
POLITECNICO DI TORINO
Department of Electronics and Telecommunications

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Test and characterization of an integrated
circuit implementing a low-energy

compressed-sensing based acquisition
system

Supervisor

Prof. Gianluca Setti

Co-supervisors

Prof. Fabio Pareschi

Ing. Carmine Paolino

Author

Francesco Trinca

A.Y. 2021/2022

Summary

Latest demand for advanced IC (Integrated Circuit) solutions in industrial, wireless
or biomedical field, has led to a growing interest for innovation in data converters.
Physical signals, such as audio, radio, or image signals, belonging to the real world,
have to be converted into numerical values, with the intention of processing and
storing them. ADCs (Analog-to-Digital Converters) represent the interface between
the analog domain and the digital one.
In modern applications regarding the biomedical field, energy and area consumption
have become critical requirements for an ADC. Converters adopted for acquire
bio-signals, such as ECG, must have low power consumption and low area, to allow
the highest level of integration, as well as long battery life in case of portable
devices.
For this reason, signal processing has gained an increasing interest among the
research community. Compressed sensing (CS) is a signal processing technique for
efficiently acquire and reconstruct an analog signal from the energy consumption
point of view.
The starting point of this thesis is an already developed chip which is essentially
a SAR (Successive Approximation Register) ADC with CS capabilities. Every
time a new IC is designed, the importance to test and characterize it is crucial.
The aim of this work is to test and characterize the chip, and so the ADC,
designing an ad-hoc testing platform, with the intention of providing control signals
for the chip, regulated supply voltages and obviously, the analog input signals.
First, an ADC must be characterized by means of the common figures of merit,
through simulations, in order to verify if its performances meet the specifications
of the project. Subsequently, having the physical chip, it is significant to test its
functionality. To do this, a deep knowledge of both logic and analog part of the
chip under test is needed, in order to design a measurement setup. The latter has
been designed to host the IC, allowing the device characterization and testing.

ii

In chapter 1, there is a brief introduction of the theory behind the idea of
SAR ADC and of the Compressed Sensing. Chapter 2 is concerned with the first
characterization of the ADC. Through AMS (Analog/Mixed-signal) simulations,
the common figures of merit of the ADC, have been extracted. Then, the whole
testing platform design is reported in chapter 3 and 4. Chapter 3 describes the
PCB (Printed Circuit Board) design from the preliminary choice of the components
to the final layout creation. In chapter 4, instead, there is a detailed discussion
of the FPGA (Field Programmable Gate Array), which allows to generate all the
control signal needed by the chip and by the board. All the digital elements have
been described in VHDL (Very High Speed Integrated Circuit (VHSIC) Hardware
Description Language). Finally, chapter 5 regards the final conclusions of this
work.

iii

Acknowledgements

Some people have offered both moral and technical contribution to the realization
of this work, or they have made this long path pleasant and less hard, simply
with their constant presence. I would like to express my gratitude to them in the
following few, but significant words.

I thank my mother Rosanna and my father Renato, pillars of my life, who made
possible to reach this goal, giving me the opportunity to study and grow profes-
sionally. Thank you for always believing in me and in my choices, for encouraging
me in moments of difficulty and for teaching me to be a man.

I thank my sister Laura and my brother Stefano, who have been for me a source
of inspiration and a model to admire for the determination and tenacity they show
every day in what they do. Thank you for being the best family I could wish for.

I thank Prof. Gianluca Setti and Prof. Fabio Pareschi, for fueling my passion
for this subject, and Ing. Carmine Paolino, who has always been available for
explanations or to provide technical support throughout the thesis work.

I thank my friends and roommates Alfonso and Marco. Thank you for the time
spent together, for being my travelling companions on this adventure in Turin, and
for making everything more funny.

Finally, I thank my colleague Alessandro, for being the perfect classmate, for
sharing the difficulties, concerns and joys we encountered during the university
career.

iv

Contents

List of Figures viii

1 SAR-based ADC using Compressed Sensing 1
1.1 The successive approximation algorithm 2
1.2 Capacitive weighted array . 3
1.3 C-2C ladder array . 4
1.4 Compressed Sensing . 5
1.5 Architecture for a SAR-based ADC with compressed sensing capa-

bilities . 5

2 ADC characterization 8
2.1 Analog/Mixed signal simulations 8
2.2 ADC performance metrics . 12

2.2.1 Quantization error . 13
2.2.2 Offset and Gain errors . 15
2.2.3 Differential non-linearity error 15
2.2.4 Integral non-linearity error 17

2.3 Simulations . 19
2.3.1 ADC internal structure . 19
2.3.2 Testbench and simulations 21
2.3.3 Numerical elaboration and results 25

3 PCB design 33
3.1 Choice of components . 34

3.1.1 DACs for data . 34
3.1.2 DACs for references . 35
3.1.3 Regulators . 36
3.1.4 Other Components . 38

3.2 Schematic . 40
3.2.1 Data part . 40
3.2.2 Supply part . 43

vi

3.2.3 Top hierarchy level . 43
3.3 Layout . 46

4 FPGA Programming 51
4.1 Data DACs control . 52

4.1.1 Datapath . 54
4.1.2 FSM . 56
4.1.3 Modelsim Simulations . 59

4.2 Reference DACs control . 61
4.2.1 Datapath . 62
4.2.2 FSM . 63
4.2.3 Modelsim Simulations . 66

4.3 Chip control . 68
4.3.1 Datapath . 69
4.3.2 FSM . 70
4.3.3 Modelsim Simulations . 72

4.4 System Simulation . 74
4.5 Test board measurements . 77

5 Conclusions 81

A VHDL code 83
A.1 Data DACs control code . 83
A.2 Reference DACs control code . 90
A.3 Chip control code . 97
A.4 System code . 106

B MatLab code 117

Bibliography 122

vii

List of Figures

1.1 Architecture of a 4-bit SAR ADC and sequence of approximation
steps [1] . 2

1.2 3-bit binary-weighted capacitors array [4] 3
1.3 C-2C ladder array [5] . 4
1.4 Proposed architecture during acquisition (top) and conversion (bot-

tom)[10] . 6

2.1 Hierarchy view example [13]. 9
2.2 Hierarchy view example [13]. 10
2.3 Schematic example [13]. 11
2.4 .scs file example [13]. 11
2.5 ADC transfer characteristic [3]. 12
2.6 Quantization error of an ideal ADC. [15]. 14
2.7 SNRq vs signal amplitude A [1]. 14
2.8 Offset and gain error in ADC [3]. 15
2.9 Differential non-linearity error in ADC [3]. 16
2.10 Missing code error in ADC [17]. 17
2.11 Integral non-linearity error in ADC [18]. 18
2.12 Symbol of the schematic . 19
2.13 Functional layout of the memory. 21
2.14 Timing diagram of chip operation/control. 22
2.15 Testbench input signal patterns . 23
2.16 Output bitstream (in green) over clk_f (in red) 24
2.17 Transfer characteristic of the ADC 25
2.18 Transfer characteristic of the first 200 words 26
2.19 Best fitting curve of the trans-characteristic 27
2.20 Results of the curve fitting . 27
2.21 Quantization error . 28
2.22 Quantization error zoomed on the central points 29
2.23 Distribution of quantization errors 29
2.24 Trans-characteristic of ADC in the input range [0.9; 0.92] V 30

viii

2.25 Differential non-linearity . 31
2.26 Integral non-linearity . 31

3.1 DAC 8555 . 35
3.2 DAC 081S101 . 36
3.3 ADP 3300 . 37
3.4 LT 3085 . 37
3.5 3362 Trimpot Trimming Potentiometer 38
3.6 02x20 Connector . 39
3.7 Barrel Jack . 39
3.8 Battery Holder . 39
3.9 Schematic of the data part (Data DACs) 41
3.10 Schematic of the data part (Reference DACs) 41
3.11 Schematic of the whole data part 42
3.12 Schematic of the supply part . 44
3.13 Detail of the top-level schematic . 44
3.14 Complete PCB schematic . 45
3.15 PCB layout. Copper layers are hidden 46
3.16 PCB layout. Only front copper layer is shown without filled areas. . 47
3.17 PCB layout. Only front copper layer is shown 47
3.18 PCB layout. Only back copper layer is shown without filled areas. . 48
3.19 PCB layout. Only back copper layer is shown 48
3.20 PCB layout without filled areas. 49
3.21 Photo of the front of the PCB . 50
3.22 Photo of the back of the PCB. 50

4.1 Pin configuration of DAC8555 [24] 52
4.2 Timing diagram of serial write operation of DAC8555 [24] 52
4.3 DAC8555 Data input shift register format [24] 53
4.4 DAC8555 Functional block diagram [24] 54
4.5 Datapath for high-resolution DACs’ control 54
4.6 Control unit for high-resolution DACs’ control 56
4.7 State diagram for high-resolution DACs’ control 58
4.8 TX for high-resolution DACs’ control 59
4.9 Modelsim simulation. Transmission of a single word (a) and of 4

words (b) for the high-resolution DAC. 60
4.10 Pin configuration of DAC081S101 [25] 61
4.11 Timing diagram of serial write operation of DAC081S101 [25]. . . . 61
4.12 DAC081S101 Data input shift register format [25]. 62
4.13 Datapath for reference DACs’ control 62
4.14 Control unit for reference DACs’ control 64

ix

4.15 State diagram for reference DACs’ control 65
4.16 TX for reference DACs’ control . 66
4.17 Modelsim simulation. Transmission of 3 word for the reference DACs. 67
4.18 Chip’s symbol (KiCad). 68
4.19 Datapath for chip’s control . 69
4.20 Control unit for chip’s control . 70
4.21 State diagram for chip’s control . 71
4.22 TX for chip’s control . 72
4.23 Modelsim simulation of the chip controller. 73
4.24 Top-level entity. 74
4.25 Modelsim simulation of the system. 76
4.26 Measurement configuration (FPGA + PCB). 77
4.27 Oscilloscope capture. SYNC_1 (purple) and DIN_1 (yellow) signals. 78
4.28 Oscilloscope capture. CLK_16 (yellow) and VIN1_P (purple) sig-

nals. 79
4.29 Oscilloscope capture. Zoom of CLK_16 (purple) and VIN1_P

(yellow) signals. 79
4.30 Oscilloscope capture. VIN1_P and VIN2_P output signals. 80

x

Chapter 1

SAR-based ADC using
Compressed Sensing

Signals coming from the real world are physical continuous quantities represented
by analog voltages and currents [1]. These signals could be transmitted or stored,
after being processed by an electronic system. These kinds of operations introduce
noise which can be partially eliminated if the analog signal is converted into a digital
representation. Furthermore, digital signals are far more robust than their analog
form. For this reason, every electronic system has an input ADC, which allows to
digitally process analog signals. The chip to be tested is essentially a switching
capacitor SAR-based ADC with embedded compressed sensing capabilities. In this
chapter, a brief discussion of the theory behind the realization of the main elements
inside the chip, is reported. Since CS demands several requirements, the successive
approximation register architecture has been resulted as the best hardware solution
to meet all the constraints.
A particular structure of the capacitive array has been exploited to perform different
tasks, such as the multiplication of each acquired sample by the sensing matrix,
which is a fundamental element of compressed sensing.
Firstly, the successive approximation algorithm will be explained. Then, different
topologies implementing a capacitive array will be presented, followed by a brief
description of the compressed sensing concept. Finally, the specific architecture of
the converter present in the chip will be reported.

1

SAR-based ADC using Compressed Sensing

1.1 The successive approximation algorithm
Successive-approximation ADCs are a common approach for implementing an ADC
when decent conversion speed and tolerable complexity are specific requirements
[2]. A SAR ADC exploits the successive approximation algorithm.

The first element of a SAR ADC is a S&H (Sample and Hold) which samples
the input signal. Then, by means of a comparator, the sampled input is compared
with the output of a DAC (Digital-toAnalog Converter), and a "binary search" of
the value of the n bits begins, starting from the MSB (Most Significant Bit).

This binary search determines the closest digital word to represent an analog
input voltage value [3].
In particular, the input signal is sequentially compared with a variable reference.
Every comparison coincides with the computation of one bit, starting from the
MSB. The binary search determines the state of the n bits, changing the output of
the DAC until it reaches a good approximation of the sampled input signal which
differs from it within less than a LSB (Least Significant Bit).

A block scheme of this kind of circuit is depicted in figure 1.1, with a diagram
which describes the algorithm.

Figure 1.1: Architecture of a 4-bit SAR ADC and sequence of approximation
steps [1]

If the input signal A is higher than the reference A’, the latter is increased
and the MSB=1 (D in the figure), or vice versa. This operation is iterated every
cycle, while the approximation of the input signal is getting closer and closer to
the real value. Every comparison result is stored in a register until the conversion
is completed, that is when the LSB has been computed. It is clear that the number
of cycles required for a complete conversion of a sample depends linearly on the
number of bits: a N-bit SAR ADC needs N steps to fulfil a conversion.

In modern implementations, capacitive charge redistribution DACs are adopted.

2

SAR-based ADC using Compressed Sensing

This kind of implementation allows to combine the S&H operation in the DAC
array, and it can easily be implemented in a differential configuration.

Generally, the main speed limitation for this kind of ADC comes from the DAC
included in the circuit [3]: DAC settling time related to the charge of the capacitors
is a critical aspect. The capacitive array can be implemented in different ways,
each of which corresponds to a specific architecture.

1.2 Capacitive weighted array
Normally, the element which performs the conversion is a binary weighted array
of passive elements, that can be resistors or capacitors. The latter case will be
analyzed. A SAR ADC which embeds this kind of array (figure 1.2) performs the
successive approximation relying on the charge redistribution. All the capacitors
in the array have binary weighted values, i.e. C, 2C, 4C, ... 2NC.

Figure 1.2: 3-bit binary-weighted capacitors array [4]

Firstly, the top plate of all capacitors is connected to ground through SW0,
while bottom plate is connected to Vin: in this way, the array samples the input
signal, storing a precise amount of charge corresponding to a voltage value at the
common node Vx equal to −Vin. Then, SW0 is opened, and the array enters in a
holding state. The conversion starts closing SW4 on the Vref node. Since the 4C
capacitor forms a 1:1 capacitance divider with the remaining capacitors connected
to ground, the voltage Vx becomes −Vin + Vref

2 . Now, if Vin < Vref , then Vx > 0,
and the comparator output goes low, assigning to the MSB the logic value ’0’. Vice
versa, if Vin > Vref , Vx < 0 and MSB=1.
During the second conversion step, the SW3 is closed and 2C capacitor is connected

3

SAR-based ADC using Compressed Sensing

to Vref node. Depending on the previous computation of the MSB, SW4 will be
connected to ground or to Vref node, and Vin will be compared with an updated ref-
erence, producing the MSB-1. This process continues until all the bits are computed.

1.3 C-2C ladder array
As can be deduced, the ratio of capacitors strongly affects the functioning of the
DAC. In particular, the output accuracy depends on the capacitors matching.
Since in MOS (Metal Oxide Semiconductor) technology, the capacitance matching
depends on area ratios, if one would add a bit in the DAC, a new larger capacitor
should be added in the weighted array, and so the matching would become harder
and harder as well as this could cause an increasing area consumption. Another
solution can be adopted to solve this kind of problem and to increase the accuracy:
the C-2C array (figure 1.3). Each C-2C cell acts as a capacitance divider and it
can be used in addition of a weighted array, forming a mixed-type array. In this
way, the capacitances employed are always the same, thus layout matching will be
easier, and good resolution can be achieved.

Figure 1.3: C-2C ladder array [5]

4

SAR-based ADC using Compressed Sensing

1.4 Compressed Sensing
When there is the need to process an analog signal such as voice, with a computer, it
has to be converted from the continuous-time domain to a discrete-time domain [6].
This conversion is called sampling, and generally it is a lossy operation. It consists
in measuring the analog signal at precise time instants and each measurement
represents a sample. The Nyquist-Shannon sampling theorem establishes conditions
for which a continuous-time signal of finite bandwidth can be described by its
samples and recovered back from its discrete-time form. This condition concerns
the sampling frequency. In particular, it must be at least twice the bandwidth of
the analog signal. However, it is possible to sample under the Nyquist-Shannon rate.
Compressed sensing is a signal processing technique for efficient reconstruction of
signals. This is based on the principle that, through optimization, a particular
property of a signal family called sparsity, can be exploited to recover them from
fewer samples than required by the Nyquist–Shannon sampling theorem [7]. There-
fore, CS is possible if there is the prior knowledge that the signals of interest are
such that, if expressed in a suitable domain, they exhibit a large number of zero or
almost-zero components, i.e., are sparse.
For specific applications, such as in biomedical fields [8], which have heavy con-
straints in energy and bandwidth, the CS technique can be a solution, thanks
to lower acquisition rates. Measuring analog signals in the analog domain, it is
possible to acquire them at their true information rate, sparing energy resources.
This concept can be applied through CS, which has become an efficient method to
substitute Analog-to-Digital Converters with Analog-to-Information Converters [9].

1.5 Architecture for a SAR-based ADC with com-
pressed sensing capabilities

The analysis and the discussion reported in this paragraph refer to the work
contained in [10].
As already said, a signal can be processed exploiting the CS technique if it is sparse.
Considering a sparse signal in discrete-time domain described by its n consecutive
discrete values x, a measurement vector y, which collects all the information
contained in a signal window, can be defined as:

yj =
nØ

k=1
Aj,kxk (1.1)

where A is the sensing matrix. It has been observed that, in order to achieve a
simple hardware implementation and a good reconstruction quality, the elements

5

SAR-based ADC using Compressed Sensing

contained in matrix A can be limited to only the values {-1, +1}. In this way, the
multiply-and-accumulate operations results to be only signed sums.. In this way,
the multiply-and-accumulate operations results to be only signed sums. This is
traduced in a preliminary modulation of the input signal by a stream of ±1. Since
the architecture (figure 1.4) has a differential implementation, the inverted replica
of the input signal is provided by an embedded capability.

Figure 1.4: Proposed architecture during acquisition (top) and conversion (bot-
tom)[10]

The architecture showed in the top half of figure 1.4, represent a SAR ADC
composed of a capacitance array. Its role is to: sample the input signal at precise
time instants, hold it during the acquisition, compute a linear combination and
perform the conversion into a digital form.
In particular, the capacitive array is composed of a 3-bit weighted array, and a 2-bit
C-2C array which implements the LSBs and so allows a better resolution and a low
area and energy consumption. This circuit works as a traditional switched-capacitor
SAR ADC, as discussed in the previous paragraphs. However, the MSB capacitors
have been decomposed into smaller elements (2x2C cell), each driven by its own set
of switches. Meanwhile, the smallest element of the weighted array and the C-2C
array are driven together, sampling at the same time instant as a larger capacitor.

6

SAR-based ADC using Compressed Sensing

In this way, all the storing elements have the same value leading to an equal weight
on the final result. The configuration during sampling is showed in the bottom half
of figure 1.4: all the capacitors act as identical sampling elements, and each of them
stores the modulated signal which has been sampled at different time instants.
Then, the SW0 is opened, while the bottom plates are grounded, and the voltage at
the input of the comparator results to be the average of the sampled values. During
the conversion instead, the sub-elements composing the largest capacitance element,
are driven together. Therefore, the conversion is performed as in traditional SAR
ADC.
This architecture requires only the addition of a set of switches for the capacitive
sub-elements, with respect to the traditional ones.

7

Chapter 2

ADC characterization

Every new chip, component, or in general a new design, must be tested and
characterized to determine if it meets the specifications, and to analyze its behaviour
under particular conditions. After having designed a new electronic component,
the design flow imposes to test and characterize it by way of simulations. The
electronic circuit to be tested is a SAR ADC which contains both analog and digital
blocks. For this kind of circuits, analog/mixed signal simulations are run. Providing
the circuit of test and control signals, it is possible to derive the most important
performance metrics to characterize an ADC. They are the quantization error,
offset error, gain error, the INL (integral non-linearity) and the DNL (differential
non-linearity).
In this chapter, AMS simulations are briefly introduced, regarding the software used.
Then, a theoretical description of the principal performance metrics to characterize
an ADC are discussed. Finally, simulation results are reported with an accurate
analysis.

2.1 Analog/Mixed signal simulations
Generally, ICs are classified as analog or digital [11]. Circuits as the ADCs, are
mixed-signal ICs, which means that they contain both analog and digital circuitry
on the same chip. The mixed-signal capability of these ICs allows to obtain low
power consumption and increasing reliability. However, the simulation process
of these kind of circuits have gained an increasing complexity. In analog circuits
simulations, a set of voltages and currents are provided to the circuit with the
aim of verifying if it performs required functionalities. Normally, analog circuits
simulations are performed at transistor level, unlike what is done for digital circuits.
Indeed, digital circuits simulations are performed at gate or behavioural level. Logic
and timing verifications are carried out, in order to check if the outputs follow a

8

ADC characterization

specific truth table, for a given set of binary inputs, and to verify propagation delays
for critical paths. To test a mixed-signal circuit, the analog part and the digital
part are required to be simulated separately, respectively on a SPICE like type
of simulator and on a digital logic simulator as VERILOG. Therefore, connection
modules, i.e, interface elements used to connect digital and analog domains, are
needed.

Modern EDA tools for electronic design, such as Cadence Virtuoso, provide
simulation environment dedicated to the simulation of analog/mixed-signal circuits.
In particular, the AMS environment by Cadence Virtuoso has been used. It allows
to netlist, compile, elaborate, and simulate a circuit that contains analog, digital,
and mixed-signal components [12].
Analog and digital blocks are distinguished through their "view". Indeed, each cell
has a corresponding view. For AMS simulation, the config view is required [13].
If the design to simulate has not a config view, it will not be possible to set the
simulator as AMS.
When a schematic is opened with a config view, it is called a "configured schematic".
This kind of view is used by the netlister to control how the design is represented
in the simulation netlist. For example, in the config view shown in figure 2.1, the
“top” cell is represented by a schematic. It can also be seen that the I0, I1, and
I2 inverters are represented as “verilog” and the I3 inverter is represented by a
schematic. In other words, I0, I1, and I2 are digital, whereas I3 is analog.

Figure 2.1: Hierarchy view example [13].

Furthermore, it is possible to change the config view of an instance, setting the
instance view in the Hierarchy Editor. It will be read by the netlister, which will
determine what view to use for each block when creating the netlist. Modifying the
config view enables the swapping of different representations (verilog, schematic,
veriloga, parasitic extracted, and so on) for the design blocks, without changing
the schematic. The netlister starts at the top of the tree in the config view and

9

ADC characterization

uses the views specified in the config (figure 2.2).

Figure 2.2: Hierarchy view example [13].

The inherited view is default set by the view list (verilog). In this case, I0 gets
the first view in the list, which exists in the EXAMPLE library. For the I1 instance,
the View To Use column overrides the verilog view and tells the netlister to use
the veriloga representation instead. Similarly, the I3 instance has an override set
to use the schematic view.

It is possible to annotate the partitioning information on the schematic through
the AMS Partition Display. In addition to analog and digital, the AMS partitioning
display also shows "analog/mixed", "digital/mixed", and “real/mixed” variations.
Digital/Mixed means digital at the current level of the hierarchy (from where the
AMS Partition Display form is opened) and mixed somewhere else in the hierarchy.
Analog/Mixed means analog at the current level and mixed somewhere else in the
hierarchy.
In the schematic of figure 2.3, nets A, B, and C are analog/mixed (light purple),
which means they are analog on the current schematic and are mixed (analog
and digital) down inside the schematic hierarchy. For an example, take net B.
Instance I1 drives net B, which is an analog inverter; so, the signal is analog on
the top-level schematic. However, descending into instance I2 (verilog), net B is
digital, and therefore, is represented as analog/mixed in the AMS partitioning
display. Analog/mixed nets appear as analog in the waveform window since the
signal is analog where the probe is placed.

10

ADC characterization

Figure 2.3: Schematic example [13].

It is also possible to select a Verilog view as top level, after having written an
equivalent Verilog file which describes the circuit.

With a Verilog top, the stimulus will change, for example, from the typical
analogLib vsource to a “clock” module, which is verilogams. Therefore, there is
not any vsource setting the supply voltage "vdd". One need to bring the vsource
by using a text file (.scs file in figure 2.4).

Figure 2.4: .scs file example [13].

11

ADC characterization

2.2 ADC performance metrics
The transfer characteristic of an ADC associates an input analog continuous
quantity (Vin) to an unique discrete output binary number (Dout). As can be seen
in figure 2.5, it is a staircase function, in the case of ideal ADC. Each step width
of Vin values corresponds to a quantization interval ∆ = VF SR

2N , where VF SR is the
full scale voltage, while N is the number of bits. All the analog values falling in
this interval are converted into a unique digital word. Step on the y-axis instead,
correspond to 1 LSB. An ADC is defined linear if the quantization interval ∆ have
constant width. These steps lead to quantization errors because a single digital
output Dout represents a continuous range of values of the analog input Vin [3].

Figure 2.5: ADC transfer characteristic [3].

Depending on its resolution, an ADC can resolve 2N distinct analog levels.
Resolution is defined as the smallest step of voltage that can be recognized by the
converter, causing a variation of the digital output [14].
ADCs performance can be measured by means of some metrics. They are classified
in static and dynamic metrics. Static metrics refer to the errors for which the
transfer characteristic of an ADC deviates from the ideal staircase.

12

ADC characterization

In this paragraph, a brief summary of the static errors, which are the ones
measured on the ADC under test, is reported. They are:

• Quantization error.

• Offset error.

• Gain error.

• Differential non-linearity error (DNL).

• Integral non-linearity error (INL).

2.2.1 Quantization error
An ADC translates an analog continuous signal into a digital representation over
N bits. As can be seen in the transfer characteristic of figure 2.5, a single output
word is associated to a defined range ∆ of analog input signal, which contains
infinite values. These values will be assigned to the same output word, and this
introduces a quantization error, since there are only 2N analog values which can
be represented into a digital form. In other words, a digital number identifies a
range, not an exact value. Even ideal ADCs are affected by quantization error.
Note that only the midpoints of each interval ∆ fall on the ideal transfer function
(dotted trace of figure 2.5), and so they are associated to a digital word which
quantifies exactly their value. The other points in the interval are associated to
the same digital word, so a quantization error is committed, and it can be at most
equal to ∆

2 . The characteristic for an ideal ADC with uniform distribution of the
quantization error is depicted in figure 2.6.

As can be noticed, quantization error depends on the number of bits N. Indeed,
an increasing number of bits would decrease ∆ and so the maximum quantization
error.
Quantization is an operation that introduces noise and cannot be recovered. A
noise quantity Vq can be defined as:

Vq = Vin − VD (2.1)

where Vin is the analog input, and VD is its relative digital representation re-
converted into a voltage value. Furthermore, observing figure 2.6 where a voltage
ramp is considered as input, it can be said that the signal Vq has an average equal
to zero, but its RMS (Root Mean Square) value is equal to:

Vq(RMS) = ∆√
12

(2.2)

13

ADC characterization

Figure 2.6: Quantization error of an ideal ADC. [15].

This is another proof that the power of the quantization noise is proportional
to the step size ∆ an so to the number of bits N of the converter. Clearly, a SNR
(Signal-to-Noise Ratio) metric can be attributed to the quantization noise. It is
defined as:

SNRq = 20log(Vin(RMS)

Vq(RMS)
) (2.3)

It is clear that the SNRq increases with the input signal level, or with an
increasing number of bits N, as already said, as showed in figure 2.7.

Figure 2.7: SNRq vs signal amplitude A [1].

14

ADC characterization

2.2.2 Offset and Gain errors
In an ADC, the offset error is the difference between the transition voltage associated
to the LSB and the transition voltage of the same code on an ideal ADC with the
same number of bits [16].
As can be seen in the figure 2.8, the offset error causes the shift of the transfer
characteristic from the ideal position. However, offset error does not introduce
non-linearity and it can be eliminated by adding a constant to the output.

Figure 2.8: Offset and gain error in ADC [3].

The gain error instead, is the difference between the transition voltage associated
to the MSB and the transition voltage of the same code on an ideal ADC with
the same number of bits, after the offset error correction. Observing the transfer
characteristic in figure 2.8, it can be said that the offset error causes the deviation
of the slope of the actual staircase from the ideal transfer function slope.

Offset and gain error are usually reported in units of the LSB of the converter.

2.2.3 Differential non-linearity error
In an ideal ADC, the quantization steps ∆ (referring to figure 2.5) are all equal
to 1 LSB. However, this quantization steps could be larger or smaller than the
ideal size of 1 LSB. The differential non-linearity error is defined as the difference
between each actual quantization step and the ideal value. The DNL identifies
localized errors in the transfer characteristic among adjacent quantization steps.
Indeed, smaller, or larger analog steps increase or reduce the adjacent ones. The
DNL error can be positive or negative: for example, considering the step width

15

ADC characterization

which corresponds to Dout=001 in figure 2.9, it can be noticed that the actual
step (solid line) is smaller than the ideal step (1 LSB). This deviation causes a
negative DNL error. Conversely, considering the step width which corresponds to
Dout=011, it can be observed that this time, the actual step is wider than 1 LSB.
This deviation causes a positive DNL error. DNL errors are generally measured in
fraction of LSB, and it can be referred to each digital word or to the maximum
magnitude of the DNL values [2].

Figure 2.9: Differential non-linearity error in ADC [3].

A typical problem related to the DNL is the missing code error. This error occurs
when the DNL error is greater than 1 LSB or smaller than -1 LSB. In this case, a
quantization step completely suppresses the adjacent one and the corresponding
code in never generated [1]. For example, in the transfer characteristic of figure
2.10, the digital word output 010 is never generated.

16

ADC characterization

Figure 2.10: Missing code error in ADC [17].

The DNL of a digital code D is normally defined after having removed gain and
offset error as:

DNLD = VD − VD−1 − ∆ideal

∆ideal

(2.4)

where VD is the analog voltage value corresponding to the output digital word
D, and ∆ideal is the ideal analog quantization step corresponding to 1 LSB, defined
as:

∆ideal = VF SR

2N
(2.5)

where VF SR is the full-scale range voltage of the ADC, while N is the number of
bits of the ADC.

2.2.4 Integral non-linearity error
Non-linearity error is code-dependent and is related to the step size. These kinds
of errors lead to a deviation of the transfer characteristic from the ideal one.
Considering an ideal straight line which connects the actual first transition (LSB)
to the last transition (MSB), the actual transfer characteristic of an ADC moves
away from this line. The deviation is quantified by the so called integral non-
linearity error (figure 2.11). Unlike the DNL, the INL considers the combined effect

17

ADC characterization

of consecutive localized step-size errors, which are propagated form one step to
another, gradually moving the transfer characteristic away and back from the ideal
straight line. Indeed, the INL error at a certain point, is the sum of the DNL errors
from 0 to the point itself. If there is a sequence of DNL errors having the same
sign, the resulting INL error is high, while sequences of DNL errors with opposite
sign less contribute to the overall INL error [1].

Figure 2.11: Integral non-linearity error in ADC [18].

The INL of a digital code D is normally defined after having removed gain and
offset error as:

INLD = VD − VDideal

∆ideal

(2.6)

Physical limitation such as finite gain of amplifiers or mismatch in both active
and passive component, strongly affect the linearity of the ADC, originating non-
linearity errors. However, it is possible to minimize them by design, using proper
architectural choices [19] combined with layout techniques [20].

18

ADC characterization

2.3 Simulations
As already said, the ADC circuit has been simulated by means of the EDA tool
Cadence Virtuoso. In particular, the environment used to program and simulate
the circuit is ADE Explorer, choosing "ams" as simulator, while the waveform
viewer exploited is ViVA (Virtuoso Visualization and Analysis Tool).

2.3.1 ADC internal structure
In figure 2.12, there is the symbol containing the top-level schematic which has
been simulated.

Figure 2.12: Symbol of the schematic

Below is a description of all the pins of the symbol. In order to synchronize
and perform all the operations, the ADC needs to be controlled through different
control signals which must be sent by the user.

The input signals that must be programmed are:

• conv_prog_n. This signal controls the internal memory programming and the
beginning of the conversion. In addition, it is used also to reset the memory
address counter.

19

ADC characterization

• SOC. This signal (Start of Conversion) must be ’0’ only during the conversion,
when the ADC is sending in output the 12-bit word that represents a single
sample.

• clk_s. This is a clock signal used to shift data in the memory and to control
the acquisition cycles.

• clk_f. This is another clock signal used to control the conversion. Every single
output bit is synchronized on the rising edge of this signal.

• mem_din. This is the memory input data pin.

The other signals of the symbol are:

• in_n/in_p. These are the pins where the differential analog input signal must
be provided.

• ref_p/ref_n/cm. These are the pins for the reference voltages used by the
ADC.

• comp_out. Output pin of the ADC.

• mem_dout. Output pin used to check the data shifting in the memory.

The chip under test is essentially a SAR ADC. Inside the chip there is a memory
which must be programmed by the user only once, before starting any operation.
This memory will store information about how to acquire the input signal, control-
ling the number of capacitors used during every acquisition cycle. Furthermore,
the memory will store information about the preliminary modulation of the input
signal. The ADC has two different channels which works independently. Before
the conversion, a sample can be multiplied by 1 or -1. This operation is performed
by the first block of each channel, which is a modulator for the input signal. Then,
there is a capacitive array, which contains 16 capacitors. The array is responsible
to perform the acquisition and the conversion of the input signal. Both these blocks
are controlled by the memory. Finally, there is a comparator which computes the
output digital value. In figure 2.13 there is a scheme representing the layout of the
memory, from cell point of view.

Each circle represents a single memory cell, which can store one bit. The first four
bits, called "analog_config" bits, are don’t care. Then, the instructions for the acqui-
sition cycle 0 are stored in 20 cells. The green cells, called "input_channel_state",
contains information about the modulation. The purple cells instead, called "sam-
pling_cell_state", contain information about the acquisition. In particular, if all
of these 16 bits are set to ’1’, the acquisition of the sample will last only one

20

ADC characterization

Figure 2.13: Functional layout of the memory.

clock cycle, and it will be performed using all the 16 capacitors. Otherwise, for
example, if bits from 0 to 7 are set to ’0’ and the last 8 bits are set to ’1’, during
the acquisition cycle 0, 8 capacitors will be used. Then, for acquisition cycle 1, the
remaining cell can be used to perform another acquisition. The resulting output
will be the analog mean of the two samples. In this case the acquisition process
will last 2 clock cycles. This is possible programming the memory properly, and
obviously, all the combinations are possible.

In figure 2.14 there is a timing diagram which describes the required timing of
the input signal, and the relative operations. So, the analog-to-digital conversion is
performed in the chip, following different steps. They are in order:

• MEMORY PROGRAMMING. A serial bitstream must be provided by the
user at the input pin "mem_din", to program the memory. This operation
must be fulfilled only once, and before the beginning of the conversion. Data
are shifted-in on the rising edge of the signal "clk_s". During this operation,
the signal "conv_prog_n" must be set to ’0’.

• ACQUISITION. During this step, the capacitive array samples the input
signal, according to the memory content. The input signal is sampled on the
falling edge of the signal "clk_s" and an acquisition cycle is performed.

• CONVERSION. When the signal "SOC" goes high, the conversion starts, and
the result is put in output on every rising edge of the signal "clk_s". Finally,
a pulse of the signal "conv_prog_n" resets the memory address counter, and
a new cycle can start.

2.3.2 Testbench and simulations
The testbench has been implemented directly assigning the stimuli for the circuit,
through the "Stimuli Assignment" tool. In order to characterize the ADC, and to
measure the performance metrics discussed in the previous paragraph, a voltage
ramp has been selected as input signal. For this kind of characterization, all the

21

ADC characterization

Figure 2.14: Timing diagram of chip operation/control.

input pins receive the same input signal, while its differential version has been
applied to the negative pins. Then, with the aim of stimulating the entire dynamic
of the ADC, the input voltage ramp has been made to vary between 0V to 1.8V.
The type of generator used is the "vpwl", which is a piecewise linear function
generator, selecting as "Time2" the end time of the simulation "Tsim", to stimulate
and see all the transitions of the digital output levels.
Moreover, for this test, the wanted kind of conversion by the ADC is the more
general. In other words, the preliminary modulation of the input signal has been
disabled, having a simple multiplication by a constant equal to 1. Then, the acqui-
sition of the input signal occurs exploiting all the 16 capacitors of the array at the
same clocking edge. For this reason, the acquisition cycle will last only 1 clock cycle.
Finally, it has been used only one of the 2 channel present in the ADC. It is possi-
ble to run this kind of conversion, sending to the memory the following bit sequence:

mem_din=0000000000011111111

This kind of signal has been generated using the "vbit" source: it is enough to
provide the bit string, the logic high and low voltage values, the clock period, and
an eventual initial delay. This voltage source has been used also to generate the
input signals "clk_s" and "clk_f".
For what concerns the input signals "v_conv" and "SOC", the vpulse source has
been used: for this kind of generator, it is sufficient to specify the logic high and
low voltage values, the Tpulse and the Tperiod, and the eventual initial delay. In
figure 2.15 there is a preview of the input signal waveforms, visualized on ViVA.

The output signal is probed on the "cmp_out1" pin, which is the output of the
channel 1. As can be seen in figure 2.16, each bit of the 12-bit word is produced on
the rising edge of clk_f. Obviously, bits are represented by a pulse train, where 0V
is the low logic voltage, and 1.8V is the logic high voltage.

22

ADC characterization

Figure 2.15: Testbench input signal patterns
23

ADC characterization

Figure 2.16: Output bitstream (in green) over clk_f (in red)
24

ADC characterization

2.3.3 Numerical elaboration and results
In order to compute performance metrics and to extract a transfer characteristic,
the output bitstream has to be processed and elaborated. In particular, the wave-
form has been exported to a .matlab file, which is a Matlab readable file, with the
aim of converting the information contained in the bitstream, into numerical values.
This has been possible with the use of the Matlab script reported in Appendix B.

Transfer Characteristic Since the whole input dynamic of the ADC [0; 1.8]V
has been stimulated, the resulting sweep of the output goes from the output word
corresponding to ’0’, to the output word corresponding to the full scale range
voltage ’4095’, which is 2N , with N=12. In order to have an estimation of the
computational burden of this kind of simulations, to obtain 10108 output words,
it took a 2 days lasting simulation. In figure 2.17 there is the obtained transfer
characteristic (dotted line), overlapped with the ideal one.

Figure 2.17: Transfer characteristic of the ADC

For a better visualization of the errors of conversion, figure 2.18 shows the
conversion of the first 200 words.

25

ADC characterization

Figure 2.18: Transfer characteristic of the first 200 words

Gain and offset error Gain and offset error have been computed exploiting
the Matlab app "Curve Fitting Tool". Indeed, a method to obtain these errors is
to extrapolate the best fitting curve of the actual trans-characteristic; then, the
resulting slope and Y-intercept of this curve correspond respectively to the gain
and offset error.
In figure 2.19, the best fitting curve is depicted, while in figure 2.20, numerical
result of the fitting are shown.

26

ADC characterization

Figure 2.19: Best fitting curve of the trans-characteristic

Figure 2.20: Results of the curve fitting

As can be observed, p1 is the slope (gain), while p2 is the Y-intercept (offset).
The gain can be considered to be about zero, while the offset error Voff is equal to
-0.0007789 V. This value can be expressed as a fraction of LSB or as percentage of
the FSR. Knowing that,

VLSB = FSR

2N
= 440µV (2.7)

offset error can be expressed as

Voff [LSB] = Voff

VLSB

= −1.7724 LSB (2.8)

or
Voff% = 100 Voff

FSR
= −0.0433% (2.9)

27

ADC characterization

Quantization error Quantization error has been computed using 2.1. Figure
2.21 shows the obtained quantization error, normalized on VLSB. Note that the
two red dashed horizontal lines indicate the 1

2LSB and −1
2LSB levels. Figure 2.22

is a zoomed version on the central values of the quantization error. This waveform
highlights that most of the errors are focused within the range 1

2LSB and −1
2LSB.

The histogram of figure 2.23 describes the errors distribution.

Figure 2.21: Quantization error

28

ADC characterization

Figure 2.22: Quantization error zoomed on the central points

Figure 2.23: Distribution of quantization errors

Through the RMS value of quantization error, it is possible to compute the
ENOB (Effective Number Of Bit) of the converter, using 2.2. The result obtained
is

ENOB = 9.4887 bit ≃ 9 bit

29

ADC characterization

Differential Non-Linearity DNL and INL computation would require a very
high number of samples, resulting in a very heavy simulation. For this reason, DNL
and INL have been evaluated on a narrow range of the input dynamic. The input
signal used is still a voltage ramp, but varying in the range [0.9, 0.93]V. In this
way, a very slow ramp is provided to the ADC, and the typical staircase transfer
function is produced (figure 2.24).

Figure 2.24: Trans-characteristic of ADC in the input range [0.9; 0.92] V

DNL has been computed using 2.4, and the graph of figure 2.25 has been
obtained.

Absolute DNL is associated to the maximum value of this function, resulting to
be ∼ 3 LSB.

30

ADC characterization

Figure 2.25: Differential non-linearity

Integral Non-Linearity INL has been computed using 2.6, and the graph of
figure 2.26 has been obtained.

Figure 2.26: Integral non-linearity

Absolute INL is associated to the maximum value of this function, resulting to
be 4.91 LSB.

31

ADC characterization

Results recap In the following table there is a recap of all the results acquired
from the ADC simulation.

Table 2.1: Results

Metric Value
N 12 bit

FSR 1.8 V
VLSB 440µ V

ENOB ∼ 9 bit
Offset error -1.7724 LSB
Gain error ∼ 0

DNL ∼ 3 LSB
INL ∼ 4.91 LSB

32

Chapter 3

PCB design

The first element composing the test platform designed for the chip is a PCB. In
this chapter, all the steps followed to design the PCB are reported. The PCB
contains different components which allow to:

• Convert a digital stream representing a known test signal. This signal is
converted to the analog domain and sent to chip as input signal, in order to
be re-converted by the SAR ADC.

• Generate the reference voltages used by the ADC in the chip and by the
components on the PCB, starting from a digital stream representing a constant
voltage value in the analog domain.

• Regulate the supply voltage in order to bias the different parts of the chip
with the right level of voltage.

The importance of designing this PCB lies in the possibility to have an ad-hoc
testing platform for the chip. As already said, it can generate all the supply voltage
levels required by the chip, and the voltage references. Furthermore, thanks to the
presence of high-resolution DACs, it is possible to test the chip with a well-known
input signal, which can be controlled by the user. In this way, knowing how this
signal is converted from analog to digital through simulations, a direct comparison
can be made with the future results of the various tests that will be performed. In
particular, the PCB can be easily connected to a FPGA through a 20-pin connector,
and it can directly host the chip, allowing its complete testing and characterization.
The whole design has been entirely developed with the open-source software KiCad.

33

PCB design

3.1 Choice of components
The first step of the design regards the choice of the components. In the table 3.1,
a summary list of the components present on the PCB is reported.

Table 3.1: List of components

Component N.
16-bit DAC 2
8-bit DAC 3

Linear Regulator 2
Adjustable Regulator 1

Trimming Potentiometer 1
Tantalum Capacitor 4

SMD Capacitor 50
SMD Resistor 51

LED 1
Connector 02x20 1
Connector 02x03 1
Connector 01x02 2

Barrel Jack 1
Battery Holder 1
Switch 01x03 1

A more detailed description of each component and of its usage is outlined in
the following paragraph.

3.1.1 DACs for data
The first element which is needed on the board is a DAC. It is used to generate the
analog test signal which will be the input signal for the chip. A digital bit stream
programmed by the user, is controlled, synchronized and transmitted through a
FPGA. This digital stream is received by the DAC and then converted in the analog
form. In order to choose the model of DAC for this purpose, many constraints have
been taken into account:

• The SAR ADC in the chip has a resolution of 12 bit, so the DAC for the
data must have at least a resolution of 12 bit. Moreover, it has been intended
to feed the chip with a lower supply voltage than the nominal one, aiming
to observe and analyze its performances in different supply conditions. If
the supply voltage of the chip is decreased, also its input dynamic range is

34

PCB design

decreased. Consequently, the dynamic of the analog test signal to be provided
must be reduced. Since the test signal is produced by these DACs, their output
dynamic has to be limited. The limitation of the output dynamic corresponds
to a degradation of the resolution, which means reduction of number of bits.
In order to guarantee at least a resolution of 12 bits, a 16-bit DAC has been
selected.

• The SAR ADC has 4 differential input for the first half of the chip, so 2 DACs
with 4 output channel each, have been selected.

• Since the DAC must have 4 channel, its clock frequency could become a
constraint. In particular, the effective maximum clock frequency of a DAC
depends on the number of channel and on the number of bits to be sent to each
channel. The selected DAC has 4 channels which require 24 bits each. These
24-bit words contain the digital data to be converted and information about
the control of the DAC itself, and it has to be sent to each channel before
starting the conversion. Therefore, if the nominal maximum clock frequency is
50 MHz, it must be divided by the number of channel (4) and by the number
of bit of each word (24), resulting on an effective frequency of 500 kHz. This
value widely meets the specification for the chip interface. A DAC with a
serial interface capable of operating with input data clock frequencies up to
50 MHz, has been selected.

Considering all these constraints the DAC selected for the conversion of data
was the DAC8555 by Texas Instruments, which is a 16-bit, Quad channel, voltage
output DAC (figure 3.1).

Figure 3.1: DAC 8555

3.1.2 DACs for references
The internal structure of the ADC under test requires different voltage references
to work properly. In particular, the capacitive array which perform the conversion,
has 4 switches that select the voltage terminal to connect to the bottom plate of
the capacitors. These reference voltages are GND, Vref+, Vref− and Vcm.
Moreover, also the 2 DACs for data, placed on the PCB, require positive and
negative voltage references to perform the conversion.
It has been decided to use also in this case 3 DACs, one for each voltage reference.

35

PCB design

Each DAC receives a digital bitstream representing a constant signal. This signal
is then converted by the DAC which will generate a precise constant voltage value.
Since there are no stringent requirements for the resolution of these DACs, it has
been stated that a resolution of 8 bit should be enough. Moreover, in this case
each DAC generates a specific voltage reference, so a single channel voltage output
DAC can be used.
Furthermore, it has been intended to use the same controller for all the DACs
present on the board, but introducing three kinds of buses, two for the data DACs
and one for all the reference DACs. The usage of only one data bus for the reference
DACs is acceptable because there are no speed requirements. To share the bus, the
three reference DACs must belong to the same family: they use a serial interface
which is compatible with the SPI (serial peripheral interface) protocol. Furthermore,
the reduced number of buses allows to spare traces on the board, and so it results
to be a space-saving solution.
Considering these constraints, the DAC selected for the conversion of the voltage
references is the DAC081S101 by Texas Instruments, which is a general purpose
8-bit, 1-channel, voltage output DAC (figure 3.2).

Figure 3.2: DAC 081S101

3.1.3 Regulators
All the integrated circuits soldered on the board, and of course the chip, need a
certain supply voltage. Before the design of the PCB, it was intended to use three
different ways to bias the circuit: using the power supply through a DC power
connector jack, using 3 AAA batteries, and using the 5V output of the FPGA.
Unlike the DC power supply, the usage of batteries allows to avoid the injection of
additional noise in the circuit. However, the voltage provided must be regulated,
to reach the precise level required by the integrated circuits and by the chip, and it
must be maintained steady.
In particular, the core of the chip works properly with a power supply voltage of
1.8V, while the I/O and the pad ring work properly with a power supply voltage of
3.3V. Also, all the DACs on the PCB requires supply voltage level within a specific
range. After having verified that the voltage level of 3.3V falls in the supply range
of the DACs, this voltage level has been used also as supply voltage for the DACs,
to reduce the number of components on the board.
Since these kinds of integrated circuits need a supply voltage as clean as possible,

36

PCB design

an LDO (low-dropout) linear regulator has been chosen. Linear regulators use a
transistor controlled by a negative-feedback circuit to produce a specified output
voltage that remains stable despite variations in load current and in input voltage
[21]. Also, an LDO is a particular linear regulator that can operate at very low
potential difference between the input and the output voltage.
The regulator chosen for the 3.3V power supply is the ADP3300 by Analog Devices
(figure 3.3), which has a supply range from 3V to 12V, and 5 fixed output voltage
values, including 3.3V.

Figure 3.3: ADP 3300

On the board are present 2 ADP3300. One of them produces the "analog" 3.3V
voltage, while the other produces the "digital" 3.3V voltage.

For what concern the supply voltage of 1.8V, it has been chosen an "adjustable"
regulator. The output of these kinds of regulators can be programmed simply
through an external resistance. The regulator chosen is the LT3085 by Analog
Devices (figure 3.4).

Figure 3.4: LT 3085

37

PCB design

3.1.4 Other Components
There are other components on the PCB. Of course, resistor and capacitor have
been placed in the circuit where needed.

Resistors The resistors adopted are 51 SMD type, inserted as series termination
on the digital signal lines. They are there to manage transmission effects line such
as ringing and oscillations from signals that have fast rise/fall edges.

Capacitors There are 50 SMD capacitors and 4 tantalum capacitors. Some of
them have been directly assigned to the various integrated circuits reading their
datasheets. Other capacitors have been inserted on the supply lines to obtain a
filtering effect [22].

Trimmer Potentiometer As previously said, it is possible to adjust the output
voltage of the regulator LT3085 through an external resistance, connecting it from
its SET pin to ground [23].To have full control on this voltage, the 3362 Trimpot
Trimming potentiometer by Bourns (figure 3.5) has been placed on the PCB. It is
a trimmer resistor of 200kΩ, which allows, when its value is set to 182kΩ, to obtain
an output voltage of 1.8V from the adjustable regulator LT3085, while trimming it,
the output voltage will decrease consequently.

Figure 3.5: 3362 Trimpot Trimming Potentiometer

Connectors On the PCB are also present some connectors:

• A connector 02x20 (figure 3.6) has been placed to allow connection between
the PCB and the FPGA.

• 2 connector 01x02, one inserted between the 3.3V power supply and the supply
input of the chip, while the other inserted between the 1.8V power supply
and the digital supply input of the chip. Practically, it has been planned to
measure externally the current absorbed by the chip from the power supply,
during its working conditions.

38

PCB design

• A connector 02x03 allows to choose what kind of supply must be connected
to the global VCC. It works properly when combined with a switch.

Figure 3.6: 02x20 Connector

Other components complete the list. They are:

• A barrel jack (figure 3.7), which allows to supply the entire board with the
external 5V taken from the power supply.

• A LED, that is useful to determine rapidly if the PCB is on or not.

• A switch selects one of the 3 ways, already discussed, of biasing the board.

• A battery holder (figure 3.8), used to host 3 AAA batteries.

Figure 3.7: Barrel Jack

Figure 3.8: Battery Holder

39

PCB design

3.2 Schematic
After having chosen all the components needed, the first step designing a PCB is to
create a schematic view of the circuit. As already mentioned, the software KiCad
has been exploited for the entire design of the PCB. KiCad offers the program
EESchema, through which is possible to edit a schematic.
The schematic has been designed creating 3 different hierarchy levels. Two hierarchy
levels contain respectively the supply part, including the regulators and the trimmer,
and the data part, which includes all the DACs. Finally, the top hierarchy level
contains the two instances of the lower levels, and the rest of the components, such
as a schematic view of the chip, connectors, switch, etc.

3.2.1 Data part
As already said, this hierarchy level contains all the DACs, and a group of capaci-
tances and resistances. Several 50 Ω resistors has been placed on the digital signal
lines, in order to manage transmission line effects. Several capacitors instead, has
been inserted on the supply lines to obtain a filtering effect.
The two 16-bit DACs shares the clock signal (CLK16), as can be seen in figure
3.9, which is connected to the SCLK pin. They are responsible to produce 4 input
signal each, that are needed by the chip. Then, each DAC has its own serial data-in
bus (DIN_1 and DIN_2), and its own SYNC signal (SYNC1 and SYNC2), thanks
to which is possible to synchronize the transmission of data.
Furthermore, both 16-bit DACs receives the supply voltage from the regulators,
and the reference voltages from the other 3 DACs that are intended to produce the
references. This can be easily implemented in the schematic with global labels.
Finally, there are other signals needed by these integrated circuits, which functions
are described in the next chapter.

Unlike the DAC for data, the DACs for references share not only the clock
signal (CLK8), but also the serial data-in bus (it is possible because they all use
the same communication protocol), as can be observed in figure 3.10. Data will be
synchronized through the 3 SYNC signals during the FPGA programming. In this
way, 2 bus lines are spared, and this is an acceptable solution because this kind of
DACs receive as input always the same constant bit-stream.

40

PCB design

Figure 3.9: Schematic of the data part (Data DACs)

Figure 3.10: Schematic of the data part (Reference DACs)

In the following figure (3.11) there is the whole schematic of the data part.
Observing the schematic, it can be noticed that 50 Ω resitors have been placed

on the digital line, where digital signals with fast rise and fall edges flow. Traces
starts from the FPGA pins, and they end on a high impedance node, which is the
input of a gate. These nodes provide a capacitive load on the trace, that, together
with the characteristic inductance of the trace, they constitute an LC. When digital

41

PCB design

Figure 3.11: Schematic of the whole data part

signals run across these kinds of long traces, they stimulate oscillation. Inserting a
resistance allows to increase the attenuation of possible oscillations.
Finally, some capacitors have been placed on the supply lines, with the aim to
obtain filtering effect of the noise, while others are requested by the components,
according to what is indicated in their datasheets.

42

PCB design

3.2.2 Supply part
This hierarchy level of the schematic contains all the components responsible of
generating the supply voltage levels which bias all the integrated circuits present
on the PCB and the chip itself. Also in this case, in the regulators’ datasheets
is possible to find application information which suggests to insert several bypass
capacitors, in order to guarantee stability. In figure 3.12, it can be observed the
whole schematic of the supply part. The two 3.3V regulators (ADP3300) receive as
input the voltage Vcc, which is the external 5V supply. They generate the "analog"
3.3V voltage and the "digital" 3.3V voltage. The "analog" 3.3V voltage is used to
bias all the DACs, and as voltage input for the adjustable regulator, while the
"digital" 3.3V voltage is used to bias the chip and to provide the digital I/O power
supply voltage for the 16-bit DACs.
Then, the adjustable regulator (LT085) receives the "analog" 3.3V voltage as input,
and it generates the 1.8V voltage. This voltage level can be adjusted simply
trimming the external resistor connected to the SET pin. Indeed, in the schematic
in figure 3.12 there is a trimmer potentiometer connected to the regulator, that
allows to change the output voltage. The reason why it is necessary to control
this voltage is to try to characterize the chip under test providing a supply voltage
under the 1.8V level, observing how it behaves.

3.2.3 Top hierarchy level
Finally, the schematic has been completed creating the top-level hierarchy. In this
level there are the instances of the two sub-parts already discussed. Then, the
symbol of the chip and the symbol of the 02x20 connector has been inserted. In
this way, it has been possible to connect all the pins of the chip and to configure
the interface between the PCB and the FPGA.
Furthermore, a section dedicated to the supply is showed in figure 3.13: there are
the symbol of the battery holder, of the barrel jack, and of the switch. As can be
seen, the switch selects in which way one wants to get the 5V supply: from the 5V
provided by the FPGA, from the DC jack, or from the battery. The latter is the
best method to avoid insertion of a power supply, which could induce injection of
additional noise in the circuit. Therefore, it has been chosen as the most suitable
solution for this kind of application.

43

PCB design

Figure 3.12: Schematic of the supply part

Figure 3.13: Detail of the top-level schematic

In figure 3.14 there is the whole PCB schematic. It can be noticed that there
are groups of three capacitors connected between each differential input of the chip.
Capacitors between the inputs and ground, allows to eliminate common mode noise,
while the capacitor across the two differential inputs acts on the differential mode,
filtering the signals. Then, the whole group of capacitors works as an anti-aliasing
filter, which eliminates the high frequency components in the signals.

44

PCB design

Figure 3.14: Complete PCB schematic

After having terminated the schematic, the software extracts the relative netlist
which will be used to match schematic and layout. At this point, it is necessary
to assign footprints to any component in the schematic. After this step, one can
continue the design, starting to work on the layout.

45

PCB design

3.3 Layout
As mentioned, a preliminary operation must be done before starting to design the
layout of the PCB. It is the assignment of footprints to each component which will
be soldered on the board. A footprint is the arrangement of pads (in surface-mount
technology) or through-holes (in through-hole technology) used to physically attach
and electrically connect a component to a printed circuit board.

After this step, is possible to design the layout. The software KiCad offers a
program called PcbNew which allows to create a layout. This kind of PCB presents
two different layers, which can be exploited to ease the routing and to use them as
ground planes. The two layers are the front copper layer (represented on layout
in red) and back copper layer (represented on layout in green). The figure 3.15
shows the layout without tracks, where only components’ footprints are present,
and information about the final dimensions of the board.

Figure 3.15: PCB layout. Copper layers are hidden

The figures 3.16 and 3.17, shows the front copper layer with all the tracks
respectively hiding and showing the filled areas in zones.

46

PCB design

Figure 3.16: PCB layout. Only front copper layer is shown without filled areas.

Figure 3.17: PCB layout. Only front copper layer is shown

47

PCB design

The figures 3.18 and 3.19, shows the back copper layer with all the tracks
respectively hiding and showing the filled areas in zones.

Figure 3.18: PCB layout. Only back copper layer is shown without filled areas.

Figure 3.19: PCB layout. Only back copper layer is shown

48

PCB design

The figure 3.20 shows the whole layout, including both copper layer with all the
tracks, but hiding the filled areas in zones for a better visualization.

Figure 3.20: PCB layout without filled areas.

49

PCB design

The following figures (3.21 and 3.22) are two photos of the produced PCB.

Figure 3.21: Photo of the front of the PCB

Figure 3.22: Photo of the back of the PCB.

50

Chapter 4

FPGA Programming

This chapter describes the design of the "digital" part included in the testing
platform for the chip. It consists essentially in programming a FPGA. Components
such as DACs, present on the PCB, need to be controlled. Each DAC has precise
timing requirements and protocols which manage the serial write operation. In
particular, data and clock signals must be sent with specific timing, and the
commands exchanged between the transmitter (FPGA) and the receiver (DAC)
must be synchronized.
Furthermore, the chip under test requires several control signals, to properly perform
all the operations included in the analog-to-digital conversion. In particular, control
signals are required to synchronize the different operations and make possible state
changes. The chip has an internal memory that must be programmed at the
beginning of the conversion. Obviously, both the chip and the DACs require their
own clock signals, that must be controlled through the clock gating technique, in
order to spare energy.
The digital design has been done in VHDL, while code simulations has been
performed using the software Modelsim. Finally, having tested all the VHDL code,
it has been synthetized through the software Quartus, and run on the FPGA.
There are three main blocks which have been described in VHDL: a block responsible
to control the high-resolution DACs for data, a block responsible to control the
reference DACs, and a block responsible to control the chip.

51

FPGA Programming

4.1 Data DACs control
In order to design the block which controls both high-resolution DACs for data,
it is necessary to analyze which kind of signals they need as input. The starting
point is to consult the datasheet. In figure 4.1 there is the pin configuration of the
DAC8555 taken from its datasheet.

Figure 4.1: Pin configuration of DAC8555 [24]

Excluding the output pins and the ones related to the supply, the signals
needed by the DAC are: SYNC, SCLK, Din, RST, RSTSEL, ENABLE and
LDAC, associated respectively to pin 9, 10, 11, 13, 14, 15 and 16. However,
the most important signals for the timing are SYNC, SCLK and Din, which
allows to synchronize and properly perform write operations. Each DAC has its
communication protocol, indeed, in every datasheet is possible to find information
about how to communicate with the component, as well as useful timing diagrams.
In figure 4.2 there is a timing diagram taken from the DAC8555’s datasheet, which
describes a serial write operation.

Figure 4.2: Timing diagram of serial write operation of DAC8555 [24]

As can be seen, the operation starts forcing the signal SYNC to the logic level
’0’. SYNC is a level-triggered control input which is active LOW [24]. This is
the frame synchronization signal for the input data. When SYNC goes LOW, it

52

FPGA Programming

enables the input shift register and data is transferred in on the falling edges of
the following clocks.
The SCLK and Din input are respectively a serial clock input and a serial data
input. Data is clocked into the 24-bit input shift register on each falling edge of
the serial clock.
The write sequence begins by bringing the SYNC LOW. Data from the DIN line
are clocked into the 24-bit shift register on each falling edge of SCLK. On the 24th
falling edge of the serial clock, the last data bit is clocked into the shift register and
the shift register gets locked. Further clocking does not change the shift register
data. Once 24 bits are locked into the shift register, the eight MSBs are used as
control bits and the 16 LSBs are used as data. After receiving the 24th falling clock
edge, the DAC8555 decodes the eight control bits and 16 data bits to perform the
required function, without waiting for a SYNC rising edge. A new SPI sequence
starts at the next falling edge of SYNC. A rising edge of SYNC before the 24-bit
sequence is complete resets the SPI interface: no data transfer occurs. After the
24th falling edge of SCLK is received, the SYNC line may be kept LOW or brought
HIGH. In either case, the minimum delay time from the 24th falling SCLK edge to
the next falling SYNC edge must be met in order to properly begin the next cycle.
The input 24-bit input shift register of the DAC8555 is 24 bits wide, as shown
in figure 4.3, and is made up of eight control bits (DB23-DB16) and 16 data bits
(DB15-DB0). DB 23 and DB22 should always be ’0’. LD1 (DB21) and LD0 (DB20)
control the updating of each analog output with the specified 16-bit data value
or power-down command. Bit DB19 is a don’t care bit that does not affect the
operations. The DAC channel select bits (DB18 and DB17) control the destination
of the data form DAC A through DAC D (see figure 4.4). The final control bit,
PD1 (DB16), selects the power-down mode of the DAC8555 channels.
In figure 4.4 there is the functional block diagram of the DAC8555; it can be useful
to better understand its internal structure and its control.

Figure 4.3: DAC8555 Data input shift register format [24]

Having gathered all this information, it is possible to start designing VHDL
block which will allow the DAC8555 control.

53

FPGA Programming

Figure 4.4: DAC8555 Functional block diagram [24]

4.1.1 Datapath
In order to describe all the hardware needed in VHDL, a "paper and pencil"
approach has been adopted. First of all, a possible datapath, containing different
the digital elements, has been designed. In figure 4.5 there is a simple draw of the
datapath which will be then described in VHDL.

Figure 4.5: Datapath for high-resolution DACs’ control

54

FPGA Programming

Below is a detailed description of each element and its functions.

Shift Register Since the DAC for data has a data input shift register 24-bit wide,
surely, a 24-bit wide shift register is needed. It allows to serialize data represented
on 24-bit words, and to send them to the DAC in the form of a bit serial stream.
The shift register has 3 kind of inputs and one output:

• Clock signal. The "clk" input allows to synchronize the shift operation with a
global clock.

• Data signals. The two bus signals "ctrl_bit" and "data_bit" are respectively
8-bit and 16-bit wide. Bus "ctrl_bit" represents the first 8 bits of the data to
be sent, which contain information about the channel selection, the destination
of the data in the DAC, and the power-down modes. Bus "data_bit" represents
the last 16 bits which contain the true data to be converted by the DAC.
These two strings separately come from a top level entity (described later).
Thus, the padding operation is performed inside the shift register.

• Control signal. The "se" input is a shift-enable. When the signal "se" is ’1’, the
shifting operation starts and a new bit is put in output at every clock cycle.

• Output. The signal "tx_stream" is the serial output of the shift register. Bits
are sent one by one directly to the Din pin of the DAC8555.

N-counter This is a 24-counter, which is enabled every time there is a new word
to be transmitted. The counter’s task is to count the number of shifts and to flag
to the control unit that a 24-bit word has been completely transmitted through its
flag output "tc_data" (terminal count).

L-counter This is an L-counter, where L can be any number. L represents the
number of 24-bit words to be transmitted, so it works as a sort of index through
the output "i". Through this index, the top-level entity can control and select the
word to sent.

Latch The latch implements the clock gating. Essentially, through the enable
input "sclk_en", the output "sclk" can be forced to ’0’, when there is no transmission,
or it follows the global clock signal "clk". Signal "sclk" is the serial clock used by
the DAC to acquire the input data.

55

FPGA Programming

4.1.2 FSM
The control unit completes the design of the block which controls the DAC8555.
This block is essentially a FSM, which stands for Finite State Machine. In figure
4.6 there is a simple draw that shows a block with all the inputs and outputs.

Figure 4.6: Control unit for high-resolution DACs’ control

Below is a detailed description of the input/output signals of this FSM, followed
by an analysis of its states and their functionality.

Inputs The FSM changes from one state to another in response to some inputs
that trigger each transition.

• start_tx. This signal triggers the beginning of a transmission. It is an
acknowledge signal which is interchanged with the output signal "ready".
Through these two signals, it is possible to have an handshake between the TX
(transmitter) and the user, who is sending data to the shift register. When
"start_tx" goes high, it means that the data is valid, and a transmission can
start.

• tc_data. This signal flags the end of the transmission. It is sent to the FSM
by datapath. Every time a 24-bit word is fully transmitted, "tc_data" goes
high and the TX returns free.

Outputs The FSM produces output signals which are effectively the control
signals. Through these signals is possible to drive elements in the datapath and to
communicate with the user.

56

FPGA Programming

• sync. This signal is the frame synchronization signal for the DAC8555’s input
data already discussed. It must be low during the transmission, and it must
return high when it finishes.

• ready. This is the second acknowledge signal which is interchanged with the
user. When a transmission ends, the counter and the shift register are reset.
After this time instant, the TX is considered free, and the signal "ready" flags
this condition.

• sclk_en. This is the enable for the clock gating.

• se, le. They are respectively the shift enable and load enable signals for the
shift register.

• rst_counter, rst_shift. They are respectively reset signals for the 24-counter
and for the shift register

• LDAC,rst,rstsel. These are signals required by the high-resolution DACs,
which allow to reset it, or to manage the operations.

States The FSM follows a precise evolution, triggered by the input signals,
through its states. Therefore, these signals cause a transition of the FSM, and,
during each state, it produces an output pattern which controls the datapath. In
figure 4.7 there is the state diagram of this FSM, followed by a detailed description.

57

FPGA Programming

Figure 4.7: State diagram for high-resolution DACs’ control

• IDLE_STATE. In this state, TX is in a waiting state and it is free, so the
acknowledge signal "ready" is asserted. Since TX is not transmitting, the
"sync" signal for the DAC must go ’0’, while the serial clock "sclk" is disabled
("sclk_en=’0’). When the input "start_tx" is forced to ’1’ by the user, there
is a transition to the next state, which is TX_state.

• TX_STATE. During this state the TX is busy because it is serializing and
transmitting the word provided by the user, so the signal "ready" goes low
and the shift enable signal "se" goes high. Also, "sync" and "slck_en" go
respectively to ’0’ and ’1’, as required by the DAC’s configuration for the serial
write operation. When the 24-bit counter finishes its count, the transmission is
completed and, through the input signal "tc_data" provided by the datapath,
the FSM changes state.

• END_STATE. In this state, the 24-bit counter is reset, and the L-counter for
the number of words sent, is enabled and so it counts up. The next transition
through the IDLE_STATE is simply triggered by the next clock rising edge.

58

FPGA Programming

Finally, a higher level entity (figure 4.8) containing both datapath and FSM has
been designed. Since there are two 16-bit DAC on the board to be controlled, two
instances of the same entity have been declared.

Figure 4.8: TX for high-resolution DACs’ control

4.1.3 Modelsim Simulations
The hardware described in VHDL has been tested in Modelsim. Figure 4.9a shows
the simulation results for a single 24-bit word ("data_in_r") transmission. The
signal "tx_stream" is its serial representation.
A full transmission of 4 24-bit words is depicted in figure 4.9b. This simulation
refers to the entity of figure 4.8.

59

FPGA Programming

(a) (b)

Figure 4.9: Modelsim simulation. Transmission of a single word (a) and of 4
words (b) for the high-resolution DAC.

60

FPGA Programming

4.2 Reference DACs control
As for the high-resolution DACs, in order to design the block which controls the
DACs for references, it is necessary to analyze which kind of signals they need as
input. The starting point again, is to consult the datasheet. In figure 4.10 there is
the pin configuration of the DAC081S101 taken from its datasheet.

Figure 4.10: Pin configuration of DAC081S101 [25]

Excluding the output pin and the one related to the supply, the signals needed
by the DAC are: SYNC, SCLK and Din, associated respectively to pin 6, 5, and 4.
Also in this case, in the datasheet it is possible to find information about how to
communicate with the component, as well as useful timing diagrams. In figure 4.11
there is a timing diagram taken from the DAC081S101’s datasheet, which describes
a serial write operation.

Figure 4.11: Timing diagram of serial write operation of DAC081S101 [25].

As for DAC8555, the operation starts forcing the signal SYNC to the logic level
’0’. SYNC is the frame synchronization input for the data input [25].
The SCLK and Din input are respectively a serial clock input and a serial data
input. Data is clocked into the 24-bit input shift register on each falling edge of
the serial clock.
A write sequence begins by bringing the SYNC line low. Once SYNC is low, the
data on the DIN line is clocked into the 16-bit serial input register on the falling
edges of SCLK. On the 16th falling clock edge, the last data bit is clocked in and
the programmed function (a change in the mode of operation and/or a change

61

FPGA Programming

in the DAC register contents) is executed. At this point the SYNC line may be
kept low or brought high. In either case, it must be brought high for the minimum
specified time before the next write sequence as a falling edge of SYNC is used to
initiate the next write cycle.
The input shift register (figure 4.12) has 16 bits. The first two bits are "don’t care"
and are followed by two bits that determine the mode of operation (normal mode
or one of three power-down modes), while the remaining 8 bits contains the data.

Figure 4.12: DAC081S101 Data input shift register format [25].

Having gathered all this information, it is possible to start designing VHDL
block which will allow the DAC081S101 control.

4.2.1 Datapath
Also in this case, a "paper and pencil" preliminary approach has been adopted. In
figure 4.13 the datapath containing all the digital blocks, is depicted.

Figure 4.13: Datapath for reference DACs’ control

Below is a detailed description of each element and of its functions.

62

FPGA Programming

Shift Register Also in this case, the DAC081S101 has a 16-bit input shift register,
so a 16-bit wide shift register is needed in the datapath, in order to serialize data
represented on 16 bits. It has:

• Clock signal. The "clk" input allows to synchronize the shift operation with a
global clock.

• Control signal. the "se" signal is a shift enable. When it goes high, the shift
register starts to send the bitstream, shifting the 16-bit word.

• Data signal. It is the input bus for data sent by the user.

• Output. The signal "tx_stream" is the serial output of the shift register. Bits
are sent one by one directly to the DIN pin of the DAC081S101.

NN-counter This is a 16-counter, which is enabled every time there is a new
word to be transmitted. The counter’s task is to count the number of shifts and to
flag to the control unit that a 24-bit data has been completely transmitted through
its flag output "tc_data" (terminal count).

LL-counter This is a 3-counter which synchronizes the transmission over the
three reference DACs. Since they share the same data bus and the same serial
clock, it has been possible to instantiate only one block to control all the reference
DACs. However, this counter controls the FSM transitions. There is a transmission
state for each reference DAC which computes the right configuration of the "sync"
signals needed. Furthermore, the counter is exploited to point a register which
contains the three 16-bit words to be sent to the reference DACs. These data are
always the same, since they represent a constant voltage.

Latch The latch implements the clock gating. Essentially, through the enable
input "sclk_en", the output "sclk" can be forced to ’0’, when there is no transmission,
or it follows the global clock signal "clk". Signal "sclk" is the serial clock used by
the DAC to sample the input data. All the three reference DACs receive the same
serial clock.

4.2.2 FSM
The control unit has been designed, also in this case, with a FSM. In figure 4.14
there is a simple draw that shows a block with all the inputs and outputs

Below is a description of the input/output signals of this FSM, followed by an
analysis of its states and of their functionality (figure 4.15).

63

FPGA Programming

Figure 4.14: Control unit for reference DACs’ control

Inputs

• start_tx. This signal has the same function of the one belonging to the data
DAC’s FSM. It triggers the beginning of a transmission. When "start_tx"
goes high, it means that the data is valid, and a transmission can start.

• tc_data. Also this signal has the same function of the one belonging to the
data DAC’s FSM. It flags the end of the transmission.

• ss. This is an index computed by the 3-counter. As already said, it synchronizes
the transmission over the three reference DACs. In other words, it causes
a transition in the FSM, toward a transmission state related to one of the
three DACs in which, the right configuration of the "sync" signals needed is
computed.

Outputs

• ready. This is the second acknowledge signal which is interchanged with the
user. When a transmission ends, counter and shift register are reset. After
this time instant, the TX is considered free, and the signal "ready" flags this
condition.

• ss_en. This control signal enables the ss-counter, which is used to synchronize
and select the communication among the three reference DACs.

• sync_refp-refn-vcm. These signals are the frame synchronization signals for
the DAC081S101’s input data already discussed. They must be low during
the transmission, and they must return high when it finishes. Each reference
DAC has a proper sync signal.

• sclk_en. This is the enable for clock gating.

64

FPGA Programming

• se. It is the shift enable signal for the shift register.

• rst_counter. It is reset signal for the 16-counter.

Figure 4.15: State diagram for reference DACs’ control

States

• IDLE_STATE. In this state, TX is in a waiting state and it is free, so the
acknowledge signal "ready" is asserted. Since TX is not transmitting, the
"sync" signal for all the DACs must go ’0’, while the serial clock "sclk", which is
shared by all the DACs, is disabled ("sclk_en=’0’). When the input "start_tx"
is forced to ’1’ by the user, there is a transition to the next state, which can
be TX_state1, TX_state2 or TX_state3. Thus, the next state is selected by
another input signal, which is the index "ss", and it can be 1, 2 or 3.

• TX_state_1-2-3.During these states the TX is busy because it is serializing
and transmitting the 16-bit word provided by the user, so the signal "ready"
goes low and the shift enable signal "se" goes high. Also, one of the three sync

65

FPGA Programming

signals (e.g. "sync_refp" for state TX_state1) and "slck_en" go respectively
to ’0’ and ’1’, as required by the DAC’s configuration for the serial write
operation. When the 16-bit counter finishes its count, the transmission is
completed and, through the input signal "tc_data" provided by the datapath,
the FSM changes state.

• END_state. During this state the ss-counter is enabled, and the TX is not
ready yet to start a new transmission. Transition through the IDLE_state
happens with the next rising edge of the clock.

Finally, a higher level entity (figure 4.16) containing both datapath and FSM has
been designed. Although there are three reference DAC on the PCB, it is enough to
declare only one instance since the reference DACs share the clock and the data bus.

Figure 4.16: TX for reference DACs’ control

4.2.3 Modelsim Simulations
Again, the hardware described in VHDL has been tested in Modelsim. Figure 4.17a
shows the simulation results for 3 16-bit word ("data_in_r") transmission. The
signal "tx_stream" is their serial representation.
In figure 4.17b instead, there is the same simulation but referring to the higher-level
entity of figure 4.16.

66

FPGA Programming

(a) Lower level entity (b) Higher
level entity

Figure 4.17: Modelsim simulation. Transmission of 3 word for the reference
DACs.

67

FPGA Programming

4.3 Chip control

The chip under test is essentially a SAR ADC. The starting point to describe
in VHDL the controller, is to gather the information already provided in chap-
ter 2 (referring to figures 2.13 and 2.14). As done for the AMS simulations, the
internal structure of the ADC has to be clear to the designer. Below is a brief recap.

The memory inside the chip must be programmed by the user only once, before
starting any operation. This memory will store information about how to acquire
the input signal, controlling the number of capacitors used during every acquisi-
tion cycle. The capacitive array is used also to convert the signal. According to
the memory layout, a 20-bit word must be sent by the user to program a single
acquisition cycle for each channel.
In order to synchronize and perform all the operation, the chip needs to be con-
trolled through different control signals which must be sent by the user. Therefore,
several digital blocks must be implemented in VHDL and synthetized on the FPGA.
To have an overview on the chip pin configuration, in figure 4.18 is shown the chip’s
symbol used in the KiCad project.

Figure 4.18: Chip’s symbol (KiCad).

The analysis done in chapter 2 of the input/output pins of the chip and the
timing diagram showed in figure 2.14 are still valid for this purpose.

68

FPGA Programming

4.3.1 Datapath
As already done for the designed datapaths related to DACs’ control, a "paper
and pencil" preliminary approach has been adopted. In figure 4.19, the datapath
required to control the chip, containing all the digital blocks, is depicted.

Figure 4.19: Datapath for chip’s control

Below is a detailed description of each element and of its functions.

Shift Register It is needed to serialize data that must be sent to the memory.
When the shift enable signal "se" goes high, the shift register begins the shifting,
putting on the output "mem_din" the bits contained in the input bus "data_in".

n-counter Data sent by the user are grouped in words of 20 bits each. Thus, this
is a 20-counter, which flags the end of transmission of an entire word. It enables
the x-counter.

x-counter Every time a 20-bit word is transmitted to the memory, the x-counter
is incremented. The "x" index can be any number, depending on the "quantity" of
programming chosen by the user. When this counter reaches the end of its count,
the flag signal "EOD" (End Of Data) is set to ’1’. This signal flags the end of
memory programming.

A-counter This counter is used to take into account of the number of acquisition
cycles run. Thus, the index "A" can be any number depending on the number of
cycles expected. When the acquisition is finished, the flag signal "EOA" (End Of
Acquisition) is set to ’1’.

12-counter Every conversion requires 12 clock cycles to be completely fulfilled.
At the end of the counting, the flag signal "tc" (terminal count) is set to ’1’.

69

FPGA Programming

Latch S and F The latches implement the clock gating. Essentially, through
the enable input "clkf_en" (or "clks_en"), the output "clk_f" can be forced to ’0’,
or it follows the global clock signal "clk".

4.3.2 FSM
The control unit has been designed, also in this case, with a FSM. In figure 4.20
there is a simple draw that shows a block with all the inputs and outputs. Below
is a description of the input/output signals of this FSM, followed by an analysis of
its states and of their functionality (figure 4.21).

Figure 4.20: Control unit for chip’s control

Inputs

• start. This signal is provided by the user and triggers the beginning of the
memory programming.

• EOD. The End of Data signal is computed in the datapath and it flags the
end of memory programming.

• start_acq. This signal is provided by the user and triggers the beginning of
the acquisition.

• EOA. The End of Acquisition signal is produced by the datapath. When all
the acquisition cycles are terminated, "EOA" goes high.

• tc. This signal flags the end of the conversion.

70

FPGA Programming

• restart. This signal is provided by the user, and it is used switch the FSM
into a state that resets the address memory counter.

Outputs

• se. Shift enable of the shift register.

• clks_en (or f). Enable signals for clock gating.

• count_en (or 2). Counter enable for the 12-counter (or A-counter).

• SOC. This is the Start of Conversion signal needed by the chip. It must be
set to ’1’ only during the conversion.

• conv_prog_n. This signal is used to control the chip when the operation run
switches from memory programming to acquisition/conversion. In addition,
the signal is used to reset the address memory counter.

Figure 4.21: State diagram for chip’s control

States

• IDLE. This is the initial state of the FSM during which all the system is
waiting. When signal "start" goes high, there is a transition towards the MEM
state, and the memory programming begins.

71

FPGA Programming

• MEM. During this state, the chip’s memory is programmed. Indeed, the
"clk_s" is enabled ("clks_en"=’1’), signal "conv_prog_n" goes low, and the
shift register is enabled ("se"=’1’). When the memory programming is finished,
the input signal "EOD" goes high and there is a transition towards the WAIT
state.

• WAIT. Here, the system is waiting before starting the acquisition. Thus, the
signal "conv_prog_n" is set to ’1’ and "clk_s" is disabled. When the user sets
"start_acq" to ’1’, the acquisition begins.

• ACQ. For the acquisition operation "clk_s" is again enabled, and the A-counter
is enabled. When it will reach the last counting step, "EOA" will go high and
there will be a transition in the FSM.

• CONV. This state lasts 12 clock cycle (counted by the 12-counter now enabled).
Signal "SOC" is set to ’1’ and "clk_f" is enabled. When the 12-counter reaches
step 12, the signal "tc" goes high causing a transition. In this case, if the
"restart" input is set to ’1’, next state will be RST, otherwise a new acquisition
will start.

• RST. This state is used to produce a ’0’ pulse in the signal "conv_prog_n".
This pulse will cause the reset of the address memory counter.

Finally, an higher level entity (figure 4.22) containing both datapath and FSM has
been designed.

Figure 4.22: TX for chip’s control

4.3.3 Modelsim Simulations
The hardware described in VHDL has been tested in Modelsim. Figure 4.23
shows the simulation results for the initial memory programming, followed by the
acquisition/conversion alternation. In this simulation the acquisition lasts 30 clock
cycles, and the memory address counter is reset anytime a new acquisition starts.

72

FPGA Programming

Figure 4.23: Modelsim simulation of the chip controller.

73

FPGA Programming

4.4 System Simulation
Having defined all the sub-blocks of the digital design, there is the need to design
a top-level entity. This entity has inside all the instances of the sub-blocks already
defined and it is responsible to provide them all the data required. Indeed, inside
this entity, groups of registers that store data has been implemented. Furthermore,
the top-level entity is the one the user directly interfaces with, and so it has to be
simple to be used when it is accessed from the FPGA. In figure 4.24 there is the
block of the top-level entity which has been designed.

Figure 4.24: Top-level entity.

While the outputs of this block are the ones belonging to the sub-blocks already
discussed, the inputs require a further explanation. They allow the external control
from a user, of all the digital design, and of the chip itself. They are:

• REF. If "REF" is set to ’1’, the serial write operation for the reference DACs
begins. Data are sequentially and continuously sent from the register file.

• DATA. If "DATA" is set to ’1’, the serial write operation for the high-resolution
DACs begins. Data are sequentially and continuously sent from the register
file.

• PROG. If "PROG" is set to ’1’ the memory programming begins. This
operation automatically stops when all the data has been sent.

74

FPGA Programming

• ACQ. When "ACQ" is set to ’1’, the acquisition begins. Because of how
the chip and the controller FSM were designed, the conversion automatically
begins after every acquisition, and the cycle is continuously repeated.

• RST_R. To reset the address memory counter, "RST_R" must be set to ’1’
at the end of the conversion.

In figure 4.25 there is the Modelsim simulation of this top-level entity. These
waveforms describe the entire sequence of data and control signals to be sent to
the chip and to the PCB, by means of the FPGA. The first two operations are the
memory programming and the reference DACs programming. Since the data to be
sent to the reference DACs are the digital representation of constant voltages, it
is enough to transmit 3 16-bit words, one for each DAC: the latter will hold its
analog output voltage during time.
The third step is the high-resolution DACs programming: sets of 24-bit words are
continuously transmitted, to constantly provide the analog input signal for the
ADC inside the chip.
Finally, the acquisition/conversion alternation can start, and the ADC will begin
the conversion.
The timing of these operations can be managed through the input signal of the
top-level entity, which are accessible by the external user.

75

FPGA Programming

Figure 4.25: Modelsim simulation of the system.
76

FPGA Programming

4.5 Test board measurements
All the VHDL code has been synthetized exploiting the software Quartus on the
FPGA DE0-CV by Terasic, based on the Cyclone V.
Figure 4.26 shows a photo of the PCB connected to the FPGA. With this configu-
ration, preliminary tests of the synthetized VHDL and of the DACs present on the
board have been carried out, without placing the chip.

Figure 4.26: Measurement configuration (FPGA + PCB).

The FPGA has been connected to the PC through an USB cable, while the
PCB has been supplied through the DC jack. The FPGA has been programmed
to generate a digital sinusoidal waveform with 8 bits of resolution, which is less
then their the maximum resolution: this waveform has been exploited to verify
the D/A conversion performed by the high-resolution DACs on the PCB. However,
this resolution is enough to verify the correct functioning of the system. The
signals observed have been probed on 3 pins of the FPGA and on 2 outputs of one
high-resolution DAC. They are:

FPGA pins
• CLK_16. Serial clock for the DAC.

• SYNC_1. Synchronization signal for communication.

• DIN_1. Digital data sent.

77

FPGA Programming

DAC outputs

• VIN1_P.

• VIN2_P.

These signals have been measured and visualized with an oscilloscope. Figure
4.27 shows the SYNC_1 (purple) and DIN_1 (yellow) signals. As can be seen,
data are transmitted when the synch signal is low.

Figure 4.27: Oscilloscope capture. SYNC_1 (purple) and DIN_1 (yellow) signals.

Figure 4.28 shows the CLK_16 (yellow) and VIN1_P signals (purple). It can
be seen that every 24 clock cycles, a new analog level is produced by the DAC. In
figure 4.29 there is a zoomed version, where clock edges can be seen clearly.

78

FPGA Programming

Figure 4.28: Oscilloscope capture. CLK_16 (yellow) and VIN1_P (purple)
signals.

Figure 4.29: Oscilloscope capture. Zoom of CLK_16 (purple) and VIN1_P
(yellow) signals.

79

FPGA Programming

Finally, in figure 4.30 there are the two output signals of the DAC, which are
clearly sinusoidal waveforms.

Figure 4.30: Oscilloscope capture. VIN1_P and VIN2_P output signals.

Unfortunately, due to delays in the chip production, it has not been possible to
perform and conclude the complete characterization of the chip.

80

Chapter 5

Conclusions

This thesis has been focused on the test and characterization of an integrated circuit
which implements a particular structure of acquisition system. First, an initial
overview on the traditional SAR ADC topologies, has been provided, followed by a
brief discussion of the theory behind the idea of the compressed sensing technique.
Then, the SAR ADC included in the chip to be tested has been presented. After
a preliminary detailed description of the input and output signals of the device,
and of its internal logic structure, a testbench has been designed to carry out
a characterization through circuital AMS simulations in the Cadence Virtuoso
environment. Results have been elaborated in Matlab and different performance
metrics have been obtained.
Then, an ad-hoc PCB has been designed to test the physical chip. After a rigorous
selection of the components needed, based on given constraints, the testing board
has been designed in KiCad, and then produced.
Through the produced VHDL code, it was possible to program a FPGA, which
controls the components on the PCB and the chip itself, as well as provide the
testing input signal. The correct functioning of the system composed by FPGA
and PCB has been verified by means of measurements with oscilloscope.
Simulations results show that the converter has quantization error which leads to
an actual resolution of 9 bit, against the aimed 12 bit. Then, non-idealities of the
circuit result to be crucial in the determination of INL and DNL errors. They are
respectively 4.91 LSB and 3 LSB. The impact of these errors should be estimated
evaluating their effect on the final application of the chip, which is the compressed
sensing operation.
Finally, the silicon device should have been tested and characterized through the
designed testing platform, but unfortunately it was not possible due to delays in
the chip production.
Future works would involve further simulations of the circuit, in order to test all
the possible types of operations offered by this kind of ADC, and measurements

81

Conclusions

of the actual chip: its characterization could be easily completed exploiting the
designed testing platform.

82

Appendix A

VHDL code

A.1 Data DACs control code

datapath.vhd
1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4

5

6 e n t i t y datapath i s
7 g e n e r i c (
8 L : i n t e g e r := 4 ; −− numero d i words da i n v i a r e a i DAC dat i
9 N : i n t e g e r := 24) ; −− numero d i b i t per word

10 port (
11 c l k : in s td_log i c ;
12 r s t : in s td_log i c ; −− r e s e t a s inc rono
13 c t r l _ b i t : in s td_log ic_vector (7 downto 0) ; −−8 b i t

contenent i in formaz ione s u l c o n t r o l l o de i DAC
14 data_bit : in s td_log ic_vector (15 downto 0) ;−−16 b i t

contenent i i l dato vero e propr io .
15 tx_stream : out s td_log i c ; −−u s c i t a s e r i a l e
16 se : in s td_log i c ; −−s h i f t enable
17 tc_data : out s td_log i c ; −−termina l count
18 s c l k : out s td_log i c ; −−s e r i a l c l o ck DAC
19 sclk_en : in s td_log i c ; −−s c l k enable
20 rst_counter : in s td_log i c ; −−r e s e t contatore
21 i : out i n t e g e r range 1 to L+1; −− i n d i c e contatore

de i da t i i n v i a t i a i DAC dat i .
22 i_en : in s td_log i c
23) ;
24 end e n t i t y ;
25

26

83

VHDL code

27 a r c h i t e c t u r e r t l o f datapath i s
28

29 s i g n a l d : i n t e g e r range 0 to N+1;
30 s i g n a l data_in_r : s td_log ic_vector (N−1 downto 0) ;
31 s i g n a l i_ int : i n t e g e r range 1 to L+1;
32

33

34 begin
35

36 tc_data <= ’0 ’ when(d>1) e l s e ’ 1 ’ ; −−se i l contegg io è terminato , tc
=1

37

38 s h i f t i n g : p roce s s (c lk , se , data_in_r)
39 begin
40 data_in_r <= c t r l _ b i t & data_bit ;
41 i f (se = ’0 ’) then
42 tx_stream <= ’0 ’ ;
43 e l s e −− se = ’1 ’
44

45 i f (r i s ing_edge (c l k)) then
46 tx_stream <= data_in_r (d−1) ;
47 end i f ;
48

49 data_in_r <= data_in_r ;
50 end i f ;
51 end proce s s ;
52

53

54 contegg io : p roce s s (c lk , r s t_counter) −−contegg io de i b i t i n v i a t i
55 begin
56 i f (r s t_counter = ’1 ’) then
57 d <= N;
58 e l s i f (c lk ’ EVENT AND c lk= ’1 ’) then
59 i f (d>1) then
60 d <= d − 1 ;
61 end i f ;
62 end i f ;
63 end proce s s ;
64

65

66 data_count : p roce s s (c lk , r s t) −−contegg io d e l l e words i n v i a t e a i dac
67 begin
68 i f (r s t = ’0 ’) then
69 i_ int <= 1 ;
70 e l s i f (i_en = ’1 ’) and (c lk ’ EVENT AND c lk= ’1 ’) then
71 i_ int <= i_int +1;
72 end i f ;
73 i f (i_ int=L+1) then
74 i_ int <=1;

84

VHDL code

75 end i f ;
76 i<=i_int ;
77 end proce s s ;
78

79

80 c lk_gat ing : p roc e s s (c lk , r s t) −−la t ch per c l o ck gat ing
81 begin
82 i f (r s t = ’0 ’) then
83 s c l k <= ’ 1 ’ ;
84 e l s i f (sclk_en = ’1 ’) then
85 s c l k <= c lk ;
86 e l s e sc lk <= ’1 ’;
87 end i f ;
88 end proce s s ;
89

90 end r t l ;

control_unit.vhd
1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4

5

6 e n t i t y contro l_uni t i s
7 g e n e r i c (
8 N : i n t e g e r := 24) ; −− numero d i b i t per word .
9 port (

10 c l k : in s td_log i c ;
11 r s t : in s td_log i c ; −− r e s e t a s inc rono
12 s tart_tx : in s td_log i c ; −− segna l e d i i n i z i o

t r a s m i s s i o n e
13 tc_data : in s td_log i c ; −− termina l count word
14 ready : out s td_log i c ; −− segna la t r a s m i s s i o n e

completata , TX d i s p o n i b i l e
15 sync : out s td_log i c ; −− segna l e d i a b i l i t a z i o n e per

i l DAC
16 rst_out : out s td_log i c ; −− r e s e t de l DAC
17 LDAC : out s td_log i c ; −− segna l e per i l DAC
18 RST_SEL : out s td_log i c ; −− segna l e per i l DAC
19 rst_counter : out s td_log i c ; −− r e s e t contatore b i t
20 sclk_en : out s td_log i c ; −− enable s c l k
21 i_en : out s td_log i c ; −− enable contato re words

i n v i a t e
22 se : out s td_log i c −− s h i f t enable (s h i f t r e g i s t e r)
23) ;
24 end e n t i t y ;
25

26 a r c h i t e c t u r e r t l o f contro l_uni t i s

85

VHDL code

27 type s t a t e i s (
28 TX_state ,
29 IDLE_state ,
30 END_state) ;
31 s i g n a l pre sent_state : s t a t e :=IDLE_state ;
32 s i g n a l next_state : s t a t e ;
33 s i g n a l start_tx_in : s td_log i c ;
34

35

36 begin
37

38

39 s t a t e _ r e g i s t e r : p roce s s (c lk , r s t)
40 begin
41 i f (r s t = ’0 ’) then
42 present_state <=IDLE_state ;
43 e l s i f (r i s ing_edge (c l k)) then
44 present_state <= next_state ;
45 end i f ;
46 end proce s s s t a t e _ r e g i s t e r ;
47

48

49 state_updating : p roce s s (pre sent_state , tc_data , s tart_tx)
50

51 begin
52 case pre sent_state i s
53

54 when TX_state =>
55 i f (tc_data = ’1 ’) then
56 next_state <= END_state ;
57 e l s e next_state <= TX_state ;
58 end i f ;
59

60 when END_state =>
61 next_state <= IDLE_state ;
62

63 when othe r s =>
64 i f (s tart_tx = ’1 ’) then
65 next_state <= TX_state ;
66 e l s e next_state <= IDLE_state ;
67 end i f ;
68

69 end case ;
70 end proce s s state_updating ;
71

72

73 s ta t e_reg i s t e r_out : p roce s s (pre sent_state)
74 begin
75 case pre sent_state i s

86

VHDL code

76 when TX_state =>
77 sync <= ’ 0 ’ ;
78 ready <= ’ 0 ’ ;
79 sclk_en <= ’ 1 ’ ;
80 rst_out <= ’ 1 ’ ;
81 rst_counter <= ’ 0 ’ ;
82 se <= ’ 1 ’ ;
83 RST_SEL <= ’ 1 ’ ;
84 LDAC <= ’ 1 ’ ;
85 i_en <= ’ 0 ’ ;
86

87 when END_state =>
88 ready <= ’ 0 ’ ;
89 sclk_en <= ’ 1 ’ ;
90 sync <= ’ 1 ’ ;
91 rst_out <= ’ 1 ’ ;
92 se <= ’ 1 ’ ;
93 rst_counter <= ’ 1 ’ ;
94 RST_SEL <= ’ 1 ’ ;
95 LDAC <= ’ 1 ’ ;
96 i_en <= ’ 1 ’ ;
97

98 when othe r s => −−IDLE_state
99 rst_out <= ’ 1 ’ ;

100 ready <= ’ 1 ’ ;
101 sync <= ’ 1 ’ ;
102 sclk_en <= ’ 0 ’ ;
103 se <= ’ 0 ’ ;
104 rst_counter <= ’ 1 ’ ;
105 RST_SEL <= ’ 1 ’ ;
106 LDAC <= ’ 1 ’ ;
107 i_en <= ’ 0 ’ ;
108

109 end case ;
110

111 end proce s s s ta t e_reg i s t e r_out ;
112

113 end r t l ;

TX.vhd
1 l i b r a r y IEEE ;
2 USE i e e e . std_logic_1164 . a l l ;
3

4 e n t i t y TX i s
5

6 g e n e r i c (
7 N : i n t e g e r := 24 ;
8 L : i n t e g e r := 4) ;

87

VHDL code

9 port (clk_0 : in s td_log i c ;
10 rst_0 : in s td_log i c ;
11 start_0 : in s td_log i c ;
12 c t r l _ b i t : in s td_log ic_vector (7 downto 0) ;
13 data_bit : in s td_log ic_vector (15 downto 0) ;
14 i_out : out i n t e g e r range 1 to L+1;
15 s e r i a l_out : out s td_log i c ;
16 sync_out : out s td_log i c ;
17 sc lk_out : out s td_log i c ;
18 LDAC : out s td_log i c ;
19 RST_SEL : out s td_log i c ;
20 rst_out : out s td_log i c ;
21 ready_0 : out s td_log i c) ;
22 end e n t i t y ;
23

24 a r c h i t e c t u r e r t l o f TX i s
25

26

27 s i g n a l rst_counter : s td_log i c ;
28 s i g n a l se : s td_log i c ;
29 s i g n a l tc_data : s td_log i c ;
30 s i g n a l tc : s td_log i c ;
31 s i g n a l sclk_en : s td_log i c ;
32 s i g n a l i_en : s td_log i c ;
33

34

35 component datapath i s
36

37 port (
38 c l k : in s td_log i c ;
39 r s t : in s td_log i c ;
40 sclk_en : in s td_log i c ;
41 rst_counter : in s td_log i c ;
42 c t r l _ b i t : in s td_log ic_vector (7 downto 0) ;
43 data_bit : in s td_log ic_vector (15 downto 0) ;
44 s c l k : out s td_log i c ;
45 se : in s td_log i c ;
46 tc_data : out s td_log i c ;
47 i : out i n t e g e r range 1 to L+1;
48 i_en : in s td_log i c ;
49 tx_stream : out s td_log i c) ;
50 end component ;
51

52

53 component contro l_uni t i s
54 port (
55 c l k : in s td_log i c ;
56 r s t : in s td_log i c ;
57 tc_data : in s td_log i c ;

88

VHDL code

58 ready : out s td_log i c ;
59 s tart_tx : in s td_log i c ;
60 sclk_en : out s td_log i c ;
61 rst_out : out s td_log i c ;
62 LDAC : out s td_log i c ;
63 RST_SEL : out s td_log i c ;
64 sync : out s td_log i c ;
65 rst_counter : out s td_log i c ;
66 i_en : out s td_log i c ;
67 se : out s td_log i c) ;
68 end component ;
69

70 begin
71

72 data : datapath port map (
73 c l k =>clk_0 ,
74 r s t =>rst_0 ,
75 c t r l _ b i t =>c t r l _ b i t ,
76 data_bit =>data_bit ,
77 s c l k =>sclk_out ,
78 tx_stream =>ser ia l_out ,
79 se =>se ,
80 tc_data =>tc_data ,
81 sclk_en =>sclk_en ,
82 i_en =>i_en ,
83 i =>i_out ,
84 rst_counter =>rst_counter) ;
85

86

87 c t r l : contro l_uni t port map (
88 c l k =>clk_0 ,
89 r s t =>rst_0 ,
90 s tart_tx => start_0 ,
91 tc_data => tc_data ,
92 ready =>ready_0 ,
93 sync =>sync_out ,
94 rst_out =>rst_out ,
95 rst_counter =>rst_counter ,
96 sclk_en =>sclk_en ,
97 i_en =>i_en ,
98 se =>se ,
99 LDAC =>LDAC ,

100 RST_SEL =>RST_SEL
101) ;
102

103 end r t l ;

89

VHDL code

A.2 Reference DACs control code

datapath_ref.vhd
1

2 l i b r a r y i e e e ;
3 use i e e e . std_logic_1164 . a l l ;
4 use i e e e . numeric_std . a l l ;
5

6

7 e n t i t y datapath_ref i s
8 g e n e r i c (
9 LL : i n t e g e r :=3; −−numero d i words da i n v i a r e . .

10 NN : i n t e g e r := 16) ; −−numero d i b i t per word .
11 port (
12 c l k : in s td_log i c ;
13 r s t : in s td_log i c ; −− r e s e t a s inc rono
14 data_in : in std_log ic_vector (NN−1 downto 0) ; −−

dato da i n v i a r e
15 tx_stream : out s td_log i c ; −−u s c i t a s e r i a l e
16 se : in s td_log i c ;
17 tc_data : out s td_log i c ;
18 s c l k : out s td_log i c ;
19 s s : out i n t e g e r range 1 to LL+1;
20 sclk_en : in s td_log i c ; −−s l a v e s e l e c t
21 rst_counter : in s td_log i c ;
22 ss_en : in s td_log i c −−s l a v e counter enable
23

24) ;
25 end e n t i t y ;
26

27

28 a r c h i t e c t u r e r t l o f datapath_ref i s
29

30 s i g n a l d : i n t e g e r range 0 to NN+1;
31 s i g n a l data_in_r : s td_log ic_vector (NN−1 downto 0) ;
32 s i g n a l s s_int : i n t e g e r range 1 to LL+1;
33

34 begin
35

36 tc_data <= ’0 ’ when(d>1) e l s e ’ 1 ’ ; −−se i l contegg io è terminato , tc
=1

37

38

39 s h i f t i n g : p roce s s (c lk , se , data_in)
40

41 begin
42 i f (se = ’0 ’) then
43 tx_stream <=’0’ ;

90

VHDL code

44 e l s e
45 i f (r i s ing_edge (c l k)) then
46 tx_stream <= data_in (d−1) ;
47 end i f ;
48 end i f ;
49 end proce s s ;
50

51

52 contegg io : p roce s s (c lk , r s t_counter)−−contegg io de i b i t i n v i a t i
53 begin
54

55 i f (r s t_counter = ’1 ’) then
56 d <= NN;
57 e l s i f (c lk ’ EVENT AND c lk= ’1 ’) then
58 i f (d>1) then
59 d<= d − 1 ;
60 end i f ;
61 end i f ;
62 end proce s s ;
63

64

65 ss_count : p roce s s (c lk , r s t , ss_en) −−contegg io per s i n c r o n i z z a r e l a
comunicazione s u i 3 DAC

66 begin
67 i f (r s t = ’0 ’) then
68 s s_int <= 1 ;
69 e l s i f (ss_en = ’1 ’) and (c lk ’ EVENT AND c lk= ’1 ’) then
70 s s_int <= ss_int +1;
71 end i f ;
72 −− i f (s s_int=LL+1) then
73 −− ss_int <=1;
74 −− end i f ; per l ’ auto−r e s e t
75 ss<=ss_int ;
76 end proce s s ;
77

78

79 c lk_gat ing : p roc e s s (c lk , r s t) −−la t ch per c l o ck gat ing
80 begin
81 i f (r s t = ’0 ’) then
82 s c lk <= ’1 ’;
83 e l s i f (sclk_en = ’1 ’) then
84 s c l k <= c lk ;
85 e l s e sc lk <= ’1 ’;
86 end i f ;
87 end proce s s ;
88

89 end r t l ;

control_unit_ref.vhd

91

VHDL code

1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4

5

6 e n t i t y contro l_uni t_re f i s
7 g e n e r i c (
8 LL : i n t e g e r := 3) ; −− numero d i s imbo l i per

ogni dato
9 port (

10 c l k : in s td_log i c ;
11 r s t : in s td_log i c ; −− r e s e t a s inc rono
12 s tart_tx : in s td_log i c ; −− segna l e d i i n i z i o

t r a s m i s s i o n e
13 ready : out s td_log i c ; −− t r a s m i s s i o n e completata ,

TX d i s p o n i b i l e
14 sync_refp : out s td_log i c ; −− segna l e per i l DAC r e fp
15 sync_refn : out s td_log i c ; −− segna l e per i l DAC r e fn
16 sync_vcm : out s td_log i c ; −− segna l e per i l DAC vcm
17 tc_data : in s td_log i c ; −− termina l count b i t
18 s s : in i n t e g e r range 1 to LL+1; −− s l a v e

s e l e c t per l a s i n c r o n i z z a z i o n e s u i 3 DAC
19 rst_counter : out s td_log i c ; −− r e s e t contatore
20 sclk_en : out s td_log i c ; −− enable s c l k
21 se : out s td_log i c ; −− s h i f t enable (s h i f t

r e g i s t e r)
22 ss_en : out s td_log i c −− enable contato re s l a v e
23) ;
24

25 end e n t i t y ;
26

27 a r c h i t e c t u r e r t l o f contro l_uni t_re f i s
28 type s t a t e i s (
29 TX_state_1 ,
30 TX_state_2 ,
31 TX_state_3 ,
32 IDLE_state ,
33 END_state) ;
34

35 s i g n a l pre sent_state : s t a t e :=IDLE_state ;
36 s i g n a l next_state : s t a t e ;
37 s i g n a l start_tx_in : s td_log i c ;
38

39 begin
40

41

42 s t a t e _ r e g i s t e r : p roce s s (c lk , r s t)
43 begin

92

VHDL code

44 i f (r s t = ’0 ’) then
45 present_state <= IDLE_state ;
46 e l s i f (r i s ing_edge (c l k)) then
47 present_state <= next_state ;
48 end i f ;
49 end proce s s s t a t e _ r e g i s t e r ;
50

51

52 state_updating : p roce s s (
53 present_state ,
54 tc_data ,
55 s tart_tx ,
56 s s)
57

58 begin
59 case pre sent_state i s
60

61 when TX_state_1 =>
62 i f (tc_data = ’1 ’) then
63 next_state <= END_state ;
64 e l s e next_state <= TX_state_1 ;
65 end i f ;
66

67

68 when TX_state_2 =>
69 i f (tc_data = ’1 ’) then
70 next_state <= END_state ;
71 e l s e next_state <= TX_state_2 ;
72 end i f ;
73

74

75 when TX_state_3 =>
76 i f (tc_data = ’1 ’) then
77 next_state <= END_state ;
78 e l s e next_state <= TX_state_3 ;
79 end i f ;
80

81 when END_state =>
82 next_state <= IDLE_state ;
83

84

85 when othe r s => −−IDLE_state
86

87 i f (s tart_tx = ’1 ’) and (s s =1) then
88 next_state <= TX_state_1 ;
89

90 e l s i f (s tart_tx = ’1 ’) and (s s =2) then
91 next_state <= TX_state_2 ;
92

93

VHDL code

93 e l s i f (s tart_tx = ’1 ’) and (s s =3) then
94 next_state <= TX_state_3 ;
95

96 e l s e next_state <= IDLE_state ;
97 end i f ;
98

99

100

101

102

103 end case ;
104 end proce s s state_updating ;
105

106

107 s ta t e_reg i s t e r_out : p roce s s (pre sent_state)
108 begin
109

110 case pre sent_state i s
111 when TX_state_1 => −−r i c e v e i l DAC re fp
112 sync_refp <= ’ 0 ’ ;
113 sync_refn <= ’ 1 ’ ;
114 sync_vcm <= ’ 1 ’ ;
115 ready <= ’ 0 ’ ;
116 ss_en <= ’ 0 ’ ;
117 rst_counter <= ’ 0 ’ ;
118 sclk_en <= ’ 1 ’ ;
119 se <= ’ 1 ’ ;
120

121

122 when TX_state_2 => −−r i c e v e i l DAC re fn
123 sync_refp <= ’ 1 ’ ;
124 sync_refn <= ’ 0 ’ ;
125 sync_vcm <= ’ 1 ’ ;
126 ready <= ’ 0 ’ ;
127 ss_en <= ’ 0 ’ ;
128 rst_counter <= ’ 0 ’ ;
129 sclk_en <= ’ 1 ’ ;
130 se <= ’ 1 ’ ;
131

132

133 when TX_state_3 => −−r i c e v e i l DAC vcm
134 sync_refp <= ’ 1 ’ ;
135 sync_refn <= ’ 1 ’ ;
136 sync_vcm <= ’ 0 ’ ;
137 ready <= ’ 0 ’ ;
138 ss_en <= ’ 0 ’ ;
139 rst_counter <= ’ 0 ’ ;
140 sclk_en <= ’ 1 ’ ;
141 se <= ’ 1 ’ ;

94

VHDL code

142

143

144 when END_state =>
145 ready <= ’ 0 ’ ;
146 ss_en <= ’ 1 ’ ;
147 sync_refp <= ’ 1 ’ ;
148 sync_refn <= ’ 1 ’ ;
149 sync_vcm <= ’ 1 ’ ;
150 rst_counter <= ’ 1 ’ ;
151 sclk_en <= ’ 1 ’ ;
152 se <= ’ 1 ’ ;
153

154 when othe r s => −−IDLE_state
155 ready <= ’ 1 ’ ;
156 ss_en <= ’ 0 ’ ;
157 sync_refp <= ’ 1 ’ ;
158 sync_refn <= ’ 1 ’ ;
159 sync_vcm <= ’ 1 ’ ;
160 sclk_en <= ’ 0 ’ ;
161 se <= ’ 0 ’ ;
162 rst_counter <= ’ 1 ’ ;
163

164 end case ;
165

166 end proce s s s ta t e_reg i s t e r_out ;
167

168 end r t l ;

TX_ref.vhd
1 l i b r a r y IEEE ;
2 USE i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4 e n t i t y TX_ref i s
5

6 g e n e r i c (
7 NN : i n t e g e r := 16 ;
8 LL : i n t e g e r := 3) ;
9

10 port (clk_0 : in s td_log i c ;
11 rst_0 : in s td_log i c ;
12 start_0 : in s td_log i c ;
13 data_out : in s td_log ic_vector (NN−1

downto 0) ;
14 ss_out : out i n t e g e r range 1 to LL

+1;
15 sync_refp_out : out s td_log i c ;
16 sync_refn_out : out s td_log i c ;
17 sync_vcm_out : out s td_log i c ;

95

VHDL code

18 ready_0 : out s td_log i c ;
19 sc lk_out : out s td_log i c ;
20 s e r i a l_out : out s td_log i c
21) ;
22 end e n t i t y ;
23

24

25 a r c h i t e c t u r e r t l o f TX_ref i s
26

27 s i g n a l rst_counter : s td_log i c ;
28 s i g n a l se : s td_log i c ;
29 s i g n a l tc_data : s td_log i c ;
30 s i g n a l s s : i n t e g e r range 1 to LL+1;
31 s i g n a l tc : s td_log i c ;
32 s i g n a l sclk_en : s td_log i c ;
33 s i g n a l ss_en : s td_log i c ;
34

35

36 component datapath_ref i s
37

38 port (
39 c l k : in s td_log i c ;
40 r s t : in s td_log i c ;
41 sclk_en : in s td_log i c ;
42 rst_counter : in s td_log i c ;
43 data_in : in std_log ic_vector (NN−1 downto 0) ;
44 s c l k : out s td_log i c ;
45 se : in s td_log i c ;
46 s s : out i n t e g e r range 1 to LL+1;
47 ss_en : in s td_log i c ;
48 tc_data : out s td_log i c ;
49 tx_stream : out s td_log i c) ;
50 end component ;
51

52

53 component contro l_uni t_re f i s
54 port (
55 c l k : in s td_log i c ;
56 r s t : in s td_log i c ;
57 tc_data : in s td_log i c ;
58 ready : out s td_log i c ;
59 s tart_tx : in s td_log i c ;
60 sclk_en : out s td_log i c ;
61 rst_counter : out s td_log i c ;
62 sync_vcm : out s td_log i c ;
63 sync_refp : out s td_log i c ;
64 sync_refn : out s td_log i c ;
65 s s : in i n t e g e r range 1 to LL+1;
66 ss_en : out s td_log i c ;

96

VHDL code

67 se : out s td_log i c) ;
68 end component ;
69

70

71 begin
72

73 ss_out<=ss ;
74

75 data : datapath_ref port map (
76 c l k =>clk_0 ,
77 r s t =>rst_0 ,
78 data_in =>data_out ,
79 s c l k =>sclk_out ,
80 tx_stream =>ser ia l_out ,
81 se =>se ,
82 tc_data =>tc_data ,
83 sclk_en =>sclk_en ,
84 s s =>ss ,
85 ss_en =>ss_en ,
86 rst_counter =>rst_counter) ;
87

88

89 c t r l : contro l_uni t_re f port map (
90 c l k =>clk_0 ,
91 r s t =>rst_0 ,
92 s tart_tx => start_0 ,
93 tc_data => tc_data ,
94 ready =>ready_0 ,
95 sync_refp =>sync_refp_out ,
96 sync_refn =>sync_refn_out ,
97 sync_vcm =>sync_vcm_out ,
98 s s =>ss ,
99 ss_en =>ss_en ,

100 rst_counter =>rst_counter ,
101 sclk_en =>sclk_en ,
102 se =>se) ;
103

104 end r t l ;

A.3 Chip control code

datapath_chip.vhd
1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4

97

VHDL code

5

6 e n t i t y datapath_chip i s
7 g e n e r i c (
8 A: i n t e g e r :=30; −−Numero d i c i c l i durata a c q u i s i z i o n e .
9 Z : i n t e g e r :=5; −− Numero d i words

10 M : i n t e g e r := 20) ; −−numero d i b i t per word da i n v i a r e a l l a
memoria

11 port (
12 c l k : in s td_log i c ;
13 r s t : in s td_log i c ; −− r e s e t a s inc rono
14 clk_s_en : in s td_log i c ; −− enable d i clk_s
15 clk_f_en : in s td_log i c ; −− enable d i c lk_f
16 count_en : in s td_log i c ; −− count enable per i 12 c i c l i

n e c e s s a r i a l l a conver s i one
17 count_en2 : in s td_log i c ; −− count enable per l a durata d e l l ’

a c q u i s i z i o n e
18 se : in s td_log i c ; −− s h i f t enable da t i per l a

programmazione d e l l a memoria
19 data_in : in std_log ic_vector (0 to M−1) ;
20 clk_s : out s td_log i c ;
21 EOD : out s td_log i c := ’ 0 ’ ; −−End Of Data : f i n e

t r a s m i s s i o n e da t i per l a memoria
22 EOA : out s td_log i c := ’ 0 ’ ; −−End Of Acqu i s i t i on
23 c lk_f : out s td_log i c ;
24 mem_din : out s td_log i c := ’Z ’ ;
25 tc : out s td_log i c ;
26 x : out i n t e g e r :=1
27) ;
28 end e n t i t y ;
29

30

31 a r c h i t e c t u r e r t l o f datapath_chip i s
32

33 s i g n a l bit_count : i n t e g e r range 1 to 12 := 1 ;
34 s i g n a l bit_count2 : i n t e g e r range 1 to A := 1 ;
35 s i g n a l n : i n t e g e r range 0 to M := 0 ;
36 s i g n a l x_int : i n t e g e r :=1;
37

38 begin
39

40 tc <= ’0 ’ when(bit_count <12) e l s e ’ 1 ’ ; −−se i l contegg io è terminato ,
tc=1

41 EOA <= ’0 ’ when(bit_count2<A) e l s e ’ 1 ’ ; −−se i l contegg io è terminato
, EOA=1

42

43

44 s h i f t i n g : p roce s s (c l k) −− s h i f t da t i per programmazione memoria .
45

46 begin

98

VHDL code

47

48 i f (r i s ing_edge (c l k)) then
49

50 i f (se = ’0 ’) then
51 EOD <= ’ 0 ’ ;
52 mem_din <= ’ 0 ’ ;
53 e l s e −−se = ’1 ’ ;
54 mem_din<= data_in (n) ;
55 i f (n<M−1) then −−f i n o a 18
56 n <= n+1;
57 x_int<=x_int ;
58 x<=x_int ;
59 EOD<= ’0 ’;
60

61 i f (n=M−3) then −−n=17
62 x_int<=x_int +1;
63 x<=x_int ;
64 end i f ;
65

66 e l s e −−n=19
67 i f (x_int=Z+1) then
68 EOD<= ’1 ’;
69 e l s e EOD<= ’0 ’;
70 end i f ;
71

72 n<= 0 ;
73

74 end i f ;
75 end i f ;
76 end i f ;
77 end proce s s ;
78

79 contegg io : p roce s s (c l k) −−contegg io de i 12 c i c l i d i conver s i one
80 begin
81

82 i f (c lk ’ EVENT AND c lk= ’1 ’) then
83 i f (bit_count = 12) then
84 bit_count <= 1 ;
85 e l s i f count_en = ’1 ’ then
86 bit_count <= bit_count + 1 ;
87 end i f ;
88 end i f ;
89 end proce s s ;
90

91

92 contegg io2 : p roc e s s (c l k) −−contegg io d e g l i A−c i c l i d i a c q u i s i z i o n e
93 begin
94

95 i f (c lk ’ EVENT AND c lk= ’1 ’) then

99

VHDL code

96 i f (bit_count2 = A) then
97 bit_count2 <= 1 ;
98 e l s i f count_en2 = ’1 ’ then
99 bit_count2 <= bit_count2 + 1 ;

100 end i f ;
101 end i f ;
102 end proce s s ;
103

104

105 clk_s_gating : p roce s s (c lk , clk_s_en) −−la t ch per c l o ck gat ing d i
clk_s

106 begin
107

108 i f (clk_s_en = ’0 ’) then
109 clk_s <= ’ 0 ’ ;
110 e l s e
111 clk_s <= c lk ;
112 end i f ;
113 end proce s s ;
114

115

116 c lk_f_gating : p roce s s (c lk , clk_f_en) −−la t ch per c l o ck gat ing d i
c lk_f

117 begin
118 i f (clk_f_en = ’0 ’) then
119 c lk_f <= ’ 1 ’ ;
120 e l s e
121 c lk_f <= c lk ;
122 end i f ;
123 end proce s s ;
124

125 end r t l ;

chip_ctrl.vhd
1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4

5

6 e n t i t y ch ip_ct r l i s
7 port (
8 c l k : in s td_log i c ;
9 r s t : in s td_log i c ; −− r e s e t a s inc rono

10 s t a r t : in s td_log i c ; −− segna l e d i i n i z i o programmazione
11 start_acq : in s td_log i c ; −− t r i g g e r i n i z i o a c q u i s i z i o n e
12 r e s t a r t : in s td_log i c ; −− segna l e per r e s e t t a r e i l puntatore

d e l l a memoria

100

VHDL code

13 EOD : in s td_log i c ; −− End Of Data : f i n e t r a s m i s s i o n e
da t i per l a memoria

14 EOA : in s td_log i c ; −− End Of Acqu i s i t i on
15 tc : in s td_log i c ; −− termina l count
16 conv_prog_n : out s td_log i c ;
17 SOC : out s td_log i c ;
18 se : out s td_log i c ;
19 clk_f_en : out s td_log i c ;
20 clk_s_en : out s td_log i c ;
21 count_en2 : out s td_log i c ;
22 count_en : out s td_log i c
23) ;
24 end e n t i t y ;
25

26 a r c h i t e c t u r e r t l o f ch ip_ct r l i s
27 type s t a t e i s (
28 RST_state ,
29 MEM_state ,
30 WAIT_state ,
31 IDLE_state ,
32 CONV_state ,
33 ACQ_state) ;
34 s i g n a l pre sent_state : s t a t e :=IDLE_state ;
35 s i g n a l next_state : s t a t e ;
36

37

38 begin
39

40 s t a t e _ r e g i s t e r : p roce s s (c lk , r s t)
41 begin
42 i f (r s t = ’1 ’) then
43 present_state <= IDLE_state ;
44 e l s i f (r i s ing_edge (c l k)) then
45 present_state <= next_state ;
46 end i f ;
47 end proce s s s t a t e _ r e g i s t e r ;
48

49

50

51 state_updating : p roce s s (
52 present_state ,
53 s ta r t ,
54 start_acq ,
55 r e s t a r t ,
56 EOD,
57 EOA,
58 tc ,
59 r s t)
60

101

VHDL code

61 begin
62 case pre sent_state i s
63

64 when IDLE_state =>
65 i f (s t a r t = ’1 ’) then
66 next_state <= MEM_state ;
67 e l s e next_state <= IDLE_state ;
68 end i f ;
69

70 when MEM_state =>
71 i f (EOD= ’1 ’) then
72 next_state <= WAIT_state ;
73 e l s e next_state <= MEM_state ;
74 end i f ;
75

76 when WAIT_state =>
77 i f (start_acq = ’1 ’) then
78 next_state <= ACQ_state ;
79 e l s e next_state <= WAIT_state ;
80 end i f ;
81

82 when ACQ_state =>
83 i f (EOA= ’1 ’) then
84 next_state <= CONV_state ;
85 e l s e next_state <= ACQ_state ;
86 end i f ;
87

88 when CONV_state =>
89 i f (t c = ’1 ’) then
90 i f (r e s t a r t = ’1 ’) then
91 next_state <= RST_state ;
92 e l s e next_state <= ACQ_state ;
93 end i f ;
94 e l s e next_state <= CONV_state ;
95 end i f ;
96

97 when othe r s => −− RST_state
98 i f (r s t = ’1 ’) then
99 next_state <= IDLE_state ;

100 e l s e next_state <= ACQ_state ;
101 end i f ;
102

103 end case ;
104 end proce s s state_updating ;
105

106

107 s ta t e_reg i s t e r_out : p roce s s (pre sent_state)
108 begin
109

102

VHDL code

110 case pre sent_state i s
111

112 when IDLE_state =>
113 conv_prog_n <= ’ 1 ’ ;
114 SOC <= ’ 1 ’ ;
115 clk_f_en <= ’ 0 ’ ;
116 clk_s_en <= ’ 0 ’ ;
117 count_en <= ’ 0 ’ ;
118 count_en2 <= ’ 0 ’ ;
119 se <= ’ 0 ’ ;
120

121 when MEM_state => −−Memory programming
122 conv_prog_n <= ’ 0 ’ ;
123 SOC <= ’ 1 ’ ;
124 clk_f_en <= ’ 0 ’ ;
125 clk_s_en <= ’ 1 ’ ;
126 count_en <= ’ 0 ’ ;
127 count_en2 <= ’ 0 ’ ;
128 se <= ’ 1 ’ ;
129

130 when WAIT_state => −−Waiting f o r s t a r t Acqu i s i t i on
131 conv_prog_n <= ’ 1 ’ ;
132 SOC <= ’ 0 ’ ;
133 clk_f_en <= ’ 0 ’ ;
134 clk_s_en <= ’ 0 ’ ;
135 count_en <= ’ 0 ’ ;
136 count_en2 <= ’ 0 ’ ;
137 se <= ’ 0 ’ ;
138

139 when ACQ_state => −−Acqu i s i t i on
140 conv_prog_n <= ’ 1 ’ ;
141 SOC <= ’ 0 ’ ;
142 clk_f_en <= ’ 0 ’ ;
143 clk_s_en <= ’ 1 ’ ;
144 count_en <= ’ 0 ’ ;
145 count_en2 <= ’ 1 ’ ;
146 se <= ’ 0 ’ ;
147

148 when CONV_state => −−Conversion
149 conv_prog_n <= ’ 1 ’ ;
150 SOC <= ’ 1 ’ ;
151 clk_f_en <= ’ 1 ’ ;
152 clk_s_en <= ’ 0 ’ ;
153 count_en <= ’ 1 ’ ;
154 count_en2 <= ’ 0 ’ ;
155 se <= ’ 0 ’ ;
156

157 when othe r s => −− Reset de l puntatore memoria
158 conv_prog_n <= ’ 0 ’ ;

103

VHDL code

159 SOC <= ’ 0 ’ ;
160 clk_f_en <= ’ 0 ’ ;
161 clk_s_en <= ’ 0 ’ ;
162 count_en <= ’ 0 ’ ;
163 count_en2 <= ’ 0 ’ ;
164 se <= ’ 0 ’ ;
165

166 end case ;
167 end proce s s s ta t e_reg i s t e r_out ;
168

169 end r t l ;

chip.vhd
1 l i b r a r y IEEE ;
2 USE i e e e . std_logic_1164 . a l l ;
3

4 e n t i t y chip i s
5 g e n e r i c (
6 Z : i n t e g e r :=5;
7 M : i n t e g e r := 20) ;
8

9 port (c l k : in s td_log i c ;
10 r s t : in s td_log i c ;
11 s t a r t : in s td_log i c ;
12 start_acq : in s td_log i c ;
13 r e s t a r t : in s td_log i c ;
14 data_in : in std_log ic_vector (M−1 downto 0) ;
15 x : out i n t e g e r :=1;
16 mem_din : out s td_log i c ;
17 clk_s : out s td_log i c ;
18 c lk_f : out s td_log i c ;
19 SOC : out s td_log i c ;
20 conv_prog_n : out s td_log i c
21) ;
22 end e n t i t y ;
23

24 a r c h i t e c t u r e r t l o f chip i s
25

26 s i g n a l tc : s td_log i c ;
27 s i g n a l a : s td_log i c ;
28 s i g n a l b : s td_log i c ;
29 s i g n a l count_en : s td_log i c ;
30 s i g n a l count_en2 : s td_log i c ;
31 s i g n a l se : s td_log i c ;
32 s i g n a l EOD : s td_log i c ;
33 s i g n a l EOA : s td_log i c ;
34

35

104

VHDL code

36 component ch ip_ct r l i s
37

38 port (
39 c l k : in s td_log i c ;
40 r s t : in s td_log i c ;
41 s t a r t : in s td_log i c ;
42 start_acq : in s td_log i c ;
43 r e s t a r t : in s td_log i c ;
44 EOD : in s td_log i c ;
45 EOA : in s td_log i c ;
46 tc : in s td_log i c ;
47 conv_prog_n : out s td_log i c ;
48 SOC : out s td_log i c ;
49 se : out s td_log i c ;
50 clk_f_en : out s td_log i c ;
51 clk_s_en : out s td_log i c ;
52 count_en2 : out s td_log i c ;
53 count_en : out s td_log i c) ;
54

55 end component ;
56

57

58 component datapath_chip i s
59

60 port (
61 c l k : in s td_log i c ;
62 r s t : in s td_log i c ;
63 clk_f_en : in s td_log i c ;
64 clk_s_en : in s td_log i c ;
65 data_in : in std_log ic_vector (M−1 downto 0) ;
66 x : out i n t e g e r :=1 ;−−range 1 to Z+1 :=1;
67 c lk_f : out s td_log i c ;
68 clk_s : out s td_log i c ;
69 EOD : out s td_log i c ;
70 EOA : out s td_log i c ;
71 count_en2 : in s td_log i c ;
72 count_en : in s td_log i c ;
73 se : in s td_log i c ;
74 mem_din : out s td_log i c ;
75 tc : out s td_log i c) ;
76 end component ;
77

78

79 begin
80

81 c1 : ch ip_ct r l port map (
82 c l k =>clk ,
83 r s t =>rst ,
84 s t a r t =>sta r t ,

105

VHDL code

85 start_acq =>start_acq ,
86 r e s t a r t =>r e s t a r t ,
87 EOD =>EOD,
88 EOA =>EOA,
89 tc =>tc ,
90 se =>se ,
91 conv_prog_n =>conv_prog_n ,
92 SOC =>SOC,
93 clk_f_en =>a ,
94 clk_s_en =>b ,
95 count_en2 =>count_en2 ,
96 count_en =>count_en) ;
97

98 c2 : datapath_chip port map (
99 c l k =>c lk ,

100 r s t =>r s t ,
101 clk_f_en =>a ,
102 clk_s_en =>b ,
103 se =>se ,
104 data_in =>data_in ,
105 x =>x ,
106 EOA =>EOA,
107 EOD =>EOD,
108 c lk_f =>clk_f ,
109 clk_s =>clk_s ,
110 count_en =>count_en ,
111 count_en2 =>count_en2 ,
112 mem_din =>mem_din ,
113 tc =>tc) ;
114

115 end r t l ;

A.4 System code

sistema.vhd
1 l i b r a r y IEEE ;
2 USE i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4

5 e n t i t y s i s tema i s
6 g e n e r i c (
7 Z : i n t e g e r := 5 ; −− numero d i words per l a

programmazione d e l l a memoria
8 M : i n t e g e r := 20 ; −− numero d i b i t per ogni word

per l a programmazione d e l l a memoria

106

VHDL code

9 L : i n t e g e r := 4 ; −− numero d i words da i n v i a r e a l
DAC dat i .

10 N : i n t e g e r := 24 ;−− numero d i b i t per ogni word da
i n v i a r e a l DAC dat i .

11 NN : i n t e g e r := 16 ; −− numero d i b i t per ogni word
da i n v i a r e a l DAC r i f e r i m e n t i .

12 LL : i n t e g e r := 3) ; −− numero d i words da i n v i a r e a l
DAC r i f e r i m e n t i .

13

14 port (c lk , r s t , REF, DATA,PROG,ACQ,RST_R: in s td_log i c ;
15 mem_din , clk_s , clk_f , SOC, conv_prog_n ,
16 LDAC_1, LDAC_2, RST_SEL1,RST_SEL2,
17 DIN_1, DIN_2, CLK_16_1, CLK_8,CLK_16_2,
18 DIN_REF, sync_vcm , sync_1 , sync_2 ,
19 sync_refp , sync_refn , rst_out1 , rst_out2 : out s td_log i c) ;
20 end e n t i t y ;
21

22

23 a r c h i t e c t u r e dut o f s i s tema i s
24

25 component chip i s
26 port (c lk , r s t , s t a r t , start_acq , r e s t a r t : in s td_log i c ;
27 data_in : in std_log ic_vector (M−1

downto 0) ;
28 x : out i n t e g e r :=1;−−range

1 to Z+1 :=1;
29 mem_din , clk_s , clk_f , SOC, conv_prog_n : out s td_log i c) ;
30 end component ;
31

32

33 component TX_ref i s
34 port (clk_0 , rst_0 , start_0 : in s td_log i c ;
35 ss_out : out i n t e g e r range 1

to LL+1;
36 sync_refp_out , sync_refn_out , sync_vcm_out , ready_0 : out s td_log i c ;
37 data_out : in s td_log ic_vector

(NN−1 downto 0) ;
38 sclk_out , s e r i a l_out : out s td_log i c) ;
39 end component ;
40

41

42 COMPONENT TX i s
43 port (clk_0 , rst_0 , start_0 : in s td_log i c ;
44 i_out : out i n t e g e r range 1

to L+1;
45 c t r l _ b i t : in s td_log ic_vector

(7 downto 0) ;
46 data_bit : in s td_log ic_vector

(15 downto 0) ;

107

VHDL code

47 s e r i a l_out , sync_out , sclk_out ,LDAC,RST_SEL, rst_out , ready_0 : out
s td_log i c) ;

48 end component ;
49

50

51 −−−
52

53 type reg_f i l e_type i s array (1 to LL) o f s td_log ic_vector (NN−1 downto
0) ;

54 constant r e g _ f i l e : r eg_f i l e_type :=
55 (−− Esempio d i sequenza d i da t i
56 " 0000100011100100 " , −− dato i n v i a t o a l DAC r e fp
57 " 0000101011001001 " , −− dato i n v i a t o a l DAC r e fn
58 " 0000110010110010 " −− dato i n v i a t o a l DAC vcm
59) ;
60 −−−
61

62

63 type reg_fi le_data_type i s array (1 to L) o f s td_log ic_vector (15
downto 0) ;

64 constant reg_f i l e_data1 : reg_fi le_data_type :=
65 (
66 " 1110010010110100 " , −− Esempio d i sequenza d i da t i da i n v i a r e a l

primo DAC
67 " 1100100110100101 " ,
68 " 1011001010010110 " ,
69 " 1001111001010011 "
70) ;
71

72

73 constant reg_f i l e_data2 : reg_fi le_data_type :=
74 (
75 " 1110010010110100 " , −− Esempio d i sequenza d i da t i da i n v i a r e a l

secondo DAC
76 " 1100100110100101 " ,
77 " 1011001010010110 " ,
78 " 1001111001010011 "
79) ;
80

81

82 type reg_f i l e_ct r l_type i s array (1 to L) o f s td_log ic_vector (7 downto
0) ;

83 constant r e g _ f i l e _ c t r l 1 : r eg_f i l e_ct r l_type :=
84 (
85 " 00001000 " , −− Esempio d i sequenza d i b i t d i c o n t r o l l o da i n v i a r e
86 " 00001010 " , −− a l primo DAC, per s c r i v e r e ne i r e l a t i v i 4 r e g i s t r i e
87 " 00001100 " , −− i n v i a r e simultaneamente i da t i s u l l e 4 u s c i t e .
88 " 00001110 "
89) ;

108

VHDL code

90

91 constant r e g _ f i l e _ c t r l 2 : r eg_f i l e_ct r l_type :=
92 (
93 " 00001000 " , −− Esempio d i sequenza d i b i t d i c o n t r o l l o da i n v i a r e a l
94 " 00001010 " , −− secondo DAC, per s c r i v e r e ne i r e l a t i v i 4 r e g i s t r i e
95 " 00001100 " , −− i n v i a r e simultaneamente i da t i s u l l e 4 u s c i t e .
96 " 00001110 "
97) ;
98 −−−
99 type reg_fi le_prog_type i s array (1 to Z) o f s td_log ic_vector (M−1

downto 0) ;
100 constant reg_f i l e_prog : reg_fi le_prog_type :=
101 (
102 " 00111110010010110100 " , −− Esempio d i sequenza d i da t i da i n v i a r e
103 " 11001100100110100101 " , −− a l chip per programmare l a memoria
104 " 01011011001010010110 " ,
105 " 11101001111001010011 " ,
106 " 00110101000110011100 "
107) ;
108

109

110 −−−
111 −−Segna l i per i l TX r i f e r i m e n t i
112 s i g n a l ready_ref : s td_log i c ;
113 s i g n a l s t a r t _ r e f : s td_log i c ;
114 s i g n a l s s : i n t e g e r range 1 to LL+1; −−Permette d i contare i da t i

i n v i a t i
115 s i g n a l data_out_ref : s td_log ic_vector (NN−1 downto 0) ;
116

117 −−−
118 −−Segna l i per i TX dat i
119 s i g n a l i : i n t e g e r range 1 to L+1; −−Permette d i contare i da t i

i n v i a t i
120 s i g n a l c t r l _ b i t 1 : s td_log ic_vector (7 downto 0) ;
121 s i g n a l data_bit1 : s td_log ic_vector (15 downto 0) ;
122 s i g n a l c t r l _ b i t 2 : s td_log ic_vector (7 downto 0) ;
123 s i g n a l data_bit2 : s td_log ic_vector (15 downto 0) ;
124 s i g n a l ready_1 : s td_log i c ;
125 s i g n a l ready_2 : s td_log i c ;
126 s i g n a l start_0 : s td_log i c ;
127

128 −−−
129 −−Segna l i per i l c o n t r o l l o de l chip
130 s i g n a l x : i n t e g e r ;−−Permette d i contare i da t i i n v i a t i
131 s i g n a l s t a r t : s td_log i c ; −−Fa i n i z i a r e l a programmazione d e l l a

memoria
132 s i g n a l start_acq : s td_log i c ; −− Fa i n i z i a r e l ’ a c q u i s i z i o n e
133 s i g n a l r e s t a r t : s td_log i c ; −−Fa r e s e t t a r e i l contatore che punta a l l a

memoria

109

VHDL code

134 s i g n a l data_in : s td_log ic_vector (M−1 downto 0) ;
135

136 −−−
137

138 begin
139

140

141 chip1 : chip port map(
142 c l k =>c lk ,
143 r s t =>r s t ,
144 x =>x ,
145 data_in =>data_in ,
146 s t a r t =>s t a r t ,
147 start_acq =>start_acq ,
148 mem_din =>mem_din ,
149 clk_s =>clk_s ,
150 c lk_f =>clk_f ,
151 SOC =>SOC ,
152 conv_prog_n =>conv_prog_n ,
153 r e s t a r t =>r e s t a r t) ;
154

155

156 DAC8 : TX_ref port map(
157 clk_0 =>c lk ,
158 rst_0 =>r s t ,
159 ready_0 =>ready_ref ,
160 start_0 =>star t_re f ,
161 ss_out =>ss ,
162 data_out =>data_out_ref ,
163 s e r i a l_out =>DIN_REF ,
164 sync_refp_out =>sync_refp ,
165 sync_refn_out =>sync_refn ,
166 sync_vcm_out =>sync_vcm ,
167 sc lk_out =>CLK_8) ;
168

169

170 DAC16_1: TX port map (
171 clk_0 =>clk ,
172 rst_0 =>rst ,
173 start_0 =>start_0 ,
174 s e r i a l_out =>DIN_1,
175 sync_out =>sync_1 ,
176 RST_SEL =>RST_SEL1,
177 LDAC =>LDAC_1,
178 i_out =>i ,
179 rst_out =>rst_out1 ,
180 ready_0 =>ready_1 ,
181 c t r l _ b i t =>ctr l_b i t1 ,
182 data_bit =>data_bit1 ,

110

VHDL code

183 sc lk_out =>CLK_16_1) ;
184

185

186 DAC16_2: TX port map (
187 clk_0 =>clk ,
188 rst_0 =>rst ,
189 start_0 =>start_0 ,
190 s e r i a l_out =>DIN_2,
191 sync_out =>sync_2 ,
192 RST_SEL =>RST_SEL2,
193 LDAC =>LDAC_2,
194 rst_out =>rst_out2 ,
195 ready_0 =>ready_2 ,
196 c t r l _ b i t =>ctr l_b i t2 ,
197 data_bit =>data_bit2 ,
198 sc lk_out =>CLK_16_2) ;
199 −−−
200

201 −−Process per programmare i r i f e r i m e n t i .
202 r e f e r e n c e : p roce s s (c lk , REF)
203

204 −−Per s c r i v e r e ne i DAC re f , b i sogna a s s e r i r e REF.
205 −−L ’ operaz ione s i interrompe automaticamente quando
206 −−saranno s t a t i i n v i a t i a i DAC t u t t i l e words p r e s e n t i ne l

R e g i s t e r F i l e
207 −−REF va tenuto = ’1 ’ per tut ta l a t ra smi s s i one , po i don ’ t care .
208

209 begin
210 i f (c lk ’ event and c l k = ’1 ’) then
211 i f REF= ’1 ’ then
212

213 i f (ss<LL+1) then
214

215 i f ready_ref = ’1 ’ then −−A ogni ready i n v i o una nuova word
216 s ta r t_re f <= ’1 ’;
217 data_out_ref<=r e g _ f i l e (s s) ;
218 e l s e s ta r t_re f <= ’0 ’;
219 end i f ;
220

221 e l s e s ta r t_re f <= ’0 ’;
222 data_out_ref<=(othe r s =>’0 ’) ;
223 end i f ;
224

225 e l s e s ta r t_re f <= ’0 ’;
226 data_out_ref<=(othe r s =>’0 ’) ;
227 end i f ;
228

229 end i f ;
230

111

VHDL code

231 end proce s s ;
232 −−−
233

234 −−Process per programmare i DAC dat i .
235 dac_data : p roc e s s (c lk , DATA)
236

237 −−Per s c r i v e r e ne i DAC dat i , b i sogna a s s e r i r e DATA.
238 −−I dat i a r r ivano s i n c r o n i z z a t i su entrambi i DAC.
239 −−L ’ operaz ione s i interrompe automaticamente quando
240 −−saranno s t a t i i n v i a t i a i DAC tut t e l e words p r e s e n t i ne l

R e g i s t e r F i l e
241 −−DATA va tenuto = ’1 ’ ;
242

243 begin
244 i f (c lk ’ event and c l k = ’1 ’) then
245

246 i f DATA= ’1 ’ then
247

248 i f (i<L+1) then
249

250 i f ready_1 = ’1 ’ then
251 start_0 <= ’1 ’;
252 c t r l_b i t1 <=r e g _ f i l e _ c t r l 1 (i) ;
253 data_bit1<=reg_f i l e_data1 (i) ;
254 e l s e start_0 <= ’0 ’;
255 c t r l_b i t1 <=(othe r s =>’0 ’) ;
256 data_bit1 <=(othe r s =>’0 ’) ;
257 end i f ;
258

259 i f ready_2 = ’1 ’ then
260 start_0 <= ’1 ’;
261 c t r l_b i t2 <=r e g _ f i l e _ c t r l 2 (i) ;
262 data_bit2<=reg_f i l e_data2 (i) ;
263 e l s e start_0 <= ’0 ’;
264 c t r l_b i t2 <=(othe r s =>’0 ’) ;
265 data_bit2 <=(othe r s =>’0 ’) ;
266 end i f ;
267

268 e l s e start_0 <= ’0 ’;
269 c t r l_b i t1 <=(othe r s =>’0 ’) ;
270 data_bit1 <=(othe r s =>’0 ’) ;
271 c t r l_b i t2 <=(othe r s =>’0 ’) ;
272 data_bit2 <=(othe r s =>’0 ’) ;
273 end i f ;
274

275 e l s e start_0 <= ’0 ’;
276 c t r l_b i t1 <=(othe r s =>’0 ’) ;
277 data_bit1 <=(othe r s =>’0 ’) ;
278 c t r l_b i t2 <=(othe r s =>’0 ’) ;

112

VHDL code

279 data_bit2 <=(othe r s =>’0 ’) ;
280

281 end i f ;
282 end i f ;
283

284 end proce s s ;
285

286 −−−
287

288 −−Process per programmare l a memoria .
289 progamming : p roce s s (c lk , PROG)
290

291 −−Per i n i z i a r e l a programmazione d e l l a memoria , b i sogna a s s e r i r e PROG
.

292 −−L ’ operaz ione s i interrompe automaticamente quando
293 −−saranno s t a t i i n v i a t i a l chip t u t t i i da t i p r e s e n t i ne l

R e g i s t e r F i l e .
294 −−dopodich è i l ch ip va in s t a to d i WAIT, f i n c h è non v iene i n v i a t o i l

s e gna l e
295 −−di i n i z i o a c q u i s i z i o n e (ACQ) .
296 −−PROG va tenuto = ’1 ’ per tut ta l a programmazione , po i don ’ t care .
297

298 begin
299 i f (c lk ’ event and c l k = ’1 ’) then
300

301 i f PROG= ’1 ’ then
302 i f (x<Z+1) then
303 s ta r t <= ’1 ’;
304 data_in<=reg_f i l e_prog (x) ;
305 e l s e
306 data_in<=(othe r s =>’0 ’) ;
307 s ta r t <= ’0 ’;
308 end i f ;
309 e l s e s ta r t <= ’0 ’;
310 data_in<=(othe r s =>’0 ’) ;
311 end i f ;
312 end i f ;
313

314 end proce s s ;
315

316 −−Process per i n i z i a r e l ’ a c q u i s i z i o n e / conver s i one
317 a c q u i s i t i o n : p roce s s (c lk , ACQ)
318

319 −− Per i n i z i a r e l ’ a c q u i s i z i o n e bisogna a s s e r i r e ACQ.
320 −− La conver s i one i n i z i a automaticamente dopo l ’ a c q u i s i z i o n e .
321 −− E’ p o s s i b i l e programmare l a durata d e l l ’ a c q u i s i z i o n e mediante i l

s e gna l e "A"
322 −− ne l f i l e datapath_chip . vhd

113

VHDL code

323 −− ACQ dopo e s s e r e passato l a prima vo l ta da ’0 ’ a ’1 ’ d iventa don ’ t
care .

324

325 begin
326 i f (c lk ’ event and c l k = ’1 ’) then
327

328 i f ACQ= ’1 ’ then
329 start_acq <= ’1 ’;
330 e l s e start_acq <= ’0 ’;
331 end i f ;
332 end i f ;
333 end proce s s ;
334

335 −−Process per r e s e t t a r e i l contato re d e l l a memoria .
336 restart_mem_counter : p roce s s (c lk , RST_R)
337 −− Per r e s e t t a r e i l contatore d e l l a memoria bisogna a s s e r i r e RST_R.
338 −− NB: I l s egna l e RST_R deve e s s e r e ’1 ’ quando è f i n i t a l a

conver s i one .
339 begin
340 i f (c lk ’ event and c l k = ’1 ’) then
341

342 i f RST_R= ’1 ’ then
343 r e s t a r t <= ’1 ’;
344 e l s e r e s t a r t <= ’0 ’;
345 end i f ;
346

347 end i f ;
348 end proce s s ;
349

350 end a r c h i t e c t u r e ;

sistema_tb.vhd
1 l i b r a r y IEEE ;
2 USE i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4

5

6 e n t i t y sistema_tb i s
7 end e n t i t y ;
8

9 a r c h i t e c t u r e dut o f sistema_tb i s
10

11

12 s i g n a l c l k_te s t : s td_log i c := ’0 ’ ;
13 s i g n a l r s t_t e s t : s td_log i c ;
14 s i g n a l REF_test : s td_log i c ;
15 s i g n a l DATA_test : s td_log i c ;
16 s i g n a l PROG_test : s td_log i c ;

114

VHDL code

17 s i g n a l ACQ_test : s td_log i c ;
18 s i g n a l RST_R_test : s td_log i c ;
19 s i g n a l mem_din_test : s td_log i c ;
20 s i g n a l c lk_s_test : s td_log i c ;
21 s i g n a l c lk_f_test : s td_log i c ;
22 s i g n a l SOC_test : s td_log i c ;
23 s i g n a l conv_prog_n_test : s td_log i c ;
24 s i g n a l LDAC_1_test : s td_log i c ;
25 s i g n a l LDAC_2_test : s td_log i c ;
26 s i g n a l RST_SEL1_test : s td_log i c ;
27 s i g n a l RST_SEL2_test : s td_log i c ;
28 s i g n a l DIN_1_test : s td_log i c ;
29 s i g n a l DIN_2_test : s td_log i c ;
30 s i g n a l CLK_16_1_test : s td_log i c ;
31 s i g n a l CLK_8_test : s td_log i c ;
32 s i g n a l CLK_16_2_test : s td_log i c ;
33 s i g n a l DIN_REF_test : s td_log i c ;
34 s i g n a l sync_vcm_test : s td_log i c ;
35 s i g n a l sync_1_test : s td_log i c ;
36 s i g n a l sync_2_test : s td_log i c ;
37 s i g n a l sync_refp_test : s td_log i c ;
38 s i g n a l sync_refn_test : s td_log i c ;
39 s i g n a l rst_out1_test : s td_log i c ;
40 s i g n a l rst_out2_test : s td_log i c ;
41

42 component s i s tema i s
43 port (c lk , r s t , REF,ACQ,PROG,RST_R,DATA: in s td_log i c ;
44 mem_din , clk_s , clk_f , SOC, conv_prog_n ,
45 LDAC_1, LDAC_2, RST_SEL1,RST_SEL2,
46 DIN_1, DIN_2, CLK_16_1, CLK_8,CLK_16_2,
47 DIN_REF, sync_vcm , sync_1 , sync_2 ,
48 sync_refp , sync_refn , rst_out1 , rst_out2 : out s td_log i c) ;
49 end component ;
50

51

52 begin
53

54 s1 : s i s tema port map (
55

56 c l k=> clk_test ,
57 r s t=>rst_tes t ,
58 REF=>REF_test ,
59 DATA=>DATA_test ,
60 RST_R=>RST_R_test ,
61 ACQ=>ACQ_test ,
62 PROG =>PROG_test ,
63 mem_din=> mem_din_test ,
64 clk_s=> clk_s_test ,
65 c lk_f=>clk_f_test ,

115

VHDL code

66 SOC=>SOC_test ,
67 conv_prog_n=>conv_prog_n_test ,
68 LDAC_1=>LDAC_1_test ,
69 LDAC_2=>LDAC_2_test ,
70 RST_SEL1=>RST_SEL1_test ,
71 RST_SEL2=>RST_SEL2_test ,
72 DIN_1=>DIN_1_test ,
73 DIN_2=>DIN_2_test ,
74 CLK_16_1=> CLK_16_1_test ,
75 CLK_8=>CLK_8_test ,
76 CLK_16_2=>CLK_16_2_test ,
77 DIN_REF=>DIN_REF_test ,
78 sync_vcm=>sync_vcm_test ,
79 sync_1=>sync_1_test ,
80 sync_2=>sync_2_test ,
81 sync_refp=> sync_refp_test ,
82 sync_refn=>sync_refn_test ,
83 rst_out1=> rst_out1_test ,
84 rst_out2=>rst_out2_test) ;
85

86

87 c lk_te s t <= not (c lk_te s t) a f t e r 1 ns ;
88 s t i m o l i : p roc e s s
89

90 begin
91 ACQ_test<= ’0 ’;
92 RST_R_test<= ’1 ’;
93 DATA_test<= ’0 ’;
94 REF_test <= ’0 ’ , ’ 1 ’ a f t e r 2 ns ;
95 PROG_test<= ’0 ’ , ’ 1 ’ a f t e r 2 ns ;
96 wait f o r 150 ns ;
97 DATA_test<= ’1 ’;
98 wait f o r 50 ns ;
99 REF_test <= ’0 ’;

100 wait f o r 30 ns ;
101 PROG_test<= ’0 ’;
102 wait f o r 150 ns ;
103 ACQ_test<= ’1 ’;
104

105 wait ;
106 end proce s s ;
107 end dut ;

116

Appendix B

MatLab code

numerical_elaboration
1 %%
2 %read . matlab f i l e
3

4 T=readtab l e (’ cmp_out . matlab ’ , ’ F i l e type ’ , ’ t ex t ’) ;
5 time=T. (3) ;
6 vo l tage=T. (4) ;
7

8 time_input=T. (1) ;
9 voltage_input=T. (2) ;

10

11 %%
12 %output a c q u i s i t i o n
13

14 Nbit =12;
15 FSR=1.8; %Ful l s c a l e range vo l tage
16 o f f s e t = −0.0007789; %computed with curve f i t t i n g t o o l
17

18 y=1;
19 k=1;
20 z=0;
21 j =0;
22

23 %to be programmed
24 T f i r s t =2.5254e −4; %time i n s t a n t o f the f i r s t output b i t
25 Tck=5e −6; %c lock per iod
26 Tlat =37.5e −6; %time i n t e r v a l between the end o f an output word and

the beg inning o f the next one
27 Nsamples =10108; %Number o f output word conta ined in the output s i g n a l
28 N=Nbit∗Nsamples ; %Number o f po in t s to be saved from the time vec to r
29 time_saved=ze ro s (N, 1) ; %Vector conta in ing the saved index o f the time

vec to r .

117

MatLab code

30

31

32 v l sb=FSR/(2^N) ;
33

34 %Index sav ing
35 f o r i =1:N
36

37 i f k==Nbit+1
38 j=j +1;
39 k=1;
40 z=z −1;
41 end
42

43 whi le time_saved (i)==0
44 i f time (y)<T f i r s t+z∗Tck+j ∗ Tlat
45 y=y+1;
46 e l s e
47

48 time_saved (i)=y ;
49 end
50 end
51 k=k+1;
52 z=z+1;
53 end
54

55

56 %Comparator which generate vec to r o f l o g i c va lue s
57 f o r i =1: l ength (time_saved)
58

59 i f vo l t age (time_saved (i)) <0.9
60 b i t (i) =0; %vecto r conta in ing the s e r i a l b i t s o f the ouput
61 e l s e
62 b i t (i) =1;
63 end
64

65 end
66

67

68 M=reshape (bit , Nbit , Nsamples) ; %Matrix f o r a b e t t e r v i s u a l i z a t i o n o f
the output words

69

70

71 %binary−decimal conver s i on
72 f o r i =1:Nsamples
73 words (i) =0;
74 f o r j =1: Nbit
75 num(i)=M(Nbit+1−j , i) ∗2^(j −1) ;
76 words (i)=words (i)+num(i) ; %Vector conta in ing the 12− b i t

output words

118

MatLab code

77 end
78 end
79

80

81 %mapping d i g i t a l word over the vo l tage range [0 , 1 . 8]V
82 range = words∗FSR/(2^ Nbit −1) ;
83

84 %%
85 %input a c q u i s i t i o n
86

87 y2=1;
88

89 %da programmare
90 Tstart =0.00024051; %time i n s t a n t o f the f i r s t f a l l i n g edge o f c l k s
91 Tck2=9.25e −05; %c l k s per iod
92 time_saved2=ze ro s (Nsamples , 1) ; %Vector conta in ing the saved index o f

the time vec to r .
93

94 %Index sav ing
95 f o r i =1:Nsamples
96 whi le time_saved2 (i)==0
97 i f time_input (y2)<Tstart+(i −1)∗Tck2
98 y2=y2+1;
99 e l s e

100 time_saved2 (i)=y2 ;
101 end
102 end
103 end
104

105

106 f o r i =1: l ength (time_saved2)
107 input (i)=voltage_input (time_saved2 (i)) ; %vecto r conta in ing the

va lue s o f the input s i g n a l which has been converted by the ADC
108 end
109

110 %%
111 %Metr ics computing
112

113 %DNL
114 f o r i =1:Nsamples−1
115 DNL(i) =(((range (i +1)−range (i))−v l sb) / v l sb) ;
116 end
117 DNL_max=max(DNL) ;
118

119 %INL
120 f o r i =1:Nsamples
121 INL(i)=(input (i)−range (i)) / v l sb ;
122 end
123 INL_max=max(INL) ;

119

MatLab code

124

125 %Quantizat ion e r r o r
126 f o r i =1:Nsamples
127 Eq(i)=range (i)−input (i) ;
128 end
129

130 Eq_norm=Eq/ v l sb ;
131

132 %ENOB
133 Vqrms=rms (Eq) ;
134 ENOB=log2 (FSR/Vqrms) ;
135

136

137 i d e a l e=l i n s p a c e (0 ,4095 , Nsamples) ;
138 i d e a l e 2=l i n s p a c e (0 ,FSR, Nsamples) ;
139 %%
140 %%
141 %p l o t t i n g
142

143 f i g u r e (1)
144 p lo t (input , words , ’ . ’) ;
145 s e t (gca , ’ y t i c k ’ , 0 : 273 : 4095)
146 ylim ([0 4095])
147 x l a b e l (’ input vo l tage [V] ’) ;
148 y l a b e l (’ d i g i t a l output word ’) ;
149 hold on ;
150 p lo t (idea l e2 , i d ea l e , ’ r ’ , ’ LineWidth ’ , 1) ;
151 l egend (’ a c tua l trans−char ’ , ’ i d e a l trans−char ’) ;
152 g r id on ;
153

154

155 f i g u r e (2)
156 p lo t (input , words , ’b ’ , ’ LineWidth ’ , 1) ;
157 x l a b e l (’ input vo l tage [V] ’) ;
158 y l a b e l (’ d i g i t a l output word ’) ;
159 hold on ;
160 p lo t (idea l e2 , i d ea l e , ’ r ’ , ’ LineWidth ’ , 1) ;
161 l egend (’ a c tua l trans−char ’ , ’ i d e a l trans−char ’) ;
162 g r id on ;
163

164

165 f i g u r e (3)
166 p lo t (Eq_norm) ;
167 x l a b e l (’ N o f sample ’) ;
168 y l a b e l (’ Quant izat ion e r r o r [LSB] ’) ;
169 xlim ([0 10108])
170 l i n e (xlim , [0 . 5 , 0 . 5] , ’ Color ’ , ’ r ’ , ’ LineWidth ’ , 1 , ’ L ineSty l e ’ , ’−− ’

) ;

120

MatLab code

171 l i n e (xlim , [−0.5 , −0.5] , ’ Color ’ , ’ r ’ , ’ LineWidth ’ , 1 , ’ L ineSty l e ’ , ’
−− ’) ;

172 l egend (’ Quant izat ion Err . ’) ;
173 g r id on ;
174

175

176 f i g u r e (4)
177 histogram (Eq_norm,9 5 , ’ BinLimits ’ , [− 9 . 1 , 9 . 1]) ;
178 l i n e ([0 . 5 , 0 . 5] , ylim , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 , ’ L ineSty l e ’ , ’−− ’)

;
179 l i n e ([−0 .5 , −0.5] , ylim , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 , ’ L ineSty l e ’ , ’

−− ’) ;
180 l egend (’ D i s t r i b u t i o n o f QE’) ;
181 g r id on ;
182

183

184 f i g u r e (5)
185 p lo t (DNL, ’ Color ’ , ’#D95319 ’ , ’ LineWidth ’ , 1) ;
186 x l a b e l (’ N o f sample ’) ;
187 y l a b e l (’ D i f f e r e n t i a l Non−L i n e a r i t y [LSB] ’) ;
188 xlim ([0 718])
189 l egend (’DNL’) ;
190 g r id on ;
191

192

193 f i g u r e (6)
194 p lo t (INL , ’ Color ’ , ’#77AC30 ’ , ’ LineWidth ’ , 1) ;
195 x l a b e l (’ N o f sample ’) ;
196 y l a b e l (’ I n t e g r a l Non−L i n e a r i t y [LSB] ’) ;
197 xlim ([0 718])
198 l egend (’ INL ’) ;
199 g r id on ;

121

Bibliography

[1] D. Del Corso, V. Camarchia, R. Quaglia, and P. Bardella. Telecommunication
Electronics. Ed. by Artech House. February 2020 (cit. on pp. 1, 2, 14, 16, 18).

[2] D. Johns and K. Martin. Analog Integrated Circuit Design. John Wiley and
Sons, Inc., 1997 (cit. on pp. 2, 16).

[3] G. Manganaro. Advanced Data Converters. Cambridge, 2012 (cit. on pp. 2, 3,
12, 15, 16).

[4] SAR ADCs: Architecture, Applications, and Support Circuitry. https://
embedded-tutorial.blogspot.com/2020/06/. Accessed: 2022-05-31 (cit.
on p. 3).

[5] I. B. Sharuddin and L. Lee. «An ultra-low power and area efficient 10 bit digital
to analog converter architecture». In: 2014 IEEE International Conference
on Semiconductor Electronics (ICSE2014) (2014) (cit. on p. 4).

[6] J. Proakis and D. Manolakis. Digital Signal Processing : Principles, Algorithms,
and Applications. Macmillan Publishing Company, 1992 (cit. on p. 5).

[7] D. L. Donoho. «Compressed sensing». In: IEEE Transactions on Information
Theory 52.4 (2006), pp. 1289–1306 (cit. on p. 5).

[8] M. Mangia, F. Pareschi, V. Cambareri, R. Rovatti, and G. Setti. «Rakeness-
based design of low-complexity compressed sensing». In: IEEE Transactions
on Circuits and Systems I: Reg. Papers 64.5 (2017), pp. 1201–1213 (cit. on
p. 5).

[9] F. Pareschi, P. Albertini, G. Frattini, M. Mangia, R. Rovatti, and G. Setti.
«Hardware-algorithms co-design and implementation of an analog-toinformation
converter for biosignals based on compressed sensing». In: IEEE Transactions
on Biomedical Circuits and Systems I: Reg. Papers 10.1 (2016), pp. 149–162
(cit. on p. 5).

[10] C. Paolino, F. Pareschi, M. Mangia, R. Rovatti, and G. Setti. «A Practical
Architecture for SAR-based ADCs with Embedded Compressed Sensing
Capabilities». In: Proc. 15th Conference Ph.D. Reserch in Microelectronics
and Electronics (2019), pp. 133–136 (cit. on pp. 5, 6).

122

https://embedded-tutorial.blogspot.com/2020/06/
https://embedded-tutorial.blogspot.com/2020/06/

BIBLIOGRAPHY

[11] P. P. Fasang. «Simulation considerations for analog-digital ASICs». In: Third
Annual IEEE Proceedings on ASIC Seminar and Exhibit (1990) (cit. on p. 8).

[12] Virtuoso® AMS Environment User Guide. Cadence, 2004 (cit. on p. 9).
[13] Introduction to AMS Designer Simulation - Rapid Adoption Kit (RAK).

Cadence, 2020 (cit. on pp. 9–11).
[14] NXP. How to Increase the Analog-to-Digital Converter Accuracy in an Appli-

cation. 2016 (cit. on p. 12).
[15] F.M. Remley and J.F.X. Browne an S.N. Baron. Reference data for engineers

(Ninth edition). Ed. by Newnes. 2002 (cit. on p. 14).
[16] Measuring Offset and Gain Errors in ADC. https://www.mathworks.com/

help/msblks/ug/offset-error-and-gain-error.html. Accessed: 2022-
06-11 (cit. on p. 15).

[17] Terms A/D converter characterization. http://www.atx7006.com/article
s/terms/adc. Accessed: 2022-06-12 (cit. on p. 17).

[18] Signal Chain Basics 87: ADC DNL in Precision Signal Chain Error Analysis.
https://www.planetanalog.com/signal-chain-basics-87-adc-dnl-in-
precision-signal-chain-error-analysis/. Accessed: 2022-06-12 (cit. on
p. 18).

[19] L. A. Singer and T. L. Brooks. «A 14-bit 10-MHz calibration-free CMOS
pipelined A/D converter». In: VLSI Circuits Conference (1996), pp. 94–95
(cit. on p. 18).

[20] A. Hastings. The Art of Analog Layout. Ed. by Prentice Hall. 2005 (cit. on
p. 18).

[21] Analog Devices - H.J. Zhang. Basic Concepts of Linear Regulator and Switch-
ing Mode Power Supplies. 1993 (cit. on p. 37).

[22] SMT / SMD Capacitor. https://www.electronics- notes.com/arti
cles/electronic_components/capacitors/smd- smt- surface- mount-
capacitor.php. Accessed: 2022-05-31 (cit. on p. 38).

[23] 3362 Trimpot Trimming Potentiometer datasheet. Bourns (cit. on p. 38).
[24] DAC8555 datasheet. Texas Instruments (cit. on pp. 52–54).
[25] DAC081S101 datasheet. Texas Instruments (cit. on pp. 61, 62).

123

https://www.mathworks.com/help/msblks/ug/offset-error-and-gain-error.html
https://www.mathworks.com/help/msblks/ug/offset-error-and-gain-error.html
http://www.atx7006.com/articles/terms/adc
http://www.atx7006.com/articles/terms/adc
https://www.planetanalog.com/signal-chain-basics-87-adc-dnl-in-precision-signal-chain-error-analysis/
https://www.planetanalog.com/signal-chain-basics-87-adc-dnl-in-precision-signal-chain-error-analysis/
https://www.electronics-notes.com/articles/electronic_components/capacitors/smd-smt-surface-mount-capacitor.php
https://www.electronics-notes.com/articles/electronic_components/capacitors/smd-smt-surface-mount-capacitor.php
https://www.electronics-notes.com/articles/electronic_components/capacitors/smd-smt-surface-mount-capacitor.php

	List of Figures
	SAR-based ADC using Compressed Sensing
	The successive approximation algorithm
	Capacitive weighted array
	C-2C ladder array
	Compressed Sensing
	Architecture for a SAR-based ADC with compressed sensing capabilities

	ADC characterization
	Analog/Mixed signal simulations
	ADC performance metrics
	Quantization error
	Offset and Gain errors
	Differential non-linearity error
	Integral non-linearity error

	Simulations
	ADC internal structure
	Testbench and simulations
	Numerical elaboration and results

	PCB design
	Choice of components
	DACs for data
	DACs for references
	Regulators
	Other Components

	Schematic
	Data part
	Supply part
	Top hierarchy level

	Layout

	FPGA Programming
	Data DACs control
	Datapath
	FSM
	Modelsim Simulations

	Reference DACs control
	Datapath
	FSM
	Modelsim Simulations

	Chip control
	Datapath
	FSM
	Modelsim Simulations

	System Simulation
	Test board measurements

	Conclusions
	VHDL code
	Data DACs control code
	Reference DACs control code
	Chip control code
	System code

	MatLab code
	Bibliography

