, as the set of
inputs to be fed into our network. Therefore, if, on the one hand, there are the input data,
what is missing are the values that the network will have to predict and that will in some
way link the execution of the vanilla programs with their obfuscated counterpart.

To have a measure of performance, the first step is to measure the time in terms of
clock cycles required for each execution we are interested in.
With custom instrumentation, it is possible for the compiler to call a user-defined function
just after each function entry and just before each function exit.
This user-defined function allows to get the clock cycles and to save them in two separate
vectors: one when entering and one when exiting the function. In this way, it is possible
to measure the execution time of a function in terms of the number of clock cycles used
without interrupting the execution of the program and without adding a considerable
overhead that would have distorted the obtained values.

As mentioned above, interest in measuring performance is limited to the function that
belongs to the application under analysis, since all code executed outside it will not be
considered by the obfuscator when applying the transformations.
In fact, to measure the drop in performance between a function and its obfuscated version,
a ratio between the two measured timings will be considered. Thus, by also taking the
execution time of the external code into account in the computation of the first measure-
ment, the two measures would not take into consideration the execution of the same code,
and therefore their comparison will be meaningless.
Consequently, there is no reason to keep track of the execution time of the various calls to
external library functions.
The solution involves the use of the same user-defined function used before to trace the
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execution time of calls only to external library functions. In this way, the output generated
when the instrumented application is running contains all the data about each time the
application entered and exited from each function, also the library ones.

To obtain the time spent by every single function inside of a program without consider-
ing all the time spent in all the other functions called during its execution, the needed step
is to transform the series of timings in entering and exiting the functions into an ordered
call tree. In this way, it is possible to understand if a function was called inside another.
Reconstructing the call tree of the entire program makes it possible to obtain all individual
execution times for each function.

One critical aspect to take into account is that in general the execution time of an
application depends not only on the internal data and the application code, but also on
external factors, such as the operating system and its scheduler, the status of the various
levels of cache5 and main memory, or various interrupts6 that can greatly delay the time
spent within a program. To reduce as much as possible the effect of these factors, possible
countermeasures concern the reduction of processes running in parallel and reducing all
possible background processes, avoiding, in particular, as much as possible any type of I/O
interrupt.
Furthermore, the applications were executed multiple times (100 in particular) to reduce
the random fluctuation in the timing measurements.
All this information will be stored in a special file that will contain, in particular, the list
of functions called with the number of clock cycles spent in execution, for both vanilla and
obfuscated versions.

2.4 Data compression
Data compression is the process of encoding, rearranging, or modifying data in which the
primary objective is to minimize the amount of data to be transmitted. An example of data
compression involves transforming a string of characters from some representation (such
as ASCII) into a new string (e.g., of bits) that contains the same information but whose
length is as small as possible [7]. When dealing with a large amount of data, its storage
and transmission is likely to increase at an enormous rate. To overcome these problems,
data compression transforms the original data into a compact form by recognizing and
using existing patterns into it. The reduction of file size allows to store more information
in the same storage space and to reduce the transmission time.

In general, a compression technique can affect the quality of the data depending on
the chosen criteria and the type of requirement imposed when the compressed data are
reconstructed [8]. In this case, it is common to divide these techniques into 2 groups:

5A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the
data from frequently used main memory locations.

6an interrupt is a request for the processor to interrupt currently executing code, so that the event
can be processed in a timely manner.
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• lossless compression: removes bits by locating and removing statistical redundancies.
No information is lost, so the reconstructed data is identical to the original. It is
used in applications where loss of information is undesirable, such as text or medical
imaging. Lossless compression will often have a smaller compression ratio, with the
benefit of not losing any data in the file;

• lossy compression: file size is reduced by permanently eliminating certain informa-
tion. Specifically, it eliminates redundant or unnecessary information and reduces
the complexity of existing information. Lossy compression can achieve much higher
compression ratios, at the cost of possible degradation of file quality.

2.4.1 Run-length encoding
Run-Length Encoding (RLE) [9], is a common lossless data compression technique. It
compresses data by reducing repetitive and consecutive information called runs.
The key idea of this algorithm is to scan the data to be compressed and for each item
record the run-length, that is, the number of times it occurs, followed by the item itself.
For example:

• the string AAAAAAFDDCCCCCCCAEEEEEEEEEEEEEEEEE will be encoded as
6A1F2D7C1A17E ;

• the string AAAAHHHEEM, HAHA. will be encoded as
4A3H2E1M1,1 1H1A1H1A1.

From these examples, it is possible to notice that RLE compression is only efficient with
data that contain many repetitions: Run-Length Encoding is especially useful for data that
contain many runs. On the other hand, with files that do not have many runs, it could
greatly increase the file size.
Therefore, the compression ratio of the algorithm depends on the data.

This algorithm can be summarized in pseudocode as follows:

1 i← 0
2 j ← 0
3 result← ’ ’
4 while i < length(string) do
5 cnt← 1
6 j ← i + 1
7 while string[i] == string[j] and j < length(string) do
8 cnt← cnt + 1
9 j ← j + 1

10 end
11 result← ’cnt string[i]’
12 end
13 return result
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2.5 Code disassembly
Disassembly is the process of recovering a symbolic representation of the instructions of
the machine code of a program from its binary representation [10]. The goal of these tech-
niques is to produce a higher-level representation, usually in assembly code, of a program
that allows a human reader to understand the structure of the program.
The assembly code file can be used in reverse engineering processes to establish the logical
flows of the computer program or its vulnerabilities in the real-world running environment
[11].
Decompilation and reverse engineering is often prohibited by software license agreements,
as the source code behind the software that is released to the public is something the
programmer has created in a private way. On the other hand, decompilers can also be
of great benefit to programmers, since they allow, for example, reconstructing lost source
code from a binary executable.
The task of recovering these instructions is often complicated by the presence of non-
executable data, such as jump tables, alignment bytes, etc.,in the instruction stream, which,
however, are needed to identify the various instructions. The presence of variable-length
instructions, commonly found in CISC architectures such as the widely used Intel x86,
results in an additional degree of complexity and renders simple heuristics for extracting
instruction sequences ineffective [12].

Disassembly techniques can be categorized into two main classes:

• static techniques analyze the binary structure statically, parsing the instruction op-
codes as they are found in the binary image;

• dynamic techniques monitor execution traces of an application to identify the executed
instructions and recover a (partial) disassembled version of the binary.

Both static and dynamic approaches have advantages and disadvantages. Static analysis
takes into account the complete program, while dynamic analysis can only operate on the
instructions that were executed in a particular set of runs. Therefore, it is impossible to
guarantee that the entire executable is covered when dynamic analysis is used.

2.5.1 Capstone
Capstone7 is an open source disassembly framework based on the LLVM8 compiler in-
frastructure, designed to provide a simple, lightweight API that handles most popular
architectures, including x86/ x86-x64, ARMS, MIPS, and others. Although the use of this
tool is very simple, it provides details on the disassembled instruction, including instruction
opcodes, mnemonics, as well as some semantics of the disassembled instruction, such as a
list of implicit registers read and written.

To use Capstone, the first step involves choosing the hardware architecture and the
hardware mode, which in the case of x86 architecture are the possible access modes of the

7https://www.capstone-engine.org/
8https://www.llvm.org/
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registers, i.e. 16, 32, or 64-bit.
Basically, Capstone takes a memory buffer containing a block of code bytes as input and
outputs the correspondent disassembled instruction.
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Chapter 3

Background on deep learning

The purpose of this chapter is to introduce the reader to the main topics related to artificial
intelligence, as well as the solutions chosen during the preprocessing phase to improve
network performance.

3.1 Introduction to deep learning

Over the recent years, Deep Learning [13] has had a tremendous impact in various fields
of science. Neural networks can creatively generate texts, music pieces, and even paintings
in the style of the old masters. These achievements are based on many years of research
on neural networks and Machine Learning.

To better understand what a neural network is and how it works, it is necessary to
make a brief digression and define some terminology, starting with the concept of artificial
intelligence.

• Artificial Intelligence (AI) is a science field that focuses on the development of algo-
rithms capable of processing information to make future predictions. Therefore, it
can be any technique that enables computers to mimic human behavior;

• Machine Learning (ML) is a subset of AI that focuses on teaching an algorithm to
learn from data without explicitly programming how to process input information.

• Deep Learning (DL) takes the idea of ML even further. It is a subset of ML that
focuses on using Neural Networks to automatically extract useful patterns from raw
data and then using them to learn to perform specific tasks.
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Figure 3.1: General subdivision of AI, ML and DL

Although the fundamental building blocks of deep learning and their algorithms have
existed for decades, they have only been rediscovered in the last few years. This is basically
for three reasons:

• These algorithms are hungry for data, and today we are living in the world of big
data, where we have more of it than ever;

• Machine Learning models require high computational capacity and can benefit from
modern advances in GPU architectures;

• progress in the development of powerful and efficient libraries made it possible to
develop these algorithms.

The remainder of this section aims to introduce the reader to the basic concept of Deep
Learning, which will help to understand the observations described later in this thesis. In
particular, we will start with the concept of neuron and Perceptron and then focus on the
general architecture of a neural network.

3.1.1 Perceptron

Perceptron [14] can be seen as the basic building block of deep learning: it is basically a
binary classifier that consists of a single neuron. The analogy with a biological neuron is
quite simple, as Figure 3.2 shows. A biological neuron is made up of multiple dendrites,
a nucleus, and an axon. When a stimulus is sent to the brain, it is received through the
synapse located at the extremity of the dendrite. It is transported to the nucleus when
processed together with other signals coming from other receptors. After all these signals
have been processed, the nucleus will emit an output signal through its single axon.
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(a) Biological neuron (b) Artificial neuron

Figure 3.2: Comparison between neurons

On the other hand, forward propagation of information through a single artificial neuron
starts with the definition of a set of inputs [x0, ..., xn]. Each of these inputs is multiplied by
their corresponding weights [w0, ..., wn] and then added together. The single number that
comes out of this operation is added to a bias term b and the output is passed through
a non-linear activation function f and the result is the prediction ŷ. Mathematically
speaking:

ŷ = f

A
nØ

i=0
(wixi) + b

B
(3.1)

We can rewrite this equation using linear algebra:

ŷ = f(b + XT W) (3.2)

where X =

 x0
...

xn

 and W =

 w0
...

wn

.

The importance of the activation function is to introduce non-linearity into our system
[15]. In real life, almost all data are non-linear and, without an activation function, a
model would not be able to deal with these problems. Imagining to separate the red point
from the green ones, having access only to a linear function (Figure 7.16a), there will be no
possibility of producing good results, no matter how deep or complex the network is: the
linear activation function will always produce a linear result. The addition of non-linearity
allows arbitrarily complex functions to be approximated (Figure 7.16b).
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(a) linear activation function (b) non-linear activation function

Figure 3.3: Comparison between decision boundaries

Particular importance is given to the ReLU activation function [15], which is probably
the most widely used. It is defined as follows:

ReLU =
; 0 for x ≤ 0

x for x > 0 (3.3)

As can be seen, the output of this function will be the input itself if it is positive, 0
otherwise. There are some advantages as a consequence. First, it is easy to compute its
derivative (since it is the slope, so it will be 0 for negative values and 1 for positive ones).
Additionally, another benefit of the ReLU activation function is that it is capable of output
a real zero value: the negative inputs that output 0 allow activation of only some neurons.
This speeds up the learning phase.

3.1.2 Neural networks
Having described how a single neuron is made and how it works, it is now possible to build
Neural Networks.
Starting from a single neuron, a multi-output Neural Network can be defined simply by
adding more Perceptron to the initial configuration [16], as Figure 3.4 shows.
A Neural Network is made up of 3 components (layers):

• input layer : it takes raw input from the dataset. No computation is performed at
this layer. The nodes here simply pass the information to the hidden layer;

• hidden layer : as the name suggests, the nodes in this layer are not exposed, so we
cannot directly see the output of these nodes. The hidden layer performs all kinds of
computation on the features entered through the input layer and transfers the result
to the output layer;
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• output layer : final layer of the network that brings the information learned through
the hidden layer and makes the final prediction.

In particular, each of the circles in the hidden and output layers represents a single
neuron, with its own set of weights and bias, as already seen. The output goes into the
activation function and becomes the input of the next layer. A layer in which every input
is connected to every output is called Dense or Fully Connected.

Figure 3.4: 3-layer Neural Network

Loss function

At this point, imagining to make a prediction, it could be possible to feed the network
with an input vector and see what the output will be. At the moment, the model is not
trained, so the prediction will almost certainly be wrong: the network has no idea what
our input data mean because it has never seen anything before. The network has to learn
to handle the input data and obtain reasonable results. To do this, it has to be defined
what it means to get a wrong prediction, and this is basically the purpose of loss function
[17].
The loss function specifies how good our neural network is for a certain task. The intuitive
way to compute it is to take a sample of data, pass it through the network to get the
prediction, and compare it with the actual number we want to get.

L(f(x; W), y) (3.4)

where f(x; W) is the prediction and y is the true value.
Thus, the closer the prediction is to the actual value, the lower the loss will be, and, of
course, the farther away they are, the more error there will be.
Assuming to have more than one sample, the aim is to understand how the model performs
on average, so empirical loss will be computed, which is just the mean of all individual loss
functions from our dataset:

J(W) = 1
n

nØ
i=1
L(f(x(i); W), y(i)) (3.5)

29



Background on deep learning

Where W = {W(0), W(1), ..., W(n)} is the group of all W in every layer.
When training the network, the aim is to minimize this function.

There are many loss functions, but, in particular, when dealing with continuous real
numerical values, Mean Squared Error loss (MSE) is the common choice [17]. It measures
the squared difference between the ground truth and our predictions, averaged over the
entire dataset. The mathematical definition is the following:

J(W) = 1
n

nØ
i=1

(y(i) − f(x(i); W))2 (3.6)

Training neural networks

Having described the architecture of the neural network and defined a measure to quantify
its errors, the next step is to put all these elements together to understand what it means
to train a network. The aim of the training phase is to find a set of weights W∗ that will
give the minimum loss function on average throughout the entire dataset:

W∗ = argmin
W

1
n

nØ
i=1
L(f(x(i); W), y(i)) (3.7)

W∗ = argmin
W

J(W)

To solve this minimization problem, the derivative with respect to W will be com-
puted, which tells the direction to take to maximize the loss and therefore takes a step in
the opposite direction, which is the right direction to minimize this function. This process
will be repeated taking into account the point just computed and making a further step
towards the opposite direction of the derivative. This will continue until convergence to a
local minimum is achieved. This algorithm, called Gradient Descend, can be summarized
in pseudocode as follows:

1 Randomly initialize W
2 while not convergence do
3 compute ∂J(W)

∂W
4 W←W− η ∂J(W)

∂W /* Update weights */
5 end
6 return W
Gradient computation is performed for all weights and is called backpropagation tech-

nique: starting from the output, the update is carried out level by level until it returns to
the input level. The first step is to quantify the error made by the network to tell when it
is making a mistake. To do that, the prediction and the true value will be compared. If
there is a significant discrepancy between them, the loss will reach high values and it will
be necessary to move closer to the true answer.
An extremely important parameter is η, learning rate. It determines the amplitude of the
step that must be taken in the direction of the gradient. It influences both learning time
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and convergence. If it is too small, then the model may get stuck in a local minimum,
because the steps towards the gradient will be too small. However, if it is too large, the
model may diverge. In practice, one common way to choose a good learning rate is to try a
number of different ones and see which work best. Alternatively, it can be used to what is
called adaptive learning rate in which the learning rate is not fixed but can change taking
into account various aspects, such as how large the gradient is or how fast the learning
phase is happening.

Adam optimizer

Adam [18] is a method for efficient stochastic optimization that can be considered state-
of-the-art among gradient optimizers. Adam uses an adaptive learning rate based not only
on the moving average of the first moment (m) but also on that of the second moment (v).
Moments are described as an update term that depends on iterations and the gradient of
the loss function. This optimizer uses two parameters (β1 and β2) to control the decay
rate of moments. It also introduces a smoothing factor to improve the numerical stability
of the algorithm.

The algorithm updates the exponential moving averages of the gradient (mt) and the
squared gradient (vt) where the hyperparameters β1, β2 ∈ [0, 1) control the exponential
decay rates of these moving averages. The moving averages themselves are estimates of
the 1st moment (the mean) and the 2nd raw moment (the uncentered variance) of the gra-
dient. These moving averages are initialized as vectors of 0’s, leading to moment estimates
that are biased toward zero, and bias-corrected estimates m̂b and v̂b are computed for the
very purpose of minimizing the effect of the initialization bias.

Having f(θ) a noisy objective function: a stochastic scalar function that is differentiable
with respect to parameters θ, the purpose of the algorithm is to minimize the expected
value of this function, E[f(θ)] with respect to parameters θ.
The overall algorithm requires:

• α: Stepsize

• β1, β2 ∈ [0, 1): Exponential decay rates for moment estimates

• f(θ): a stochastic scalar function that is differentiable with respect to parameters θ

• θ0: Initial parameter vector
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And its pseudocode is as follows:
1 m0 ← 0 /* Initialize 1st moment vector */
2 v0 ← 0 /* Initialize 2nd moment vector */
3 t← 0 /* Initialize timestep */

4 while θt not converged do
5 t← t + 1
6 gt ← ∇θft(θt−1) /* Get gradients w.r.t. stochastic objective at

timestep t */
7 mt ← β1 ·mt−1 + (1− β1) · gt /* Update biased first moment estimate

*/
8 vt ← β2 · vt−1 + (1− β2) · g2

t /* Update biased second raw moment
estimate */

9 m̂t ← mt/(1− βt
1) /* Compute bias-corrected first moment estimate

*/
10 v̂t ← vt/(1− βt

2) /* Compute bias-corrected second raw moment
estimate */

11 θt ← θt−1 − α · m̂t/(
√

v̂t + ϵ) /* Update parameters */
12 end
13 return θt

Where f1(θ), ..., , fT (θ) denote the realisations of the stochastic function at subsequent
timesteps 1, ..., T .

Overfitting and underfitting

The main purpose of any machine learning algorithm, as far as a supervised learning prob-
lem is concerned, is to be able to correctly classify a new observation that has never been
seen before and is not part of the data used to train the network. This concept is called
generalization.

Usually, when training a model, we feed it with samples from the test set and compute
error measurement and statistics to obtain the training error and then try to reduce it as
much as possible.
However, what is crucial when testing the network with new observations is reducing the
generalization error as much as possible. Typically, the generalization error of a machine
learning model is estimated by measuring its performance on the test set. This set includes
samples separated from the train set, and thus has never been analyzed by the model. In
summary, the two factors to understand how well a machine learning model performs are:

• small training error;

• small gap between training and test error.

In this scenario, two of the main problems related to machine learning are overfitting
and underfitting [19].
Overfitting occurs when a model or machine learning algorithm captures the noise in the
data. This means that the neural network at a certain time during the training phase does
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not improve its ability to solve the problem anymore but just starts to learn some random
regularity contained in the set of training patterns. Overfitting is often the result of an
over-complicated model.

Instead, underfitting occurs when the model is incapable of capturing the variability
and overall trend of the data. It is often the result of an over-simplified model.

Figure 3.5 shows the typical relationship between capacity (i.e. its ability to fit a wide
variety of functions, so it can also be seen as the complexity of the mode) and training and
test error.

When capacity is low, both training and test errors are high. This is what the under-
fitting looks like. As capacity increases, the training error decreases, and, initially, the test
error also decreases. But then it starts to increase as a result of overfitting. Therefore, the
optimal model capacity is the one in which the test error is minimum [20].

Figure 3.5: Underfitting vs. overfitting

3.1.3 Recurrent neural networks
As seen so far, Artificial Neural Networks are computational models inspired by the brain.
They model very complex functions with many parameters that can associate an input to
a desired output. They are properly trained to find the right values for these parameters
to mathematically transform each input into its right output.

Neural Networks work mainly with vector data types or images. However, not all data
can be effectively presented in this way. For instance, text or time series are better modeled
as time sequences. Some possible applications of sequences of data can be as follows:

• understanding a question and replying with more or less complex phrases;
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• looking at an image and giving it a description or a label;

• forecasting the future trajectory of a ball giving its past position and its current one.

etc.
Standard neural networks go from input to output in one direction. Therefore, they

cannot maintain information about previous events when a sequence of inputs is given to it.
A newer network architecture is required that is capable of understanding the dependencies
between the individual elements of the sequence and the previous ones.

The first possible solution to this problem is given by Recurrent Neural Networks
(RNNs) [21].

Figure 3.6 shows a simplified version of a feed-forward Neural Network composed only
of a collapsed layer in the green box, an input vector of length m and an output vector of
length n.

Figure 3.6: Feed-forward Neural Network

It could be possible to feed a sequence to this model simply by concatenating as many
of these blocks as the time steps in the sequence, as shown in Figure 3.7 on the left.
However, in its current form, such an architecture has no concept of memory or notion of
a relationship between time steps; therefore, the output vector at a particular time step
will be a function of only the input at that time step and will not take into account past
information.
What is needed is a way to relate the network computations at a particular time step to
its prior history. It is done by adding a so-called internal state ht, a special value that is
maintained over time and can be passed forward over time. This parameter can capture
important information about a specific time step and add this information to the next
input in the chain. The result is that the output at time t now depends on both the input
xt and the past memory ht−1 (see Figure 3.7 on the right).
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Figure 3.7: Stateless vs stateful architecture

The same architecture shown in Figure 3.7 can be visualized in a more compact way,
when the relationship between different time steps is represented by a loop (Figure 3.8).

Figure 3.8: RNN cell

RNN can maintain the internal state ht and apply at each time stamp a function fW

parameterised by a set of values W used to update this internal state. The key concept is
that the new value of ht is based on the internal state of the previous time step, as well as
the input of the current time step. More formally:

ht = fW (xt, ht−1)

This set of weights W will be learned through the network during the course of training.
W will be the same for all time steps considered in the sequence. The update of the hidden
state and the output of the network are described by the following formula:

ht = tanh(WT
hhht−1 + WT

xhxt) (3.8)
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Where Whh represents the matrix of weights related to the hidden state and Whx the
one related to the input. Note that these matrices are independent because we have two
different inputs to the state update equation. The output for a given time step is defined
as follows:

ŷt = WT
hyht (3.9)

Where Why is the weight matrix related to the output.
The next step is to understand how to measure the goodness of the model. As seen in

Section 3.1.2, a loss function is needed. The unrolled version of the RNN may be more
helpful. It is possible to compute a loss for each of these individual time steps based on
what the output at that time is. Finally, all of these losses can be summed to generate an
overall loss.
It is possible to apply this idea of sequence modeling to many tasks:

• Many to one: taking a sequential input and mapping it into a single output;

• One to many: taking a single input and generating a sequence of outputs;

• Many to many: taking a sequential input and generating another sequential output;

Figure 3.9: different tasks using RNN architecture

Backpropagation through time

As explained above (see Section 3.1.2), the main aspects of training a neural network can
be summarized as follows:

1. a forward pass through the network is done, going from input to output, computing
the gradients;

2. the gradient is propagated back downward through the network, taking the derivative
of the loss with respect to the weights learned by the model;

3. the parameters are updated to minimize the loss.
As regards recurrent neural networks, the forward pass consists of going forward across

time, computing the individual loss for each individual time step, and then summing them
together. The error will also be backpropagated individually across time steps and then
across all time steps to the point where we are currently in the sequence, to the beginning
[22].
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Gradient issues

During the backward pass, the gradient computation involves numerous matrix multiplica-
tions that involve the weight matrices seen previously. With too many weights or gradient
values that are >> 1, during training, the gradient can explode.
It is also possible to have the opposite problem, with values << 1.
The latter problem is called vanishing gradient and can be extremely problematic. Multi-
plying many small numbers together will bias the network to focus on short-term depen-
dencies and ignore long sequences that exist in the dataset. There exist some different
ways to mitigate this problem; one of them is to change the network architecture using
more complex recurrent units that can handle longer dependencies [22].

3.1.4 Long short term memory
Long Short-Term Memory (LSTMs) [23] are a special type of neural network designed
to solve the problem of vanishing gradient and to retain information of longer sequences.
LSTM, like basic RNN, also has a chain-like structure, but its internal repeating structure
is more complex, as can be seen in Figure 3.10.

Figure 3.10: LSTM cell

The key idea behind its structure is the introduction of a gate, a structure that has the
purpose of selectively adding or removing information from the state. This is done using
standard operations, such as the application of activation functions and matrix multipli-
cations. Ultimately, gates can control what information passes through the recurrent cell.
For example, a gate composed of a sigmoid activation function will force anything that
passes through it between 0 and 1, so in a certain way it can decide how much information
coming from the input can pass.
LSTMs use this type of operation to process information by:

1. forget the irrelevant information;

2. storing the most relevant new information;
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3. updating the internal cell state;

4. generating an output.

The first step is to forget irrelevant parts of the previous state, and this is achieved by
taking the previous state and passing through one of the sigmoid gates. This is done by
forget gate.

ft = σ(Wf · [ht−1, xt] + bf )

Figure 3.11: forget gate

Where Wf and bf are the weighs and bias related to the forget gate.
The next step is to determine which part of the new information is relevant and store this
in the cell state. This is done by input gate and has two parts. First, a sigmoid layer
decides which values must be updated (it). Next, a tanh layer creates a vector of new
candidate values, t, which could be added to the state. In the next step, these two values
are combined to create an update to the state.

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Figure 3.12: input gate

Where Wi and WC refer to the weight correlated with the previous input and the
candidate cell state, while bi and bC are the corresponding biases.
The old cell state Ct−1 is then updated to the new cell state Ct. Ct−1 is multiplied by ft,
forgetting the information that the network decided to forget earlier. Then it is added by
it × C̃t
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Ct = ft ×Ct−1 + it × C̃t

Figure 3.13: cell state update

Finally, the output of the LSTM can be returned. The output gate control of the
information encoded in the cell state is outputted and sent to the network as input in the
next time step.

ot = σ(Wo · [ht−1, xt] + bo)

ht = yt = ot × tanh(Ct)

Figure 3.14: output gate

where Wo and bo are the weights and bias related to the output gate.

In conclusion, it can be said that LSTM can regulate the flow of information, forgetting
irrelevant information from the past and keeping the relevant part from the current input.
By doing this, they can handle long-term dependencies in a better way, overcoming the
problem of vanishing gradients.

3.1.5 Evaluation metrics
Once the train phase is over, it is necessary to evaluate the performance of the model. The
evaluation phase is precisely the process by which the quality of the network’s predictions
is quantified. The goodness of the network’s predictions is measured against new, never-
before-seen observations, using different evaluation metrics.
Since in a regression problem the network tries to predict continuous numerical values
instead of discrete numbers of classes as in classification problems, the evaluation metrics
for regression models are quite different from those used in classification tasks.
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When dealing with regression problems, Mean square error (MSE) or Root MSE (RMSE),
Mean absolute error (MAE) and Mean absolute percentage error (MAPE) are a widely
adopted family of measures that evaluate the quality of fit in terms of distance of the
regressor to the actual training points [24].

Mean square error

Mean squared error measures the average of the squares of errors, that is, the average of
squared differences between the predicted output and the true output. Its mathematical
formulation is as follows:

MSE = 1
n

nØ
i=1

(yi − ŷi)2 (3.10)

Where yi is the i-th observed value, ŷi is the predicted value corresponding, and n is the
number of observations.

MSE indicates how close a regression line is to a set of points. It does this by taking
the distances from the points to the regression line (these distances are the errors) and
squaring them. Squaring is necessary to remove any negative signs. As the data points fall
closer to the regression line, the model has less error, decreasing the MSE. A model with
fewer errors produces more precise predictions.
MSE can be used if there are outliers that need to be detected. In fact, MSE is great for
attributing larger weights to such points, thanks to the L2 norm.

Root mean square error

Root Mean Square Error [25] is the square root of the Mean Square Error. It is one of the
most widely used measures for evaluating the quality of predictions, and shows how far the
predictions fall from the true measured values using the Euclidean distance.
Its mathematical formulation is as follows:

RMSE =
√

MSE =

öõõô 1
n

nØ
i=1

(yi − ŷi)2 (3.11)

In the absence of better information, the mean value of the target variable can be
considered to be the simplest estimate of the values of the target variable, whether in
trying to model existing data or in trying to predict future values. A standard way to
measure the average error, in this case, is the standard deviation, since it measures how far
away an actual value is from the mean:

SD =

öõõô 1
n

nØ
i=1

(yi − yi)2 (3.12)

The RMSE is quite similar to the standard deviation, but instead of measuring how far
an actual value is from the mean, it measures how far an actual value is from the model’s
prediction for that value. On average, a good model should have better predictions than
the naïve estimate of the mean for all predictions, so the RMSE of a good model should
be smaller than its standard deviation.
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Mean absolute error

Mean absolute error represents the amount of error in the measurements. It is the difference
between the measured value and the true value. The difference between MAE and MSE
lies in the evaluation metric, respectively, linear L1 or quadratic L2.

MAE = 1
n

nØ
i=1
|yi − ŷi| (3.13)

Mean absolute percentage error

Mean absolute percentage error measures the accuracy of a forecast system. It is one of the
most widely used measures of forecast accuracy, due to its advantages of scale independence
and interpretability.
Its mathematical formulation is as follows:

MAPE = 100
n

nØ
i=1

----yi − ŷi

yi

---- (3.14)

Due to its definition, its use is recommended in tasks where it is more important to be
sensitive to relative variations than to absolute variations.

3.2 Word embeddings
Word embeddings [26] are real-valued word representations capable of capturing lexical
semantics and sometimes also syntactic relationships between words, so that words that
are closer in the vector space are expected to have similar meaning.
In general, it has been found to be useful to represent them as vectors, which have an
intuitive interpretation and can be the subject of useful operations such as addition, sub-
traction, distance measures, and lend themselves well to be used in many Machine Learning
algorithms [27]. There are many ways to represent words as a fixed-length vector. Two
main approaches to compute word embeddings can be identified in the literature [28]:

• Count-based models: methods that represent a target word by words that co-occur
with that target word in various contexts using some co-occurrence measure. They
use global information, generally corpus-wide statistics such as word counts and fre-
quencies, to learn semantic similarity between words. This method views a target
word by the nature of words that co-occur with that word in multiple contexts, so
the meaning of a word is given by the words that co-occur with that word in various
scenarios. In general, the co-occurrence frequency is represented as word-context ma-
trices. Taking into account a fixed word dictionary D and a set of words W to embed,
the co-occurrence matrix C is of size |W |x|D|. C is then dictionary size dependent,
and its size can lead to a high memory usage. Dimensionality reduction techniques are
usually used to make such structures more efficient in terms of memory usage and to
make the process more robust by capturing more useful information and eliminating
less significant information. On the other hand, this technique is easily parallelisable,
so it is possible to train it over more data and get a more accurate model.
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• Prediction-based models: methods that update fixed-dimensional word vectors (pos-
sibly randomly initialized) so that it is possible to accurately predict the words that
appear in a target word in a given context. This predictive ability is improved by
minimizing the loss between the target word and the context word. In this way,
prediction-based models can produce low-dimensional and dense word representa-
tions. Unfortunately, these embeddings are difficult to interpret compared to the
sparse and high-dimensional representations produced by counting-based methods,
where each dimension can be explicitly identified with a context word [29].

3.2.1 FastText
FastText [30] is a library for text classification and representation. It transforms text into
continuous vectors that can be used later in any language-related task. In particular, it is
a prediction-based model based on the skipgram model, where each word is represented as
a bag of character n-grams.

Briefly, in the skipgram model, the goal is to learn a vectorial representation for each
word w in a vocabulary of size W . Given a large training corpus represented as a sequence
of T words w1, ..., wT , the objective of the skipgram model is to maximize the following
log-likelihood:

TØ
t=1

Ø
c∈Ct

log p(wc|wt) (3.15)

where context Ct is the set of indices of words that surround the word wt and p(wc|wt) is
the probability of observing a context word wc given wt. The problem of predicting context
words can be seen as an independent prediction of the presence (or absence) of context
words. For the word at the position t consider all context words as positive examples
and sample negatives at random from the dictionary. For a chosen context position c, the
probability is defined as:

p(wc|wt) = log(1 + exp(−s(wt, wc))) +
Ø

n∈Nt,c

log(1 + exp(s(wt, n))) (3.16)

where s is a scoring function that maps pairs of (word, context) to the scores in R and
takes into account two different vectors, one for the word wt and one for the word wc.

Using a distinct vector representation for each word, the skipgram model ignores the in-
ternal structure of the words, so the FastText intuition was to use a different score function
to take into account this information. Each word w is represented as a bag of character
n-gram, including the w word itself and adding the special characters < and > at the start
and end of the n-gram.
So, for example, taking the word where and n = 3, it will be represented by the character
n-grams:

<wh, whe, her, ere, re>
and

<where> .
Assuming to build a dictionary of n-grams of size G. Given a word w, let us denote
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Gw ⊂ {1, .., G} the set of n-grams appearing in w. We associate a vector representation zg

to each n-gram g. By representing a word by the sum of the vector representations of its
n-grams, it is possible to obtain the scoring function:

s(w, c) =
Ø

g∈Gw

zT
g vc (3.17)

This model allows learning word representations by taking into account subword informa-
tion.

One of the key features of FastText word representation is its ability to produce vectors
for any word, even made-up ones. In fact, FastText word vectors are built from vectors of
substrings of characters contained in it. This allows to build vectors even for misspelled
words or concatenation of words.

3.3 Outlier handling
An outlier is an observation of the dataset that deviates from the rest of the data distri-
bution.
As an example, Figure 3.15 illustrates outliers in a 2-dimensional dataset. As we can see,
most observations lie in two regions, R1 and R2, while it is possible to notice some points
that are far away from these regions, namely o1 and o2. These points are called outliers.

Figure 3.15: Outliers example

In this scenario, outlier detection aims to find patterns in the data that do not conform
to expected behavior [31].
Outliers could be introduced in the data for a variety of reasons, such as malicious activity,
credit card fraud, and cyber attacks. In all these cases, they represent interesting cases to
analyze, as they can help to discover the attacker and his attack patterns.
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In other cases, outliers are seen as noise in the dataset. Noise can be defined as a phe-
nomenon in the data that is not of interest to the analyst, but acts as an obstacle. Noise
removal is driven by the need to remove unwanted objects before any data analysis is
performed on the data [31].

Typically, the steps followed in the outlier detection phase are to identify the observa-
tions belonging to the normal regions, i.e. those in which there are the most data, and to
consider the rest as outliers.
This approach may seem simple, but in reality it can be highly challenging, due to the
difficulty in defining normal behavior of the data. Among other causes, this may be due
to:

• Understand any possible normal behaviour;

• Imprecise boundary between normal and outlier behavior;

• In many domains normal behavior keeps evolving.

Moreover, most of the existing outlier detection techniques solve a specific problem for-
mulation, which is induced by various factors such as nature of the data, availability of
labeled data, type of outliers to be detected, etc.

These factors are often determined by the application domain in which outliers need
to be detected, and therefore, in most cases, ad hoc techniques have to be implemented,
taking into account the specific application domain.

3.4 Standardization
Standardization [32] is a feature scaling technique used to handle quantities of widely
varying values, or to compare measurements that have different units. Variables measured
on different scales do not contribute equally to the analysis and might end up creating
bias. To address this problem, it is necessary to apply feature rescaling techniques to
independent variables or features of the data during the preprocessing step.

Standardizing a dataset involves centering the values around their mean with a unit
standard deviation, following the formula:

x
′ = x− µ

σ
(3.18)

where x is the value that needs to be standardized, µ and σ are, respectively, the estimated
mean and standard deviation of the values.
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Related works

The purpose of this chapter is to present the current state-of-the-art, describing the most
significant works related to the topics discussed in this thesis.

Getting a representation of the source code that preserves the semantic meaning of the
program is a very complex topic that many have tried to address.

One of the most important contributions to this field was made by Uri Alon et al. in
code2vec: learning distributed representations of code [33]. This article presents a frame-
work capable of representing a code snippet in a way that it can be used as input to any
machine learning model and use this representation to train a neural network to predict
program properties. In particular, the authors have taken into account the program’s
abstract syntax tree (AST) to capture regularities that often are common in a program.
The information derived from each path is then aggregated into a single vector using an
attention mechanism that captures information about the entire code snippet.

Nghi D. Q. Bui et al., in InferCode: Self-Supervised Learning of Code Representa-
tions by Predicting Subtrees [34], identify a lack of generalizability in code representation
such as code2vec. Since these code representations and program models are trained in a
(semi)supervised learning paradigm, they are built with respect to specific tasks. In sum-
mary, they do not perform well when used for different tasks. The solution they present
has the purpose to overcome this limitation by developing a model trainable without any
manual human labeling, flexible in producing embeddings for any code unit that can be
parsed into syntax trees, and general enough so that its trained representations for code
can perform well for various downstream tasks. Learning about source code representa-
tion starts with the transformation of the code snippet into an intermediate representation
(AST). Then, for each AST, a set of subtrees is generated, and all of them are accumu-
lated into a vocabulary of subtrees. The original SAT is fed into a neural network, and
the generated vector is used to predict the previous subtrees in a self-supervised approach.
After training the encoder, it can be used as a pre-trained model for downstream tasks.

D. Zügner et al. approached this problem in the article Language-agnostic representa-
tion learning of source code from structure and context [35]. Their solution involves AST
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and a sequence of tokens that describe the context of the program, summarizing the fea-
tures with the attention mechanism with the purpose of learning an agnostic representation
of the code.

This thesis addresses a similar problem, but the starting point is not the source code,
but rather the sequences of assembly instructions generated by the execution of various
programs. The main problem in analyzing such sequences is that the order in which in-
structions are executed may be different from the order in which they are written due to
compiler optimization, which may alter the order of instructions. Additionally, all proposed
solutions analyze the code statically, while a dynamic approach is necessary. Therefore, a
different solution is needed.

On the main topic of this thesis, namely the creation of a neural network model capable
of predicting the overhead caused by the application of certain obfuscation transformations,
to the best of the author’s knowledge, few works have focused on performance degradation,
while almost all have approached the problem by attempting to identify complexity metrics
or features capable of influencing the application of obfuscation.

In the article titled The performance cost of software obfuscation for Android appli-
cations, Yan Zhuang [36] analyzes the performance penalty imposed by obfuscation of
Android applications to optimize the selection of the obfuscation transformation to apply
to the application. In particular, he measures the degree of complexity of obfuscation trans-
formations using software complexity metrics and performance loss in terms of CPU cycles.

Other articles address different aspects of applying obfuscation transformations. Sebas-
tian Banescu in Predicting the Resilience of Obfuscated Code Against Symbolic Execution
Attacks via Machine Learning [37], proposes a general framework for selecting program
features that are relevant to predict the resilience of software protection against auto-
mated attacks. These features are used to build a regressor model capable of predicting
the resilience (defined as a function of time spent by the deobfuscator to run a success-
ful attack and the time spent by the programmer in building the deobfuscator) of several
code-obfuscating techniques against an attack based on symbolic execution.
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Problem statement

Today, software obfuscation is certainly considered one of the most effective countermea-
sures against MATE-type cyber attacks. There are also many other fields in software
engineering and computer security where program obfuscation is very useful, such as de-
fending against viruses or protecting software watermarks and fingerprints. On the other
hand, obfuscation is also used for malicious intent, such as malware obfuscation.
Although these and many other applications have led to the development of new and
increasingly sophisticated obfuscation techniques aimed at improving the robustness and
effectiveness of protection, the loss of performance caused by the application of such trans-
formations remains one of the most significant side effects that must be taken into account.

In fact, a well-protected but extremely slow software would be of no practical use and
would only worsen the user experience.

However, tolerance to the performance penalty introduced by an obfuscator may vary
depending on the context of use and type of software. In some cases, like mobile games or
real-time applications, performance, low latency, and high frame rate are the priority, and
performance loss must be minimized.

In some other services, such as banking, the security of the whole infrastructure, as well
as the data owned, is the priority, and consequently, a drop in performance, within certain
limits, is acceptable. In such cases, it is completely understandable to sacrifice performance
in exchange for more effective protection.

There are many ways to define the cost of software performance, each of which may
have advantages and disadvantages.

This thesis aims to focus on a practical notion of performance that can be linked to user
experience. In particular, this work considers the drop in performance due to the increase in
execution time of the obfuscated software, and aims to build a deep learning model capable
of understanding the relationship between instruction sequences in the vanilla code and
the overhead caused by the application of obfuscation.

In a few words, the main objective of this thesis is to predict how much overhead will be
added to a new observed function without applying any kind of obfuscation transformation
to the function itself.

The starting point will be a set of files that contain all the information collected during
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the execution of various open-source programs. All of this information will be processed
to construct a complete dataset suitable for machine learning tasks. In particular, it will
contain, for each non-obfuscated program, the list of all the instructions executed by all
its functions, when a specific set of input is used, with appropriately calculated overhead
values at the end.

The deep learning model will receive as input the traces thus constructed, as well as
the performance overhead between the execution of the vanilla code and the execution of
the same when obfuscation is applied, for each obfuscation technique chosen.

At evaluation time, an unseen application will be fed into the network, and the expected
output will be precisely the performance drop that the application of obfuscation on that
particular application would have caused.

Getting an estimate of the overhead can be extremely useful in all the situations in
which there are limited resources or in which there are strict constraints on the application
performance. Since under these conditions, a high overhead could slow down the applica-
tion in a not negligible way, thanks to this preliminary information and without the need
to actually apply the obfuscation, the user could choose other obfuscation transformations
that eventually will have better performances.
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Design

This chapter aims to provide an overall view of how the overhead prediction problem was
addressed and its resolution strategy.

6.1 The relevance of data
In any work related to the field of Data Science, the relevance of obtaining a dataset that
contains valuable and consistent data, without useless junk, is one of the most important
points during the development of a solution focused on the use of artificial intelligence:
meaningless data can lead to equally meaningless predictions.
Although in the era of big data it is possible to have access to terabytes and terabytes of
information, if they cannot be correctly interpreted, it will not be possible to build any
model capable of extracting useful information from the data and generating meaningful
predictions. For this reason, data creation and manipulation are crucial aspects of the
machine learning process.

The attempt to collect data on the execution of programs represents the first funda-
mental step towards the construction of a complete dataset, capable of properly training
a neural network with the aim of predicting the overhead caused by the application of
obfuscation.

This crucial phase, as described in detail in Section 2.3, started with the selection of a
pool of applications. To obtain realistic and heterogeneous data, it is important to record
various realistic runs of each application; therefore, a set of test cases for each application
is generated, with the help of a particular type of fuzzer capable of receiving feedback after
running the application, to understand whether the input caused the execution of a new
path in the application.
The generated test suites were first used to collect information about the execution of each
application by running each of it with these input, then to measure their execution time.

Subsequently, each application was obfuscated with the chosen obfuscation techniques,
and then the obfuscated applications can be executed with the same generated test cases
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as input while measuring the time needed for their execution.

Eventually, all the information concerning the execution and the time measurements
of the various applications was stored, and they represent the starting point for the work
proposed in this thesis.

6.1.1 Dataset analysis
The following part focuses on analyzing and preparing these data to create a complete
dataset. At this stage, in fact, the data are still too raw and contain a lot of useless infor-
mation that could be misunderstood or misinterpreted by the model and could lead to an
incorrect overhead prediction.
Figure 6.1 gives a general overview of the different phases necessary to analyze the traces.
The remainder of this paragraph will be spent explaining each of these steps.

The overhead computation phase was performed in parallel to the actual analysis of the
traces. In particular, since 100 runs were made for each trace and each input, this step
consists of grouping all the values of the different runs of the same traces, choosing a single
value between them as the reference values for the trace, and compute the overhead as
a ratio between the execution time of the obfuscated and the vanilla version of the same
application, running with the same test case as input. Different obfuscation transforma-
tions were chosen and, consequently, different overhead values were generated for the same
application.

The dataset, so far, contains one directory with all execution traces and one directory
with all the overhead information needed.
In particular, each trace represents a complete execution of the vanilla version of the pro-
gram under analysis, run with a particular set of inputs found by the fuzzer. Consequently,
for each program, there are as many execution traces as the set of inputs generated by the
fuzzer.

A single trace consists of multiple information from the vanilla execution of the program.
Indeed, in a single line, it contains the following:

• The name of the executed function;

• the offset from the beginning of the function;

• the opcode of the actual executed instruction.

There are obviously as many lines as there are instructions executed by the program.

It must be said that among all the functions in the traces, there are no calls to stan-
dard libraries; this is to avoid including unnecessary information and to focus only on the
functions contained in the program.
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The line containing the last executed instruction does not determine the end of the
trace. In particular, there is other information concerning statistics of the entire execu-
tion, in terms of the number of instructions present for each function.

Figure 6.1: Overall workflow in trace analysis

Therefore, in the cleaning phase, only useful information is extracted from the traces.
In particular, all that is needed are the lines that contain the name of the function, the
offset, and the opcodes of the instruction. All remaining information on the statistics was
not taken into account, as it was not considered meaningful or essential for the purposes
of this thesis.

Since the Tigress obfuscation tool is able to add obfuscation only to one single function
at a time, the aim of the entire work will be to predict the overhead at the function level.
Therefore, it would not make sense to consider a trace as the set of all the instructions
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executed in the program: it is not usable directly for our purpose.

To approach this problem, a single trace must be seen as a set of functions called during
the execution of the program under analysis.
In the reconstruction phase, information about the name of the function and the offset was
used to group all instructions belonging to a specific function, and this is done for every
function in the trace and, for all the traces in a program, and for all the programs. From
now on, a trace will be considered as the set of instructions executed by a function.

In the following steps, the traces will be manipulated to obtain a more compact version
that can be best used by an LSTM network.
Indeed, as discussed in Section 3.1.4, although LSTM nets were introduced to solve the
vanishing problem that affects all RNN networks, they are not able to handle really long
ones anyway. Since the lengths of the traces can also exceed thousands of instructions, a
way to handle very long sequences is needed.

The first step requires instructions disassembly. In fact, when the execution data was ex-
tracted, the instructions were saved as machine code. Disassembling an instruction means
converting it into some form of assembler language so that it is readable by a human. Since
this work analyzes this problem for the x86 architecture, the instructions are converted to
x86 assembly.
As an example, the sequence b800000000 is converted to mov eax,0x0.
This will make it easier to determine a further compression strategy.

Next, the simplification phase represents a crucial step in achieving subsequently an
acceptable compression level.
Normally, the structure of a generic instruction is of type mnemonic + operands (in some
cases, the operands are zero). Since the set of all mnemonics and operands is quite large,
their various combinations can lead to situations where there are semantically similar but
syntactically different instructions.
From this assumption, the idea behind the simplification phase is to find a way to transform
the instruction so that semantically similar instructions have the same syntax. It is possible
to divide this phase into two different sub-phases:

• mnemonic simplification: the aim is to identify a minimum subset of different instruc-
tions so that each set consists of all instructions that share the same behavior. In this
way, it will be possible to transform an instruction into just a string that represents
a set of similar instructions. For example, instructions add, adc, inc can be grouped
into a unique set that represents a general add operation.

• operand simplification: each register, namely eax, ecx, edx, ebx, esp, ebp, esi, edi
considering 32-bit registers, will be converted to _R, while each memory address will
be converted to _M. The idea is that it is not necessary to know specifically to which
register or memory cell is being referred. All that is important to know is that the
access time to a memory cell will always be longer than to a register. Therefore, if at
least one of the operands in an instruction is a memory access, the other (register or
immediate value) will be overlooked: the final output will be _M. On the other hand,
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if among all the operands there is no memory access, it will mean that the longest
access time will be relative to the register: the final output will be _R.

Some examples may help clarify ideas:
cmov [var], edx −→ mov_M
adc eax, 0x15 −→ add_R

Compression is the last phase. The simplifications made in the previous step will be
used to apply the lossless data compression algorithm Run-Length Encoding. The key idea
behind the RLE algorithm is that, in a sequence that presents redundant values, instead of
storing the entire sequence, only a single value will be stored that represents the repeated
value and how many times it appears in the sequence.
RLE is a good compression method when data have many repetitions. The simplification of
the instructions previously done has served just this purpose: in this way, instructions that
were previously only similar in semantics are now identical and can therefore be grouped
together.
Of course, when dealing with instruction compression, what is needed is not character-level
compression, so a custom implementation will be required. This approach allows for the
identification of an entire instruction, so that when two or more identical instructions are
encountered, there will be grouped into unique ones, preceded by the counting of their
appearances.
For example:

mov_M mov_M −→ 2 mov_M
add_R add_R add_R −→ 3 add_R

Finally, information on overhead previously computed was added at the end of each
trace.

In summary, the main aspects of analyzing a trace are the following:

• overhead computation: obfuscated and vanilla time executions were compared to
obtain a measure of performance overhead;

• cleaning: information regarding function name, offset and instruction is retained;

• reconstruction: name and offset information was used to reconstruct the function call
tree to group all functions within each trace;

• disassemble: the machine code of all instructions was translated into x86 assembly
language;

• simplification: instructions have been converted into a simpler form;

• compression: RLE compression was performed;

• overhead addition: the overhead values were added at the end of each trace.

The same procedure was repeated for every trace within an application and for all ap-
plications in the dataset.
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All the steps described so far have led to the creation of a complete dataset containing
much more meaningful and compact information. However, before being used to train the
network, other considerations must be taken into account.

6.1.2 Data preprocessing
Once the data have been organized in a more appropriate way, a single program will gen-
erate as many files as there are functions executed within it. A trace will consist of all
the instructions of a single function call, with at the end the overhead values given by the
application of the chosen obfuscation techniques on that function.
Therefore, the overall dataset will contain, for each execution of a given program with a
given set of inputs, a list of files each containing a function.

Although the analysis just carried out was indispensable to structure the dataset so
that it could be used to train a deep learning model, the information contained within it is
still raw and not very interpretable by the network: the quality of the data directly affects
the ability of the model to learn.
From this point, a further manipulation phase will be necessary to select only useful traces
and discard useless ones.
Figure 6.2 shows the principal aspects of data preprocessing.

Each of these steps will be explained in the remainder of this paragraph.

As explained in the previous paragraph, RLE compression was implemented to reduce
the sequence length. RLE compression works well when there are many repetitions, which
in this case would mean having a situation where there are many identical instructions
repeated one after the other.
Unfortunately, there is no guarantee that this will happen when the code is executed.
Furthermore, the compiler may arbitrarily move instructions to different parts of the code
for optimization reasons. Although the application of this technique has led to an overall
reduction in the length of the tracks, there are still some traces that are too long and
exceeded 1000 instructions, which were therefore too long to be fed into the network.
For these reasons, in the filtering phase, the choice was to remove all traces that were still
too long after compression. The elimination threshold was set at 1000: a length ≥ 1000
results in the trace being deleted from the dataset.
Then the overhead values were checked and the traces with an overhead ≤ 0 were filtered.

Outlier handling was one of the most challenging parts of this thesis work.
Although at this point all traces have a correct structure, the dataset presents traces whose
overhead values deviate greatly from the rest of the distribution. This may be due to mea-
surement errors or an unfortunate execution of the code that generates inconsistent values.
In addition to this problem, there are many identical traces with different overhead values.
Since the execution time depends on many factors, such as the location of the data on the
different memory levels or whether the pipeline is full or empty at that particular time,
different execution times generated by the execution of the same code are actually possible.
Although it may not be a mistake to have identical traces in terms of executed instructions
with different overhead values, this could lead the network to a wrong prediction, as it
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Figure 6.2: Data preprocessing

would not know which of the many values to associate with the given trace.
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The proposed solution groups all identical traces, generating a hash-table-like1 structure
in which the assembly is treated as the unique index, and the corresponding list of overheads
are the values.
Subsequently , for each group:

• the median of the respective overhead values is computed;

• each value within the group is compared with respect to the median, and all values
that are ≥ (median+0.5·median) or ≤ (median−0.5·median) were initially counted;

• if this counter exceeds half the length of the overhead values list, then the trace is
considered an outlier and discarded from the dataset, as most of its values deviate
considerably from the median;

• if the counter is less than half the length of the group, the key value of the group, that
is, the assembly, is included in the dataset with overhead value given by the median
computed in the first step.

Now, all traces in the dataset are different, and the overhead associated with each of them
represents a typical execution of its instructions.
These steps eliminated possible fluctuations in the overhead values within the traces, but
the overall distribution of these values is still unbalanced, presenting values so high and
far from the distribution as to suggest some possible calculation error or some unfortunate
program run in which the CPU triggered some interrupt. For this reason, all these prob-
lematic overheads were eliminated.

Although with these changes the size of the dataset was reduced, the consistency of the
data was promoted with respect to its quantity.

In the word embedding step, an additional problem was addressed. So far, the dataset
presents both numeric and categorical features. The numerical values are the number
preceding the instruction, which was generated by the RLE algorithm and which indicates
the total number of times the given instruction was repeated in succession (i.e. 2 in
2 mov_M) and of course the overhead values, while the categorical ones are the strings
representing the instructions themselves.

The latter introduce a challenge for many machine learning algorithms that do not
support text values and must therefore be translated into numerical values.

For this purpose, a continuous word embedding representation is chosen, using a deep
learning model called FastTex [38]. This powerful library allows words to be represented
as vectors of real values. This vector representation is capable of capturing hidden infor-
mation about a language, such as word analogies and semantics.

The dataset is now ready to be splitted into Train set and Test set: this is a common
practice in machine learning tasks.

1Hash Table is a data structure which stores data in an associative manner. In a hash table, data
are stored in an array format, where each data value has its own unique index value
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The key idea is that since the main goal of supervised learning is to build a model that
performs well on new data, it is possible to simulate new observations by starting from
the initial dataset and dividing it into two subsets. The first subset will be used to fit the
model, while in the second one, the input element will be provided to the model as if it
were data never seen before, then predictions will be made and compared to the expected
values.
The final aim will be to estimate the performance of the machine learning model on new
data.

The last preprocessing step involves standardization of the data. Standardizing the fea-
tures around the center and 0 with a standard deviation of 1 is important when comparing
measurements that have different units. Variables measured on different scales do not con-
tribute equally to the analysis and could end up creating bias. It is important to specify
that all standardization and normalization techniques should be applied after splitting the
data between the training and the test set, using only the data from the training set. This
is because the test set plays the role of fresh unseen data, so it is not supposed to be
accessible during the training phase.

In summary, the main aspects of data preprocessing are as follows:

• filtering: data with overhead ≤ 0 and length ≥ 1000 were discarded from the dataset;

• outliers handling: outliers were detected and discarded from the dataset;

• word embedding: categorical values were translated into vectors of real numbers;

• train and test split: dataset was divided into train and test set;

• standardization: standardization was applied to the dataset.

6.2 Overhead prediction
Overhead prediction represents the last phases of this thesis work.
The sequential nature of the data in the dataset, as discussed in Sections 3.1.3 and 3.1.4,
led to the choice of a deep learning model based on Recurrent Neural Network. In partic-
ular, Long Short-Term Memory was developed to handle even the longest sequences.

With the help of specially designed Python libraries2 for deep learning, the structure
of the LSTM network was defined. In particular, it consists of an LSTM layer followed by
a fully connected layer with the ReLU activation function at the end. The next step was
to implement the forward pass, which consists of passing a trace through the network.
In particular, within this function, first of all, the vectors representing the hidden state h0
and the internal state c0 are set to zero, which will then be passed along with the trace
through the first layer defined above, i.e., the LSTM layer.

2https://pytorch.org/
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Subsequently, the result of this operation will be passed through the fully connected layer,
and finally the activation function will be applied.

The main structure of the network is now complete, but before training the model, some
necessary hyperparameters had to be defined:

• input size: the number of expected features;

• hidden size: the number of features that the LSTM should create, i.e., how many
LSTM cells are in the hidden layer and how many outputs the first layer will have;

• num layers: the number of staked LSTM layers;

• num classes: the number of output classes, i.e., how many values the network has to
predict;

• num ephocs: the number of iterations through the dataset;

• learning rate: parameter that influences both learning time and convergence (see
Section 3.1.2).

Once the network and hyperparameters have been defined, it is possible to move on to
train phase.
This step is crucial because, when the network is created, the weights are initialized with
random values, which causes the network to make incorrect predictions. Therefore, during
training, the aim will be to iteratively improve these weights by defining an appropriate
loss function that will have to be minimized to obtain a lower error by the network from
epoch to epoch. At first, the network will make mistakes, but by adjusting the weights,
the loss function will decrease accordingly and there will be fewer and fewer errors.
In evaluation phase, the network will iterate through the unseen data and the optimized
weights previously found will be used to make predictions.
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Implementation

In this chapter all the main topics presented in this thesis will be addressed in detail,
focusing on the solutions implemented and the adopted technologies.
Figure 7.1 shows an aggregated view of the main steps taken to build a deep learning model
capable of predicting the worsening in performance of a function to which an obfuscation
transformation has been applied.

Figure 7.1: Aggregate view of the workflow

After a brief recap of Stefano’s thesis work on the various steps involved in data collec-
tion, the remainder of the chapter will be spent analyzing in much more detail the steps
shown in the figure, expanding what was already seen in Chapter 6.

7.1 Data collection

This section aims to sum up the results reached by Stefano Alberto in his thesis work
[4], in which he collected data regarding the execution of various programs, tracking their
execution times, and applying various obfuscation techniques in order to gather informa-
tion regarding the performance loss caused by them. These data will be crucial for the
construction of a complete dataset.
Figure 7.2 summarizes all essential parts of the data collection.
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Figure 7.2: General workflow of data collection

The starting point was the selection of a pool of applications to be tested to extract re-
alistic information about software executions. The chosen applications must satisfy certain
constraints:

• software must be open source to apply code obfuscation without breaking the license
terms of the application;

• software must be written in C language, since the obfuscation tool used is Tigress1,
which offers various obfuscation techniques, but only applicable to C code;

• the execution of the application must be deterministic and repeatable, without de-
pending on external factors.

Once the applications have been chosen, to extract meaningful information from them,
it is necessary to run these programs using a proper set of inputs. Since each application is
different, each requires different input data. A good set of inputs leads to the execution of
different paths, and consequently, the information extracted will make more sense. On the
other hand, running an application with random data as input usually causes the applica-
tion to crash or execute the same path in its code many times. Since finding a sufficient set

1https://tigress.wtf/index.html
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of inputs for all applications would have been very time-consuming and resource-intensive,
the proposed solution was to automatically generate it, involving the use of a feedback-
based fuzzer, as seen in Section 2.2.
Although the standard use of a fuzzer is to find anomalies in the code and report them to
the user, in this case it was used to trace different execution paths and save a new input
each times a new paths was found.
It is now possible to collect information about the execution of each applications by run-
ning them many times with the generated inputs.

Finally, the last part to be addressed to obtain a detailed description of a program and
thus to complete the collection of data, is to trace the execution time of both vanilla and
obfuscated applications. First, the unprotected applications were executed 100 times for
each set of inputs found by the fuzzer, as explained in Section 2.3.6.
Then, the execution times were recorded and saved in special files. Subsequently , the se-
lected obfuscation techniques (code flattening and opaque predicate, as explained in Section
2.1), have been applied to the applications. The obfuscated source code is now ready to
be executed to measure execution times.
In fact, to collect data on performance drop, each obfuscated version of all applications
must be re-executed, using as input the same data found by the fuzzer in the previous step,
in order to track their execution times. Also in this phase, the obfuscated applications were
executed 100 times for each set of inputs and the execution times obtained were saved in
different files.

7.2 Data analysis
In this section, the data collected by Stefano will be analyzed and processed to create
a complete dataset that will contain coherent data with a sequential structure that can
subsequently be processed by an LSTM-type neural network.

Eight different applications were examined to collect information on their performance,
and, so far, the total amount of data collected is mainly divided into 4 parts:

1. a folder containing, for each program, all the traces representing, each, the execution
of the entire program with one of the test cases found by the fuzzer. In particular,
Table. 7.1 shows the number of traces for each program;

2. a folder containing, for each vanilla program and for each trace, a file with the time
measurements of each function executed;

3. a folder containing the same time computation for the flatten obfuscated version of
the programs;

4. a folder containing the same time computation for the opaque obfuscated version of
the programs.

Figure 7.3 shows the directory tree structure of the data.
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Figure 7.3: Data directory tree
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Program Name Number of Traces
aha 1500
ascii 1000

colorize 1548
d48 1000
d52 1000
dz80 1000

id3ren 1000
prips 1000

Table 7.1: Number of traces

The following steps aim both at calculating the overhead for each function of each trace
and at analyzing and selecting only the relevant parts of the traces.
The end of this section will determine the complete construction of the dataset.

7.2.1 Overhead computation

This section wants to analyze the execution times of both the vanilla and obfuscated pro-
grams. Figure 7.4 shows the workflow.

The starting point here is all the execution time measurements taken during the data
collection phase.
As explained above, for each program and for each set of inputs generated by the fuzzer,
the clock cycles of each executed function were measured by running a particular function
whose purpose was to record the clock cycles at the start and end of the function to be an-
alyzed. In this scenario, all calls to external library functions were not taken into account,
as they will not be taken into consideration by the obfuscator at the time of transformation.

Furthermore, to minimize possible fluctuations in these measurements, which are mainly
due to the CPU scheduler and the state of the various caches during memory accesses, all
measurements were performed 100 times. This means that, for example, if a trace consists
of a 10 function call, for each of them there will be 100 different measures, each represent-
ing the clock cycles of an execution. The next step is to extract a single value that can
summarize in some way all 100 executions of the function under analysis.
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Figure 7.4: Overhead computation

The main problem addressed in this part was that the distribution of these values
was not very balanced, as there were both extremely high and very small values. Taking
the mean as a reference measure would have led to a result strongly influenced by these
outliers.
A more robust representation of these data is certainly provided by the median, which
represents the central value of the ordinal distribution of these data. Consequently, for
each of the functions, the median between the 100 executions was computed, and a new
file was created, for each execution trace, containing all function-median pairs.
Figure 7.5 shows the old file and the new one, which contains only the list of all functions
executed by a program with the median value beside it. This computation was performed
for both the vanilla and obfuscated programs.

Figure 7.5: Old vs. new clock file

The relative pseudocode is shown below (the algorithm performs the same steps for
both datasets, so for simplicity’s sake a general version is given):
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1 foreach program ∈ programs do
2 foreach time_traces ∈ program do
3 foreach trace ∈ time_traces do
4 create output_file
5 foreach ex_times, function_name ∈ trace do
6 clock_cycle_list← []
7 i← 0
8 foreach clock_cycle ∈ ex_times do
9 /* save the 100 execution times in a list */

clock_cycle_list[i]← clock_cycle
10 i← i + 1
11 end
12 clock_cycle_median← median(clock_cycle_list)
13 output_file← (function_name, clock_cycle_median)
14 end
15 end
16 end
17 end

It should be noted that, by construction, the functions are written in order of termi-
nation, from the first to the main, which is the last to terminate. This detail will be very
useful when reconstructing the call tree as an additional verification of correctness.

The last step involves the computation of the overhead values.
Once a single value summarizing all the various executions has been associated with each
function, this function will have one execution time for its vanilla version and two different
for the two obfuscated versions (flatten and opaque). It is now possible to compute the
overhead, given simply by the ratio:

overhead = obfuscated_time

vanilla_time
− 1 (7.1)

Thus calculated, the overhead will assume the following values:
• = 0: both the obfuscated and the vanilla functions take the same amount of time to

execute;

• < 0: the obfuscated function takes less time to execute than the vanilla, probably
due to some error (this case will be handled later);

• > 0: the obfuscated function takes longer to execute than the vanilla.
As before, a file was created for each obfuscation technique, program, and execution trace,
where the function-overhead pairs were listed. The order in which the functions were
written in the file is the same as previously explained, i.e. from first to last to terminate.

7.2.2 Trace analysis
The purpose of this section is to examine the execution traces in depth, attempting to
select only the essential information considered essential for the purpose of this thesis.
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To construct these new traces, not only the overhead values computed in the previous
phase will be used, but also information concerning the execution order of the functions,
to determine and reconstruct the function call tree of a trace, as will be explained later.

Since the steps will be the same for all the traces, for simplicity’s sake, all the reasoning
that follows will be based on a single trace. The detailed workflow followed is presented in
Figure 7.6.

Figure 7.6: Trace analysis detailed

Data cleaning

The first step consists in understanding the structure of a trace.
Its first lines summarize the execution of one of the vanilla programs with an input one of
the test cases generated by the fuzzer, and lists, in order of execution, all the instruction
for all the functions run by the program. In particular, a line consists of:

• the name of the executed function;

• an offset value that represents a counter that starts when a new function is called
and is incremented for each instruction executed within the function itself;

• the actual executed instruction, in the form of a opcode, specify in machine language
the operation to be performed and zero or more operands with which it is performed.

Once the last instruction of the last executed function has been reported (which in the
case of correct execution should be the termination of the main), further statistics on the
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execution of the program are reported, such as, for example, the number of times a given
instruction appears within a function.

Although this additional information could have its own importance, for the purpose of
the thesis, they do not add anything significant, so the proposed solution is to cut these
additions from the trace, leaving only the information concerning the execution. For a
better understanding of how a trace is composed, Figure 7.7 shows part of a real execution
trace.

It can be seen that the information on execution is divided from the statistic part by the
string ##########; therefore, during cleaning phase everything above this separator
was retained and passed on to the next stages, while the rest was discarded.

Figure 7.7: Example of trace structure

Data reordering

After this cleaning, the trace contains only information about the functions and instruc-
tions performed. As explained above, the aim of this thesis concerns the prediction of the
overhead caused by applying a certain obfuscation technique to a certain piece of code.
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However, a not negligible constraint imposed by the Tigress obfuscator is that it works by
obfuscating only one function at a time. This is done to avoid the obfuscation of non-critical
code and to reduce the performance impact of the protection on the final application.

In this scenario, it would therefore not be correct to directly use a trace with the current
structure, i.e. containing the entire execution of a program.
To be consistent with what Tigress offers, such data must therefore be divided: the main
purpose is therefore to isolate individual functions.

Therefore, it is necessary to group all the instructions for each function executed in the
trace. Since the instructions are in the order they were executed, it is possible to recon-
struct the call tree of the program.

Although at first glance this part may seem trivial, there are many aspects to take into
consideration and several issues were encountered while approaching this problem.
A first approach was based on scanning instructions by determining a new function call
when an opcode belonging to the call function family was encountered (namely when the
first two characters of the opcode took on one of the following values: e8, ff, or 9a) and
the termination of a function when the opcode belonged to the ret function family (namely
when the first two characters of the opcode took on one of the following values: c3, cb, c2,
or ca).

This solution seemed solid until the first results were examined, which showed inconsis-
tencies in the various subdivisions of the functions. In fact, many instructions belonging
to different functions were grouped together.
It turns out that the basic idea of the overall structure of a function can be wrong in real
compiled applications. Indeed, the compiler applies many optimizations to avoid the over-
head of the classic call instructions, especially when the called functions are small. One of
these optimizations consists of using lighter jump instructions to enter and exit a function.
This kind of optimization can confuse the distinction between a standard jump instruction
and the one used as a function call or return from a function when analyzing the execution
trace.

However, sometimes the compiler may reorder the execution of instructions to improve
their efficiency, while respecting dependencies. In these cases, the order in which the in-
structions are listed in the trace may not correspond with the actual order of execution,
and therefore reconstruction of the call tree is no longer possible. The programs containing
such optimizations were discarded and the applications chosen in Table 2.1 were specially
selected to avoid such problems.

The proposed solution to reconstruct the call tree involves the use of a temporary queue
(fun_list) in which all instructions of not yet terminated functions are stored in the form
of function name-list of instructions. When a function terminates, all these previously col-
lected information were moved from this queue to a final one (complete_fun_list) which
stored all completed functions in termination order.

At the beginning, the trace is read and, for each line, information about function name,
offset and instruction opcode was retrieved. Being the first iteration, a new entry was
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created for fun_list, containing the function name and a list with only one element, the
first instruction.
In the next iterations:

• if the current instruction is a call one, it will be stored in the current position in
fun_list and the next line will be examined in detail:

– if the next function name is different from the current one, it means that a new
function will be called: in the next iteration a new entry for fun_list will be
created in the same way as in the first iteration;

– if the next function name is equal to the current one, it means that the current
function has called itself: there was a recursion call. In this case, all the following
instructions will continue to be added to the current entry of fun_list, since it is
basically always the execution of the same function;

• if the current instruction is a ret one, it will be stored in the current position in
fun_list. Since it is not yet possible to determine a priori whether the function
is terminated or not, as it may be in the middle of a recursion, this function is
not currently included in complete_fun_list. For this purpose, the following line is
examined:

– if the next function name is different from the current one, the function is really
terminated: the corresponding information about the function name and the list
of its instructions will be moved from fun_list to complete_fun_list. In testing
this algorithm in reality, there were cases in which the terminated function did
not return the control to its caller but went further up the call tree, even returning
the control to previous functions: in this case, probably due to some compiler
optimization, all the ’skipped’ functions by this ret function will be considered
terminated, added to complete_fun_list, and deleted from fun_list;

– if the next function name is equal to the current one, this means that this function
is in the middle of a recursion: it is not yet terminated, so, also in this case, all
the following instructions will be added to the current entry of fun_list.

• if the current instruction is a jump one, it will be stored in the current position in
fun_list. For the above-mentioned reasons, this instruction can also be used to call
other functions or to return from them. Therefore, also in this case, the following line
will be examined:

– if the next function name is different from the current one, it is the case in which
the jump is used to change function. To understand in which of the two cases
we are (call or ret), the offset is examined:

∗ if it is 0, it means that the jump is used as a call instruction: a new function
was called, so in the next iteration a new entry in fun_list will be created;

∗ if it is different from 0, the jump is used as a ret instruction: the correspond-
ing information about the function name and the list of its instructions will be
moved from fun_list to complete_fun_list, as well as all the other ’skipped’
functions, if any, as explained above.
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– if the next function name is equal to the current one, it means that the jump
instruction is used as usual to jump to other parts of the code, but always in
the context of the current function: it will be added to the corresponding entry
in fun_list. (N.B. this cover also the case in which the jump is used to call a
recursion)

• in all the other cases, the instructions are simply part of the current function, so they
are added to the corresponding entry in fun_list.

Figure 7.8 shows the trace-reordering loop.

Figure 7.8: Trace reordering loop

It should also be noted that the call to external libraries was also handled implicitly,
as their execution begins and ends with their call. The next function will therefore be the
same as the current one and in this way fall back to the cases where recursion was handled,
saving the instructions in the current function.
The correct termination of this algorithm implies that in complete_fun_list there is, for
each function executed in the trace, the pair (function, instruction list) and that each of
them appears in order of termination. As a further check, the list fun_list must be empty,
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which ensures that all functions have been moved correctly in complete_fun_list.
Finally, for each function, a file was created containing all the instructions executed by the
function itself.
From now on, we will consider a trace as the set of instructions executed by a function.

Code disassembly

After the data reordering phase, each function executed by one program is grouped in a
different file, each containing only the instructions it executed.
The length of the individual functions will certainly be shorter than the entire initial trace,
but it is not possible to have an a priori estimate of its length, as it depends on the in-
structions executed. In the case of very complex functions containing many or long loops,
or recursions, this length may not be negligible and must be handled appropriately.
As explained above, in fact, the neural network model we are going to use (LSTM), is
capable of handling longer sequences than a normal RNN, but still has difficulty with ex-
cessively long ones.
Therefore, all subsequent phases attempt to analyze the individual function in such a way
as to reduce its length while trying to minimize the loss of semantics.

The first step involves translating the opcodes into an equivalent format in the assembly
language. This is usually done by tools called disassemblers, which are used to convert
machine code into a more readable format, allowing the programmer to read and under-
stand the otherwise incomprehensible code.
In the case under analysis, disassembly will be essential to discover the structure and data
on which the various instructions operate, and this will allow, in subsequent phases, to
implement strategies aimed at simplifying and compressing instructions.

To achieve this result, the Capstone2 disassembly framework was used. As explained in
Section 2.5.1, this tool offers the possibility of disassembling the code by exploiting various
architectures and modes of usage. Among them, the one used was CS_ARCH_X86 and
the mode CS_MODE_32, which represents the x86 architecture with 32-bit registers.
In a straightforward way, for each function, the opcodes for the executed instructions were
placed in a buffer and analyzed by Capstone. As output, these instructions were translated
in x86 assembly code.

Simplification

Next, a simplification phase is necessary in order to find a representation as compact as
possible for the sequence of instructions executed by a function.
So far, a trace is nothing more than a list of all the instructions that are executed and
disassembled.
A generic instruction is composed of:

2https://www.capstone-engine.org/
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• mnemonic: a special string that describes the operation to be performed, such as
add, move, sub, mul, etc.

• operands: data on which the mnemonic performs its operation. An instruction can
generally have from 0 to 3 operands, which can be only registers, memory locations,
or immediate values.

As a consequence, all the possible combinations of mnemonics and operands admitted by
the language, would make it very difficult to find identical instructions executed one after
the other in sequence.
In this context, trying to find recurring patterns to condense a trace and make it shorter
can be very difficult, if not impossible.
Therefore, the proposed solution consists of trying to simplify the instruction as much as
possible in order to obtain a representation that can preserve its original semantics and at
the same time minimize the variety of elements of which it is composed.
The final objective will be to obtain syntactically identical instructions in the presence of
semantically similar instructions.

in order to implement this solution, both the simplification of mnemonics and operands
will be discussed.

Mnemonic simplification The first step is to identify equivalence classes that can
relate a subset of all possible mnemonics that share a similar behaviour, with a given
name representing that subset. For example, we can search for all instructions that have
the common behaviour of moving/copying data from a source to a destination, which are
the instructions mov, movd, movz, etc, and relate them to the string mov. In this way,
whenever one of the instructions belonging to this subset is found in the code, it will be
replaced with the string mov.
This reasoning was extended to all the instructions that appeared most frequently within
the code, and the results are shown in Table 7.2.

Some other instructions, although common enough to appear in almost every track,
such as or, neg, did not appear frequently enough to justify their simplification and were
therefore left as they appeared.

Operand simplification Similar to mnemonics, operands can also be simplified. In this
case, the reasoning is based on the access time to the resources.
The access time to different registers has an impact that can be considered negligible.
Following this reasoning, for example, the access to eax will be indistinguishable from the
access to ebx, so they were all treated as the same entity. The same reasoning can be
applied for immediate values, whereas for other memory access, a remark must be made.
Any memory access (not involving registers) is theoretically highly dependent on the type
of memory being accessed: reading/writing a value from a cache has far less impact than
performing the same operation on disk. However, keeping track of such information is
extremely difficult in a complex context such as that of a program execution: the choice
of accessing one type of memory rather than another depends on many factors, related to
the state of the memory during the execution of each instruction.
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Simplified Instruction Equivalent Instructions

mov
mov, movd, movz, movs, movzx, movsx, cmove,

cmovne, movsd, cmovg, cmovbe,
cmovge, cmovs, lea, lds, les

add add, adc, inc, addsd
sub sub, sbb, dec, cmp, subsd
mul mul, imul, mulsd
div div, idiv, divsd
and and, test
shift sal, shl, sar, shr
rot rol, ror, rcl, rcr

c_jmp

je, jz, jne, jnz, js, jns, jg, jnle, jge,
jnl, jl, jnge, jle, jng, ja, jnbe, jae, jnb, jb,
jnae, jbe, jna, jo, jno, jp, jnp, jcxz, jecxz,

loop, loopz, loopnz, loope, loopne

Table 7.2: Equivalence class for mnemonics

Keeping track of this information would have led to an over-complication of the model,
which would have been totally unmanageable. For this reason, the type of memory accessed
by an instruction was not taken into account during the data collection phase.
Since this distinction is therefore not present within the traces, the proposed solution takes
into account all memory accesses as if they were equal.
Therefore, the proposed solution consists of:

• simplify all registers, which are eax, ecx, edx, ebx, esp, ebp, esi, edi, (considering the
32-bit register architecture) by replacing them with _R;

• simplify all immediate values by replacing them with _N.

• simplify all memory accesses by replacing them with _M ;

Another problem that could make all the efforts made so far useless concerns the number
of operands in an instruction. Their number, in fact, can vary, but in most cases they are
between 0 and 2, in rare cases 3.
Since, on average, an instruction operates on 2 operands, all their possible combinations,
even if they have previously been simplified, could still lead to having semantically the
same but sintattically different instructions.
As an example, we can think of two mov-type operations that operate one between register
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and memory and the other between memory and register.
in this case the simplification would result in:

mov_R_M, mov_M_R
These two instructions have practically the same behaviour, and also the access time to
their operands, on the whole, is the same; the inverted order of the operands, however,
makes them different.
Therefore, the proposed solution provides, in the case of 2 or more operands, to a further
simplification, in which they are reduced to one, more precisely the one whose access time
weighs the most on the entire execution. In this way:

• one memory access will always prevail over register and immediate value access;

• a register access will prevail over an immediate value access;

• immediate value access will always have the worst, as it is considered the fastest,
assuming that there is no instruction operating exclusively on immediate values.

The algorithm that makes this decision is called every time an instruction has more than
one operand, and its pseudocode is the following:

1 foreach operand ∈ instruction.operands do
2 if operand == ’M’ then
3 return ’M’
4 end
5 end
6 return ’R’

Figure 7.9 shows a final example in which a trace appears before and after simplification.

Compression

The compression step represents the last part in which the trace is manipulated, before
being inserted into the dataset.
The previous steps, which involved the disassembly and simplification of instructions, were
intended to make the trace readable and understandable and subsequently modify the
syntax to ensure that semantically similar instructions had the same syntax.
The sole purpose of these steps was to prepare the trace for the compression step, which
will allow the length of the traces to be reduced.

The compression algorithm chosen is Run-Length Encoding. As explained in Section
2.4.1, RLE it is a common lossless data compression technique which compresses data by
reducing repetitive and consecutive data.
The basic version of this algorithm scans the data looking for individual repeating charac-
ters. For example, the string ABBCCCD will be compressed into 1A2B3C1D.

Applying such a version to the traces would result in the decomposition of each instruc-
tion into its character-level compressed version, which would lead not only to a complete
loss of the semantics of the instruction itself, but in most cases also to an unnecessary in-
crease in the size of the compressed file, since a single instruction rarely contains repeated
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characters. In fact, taking the mov_M instruction as an example, its compression would
result in 1m1or1v1_1M.

In this scenario, it is necessary to develop a customized version of the RLE algorithm.
Such a version will have to handle each instruction in the trace ad hoc, in order to compress
at instruction level. This new version will reduce repetitive and consecutive instructions
by scanning each one and recording the number of times an it appears, followed by the
instruction itself. For example, in the case of a trace containing mov_M mov_M, com-
pression would result in 2 mov_M

The revisited algorithm involves the use of a counter cnt and two indices i and j in two
nested cycles that scan the trace to be compressed.
The outermost loop scans the trace taking into account the i-th instruction and initializes
cnt = 1.
The inner loop searches in the same trace for all occurrences of the i-th instruction, starting
with index j = i + 1 and incrementing the counter each time it encounters an equal one.
As soon as a different instruction is found, the inner loop is stopped, and the counter-
instruction pair is saved as a result.

The pseudocode is as follows:

1 i← 0
2 compressed_trace← []
3 foreach instruction1 ∈ trace do
4 cnt← 1
5 j ← 0
6 foreach instruction2 ∈ trace do
7 if j > i then
8 if instruction1 == instruction2 then
9 cnt← cnt + 1

10 else
11 break
12 end
13 else
14 j ← j + 1
15 end
16 end
17 i← i + cnt
18 compressed_trace← (cnt instruction1)
19 end

Figure 7.10 shows a final example in which the same simplified trace shown in Figure
7.9 appears before and after compression.

Dataset creation

The last step consists in inserting at the end of the trace the information regarding the
overhead given by the application of the two previously chosen obfuscation transformations
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(code flattening and opaque predicate) to the function itself. These two values are taken
directly from the files previously created in Section 7.2.1, where, as already explained,
each file contains all functions executed by a program with a specific set of inputs, with
its overhead.

Figure 7.11 shows a final example in which the same simplified trace shown in Figure
7.10 appears before and after the addition of overheads.

In this phase, the information previously mentioned regarding the order in which the
various functions are written in these files is finally used. In fact, in Section 7.2.1 it was
explained that by construction the functions are written in order of termination, from the
first to the main, which is the last to terminate.
This information was very useful as a further check to verify the correctness and complete-
ness of the results obtained. The verification is twofold:

• Correctness: it has been verified that the order in which the different functions were
generated from the initial trace during the reordering phase is equal to the order
present in the overhead files. In this way, it was checked that the function call tree
had been correctly reconstructed, respecting the termination order of each function;

• Completeness: it was verified that all the generated functions were present in the
overhead files.

Only if these checks were correct for all the functions of all the traces of the program, then
the traces will be inserted into the dataset. In fact, if even one of these checks fail for a
single function, the entire algorithm would crash and the error would be reported.

Figure 7.9: Trace before and after simplification

76



Implementation

Figure 7.10: Trace before and after compression

Figure 7.11: Trace before and after the addition of the overheads

7.3 Data preprocessing
The data collected and analyzed in the previous phase were used to populate the dataset,
which now has a suitable structure to be processed by a sequential neural network. Each
trace, in fact, represents a sequence of information linked by a temporal relationship. The
goal of the network will be to predict the last two values, i.e. the overheads.

During the phases that involve the creation of the dataset, the data was analyzed ex-
clusively from the point of view of its form. In fact, the previous phases had the sole
and precise purpose of analyzing certain programs and sampling their execution, generat-
ing traces that had a structure suited to the type of architecture taken into consideration
during the initial phase, in which the main purpose of this thesis work and its possible
resolution were defined.
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Although the dataset now has a correct structure, no emphasis has yet been placed on
the quality of the observed data: so far, the data are still too raw and the presence of
inconsistent data, incorrect values and outliers could produce meaningless predictions.
For these reasons, a step is required, in which the quality of the data will be examined,
applying techniques to analyze, filter, transform, and encode the data, so that the machine
learning algorithm can be fed correctly.
This phase is called Data Preprocessing, and is common to all real-world applications of
artificial intelligence, as data extracted from real-world scenarios always present missing
or inconsistent values.

The detailed workflow followed is presented in Figure 7.12.
The remainder of this section will be spent discussing all the steps shown in the figure.

Figure 7.12: Data preprocessing detailed
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Dataset reading and filtering

Since the initial dataset contains, within each track, the overhead values related to both
the flattening and opaque transformations, the choice of splitting the dataset, creating one
relating only to the flatten transformation and one to the opaque transformation, seemed
the most logical solution. In fact, in this way, the same trace will be present in both
datasets, and each will contain only one overhead value.
It will then be possible to analyze the two datasets separately, being able to make individ-
ual considerations and taking into account a single overhead value at a time.

Taking, for example, a trace that has a negative overhead value for the flatten transfor-
mation and a positive overhead value for the opaque one, without this division, the only
possible solution would be to discard the trace, as a negative overhead value is meaningless.
However, this would also lose the correct value present, which would have been instead.
Considering instead two separate datasets, this trace would have one overhead (the neg-
ative one) within the flatten dataset, and another (the positive one) within the opaque
dataset. Consequently, the same trace would be discarded from the first dataset and kept
in the second.

Parallel to the reading of the dataset, the filtering phase was also carried out to avoid
a second reading of the data.
Basically, two different types of filtering were carried out: one based on overhead values
and one on traces length.

As explained in Section 7.2.1, the overhead value is computed by applying the formula
7.1. The case where a trace presents overhead < 0 means that the vanilla function takes
longer to execute than its obfuscated version. Since, by construction, the chosen transfor-
mations worsen the performance once applied to the program, there can be no cases where
the obfuscated application is faster than the original. Such results are probably due to
accidental slowdowns caused by the operating system, such as interrupts triggered during
the execution of the vanilla function.
Traces with overhead values = 0 were also disregarded, as the case where the vanilla time
is equal to that of the obfuscated version is of little interest.
For this reason, all overhead values ≤ 0 were discarded.

The other type of filtering concerns the length of the traces.
Although the traces were manipulated and compressed appropriately in order to reduce
their length, unfortunately there are still traces that are too long to be processed. There-
fore, the adopted solution is to discard all traces with a length > 1000.

Applying such filtering to the datasets, From the initial 12846554 traces, 4535822 were
selected for the flatten dataset, and 4361729 for the opaque one.

Outlier handling

The detection and handling of outliers represent a crucial parts of the data preprocessing
phase.
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As explained in Section 3.3, an outlier is an observation in the dataset that deviates
from the rest of the data distribution.
Although in some contexts outliers may be cases of interest because they could be intro-
duced into the dataset for malicious purposes, in our the context, such observations will be
handled as noise, i.e a phenomenon in the data that is not of interest and that can hinder
the statistical analysis and training process of a machine learning algorithm, leading to a
deterioration in performance. For these reasons, they must be removed before carrying out
any analysis of the data.

All steps in the detection and removal of outliers are shown in Figure 7.13.
The image shows the various steps performed on a single dataset, as the steps are exactly
the same for the two examined datasets.

Figure 7.13: Outlier handling

Data grouping Extremely inconsistent data are present in the dataset at this time.
The extreme variability with which the execution of a trace can be slowed down by fac-
tors that are outside the direct control of the programmer and that depend mainly on the
operating system, leads to cases in which the same program, executed several times, has
totally different execution times. This obviously has the consequence of the variability of
the corresponding overhead values.
The final result is that there are many traces in the dataset that have the same sequence
of instructions and thus represent the same execution, but with completely different over-
heads. This extreme variability could lead the machine learning algorithm to make very
inaccurate predictions, as it would not know which of the many values to associate with
the particular execution trace.

For this reason, the solution proposed in this first phase aims to group all traces having
an identical assembly code into a hash-table like structure, data_grouped, in which the
assembly is stored as the key, and the corresponding list of overheads are the values.

The results obtained indicate that in the flatten dataset there are 1720 unique traces,
whereas in the opaque dataset there are 1194 unique traces.

Outlier removal In this step, using the data structure we have just created, outliers
will be detected and removed.

However, first of all, it is necessary to define what an outlier is meant by in the domain
of our dataset.

As explained in the previous step, in data_grouped there is, for each unique trace, the
corresponding list of overheads. These values represent the relationship between various
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executions of the same vanilla application and its obfuscated counterpart. Very different
overhead values mean that the execution times of the trace are not stable and that there
is a lot of variability in the trace itself. To define a measure that could, in some way, give
a total indication of the overhead of such a trace, the average of the list was initially used.
During the analysis of these values, however, it was realized that there were extremely high
overheads, which led this statistic to become skewed towards these values.
For this reason, a more robust measure was chosen, namely the median, which is the central
value of an ordered distribution and thus indicates a typical realization of the distribution.

Once a measure representing the typical overhead value for the trace under considera-
tion has been defined, the next step is to find out whether this track has overhead similar
to this value or not. For this purpose, all values within the overhead list that are far
from their median are counted. In particular, a counter is incremented each time a value
of overhead ≥ (median + 0.5 · median) or ≤ (median − 0.5 · median) is observed. This
threshold was chosen empirically on the basis of the observed values. Subsequently, if at
the end the counter is greater than half the length of the list, the trace under consideration
will be considered as an outlier. This is because it would mean that more than half of the
observations are distant from the median by a non-negligible value, so it follows that the
variability of the trace is too high to consider it as quality data.

If, on the other hand, the counter is smaller than the chosen threshold, then only one
instance of the trace will be included in the dataset, with the median calculated above as
the overhead value.

The pseudocode is as follows:

1 foreach group ∈ data_grouped do
2 cnt← 0
3 assembly ← group.key
4 overhead_list← group.value
5 median← median(overhead_list)
6 foreach overhead_value ∈ overhead_list do
7 if overhead_value ≥ (median + 0.5 ·median) or

overhead_value ≤ (median− 0.5 ·median) then
8 cnt← cnt + 1
9 end

10 end

11 if cnt < length( overhead_list
2 ) then dataset← (assembly, median)

12

13 end

Figure 7.14 shows the outlier-removal loop.
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Figure 7.14: Outlier removal loop

in particular, applying this algorithm on the two datasets, 53 outliers were found in the
flatten dataset and 86 in the opaque dataset.

Noise removal So far, the dataset contains traces with a unique sequence of assembly
instructions and an overhead value given by the median of all values that were previously
associated with the trace.
All the steps performed so far eliminated possible fluctuations in overhead values within
the traces, but the overall distribution of these values is still unbalanced, presenting few
values so high and far from the distribution that it is impossible to think they could be the
result of smooth executions. Such high values suggest some possible measurement error or
some unfortunate code run in which the CPU triggered some interrupt.
For this reason, all these problematic traces were discarded.

In this case, the standard deviation was used, whose formula is given by

σ =

öõõô NØ
i=1

(xi − µ)2

N
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and represent a measure of how far the data deviates from the mean, i.e. it measures
the dispersion of a distribution. In this case, since the distribution of the two datasets
is extremely different, as the opaque dataset is much more unbalanced than the flatten
dataset, it was decided to cut off different portions of the distributions from the different
datasets. In the case of the flattening dataset, only the values that fell in the [−2σ, +2σ]
range were considered, covering almost the entire range of the starting observations.
On the other hand, for the opaque dataset, a sharper cut was required, opting to retain
only the values that fall between [−σ, σ].

Figures 7.15 and 7.16 show the distribution of the two datasets before and after appli-
cation of this technique.

This final step resulted in the cutting of additional 270 tracks from the flatten dataset
and 37 from the opaque dataset. The final size of the two datasets is 1397 traces for the
flatten dataset and 1071 traces for the opaque dataset.

In parallel with the removal of the outliers, the labels, i.e. the overhead values, were
also split from the dataset.

(a) Before noise removal (b) After noise removal

Figure 7.15: Outlier removal for flatten dataset
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(a) Before noise removal (b) After noise removal

Figure 7.16: Outlier removal for opaque dataset

Word embeddings

So far, the constructed dataset consists of program execution traces, each containing a
different sequence of instructions.
Instead, what all traces have in common is their structure. In fact, each of them has two
fields for each row containing:

• an integer value representing the frequency with which a given instruction appeared
in sequence;

• a string representing the instruction performed.

Since most machine learning algorithms only work with numeric values, the categorical
features, i.e. the instructions, represent a problem, and they need to be transformed into
numerical ones.
For this purpose, the proposed solution was to represent instructions as vectors of contin-
uous values, a technique known as word embeddings.

Word embeddings are, in fact, a class of techniques in which individual words are
represented as real-valued vectors in a predefined vector space. Each word is mapped into
one vector, and its values are learned in a way that resembles a neural network.

The distributed representation is learned based on the usage of words. This allows
words that are used in similar ways to result in having similar representations, naturally
capturing their meaning.

The main problem faced when choosing the best embedding solution was the need
to represent words that are not commonly used. In fact, most word embedding models
work with pre-computed word dictionaries and do not accept words that are not present.
Although such structures usually contain an immense amount of words, in our case the
strings used to represent instructions are so specific that none of them is present in any
dictionary.
The answer to this problem, as explained in Section 3.2.1, was found in FastText, a deep
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learning model capable of learning word representations while taking into account their
morphology. To model morphology, it considers subword units, and represents words by
a sum of its character n-grams. By using a distinct vector representation for each word,
the model ignores the internal structure of words. Therefore, it is capable of building word
vectors for words that do not appear in the training set [30]. The practical implementation
provides, for each of the two datasets:

• the generation of a custom vocabulary, which in our case was created by scanning all
the traces in the dataset and taking all the different instructions;

• The choice of size for the output vector containing the embedding of an instruction,
which in our case was set to 10. In this way, the embedding of a single instruction
(e.g. mov_R) will be equal to a vector of 10 real numbers;

• The addition of 10 initially empty columns to our dataset;

• The training of the FastText model on the generated vocabulary, so as to create a
vector for each word within it;

• The filling of the previously added columns with the model’s output values;

• The deletion of the column that previously contained the assembly instructions in
string form;

The final result is that each row of a trace consists of a column containing an integer
value representing the frequency at which the given instruction appeared and 10 columns
representing the instruction.

Train and test split

This section represents a fairly standard but not less important part to apply to the dataset
and is part of the steps before training the neural network.
In fact, it is a model validation procedure that allows the model performance to be sim-
ulated on data never seen before. In fact, the main purpose of any supervised learning
algorithm is to build a model that will perform accurately on new data.

To do this, it is possible to split the original dataset into training set and test set,
random sampling without replacing about 80% of the data, placing them in the training
set, and placing the remaining 20% in the test set.

Standardization and transformation

the final step, which precedes the definition of the deep learning model, is to apply certain
transformations to the data in order to make them suitable for the network.

The first step is to standardize the data. Since the range of the variables may differ a
lot, using the original scale may give more weight to the variables with large values. In fact,
variables that are measured on different scales do not contribute equally to the analysis
and could end up creating bias. To address this problem, all data are centered, causing
them to have mean 0 and standard deviation 1, so that we are dealing with the same scale
of possible values.
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It should be noted that, at the implementation level, a model will be instantiated that
will be trained on the training set only, computing its mean and standard deviation, and
then uses these values to apply standardization on both train and test set. This is because
the test set represents new observations and theoretically we cannot have access to its
information, such as mean and standard deviation.

Eventually, since the network model expects inputs as 3-dimensional tensors3, the
dataset was converted specifically to respect this constraint.

7.4 Model build and overhead prediction
Thanks to all the previous steps, it was possible to construct a complete and coherent
dataset, both in terms of structure and content.
Each trace represents an execution of a single function, so as to be consistent with the
way Tigress works, and contains the list of all the instructions executed, appropriately
analyzed, and processed in such a way as to be as short as possible but still preserve their
semantics. Each trace is associated with an overhead value calculated in such a way as to
represent a typical execution of that function, appropriately calculated among all functions
that presented the same instructions, thus avoiding taking values of unfortunate executions
that could lead the network to create bias.
The final step is to construct a neural network model capable of handling this dataset
appropriately.

Model build

As discussed in Sections 3.1.3 and 3.1.4, the sequential nature of the data in the dataset led
to the choice of a deep learning model based on Recurrent Neural Network. In particular,
Long Short-Term Memory was developed to deal with the problem vanishing gradient and
thus handle even the longer sequences.

In particular, the practical definition our network passes through the definition of some
layers:

• an LSTM layer, which applies a multi-layer long short-term memory (LSTM) to an
input sequence. For each element in the input sequences, it computes the functions
it, ft, gt, ot, ct, and ht, as explained in Section 3.1.4;

• a Fully Connected layer, which applies a linear transformation to the incoming data;

• ReLu layer, which applies the rectified linear unit function for each element.

The next step involves the implementation of the forward pass, in which, each time, an
entire sequence will be passed through the network.
It will perform the following steps:

3a tensor is a multi-dimensional matrix containing elements of a single data type.
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1. set the initial vectors representing hidden state and cell states h0 and c0 to 0;

2. pass h0 and c0 to the LSTM layer, together with the input at the current timestamp
t, xt;

3. new hidden state hn, current state cn and the output are returned by the LSTM layer;

4. reshape the output to Fully Connected layer shape;

5. apply the ReLu activation function on the output of the LSTM layer;

6. pass the output through the fully connected layer;

7. return the output, which represents the prediction made by the network.

with the definition of all the layers we are interested in, and the forward pass, the model
is complete.

Train

In the training phase, the following hyperparameters will be defined:

• input_size: the number of expected features in the input x, i.e. the columns in the
dataset, which in our case will be 11, since the first represents the frequency with
which the instruction was repeated in succession, while the remaining 10 represent
the embedding of the instruction;

• hidden_size: the number of features in the hidden state h that the LSTM should
create, i.e., how many LSTM cells are in the hidden layer and how many outputs the
first layer will have;

• num_layers: the number of staked LSTM layers. For example, setting num_layers =
2 would mean stacking two LSTMs together to form a stacked LSTM. In our case,
only 1 LSTM layer will be created;

• num_classes: the number of output classes, i.e., how many values the network has
to predict. In our case, only 1 value will have to be predicted;

• num_ephocs: the number of iterations through the dataset;

• learning_rate: parameter that influences both learning time and convergence (see
Section 3.1.2).

Two different instances of the network were defined, passing each such hyperparameters:
the first will be trained on the flatten dataset while the second on the opaque one.
At the beginning of the training, the loss function MSE (see Section 3.1.2) will be defined,
which creates a criterion that measures the mean squared error (squared L2 norm) between
each element in the input x and the target y.
Subsequently, the Adam optimizer (see Section 6) will be defined, which will hold the cur-
rent state and will update the parameters based on the computed gradients.
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The training loop consists of the following steps:

1 criterion←MSELoss() /* loss definition */
2 optimizer ← Adam() /* optimizer definition */
3 epoch_loss← []
4 i← 0
5 foreach epoch do
6 overall_loss← 0
7 foreach trace ∈ dataset do
8 output← forward_pass(trace[X])
9 optimizer.zero_grad() /* gradient computation */

10 loss← criterion(output, trace[y]) /* loss computation */
11 loss.backward() /* backpropagation of the loss */
12 optimizer.step()
13 overall_loss← overall_loss + loss

14 end
15 overall_loss← overall_loss

length(dataset)
16 epoch_loss[i]← overall_loss
17 i← i + 1
18 end

Both networks were trained many different times to test various combinations of hy-
perparameters and find the set that would give the best result.
After trying many combinations, it was observed that after about 30 epochs the results for
both datasets remained constant, so 30 was chosen as the final number of epochs. A good
compromise between training time and final results is given by a hidden_size = 512 for
both datasets.
Considering learning rate, for the flatten dataset the best result was obtained with 0.001,
and for the opaque data set with 0.0001. The training losses are shown in Figure 7.17

(a) Flatten dataset
lr = 0.001

(b) Opaque dataset
lr = 0.0001

Figure 7.17: Training losses
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Evaluation

In the evaluation phase, the performance of the two different networks will be tested on
new, never-before-seen observations coming from the test set.
The same weights found by the previously best-performing model will be used to make the
predictions.
For each trace coming from the test set, its prediction will be calculated simply by per-
forming the forward step. Subsequently, it is added to a list of predictions.

Eventually, RMSE and MAPE (see Section 3.1.5) will be computed, to give an idea of
how the network behaved in the face of new date. Table 7.3 shows their values.

STDEV RMSE MAPE
flatten dataset 0.72 0.50 98.62
opaque dataset 0.19 0.17 125.73

Table 7.3: RMSE and MAPE scores obtained

As explained in Section 3.1.5, the standard deviation can be used as a measure of how
the simplest model, i.e. the one which uses the simple mean to make prediction, should
perform. In fact, it measures how far the true value is from the mean.
The RMSE is quite similar to the standard deviation, but it measures how far the true
value is from the prediction of the model for that value.
In both cases, the models performed slightly better than their naive counterparts, so they
were able to learn from the data and make smarter predictions than the mean values.

Figure 7.18 shows the predictions compared to the real values.

(a) Flatten dataset (b) Opaque dataset

Figure 7.18: Overhead predictions vs. real values

As can be seen, the model trained on the opaque dataset achieved the worst results,
both in terms of RMSE and MAPE. From the figures representing the overhead predic-
tions, we can indeed see that it has a great difficulty in predicting values much higher than
the average. These large differences between the true value and the incorrect prediction
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could be the cause of these low scores, since the evaluation metrics are proportional to the
difference between the true value and the predicted value. On the other hand, the model
trained on the flatten dataset can better handle high-value predictions, although it still
makes some errors.

The results obtained show that there are some limitations in predicting overhead, prob-
ably due to the low correlation between instructions and overhead values.
In fact, as explained in Section 2.3.6, the execution times of individual instructions depend
on many factors, mostly independent of the programmer’s will, but should be taken into
account in some way. CPU performance has a major impact on program execution speed,
and depends on:

• interrupts: interrupt calls require the processor to suspend the current program, save
its state, execute the interrupt handling function, and then reload the program state
and resume execution. Interrupt handling is one of the most important causes of
program delays, and although in our case many interrupts have been intentionally
disabled in order not to delay execution, some kernel interrupts cannot be disabled,
therefore, the operating system will continue to block the execution of the current
program in order to satisfy them;

• The presence of various cache levels and their size: these very fast but small memories
are used by the processor to save information that will most likely be used again after
a short time. If an instruction is in the cache at the time it is to be executed, then
its fetch-decode-execution will take a few clock cycles; otherwise, in the case of cache
misses, the time will increase considerably. Since modern processors can have several
cache levels, the execution time of an instruction therefore depends heavily on where
it is located.

Another very important factor to take into account is the presence of Hardware-Based
Speculation [39] in modern processors, which allows out-of-order execution of instructions
as soon as its operands are available, to optimize the pipeline management.
Instructions are broken up into micro-instructions and executed in a non-arbitrary order,
also based on the prediction of conditional jumps. Once executed, these instructions are
reordered due to reorder buffer and committed in order, to give the impression to the pro-
grammer that they were executed in order.

In conclusion, the combination of all these factors results in extreme variability in the
instructions. Determining the execution time of a single instruction, as well as of an
entire trace, becomes very difficult in this context, and this would demonstrate the little
correlation present between the trace itself and its execution time (and consequently its
overhead).
However, this work is intended as a further step towards a complete solution to the problem
of performance prediction in obfuscated programs.
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Conclusions and future works

This thesis presents the work done to build a complete dataset with which to train a deep
learning model that aims to predict the computational overhead that obfuscation adds
to a program. The huge initial collection of data contains information on the execution
and obfuscation of programs, and, in particular, each program, executed with one of the
possible pre-computed input sets, is described in terms of:

• execution traces containing all the instructions executed for each function, together
with other various statistics concerning the execution of the program;

• execution time of the non-obfuscated application in terms of clock cycles;

• execution time of the obfuscated application in terms of clock cycles.

Data on execution times were appropriately manipulated to define a measure of overhead
to quantify the performance loss due to obfuscation.
Then the traces, after being cleaned of unnecessary information, were analyzed to recom-
pose the function call tree, so that a file could be created for each executed function, each
with its own instructions.
Subsequent steps focused on reducing the length of each trace. After disassembling the op-
codes, a simplification was made in order to generalize an instruction as much as possible,
resulting in instructions with the same syntax for similar semantics.
This simplification was used to apply compression, revisiting the classic Run-Length En-
coding algorithm to take into account successive repetitions of instructions.
Finally, each trace was filled with the corresponding overhead values.

Subsequent preprocessing steps focused on ensuring better data quality, first filtering
out traces that were found to be too long even after compression, and then also those with
incorrect overhead.
Traces with identical instructions were grouped together, and between all the correspond-
ing overhead values, one, the most significant, was taken to represent a typical execution.
This value was used to determine whether the trace in question could be added to the
dataset or was to be considered an outlier and consequently discarded.
A further cut of traces with overheads that were too far from the distribution was made,

91



Conclusions and future works

which favors the consistency and quality of the data with respect to its quantity.
The categorical features present in the dataset required an encoding solution based on
word embedding, in which an instruction was represented with a vector of real numbers of
fixed size.
The sequential nature of the data led to the choice of a different neural network model
from the standard one, capable of handling data that have a precise temporal relation.
In conclusion, part of the created dataset was used to train a neural network model based
on LSTM, while the remainder was used to evaluate the performance of the model.

This thesis aims to get closer to a complete solution to the problem of performance
prediction in obfuscated code, and could be an inspiration for possible new solutions that
focus on the use of different or better implementation technologies to improve the results
obtained.
Different manipulations of the data could lead to the creation of a more balanced dataset,
while the use of other compression techniques could lead to a further reduction in the
length of the traces. In addition, the choice of different types of machine learning model
could also be considered.

Future developments can also be achieved by improving the quality and completeness
of the dataset.
By taking advantage of the development environment previously created specifically for the
extraction of information on the execution and obfuscation of code, it would be possible
to select new programs and new obfuscation transformations, and thus expand the size of
the dataset.
Considering different factors that could somehow ensure less variability between assembly
instructions and improve the measurement of execution time by making it less dependent
on external factors, would lead the dataset to be more consistent.
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User manual

A.1 Requirements
• tested in a macOS and Linux environment. Should also work on Windows

• Python ≥ 3.8.2

• tqdm: https://pypi.org/project/tqdm/

• capstone: https://www.capstone-engine.org/

• FastText: https://fasttext.cc/

• Pytorch: https://pytorch.org/

• numpy: https://numpy.org/

• pandas: https://pandas.pydata.org/

• sklearn: https://scikit-learn.org/stable/index.html

• matplotlib: https://matplotlib.org/

A.2 Environment setup

A.2.1 Python libraries installation
Installation command for tqdm, capstone, gensim, torch, numpy, pandas, scikit-sklearn
and matplotlib.

pip3 install tqdm capstone gensim torch numpy pandas sklearn matplotlib
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A.3 Scripts usage
The following scripts must be launched in the following order:

1. clock_computation

2. trace_analysis

3. overhead_prediction

A.3.1 clock_computation
This script, for each function executed within each program, has the task of computing the
median between the 100 execution times for both the vanilla and obfuscated versions. It
then computes the overhead between the two versions of the same function using the just
computed values.

python3 clock_computation.py <program_clock_path> <clock_out_dir>
<overhead_out_dir> <analyzed_program_path>

Parameter Description
program_clock_path folder where the files containing the individual program executions are located

clock_out_dir output folder where the computed clock values will be saved
overhead_out_dir output folder where the computed overhead values will be saved

analyzed_program_path check to select only the correctly analyzed programs

A.3.2 trace_analysis
This script is responsible for all trace analysis. It cleans, reconstructs the call tree, dis-
assembles the machine code, simplifies the instructions and compresses them, and then
finally adds the overhead.

python3 trace_analysis.py <base_path>

Where base_path is the folder where all the traces are located and where the output
will be saved.

A.3.3 overhead_prediction
This script reads and processes all the traces generated by the trace_analysis script. It
takes care of the preprocessing phase in which erroneous traces are filtered out and handles
outliers. It then defines the LSTM model and performs training and evaluation on these
data

python3 overhead_prediction.py <base_path>

Where base_path is the folder where all previously analyzed traces are located.
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Developer manual

This manual is intended as a reference for future developments and improvements of the
work presented in this thesis.

B.1 Trace analysis
It is possible to change the behavior of the trace_analysis script through appropriate flags
defined as global variables at the start of the script.
In particular:

• RLE: data compression using the Run-Length Encoding algorithm occurs only if the
value of this flag is True; otherwise, the traces will not be compressed. In this way,
it will be possible to develop and apply new compression techniques in a simple
manner, or decide not to compress the data at all, only by setting the flag to False
and appropriately implementing new compression techniques;

• SIMPLIFY: if True, simplification to the instructions of which the trace is composed
will be applied. It is essential if you want to apply a subsequent compression using
RLE, otherwise it can be set to False. In this way, a single instruction will be in the
form of a mnemonic + list of operands (if presents);

• CLOCK: if True, the information on execution time, given in clock cycles, will be
added to the end of the trace instead of the overhead values. Otherwise, if False, the
two overhead values given by applying the two obfuscation techniques to the trace
will be added.

B.2 Overhead prediction
The overhead_prediction Jupiter notebook needs certain values, defined as global variables
in the second cell, which must be appropriately initialized before being executed.
In particular:

• vector_size: integer number that defines the size of the embedding vectors. It is used
by the FastText model to convert the categorical values into vectors of real numbers;
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• RLE: if in trace_analysis script the traces have been compressed using the RLE
algorithm, this flag must be set to True and, for each trace, an additional column will
be added to the dataset containing the integer values that precede each instruction
and indicate the number of times it has appeared in sequence;

• FLATTEN: this flag applies the data preprocessing, creates the dataset and uses it
to train an LSTM network considering only the overhead values given by the code
flattening transformation;

• OPAQUE: this flag applies the data preprocessing, creates the dataset and uses it to
train an LSTM network considering only the overhead values given by the opaque
predicate transformation.

The outlier_detection function is responsible for determining whether or not a trace is con-
sidered an outlier. This is done initially by defining two specular thresholds ((median +
0.5 ·median) and (median− 0.5 ·median)) that indicate whether the individual overhead
value is considered valid or not. Subsequently, if the count of all invalid values exceeds a
predefined value (given by half the size of the overhead list relative to the trace), the trace
is discarded.
It is possible to change the behavior of this function by setting different thresholds or ap-
plying new outlier detection strategies.
The outlier_removing function not only removes the outliers selected by the previous func-
tion, subsequently also has the task of eliminating values that are still too far from the
distribution. In this case, also, a threshold is set according to which a trace is to be
eliminated or not, and again this threshold can be appropriately changed or eliminated if
considered appropriate.

It is possible to change the value of the network hyperparameters in the cell con-
cerning the LSTM parameters definition, where the values of hidden_size, num_layers,
num_classes, num_epochs and learning_rate are defined.
In the next cell, the LSTM network is defined. This network will be instantiated later,
before the train phase, and two different networks will be created for the flatten and opaque
dataset. It is possible to use different network models by only changing this cell and con-
sequently its definition in the train phase.

Finally, in the evaluation function, it is possible to use different evaluation metrics, in
addition to the MAPE and RMSE already used.
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