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Abstract

Convolutional Neural Networks (CNNs) are ubiquitous and seamlessly integrated
in our lives. One reason for this is that increasingly powerful machines have
empowered a shift towards models of increased complexity. These models enable
superhuman predictive accuracy obtained through deep learning paradigms. The
trade-off, however, is that the produced results are hardly explainable [1]. This
may be a problem. The issue of explainability is particularly important when it is
necessary to answer questions about a CNN’s reliability and resilience in case of
faults.

This thesis aims at shining a light on a CNN’s internal behavior by building a
tool that enables researchers to observe, in a 3D virtual environment, how different
artificial neurons forming the network contribute to the classification of a given
input. The tool accepts a description of how the network is built and takes as
input a file describing the network parameters.

As a case study, LeNet was used in this thesis. LeNet is a CNN designed to
recognize handwritten digits. Due to its simplicity, today it is often used as a
learning tool. A 3D representation of this network is computed from an input
image of size 28 × 28 pixels and rendered to the screen with the ability to move
around, and zoom into its layers. The most expensive computational operations
are executed resorting to the system GPU, improving in this way the system
performance.

A CNN’s architecture tries to mimic that of a biological brain. This means that,
just like their biological counterpart, CNNs have several artificial neurons, which
process data, and a number of artificial synapses interconnecting the neurons. The
tool offers a number of functions allowing users to study specific subsets of artificial
synapses, to inject different types of faults into specific artificial neurons, and to
automate those operations via external scripting. The end result can be explored
in real time by "flying" in the 3D virtual environment with a mouse and keyboard
or by looking at a log file that gets updated on user interactions.

Lastly, the thesis takes into consideration a case study based on LeNet. The
network is initially able to correctly classify an input image but carefully placed
faults slowly erode the confidence level. As a result, a wrong classification is
provided.



Summary

Figure 1: Screenshot of the tool created for this thesis

This thesis aims to offer a new way to analyze convolutional neural networks
(CNNs). A tool was built for this scope. With minimal modifications, the tool
can load a number of CNNs. It can process their inferences and keep track of all
intermediate passages ranging from the initial loading of an input image up to
the final classification. Many options are available to study individual neurons
and synapses, to discover how they are interconnected in a single inference, and to
inject faults in strategic positions. The downstream consequences of the injected
faults can then be observed. The tool also allows for external scripting to automate
operations over a wide range of inputs and conditions. Scripts can be either hand
written or recorded from the user interface.

To prove the tool’s functionality, LeNet is loaded and studied. LeNet is a very
well studied CNN used to recognize handwritten digits. It consists of 7 layers, of
which in the first four it alternates between convolutional and pooling layers with
the last three layers being fully connected ones. The output of this network is a
set of 10 probability values indicating respectively the network’s confidence for the
digits from 0 to 9.



Figure 2: Experiment 1
Before vs After fault injection
Incorrect classification becomes correct

Figure 3: Experiment 2
Before vs After fault injection
Correct classification becomes incorrect

As experiments, two input images are loaded into the tool and processed by
LeNet. In the first experiment, the network is unable to correctly classify the digit.
By using the tool to study the inference process and look at each layer and neuron
contained within, it is possible to deduce which neurons had the most influence
in the wrong classification. Fault injection campaigns, localized in the pinpointed
neurons, show that by killing the responsible neurons, the network now correctly
classifies the input image. The second experiment is similar in methodology but
starts from a correct classification that degrades gracefully under properly localized
small scale fault injections until the classification is no longer correct.

The tool enables users to study a wide variety of CNNs and apply different
techniques to try to explain the process behind inferences. This is done in the
context of reliability analyses. Reliability can be defined as the probability that a
hardware fault causes a failure [2]. This means that when CNNs are considered as
mere software or mathematical abstractions, reliability issues are less influential,
also due to their natural tendency towards neuron overprovisioning. The situation
changes however if they are run on dedicated multiprocessor systems-on-a-chip
(MPSoCs). A need arises to classify neurons as either critical or non-critical in this
situations such that critical neurons may be uniformly distributed to the MPSoC’s
processing elements [3].
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Chapter 1

Introduction

Published in November 1998, the paper named "Gradient-Based Learning Applied
to Document Recognition" by Yann LeCun, Léon Bottou, Yoshua Bengio and
Patrick Haffner [4] offers an interesting analysis of how LeNet, a Convolutional
Neural Network (CNN) designed to recognise handwritten characters, fares against
standard handwritten digit recognition benchmarks. The paper reviews a number
of strategies in building and training this CNN such that the end result outperforms
all other techniques at the time, thus ensuring its recognition today as a basis in
which many more advanced CNNs find their foundation.

Today, due to their performance often surpassing human-level accuracy [5], CNNs
are very attractive solutions for particularly difficult tasks such as self-driving cars,
where they are used for object classification and recognition, robotics, and many
space related applications like earth observation [6].

Generally, artificial neural networks are considered inherently fault resistant due
to two main reasons: their distributed and parallel architecture and the redundancy
introduced by over-provisioning [7]. ANNs are generally supplied with an excess of
neurons as to what would be minimally required for their computations. This means
they can sustain a certain degree of errors before their performance slowly decreases
[8]. The situation changes however when ANNs are no longer mere software or
mathematical abstractions but run on dedicated multiprocessor systems-on-a-chip
(MPSoCs) where some processing elements might be shared [3].

A need emerges, in these cases, to differentiate between critical or non-critical sets
of neurons and explain how they contribute to the classification. With this thesis
we try to answer the aforementioned need by creating a tool enabling researchers
to visualise, browse and analyse a CNN. In chapter 3, we detail its features and the
reasoning behind them. As a case study, we then use it to implement and examine
LeNet in chapter 4. The thesis continues with chapter 5 as we look at a series of
experimental results where the tool is able to explain how certain sets of neurons,
when injected with faults, are able to greatly impact classification results.
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Chapter 2

Background

This chapter introduces background knowledge on the topics dealt with throughout
the thesis. Initially, section 2.1 offers an overview of neural networks and their main
characteristics in terms of architecture, followed by an introduction to explainability
and reliability in section 2.2. Then, to better follow the case study (chapter 4)
presented in this thesis, section 2.3 takes a look at the types of layers most
commonly found in a CNN. The chapter then concludes with a summary of LeNet’s
architecture and main characteristics in section 2.4.

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a collection of algorithms that work in
succession on an input by emulating processes typically observed in biological
brains. ANNs are usually built as a collection of individual nodes, called artificial
neurons, connected by artificial synapses and organised in layers. Each connection
carries a weight that simulates a synaptic connection’s strength in its biological
counterpart. The weights across a network can be changed to simulate feedback
and correct for errors in the presence of external stimuli. The process of carefully
adjusting those weights is called training.

An ANN is usually trained for a specific task. The training is done using a set of
already classified data. This process is very resource intensive and is usually done
in cycles, or epochs, reiterating over the training data set. At the end of each epoch,
an accuracy test is conducted, and when the result is above the desired threshold,
the training phase can be considered complete. For the results to be meaningful,
accuracy tests are done using a dataset that is disjoint from the training set. In the
case of classifier type ANNs, the accuracy is calculated as the number of correct
inferences divided by the total number of inferences or, more accurately, as
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Background

TruePositives + TrueNegatives

TruePositives + TrueNegatives + FalsePositives + FalseNegatives
(2.1)

One of the many appeals of ANNs is that the execution of an inference is,
in general, front loaded during the training phase, and the prediction phase is
often computationally efficient. This means that the trained network can be easily
employed in a range of mobile or lower power devices while preserving the ability
to classify an image in real time.[9]

2.2 Explainability in the context of reliability
Because of how they are built and trained, ANNs often make it hard to understand
and explain how their inferences were reached in human terms. This can be partially
traced to the reason itself behind the extensive adoption of ANNs in recent years.
Easier access to more powerful machines, improved learning algorithms, and the
availability of vast amounts of data brought a shift towards models of increased
complexity. These models enable superhuman predictive accuracy obtained through
a deep learning paradigm. The trade-off is that we can no longer produce explainable
and interpretable predictions [1]. This is not to say that the literature is devoid of
explainable models. Many available options like linear regression or decision-tree
based models produce perfectly explainable predictions. Those models, however,
are still far from state-of-the-art performance.

When it comes to non-explainable models, trust can also be an important issue.
In fields like healthcare or self-driving cars, where a wrong inference could lead
to loss of life, choosing and training the models can elicit a moral dilemma. The
situation does not improve when morality and fairness issues arise. Examples
of such issues can be the trolley problem[10] for self-driving cars or skin colour
discrimination in face recognition networks [11].

Reliability can be defined as the probability that a hardware fault causes a
failure [2]. Analyses assessing a network’s reliability are regulated by standards
depending on the application domain and are usually conducted through fault
injection campaigns [12]. In this context, explaining and interpreting an ANN’s
predictions and, therefore, understanding how a decision was reached can also
guide the best approach to ensure a system is fault resistant and, therefore, more
reliable. When ANNs are implemented on application specific integrated circuits
(ASICs), physical hardware processing elements may be shared among different
parts of the network. In these circumstances, it is very important to be able to
single out critical vs non-critical portions of the network based on which artificial
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neurons have the most impact on a prediction. Once identified, critical parts may
also be protected with additional levels of redundancy. [3]

2.3 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are a class of ANN where at least one layer
uses an operation called convolution. These networks are preponderantly used to
analyse images but they can also find applications with all types of temporal, spatial,
and spatiotemporal data [13]. The images are treated as matrices of real numbers
where the network’s layers apply a series of transformations. These transformations
are based on the assumption that there are strong spatial dependencies in local
regions. An important property of image data is that it exhibits a certain level of
translation invariance [13]: a number drawn in the center of an image is still the
same number if we translate it up or down.

This section will explore three types of layers commonly encountered in a CNN.
Those are convolutional layers in subsection 2.3.1, pooling layers in subsection 2.3.2
and fully connected layers in subsection 2.3.3.

2.3.1 Convolutional Layers
A CNN extracts features from an image by means of a convolution against a kernel.
Convolution, in this case, is the dot product operation consisting of two matrices
A and B acting respectively as the input image and the kernel. In A we place
every pixel’s color value, while in B we have the CNN’s trained parameters. The
convolution overlaps B over A as a sliding window and sums the products of items
with the same coordinates. The window is then shifted by an amount we call stride,
and the process is repeated to find the next values.
For clarity, an example with smaller matrices is provided bellow:

A =

⎡⎢⎣a1 a2 a3
b1 b2 b3
c1 c2 c3

⎤⎥⎦ (2.2) B =
[︄
d1 d2
e1 e2

]︄
(2.3)

conv(A,B) =
[︄
d1a1 + d2a2 + e1b1 + e2b2 d1a2 + d2a3 + e1b2 + e2b3
d1b1 + d2b2 + e1c1 + e2c2 d1b2 + d2b3 + e1c2 + e2c3

]︄
(2.4)

A convolutional layer, in general, accepts an input of

Widthin × Heightin × Channelsin (2.5)
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and requires four configuration variables:

1. number of filters K,

2. their spatial extent F,

3. the stride S,

4. the amount of zero padding ZP.

The result of a convolution is also a matrix. Its size can be determined by the
following:

Widthout = Widthin − F + 2ZP

S
+ 1 (2.6)

Heightout = Heightin − F + 2ZP

S
+ 1 (2.7)

Channelsout = K (2.8)

With these variables, we can easily calculate the number of trainable parameters in
a convolutional layer as:

Ntrainableparameters = F 2 ∗ Channelsin ∗ K + K (2.9)

The final term is a trainable bias parameter that is different for each kernel. This
number is added to the weight of each artificial neuron in a channel at the end of
the convolution.

In a convolutional layer, the end result of the convolution operation is passed
through an activation function before feeding it as input to the following layer.
Commonly used activation functions are the sigmoid function:

S(x) = 1
1 + e−x

(2.10)

and the ReLu function:
f(x) = max(0, x) (2.11)

2.3.2 Pooling Layers
Pooling layers are typically positioned after a convolutional layer and are used
to down-sample data. This is a useful operation when we take into account a
convolutional layer’s inherent sensibility to any movement in the input image.
Down-sampling allows us to reach a result that is less sensitive to small changes
in the position of the extracted features, thus slightly mitigating the dangers of
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overfitting. However, this translation invariant effect depends on the stride and
often comes as a trade-off for generalisation [14]. Another added advantage is the
computational complexity reduction obtained by reducing the data size.

Typically, pooling layers can be of two types:

1. Average Pooling where the output value is calculated as the average of the
values inside a window

2. Max Pooling where the output value is calculated as the maximum inside a
window

A pooling layer accepts as input of

Widthin × Heightin × Channelsin (2.12)

requires two configuration parameters:

1. spatial extent F,

2. stride S.

and produces an output such that:

Widthout = Widthin − F

S
+ 1 (2.13)

Heightout = Heightin − F

S
+ 1 (2.14)

Channelsout = Channelsin (2.15)

Pooling layers have no trainable parameters since they compute a fixed function
of the input.

An example with F=2 and S=1 is given for clarity using the matrix A defined
in 2.2:

AveragePooling(A) = 1
4

[︄
a1 + a2 + b1 + b2 a2 + a3 + b2 + b3
b1 + b2 + c1 + c2 b2 + b3 + c2 + c3

]︄
(2.16)

MaxPooling(A) =
[︄
max(a1, a2, b1, b2) max(a2, a3, b2, b3)
max(b1, b2, c1, c2) max(b2, b3, c2, c3)

]︄
(2.17)
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2.3.3 Fully Connected Layers
In a fully connected layer, every artificial neuron in the input is connected to every
artificial neuron in the output. This means that every output neuron looks at the
full input volume. A fully connected layer accepts an input of

Widthin × Heightin × Channelsin (2.18)

and requires as a configuration parameter the number of output artificial neurons.
We can calculate the number of trainable parameters as

Ntrainableparameters = NinputNeurons ∗ NoutputNeurons + NoutputNeurons (2.19)

with the final term referring to a bias for each output neuron.
The final layer in a CNN is often a fully connected one. In this case, a Softmax

activation function is used to have the inference output as a probability value that
adds to a value of 1 when summed over all the classes recognisable by the network.
The output of each neuron zi therefore becomes

SoftMax(z)i = ezi∑︁NoutputNeurons

k=1 ezk

(2.20)

It can easily be derived from Equation 2.20 that

N∑︂
i=1

SoftMax(z)i =
N∑︂

i=1

ezi∑︁N
k=1 ezk

= 1 (2.21)

2.4 LeNet
LeNet is a CNN composed of 7 layers. Its task is to classify handwritten digits

into ten categories ranging from 0 to 9. The input image is a grayscale of size
32 × 32 pixels with a black background and the number drawn in lighter shades.
This is usually provided as a 28 × 28 pixels image; in this case, a zero-pad of 2 is
specified in the first layer’s description. Lenet’s layers are:

1. C1: a convolutional layer (subsection 2.3.1)

2. P1: a pooling layer (subsection 2.3.2)

3. C2: a convolutional layer

4. P2: a pooling layer

5. FC1: a fully connected layer (subsection 2.3.3)
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6. FC2: a fully connected layer

7. FC3: a fully connected layer

The first step in executing LeNet consists in normalizing the input image. In order
to do so, the mean and standard deviation are calculated as

mean(image) =

W,H∑︁
i=0,j=0

image[i][j]

W ∗ H
(2.22)

sd(image) =

W,H∑︁
i=0,j=0

(image[i][j] − mean)2

W ∗ H
(2.23)

with W being the width of the image and H the height. Each pixel is then
normalized such that

∀ 0 ≤ i ≤ W , 0 ≤ j ≤ H

normalized_image[i][j] = (image[i][j] − mean)/sd
(2.24)

Following the inference process, we can look at LeNet layer by layer:

Layer C1 applies a convolution against 6 5 × 5
kernels with a stride of 1. This generates 6 feature
maps of size 28 × 28 pixels each. We say that each
feature map is a channel and thus the final image
is

28 × 28 × 6

Layer P1 is a pooling layer with spatial extent
F = 2 and stride S = 2. Using equations 2.13,
2.14, and 2.15 we calculate that the output size is

14 × 14 × 6
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Layer C2 applies a convolution against 6 × 16
kernels of size 5 × 5 with a stride of 1 generating
16 feature maps of size 10 × 10 each (Equation 2.6
and Equation 2.7). This brings the output of this
layer to a size of

10 × 10 × 16

Layer P2 is a pooling layer with spatial extent
F = 2 and stride S = 2. Using equations 2.13,
2.14, and 2.15 we calculate that the output is of
size

5 × 5 × 16

Layer FC1 is the first fully connected layer in
this network but it’s output is also calculated as a
convolution against 16 × 120 kernels of size 5 × 5.
Using Equation 2.6 and Equation 2.7 we find that
the output of this layer is

1 × 1 × 120

Layer FC2 is the second fully connected layer
and has 84 artificial neurons.

9
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Layer FC3 has 10 artificial neurons, represent-
ing the final classification of the network. In this
layer a SoftMax activation function is used such
that Equation 2.21 applies.

2.4.1 Training LeNet
LeNet is commonly trained as an exercise in learning about neural networks. The
initial values of its trainable parameters are randomly assigned, and a backpropa-
gation algorithm is used to slowly modify them until the accuracy as expressed in
Equation 2.1 is above the desired threshold.

Figure 2.1: Snippet of some digits in the MNIST dataset

The MNIST dataset is a vast collection of handwritten digits which is commonly
used for this purpose. The images are labeled and divided in two sets:

1. Training Set, composed of 60000 images

2. Testing Set, composed of 10000 images

Each convolutional and fully connected layer in LeNet holds a number of parameters.

10
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Using equations Equation 2.9 and Equation 2.19, we can calculate their number
for each layer:

1. C1 has 1 input channel and 6 kernels of size 5 × 5, therefore

NC1 = 5 ∗ 5 ∗ 6 + 6 = 156

2. P1 has no trainable parameters

3. C2 has 6 input channels and 16 kernels of size 5 × 5, therefore

NC2 = 5 ∗ 5 ∗ 6 ∗ 16 + 16 = 2416

4. P2 has no trainable parameters

5. FC1 has 16 input channels and 120 kernels of size 5 × 5, therefore

NF C1 = 5 ∗ 5 ∗ 16 ∗ 120 + 120 = 48000

6. FC2 has 120 input channels and 84 artificial neurons, therefore

NF C2 = 120 ∗ 84 + 84 = 10164

7. FC3 has 84 input channels and 10 artificial neurons, therefore

NF C3 = 84 ∗ 10 + 10 = 850

Summing the above, the total number of trainable parameters in this network is

NLeNet = NC1 + NC2 + NF C1 + NF C2 + NCF 3 =

156 + 2416 + 48000 + 10164 + 850 = 61586

11



Chapter 3

Proposed approach

The proposed approach stems from the need to visualise a CNN’s internal
workings and analyse how artificial neurons and artificial synapses interact to
produce a correct classification.
This entailed the creation of a tool able to:

1. Have advanced graphic capabilities out of the box
since being able to observe, select, move and selectively enable or disable
parts of the network can be a valuable ability when trying to visualise and
understand it.

2. Easily be reprogrammed to run any generic CNNs
provided that we have knowledge of their internal architecture and a file
containing the necessary weights. Being able to quickly adapt the tool to any
CNN can also allow comparative analyses where behaviours observed in small
networks can be reproduced in more complex ones.

3. Compute and track the results a CNN outputs
while also storing data about its individual neurons and synapses. This is to
allow a degree of scrutiny into how neurons interact and aid in mapping them
by criticality.

4. Allow the user to strategically inject faults in specific neurons,
with multiple types of faults available and the ability to follow their influences
on the network in real time.

5. Accept external scripting and script recording
to easily reiterate findings and operations over a vast set of inputs. Scripts
can be either recorded from within the tool or be manually written and loaded
with the appropriate menu.

6. Log interactions with the network
so that operations and results can be analysed at a later time.

12



Proposed approach

3.1 Describing a generic CNN
The tool is developed to allow the study of any generic CNN. To ensure this, a
generalised way to describe CNNs was needed and this thesis aims to provide one
in terms of architecture. A CNN can be described as a list of layers, of different
types, such that the first layer accepts a single image as input and the last layer
offers the final classification. Each layer can be simplistically described in terms of
its hyper-parameters, as described in section 2.3, and of a number of parameters
obtained by training the network.

This structure is mimicked in the tool by a class, simply called CNN , where the
standard behavior of a convolutional neural network is modeled. CNN contains a
list of CNN_Layers, an abstract class defining the common behavior every layer
in the network should display.

Figure 3.1: Class Diagram

The main features of a CNN_Layer are:

1. an input buffer

2. an output buffer

3. a name used to easily locate the layer

4. a process() method which inheriting classes have to implement in order to
handle a layer type’s specialized logic.

Currently, three classes extend CNN_Layer to implement Convolutional, Pooling
and Fully Connected layers. Among these, Convolutional_Layer uses a Compute
Shader to offload computations to the GPU and improve overall processing times.

The CNN class handles loading the first layer’s input buffer. The input buffer
is automatically filled with the previous layer’s output buffer for each following
layer.

13
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3.2 User interface

Figure 3.2: The tool’s user interface

The tool offers users various ways to interact with the loaded CNN. Figure 3.2A
is a text box accepting an input image’s path. This path can be processed by
the buttons in Figure 3.2B to load the image for preview or process the inference
using either the CPU or the GPU. The two methods are internally implemented
differently with the GPU method being much faster than the CPU. One noteworthy
difference is in the floating point supported by the GPU method which allows only
32bit single precision floating point data. The CPU method allows full 64bit double
precision.

When the Draw connections option is selected in Figure 3.2D, each click on a
neuron will draw a series of lines on the screen, portraying the synapses connecting
it either to neurons in upper or lower layers, depending on the switch in the lower
side of the same section. An additional check box for Only MaxLines is available
to limit the synapses being drawn to only those N with higher weight. The buttons
in Figure 3.2C will delete, in order:

1. All lines

2. All lines with a weight above 0

3. All lines with a weight equal to 0

4. 99% of the lines, meaning that every line is deleted except for the strongest
connections in the network.

Selecting Inject Fault in Figure 3.2E allows the user to inject a certain type of
fault in any clicked neuron. The available types are:

14
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1. Kill
if this is selected, the killed neuron will always output the value written below
at the moment of its death.

2. Stun
if this is selected, the stunned neuron will output a different pseudo random
generated value for each inference.

3. Bitflip
if this is selected, the bitflipped neuron will output its normal value with
flipped bits in the positions specified by the bitmask entered as a value.

The section in Figure 3.2F allows a user to either run an external script, by
specifying its path, or record a new script. Recording mode opens a bigger text
box that gets automatically populated as the user interacts with the network.
All interactions are logged there in a format readily parsable by the tool, and a
dedicated button allows the user to save the new script to storage. This scripting
section allows the user to automate a series of actions on a network by iterating
them over a broad set of input images.

3.3 Visualising the layers

As a project choice, it was decided to draw each layer as a circular collection of
channels where each channel is a square map of individual neurons. This means that
channels form regular polygons around an imaginary center line in convolutional
and pooling layers. The polygons have as many vertices as there are channels in
the layer. In fully connected layers, each individual neuron can be considered the
sole neuron in a channel, and therefore, the layer’s shape appears more like a circle.
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Figure 3.3: representation of convolu-
tional or pooling layers

Figure 3.4: representation of fully con-
nected layers

When drawn, an artificial neuron’s color depends on its value. A simple color
choice would be just to map the value to a 0-255 grayscale. This, however, tends
to create some visualisation issues that can end up hiding features in a channel.

Figure 3.5: Visualization of the Viridis color map

Comparative analyses of different color map types show that Viridis is one of
the most accurate color maps currently used to visualise data [15] so it is used
instead. Viridis maps values inside a normalised range to colors extending from
a deep purple to a bright yellow. An interesting property of this color map is its
perceptual uniformity, meaning that closer values will map to closer looking colors
while maintaining a good separation between values that are far apart. Given how
colors are distributed in the range, it is also very robust to colorblindness [16].
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Chapter 4

Case study

Figure 4.1: a screenshot of the tool loaded with LeNet

A great part of this thesis consisted in coding and testing the tool. In order
to do so, access to high level 3D graphics primitives was needed. There are many
available solutions that provide this but very few allow for an equally direct access
to the GPU. Unity was thus chosen as the engine supporting this tool.

The language chosen to develop this tool is C#. This is due to Unity directly
allowing C# scripting to better customise the behavior and interactions between
3D objects. C# is a general purpose object oriented language with strong static
typing. It is often used in applications dealing with the .Net framework. In the
tool, C# is used both to develop the logic behind generic CNNs, and to connect
interface inputs such as button presses, checkbox state changes, sliders and neuron
clicks to actions enabling the user to interact with the network.
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Case study

4.1 Loading a generic CNN
In order to load a generic CNN in the tool, the first steps are to understand its

architecture in terms of configuration variables (hyper-parameters) characterising
each layer (as expressed in section 2.3) and build a file containing the network’s
trained parameters. The file is not necessarily bound to a specific format or syntax,
as it needs to be parsed manually in the tool’s code. However, the way kernels
are flattened in convolutional layers needs to follow a specific order (or be parsed
in a way that they eventually do) in order to maintain a single parameter order
convention throughout the project. A flattening example is provided in pseudo-code
for a convolutional layer’s parameters:

Figure 4.2: Convolutional Layer flattening pseudocode

A CNN object is created and, after each layer is initialised in its constructor
with a name, a set of weights and a set of biases, we can assign it to the CNN’s
layers list in the appropriate position.

Figure 4.3: Simplified pseudocode to load a generic CNN

To evaluate an inference it is sufficient to call the .process() method on the CNN
object and pass in the input image as a parameter. This can be followed by .draw()
if we want to also draw the network on screen.
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4.2 Loading LeNet
As proof of the tool’s capabilities, we load LeNet. In order to do so we refer to
section 2.4 for each layer’s hyper-parameters and we train the network from scratch
using [17] and the MNIST dataset as explained in subsection 2.4.1. Once the
accuracy is above 90%, the matrices containing the trained parameters can be
flattened and serialized to a file. This file is then parsed in a function in the tool’s
code as in Figure 4.4,

Figure 4.4: Parsing LeNet’s trained parameters from file

and used to create the layer objects as in Figure 4.5.

Figure 4.5: Creating layer objects

Lastly, the CNN object can be created and populated with LeNet’s layers as in
Figure 4.6.

Figure 4.6: Creating layer objects
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Chapter 5

Experimental results

In this section we introduce three experiments collected through the study of LeNet
with the tool developed for this thesis. The experimental results were obtained
using both images from the MNIST training dataset and derived ones obtained
by editing sources from that same dataset to hide parts of images that were being
recognised as features. In section 5.1, we present an in depth walk-through study
of an inference. With section 5.2, the objective of the experiment is to test that the
tool allows us to understand which part of the network is crucial in an incorrect
inference. By finding the right artificial neurons to inject with faults so that their
output is suppressed, we notice that the inference is now correct. With section 5.3
we approach a similar situation but from a different direction. The network is
initially able to correctly classify the input image but, by studying some of its
inactive parts, we find that if a fault were to be injected in some of them, the
network’s performance would gracefully degrade until the inference is no longer
correct.
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5.1 Experiment 1: A walk-through study

Figure 5.1: The first image in the MNIST training dataset.

In this experiment we are going to study the inference calculated from Figure 5.1.

Figure 5.2:
Loaded Figure 5.1

Figure 5.3:
Layer FC3 ob-
tained from
Figure 5.1

The input image is loaded in the tool where it gets zero-padded,
normalised and displayed using the veridis color map (Fig-
ure 5.2). The tool is configured to processes the image layer
by layer and display it in a 3D environment where the user can
rotate and move around it. Our first observation is that LeNet
correctly classifies this input image as a 7. This information
can be visually extracted by looking at the last layer in the
network, FC3 (Figure 5.3), where the most probable classifica-
tion appears yellow. The layer is to be read starting from the
left and going clockwise. In this case, the classification carries
a confidence factor of 0.999999999084410% in double pre-
cision. By clicking the seventh neuron in FC3, we can explore
how it is connected to neurons upstream by drawing on screen
its incoming synapses. Randomly doing so, however, would
end up producing a number of drawn synapses so high that it
would be impossible to extract any information from it. It is
thus important in this case to limit the number of synapses on
screen to those we find most significant. To do so, we ensure
that Draw Connections as in Figure 3.2D is selected with
OnlyMaxLines checked and the direction set to backwards.
The value next to OnlyMaxLines needs to be chosen carefully as limiting the
number of synapses to a value that is too low could potentially hide useful data,
while setting a value that is too high might hinder our ability to properly study the
network by drowning out important information. At any time, by using the buttons
in Figure 3.2B, we can decide to delete all or a subset of the drawn synapses.
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Experimental results

Figure 5.4: Network view after click on FC3[7] with OnlyMaxLines = 3

Figure 5.5: Zoomed in network with
only C1 and P1 visible Figure 5.6: Zoomed in network with

only FC2 and FC3 visible

Synapses are drawn wider or narrower based on the weight of the associated
connection. When the weight is 0, synapses are drawn in white. By studying how
they connect different parts of the network, we can extrapolate which features are
being extracted and considered in a layer and which are inconsequential according
to the training experienced by our network.

Using the commands in Figure 3.2E, we can test the assumptions made in
the previous paragraphs by injecting faults in strategic positions. Fault injected
neurons are visually depicted in red. After any number of faults have been
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injected, the network needs to be computed again in order to see their effects.

Figure 5.7: Figure 5.6 after
the most significant neurons were
fault injected

As a test, we can inject kill faults (output = 0) in
the three most significant neurons in Figure 5.6.
The result is that the network’s inference con-
fidence decreases:

before : 0.999999999084410%

after : 0.999987126472159%

but the classification stays correct. This is be-
cause the neurons we have killed were not critical
to this inference.

We can script this operation to be repeated
with different input images. To do so, we
click the Record button in Figure 3.2F, change
the picture path in Figure 3.2A and click Pro-

cess. We can then see that the panel gets automatically filled with com-
mands as in Figure 5.8. These commands can be hand edited in the tool
or saved to a file and opened with any preferred editor. In order to re-
peat our study on multiple images, we can append an arbitrary number of

load pic /some_path/mnist_pic/N.png
to the file, write its path in the tool and run it.

Figure 5.8: Scripting window filling with commands

The output produced by running this script can be seen in real time in the tool
or studied later by analysing the logs.
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5.2 Experiment 2

Figure 5.9: Image 983 from the MNIST training dataset.

One of the images that better showcases the tool’s capabilities is image 983. In
the MNIST dataset, this image is labeled as a 3. However, the trained LeNet used
for this thesis incorrectly classifies 983 as a 2. Loading the image with the tool, we
can look at the network and examine the process that resulted in this classification.

Figure 5.10: Complete network with image 983 loaded
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Figure 5.11: Zoomed in network with
only FC2 and FC3 visible, channel 49
marked with a red arrow

Figure 5.12: Same as Figure 5.16 but
with a kill fault injected in channel 49

Figure 5.13: Chart comparing confidence percentages before and after fault
injection

We observe that channel 49 in the second fully connected layer has an activated
artificial neuron with a very high value (indicated by its color as explained in
[chapter talking about veridis, to be linked]). By injecting a fault of type kill with a
value of 0, we can observe in Figure 5.17 and Figure 5.13 that the inference results
have changed a lot. The image is now correctly recognized as the digit 3.
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5.3 Experiment 3

Figure 5.14: 983A, modified version of image 983 from the MNIST training
dataset.

For this experiment we load a modified version of 983 which we call 983A. In
this modified version, some pixels in the lower left corner have been deleted with an
external photo editing software. From a human point of view, this makes the image
look closer to a 2 than a 3. LeNet’s inference also correctly classifies this as the
digit 2 with a very high confidence percentage. Looking at the network, however,

Figure 5.15: Complete network with image 983A loaded

we observe that some feature maps in P2 are completely empty. If we browse the
features nearby, the maximum discernible raw activation value is around 10.
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Figure 5.16: Zoomed in network with
only P2 and FC3 visible

Figure 5.17: Same as Figure 5.16 but
with kill faults injected in channel 6

By injecting a number of kill faults with a value of 10 in channel 6 of layer P2,
we can observe that the confidence value slowly decreases until a wrong inference
is provided.

Figure 5.18:
Layer P2,
channel 6

Fault injected at Classified digit Confidence
- 2 93,69%

(2,2) 2 82,63%
(2,2),(3,3) 2 72,51%

(2,2),(3,3),(4,4) 2 67,21%
(2,2),(3,3),(4,4),(4,3) 2 47,42%

(2,2),(3,3),(4,4),(4,3),(3,4) 3 45,02%

Table 5.1: Confidence level decreasing as more faults are
injected

Figure 5.19: Chart comparing confidence percentages before and after fault
injection
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Chapter 6

Conclusions and future work

This thesis provides a tool to better visualise and study Convolutional Neural
Networks. The experimental results show that, by making use of the functions
provided, it is possible to reach a better understanding of the internal workings
of a CNN. By carefully studying a neuron’s output over a wide enough number
of iterations, it is possible to test its criticality in a controlled environment with
direct access to every part of the network.

Future work may extend the tool’s functionality by implementing a way to keep
track of overall sessions containing multiple inferences. This would also be useful
when working on multiple networks in parallel, trying to extrapolate behaviours
in a simpler network and then test for them in a more complex one. The fault
injection mode could also be upgraded to include additional types of faults and the
possibility of mass fault injection following a number of user defined patterns.
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Acronyms

AI
artificial intelligence

ANN
artificial neural network

CNN
convolutional neural network

DNN
deep neural network

ASIC
application specific integrated circuit

MPSoC
multi processor system on chip
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