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Chapter 1

Introduction

Autonomous Mobile Robots (AMRs) play an increasingly fundamental role in
both industrial and household fields with an expanding range of applications.
In particular, the reference framework of this work refers to operations such as
surveillance, transport, inspection, patrol applications, or guidance that take place
generally in an heterogeneous environment where both indoor and outdoor areas
are present.

Robot localization is a valuable aspect to accomplish any of the tasks recently
mentioned. First and foremost, the robot must be aware of its own pose in the
space in order to perform any navigation manoeuvres. The thesis addresses the
problem of transitioning between two different areas, e.g. indoor and outdoor,
which require different localization methodologies.

In the indoor case, the area can be considered limited, hence the position of the
robot within this space can be tracked by means of various technologies (e.g, UWB
sensors, WLAN, Bluetooth) that cover the overall region. This requires setting
up the suitable hardware components that could be very costly depending on the
application scenario.

On the other hand, satellite-based navigation systems (e.g, GLONASS, Galileo,
GPS) have been widely used in outdoor localization, since the information about
their position is accessible in any vast region without the need of a map or a
potentially expensive infrastructure.
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Introduction

The transition between the two chosen approaches takes place in a sort of grey
area where the signals derived from both technologies can coexist, even though
their quality may be not good enough to evaluate the pose individually.

1.1 Contents organization

The thesis deals with the problem of localization handover affecting AMRs when
the application scenario includes both indoor and outdoor areas. In particular,
it focuses on the sensor fusion performed in the latter one and in the grey area
mentioned before. The work is divided into chapters as exposed in the following.

In Chapter 2, a description of the issues related to the localization handover is
provided. Different methodologies for indoor localization are outlined together with
a brief explanation on how GPS works. Moreover, this chapter contains the state
of the art for sensor fusion and the derived solution.

Chapter 3 illustrates a possible simple application scenario for a service robot.

Chapter 4 provides a detailed research on the market-available robots and their
sensing equipment, that could serve to the purpose.

In Chapter 5, the GPS degradation in dense urban environments (e.g., urban
canyons) and inside buildings is tackled.

Chapter 6 describes how the simulations on ROS 2 are set up, with particular
emphasis on the robot_localization package used to accomplish sensor fusion.

Finally, Chapter 7 provides a description of the designed nodes and topics to
perform simulations in the created environment.
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Chapter 2

Problem Description

Within the past decades, robot localization has become a crucial point for carrying
out autonomous driving. In the most general case, AMRs have to navigate in an
heterogeneous environment where both indoor and outdoor regions are present.
The problem of localization in such areas can be tackled differently according to
their own intrinsic features.

In the case of an indoor scenario, the environment is limited and can be potentially
mapped before performing navigation. Moreover, an highly accurate estimation of
the robot’s pose is demanded since the space is more densely populated by obstacles
to be avoided.

In contrast, outdoor areas can be considered unlimited and changeable, thus
impossible to be previously mapped. In this case, less precision can be accepted
due to the vastness of the area.

2.1 Localization technologies

Different approaches are chosen taking into account several factors, among which
the application scenario (e.g, indoor/outdoor) is the most influent. In the following
sections, the investigated localization technologies for indoor/outdoor environments
are discussed.
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Problem Description

2.1.1 Indoor

As indoor localization methodologies, three different approaches will be presented:
Bluetooth network, WLAN, and UWB anchors.

Bluetooth

Bluetooth is a wireless technology standard used for exchanging data in a certain
distance. According to [1], the data can be swapped in a range up to about one
kilometer, though the communication between two Bluetooth devices can drop down
to less than a meter due to several factors such as radio spectrum, physical layer,
and receiver sensitivity. In the majority of applications, the range for commonly
used devices is in the tens of meters.

A Bluetooth-based positioning system is a system requiring at least three receiver
stations and a mobile device working also as a transmitter. The localization is
performed by trilaterion [2], where the unknown position of the mobile device is
computed measuring the distances between the known-positioned stations and the
moving device. Such distances are calculated by multiplying the transmitter-to-
receiver propagation time of the electromagnetic wave with the velocity of light,
which requires the knowledge of the starting time at the transmitter and the time
of arrival (TOA) at the receiver and, furthermore, the synchronization of their
clocks. All stations are connected to a host PC which collects the measurements
and computes the position of the mobile device.

The problem of synchronizing the receivers’ clocks can be overcome by introducing
a fourth receiver at a known position that is off the plane of the others and functions
also as a transmitter. In this case, the localization is started by the additional
station, called as master station, sending a signal to the mobile and the other
receiver stations. Then, the latter ones start counting on their clocks the time
passing from receiving such signal to receiving the echo response coming from
the mobile. By doing so, the synchronization of the clocks in the receivers is
unnecessary and it is the only remaining source of error. The working principle
scheme for a differential time difference of arrival (DTDOA) system is pictured in
Fig. 2.2.
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Figure 2.1: Trilateration working principle

Figure 2.2: Principle of the DTDOA approach. Source [2]

Although BLE localization approach has the advantage to provide a low-cost and
low-energy consumption solution, an accurate pose estimation is still challenging.
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As demonstrated by [3], the achieved accuracy is between 0.07 meters and 7.81
meters, that is quite unsatisfactory for performing indoor positioning. Moreover, in
the case of non-line-of-sight (NLOS) paths, the TOA measurements is less reliable
due to the multipath propagation of radio signals [2].

Wireless LAN

A WLAN is a wireless computer network that employs high-frequency radio waves
to permit communication between connected nodes. The Wireless LANs derived
from the standard IEEE 802.11 are the most prevalent wireless computer networks
around the world and they are known under the name of Wi-Fi [4].

A WLAN-based positioning system is composed by wireless access points used to
track the location of the moving device. The localization can be accomplished
by means of different approaches, between which the most frequent are the one
based on the received signal strength indication (RSSI) and the one based on the
so-called fingerprints [5].

Figure 2.3: Wi-Fi positioning system. Source [6]
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The RSSI localization technique is performed by exploiting the intrinsic information
about the distance from the signal strength by means of a propagation model.
The trilateration method is used to find the unknown position of the robot by
intersecting the spheres with radius equal to the measured distances relative to the
known position of the access points. However, this method cannot be considered
reliable enough for our applications since the achieved accuracy is in few meters.
Such drawback derives from the fluctuation of the RSSI measurements which are
affected by multi-path fading and changes in the environment [5].

The fingerprinting localization method is accomplished in two phases: an offline
phase, during which the signal strength and the known coordinates of the robot are
recorded, and an online tracking phase, where the RSSI of the unknown-positioned
robot is compared to the information stored in the fingerprint during the previous
phase. The closest match is assumed as estimation of the current robot’s pose.
This technique provides a better estimation than the one mentioned above since
the average accuracy is about half a meter [5].

Nevertheless, as stated in [7], the Wi-Fi positioning system is a more inaccurate
localization technology than the BLE one. The estimate precision drops down of
about 27 percent compared to the Bluetooth Low Energy solution in equivalent
conditions. Furthermore, the other benefits of the BLE with respect to Wi-Fi
are lower power consumption, higher scan rates, and unobtrusive less expensive
transceivers.

UWB

UWB is a short-range, high-speed radio technology for wireless communication that
has proved to be robust to NLOS and multipath effects. A UWB signal has either
an absolute bandwidth of at least 500 MHz or a fractional (relative) bandwidth of
larger than 20% [8]. Narrow pulses in the order of nanoseconds are transmitted,
resulting in a very low power spectral density since the band is broad-ranging [9].

Similarly to other existing wireless localization technologies, UWB positioning is
carried out by measuring either the directions or the distances. In the former case,
the angle of arrival (AOA) between two nodes is computed, while, in the latter
one, the robot’s position is derived from the received signal strength (RSS) or the
time of arrival/time difference of arrival (TOA/TDOA) [10]. Figure 2.4 provides a
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visual understanding of the possible different approaches.

The intrinsic features of UWB-based localization systems lead to an anti-multipath
solution that can achieve an accuracy of about few centimeters [11]. An additional
benefit of such systems is that recent progress in commercial modules has improved
the working range up to 60 meters [12] in line-of-sight (LOS), resulting in a wider
coverage area.
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Figure 2.4: Different approaches for performing UWB positioning. Source [13]

2.1.2 Outdoor

The widely used localization technology for the outdoor is the Global Positioning
System (GPS), the functioning of which is depicted in the following.
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Global Positioning System

GPS is one of the global navigation satellite systems (GNSS). It is "owned by the
United States government and operated by the United States Space Force", as
mentioned in [14]. It is a radio-navigation system capable of providing position and
time information to any GPS receiver on Earth in the line-of-sight of at least four
GPS satellites. The required minimum number of satellites results from the four
unknown quantities in the mathematical formulation: three position coordinates
and the receiver clock error [14].

Figure 2.5: GPS constellation of 24 satellites

As outlined in [15], a signal containing the time of transmission is broadcasted
repeatedly by each GPS satellite. The time of signal reception is stored by the GPS
receiver and, then, used for computing the time passed from the signal transmission.
Such measurement of time is converted in a so-called pseudorange by multiplication
with the speed of light.

Once the pseudoranges are computed, the position of the GPS receiver can be
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easily obtained through trilateration since the satellites’ coordinates are known.
Indeed, the signal broadcasted is encoded together with the so-called Navigation
Message, that contains the broadcast ephemeris from which satellites’ coordinates
can be derived. The Ephemeris Algorithm is the algorithm used for transforming
the orbit parameters into coordinates in a geocentric system, known as WGS-84,
that is composed as follows (see Fig. 2.6):

• the origin is at the Earth centre of mass;

• Z axis points towards the North Pole;

• X axis is such that the Prime Meridian lays on the XZ plane;

• Y axis is chosen to form a right-handed orthogonal coordinate system together
with the X and Z axes.

Figure 2.6: WGS-84 Reference Frame. Source [16]
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2.2 State of the art

Nowadays, localization can be accomplished by fusing the data coming from different
sensors, exploiting the properties of each sensor since they all have drawbacks.
For instance, wheel encoders suffers from the so-called wheel slippage, leading to
an error that increases over time. On the other hand, GPS provides a slower
data-rate compared to dead-reckoning technologies and it is prone to degradation
due to urban canyons or blocking satellites’ signals. Nonetheless, an accurate
pose estimation of the robot can be provided by performing sensor fusion that
compensates for the errors coming from different sensors.

The problem of localization in mixed indoor-outdoor scenarios has been addressed
by several works. [17] combines together WPAN-based, WLAN-based, and GNSS-
based technologies according to the area where the robot is. However, such solution
does not provide the needed accuracy and it also requires an infrastructure not
always present.

The work of Agrawal and Konolige [18] analyses the results of a fusion between visual
odometry and GPS by means of an Extended Kalman Filter (EKF). Whenever visual
odometry fails, the EKF is provided with inertial measurements. Unfortunately,
the EKF is not optimal in the case of nonlinear transformations.

Moreover, EKF makes independence assumptions that can lead to erroneous pose
estimations since measurements referring to the same variables of the robot state
are strongly correlated. This is the case of [19], where the authors merge a laser-
based SLAM method with GPS, odometry, and IMU measurements by means of a
Kalman filter.

In [9], an accurate positioning is performed combining UWB and GPS measurements
by means of a probabilistic method called Monte Carlo Localization algorithm.
Also [20] proposes a MCL approach in addition to the widely used Kalman filter.
However, it also assumes that the robot is moving straightforward between two
consecutive GPS measurements in order to provide the orientation without the
use of a compass (e.g, in environments with variable magnetic fields). Such strong
assumption can be discarded as Urcola et al. described in [21], where the orientation
is computed only when several GPS measurements prove that the robot is moving
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in a straight line.

Finally, a solution for overcoming the issue of GPS outages is outlined in [22]. This
work employs a multi-layer perceptron neural network (MLP-NN) that provides
predictions of the robot pose whenever GPS becomes unavailable. The neural
network is trained when GPS signals are provided.

As the most common approaches to sensor fusion, the following sections illustrates
the working principle of the Monte Carlo Localization algorithm and the Extended
Kalman Filter.

2.2.1 Monte Carlo Localization algorithm

MCL algorithm offers a probabilistic description of the estimation of the robot
pose by using particles to represent the possible states. It is based on a recursive
Bayesian filter which working principle is to evaluate a probabilistic density function
(pdf) recursively over time taking into account the incoming measurements from
the sensors.

Figure 2.7: Monte Carlo Localization for mobile robots in ROS. Source [23]

Typically, there are no information about the initial robot state, thus a uniform
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distribution over the state space is considered. Then, the posterior distribution is
derived from the sensors’ measurements and a weight coming from the observation
likelihood function is assigned to each particle. Whenever a new measurement
occurs, the weights are updated giving higher weights to the particles that better
match the sensor readings [24].

2.2.2 Extended Kalman Filter

A discrete-time, nonlinear, time-variant dynamic system is described by the set of
equations below

x(k + 1) = f(k, x(k), u(k)) + v1(k) (2.1)
z(k) = h(k, x(k)) + v2(k) (2.2)

where v1(k) and v2(k) represent the process and observation noises respectively.
These noises are assumed to be white noises with zero mean value, variance V 1(k)
and V 2(k) respectively and covariance V 12(k).

The EKF is used to estimate the state of a nonlinear system. Such an estimate is
performed in two steps:

1. the prediction step, during which the predicted state estimate x̂(k + 1|k) is
computed;

2. the correction step, during which the state estimate is updated by exploiting
the information coming from the last measurement z(k).

In the following, the equations of an EKF are provided:

x̂(k + 1|k) = f(k, x̂(k|k − 1), u(k)) + K̂(k)e(k) (2.3)
ẑ(k|k − 1) = h(k, x̂(k|k − 1)) (2.4)

x̂(k|k) = x̂(k|k − 1) + K̂0(k)e(k) (2.5)
e(k) = z(k) − z(k|k − 1) (2.6)
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K̂(k) = (Â(k|k − 1)P (k)Ĉ(k|k − 1)T (2.7)
+V 12(k))(Ĉ(k|k − 1)P (k)Ĉ(k|k − 1)T + V 2(k))−1

P (k + 1) = Â(k|k − 1)P (k)Â(k|k − 1)T + V 1(k) (2.8)
−K̂(k)(Ĉ(k|k − 1)P (k)Ĉ(k|k − 1)T + V 2(k))K̂(k)T

K̂0(k) = P (k)Ĉ(k|k − 1)T (Ĉ(k|k − 1)P (k)Ĉ(k|k − 1)T (2.9)
+V 2(k))−1

where P (k) is the prediction error variance matrix computed by means of the
Difference Riccati Equation (DRE), while K̂(k) and K̂0(k) are the predictor gain
matrix and the filter gain matrix respectively. The matrices Â(k|k − 1) and
Ĉ(k|k − 1) derive from

Â(k|k − 1) = ∂f(k, x, u)
∂x

-----
u=u(k), x=x(k|k−1)

(2.10)

Ĉ(k|k − 1) = ∂h(k, x)
∂x

-----
x=x(k|k−1)

(2.11)

2.3 Proposed solution

Localization will be tackled by means of UWB anchors for indoor areas, while
GPS will be used to track the robot outdoor. Additionally, information coming
from the wheel encoders and Inertial Measurement Unit (IMU) are exploited in an
EKF to enhance the pose estimation, especially in those regions where the robot is
transitioning from indoor to outdoor and vice versa, or, even worse, when both
UWB and GPS signals are not available.

The Extended Kalman Filter method is chosen in order to avoid additional com-
plexity of the system. The accuracy of the solution will be evaluated in further
works. If required, a different solution will be investigated.

This work focuses on the robot localization in outdoor and transitioning areas. Sim-
ilarly to [25], the proposed solution is composed of two steps: first, a Kalman filter
is used for merging the information derived from the dead-reckoning technologies
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(i.e., wheel odometry and IMU); then, a weighting sum between the GPS data and
the output of the Kalman filter is performed. The parameter that accounts for the
reliability of the GPS signal can be defined as σ. The higher is the confidence of
the GPS signal, the greater σ will be (anyway, σ ≤ 1 always).

The GPS information can be considered more or less precise according to few
parameters such as the attenuation of the signal or the variance of the latitude/lon-
gitude data. The varying parameter σ can be modeled as a continuous function of
these characteristics of the received signal or, more easily, defining a lookup table
where σ assumes defined values depending on the scenario the robot may be. As
first approach, the varying parameter depends on the variance of GPS readings.
When the robot is detected to be indoor, the GPS information will be considered
no more reliable and, thus, discarded.

Figure 2.8: Sensor fusion scheme for outdoor and transitioning areas
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Chapter 3

Prototype Scenario

A possible scenario is an application of service robotics in a warehouse, which
includes both an indoor area (e.g., an industrial hall) and an outdoor area, such as
a courtyard where the goods are stored temporarily before being delivered.

Figure 3.1 depicts an example of such scenario. Four different areas can be
determined in the total environment:

• A, a part of the outdoor region where the GPS signal is assumed to have good
quality and no data are sensed from the UWB tag on the robot;

• B, a part of the outdoor region where both the localization technologies (i.e.,
GPS and UWB) provide information on the robot’s pose even though possibly
degraded;

• C, a portion of the B area where the UWB signal is blocked due to the
presence of metal in the wall;

• D, the indoor area where only the UWB anchors provide reliable information
about robot’s position.

The sensed data are merged with the information derived from the dead-reckoning
localization technologies, such as the IMU and the wheel encoders.

17
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Figure 3.1: Example of application scenario
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Chapter 4

Scouting on Hardware

4.1 Required sensors

In order to accomplish the proposed solution, the robot has to be provided with
the following hardware:

• an Inertial Measurement Unit;

• wheel encoders;

• an UWB tag (together with the UWB anchors that require to be installed in
the environment);

• a GPS receiver.

4.2 Scouting on robot

4.2.1 Dogs

Xiaomi cyberdog

Dimensions: 771x355x400 mm

Operating time: about 1 h

Charging time: 160 min
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Price: 1500 €

ROS compatible

Figure 4.1: Xiaomi cyberdog

It is equipped with 11 sensors, including an Inertial Measurement Unit, GPS
modules, an Ultrasonic Sensor, and a geomagnetic sensor. At the front there is an
Intel Realsense D450 depth camera together with an AI Interactive camera and a
dual-view super camera. It’s rated to carry up to 3 kg in payload and its maximum
walking speed is about 3 m/s. There are 3 USB Type-C ports (for fast charging,
downloading, peripheral expansion) and an HDMI port useful for connecting other
sensors. It also supports XiaoAi voice control, but only for Chinese.

Unitree Go1 Pro

Dimensions: 645x280x400 mm

Operating time: 1-2 h

Charging time: about 90 min
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Price: 3050 €

ROS compatible

Figure 4.2: Unitree Go1

The robot walks alongside its human master. It is equipped with 5 sets Fish-eye
Stereo Depth Cameras and 3 sets of Ultrasonic sensors, mounted on the front and
on both sides. The robot is provided with an Inertial Measurement Unit. There
are multiple external interfaces, such as 3 HDMI ports and 3 USB ports reserved
for development, a Gigabit Ethernet port, and an Integration expansion interface.
The maximum payload is 3 kg.

Alphadog C100

Dimensions: 480x300x400 mm

Operating time: 2.5 h (average)

Charging time: -

Price: 4940 €

ROS compatible
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Figure 4.3: Alphadog C100

Unlike an ordinary robot dog with remote control, it moves freely in the environment
with the help of 5G mobile internet. It is not equipped with a camera or onboard
sensors. However, they can be added thanks to the external ports on the side
(RJ45, USB, WIFI). The payload capacity is up to 5 kg. It moves with a speed up
to 2.5 m/s and it is capable of climbing slopes up to 20°.

4.2.2 Rovers

Turtlebot3

Dimensions: 281x306x141 mm

Operating time: 2 h

Charging time: 2.5 h

Price: 1500 €

ROS compatible
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Figure 4.4: Turtlebot3 WafflePi

It is equipped with a Raspberry Pi Camera for perception, a 360° LiDAR for SLAM
and navigation, and a 9-axis IMU (3- axis accelerometer, 3-axis gyroscope, 3-axis
magnetometer). It is modular, compact and customizable. Different peripherals
can be connected to the robot platform by means of several ports and pins, such
as a CAN, three UART, 18 pins GPIO, and a 32 pins Arduino. It also provides an
USB port for PC connection. It’s rated to carry up to 30 kg and the maximum
translational velocity is 0.26 m/s. The sealed Dynamixel actuators in the XW
range are waterproof. They are IP68 certified, which guarantees also full dust
protection. The connectors and cables are also waterproof to ensure the actuator is
not damaged in any way. However, the standard platform is provided with servos
of XM430 series.

Leo Rover

Dimensions: 410x460x270 mm

Operating time: up to 4 h

Charging time: about 2 h

Price: 2760 € (4800 € assembled)

ROS compatible
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Figure 4.5: Leo Rover

The robot is equipped with a 2 MP CMOS OV2710 camera. It offers a wide range
of waterproof external connectors (SPI, USB, 3 x timer output/counter input/IO,
2 x 7V/2A, 1 x 24V/3A, 1 x 5V/1A), allowing you to add extra modules. It can
be customized with accessories such as grippers, a camera, sensors, an IMU, and
so on. It is waterproof and guarantees protection from the dust. The protection
rating is in fact IP66 (not certified). It can handle loads of up to 5 kg.

RR100 EDU

Dimensions: 860x659x801 mm

Operating time: about 5 h

Charging time: 80 min

Price: 29000 €

ROS compatible
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Figure 4.6: RR100 EDU

The standard version of the RR100 robot is equipped with an Intel Realsense
D435 depth camera, an IMU, a GPS, a RSLIDAR- 16 LiDAR, and a WIFI router.
Mounting rails on top can be used by users to add other sensors. It comes with
external USB and Ethernet, in addition to USB, Ethernet, 5V, 12V and 24V
connections inside the robot. The RR100 is designed to be outdoors in all weathers
(IP54). It can climb 20° slopes and overcome obstacles up to 13 cm high. It has a
maximum payload of 50 kg (100 kg when the robot is equipped with 5 motors).

Agilex Scout Mini

Dimensions: 627x550x252 mm

Operating time: -

Charging time: 2 h

Price: about 7000 €

ROS compatible
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Figure 4.7: Agilex Scout Mini

It is an all-terrain high-speed mini UGV with four-wheel differential drive. The
CAN interface on top of the robot platform can be used to install peripherals,
such as GPS, camera, laser range finder and so on. It can carry up to 10 kg of
payload with a maximum speed of 10 km/h. It can overcome obstacles up to 7 cm
high and climb slopes up to 30°. Waterproof plug-in components are adopted for
the electrical interfaces, allowing the use of the rover even under severe operating
conditions.

4.2.3 Recap on robots’ features

Table 4.1 and Table 4.2 compare the features of the mentioned robots within dogs
and rovers respectively.
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Xiaomi
cyberdog

Unitree
Go1 Air

Unitree
Go1 Pro

Unitree
Go1 Edu

Alphadog
C100

ROS

GPS

IMU

LiDAR

Laser
Rangefinder

Camera

Intel
Realsense

D450
depth

camera

Single
wide-
angle
stereo
depth

camera

5 wide-
angle
stereo
depth

cameras

5 wide-
angle
stereo
depth

cameras

Peripherals USB-C,
HDMI

3xUSB,
3xHDMI,
Gigabit

Ethernet,
Integra-

tion
expansion
interface

3xUSB,
3xHDMI,
Gigabit

Ethernet,
Integra-

tion
expansion
interface

3xUSB,
3xHDMI,
Gigabit

Ethernet,
Integra-

tion
expansion
interface

RJ45,
USB,
WiFi

Payload 3 kg 3 kg 3 kg 10 kg 5 kg

Operating
time about 1 h 1-2 h 1-2 h 1-2 h 2.5 h

Charging
time 160 min about 90

min
about 90

min
about 90

min

Protection
rating

Price 1500 e 2400 e 3050 e 7400 e 4940 e

Table 4.1: Comparison between dogs
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Turtlebot3
WafflePi Leo Rover RR100

EDU

Agilex
Scout
Mini

ROS

GPS

IMU

LiDAR

Laser
Rangefinder

Camera Raspberry
Pi camera

2 MP
CMOS
OV2710
camera

Intel
Realsense

D435
depth

camera

Peripherals

CAN,
3xUART,
GPIO 18

pins,
Arduino 32
pins, USB

SPI, USB

USB,
Ethernet,
mounting

rails

CAN

Payload 30 kg 5 kg 50 kg 10 kg

Operating
time 2 h up to 4 h about 5 h

Charging
time 2.5 h about 2 h 80 min 2 h

Protection
rating

IP66 (not
certified) IP54

Price 1500 e 2760 e 29000 e 7000 e

Table 4.2: Comparison between rovers
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Chapter 5

GPS Degradation

GPS signal provides position with a user accuracy of few meters under open sky
[26]. Nevertheless, many factors can worsen the GPS performance in indoor and
urban environments. Common causes are:

• signal blockage due to the presence of tall buildings, foliage, or bridges;

• signal reflection off walls or buildings, causing the well-known multipath effect.

Figure 5.1: Reflected and blocked signals

As stated in [27], the main challenge for urban and indoor environments is the need
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of GPS receivers to operate at low signal to noise power ratios (SNRs). The SNRs
of GPS signals depend on the elevation angle of the satellite and they are deeply
influenced by the presence of objects in the line of sight. In particular, Figures
5.2, 5.3, and 5.4 demonstrate how the SNRs degrade under foliage and even more
inside a hotel.

Figure 5.2: SNR vs. elevation for 11 satellites viewed from the roof of a building.
Source [27]

Figure 5.3: SNR vs. elevation for 11 satellites viewed from under foliage in a
park. Source [27]
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Figure 5.4: SNR vs. elevation for 11 satellites viewed from inside the W Hotel in
San Francisco. Source [27]

Moreover, the received signal in urban and indoor environments may derive from
multiple reflections. The multipath phenomenon introduces large errors since
reflected, scattered and/or diffracted signal components can exceed direct signal
(see Fig. 5.5).

Figure 5.5: Example of indoor GPS signal. Source [28]
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5.1 Degradation modeling

Ma et al. [29] provide a statistic model known as Urban Three-State Fade Model
(UTSFM) describing the fading distribution of GPS signals. According to this
model, a GPS signal can be statistically described by a composite amplitude
probability density function that is compounded by three pdf:

• a Ricean pdf for clear line-of-sight (CLOS) signals;

• a Rayleigh pdf for blocked signals;

• a Loo’s function for shadowed signals.

The overall probability density function is

f(α, v) = C(α)fRicean(v) + S(α)fLoo(v) +B(α)fRayleigh(v) (5.1)

where α is the elevation angle of the satellites, C(α) + S(α) +B(α) = 1, and C(α),
S(α) and B(α) are weight coefficients indicating the relative magnitude of each
component at a certain elevation range. The pdf for each component of the GPS
signal are:

fRicean(v) = 2Kv exp
è
−K(v2 + 1)

é
I0(2Kv) (5.2)

fRayleigh(v) = 2Kv exp
è
−Kv2

é
(5.3)

fLoo(v) = 8.686
ó

2
π

Kv

σ
(5.4)Ú ∞

0

1
z
exp

A
−(20log(z) −m)2

2σ2 −K(v2 + z2)
B
I0(2Kvz)dz

where K is the ratio of the direct power received to the multipath power, v is the
received voltage relative to the clear path voltage, I0 is the 0th order modified Bessel
function. As showed in Loo’s function, shadowed signals consist of attenuated LOS
signals, which fade is logarithmic, and multipath signals, which fade according to
Rayleigh’s function.
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Chapter 6

Simulation Environment

As mentioned in 2.3, an Extended Kalman Filter is used to evaluate the robot pose
in two steps: by predicting the pose using a nonlinear dynamic model and, then,
by correcting such prediction exploiting the sensed information. For this work, the
robot under study is a Turtlebot3 WafflePi, which is already equipped by wheel
encoders and an IMU. A GPS receiver is also considered as mounted on the robot
in order to simulate the proposed solution.

The simulations are conducted in ROS2 Foxy by using the robot_localization
package, developed to perform sensor fusion for localization.

6.1 robot_localization package

The robot_localization package provides a collection of state estimation nodes, i.e.
"nonlinear state estimator for robots moving in 3D space" as explained in [30]. The
package comprises two state estimation nodes, called ekf_localization_node and
ukf_localization_node, and the node navsat_transform_node for integrating GPS
data with other sensed information. The former two nodes implement the Extended
Kalman Filter and the Unscented Kalman Filter respectively. They both share the
following common features:

• continuos estimation, since the pose will be provided by exploiting the
internal motion model in case of a lasting shortage of sensors’ measurements;
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• support for multiple ROS message types, namely nav_msgs/Odometry,
sensor_msgs/Imu, geometry_msgs/PoseWithCovarianceStamped, or geome-
try_msgs/TwistWithCovarianceStamped messages;

• arbitrary number of fused sensors;

• per-sensor input customization to exclude irrelevant data from a particular
sensor.

6.1.1 ekf_localization_node

The ekf_localization_node implements an EKF that predicts the robot’s state by
means of an omnidirectional motion model and corrects the prediction using the
data derived from the sensors. The state is composed by 15 variables:



x y z

ϕ θ ψ

ẋ ẏ ż

ϕ̇ θ̇ ψ̇

ẍ ÿ z̈


where ϕ, θ, and ψ represent the roll, pitch, and yaw angles respectively.

For each sensor, the variables need to be defined as true or false in order to take
into account only the ones set to true for performing sensor fusion. Another
important parameter is the process covariance matrix that represents the amount
of uncertainty introduced by the internal motion model during the prediction phase
of the filter. It has to be set for each sensor, too [31].

6.1.2 navsat_transform_node

The navsat_transform_node is used to convert GPS data, that are usually provided
in terms of latitude, longitude, and altitude, into coordinates in the robot’s world
frame (see Appendix B for further details on frames). As depicted in Fig. 6.1, it
requires three inputs for transforming GPS data into the robot’s world frame:

• a nav_msgs/Odometry message, containing the estimated current position of
the robot in its world frame;
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• a sensor_msgs/Imu message, carrying an earth-referenced estimate of the
robot’s heading;

• a sensor_msgs/NavSatFix message, providing geographic coordinate expressed
as a latitude/longitude pair.

Figure 6.1: Example setup for integrating GPS data with navsat_transform_node
[32]
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Chapter 7

Simulation Results

The goal of this work is to build a simulation environment that can be used to
demonstrate the validity of the intended sensor fusion. For this purpose, the
robot_localization ROS package described in the previous chapter is exploited.

As a first step, the prototype scenario has been created in the Gazebo simulator.
The intended environment is composed by a simple factory made through the
Gazebo Editor. The model of the building is included in a Gazebo world together
with the model of a Turtlebot3. Any of the three versions of the robot (Burger,
Waffle, and WafflePi) can be deployed by assigning ’burger ’, ’waffle’, or ’wafflepi’
to the variable TURTLEBOT3_MODEL.

Then, two simulations are conducted:

• a local EKF estimation node providing sensor fusion between IMU and wheel
encoders data;

• a global state estimate of robot pose obtained merging the data from the GPS.

7.1 Local EKF

By means of a python launching file, a single instance of an EKF state estimation
node is run. The node named as ekf_filter_node receives data from IMU and wheel
encoders by subscribing to the topics /imu/data and /wheel/odometry respectively.
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Figure 7.1: Gazebo world

The derived information are combined by the EKF using the configuration pictured
in Table 7.1:

Sensor x y z ϕ θ ψ ẋ ẏ ż ϕ̇ θ̇ ψ̇ ẍ ÿ z̈

Odometry 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

IMU 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

Table 7.1: Sensor configuration (0 = false, 1 = true) for local EKF node

The obtained estimation of the robot pose is published on the /odometry/local
topic, as Figure 7.3 shows.
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Figure 7.2: Gazebo world top view

7.2 Global EKF

In order to perform sensor fusion using also the information provided by GPS
sensor, two state estimation nodes are launched:

• an EKF node fusing only continuous data, i.e. data from odometry and IMU;

• another EKF node that deals with the discrete jumps characterizing GPS
data.

The navsat_transform_node communicates with the turtlebot3_gps node, which
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publishes NavSatFix messages on the /gps/fix topic. The raw GPS coordinates
expressed as latitude/longitude need to be transformed in the robot world frame.
For this purpose, the navsat_transform_node requires three sources of data:

• the GPS information (see sensor_msgs/NavSatFix Message in Appendix C);

• an earth-referenced heading (see sensor_msgs/Imu Message in Appendix C);

• the robot’s current pose in its world frame, that is specified through its initial
location (see nav_msgs/Odometry Message in Appendix C).

Once GPS coordinates are converted into the robot’s world frame, these data are
fused with the ones coming from IMU and wheel encoders through the global state
estimation node which has the following configuration vectors:

Sensor x y z ϕ θ ψ ẋ ẏ ż ϕ̇ θ̇ ψ̇ ẍ ÿ z̈

Odometry 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

IMU 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

GPS 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.2: Sensor configuration (0 = false, 1 = true) for global EKF node

The obtained estimation of the robot pose is published on the /odometry/global
topic. Appendix A provides the ROS graph representing the described simulation
environment.

7.3 RViz validation

The two simulations are validated by means of the 3D visualization tool RViz.
Once the turtlebot is controlled using keyboard teleoperation, the RViz tool shows
the pose derived from the topics described in the previous sections. Figure 7.4
represents the estimated motion, that coincides with the commands provided.
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Figure 7.3: ROS graph for the local EKF
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Figure 7.4: RViz validation of EKF sensor fusion
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Chapter 8

Conclusions and future
works

The thesis addresses the problem of localization handover for scenarios requiring
different localization technologies for indoor and outdoor areas. Particularly, it
focuses on the sensor fusion performed in the outdoor and in the transitioning area,
where GPS and UWB signals can coexist. However, such signals can be remarkably
degraded due to the presence of the walls of the building.

In order to provide a realistic solution to the problem, a detailed research on the
robots available on the market is conducted. Among the investigated robots which
satisfy the requirements, Turtlebot3 is chosen as the least expensive, expandable
mobile platform. Nevertheless, a different robot can be preferred according to
company needs.

Once the factors affecting the quality of GPS signals are investigated, a solution
involving an Extended Kalman Filter is proposed in order to avoid additional
complexity. First, the EKF is used to fuse the information derived from wheel
encoders and IMU; then, the output of the Kalman filter is combined with GPS
data by means of a weighting sum. The weight can be defined according to the
variance of GPS readings.

Finally, the last goal of this work is setting up the simulation environment in ROS.
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Conclusions and future works

The robot_localization package is exploited to perform simulated localization.

8.1 Next works

Once the simulation environment is set up, the proposed solution shall be imple-
mented in ROS, taking into account also the issues affecting the sensors (e.g, wheel
slippage, foliage coverage, etc...). Simulations for evaluating the performance of
sensor fusion between IMU, wheel odometry, UWB, and GPS need to be conducted.
Finally, the proposed solution shall be deployed and integrated on a Turtlebot3.
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ROS Graph

Figure A.1: ROS Graph zoomed
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ROS Graph

Figure A.2: ROS Graph
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Appendix B

ROS Enhancement Proposal

REP 103 Standard Units of Measure and Coordinate Conventions [33] and REP
105 Coordinate Frames for Mobile Platforms [34] are the crucial documents defining
conventions for localization and navigation in ROS. While REP 103 specifies the
units of measure and coordinate conventions, REP 105 is a reference for coordinate
frames conventions used for mobile robots.

B.1 REP 103

B.1.1 Units of Measure

Base Units

Quantity Units
length meter
mass kilogram
time second
current ampere

Table B.1: REP 103 Base Units of Measure Conventions
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Derived Units

Quantity Units
angle radian
frequency hertz
force newton
power watt
voltage volt
temperature celsius
magnetism tesla

Table B.2: REP 103 Derived Units of Measure Conventions

B.1.2 Coordinate Frame Conventions

All coordinate systems shall comply with the right hand rule and the axis orientation
described below:

Frames x y z
body frame forward left up

short-range locations (ENU [35]) east north up

Table B.3: REP 103 Axis Orientation

In the case of outdoor systems or cameras, it is generally provided a second frame
with either the "_ned" or "_optical" suffix respectively. The "_ned" frame for
outdoor system is defined since it is preferable to be compliant with the NED
convention [36].

Frames x y z
camera "_optical" right down forward
outdoor "_ned" north east down

Table B.4: REP 103 Suffix Frames
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B.2 REP 105

A shared convention for coordinate frames allows ROS developers to integrate
and re-use drivers, models, libraries, and other software components. REP 105
provides information about the frames used for localizing mobile platforms in the
environment. The defined tf2 coordinate frame tree for mobile robots is pictured
below:

(earth) -> map -> odom -> base_link

base_link is the coordinate frame attached to the mobile robot frame. Its preferred
orientation is stated in REP 103 as X forward, Y left, and Z up.

The odom frame is a world-fixed frame. The robot pose in such a frame changes
smoothly, without discrete jumps, guaranteeing continuity. However, the pose in
the odom drifts over time making it reliable only for short-term local reference.
Indeed, "the odom frame is computed based on an odometry source, such as wheel
odometry, visual odometry or an inertial measurement unit" [34].

The map frame is a world-fixed frame, too. On the other hand, it is not a
continuous frame, thus the pose of a mobile platform can change in discrete jumps.
This makes the map frame an accurate long-term global reference since the robot
pose is computed repeatedly from sensor measurements ruling out any drift. Even
though REP 103 defines ENU (see [35]) as preferred axis orientation, it may be
more helpful to align the map in structured environments with a more appropriate
frame.

Finally, earth is a global world-fixed frame that is used to make multiple robots
interact in different map frames. Therefore, it is neglected when only a map frame
is needed. It is compliant with the Earth-centered, Earth-fixed coordinate system
(ECEF [37]).

Figure B.1 pictures the different frames ECEF, ENU, and latitude/longitude frame.
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Figure B.1: Visual comparison between ECEF (blue), ENU (green), and lati-
tude/longitude (yellow) frames of reference
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Appendix C

ROS messages

C.1 nav_msgs/Odometry Message

It is defined in the nav_msgs/Odometry.msg file.

It "represents an estimate of a position and velocity in a free space. The pose in
this message should be specified in the coordinate frame given by header.frame_id.
The twist in this message should be specified in the coordinate frame given by the
child_frame_id", as stated in [38].

Compact Message Definition

std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose
geometry_msgs/TwistWithCovariance twist

C.2 sensor_msgs/Imu Message

It is defined in the sensor_msgs/Imu.msg file.

It is used to collect data coming from an Inertial Measurement Unit (IMU). It
provides information about the orientation, the angular velocity, and the linear
acceleration together with their corresponding covariance matrices. See [39] for
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further details.

Compact Message Definition

std_msgs/Header header
geometry_msgs/Quaternion orientation
float64[9] orientation_covariance
geometry_msgs/Vector3 angular_velocity
float64[9] angular_velocity_covariance
geometry_msgs/Vector3 linear_acceleration
float64[9] linear_acceleration_covariance

C.3 geometry_msgs/PoseWithCovariance-
Stamped Message

It is defined in the geometry_msgs/PoseWithCovarianceStamped.msg file.

It "expresses an estimated pose with a reference coordinate frame and timestamp",
as stated in [40].

Compact Message Definition

std_msgs/Header header
geometry_msgs/PoseWithCovariance pose

C.4 geometry_msgs/TwistWithCovariance-
Stamped Message

It is defined in the geometry_msgs/TwistWithCovarianceStamped.msg file.

It "represents an estimated twist with reference coordinate frame and timestamp",
as stated in [41].

Compact Message Definition

std_msgs/Header header
geometry_msgs/TwistWithCovariance twist
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C.5 sensor_msgs/NavSatFix Message

It is defined in the sensor_msgs/NavSatFix.msg file.

It provides Navigation Satellite data specified using the WGS 84 reference ellipsoid.
It contains the information regarding the satellite fix status, the estimation of
latitude, longitude, and altitude, and the position covariance. See [42] for further
details.

Compact Message Definition

uint8 COVARIANCE_TYPE_UNKNOWN=0
uint8 COVARIANCE_TYPE_APPROXIMATED=1
uint8 COVARIANCE_TYPE_DIAGONAL_KNOWN=2
uint8 COVARIANCE_TYPE_KNOWN=3
std_msgs/Header header
sensor_msgs/NavSatStatus status
float64 latitude
float64 longitude
float64 altitude
float64[9] position_covariance
uint8 position_covariance_type
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