
POLITECNICO DI TORINO
Master’s Degree in Mechanical Engineering

Master’s Degree Thesis

Development and implementation of an
obstacle avoidance algorithm for an

Autonomous Mobile Robot

Supervisors

Prof. Marina INDRI

Advisor at CIM 4.0

Ing. Orlando TOVAR ORDOÑEZ

Candidate

Shixian WANG

July 2022

Abstract

The ongoing Industrial Revolution necessitates a high level of automation in
order to be flexible and adaptive enough to comply with the demands of the
market. Autonomous and collaborative robots will play an ever-greater role in
this context. Therefore, the FIXIT project is proposed by CIM4.0 with the goal
of providing interactive support for the human operator within an industrial or
logistic environment to meet the Industry 4.0 requirements.

The objective of this thesis is to develop and implement path planning algorithm
with obstacle avoidance technology to be executed on the AMR of FIXIT. Firstly,
the state of the art of path planning methods is introduced to find the most suitable
one for our project. Secondly, the URDF model is built, based on which the
autonomous navigation is simulated by Gazebo and the results are visualized by
RViz. Lastly, a real robot with a three-layer mechanical system: chassis, control,
and application layers; and a two-layer control system: a higher-level distributed
computer system and a lower-level motion control system, is designed to perform
the path planning algorithms.

To realize the ability of avoiding moving obstacles, D* Lite with high adaptability
to dynamic environments, is chosen as the GPP algorithm, while a DAPF is
proposed as the LPP algorithm, which takes into consideration the moving obstacle
detected by OpenCV tools such as background subtraction and blob detection, and
tracked by the Kalman filter estimating its position and velocity.

The feasibility of the algorithm is verified by MATLAB and ROS simulation.
The experimental performances of different path planning methods on real robot
in the laboratory environment are compared to stress the improvement introduced
by the algorithm developed in this thesis.

Keywords: path planning; obstacle avoidance; ROS; AMR; APF; OpenCV;
moving obstacles.

Acknowledgements

Throughout the process of writing this thesis, I have received a lot of help and
support. I would first like to thank my supervisor, Prof. Marina Indri, whose
expertise was crucial in developing the study questions and methodology. Your
insightful feedback encouraged me to improve my thoughts and raised the caliber
of my work. I would like to thank David and Fiorella for their kind support and
helpful suggestions.

I would also like to thank all the CIMers who gave me the opportunity to do
the thesis in CIM 4.0, especially my tutor, TOVAR ordoñez, for his invaluable
guidance during my work. You provided me with the resources I required to choose
the best direction and effectively finish my thesis.

I would particularly like to acknowledge my teammates, for their wonderful
collaboration and patient support. We study together; we go to launch/lunch
together; we fight together.

Additionally, I would like to thank my parents for their unconditional giving
and everlasting support. You are always there for me.

Last but not least, I would like to thank my friends, who offered intriguing
conversations and enjoyable diversions from my studies.

Grazie,
WANG SHIXIAN

i

Table of Contents

List of Tables v

List of Figures vi

Acronyms x

1 Introduction 1
1.1 Structure of thesis . 2

2 State of the art 4
2.1 Path Planning . 4
2.2 Global Path Planning . 5

2.2.1 A* algorithm . 5
2.2.2 Rapidly-exploring Random Tree algorithm 8
2.2.3 Ant Colony Optimization algorithm 10

2.3 Local Path Planning . 12
2.3.1 Dynamic Window Approach 13
2.3.2 Time Elastic Band . 14
2.3.3 Artificial Potential Field method 15

3 Architecture of Autonomous Mobile Robots based on ROS 17
3.1 Robot Operating System . 18

3.1.1 Design goals . 18
3.1.2 Computation graph level . 19

3.2 Kinematic model of OMR with Mecanum wheels 20
3.2.1 Omnidirectional Mobile Robot 21
3.2.2 Kinematic model . 24

3.3 Simulation . 28
3.3.1 The URDF model . 28
3.3.2 tf: the transform library . 31
3.3.3 Gazebo . 34

iii

3.3.4 Navigation stack . 37
3.3.5 Simultaneous Localization and Mapping (SLAM) 43

3.4 Real robot . 45
3.4.1 Mechanical system . 45
3.4.2 Control system . 45
3.4.3 Microcomputers and Perception sensors 48

4 Development of path planning 54
4.1 GPP using D* Lite . 54

4.1.1 D* Lite compared with A* and LPA* 55
4.1.2 Principle of D* Lite . 56

4.2 LPP using DAPF method . 57
4.2.1 Classical Artificial Potential Field method 59
4.2.2 Improved Artificial Potential Field method 60
4.2.3 Strategy of following global path 60
4.2.4 Dynamic Artificial Potential Field (DAPF) 64

5 Simulations and experimental results 70
5.1 Comparison of A* and D* Lite Algorithms 70
5.2 Strategy of following global path . 70
5.3 Estimation of the position and velocity of moving obstacles 72

5.3.1 Build the local cost map . 72
5.3.2 Add moving obstacle . 73
5.3.3 Background Subtraction . 74
5.3.4 Blob detection . 76
5.3.5 Tracking . 77

5.4 Simulations . 78
5.4.1 Simulation of avoiding static obstacles 78
5.4.2 Avoid moving obstacle . 79

5.5 Sensor fusion . 82
5.5.1 Odometry and IMU fusion 82
5.5.2 Two Lidars fusion . 83
5.5.3 Lidar and camera fusion . 83

5.6 ROS distributed system . 83
5.7 Experimental results . 83

5.7.1 Experiments of avoiding static obstacles 83
5.7.2 Experiment of avoiding moving obstacle 84

6 Conclusion and future work 90

Bibliography 92

iv

List of Tables

2.1 Differences between GPP and LPP [7] 5

3.1 Pros and cons of three kinds of wheeled models 21
3.2 Technical specifications of the JETSON XAVIER NX [80] 49
3.3 Technical specifications of the JETSON XAVIER NX [81] 49
3.4 Key parameters of RPLIDAR A1 [83] 51
3.5 Datasheet of Intel RealSense Depth Camera D435i [84] 52

4.1 Comparison of A* and LPA* Algorithms [88] 55
4.2 Comparison of LPA* and D* Lite Algorithms [88] 56

v

List of Figures

1.1 FIXIT . 1
1.2 Scout mini . 2

2.1 A 2D grid map with three obstacles: A* [22] 7
2.2 Rapidly-exploring Random Tree algorithm [28] 9
2.3 Ant colony optimization [41] . 11
2.4 Dynamic Window Approach [44] . 13
2.5 Single elastic band described in a vehicle fixed reference frame

(xV , yV) and an obstacle Oj [48] . 14
2.6 g2o frame of Timed Elastic Band algorithm [50] 15
2.7 Artificial potential field method [53] 16

3.1 ROS node communication [60] . 19
3.2 Ackermann geometry [62] . 20
3.3 Omnidirectional wheel mechanisms : (a) Longitudinal Orthogonal-

wheel. (b)MY wheel. (c) MY wheel-II. (d) Swedish wheel. (e)
Omni-wheel. [64] . 21

3.4 Comparison between different types of drives [65] 22
3.5 A Mecanum wheel with coordinate system [66] 23
3.6 Movements to any directions: blue: wheel drive direction; red: vehi-

cle moving direction a) Moving straight ahead, b) Moving sideways,
c) Moving diagonally, d) Moving around a bend, e) Rotation, f)
Rotation around the central point of one axle [67] 24

3.7 The schematic model of OMR and the attached frames [68] 24
3.8 Sketch of a general URDF model [69] 28
3.9 Common URDF joint types [70] . 30
3.10 Sketches of link and joint [71] . 31
3.11 URDF model of Scout mini with sensors 31
3.12 A simple tf tree from two turtles (i.e., two simple virtual robots) in

one of the ROS tutorials, with debugging information. [72] 33
3.13 tf tree of the AMR model . 33

vi

3.14 AMR model in RViz . 34
3.15 World model of CIM4.0 laboratory in Gazebo 35
3.16 Gazebo plugins . 36
3.17 Visualize Gazebo simulated information by RViz 37
3.18 Navigation Stack [74] . 37
3.19 Costmap [75] . 38
3.20 Odometry of two differential wheels [76] 39
3.21 Monte Carlo localization procedure [77] 40
3.22 Matching particle swarms to grid maps [77] 40
3.23 nav_core interfaces [78] . 41
3.24 Process of gmapping . 44
3.25 Costmap built by gmapping . 44
3.26 Lower-level controller . 46
3.27 Motion control . 47
3.28 Distributed architecture . 47
3.29 JETSON XAVIER NX [80] . 48
3.30 JETSON XAVIER NANO [81] . 48
3.31 RPLIDAR A1 [82] . 50
3.32 Visualize RPLIDAR A1 information by RViz 51
3.33 Intel RealSense Depth Camera D435i [84] 52
3.34 Visualize depth image by RViz . 53

4.1 D* Lite path planning algorithm [12] 58
4.2 FBD of robot in artificial potential field [89] 59
4.3 Local goal . 61
4.4 FBD of robot in APF with improved attractive field 63
4.5 Paths in a 2D grip map . 63
4.6 The FBD of the robot in the APF with improved attractive and

repulsive field . 64
4.7 The FBD of the robot in the APF with improved attractive and

dynamic repulsive field . 66
4.8 Robot follows the global path and avoids static obstacles 67
4.9 Robot follows the global path and avoids static and moving obstacles 68
4.10 Zoomed view of avoiding moving obstacle 68

5.1 Comparison of A* and D* Lite algorithms 71
5.2 Build the local cost map . 72
5.3 Simulated moving obstacle in Gazebo 75
5.4 Background Subtraction scheme [90] 75
5.5 Blob detection [91] . 76
5.6 Parameters of blob detection . 77

vii

5.7 Contour of moving obstacle detected by blob detector 78
5.8 Basic concept of Kalman filter . 79
5.9 Tracking of the moving obstacle . 79
5.10 Newly added static obstacles . 80
5.11 Simulation of avoiding static obstacles 80
5.12 Passage of narrow space . 81
5.13 Simulation of avoiding moving obstacle 81
5.14 Odometry and IMU fusion . 82
5.15 Fusion of two Lidars . 85
5.16 Lidar and camera fusion . 86
5.17 Cost map of the CIM4.0 laboratory 86
5.18 Experimental of avoiding static obstacles by D* Lite and DAPF . . 87
5.19 Experimental of avoiding static obstacles by A* and DWA 88
5.20 Experiment of avoiding moving obstacle 89

viii

Acronyms

ACO
Ant Colony Optimization algorithm

AGV
Autonomous Guided Vehicles

AI
Artificial Intelligence

AIoT
Artificial intelligence of things

AMCL
Adaptive Monte Carlo Localization

AMR
Autonomous Mobile Robots

APF
Artificial Potential Field

BS
Background Subtraction

CAD
Computer Aided Design

DAPF
Dynamic Artificial Potential Field

x

DOF
Degree Of Freedom

DWA
Dynamic Window Approach

EB
Elastic Band

EKF
Extended Kalman filter

FBD
Free Body Diagram

GIS
Geographic Information System

GNRON
Goal Non-Reachable with Obstacles Nearby

GPP
Global Path Planning

GPS
Global Positioning System

IMU
Inertial Measurement Unit

IP
Internet Protocol

LPA*
Lifelong Planning A*

LPP
Local Path Planning

xi

LQE
Linear Quadratic Estimation

MCL
Monte Carlo Localization

MLE
Maximum Likelihood Estimate

MP
Mobile Platform

ODE
Ordinary Differential Equation

OGRE
Object-Oriented Graphics Rendering Engine

OMR
Omnidirectional Mobile Robot

PID
Proportional Integral Derivative

PLC
Programmable Logic Controller

PRM
Probabilistic RoadMap

ROS
Robot Operating System

RRT
Rapidly-exploring Random Tree

SLAM
Simultaneous Localization and Mapping

xii

TCP/IP
Transmission Control Protocol/Internet Protocol

TEB
Timed Elastic Band

TOF
Time Of Flying

TSP
Travelling Salesman Problem

UART
Universal Asynchronous Receiver/Transmitter

UAV
Unmanned Aerial Vehicle

UDP
User Datagram Protocol

URDF
Unified Robot Description Format

XML
Extensible Markup Language

xiii

Chapter 1

Introduction

Industry 4.0 represents a new paradigm for intelligent and autonomous manu-
facturing. It more profoundly integrates manufacturing operations systems with
communication, information and intelligence technologies [1]. The ongoing Indus-
trial Revolution necessitates a high level of automation in order to be flexible and
adaptive enough to comply with the demands of market, faster and lower-cost.
Autonomous and collaborative robots will play an ever-greater role in this context.
Therefore, the FIXIT project is proposed by CIM4.0, with the goal of provid-
ing interactive support for the human operator within an industrial or logistic
environment to meet the Industry 4.0 requirements.

Figure 1.1: FIXIT

The FIXIT team shown in Fig. 1.1 is composed of two parts: the Autonomous
Mobile Robot (AMR) and the Unmanned Aerial Vehicle (UAV). The AMR is based
on the Scout mini platform seen in Fig. 1.2, which is an Omnidirectional Mobile
Robot (OMR), and equipped with various sensors to percept surroundings, for ex-
ample, Lidar and camera. Besides, the chassis of UAV is produced by 3D print with
optimal structures, installed with sensors and actuators to implement unmanned

1

Introduction

flight. Above all, these two components will collaborate by communication, taking
full advantages from each other and expanding the working area.

Figure 1.2: Scout mini

The objective of this thesis is to develop and implement an obstacle avoidance
system to be executed on the AMR of FIXIT.

AMRs are a particular class of robot that can independently comprehend and
navigate its surroundings. AMRs are distinct from their predecessors, Autonomous
Guided Vehicles (AGVs), which depend on tracks or predetermined trajectories
and frequently need operator supervision. Unrestrained by wired power, AMRs
perceive and navigate through their environment using a complex set of sensors,
artificial intelligence, machine learning, and computation for path planning. AMRs
have sensors, so if they come into an unexpected obstacle while navigating their
surroundings, such a fallen box or a crowd of people, they will employ a navigation
strategy like collision avoidance to slow down, stop, or redirect their path around
the object and then carry on with their work.

Path planning and obstacle avoidance technology is an important research
field of AMR. So far, several algorithms are developed to implement autonomous
navigation. However, most of them are focued on avoiding static obstacles. The
moving obstacles such as human, vehicles and working machines, do exist at the
working environment of an AMR. Therefore, the ability of avoiding moving obstacles
during navigation is necessary for application of AMR in industry.

Considering the indeed demands, and exploiting the Robot Operating System
(ROS), a navigation system with the path planning and obstacle avoidance tech-
nology is developed in this thesis, especially with the capability of avoiding moving
obstacles.

1.1 Structure of thesis
Firstly, taking advantage of ROS, an AMR is designed and built with simplified pro-
cesses. secondly, existing global path planning and local path planning algorithms

2

Introduction

are improved. The Artificial Potential Field (APF) method is used as robot local
path planning algorithm. A Dynamic Artificial Potential Field (DAPF) method
with multi-target points is proposed, which enables the robot to walk along the
global path, meanwhile, having a good obstacle avoidance ability against dynamic
obstacles. Finally, path planning experiments in different situations were carried
out with the AMR.

The main contents of this thesis are as follows:
Chapter 1 introduces the FIXIT project.
Chapter 2 introduces the state of art of path planning algorithms, including

global path planning and local path planning algorithm.
Chapter 3 describes the architecture of a AMR based on ROS. Firstly, Robot

Operating System (ROS) is introduced. Secondly, the kinematic model of OMR
with Mecanum wheels is analysed. Thirdly, the URDF model of the robot is built
and simulated in gazebo. Finally, the real robot is constructed. A two level control
system including motion control system and distributed computer system is built,
as well as the mechanical structure and perception system.

Chapter 4: D* Lite (GPP) is introduced as a Global Path Planning. A Dynamic
Artificial Potential Field (DAPF) method is proposed to make up the drawbacks
of traditional APF. More specifically, a strategy of following global path by setting
local goal point in real time is proposed. Besides, the information of relative velocity
between robot and dynamic obstacles is added to the potential field, resulting a
better performance of collision avoidance when encountering with moving obstacles.

Chapter 5: the path planning algorithm is implemented in ROS simulation
environment and on real robot. A strategy of estimating position and velocity of
moving obstacle is applied. And the performance is compared to path planning
algorithm provided by ROS.

3

Chapter 2

State of the art

2.1 Path Planning

Over the past decades, path planning techniques have had a wide range of appli-
cations in many fields, such as hierarchical routes for networks in wireless mobile
communication [2], radar search avoidance of cruise missiles, Global Positioning
System (GPS) navigation, road planning based on Geographic Information System
(GIS), and resource management and configuration issues. Basically, the planning
problem that can be topologically described as point-line networks can be solved by
the method of path planning. Path planning is also a fundamental issue in mobile
robotics, which aims to find an optimal or sub-optimal obstacle-free path from a
starting location to a destination while optimizing some performance criteria [3],
such as distance, time, or energy, with distance being the most commonly adopted
criterion [4].

Generally, with respect to whether full knowledge of the environment is available
or not [5], path planning can be categorized into Global Path Planning (GPP)
and Local Path Planning (LPP). GPP, when used offline, chooses a path devoid
of obstacles while being fully aware of its surroundings. LPP, also known as
online path planning, creates an effective path utilizing little or no prestored
environmental information [6]. Referring to the information from sensors, LPP
considers the environment more complexly with dynamic changes compared to
GPP provided with a static map. In terms of purpose, the goal of global path
planning is to generate a path that meets certain optimization indicators, while
local path planning tends to focus on the practicability and obstacle avoidance
performance of the path. The differences between GPP and LPP are listed in table
2.1. Therefore, in practical applications, global and local path planning are often
combined to achieve complementary advantages.

4

State of the art

GPP LPP
Map based Sensor based
Deliberative system Reactive system
Relative slower response Fast response
Assume complete knowledge of
the workspace area

Assume incomplete knowledge of
the workspace area

Obtain a feasible path leading to goal Follow path to while avoiding obstacles
or objects while moving towards target

Table 2.1: Differences between GPP and LPP [7]

2.2 Global Path Planning
By combining accumulated sensor data and a priori knowledge, GPP is a method
of enabling an AMR to choose the optimal path to a goal position [8]. It is a
slow and deliberative process that finds the most efficient path to a long-term
goal, concerning with long-range planning instead of vehicle stability or small-scale
obstacles, which are left to the LPP. The planning method entails two basic steps:
gathering the relevant data into an acceptable and effective configuration space;
and then employing a search algorithm to choose the optimum path within that
space based on the user’s pre-defined criteria.

Traditional methods and intelligent methods are the two primary divisions of
the path planning techniques now in use. Prominent traditional planning methods
include the search-based algorithms and sampling-based algorithms. Search-based
methods contain global visibility graph algorithm [9], for example, Dijkstra algo-
rithm [10], A* algorithm and a series of variations, for instance, D* [11], D* lite
[12] and Lifelong Planning A* (LPA*) [13]. Moreover, sampling-based algorithms
include Probabilistic RoadMap (PRM) [14], Rapidly exploring Random Tree (RRT),
RRT* and informed RRT*, etc. Besides, intelligent planning methods include
fuzzy logic [15], neural networks [16] [17], Ant Colony Optimization algorithms
(ACO), genetic algorithms [18] and particle swarm optimization algorithms [19].
Correspondingly, three representative algorithms are introduced in the following
sections.

2.2.1 A* algorithm
A* is a best-first search algorithm that is informed, meaning it is programmed in
terms of weighted graphs. It starts at a particular starting node in the graph and
intends to find the shortest path to the specified goal node with the smallest cost

5

State of the art

(least distance travelled, shortest time, etc.). It accomplishes this by keeping track
of a tree of paths leading from the start node and extending each of those paths by
one edge until its termination requirement is met.

A* decides which of its paths to extend for each iteration of its main loop,
referring to the path’s cost and an estimate of the cost needed to succeed the path
all the way to the target. A* specifically chooses the path with the lowest:

f(n) = g(n) + h(n) (2.1)
where n is the next node on the path, g(n) is the cost of the path from the

start node to n, and h(n) is a heuristic function [20] (Manhattan, Euclidean or
Chebyshev distance) that estimates the cost of the cheapest path from n to the
goal.

As an example to illustrate heuristic distance, since a straight line is physically
the shortest distance that may exist between any two places, while looking for the
shortest path on a map, h(n) might stand in for that distance. Depending on the
range of motions available (4-way or 8-way), employing the Manhattan distance
or the octile distance becomes preferable for a grid map from a video game. This
algorithm’s advantage is that the distances used as a criterion can be changed,
added, or substituted. This provides a large range of variations on this fundamental
idea. For example, time, energy consumption, or safety can also be included in
the function f(n) [21]. The heuristic h is referred to as monotone or consistent
if it meets the extra requirement h(x) ≤ d(x, y) + h(y) for every edge (x, y) of
the graph, where d specifies that edge’s length. With a consistent heuristic, A* is
guaranteed to discover an optimal path without processing any node more than
once. A* is comparable to performing Dijkstra’s algorithm with the decreased cost
d′(x, y) = d(x, y) + h(y)− h(x).

Typical implementations of A* use a priority queue called "open set" or "fringe"
to perform the repeated selection of minimum (estimated) cost nodes to expand.
The node with the lowest f(n) value is removed from the queue at each stage of
the process, and its neighbors’ f and g values are modified accordingly before they
are added to the queue. The process keeps running until the removed node is the
goal node, and as a result, the node with the lowest f value among all fringe nodes
becomes the goal node. Since h at the target is zero in an admissible heuristic, the
f value of that goal also equals the cost of the shortest path.

An illustration of A* search procedure on a rectangular grid with three obstacles
is shown in Figure 2.1. The destination is labeled by 33 on the right and the start
node is tagged with 0 on the left. White circles are generated nodes in OPEN,
while black dots are expanded nodes in CLOSED (all of their successors have been
generated before the target has been found). The Manhattan distance from the
start node is used to calculate the g values of the nodes, which are represented
by their labels. An ideal route from the start node to the goal would cost 33.

6

State of the art

Figure 2.1: A 2D grid map with three obstacles: A* [22]

The nodes are connected via a traversal tree. The Manhattan distance to the
goal, measured on a complete grid with no obstacles, serves as the heuristic h
that directs the search process of A. Fig. 2.1 illustrates how the heuristic, as
opposed to the breadth-first search approach, prunes the search: The majority
of A* path candidates depart from the start node to the right. Path candidates
in the breadth-first approach would radiate outward in all directions, resembling
a "Manhattan ball" around the start node. Notably, nodes in Fig. 2.1 create
substantial heaps in front of the black obstructions.

A* comes to an end if there are no paths that can be extended or if the path it
chooses to extend leads from start to goal. A* is guaranteed to deliver a least-cost
path from start to goal if the heuristic function is admissible, which means that it
never overestimates the real cost of getting there.

Since all nodes in closed set remember their predecessors, the path made up by
nodes with correct sequence can be searched reversely starting from the goal point,
and keep tracking the predecessor of the node until the start node is some node’s
predecessor.

The following presents the pseudocode for A* [23]:

7

State of the art

Algorithm 1 ALGORITHM A*
(1) Put the start node s into OPEN.

(2) IF OPEN is empty THEN exit with failure.

(3) Remove from OPEN and place in CLOSED a node n for which f is minimum.
(Resolve ties for minimal f value, but always in favor of any goal node.)

(4) IF n is a goal mode THEN exist successfully with the solution obtained by
tracing back the pointers back to n.

(5) ELSE expand n, generating all its successors, and attach to them pointers back
to n. FOR every successor n′ of n DO

(5.1) IF n′ is not already in OPEN or CLOSED THEN estimate h(n′), and
calculate f(n′) = g(n′) + h(n′), where g(n′) = g(n) + c(n, n′) and g(s) = 0, and
put n′ into OPEN.

(5.2) IF n′ is already in OPEN or CLOSED THEN direct its pointer along the
path yielding the lowest g(n′).

(5.3) IF n′ required pointer adjustment and was in CLOSED THEN reopen it.
END FOR .

(6) GO TO step 2.

2.2.2 Rapidly-exploring Random Tree algorithm

The motion planning issue is PSPACE-hard [24] from the perspective of computa-
tional complexity, indicating that any complete algorithm, i.e., one that yields a
solution if one exists and returns failure otherwise, is destined to be computationally
intractable [25].

Practical motion planning approaches typically loosen the completion constraints
to gain computational efficiency. A recent branch of this study is sampling-based
methods, which includes algorithms like the PRM and the RRT. The majority of
sampling-based algorithms are probabilistically complete, which means that when
the number of samples approaches infinity, the chance that the algorithm finds a
solution, if one exists, converges to one.

The benefit of sampling-based algorithms is that, even in high-dimensional
state spaces, they can find a feasible motion plan very rapidly (if such a plan

8

State of the art

exists). Additionally, systems with differential constraints can be handled well by
the RRT in particular. Due to these features, the RRT is a useful method for
motion planning on cutting-edge robotic platforms [26].

An RRT grows a tree rooted at the starting configuration by using random
samples from the search space [27]. A connection is made between each sample
and the closest state in the tree as it is being drawn. The new state is added
to the tree if the link is viable (passes totally through free space and adheres to
any constraints). Once the new state is the goal point or within the tolerance
of reaching the goal, the path is found, as figure 2.2 shows. The likelihood of
expanding an existing state is proportional to the size of its Voronoi area when
the search space is sampled uniformly. The tree expands preferentially toward vast
unexplored areas because the greatest Voronoi regions are found in the states that
are at the frontier of the search.

Figure 2.2: Rapidly-exploring Random Tree algorithm [28]

A growth factor frequently sets a restriction on the length of the connection
between the tree and a new state. A new state with a maximum distance along the
line from the tree to the random sample is employed in place of the random sample
itself if the random sample is farther from its nearest state in the tree than this
limit permits. The growth factor then controls the rate of the tree’s growth, while
the random samples govern its direction. This limits the size of the incremental
expansion while maintaining the RRT’s space-filling bias.

By raising the probability of sampling states from a particular region, RRT

9

State of the art

growth can be biased. This is used by the majority of practical RRTs implemen-
tations to direct the search toward the objectives of the planning problem. To
achieve this, the state sampling process is modified to include a small possibility of
sampling the target. The tree expands more greedily toward the goal with a higher
this probability.

However, RRTs are not asymptotically optimal, and the algorithm only sets the
connections between nodes once rather than performing rewiring. The development
of RRT* [29] altered this since it enables rewiring of the tree connections, shortening
the distance from the root to the leaf. RRT* is asymptotically optimal, but in
large environments in particular, its convergence is slow. Informed RRT* [30]
introduced a focused sampling method that samples new nodes inside an ellipsoid.
The starting and goal points serve as the ellipsoid’s focal points. Particularly in big
environments, this strategy accelerated RRT*’s convergence rate. In another way,
the Bi-RRT algorithm was proposed by Kuffner and LaValle [31] in which two trees
were grown from the initial state and target state, respectively, thus improving the
algorithm’s exploring and convergence speed. RRT-connect was then put forth as
a way to increase node extension efficiency [32].

2.2.3 Ant Colony Optimization algorithm
When it comes to intelligent algorithms, ACO is probably best known as a bionic
optimization. It is a global optimization algorithm. The key challenge of this
approach is how to increase the algorithm’s capacity for global searches and rate
of convergence. To find the global optimal path quickly, the ant colony algorithm
must make the search space as large as possible and take advantage of prior
knowledge. The main goal is to resolve discrepancies between the algorithm’s
randomization and the intensity of the pheromone update. As a result of this issue,
numerous researchers have conducted in-depth research on this subject from two
angles: search strategy and pheromone update strategy, including bidirectional
different search strategies and taboo table optimization strategy [33], turn-back
search strategy [34], and Max-Min ant system [35]. In addition, numerous hybrid
intelligent optimization algorithms have been put up in recent years as answers
to the path-planning problem. A fusion algorithm of ant colony and particle
swarm [36] was introduced to navigate a mobile robot in an environment filled with
obstacles. And [37] proposed a combination of an ant colony algorithm with an
immune algorithm to solve the Travelling Salesman Problem (TSP).

ACO is inspired by the foraging behavior of ants. At the core of this behavior is
the indirect communication between the ants with the help of chemical pheromone
trails [38], which enables them to find short paths between their nest and food
sources, as shown in Fig. 2.3. Blum [39] used ACO algorithms to solve global
optimization issues by taking advantage of this trait of actual ant colonies. Dorigo

10

State of the art

[40] developed the first ACO algorithm and since then numerous improvements
of the ant system have been proposed. The ACO algorithm has good scattered
calculative mechanisms and strong robustness. ACO is simple to combine with
other approaches and performs well in solving challenging optimization issues.
ACO uses basic mathematical formulas to move these ants in the search space in
accordance with the transition probability and total amount of pheromone in the
area to optimize a problem.

Figure 2.3: Ant colony optimization [41]

Each ant advances from state x to state y, which corresponds to a more complete
intermediate solution, at each step of the process. Thus, in each iteration, each ant
k computes a set Ak(x) of viable expansions to its current state, and in probability,
it travels to one of them. For an ant k, the likelihood pk

xy that it will move from
state x to state y depends on the interaction of two values: the attractiveness of
the move (as determined by some heuristic), which indicates its a priori desirability,
and the trail level of the move (a measure of how effective it has been in the past).
The trail level serves as an a posteriori assessment of the move’s desirability.

In general, the kth ant moves from state x to state y with probability

pk
xy =

(τα
xy)(ηβ

xy)q
z∈allowedx

(τα
xz)(ηβ

xz)
(2.2)

where τxy is the quantity of residual pheromone for transition from state x
to y, α ≥ 0 is a factor to control the effect of τxy, ηxy is the desirability of state
transition xy (a priori knowledge, typically 1/dxy, where d is the distance) and
β ≥ 1 is a parameter to regular the impact of ηxy. τxz and ηxz represent the trail
level and attraction for the other possible state transitions.

When all ants have finished their solution, the trails are typically updated, with
the level of the trails increasing or decreasing to reflect moves that were a part

11

State of the art

of "good" or "bad" solutions, respectively. A typical rule to update the global
pheromone is:

τxy ← (1− ρ)τxy +
mØ
k

∆τ k
xy (2.3)

where τxy is the is the quantity of residual pheromone for a state transition xy,
ρ is the pheromone evaporation coefficient, m is the number of ants and ∆τ k

xy is
the amount of pheromone deposited by kth ant, typically given for a TSP (with
moves corresponding to arcs of the graph) by

∆τ k
xy =

Q/Lk if ant k uses curve xy in its tour
0 otherwise

(2.4)

where Lk is the cost of the kth ant’s travel (typically distance) and Q is a
constant.

2.3 Local Path Planning
When the robot moves along the global path but in a dynamic or unknown
environment, the information of the real environment refreshes over time. For
example, some obstacles may newly appear or move. To react to the obstacles and
changes in the environment according to the information updated by the perception
system in real time, Local Path Planning (LPP) is mandatory.

In LPP, normally, a robot is guided by a global path generated by GPP from
a starting point to the target point, which is the shortest path, and the robot
follows the path till it senses obstacles. Then the robot performs an obstacle
avoidance algorithm by deviating from the path and, at the same time, updates
some important information such as the new distance from the current position to
the target point, obstacle leaving point, etc. To precisely reach the objective in this
sort of path planning, the robot must constantly be aware of the distance between
the target point and its current location. The local planner converts the global path
into local one piece by piece while taking into account the dynamic obstacles and
the kinematic or dynamic constraints of the robot. The map is therefore condensed
to the area around the robot and updated as it moves in order to recalculate the
path at a certain rate. The global map cannot be directly used for LPP because
the sensors cannot reach and update it in every region, and using a high number of
cells would increase the processing cost.

Varying structures and characteristics of robots results in various kinematic
and dynamic constraints; and the application environments are also different, for
example, AMR working in factory, autonomous vehicle moving on the street. From
the specified requirements came diverse LPP methods.

12

State of the art

2.3.1 Dynamic Window Approach
The Dynamic Window Approach (DWA) [42] is a velocity-based local planner that
calculates the optimal collision-free (’admissible’) velocity for a robot required to
reach its goal. A Cartesian target (x, y) is converted into a velocity command (v, w)
for a moving robot. An advantage of this method is that it taking into account the
kinematic and dynamic constraints of a mobile robot during planning (many of the
vector field and vector field histogram approaches do not).

The determination of a valid velocity search space and the choice of the optimal
velocity are the two key objectives of DWA. The set of velocities that create a safe
trajectory, or allow the robot to halt before colliding, given the set of velocities the
robot can achieve in the following time slice considering its dynamics (the "dynamic
window"), constitute the search space. To acquire the heading that is closest to the
goal, maximize the robot’s clearance and velocity, the optimal velocity is chosen. In
[42] and [43], several recommendations are made for the utility function, including
the norm of the resulting velocity vector (a large norm is preferred, allowing robots
to move at the highest efficiency under the limit of velocity), minimum clearances
to obstacles, the possibility of stopping at the target point, and components of
velocity alignment with the preferred direction.

Figure 2.4: Dynamic Window Approach [44]

The basic processes of DWA are as follows:
1. Discretely sample in the control space of the robot (dx, dy, dθ).
2. Perform a forward simulation from the robot’s current state for each sampled

velocity to predict the future state in a short time slot, which will generates
trajectories with same amount of velocity samples.

3. Use a scoring system that takes into account factors like speed, distance
to obstacles, goal, and the global path to evaluate each trajectory that emerged
from the forward simulation. Discard infeasible trajectories (those that collide with
obstacles).

4. Select the trajectory with the best score, and send the corresponding velocity
to the mobile base.

13

State of the art

5.Rinse and repeat.
Furthermore, the Global Dynamic Window Approach [43] uses an NF1 navi-

gation function to guide the DWA. The NF1 function is a lookup table that has
already been constructed that contains the shortest path lengths between each
cell in an occupancy grid and the target. The NF1 database is too expensive to
update frequently and only captures obstacles as a static snapshot. The motion
planning algorithms must ultimately modify their behavior in response to changing
environmental conditions. Implementing an intelligence that modifies these param-
eters from motion planning algorithms is therefore crucial. Depending on the local
conditions, several investigations adjust DWA constants using novel solutions. In
the past, Hong et al. [45] adapted DWA using a fuzzy logic controller, achieving
new suitable weights. The desired position and the position of the obstacles are
taken into account while changing these weights. Abubakr et al. [46] adopted
the same controller; however, the weights were adjusted with obstacle distribution
information.

2.3.2 Time Elastic Band
In 1993, Sean Quinlan et al [47] proposed the Elastic Band (EB) algorithm for
obstacle avoidance. The algorithm regards the path as a rubber band consisting
of waypoints connected by springs that generate internal tension. One end of
the elastic band is fixed to the vehicle, as depicted in Fig. 2.5, and obstacles are
modeled as external points with repulsive forces, causing the deformation of the
rubber band, in other words, the path.

Figure 2.5: Single elastic band described in a vehicle fixed reference frame (xV , yV)
and an obstacle Oj [48]

Since EB does not consider constraints like the minimum turning radius, maxi-
mum speed and acceleration of the moving robot, it has not received much attention
and got general application. With the continuous development of science and tech-
nology, Christoph Rosmann et al [49]. proposed a Time Elastic Band (TEB) path
planning algorithm based on the EB algorithm in 2012. The TEB transforms

14

State of the art

an initial path made up of a series of waypoints into a trajectory with a clear
dependence on time, allowing for real-time control of the robot. The approach
can be easily expanded to include additional objectives and constraints due to its
modular formulation. Incorporating the idea of graph optimisation and taking
into account time interval information, the algorithm has velocity constraints,
acceleration constraints, kinematic constraints, and incomplete constraints on the
robot, as well as constraints on obstacle distances. Thus, the LPP problem is
transformed into a multi-constraint objective optimisation problem depending on
a few consecutive configurations, which leads to the sparse structure. Fig. 2.6
shows the general framework of graph optimization, g2o, which could be used to
quickly and effectively solve the sparse structure like TEB based on the hyper-graph,
improving the calculation speed, where vertex s stands for pose, vertex dt stands for
differential time, edge h represents kinematic constraint, edge ρ represents obstacle
constraint, edge v is velocity constraint, and a is velocity constraint. Last but not
least, edge t denotes optimal time constraint. By solving this graph optimisation
problem, the optimal controlled variables such as velocity and acceleration can be
derived, as can the path.

Figure 2.6: g2o frame of Timed Elastic Band algorithm [50]

Compared with the traditional EB algorithm, the TEB algorithm considers more
comprehensive and practical constraints, and has strong adaptability to dynamic
obstacles, so it is widely used in autonomous navigation of robots.

2.3.3 Artificial Potential Field method
The Artificial Potential Field (APF) method originates from the idea of field theory
in physics and was first proposed by Khabit and Krogh [51]. The foundation of
APF approach is the gradient descent search method, which aims to minimize

15

State of the art

the potential function. Goal point is surrounded by an attractive potential field,
whereas obstacles that must be avoided are surrounded by repulsive potential fields.
If the surroundings is unimpeded, the attractive potential is typically a bowl-shaped
energy well that pulls an object toward its center. However, in an environment with
obstructions, repulsive potential energy hills are added to an attractive potential
field at the sites of the obstructions in order to repel the objects, as depicted
in Fig.2.7. A force equivalent to the potential’s negative gradient is applied to
the item. This force pushes the object downward until it reaches the location
where it expends the least amount of energy. The technique is frequently used in
the field of real-time obstacle avoidance and path planning due to its benefits of
straightforward mathematical analysis, cheap computer complexity, and a smooth
path [52].

Figure 2.7: Artificial potential field method [53]

However, this approach has certain drawbacks: 1) There is no way to go past
obstacles that are closely placed; 2) In a narrow passage, the robot overshoots its
equilibrium position and either oscillates or runs in a closed loop; and 3) Goal
Non-Reachable with Obstacles Nearby (GNRON) problems. The robot might
be caught in a local minimum before completing its task. Therefore, the APF
has been actively researching the avoidance of local minima. The use of effective
search algorithms that can escape from a local minimum and the redefinition of
potential functions with no or few local minima have both helped to solve this
issue. The former class of strategies include: repulsive potential functions with
circular thresholds [54] or Gaussian shapes [55], the navigation function [56], and
the superquadratic potential function [57].

16

Chapter 3

Architecture of Autonomous
Mobile Robots based on
ROS

An AMR system can be divided into two major subsystems: software system and
hardware system. A mobile robot’s hardware consists of mechanical and electronic
components that must work in a synergistic way. Consequently, the design phases
must take into account both mechanical and electronic processes and procedures
[58]. The software system is composed of the upper computer system and the
bottom drive system. Generally speaking, the hardware structure of most mobile
robots is similar, mainly including chassis, power module, actuators, controllers and
sensors, and the physical connection of these components are easy to build. But
writing software for robots is challenging, especially as robotics’ scale and scope
continue to expand. The hardware of various robots can differ greatly, making
code reuse complicated. Additionally, the quantity of the necessary code can be
overwhelming because it must include a deep stack that extends from driver-level
software up through perception, abstract thinking, and beyond. Robotics software
designs must also facilitate extensive software integration efforts, as the required
breadth of knowledge is far beyond the scope of any individual researcher [59]. To
solve this problem, the increasingly popular Robot Operating System (ROS) is
used as the framework of the robotics software which greatly simplifies the process
of building the software system.

17

Architecture of Autonomous Mobile Robots based on ROS

3.1 Robot Operating System
ROS is an open-source, meta-operating Robot Operating System. ROS offers
a structured communications layer on top of the host operating systems of a
heterogeneous compute cluster rather than functioning as an operating system
in the classic sense of process management and scheduling, more specifically,
providing services, such as hardware abstraction, low-level device control, common
functionality implementation, message-passing between processes, and package
management. Additionally, it offers resources and libraries for accessing, creating,
writing , and executing code across numerous machines.

3.1.1 Design goals

It is possible for executables to be separately programmed and loosely connected
at runtime because to the distributed infrastructure of processes known as ROS
Nodes. These processes can be organized into Stacks and Packages that are simple
to share and distribute. In order to promote distributed cooperation, ROS also
provides a federated system of code repositories. This design allows for individual
decisions to be made about development and implementation at every level, from
the filesystem to the community, but it can all be gathered via ROS infrastructure
tools.

In support of sharing and collaboration, the philosophical goals of ROS can be
summarized as:

1. Thinness: ROS is made to be as thin as possible. It is quite simple to adhere
to this "thin" philosophy because the ROS build system uses CMake and conducts
modular builds inside the source code tree. Since almost all complexity is contained
in libraries, and only tiny executables that expose library functionality to ROS are
produced, code can be extracted and reused more easily than it was intended to.
There is no need to wrap main() function, so that code written for ROS can be
used with other robot software frameworks. This has the logical consequence that
ROS is simple to connect with various robot software frameworks: OpenRAVE,
Orocos, and Player have already been integrated with ROS.

2. ROS-agnostic libraries: The desired development approach is to create
libraries that are independent of ROS and have clear, useful interfaces.

3. Language independence: The ROS framework is simple to implement in
any current programming language, demonstrating its language independence. It
is already implemented in Python, C++, Octave, and LISP, besides, and it has
experimental libraries in Java and Lua.

4. Simple testing: The unit/integration test framework integrated into ROS,
rostest, makes it simple to set up and take down test setups.

18

Architecture of Autonomous Mobile Robots based on ROS

5. Scaling: Both big runtime systems and extensive development processes are
suitable for ROS.

6. Peer-to-Peer: A system created using ROS is made up of several processes
that may be running on various hosts and are linked in real time by a peer-to-peer
topology. Peer-to-Peer connectivity, combined with buffering or "fanout" software
modules where necessary, avoids the issue of unnecessary traffic flowing across the
slow wireless link.

7. Tools-based: Rather than creating a monolithic development and runtime
environment, ROS is designed with a microkernel, where a large number of small
tools are utilized to generate and run the many ROS components.

3.1.2 Computation graph level
The peer-to-peer network of ROS processes that are working together to process data
is known as the Computation Graph. Nodes, Masters, Parameter Servers, Messages,
Services, Topics, and Bags are the fundamental concepts of ROS’ Computation
Graph, all of which contribute data to the Graph in various ways.

Nodes are processes that perform computation. It is practical to represent
peer-to-peer communications as a graph when multiple nodes are active, with
processes acting as graph nodes and peer-to-peer links as arcs. There are three
main ways of communication between nodes: publishing and subscribing topics,
requesting and responding to services, and setting parameter servers. The topic is
the carrier of information (message) in ROS. A node communicates with another
node by publishing information on a topic or subscribing to information on a topic.
This method does not require nodes to know each other’s existence, similar to
UDP. Correspondingly, the service is similar to the TCP/IP, a node transmits
information by requesting a service from another node; and the parameter server
can pass parameters before or when the node runs. These three communication
methods enable nodes to be loosely coupled together, and the collapse or change of
some nodes will not cause the overall collapse. The basic structure of ROS node
communication is shown in Figure 3.1.

Figure 3.1: ROS node communication [60]

As mentioned above, ROS has built a complete robot software framework for

19

Architecture of Autonomous Mobile Robots based on ROS

developers, and there are many ready-made algorithms available that do not require
developers to rewrite the relevant code. For example, when studying the problem
of path planning, robot localization, mapping, and other tasks must be completed.
Fortunately, ROS provides developers with a complete navigation framework. The
goal of this thesis is path planning. Therefore, the algorithm verification function
can be realized just by replacing the path planning algorithm in the navigation
system framework (as it will be described in more detail in Chapter 4), which
allows developers to focus on the implementation of the algorithm itself, saves most
of the time, and provides the possibility for rapid algorithm verification [59].

3.2 Kinematic model of OMR with Mecanum
wheels

Wheeled mobile robots, tracked mobile robots, and legged mobile robots are
examples of typical mobile robots. There are constraints at the point where the
wheels make contact with the ground for the wheeled mobile robot. Wheeled mobile
robots are typically divided into three categories: car-like robots, differential robots,
and omnidirectional robots, depending on the extent of the constraints. Similar to
an automobile, the car-like mobile robot cannot move sideways or rotate in place
due to the limits of Ackermann steering (as shown in Fig. 3.2), making it impossible
to use it in confined spaces. In-situ rotational movement is possible for differential
robots with two independent driving wheels and one or more truckles, but sideways
movement is not possible. The omnidirectional robots have extremely powerful
mobility because they can move not only in-situ but also sideways. These mobile
robots are ideal for use in automated factories, hospitals, homes, and other narrow
spaces and have a wide range of potential uses [61]. The benefits and drawbacks of
these three kinds of wheeled models are listed in table 3.1. As a result, OMR is
preferred due to its high flexibility, which is required for collision avoidance in a
dynamic environment.

Figure 3.2: Ackermann geometry [62]

20

Architecture of Autonomous Mobile Robots based on ROS

Kinematic
model Differential Car-like Omnidirectional

Pros Good movement performance,
easy to control Similar to real cars Good mobility

track path precisely

Cons Steering with slip, high wear Limited steering radius

High requirement of
road condition,
complex in structure,
high wear

Table 3.1: Pros and cons of three kinds of wheeled models

3.2.1 Omnidirectional Mobile Robot
Mobile robots should be able to move and maneuver well in confined spaces and
around obstacles. The design of the wheels largely determines these capacities. To
increase the capacity of mobile robotic systems to navigate autonomously, research
is ongoing in this area [63].

Figure 3.3: Omnidirectional wheel mechanisms : (a) Longitudinal Orthogonal-
wheel. (b)MY wheel. (c) MY wheel-II. (d) Swedish wheel. (e) Omni-wheel. [64]

Various omnidirectional wheel mechanisms were proposed in the past few decades.
These mechanisms can be classified into two categories: special wheels and conven-
tional wheels. Many special wheel structures are designed based on the concept
that traction is achieved with constraints in one direction and passive motion is
allowed with the constraints removed in another direction. A traditional special
wheel design involves mounting a number of passive rollers on a regular wheel’s
outer rim so that the driven wheels’ rotating spindles are perpendicular to or at
an angle to the normal wheel, such as the Mecanum wheel. Other special wheel
mechanisms include orthogonal wheel and ball wheel mechanism. These OMRs with
special wheels have good mobility, stability, and the capacity for precisely tracking
the path, but they typically have a complex structural design. In addition, these

21

Architecture of Autonomous Mobile Robots based on ROS

robots typically have drawbacks like a limited capacity for carrying loads and car
body vibration that is easily caused by driven rollers, among other things. Because
small particles can readily fit into the rotating spindle of the powered roller and
prevent the robot from moving, these wheel structures are not suitable for floors
covered in dirt and debris. The simple mechanism of the orthogonal wheel cannot
support enough weight. The structure of the flexibly driven ball wheel system
is very complicated. The OMRs based on conventional wheel mechanism mainly
adopt the casters individually driven in the rotation direction and revolving as
their driving wheels, which has poor stability and agility although it has strong
load capacity. A short comparison between Mecanum drive, holonomic drive and
swerve drive is presented in Fig. 3.4.

Figure 3.4: Comparison between different types of drives [65]

Invented in 1973 by a Swedish engineer (Mecanum Company), named Ilon (Ilon,
1975), The mecanum wheel is an omnidirectional wheel that enables any direction
movement for a land-based vehicle. The Mecanum wheel is designed after a tireless
wheel and has a number of external rubberized rollers that are affixed obliquely to
the entire circle of its rim. Each of these rollers normally has a rotational axis that
is 45 degrees from both the wheel plane and the axle line, as depicted in Fig. 3.5. A
pushing force perpendicular to the roller axle is produced as each Mecanum wheel

22

Architecture of Autonomous Mobile Robots based on ROS

spins. This force can be divided into a longitudinal component and a transverse
component in reference to the vehicle. Each Mecanum wheel is an independent
non-steering drive wheel with its own motor.

Figure 3.5: A Mecanum wheel with coordinate system [66]

The typical Mecanum design is the four-wheel configuration as demonstrated by
one of the Scout mini (Fig. 1.2). In this approach, the thrust produced by each
wheel will be about parallel to the appropriate frame diagonal. The vehicle may
move around with little requirement for space by adjusting the rotational speed
and direction of each wheel. The resultant force of the force vectors exerted on each
wheel generates both linear motions and/or rotations of the AMR. For example:

1. A forward/backward movement results from driving all four wheels in the
same direction at the same speed because the longitudinal force vectors add up
while the transverse force vectors cancel out;

2. Because the transverse vectors cancel out but the longitudinal vectors couple
to produce a torque around the vehicle’s central vertical axis, running both wheels,
all at the same speed, on one side in one direction while the other side in the
opposite direction results in a stationary rotation of the vehicle;

3. The sideways movement is caused by the transverse vectors adding up but
the longitudinal vectors canceling out when the diagonal wheels are moving in one
direction while the other diagonal is moving in the other direction, all at the same
speed.

Vehicle mobility in practically any direction and with any rotation is possible
with a combination of differential wheel motions, as shown in Fig. 3.6.

23

Architecture of Autonomous Mobile Robots based on ROS

Figure 3.6: Movements to any directions: blue: wheel drive direction; red:
vehicle moving direction a) Moving straight ahead, b) Moving sideways, c) Moving
diagonally, d) Moving around a bend, e) Rotation, f) Rotation around the central
point of one axle [67]

3.2.2 Kinematic model
A mathematical model of the robot should be extracted in order to create a control
system and collision avoidance plan. As a result, the robot’s kinematic and dynamic
modeling is carried out in this part, and consequently the differential equations for
the robot’s motion are developed [68].

Figure 3.7: The schematic model of OMR and the attached frames [68]

Figure 3.7 shows the schematic representation of the OMR with four Mecanum
wheels. The Mecanum wheels give the robot an additional degree of freedom to
move in a lateral direction in comparison to conventional nonholonomic wheeled
mobile robots. Three coordinate frames are constructed as indicated in Figure

24

Architecture of Autonomous Mobile Robots based on ROS

3.7 in order to calculate the robot’s position, speed, and acceleration. Coordinate
frame 1 is the inertial reference frame. The body coordinate, frame 2, is aligned
to the robot’s center of mass and spins with it around the z axis. When coordinate
frame 3i; i = 1. . . 4 is mounted to the center of rollers that are in contact with
the ground, its z axis is parallel to frame 2’s z axis and its x axis coincides with
the rollers’ axis of rotation. The corresponding wheel rotates with this coordinate
frame, so their angular velocities are equal. Therefore, the roller rotates around
its x axis at a relative angular speed Ωri. Three generalized coordinates could be
used to describe the position and orientation of the robot in frame 1, q = (x, y, θ).
As shown in Figure 3.7, the angles of rollers with respect to x axis of frame 2
are Γ = [π

2 + ϕ ϕ ϕ π
2 + ϕ] respectively. The coordinate transformation matrices

between frame 2 and 1 and frame 3 and 2 are as follows.

1
2R =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

; 2
1R =1

2 RT (3.1)

2
3Ri =

 cosΓi −sinΓi 0
sinΓi cosΓi 0

0 0 1

; i = 1...4 (3.2)

The movable platform (MP), the wheels, and the rollers that are in contact
with the ground are each given a number from 1 to 9, respectively, to simplify the
notation. As a result, the linear and angular velocities of the MP are as follows
using the time derivative of generalized coordinates:

1V1 =
è

ẋ, ẏ,0
éT

1ω1 =2 ω1 =
è

0,0, θ̇
éT

(3.3)

2V1 =2
1 R1V1 (3.4)

where the vector’s frame number is indicated by the left superscript. The linear
velocity of the center of each wheel in frame 2 is calculated in terms of its position
with respect to the robot’s center of gravity and the MP velocity.

2Vi =2 V1 +2 ω1 ×2 ri/G; i = 2...5 (3.5)

where 2ri/G stands for the position vector of each wheel in frame 2. It is
presumptive that each wheel can independently rotate with angular velocity Ωwi; i =
1. . . 4 relative to MP. Thus, the angular velocity of wheels is determined as follows.

25

Architecture of Autonomous Mobile Robots based on ROS

2ωi = [0 Ωwj θ̇]T ; i = 2...5, j = 1...4
1ωi =2

1 R2ωi

(3.6)

The rollers of the Mecanum wheels can also rotate freely with respect to the
wheel’s body by Ωri; i = 1. . . 4 and their angular velocity vectors could be written
in the following form.

3ωi = [Ωrj 0 θ̇]T ; i = 6...9, j = 1...4
2ωi =2

3 R3ωi

(3.7)

Using (3.6), the linear velocity of the center of each roller is calculated as follows:

2Vj =2 Vi − [RwΩwj 0 0]T ; i = 2...5, j = 6...9 (3.8)
where Rw is the radius of wheels. It is expected that the Mecanum wheels’

rollers are moving without slipping on the surface. As a result, the velocity at each
roller’s point of contact with the ground is zero. (3.9) can also be used to calculate
the linear velocity in the center of the rollers.

2Vj =2 ωi × [0 0 Rr]T ; i = 6...9, j = 6...9 (3.9)
where Rr is the radius of rollers. (3.8) and (3.9) can be combined to form a

system of eight algebraic equations that can be solved to determine the following
values for the angular speeds of the four wheels with respect to the MP (Ωwi) and
the four rollers with respect to the body of the wheels (Ωri).

Ωw =1 Jwq̇ =1 Jw =

 ẋ
ẏ

θ̇

; Ωr =1 Jrq̇ =1 Jr =

 ẋ
ẏ

θ̇

; (3.10)

where Ωw and Ωr (4× 1) are vectors of angular speeds of the wheels and rollers
respectively, and Jw is the Jacobian matrix between wheels angular speed and the
MP velocity in frame 1 in the following form.

Jw = 1
Rw

sin(θ + ϕ)/sinϕ −cos(θ + ϕ)/sinϕ −(Lcosϕ + Hsinϕ)/sinϕ
cos(θ + ϕ)/sinϕ sin(θ − ϕ)/sinϕ (Hcosϕ + Lsinϕ)/cosϕ
cos(θ + ϕ)/sinϕ sin(θ − ϕ)/sinϕ −(Hcosϕ + Lsinϕ)/cosϕ
sin(θ + ϕ)/sinϕ −cos(θ + ϕ)/sinϕ (Lcosϕ + Hsinϕ)/sinϕ

;

(3.11)
The Jacobian matrix Jr with a similar form can be transformed into frame 2

using coordinate transformation matrix from (3.1).

26

Architecture of Autonomous Mobile Robots based on ROS

The following relationship between the angular velocities of the wheels is clear
from (3.10) and (3.17), and it imposes a constraint resulting from the MP’s 3 DOF
planar motion.

Ωw1 + Ωw2 − Ωw3 − Ωw4 = 0 (3.12)

Using (3.17) and the pseudo invers of the Jacobian matrix 1Jw, it was able to
calculate the robot’s linear and angular velocities in terms of the angular speeds of
its wheels.

1J
∗ = (1J

T 1
J)−11J

T ; ẋ
ẏ

θ̇

 = 1J
∗Ωw; (3.13)

(3.13) can be used to determine the MP’s velocity in terms of the angular speed
of the wheels and is in fact the kinematic model of the OMR.

The linear and angular accelerations of each robot component should be described
in order to obtain the robot’s dynamic model. Following are the calculations for
the MP’s linear and angular acceleration:

1a1 = [ẍ, ÿ, 0]T
1α1 =2 α1 = [0,0, θ̈]T
2a1 =2

1 R1a1

(3.14)

The linear and angular velocities of the rollers and the angular velocities of the
wheels are calculated in terms of q and q̇ by substituting Ωwi and Ωri from (3.10) in
(3.6) and (3.8). Therefore, the linear and angular acceleration of these portions are
determined by using the time derivative of (3.5) and (3.8) in frame 1 as follows

2αi =
3Ø

j=1

∂(2wi)
∂qj

q̇j +
3Ø

j=1

∂(2wi)
∂qj

q̈j +2 w1 +2 wi; i = 2...9 (3.15)

2ai =
3Ø

j=1

∂(2Vi)
∂qj

q̇j +
3Ø

j=1

∂(2Vi)
∂qj

q̈j +2 w1 +2 Vi; i = 2...9 (3.16)

27

Architecture of Autonomous Mobile Robots based on ROS

3.3 Simulation

3.3.1 The URDF model
Unified Robotics Description Format (URDF), is an XML format used in academia
and industry to model multibody systems including animatronic robots for theme
parks and robotic manipulator arms for manufacturing assembly lines. Users of ROS,
which provides built-in support for URDF models, are particularly fond of URDF.
Parallel robots are currently not a possibility because only tree structures can be
represented at this time. Furthermore, flexible components are not supported; the
specification implies that the robot is made of stiff links connected by joints.The
specification covers:
• Kinematic and dynamic description of the robot
• Visual representation of the robot
• Collision model of the robot

Figure 3.8: Sketch of a general URDF model [69]

The description of a robot consists of a set of link elements, and a set of joint
elements connecting the links together, as shown in Fig. 3.8. So a typical robot
description looks something like this:

1 <robot name=" test_robot ">
2 <l i n k name=" l i n k 1 ">
3 <v i s u a l />
4 <c o l l i s i o n />
5 <i n e r t i a l />
6 </ l i n k 1>
7

8 <l i n k name=" l i n k 2 ">
9 <v i s u a l />

10 <c o l l i s i o n />
11 <i n e r t i a l />

28

Architecture of Autonomous Mobile Robots based on ROS

12 </ l i n k 2>
13

14 <l i n k name=" l i n k 3 ">
15 <v i s u a l />
16 <c o l l i s i o n />
17 <i n e r t i a l />
18 </ l i n k 3>
19

20 <j o i n t name=" j o i n t 1 " type=" cont inuous ">
21 <parent l i n k=" l i n k 1 " />
22 <c h i l d l i n k=" l i n k 2 " />
23 <o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " />
24 </ j o i n t>
25

26 <j o i n t name=" j o i n t 2 " type=" cont inuous ">
27 <parent l i n k=" l i n k 1 " />
28 <c h i l d l i n k=" l i n k 3 " />
29 <o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " />
30 </ j o i n t>
31 </ robot>

In the above file, the link element describes a rigid body with inertia, collision
and visual features, as depicted in Fig. 3.10 (a). ROS provides transformation
tool for users to input models from popular Computer Aided Design (CAD) tools
such as Solidworks, Pro-engineer, Blender, etc. Although the sub-element, visual,
defines robot appearance, in order to get collision detection and simulate the robot
in Gazebo, the collision element is needed as well. In most of cases of practice, to
get quicker processing during collision detection, simpler geometries in the collision
element is preferred comparing to complex meshes that usually applied for visual
elements. In addition, it is required to define several physical properties of the
robot, i.e. the inertia and contact coefficients like friction, stiffness and damping
coefficients. More specifically, a 3× 3 rotational matrix is specified with the inertia
element. This can only be expressed by 6 elements because it is symmetrical.

 ixx ixy ixz

ixy iyy iyz

ixz iyz izz

 (3.17)

Modeling applications like MeshLab can supply this data. The moment of
inertia tensors listed on Wikipedia can be used to calculate the inertia of geometric
primitives like cylinders, boxes, and spheres.

The joint element sets the joint’s safety limits in addition to describing the kine-
matics and dynamics of joints (Fig. 3.10 (b)). There are quite a few types of joints,
but the most common are:

29

Architecture of Autonomous Mobile Robots based on ROS

Figure 3.9: Common URDF joint types [70]

• revolute - a hinge joint that rotates along the axis within a limited range
specified by the upper and lower limits.
• continuous - a continuous hinge joint that rotates around the axis without

upper and lower limits.
• prismatic - a sliding joint that slides along the axis within a limited range

defined by the upper and lower limits.
• fixed - This joint cannot move, hence it is not actually a joint. Every DOF

is locked. There is no need for an axis, calibration, dynamics, limit, or safety
controller with this kind of joint.
• floating - This joint allows motion for all 6 DOF.
• planar - This joint allows motion in a plane perpendicular to the axis.
Taking floating for example, the joint can be written as:

1 <j o i n t name=" my_joint " type=" f l o a t i n g ">
2 <o r i g i n xyz=" 0 0 1 " rpy=" 0 0 3 .1416 " />
3 <parent l i n k=" l i n k 1 " />
4 <c h i l d l i n k=" l i n k 2 " />
5

6 <c a l i b r a t i o n r i s i n g=" 0 .0 " />
7 <dynamics damping=" 0 .0 " f r i c t i o n=" 0 .0 " />
8 <l i m i t e f f o r t=" 30 " v e l o c i t y=" 1 .0 " lower=" −2.2 " upper=" 0 .7 " />
9 <s a f e t y _ c o n t r o l l e r k_ve loc i ty=" 10 " k_pos i t ion=" 15 "

so f t_lower_l imi t=" −2.0 " so ft_upper_l imit=" 0 .5 " />
10 </ j o i n t>

30

Architecture of Autonomous Mobile Robots based on ROS

(a) link (b) joint

Figure 3.10: Sketches of link and joint [71]

To verify the path planning and obstacle avoidance algorithm, an URDF model
is built according to the basic AMR, which consist of base, wheels, Lidar and
camera as links, whose connections is defined by joints. Components like the chassis
and camera are simply defined as cubic links, while Lidar and wheels are cylindrical
links. Joints between wheels and chassis are defined as continuous, and joints
between Lidar and chassis, camera and chassis are fixed. Then the visual elements,
the meshes of each component, are attached to the corresponding link. In addition,
the inertia matrices of the components are set. Fig. 3.11 shows the URDF model
visualized by RViz, a 3D visualization tool for ROS, where (a) is the visual element
while (b) collision element. This basic structure will be extended after verifying
the feasibility of the path planning algorithms.

(a) collision element (b) visual element

Figure 3.11: URDF model of Scout mini with sensors

3.3.2 tf: the transform library
A robotic system typically has motors, sensors, controllers and communication.
Each component defines its own coordinate. As a result, there are many 3D
coordinate frames that change over time, such as a world frame, base frame, gripper
frame, head frame, etc. When a robot implements tasks, it is necessary to acquire

31

Architecture of Autonomous Mobile Robots based on ROS

the precise relative position between the parts of robot, as well as the objects in
the working environment. The collision avoidance of an AMR can be taken as an
example to demonstrate this. The task is simply moving the robot away from the
detected obstacles. To do this task the relative location between the obstacles and
the AMR must be obtained. For sure, the sensors which the AMR is equipped
with, such as Lidar and camera, can detect the target, but the detected position
is depends on the coordinate of the sensors. Firstly, the transformation between
Lidar and camera should be obtained for sensor fusing, then the fused data should
be transferred to the same coordinate frame with the base and wheels, usually, the
world frame. Another example is a robotic arm that recognizes and grasps objects.
The transformations between the base of the arm, the camera, the gripper, and
the objects should be required. In a word, for any different types of robots execute
diverse tasks, the transforms between all the coordinate frames within the system
must be known. As the complexity of the robotic system growing quickly and
application of distributed system expanding, keeping track of coordinate frames
becomes increasingly difficult, which is a common pain point of developers.

To solve this problem, tf library is available [72], aiming to keep track of multiple
coordinate frames over time by maintaining the relationship between coordinate
frames in a tree structure buffered in time, which allows the individual component
user transform points, vectors, etc between any two coordinate frames at any
desired point in time without requiring knowledge of all the coordinate frames in
the system.

The transform information is processed by the publish and subscribe mechanism
mentioned in Section 3.1.2. Firstly, the message of transform information contain
two pieces of data: the represented coordinate frame and the valid time, which
referred as a Stamp. Secondly, the publisher broadcasts the data at certain frequency
set by users. Lastly, the subscriber receives the values from publishers in a time slot
as shown in Fig. 3.12, then put them into a sorted list where the interpolation can be
done between two adjacent values. Thanks to the publish and subscribe mechanism,
the tf library can accept inputs asynchronously, while the interpolation enhances
robustness of the tf library. Besides, users can acquire desired transformation
between any coordinate frames by function "lookupTransform".

Transformations and coordinate frames can be represented as a graph, with edges
representing transforms and nodes representing coordinate frames. To reach quick
look ups the graph is limited as tree shape, each node can only have one parent
node but several child nodes, avoiding ambiguous searching result of transform. As
an example, the tf tree of the model built in Section 3.3.1 is reported in Fig. 3.13:

32

Architecture of Autonomous Mobile Robots based on ROS

Figure 3.12: A simple tf tree from two turtles (i.e., two simple virtual robots) in
one of the ROS tutorials, with debugging information. [72]

Figure 3.13: tf tree of the AMR model

Furthermore, the tf tree allowing dynamic changes according to the dynamic
robot structure by modifying the nodes and edges. There are two ways most
commonly used to publish tf tree when building the AMR model. One is publishing
static tf transform directly by ROS package "static_transform_publisher", since
although different components are installed on the base, their position are fixed
with respect to base. For example:

33

Architecture of Autonomous Mobile Robots based on ROS

1 <launch>
2 <node pkg=" t f " type=" s tat i c_trans fo rm_publ i she r " name="

l ink1_broadcas te r " args=" 1 0 0 0 0 0 1 l ink1_parent l i n k 1 100 " />
3 </ launch>

where, the arguments are "x y z yaw pitch roll frame_id child_frame_id
period_in_ms".

The other way is by URDF model combined with " robot_state_publisher" and
"joint_state_publisher", packages provided by ROS. In this way, the transforms are
generated according to the robot URDF model, and after that, the corresponding
tf tree is published, proving a straightforward presentation of transforms among
frames, which is adopted by this thesis.

In the RViz rendering tool, the tf tree has been integrated into the Object-
Oriented Graphics Rendering Engine OGRE scene graph. Fig. 3.14 shows the tf
tree both rendered as elements in the OGRE scene graph, as well as being used to
tell the OGRE scene graph of the positions of the meshes of the AMR model.

Figure 3.14: AMR model in RViz

3.3.3 Gazebo

Simulators have played an important role in robotics research, allowing developers
to test novel concepts, methods, and algorithms quickly and efficiently. A robotics
simulator is used to develop embedded robot applications without having to use the
actual equipment, which saves money and time. In some cases, these applications
can be directly translated to the real robot [73].

34

Architecture of Autonomous Mobile Robots based on ROS

Gazebo is an open-source 3D robotics simulator including libraries for physics sim-
ulation, rendering, user interface, communication, and sensor generation. Gazebo
can use multiple high-performance physics engines, such as ODE, Bullet, etc (the
default is ODE) to generate physical interactions between objects. It also provides
realistic rendering of environments such as high-quality lighting, shadows, and
textures. We can use Gazebo to build a virtual "environment" and insert simulations
of our robots into it. Simulated sensors can detect the environment, and publish
the data to the same ROS topics that real sensors would, allowing easy testing of
algorithms. After that, forces may be applied to the robot’s simulated actuators
while accounting for factors like friction. In a world, Gazebo offers the ability to
accurately and efficiently simulate populations of robots in complex indoor and
outdoor environments, making it possible to rapidly test algorithms, design robots,
perform regression testing, and train AI system using realistic scenarios.

Utilizing the Gazebo simulator, a rough world model is built according to the
CIM4.0 laboratory, as depicted in Fig. 3.15, which is the testing environment of
FIXIT.

Figure 3.15: World model of CIM4.0 laboratory in Gazebo

Gazebo plugins give URDF models greater functionality, attaching the simulated
sensors and actuators to the corresponding links, and can tie in ROS messages and
service calls for these sensor output and motor input. It is Gazebo plugin that
connects Gazebo and ROS, as shown in Fig. 3.16.

The plugins used for the basic AMR are Laser Plugin and Planar Move Plugin.
The Laser Plugin simulates laser range sensor by broadcasting LaserScan message
as described in sensor_msgs. Planar Move Plugin written below is a model
plugin that allows arbitrary objects (for instance cubes, spheres and cylinders) to
be moved along a horizontal plane using a geometry_msgs/Twist message, and
publish simulated odometry in the meanwhile. Every cycle, the plugin gives the

35

Architecture of Autonomous Mobile Robots based on ROS

Figure 3.16: Gazebo plugins

object an angular velocity (Z) and a linear motion (XY). Given the fact that the
omnidirectional robot we used, Planar Move Plugin is suitable to simulate the
movement of our AMR.

1 <gazebo>
2 <plug in name=" o b j e c t _ c o n t r o l l e r " f i l ename="

libgazebo_ros_planar_move . so ">
3 <commandTopic>cmd_vel</commandTopic>
4 <odometryTopic>odom</odometryTopic>
5 <odometryFrame>odom</odometryFrame>
6 <odometryRate>20 .0</odometryRate>
7 <robotBaseFrame>base_footpr int</robotBaseFrame>
8 </ plug in>
9 </ gazebo>

The data generated by Gazebo simulated sensors can be visualized by RViz. Fig.
3.17 (a) shows the Gazebo simulation of the AMR in the CIM4.0 laboratory, while
(b) presents the visualized information in RViz including the Lidar data (red point
clouds) and the depth image.

36

Architecture of Autonomous Mobile Robots based on ROS

(a) Simulation in Gazebo (b) Visualized by RViz

Figure 3.17: Visualize Gazebo simulated information by RViz

3.3.4 Navigation stack

When it comes to the AMR based on ROS, the Navigation Stack is one of the
most extensively used and mature packages, as shown in Fig 3.18, which includes
"map_server", providing the 2D occupancy or cost map generated from the ac-
cumulated sensors data; "amcl", Adaptive Monte Carlo Localization (AMCL),
localizing the robot in real time through the given map; "move_base", performing
a cordinated two-layer planning based on the estimated position, as mentioned in
Section 2.1, GPP for finding a path to a chosen goal, while LPP for following the
global path and avoiding obstacles simultaneously. After computation, the velocity
command is sent to the mobile robot by LPP. Moreover, when the move_base
component becomes stuck, it can perform automatic recovery actions including
clearing the current cost map and rotating in situ to refresh the map.

Figure 3.18: Navigation Stack [74]

37

Architecture of Autonomous Mobile Robots based on ROS

costmap_2d

The costmap_2d package offers a configurable structure that maintains an oc-
cupancy grid with information about the accessible path of the robot. Through
the costmap_2d :: Costmap2DROS object, the costmap leverages sensor data
and information from the static map to store and update information about
obstacles in the world. The costmap_2d :: Costmap2DROS object provides a
purely two dimensional interface to its users, meaning that queries about ob-
stacles can only be made in columns. For instance, the equivalent cell in the
costmap_2d :: Costmap2DROS object’s costmap would have the same cost value
if a table and a shoe were placed in the same location in the XY plane but had
different Z positions. This is intended to assist in planar space planning.

Figure 3.19: Costmap [75]

The red polygon represents the robot’s footprint, the blue cells represent obstacles
inflated by the robot’s inscribed radius, and the obstacles in the costmap are
represented by the red cells in the image above. In order for the robot to avoid
colliding with other objects, neither its center point nor its footprint should ever
cross a blue cell.

38

Architecture of Autonomous Mobile Robots based on ROS

The main interface of costmap_2d is costmap_2d :: Costmap2DROS which
maintains much of the ROS related functionality. To keep track of all the layers, it
includes a costmap_2d :: LayeredCostmap. Using pluginlib, each layer is created
and added to the LayeredCostmap in the Costmap2DROS. The layers themselves
may be compiled individually, allowing arbitrary changes to the costmap to be
made through the C++ interface. The fundamental data structure for storing
and accessing the two dimensional costmap is implemented by the costmap_2d ::
Costmap2D class.

Odometry

The ability of a mobile robot to locate itself is a prerequisite for navigation and path
planning. Wheel odometry is the most widely used and cost-effective localization
approach for mobile robots. It’s used by almost all wheeled robots. Odometry is
the use of motion sensors to calculate the change in the robot’s location in relation
to a predetermined point. For instance, if a robot is moving straight forward and
knows the diameter of its wheels, it may calculate the distance traveled by counting
the number of wheel spins, as depicted in Fig. 3.20. Shaft encoders, which generate
a fixed number of pulses per revolution, are frequently mounted on the driving
wheels of robots. The processor can calculate the distance traveled by counting
these pulses. However, due to factors such as a finite wheel encoder resolution
or wheel slippage relative to the ground, the accuracy of the resulting position
estimation is limited. With increasing path length, wheel odometry becomes more
unreliable due to the accumulation of errors.

Figure 3.20: Odometry of two differential wheels [76]

Robots may periodically need to use other sensors to precisely determine the
robot’s position to prevent excessive error buildup. One way providing correction
is the AMCL localization.

39

Architecture of Autonomous Mobile Robots based on ROS

Adaptive Monte Carlo Localization (AMCL)

The Monte Carlo localization algorithm, which uses the particle filter algorithm, is
a probabilistic localization algorithm applied to a two-dimensional occupancy grid
map. In known maps, particle swarm is utilized to describe and track the present
probable pose of mobile robots. With a modest amount of processing and a small
memory footprint, it could estimate global posture.

As illustrated in Fig. 3.21 [77], the Monte Carlo localization procedure is
separated into the following four parts.

Figure 3.21: Monte Carlo localization procedure [77]

When a laser sensor is used to locate a robot on a 2D grid map, it is fairly
simple to calculate the agreement between the laser beams and the occupied grid
if the robot pose is known. As a result, the MCL algorithm, which describes
the robot’s pose with multiple particles, can be applied, as illustrated in Fig.
3.22 [77]. Calculate the particle’s weight based on the map’s agreement, then
find the estimated pose and locate the robot. The MCL algorithm, on the other
hand, has some drawbacks: it can’t handle the robot kidnapping problem. The
localisation will fail if the pose changes are not continuous. Many particles must be
added to improve localization accuracy, which results in a slow rate of localization
convergence.

Figure 3.22: Matching particle swarms to grid maps [77]

40

Architecture of Autonomous Mobile Robots based on ROS

To tackle the difficulties mentioned, the AMCL algorithm is derived from the
MCL algorithm. During resampling, the AMCL method inserts free particles
at random. The key idea is to bound the error introduced by the sample-based
representation of the particle filter. The real posterior is thought to be represented
by a discrete, piecewise constant distribution, such as a discrete density tree
or a multidimensional histogram, in order to calculate this bound. For such
a representation we can determine the number of samples so that the distance
between the Maximum Likelihood Estimate (MLE) based on the samples and the
true posterior does not exceed a pre-specified threshold. The number of particles
required is proportional to the inverse of this threshold, as is ultimately determined.

nav_core

The package, nav_core, provides common interfaces for navigation specific robot
actions.To design actions that can quickly switch their planner, local controller, or
recovery behavior for fresh versions adhering to the same interface, this package
currently offers the BaseGlobalPlanner, BaseLocalPlanner, and RecoveryBehavior
interfaces. All planners and recovery behaviors that expected to be used as plugins
in the move_base node must adhere to these interfaces, as depicted in Fig. 3.23.

Figure 3.23: nav_core interfaces [78]

For global planners used in navigation, the nav_core::BaseLocalPlanner provides

41

Architecture of Autonomous Mobile Robots based on ROS

an interface. This interface must be followed by any global planners created as
move base node plugins. The following global planners currently make use of the
nav_ core::BaseLocalPlanner interface:
• navfn: a grid-based global planner that calculates a robot’s path using a

navigation function. (pluginlib name: "navfn/NavfnROS")
• global_planner: a quick, interpolated global planner created to replace navfn

with something more adaptable. (pluginlib name: "global_planner/GlobalPlanner")
• carrot_planner: a straightforward global planner that makes an effort to bring

the robot as near as possible to a user-specified objective point, even if that point
is inside an obstruction. (pluginlib name: "carrot_planner/CarrotPlanner")

The nav_core::BaseLocalPlanner provides an interface for local planners used
in navigation. All local planners written as plugins for the move_base node must
adhere to this interface which contains four main virtual functions that we need to
realise when rewriting the LPP algorithm.

1

2 Publ ic Member Functions
3 v i r t u a l bool computeVelocityCommands (geometry_msgs : : Twist &

cmd_vel)=0
4 /∗ Given the cur rent po s i t i on , o r i en t a t i on , and v e l o c i t y o f the

robot , compute v e l o c i t y commands to send to the base . ∗/
5 v i r t u a l void i n i t i a l i z e (std : : s t r i n g name , t f : : Trans formListener ∗

t f , costmap_2d : : Costmap2DROS ∗costmap_ros)=0
6 /∗ Constructs the l o c a l p lanner . ∗/
7 v i r t u a l bool isGoalReached ()=0
8 /∗ Check i f the goa l pose has been achieved by the l o c a l p lanner . ∗/
9 v i r t u a l bool setPlan (const std : : vector< geometry_msgs : :

PoseStamped > &plan)=0
10 /∗ Set the plan that the l o c a l p lanner i s f o l l o w i n g . ∗/
11 v i r t u a l ~BaseLocalPlanner ()
12 /∗ Vir tua l d e s t r u c t o r f o r the i n t e r f a c e . ∗/
13 Protected Member Functions
14 BaseLocalPlanner ()

Current local planners using the nav_core::BaseLocalPlanner interface are:
• base_local_planner: outlines how the Dynamic Window Approach (DWA)

and Trajectory Rollout techniques to local control are implemented.
• dwa_local_planner: More flexible y axis variables for holonomic robots are

available in the modular DWA implementation than in base local planner’s DWA.
• eband_local_planner: Implements the Elastic Band method on the SE2

manifold
• teb_local_planner: Implements the Timed-Elastic-Band method for online

trajectory optimization

42

Architecture of Autonomous Mobile Robots based on ROS

• mpc_local_planner: Provides several model predictive control approaches
embedded in the SE2 manifold

An interface for recovery behaviors used in navigation is provided by nav
core::RecoveryBehavior. This interface must be followed by all recovery behaviors
created as Move base node plugins. Utilizing the nav core::RecoveryBehavior
interface, current recovery behaviors include:
• clear_costmap_recovery: Outside of a user-specified range, a recovery behavior

that reverts the costmaps used by move base to the static map
• rotate_recovery: a recovery behavior that rotates the robot 360 degrees in an

effort to clear some space.

3.3.5 Simultaneous Localization and Mapping (SLAM)

The Navigation Stack gets costmap from map_sever, and the costmap stored in
map_server is generated by gmapping, a ROS package that provides laser-based
SLAM.

Many activities envisioned for mobile robots, such as transportation, search and
rescue, or automated vacuum cleaning robots, require a map of the environment to
be solved efficiently. The availability of a precise map enables the construction of
devices that can operate in complex situations only using on-board sensors rather
than relying on external reference systems like GPS. The SLAM problem is a term
used to describe the problem of building maps while posing uncertainty. A wide
range of solutions to this problem can be found in the literature. These methods can
be categorized as either filtering or smoothing. The problem is modeled as an on-
line state estimation in filtering techniques, with the state of the system consisting
of the current robot location and the map. By integrating fresh measurements
as they become available, the estimate is augmented and adjusted. Kalman and
information filters, particle filters, and information filters are examples of popular
approaches. The filtering procedures are sometimes referred as as on-line SLAM
methods to emphasize their incremental nature. Smoothing approaches, on the
other hand, use all of the measurements to estimate the robot’s whole trajectory.
These strategies typically rely on least-square error minimization techniques to
address the so-called full SLAM problem. To build a 2D grid map, gmapping used
the Rao-Blackwellized Particle Filter (RBPF) using input from both a laser sensor
and a robot posture [79].

The process of gmapping is reported in Fig. 3.24, where (a) shows the Gazebo
simulation; (b), (c), (d) present that the robot accumulates the Lidar information to
build the map gradually utilizing the pose provided by the simultaneous localization.

43

Architecture of Autonomous Mobile Robots based on ROS

(a) (b)

(c) (d)

Figure 3.24: Process of gmapping

The final map built by gmapping according to the CIM4.0 laboratory model is:

Figure 3.25: Costmap built by gmapping

44

Architecture of Autonomous Mobile Robots based on ROS

3.4 Real robot

3.4.1 Mechanical system

The mechanical architecture of the OMR, Scout mini, is mainly composed of three
layers: the chassis layer, the control layer and the application layer.
• The Chassis Layer
The movement mechanism and the power supply are both located on this stratum.

Along the rotational axis of the Mecanum wheel, a DC brushless servomotor and
a harmonic reduction are connected with the wheel. The output power of each
DC brushless servomotor is 150 W, and the harmonic reducer has a 50:1 ratio.
Four wheels are positioned symmetrically along the longitudinal center axis of the
chassis. In the meanwhile, the mobile platform is powered by a 24 V 15 Ah lithium
battery.
• The Control Layer
The control system, some on-board sensors, and power converters are all part

of this layer. The control system is made up with controller and motor drives.
Each brushless servomotor is moved by a DC drive with a built-in PID controller.
The PID parameters can be manually adjusted to achieve appropriate dynamic
responses referring to the drive’s expected input speed and feedback from the
encoder installed at the end of servomotor. A FS RC transmitter is also provided
for manually controlling the mobile platform with joysticks.
• The Application Layer
This layer allows a variety of extensions to satisfy diverse requirements. Slide

rails are reserved for quick building top load, e.g., a light-weight robot manipulator
or a fork arm.

3.4.2 Control system

The control system is split into two levels: higher and lower level, in order to perform
motion control and autonomous navigation. A Programmable Logic Controller
(PLC) and an distributed computer system are used in the lower-level and higher-
level controllers, respectively. These two levels communicate through Ethernet.
Since if directly connect the drivers and sensors of Scout mini to the higher-level
controller, the higher-level controller not only needs to execute the path planning
algorithm, but also perform motion control and tedious data processing tasks. Such
a structure will inevitably affect the real-time performance and reliability of the
system.

45

Architecture of Autonomous Mobile Robots based on ROS

Lower-level controller

Therefore, it is better to set a lower-level controller to complete the control of
the driver and information collection, which relieves the heavy calculation of the
host computer, so that the upper computer only focuses on the execution of the
path planning algorithm. The hardware block diagram is shown in Figure 3.26. A
unified communication protocol is used to communicate between the two levels to
ensure the reliability of data transmission.

Figure 3.26: Lower-level controller

The main tasks of the lower-level controller, or the motion controller, are
to receive instructions (x, y, θ), the velocity along x and y coordinates and the
rotational velocity around z coordinate, from the higher-level controller by ROS
topic "cml" or remote control. Then, the rotational speed of each wheel is calculated
according to kinematic model of OMR, and sent to the drives with PID control. At
the same time, the lower-level controller should upload the information of sensors
such as IMU data, odometry and temperature of motor. To control the wheel, a
voltage signal is provided to each servomotor drive. The mobile robot may move in
a variety of motion modes, including longitudinal, lateral, diagonal, and rotational
movements, by adjusting the ratios of 4-channel voltage signals. Each encoder
mounted at the back of the servomotor sends a signal to both the relevant drive
and the PLC at the same time. As a result, the PLC can use odometry to calculate
the movement of the mobile chassis, As showing in the block diagram in Fig. 3.27.

46

Architecture of Autonomous Mobile Robots based on ROS

Figure 3.27: Motion control

Higher-level controller

Since two cameras and two Lidars are introduced in the perception system, requiring
processing huge amount of data, a distributed architecture is developed to achieve
the targets, as shown in Figure 3.28. These computers communicate by ROS
messages published on corresponding ROS topics. The autonomous navigation
function is based on ROS Navigation Stack.

Figure 3.28: Distributed architecture

47

Architecture of Autonomous Mobile Robots based on ROS

3.4.3 Microcomputers and Perception sensors

Microcomputers

High-performance AI embedded systems like Jetson Xavier NX (Fig. 3.29) are
made for commercial robotics, medical devices, smart cameras, high-resolution
sensors, automated optical inspection, smart factories, and other AIoT embedded
systems.

Figure 3.29: JETSON XAVIER NX [80]

The technical specifications of the JETSON XAVIER NX are as Table 3.2:
A compact, potent computer called the NVIDIA Jetson Nano (Fig. 3.30) enables

programmers to run several neural networks concurrently for tasks like speech
processing, object detection, segmentation, and picture classification. All of this is
contained in a simple platform that uses as little as 5 watts of power. It’s the ideal
method for rapidly prototyping AI-based products and delivering them to market.

Figure 3.30: JETSON XAVIER NANO [81]

The technical specifications of the JETSON XAVIER NANO are as Table 3.3:

48

Architecture of Autonomous Mobile Robots based on ROS

Jetson Xavier NX 16GB
AI Performance 21 TOPS
GPU 384-core NVIDIA Volta™ GPU with 48 Tensor Cores

CPU 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU
6MB L2 + 4MB L3

Memory 16 GB 128-bit LPDDR4x59.7GB/s
Storage 16 GB eMMC 5.1
Power 10 W | 15 W | 20 W
PCIe 1 x1 (PCIe Gen3) + 1 x4 (PCIe Gen4), total 144 GT/s*

CSI Camera
Up to 6 cameras (24 via virtual channels)
14 lanes (3x4 or 6x2) MIPI CSI-2
D-PHY 1.2 (up to 30 Gbps)

Video Encode 2x 4K60 | 4x 4K30 | 10x 1080p60 | 22x 1080p30 (H.265)
2x 4K60 | 4x 4K30 | 10x 1080p60 | 20x 1080p30 (H.264)

Video Decode 2x 8K30 | 6x 4K60 | 12x 4K30 | 22x 1080p60 | 44x 1080p30 (H.265)
2x 4K60 | 6x 4K30 | 10x 1080p60 | 22x 1080p30 (H.264)

Display 2 multi-mode DP 1.4/eDP 1.4/HDMI 2.0
DL Accelerator 2x NVDLA Engines
Vision Accelerator 7-Way VLIW Vision Processor
Networking 10/100/1000 BASE-T Ethernet
Mechanical 69.6 mm x 45 mm 260-pin SO-DIMM connector

Table 3.2: Technical specifications of the JETSON XAVIER NX [80]

GPU NVIDIA Maxwell™ architecture with 128 NVIDIA CUDA® cores
0.5 TFLOPs (FP16)

CPU Quad-core ARM® Cortex®-A57 MPCore processor
Memory 4 GB 64-bit LPDDR4 1600MHz - 25.6 GB/s
Storage 16 GB eMMC 5.1 Flash

Video Encode

250 MP/sec
1x 4K @ 30 (HEVC)
2x 1080p @ 60 (HEVC)
4x 1080p @ 30 (HEVC)

Video Decode

500 MP/sec
1x 4K @ 60 (HEVC)
2x 4K @ 30 (HEVC)
4x 1080p @ 60 (HEVC)
8x 1080p @ 30 (HEVC)

Camera 12 lanes (3x4 or 4x2) MIPI CSI-2 DPHY 1.1 (18 Gbps)
Connectivity Wi-Fi requires external chip 10/100/1000 BASE-T Ethernet
Display HDMI 2.0 or DP1.2 | eDP 1.4 | DSI (1 x2) 2 simultaneous
UPHY 1 x1/2/4 PCIE, 1x USB 3.0, 3x USB 2.0
I/O 1x SDIO / 2x SPI / 4x I2C / 2x I2S / GPIOs -> I2C, I2S
Size 69.6 mm x 45 mm
Mechanical 260-pin edge connector

Table 3.3: Technical specifications of the JETSON XAVIER NX [81]

49

Architecture of Autonomous Mobile Robots based on ROS

Perception sensors

Whether they are localizing or building a map, robots rely on sensors to obtain
environmental information. Compared with image sensors, ranging sensors are
mostly used for mobile robot navigation because they are not affected by light,
have simple processing methods and high data accuracy. Ranging sensors mainly
include ultrasonic, infrared and laser sensors. The ultrasonic sensor determines
the distance of the object by the time difference of the reflected ultrasonic signal
on the surface of the object. It is widely used in robots due to the simple, fast
and low price of information processing. However, due to the large measurement
blind area and poor directionality, it is often used as auxiliary sensor in practical
applications. Infrared sensor is an effective proximity sensor, similar to sonar, it
works in the state of transmitting/receiving. It is not affected by visible light
and electromagnetic waves, but the color and direction of the object can cause
some measurement error, and the distance measurement range is relatively small,
generally within 30cm. Lidar is one of the most used sensors in mobile robots. It
is a high-precision, high-resolution external sensor based on the Time of Flight
(TOF) principle, with a very short sampling period and low measurement Error,
the measurement distance is long, so it has become the main distance measurement
device for mobile robots.

Figure 3.31: RPLIDAR A1 [82]

The RPLIDAR A1 (Fig. 3.31) is adopted, the key parameters are attached in
table 3.4.

The data generated by RPLIDAR A1 can be visualized by RViz in an analogous
way to the simulation, as shown in Fig. 3.32. Since the navigation stack is run by
the onboard microcomputer JETSON XAVIER NX without installing Gazebo, the
meshes, or the visual elements, can not be rendered, thus only collision elements are
presented. Besides, in order to show the basic structure of the AMR the supporting
component of sensors, the wooden part shown in Fig. 3.32 (a), is not added to the

50

Architecture of Autonomous Mobile Robots based on ROS

Recommended applications Vacuum robot,Home robot
Measuring Range 0.15m - 12m
Sampling Frequency 8K
Rotational Speed 5.5Hz
Angular Resolution ≤ 1◦

Dimensions 96.8 x 70.3 x 55mm
System Voltage 5V
System Current 100mA
Power Consumption 0.5W
Output UART Serial (3.3 voltage level)
Temperature Range 0℃-40℃
Angular Range 360◦

Range Resolution ≤ 1% of the range (≤12m)
≤ 2% of the range (12m-16m)

Accuracy 1% of the range (≤3m)
2% of the range (3-5m) 2.5% of the range (5-25m)

Table 3.4: Key parameters of RPLIDAR A1 [83]

model, which has no effect on the functionality of the model at all.

(a) Real robot in CIM4.0 laboratory (b) Lidar data visualized by RViz

Figure 3.32: Visualize RPLIDAR A1 information by RViz

But considering RPLIDAR A1 is a 2D Lidar, which returns only the point
cloud of surroundings in certain height, it is not enough to detected completed
information of environment. Thus, two depth cameras: Intel RealSense Depth
Camera D435i (Fig. 3.33), are added to detect objects in 3D view. The datasheet
is attached as Table 3.5.

51

Architecture of Autonomous Mobile Robots based on ROS

Figure 3.33: Intel RealSense Depth Camera D435i [84]

Features Use environment: Indoor/Outdoor
Image sensor technology: Global Shutter Ideal range: 0.3 m to 3 m

Depth

Depth technology: Stereoscopic
Minimum depth distance (Min-Z) at
max resolution: 28 cm
Depth Accuracy: ≤ 2%at2m1

Depth Field of View (FOV): 87° × 58°
Depth output resolution: Up to 1280 × 720
Depth frame rate: Up to 90 fps

RGB
RGB frame resolution: 1920 × 1080
RGB frame rate: 30 fps
RGB sensor technology: Rolling Shutter

RGB sensor FOV (H × V): 69° × 42°
RGB sensor resolution: 2 MP

Major Components Camera module: Intel RealSense Module
D430 + RGB Camera

Vision processor board:
Intel RealSense Vision Processor D4

Physical
Form factor: Camera Peripheral
Length × Depth × Height:
90 mm × 25 mm × 25 mm

Connectors: USB-C* 3.1 Gen 1*
Mounting mechanism:
– One 1/4-20 UNC thread mounting point.
– Two M3 thread mounting points.

Table 3.5: Datasheet of Intel RealSense Depth Camera D435i [84]

The depth image taken by Intel RealSense Depth Camera D435i can be also
visualized by RViz, as shown in Fig. 3.34.

52

Architecture of Autonomous Mobile Robots based on ROS

(a) Real robot in CIM4.0 laboratory (b) Lidar data visualized by RViz

Figure 3.34: Visualize depth image by RViz

53

Chapter 4

Development of path
planning

4.1 GPP using D* Lite
Generally, GPP is implemented providing that full knowledge of the environment
is available, i.e., the environment is static. However, to improve the performance
of the AMR working in dynamic environment, some algorithms with the ability
of re-planning when discovering changes from environment, are proposed to allow
the AMR having faster reaction in dynamic environment, combined with the LPP.
Considering the APF method chosen for LPP, there is another reason for applying
the kind of GPP except for the high dynamic performance. A static global path
may result in an unreachable local target point for APF (the local target point will
be introduced in Section 4.2.3) when obstacles newly appear on the global path in
a dynamic environment.

Incremental search methods like DynamicSWSF-FP [85] are beneficial to handle
dynamic path planning, which reuse the knowledge from previous searches con-
sidering the changes of environment instead of researching from scratch, saving
computation time for re-planning. On the other hand, heuristic search methods, for
instance A*, exploit heuristic function that estimates the cost of the cheapest path
leading to the goal to guide the search, completing searching with higher efficiency
compared with greedy search methods. By taking advantages from both of these
two kinds of method, as a combination, incremental heuristic search methods are
created. Lifelong Planning A* (LPA*) [86] is one of them, which generalizes both
DynamicSWSF-FP and A* and so employs two different strategies to shorten
its planning time. When re-planning its paths after encountering previously un-
detected obstacles, the robot might employ traditional graph-search techniques.
However, given the huge terrains that are frequently used, the resulting planning

54

Development of path planning

times might be on the range of minutes, which results in significant idle times.
Comparing to this, D* [87] is much faster, a sophisticated algorithm modifying
previous search result partially to speedup the process of repeating A*. Although
the D* has advantage in planning time, the drawback is complexity of the algorithm.
Therefore, the D* Lite is proposed [12], basing on LPA*, and using similar strategy
as D*. D* Lite is significantly shorter than D*, compares priorities using only one
tie-breaking criterion, making it easier to maintain the priorities, and does not
require nested if-statements with intricate conditions that can take up to three
lines apiece, making it easier to analyze the program flow. These characteristics
also make it simple to extend, such as by using unacceptable heuristics and other
tie-breaking criteria to increase efficiency.

4.1.1 D* Lite compared with A* and LPA*
The D*lite method can handle the scenario of a dynamic or an unknown envi-
ronment far better than other incremental heuristic search algorithms. When
an unanticipated new obstacle enters the environment, the robot can instantly
update the information of the nodes surrounding it, relist any nodes that have
been discontinuous as a result of the emergence of new obstacles, and then swiftly
re-plan.

Table 4.1 shows that in a static environment, the A* method has a high path
search efficiency, while in a dynamic context, the LPA* approach has a substantially
higher path search efficiency. The priority of the extended node is controlled by the
size of the f value, and the cost function of the A* algorithm is f = g+h (definitions
of these variables are introduced in Section 2.2.1). An incremental variation of the
A* algorithm is the LPA* algorithm.The LPA* method maintains two estimates
of the initial distance of each node s, g∗(s) and rhs(s), and determines the node
status by comparing the values of g∗(s) and rhs(s). The order of growing nodes in
the LPA* algorithm is dependant on the size of the two-dimensional key value.

Algorithm Application of Environment The Method of Search Valuation function

A* Algorithm

High search efficiency in
static environment, and not
suitable for dynamic
environment

Heuristic search f(s) = g(s) + h(s)

LPA*
algorithm

Both static and dynamic
environment are applicable

Incremental search
for rapid re-planning
in a dynamic
environment

Introduce the rhs(s)
variable as the
minimum cost
estimate

Table 4.1: Comparison of A* and LPA* Algorithms [88]

55

Development of path planning

On the principle of the LPA* algorithm, the D* Lite algorithm is deepened.
The beginning point is fixed in the version of the LPA* algorithm that searches
from one node to the next. The D* Lite algorithm’s search direction, however,
is the exact opposite of the LPA* algorithm’s. The starting node can be altered,
and the search proceeds from the target node to the initial node. Furthermore,
the definitions of variables like h, g, and rhs are completely the reverse of those of
LPA*. D* Lite algorithm is superior to LPA* algorithm, as seen in Table 4.2.

Algorithm Application of Environment The Method of Search Re-planning operations

LPA*
algorithm

Both static and dynamic
environment are applicable

Forward search from
the starting node to
the target node

Update the path
information of the node
from starting point

D* Lite
algorithm

Applicable environment is
more flexible, and the
starting point can change
with time

Reverse search from
target node to starting
node

Update the path
information of the
current node

Table 4.2: Comparison of LPA* and D* Lite Algorithms [88]

4.1.2 Principle of D* Lite
Both based on the A* algorithm, D* Lite is an extension of the LPA* algorithm.
The foundation of the D* Lite algorithm is the incremental search path based
on the unknown area as a free space. D* Lite algorithm and LPA* algorithm
add rhs variable on the basis of A* algorithm. Every time, the D* Lite method
chooses the expansion path with the lowest rhs value as the best option, then
iteratively explores and computes the cost estimates of the eight adjacent lattices
until it locates the target point. D* Lite maintains an estimate g(s) of the start
distance g∗(s) of each vertex s. These values directly correspond to the g values of
an A* search. D* also maintains a second kind of estimate of the start distances.
The rhs values are one-step lookahead values based on the g values and thus
potentially better informed than the g values. The g(s) value will be recalculated
after expanding 8 adjacent grids surrounding the grid since the D*lite algorithm’s
search direction is the reverse of that of the A* algorithm and the LPA* method.
Choose the g(s) with the smallest generation value after updating the value of g(s).
The formula for calculating rhs(s), which is derived from the g value of its forward
point, is as follows:

rhs(s) =

0, s = sgoal

min
s′∈Pred(s)

(g(s′) + c(s′, s)), others
(4.1)

56

Development of path planning

where c(s′, s) represents the edge cost from node s′ to node s, which is typically
reported as 1. The set of predecessors of node s ∈ S are indicated byS ′ ∈
pred(s). Nodes are consistent wheng(s) = rhs(s); otherwise, it is non-uniform.
g(s) > rhs(s), one of them, is known as local over-consistency, and g(s) < rhs(s),
local under-conformity. D* Lite additionally includes key(s) value for comparison
while assessing the estimated value of grid points, where key(s) has two values
key(s) = [key(s1); key(s2)] and satisfies the following formulas:

key1(s) = min(g(s), rhs(s)) + h(s)
key2(s) = min(g(s), rhs(s))

(4.2)

The parameters for the priority queue configuration are k1 and k2. The size of
the key(s) value is utilized as the priority for growth, which establishes the order
in which the queue’s nodes expand. Compare the size of the K1 value first, choose
the grid with the smallest k1 value as the next grid, and then take the size of the
K2 value into account if the k1 values are equal. The object will always travel in
the direction of the target point thanks to the h(s) heuristic function, which is the
same as the heuristic function in the LPA* algorithm and reflects the estimated
value between the current node and the starting point. The speed and precision of
the algorithm search are greatly influenced by the value of h(s). The cost c(s, s′)
from node s to node s′ and the value of the heuristic function from node s′ to the
target point sgoal are both included in the search heuristic function of node s. The
h(s) calculation formula is:

h(s, sstart) =

0, s = sgoal

c(s′, s) + h(s′, sgoal), others
(4.3)

Fig. 4.1 provides a description of the D* Lite path planning algorithm.

4.2 LPP using DAPF method
Compared with GPP that needs a complete map, LPP just requires the local
information around the robot to mainly avoid the dynamic obstacles. Due to
the uncertainty of the state of the robot and the environment during the moving
process, path planning in a dynamic environment becomes a highly complex problem.
Besides, LPP has a higher requirement on the real-time, which determines it should
more rely on the information from the real-time sensor instead of the built-in map.

The APF method is often used to solve the LPP problem of moving robots.
It usually only needs the position and distance of obstacles without precise en-
vironmental models. And it is convenient for lower-level control. Therefore, the
APF has good real-time performance, which is suitable for LPP. But the APF

57

Development of path planning

Figure 4.1: D* Lite path planning algorithm [12]

has the problem of local minimum and unreachable targets. What is more, the
APF does not effectively use the obstacle information to generate an optimal path.
How to solve the shortcomings of APF has become a hot spot in the research field.
In response to the problems above, this thesis proposes an improved Dynamic
Artificial Potential Field (DAPF) method, which uses points on the global path as
additional local targets and introduces the potential field function generated from

58

Development of path planning

the relative velocities. This method not only plans an optimal path by taking the
global path into consideration, but can also avoid moving obstacles.

4.2.1 Classical Artificial Potential Field method
The APF method is derived from the idea of field theory in physics and is first
applied to the path planning of robotic arms. The core idea is to assume that there
is a virtual attractive field around the target point and a repulsive field around
obstacles, as depicted in Fig. 4.2.

Figure 4.2: FBD of robot in artificial potential field [89]

Under the driving force of the resultant field, the robot will finally reach the
goal. The robot is simplified as a point moving in 2D space. The moving direction
of the robot at any position X(X = [xy]T) in the motion space is decided by the
resultant field of the attractive field of target and repulsive field of obstacles.

the gravitational potential function is:

Uatt(X) = 1
2kρ2(XR, XG) (4.4)

where, k is the attractive gain factor, ρ(XR, XG) = ||XG −XR||, is the distance
between robot and target. correspondingly, the attractive function is the negative
gradient of the attractive field:

Fatt(X) = −∇Uatt(X) = k(XG −XR) (4.5)

the repulsive field is:

59

Development of path planning

Urep(Xi) =

1
2ηx(1

ρ(XR,Xi) −
1
ρ0

)2 ρ(XR, Xi) ≤ ρ0

0 ρ(XR, Xi) > ρ0
(4.6)

where, ηx is the repulsive gain factor, ρ(XR, Xi) is the distance between robot
and obstacle, ρ0 is the obstacle influence distance, which is connected with the
dimension of the robot. the repulsive force is:

Frep(Xi) = −∇Urep(Xi) =

ηx(1
ρ(XR,Xi) −

1
ρ0

) eiR

ρ2(XR,Xi) ρ(XR, Xi) ≤ ρ0

0 ρ(XR, Xi) > ρ0
(4.7)

the resultant force exerted on the robot is:

F = Fatt(X) +
i=nØ
i=1

Frep(Xi) (4.8)

4.2.2 Improved Artificial Potential Field method
If the target is too close to the obstacles, the attractive force generated by the
target may be smaller than the repulsive force generated by the obstacles, which
causes the problem of the unreachable target. To solve this problem, the most
commonly used improvement is to add the relative position of the robot and target
to the repulsive function, so that the potential of the target is the global minimum.

The modified repulsive field is:

Urep(Xi) =

1
2ηx(1

ρ(XR,Xi) −
1
ρ0

)2ρ2(XR, XG) ρ(XR, Xi) ≤ ρ0

0 ρ(XR, Xi) > ρ0
(4.9)

where, ρ(XR, XG) is the distance between robot and target, when robot reach
the target, repulsive field is 0.

4.2.3 Strategy of following global path
The APF method drives the robot according to the combined force of the repulsive
forces generated by obstacles and the attractive force generated by the target point.
In this way, the path is generated in a certain randomness and may not be the
global optimal one, although with good real-time performance. For this reason, in
this thesis, an artificial potential field with a local target is proposed.

60

Development of path planning

Set the local target point

In the classical APF method, the attractive force driving the robot is only generated
by the final target point, which means the robot will not follow the optimal path
supplied by the global path planner but a straight line directing to the final target
point. To solve this problem, a local target updated in real-time on the global path
is set to keep the robot moving on the optimal path as much as possible.

The moving robot usually uses two coordinate systems: one is a static global
coordinate system and the other is a dynamic local coordinate system, whose origin
is the center of the robot, and it moves with the movement of the robot.

The transformation between the global and local coordinate system is:xi = x0 + x
′
icosθ − y

′
isinθ

yi = y0 + x
′
isinθ + y

′
icosθ

(4.10)

where, (x0, y0) is the robot pose at certain moment, (xi, yi) is point of global
path presented in global coordinate, (x′

i, y
′
i) is point of global path presented in

local coordinate.
Set a square area within the visible range of the robot as a dynamic window to

construct a local coordinate system. Then the intersection of the global path and
the dynamic window boundary at the heading side is set as the local target point,
which attracts the robot to the global optimal path in real-time, as shown in Fig.
4.3.

Figure 4.3: Local goal

61

Development of path planning

When the robot is working in a dynamic environment, it is common to see that
newly appearing obstacles block the global path, even occupying the position of the
local target point, resulting in an unreachable local target. So it is not sufficient
that the robot is attracted by local target. The robot should be driven under the
combined contribution of global and local targets. The former makes sure the robot
can reach the final goal and supply attraction continuously, even if the local target
is unreachable, while the latter guarantees the robot will move following the global
optimal path.

Improved attractive field

Considering the additional contribution from added local target point, the attractive
field of classical APF, (4.4), should be modified correspondingly:

Uatt(X) = pρ2(XR, XP G) + gρ2(XR, XG) (4.11)

where, p, g is the local and global attractive gain factor. The larger the p, the
closer the robot moves to the global path, the larger the g, the robot moves closer
to the global target. ρ2(XR, XP G) is the distance between the robot and local
target point, while ρ2(XR, XG) is the distance between the robot and global target
point.

The attractive force is:

Fatt(X) = −∇Uatt(X) = −2p(XR −XP G)− 2g(XR −XG) (4.12)

the FBD of robot in APF with improved attractive field is:

Simulation in MATLAB

To verify the feasibility of this strategy of following the global path, MATLAB is
used to simulate the robot in APF with the improved attractive field. Fig. 4.5
depicts a 2D grid map of size 20*10 without obstacle. 4.5. The blue polyline
represents a simple global path, and the * symbols on it stand for local goal points.
The straight red line stands for the path generated by the APF method under the
only attraction from the final goal (20,10). Obviously, the robot under the only
attraction from the final goal and without repulsive forces will move along the
shortest path, which is the straight line leading to the final goal. In contrast, the
robot will exactly follow the global path if only attracted by the local goals. The
situation we want to achieve is the robot under the combined attraction of both
local and global goals, as depicted by the green curve between the blue and the
red line.

62

Development of path planning

Figure 4.4: FBD of robot in APF with improved attractive field

Figure 4.5: Paths in a 2D grip map

Additionally, by modifying the parameters p, g, the local and global attractive
gain factors, the consistency of the global path and real path can be adjusted.

63

Development of path planning

4.2.4 Dynamic Artificial Potential Field (DAPF)
The artificial potential field method detects the position of obstacles around the
robot in real-time and calculates the resultant force of attractive and repulsive
forces which drives the robot. Therefore, the APF is not only convenient for
low-level control but also as a kind of path planning with better performance in an
unknown environment. In order to overcome the shortcoming of the unreachable
target of the classical APF, the improved repulsive field of (4.9) is usually adopted,
and the repulsive force can be obtained by taking a negative gradient:

Frep(Xi) =−∇Urep(Xi) = ηx(1
ρ(XR, Xi)

− 1
ρ0

)ρ2(XR, XG)
ρ2(XR, Xi)

eiR

+ ηx(1
ρ(XR, Xi)

− 1
ρ0

)2(XG −XR) ρ(XR, Xi) ≤ ρ0

(4.13)
Obviously, there are two components of the repulsive force: one from the obstacle

points to the robot and another from the robot points to the target. The FBD of
the robot in the APF with improved attractive and repulsive field is shown as:

Figure 4.6: The FBD of the robot in the APF with improved attractive and
repulsive field

The improved repulsive field solves the problem of unreachable target, but it
only takes the relative position between the robot and obstacles without velocity

64

Development of path planning

information. Adding velocity information about the robot and obstacles to the
repulsive field can solve the problem of avoiding moving obstacles.

Dynamic repulsive field

Since the local target has been introduced, the attractive component of the repulsive
field should be modified as the resultant attractive component of the attractive
forces generated by the global and local targets. the modified repulsive field is:

Urep(Xi) =

1
2ηx(1

ρ(XR,Xi) −
1
ρ0

)2[p
p+g

ρ2(XR, XP G)
+ g

p+g
ρ2(XR, XG)] ρ(XR, Xi) ≤ ρ0

0 ρ(XR, Xi) > ρ0

(4.14)

correspondingly, the repulsive force is:

Frep(Xi) = −∇Urep(Xi) =

ηx(1
ρ(XR, Xi)

− 1
ρ0

)
p

p+g
ρ2(XR, XP G) + g

p+g
ρ2(XR, XG)

ρ2(XR, Xi)
eiR+

ηx(1
ρ(XR, Xi)

− 1
ρ0

)2(p

p + g
(XP G −XR) + g

p + g
(XG, XR)) ρ(XR, Xi) ≤ ρ0

(4.15)
As mentioned above, to handle moving obstacles, the relative velocity between

robot and obstacle is introduced to the repulsive field.
The modified repulsive field is then:

Urep(Xi, Vi) =

1
2ηx(1

ρ(XR, Xi)
− 1

ρ0
)2[p

p + g
ρ2(XR, XP G)

+ g

p + g
ρ2(XR, XG)] + ηV VRi ρ(XR, Xi) ≤ ρ0 VRi > 0

1
2ηx(1

ρ(XR, Xi)
− 1

ρ0
)2[p

p + g
ρ2(XR, XP G)

+ g

p + g
ρ2(XR, XG)] ρ(XR, Xi) ≤ ρ0 VRi ≤ 0

0 ρ(XR, Xi) > ρ0
(4.16)

where, VRi = (VR − Vi)T eRi is the projection of the relative velocity between
robot and obstacle on the line connected robot and obstacle. ηV is the relative
velocity gain factor. the repulsive force is changed correspondingly:

65

Development of path planning

Frep(Xi, Vi) = −∇Urep(Xi, Vi) = −∇XUrep(Xi, Vi)−∇V Urep(Xi, Vi) =

ηx(1
ρ(XR, Xi)

− 1
ρ0

)
p

p+g
ρ2(XR, XP G) + g

p+g
ρ2(XR, XG)

ρ2(XR, Xi)
eiR+

ηx(1
ρ(XR, Xi)

− 1
ρ0

)2[p

p + g
(XP G −XR) + g

p + g
(XG, XR)]+

ηV
VRi⊥eRi⊥

ρ(XR, Xi)
+ ηV eiR ρ(XR, Xi) ≤ ρ0

(4.17)

where, VRi⊥eRi⊥ = (VR − Vi)− VRieRi is the projection of the relative velocity
on the direction perpendicular to the line connected robot and obstacle. There
are 5 forces in different directions. The term with factor ηX presents the relative
position between robot and obstacle, while the term with ηV presents the relative
velocity between robot and obstacle.

Taking the relative velocity into consideration, an extra force component Freqv

results from the relative velocity, driving the robot to move in the direction that
the projection of the relative velocity on the line connecting robot and obstacle is
decreased. As a consequence, the robot can avoid the oncoming obstacles quickly.
Fig. 4.7 shows the FBD of robot in the APF with improved attractive and dynamic
repulsive field.

Figure 4.7: The FBD of the robot in the APF with improved attractive and
dynamic repulsive field

66

Development of path planning

Simulation in MATLAB

Firstly, the scenario where the robot follows the global path and avoids static
obstacles is simulated. The result is shown in Fig. 4.8, where the circle is the
symbol of the obstacle and the zigzag curve is the path generated by the DAPF
method. The result proves that the robot can track the global path and avoid static
obstacles simultaneously. There is no harm in mentioning that the path has some
sharp turns, for example, at coordinates (2.208, 1.167), (4.230, 2.542), (10.180, 6.534)
etc. That is because, to simplify the simulation, only a limited number of the local
goal points are set. When the local goal point is updated to the next one, there
will be a sudden change in the attractive force, resulting in the sharp turning of
the path. To be more specific, the one with the shortest distance to the robot
and closer to the final target node is set as the current local goal. As the robot
moves, the current local goal point is updated correspondingly. This problem will
be solved when implementing the algorithm in ROS, and it will be introduced in
Section 5.2.

Figure 4.8: Robot follows the global path and avoids static obstacles

Then a moving obstacle is added to verify the improved DAPF.
It can be witnessed from Fig. 4.9, that a moving obstacle starts from coordinate

(0,4) and moves horizontally at a constant speed of 0.041/step, then encounters
the robot around coordinate (6,3.5), which triggers the mechanism of avoiding
moving obstacles. The robot moves back a little bit immediately and turns to the
left, avoiding the moving obstacle perfectly. The zoomed view recorded from the
sequence steps can be seen in Fig. 4.10.

67

Development of path planning

Figure 4.9: Robot follows the global path and avoids static and moving obstacles

(a) (b)

(c) (d)

Figure 4.10: Zoomed view of avoiding moving obstacle

Above all, the feasibility of improved DAPF is verified through MATLAB, which
only proves that the method can be implemented in principle. The following
work is to transplant the algorithm into ROS to do some simulation. Finally, the
experiments with real robot will be done. All these contributions will be introduced

68

Development of path planning

in the next chapter.

69

Chapter 5

Simulations and
experimental results

This chapter is mainly devoted to implementing the D* Lite and DAPF algorithms
proposed in Section 4.2.4 in the ROS simulation environment as well as on the real
robot, verifying the ability to avoid obstacles, and comparing the performance with
path planning methods provided by ROS such as A* and DWA.

5.1 Comparison of A* and D* Lite Algorithms
As mentioned in Section 4.1, D* Lite has the ability to re-plan when discovering
changes in the environment. To simulate this scenario, the AMR is put at one
end of the corridor of the CIM4.0 laboratory, while a goal point is set at the other
end. The adopted GPP algorithm generates a global path leading to the goal
point. When the robot is moving towards the goal point along the global path, a
new obstacle is put in its way. The different performances of the A* and D* Lite
algorithms are presented in Fig. 5.1, where (a), (b) show the global path planned
by D* Lite before and after the appearance of a new obstacle, while (c), (d) stand
for A*. It can be seen that the global path generated by A* is not changed after
the appearance of a new obstacle. However, D* Lite re-plans it to avoid the new
obstacle.

5.2 Strategy of following global path
As mentioned in Section 4.2.3, a local goal point updated in real-time on the global
path is set to keep the robot moving on the optimal path as much as possible. The
main loop written by C++ in ROS to realise this strategy is shown as follows:

70

Simulations and experimental results

(a) (b)

(c) (d)

Figure 5.1: Comparison of A* and D* Lite algorithms

1 i n t i =0;
2 f o r (i t = th i s −>global_plan . begin () ; i t != th i s −>global_plan . end

() ; i t ++)
3 {
4 t f 2 : : doTransform (∗ i t , l oca l_goa l , goalToLocal_) ;
5 geometry_msgs : : Point tmp ;
6 tmp . x = loca l_goa l . pose . p o s i t i o n . x ;
7 tmp . y = loca l_goa l . pose . p o s i t i o n . y ;
8 d = th i s −>d i s t (pose . pose . po s i t i on , tmp) ;
9 i f (d > max_local_goal_dist)

10 break ;

71

Simulations and experimental results

11 local_global_goal_pub . pub l i sh (∗ i t) ;
12 i ++;
13 }

The idea is to iterate through the points that make up the global path until
finding the intersection point between the global path and the boundary of a circle
whose center is the robot’s current position and whose radius is defined by d, a
predefined parameter called max_local_goal_dist. Since the global path is made
up of intensive nodes, the local goal point is updated without sudden change, which
guarantees a smooth local path generated by DAPF.

5.3 Estimation of the position and velocity of
moving obstacles

5.3.1 Build the local cost map
Differing from the global costmap, the size of the local costmap is reduced within
the detection range of the on-board sensors, with a higher updating frequency. Once
a dynamic window is defined in the local coordinates, a same-sized local cost map
moving with the dynamic window is initialized. The Lidar detects surroundings,
returning the point cloud of obstacles that the laser beam first reaches within
the boundary of local cost map. The point cloud includes information about the
distance and angle positions of the obstacles with respect to the robot. Then the
distance in meters is transformed to pixels to update the occupancy of the 2D grid
map according to the index of pixels (purple points in Figure 5.2) to mark the
obstacles. Meanwhile, the transformation among three different coordinates, laser
scan frame, local frame, and global frame, is handled by ROS tf.

Figure 5.2: Build the local cost map

72

Simulations and experimental results

5.3.2 Add moving obstacle
In Gazebo, most of the objects in the Gazebo library are static. Although the
human model of the Gazebo "actor" (animated model) can move, it is without
collision property, which means all sensors in Gazebo, for example, Lidar and
camera, can not detect it. And the robot will go through the actor without collision.
Therefore, it is necessary to write a plugin to define a moving obstacle in the
simulation that can be recognized by Gazebo simulated sensors. The Gazebo plugin
is shown bellow, which defines the key frames of movement. Given the repeatability
of the frames, only partial frames are listed.

1 namespace gazebo
2 {
3 c l a s s AnimatedBox : pub l i c ModelPlugin
4 {
5 pub l i c : void Load (phys i c s : : ModelPtr _parent , sd f : : ElementPtr /∗

_sdf ∗/)
6 {
7 th i s −>model = _parent ;
8 gazebo : : common : : PoseAnimationPtr anim (new gazebo : : common : :

PoseAnimation (" t e s t " , 110 , t rue)) ;
9 gazebo : : common : : PoseKeyFrame ∗key ;

10

11 key = anim−>CreateKeyFrame (0) ;
12 key−>Trans la t i on (i g n i t i o n : : math : : Vector3d (1 . 5 , −4, 0)) ;
13 key−>Rotation (i g n i t i o n : : math : : Quaterniond (0 , 0 , 0)) ;
14

15 key = anim−>CreateKeyFrame (5 . 0) ;
16 key−>Trans la t i on (i g n i t i o n : : math : : Vector3d (1 , −4, 0)) ;
17 key−>Rotation (i g n i t i o n : : math : : Quaterniond (0 , 0 , 0)) ;
18

19 key = anim−>CreateKeyFrame (1 0 . 0) ;
20 key−>Trans la t i on (i g n i t i o n : : math : : Vector3d (0 . 5 , −4, 0)) ;
21 key−>Rotation (i g n i t i o n : : math : : Quaterniond (0 , 0 , 0)) ;
22 . . .
23

24 _parent−>SetAnimation (anim) ;
25 }
26 pr i va t e : phys i c s : : ModelPtr model ;
27 pr i va t e : event : : ConnectionPtr updateConnection ;
28 } ;
29 GZ_REGISTER_MODEL_PLUGIN(AnimatedBox)
30 }

Then a box model is added in the virtual CIM4.0 laboratory world, whose
movement is defined by the AnimatedBox plugin above. The piece of code can be

73

Simulations and experimental results

seen as:

1 <model name=" box ">
2 <pose >2.5 0 0 0 0 0</pose>
3 <l i n k name=" l i n k ">
4 <c o l l i s i o n name=" c o l l i s i o n ">
5 <geometry>
6 <box>
7 <s i z e >0.5 0 .5 0.5</ s i z e >
8 </box>
9 </geometry>

10 </ c o l l i s i o n >
11

12 <v i s u a l name=" v i s u a l ">
13 <geometry>
14 <box>
15 <s i z e >0.5 0 .5 0.5</ s i z e >
16 </box>
17 </geometry>
18 </v i sua l >
19 </l ink >
20

21 <plug in name=" push_animate " f i l ename=" libanimated_box . so "/>
22 </model>

Above all, the moving obstacle can be simulated in Gazebo. It moves back and
forth in the corridor depicted as Fig. 5.3.

After adding the moving obstacle, the next step is to detect it. The detection of
moving objects can be done by the following techniques.

5.3.3 Background Subtraction
The process of creating a foreground mask, specifically, a binary image comprising
the pixels that correspond to moving objects in the scene by utilizing static cameras
is known as Background Subtraction (BS). It determines the foreground mask
by subtracting the current frame from a background model that contains the
static portion of the image or, more generally, everything that may be regarded as
background given the features of the observed scene, as described in Fig. 5.4.

Background modeling consists of two main steps: background initialization and
Background update, which means an initial model of the background is generated
in the first phase, and it is updated in the second step to account for potential
changes to the scene.

For the application of this thesis, the local cost map is used as the input of
this BS technique to create a foreground mask with moving obstacles. Despite the

74

Simulations and experimental results

(a) sim time: 00:18:41 (b) sim time: 00:18:51

(c) sim time: 00:19:01 (d) sim time: 00:19:11

Figure 5.3: Simulated moving obstacle in Gazebo

Figure 5.4: Background Subtraction scheme [90]

fact that the moving object’s pixels are included in the foreground mask, they are
discrete points, which cannot be treated as obstacles. Hence, blob detection is used

75

Simulations and experimental results

to organize these discrete pixels.

5.3.4 Blob detection
A blob is a collection of related pixels in an image that have some properties
in common (e.g., grayscale value). For example, blob detection is performed to
recognize and indicate the dark connected regions in Fig. 5.5 as blobs.

Figure 5.5: Blob detection [91]

Blobs can be easily found and filtered using OpenCV’s SimpleBlobDetector,
based on steps outlined below:

1. Thresholding: several binary images are converted from the input image
by thresholding, with a series of thresholds starting from the minimum one and
increasing by certain step length until reaching the maximum value.

2. Grouping: Connected white pixels are grouped together in each binary
picture, which is defined as binary blobs.

3. Merging: The centers of the binary blobs in the binary images are calculated.
And blobs with a distance between centers smaller than minDistBetweenBlobs
are merged.

4. Center and Radius Calculation: The resulting amalgamated blobs’ centers
and radius are calculated.

Furthermore, blobs can be filtered using SimpleBlobDetector parameters, as
shown in Fig. 5.6. Generally, it can be filtered:

By color: filtering by color is validated by setting filterByColor = 1. Set
blobColor = 0 to select darker blobs, and blobColor = 255 for lighter blobs.

By Size: filtering by color is validated by setting the parameters filterByArea =
1, and appropriate values for minArea and maxArea, e.g., minArea = 100 will
filter out all the blobs that have less then 100 pixels.

By Shape: shape has three different parameters:

76

Simulations and experimental results

1. Circularity : This gauges how closely the blob resembles a circle. For instance,
a regular hexagon has higher circularity than a square. To filter by circularity,
set filterByCircularity = 1, as well as minCircularity and maxCircularity. In
detail, Circularity is defined as 4∗π∗Area

perimeter2 , which infers that a circle has a circularity
of 1, circularity of a square is 0.785, and so on.

2. Convexity : Convexity is defined as the AreaoftheBlob/Areaofit′sconvexhull.
Convex hull of a shape is the tightest convex shape that completely encloses the
shape. To filter by convexity, set filterByConvexity = 1, followed by setting
0 ≤ minConvexity ≤ 1 and maxConvexity ≤ 1.

3. Inertia Ratio : This measures how elongated a shape is. E.g., for a circle,
this value is 1, for an ellipse it is between 0 and 1, and for a line it is 0. To filter
by inertia ratio, set filterByInertia = 1, and set 0 ≤ minInertiaRatio ≤ 1 and
maxInertiaRatio ≤ 1 appropriately.

Figure 5.6: Parameters of blob detection

Apply the blob detection to the front ground mask of the local cost map
generated by BS. In order to return the contour of the moving obstacle as shown
in Fig. 5.7 (green part):

5.3.5 Tracking
As the blob detector returns the blobs with centers, the Kalman filter is used
to estimate the velocities of centers, i.e., the velocities of moving obstacles. By
estimating a joint probability distribution over the variables for each time frame,
Kalman filtering, also known as Linear Quadratic Estimation (LQE), is an algorithm
that uses a series of measurements observed over time, including statistical noise
and other inaccuracies, to produce estimates of unknown variables that are typically
more accurate than those based on a single measurement alone. The algorithm works
through a two-phase process. The Kalman filter generates estimates of the current
state variables and their uncertainty for the prediction phase. These estimates are

77

Simulations and experimental results

Figure 5.7: Contour of moving obstacle detected by blob detector

updated using a weighted average, with more weight given to estimations with
more certainty, after the result of the next measurement—inevitably tainted with
some mistake, including random noise—is detected. The algorithm repeats itself.
It is capable of operating in real time with just the current input measurements,
the previously determined state, and its uncertainty matrix; no extra historical
data is needed.

The tracking of a moving obstacle is shown in Fig. 5.9, where the red arrow
represents the velocity. Above all, the position and velocity of the moving obstacle
are obtained.

5.4 Simulations

5.4.1 Simulation of avoiding static obstacles
In order to simulate the scenario of the AMR avoids the static obstacles that newly
appear in the environment, four obstacles with different shapes, two boxes, one
cylinder, and a sphere, are added randomly in the corridor of the CIM4.0 laboratory
as shown in Fig. 5.10.

Then set a goal point at the left end of the corridor; the robot moves to it under

78

Simulations and experimental results

Figure 5.8: Basic concept of Kalman filter

Figure 5.9: Tracking of the moving obstacle

the contributed effort of global and local planning. The autonomous navigation
can be presented as Fig. 5.11, from which the capability of path planning methods
proposed by this thesis to avoid newly appearing obstacles is proved.

Additionally, by setting the attractive gain factor k and repulsive gain factor ηx

properly, the AMR can pass narrow space as reported in Fig. 5.12.

5.4.2 Avoid moving obstacle
When there is a moving obstacle, the improved DAPF will detect the position and
velocity of it, and take this information into consideration to update the repulsive
force. As a result, the robot immediately moves to the side and avoids the moving
obstacle successfully. The process is shown in Fig. 5.13.

Above all, the functionality of the proposed path planning algorithm is verified in

79

Simulations and experimental results

(a) Before setting static obstacles (b) After setting static obstacles

Figure 5.10: Newly added static obstacles

(a) (b)

(c) (d)

Figure 5.11: Simulation of avoiding static obstacles

ROS simulation. However, even though Gazebo provides good simulation for users,
there are always differences with respect to the real robot system and environment.
More specifically, the real on-board sensors are less accurate compared to the
simulated ones. Thus, sensor fusion is applied to improve the overall performance
of the perception system.

80

Simulations and experimental results

(a) (b)

(c) (d)

Figure 5.12: Passage of narrow space

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.13: Simulation of avoiding moving obstacle

81

Simulations and experimental results

5.5 Sensor fusion

Sensor fusion is the process of merging sensor data or data obtained from other
sources so that the final information has less uncertainty than would be feasible if
these sources were used separately. It is not required that the data sources for a
fusion process come from identical sensors. There are three types of fusion: direct,
indirect, and fusion of the outputs of the first two. While indirect fusion relies
on data sources including a priori environmental knowledge and human input,
direct fusion combines sensor data from a variety of heterogeneous or homogeneous
sensors, soft sensors, and sensor data historical values.

5.5.1 Odometry and IMU fusion

As mentioned in Section 3.3.4, the odometry will accumulate errors during navi-
gation. A common way to correct this error is to fuse odometry with IMU data.
For our project, odometry is provided by the encoders of Scout mini, and the
IMU data comes from Intel Realsence. Firstly, the raw IMU data is filtered by
imu_filter_madgwick, which is used to filter and fuse raw data from IMU devices.
It fuses angular velocities, accelerations, and (optionally) magnetic readings from a
generic IMU device into an orientation quaternion, and publishes the fused data on
the imu/data topic. The filtered IMU data, along with the odometry data, is then
sent to the ukf_localization_node to generate filtered odometry. An unscented
Kalman filter is implemented by ukf_localization_node. It uses a set of carefully
selected sigma points to project the state through the same motion model that
is used in the EKF, and then uses those projected sigma points to recover the
state estimate and covariance. This eliminates the use of Jacobian matrices and
makes the filter more stable. Lastly, the filtered odometry is used by AMCL as an
auxiliary to localize. The process is show in Fig. 5.14:

Figure 5.14: Odometry and IMU fusion

82

Simulations and experimental results

5.5.2 Two Lidars fusion
Considering the overall structure of the FIXIT as shown in Fig. 1.1, the extended
components on the application layer will block part of the view of the Lidar that is
installed at the side hub. Therefore, at least two Lidar should be used to cover a
360◦ view. Data from these two Lidars is filted first to remove the point clouds
from the blocked view, then merged together. Fig. 5.15 (a) depicts the filtering of
the front Lidar, with the red point cloud representing the data before filtering and
the green point cloud representing the data after filtering; similarly, (b) depicts the
filtering of the rear Lidar; by merging these two filtered Lidar data (green point
clouds), a full view of the surroundings is obtained, as depicted in (c).

5.5.3 Lidar and camera fusion
As mentioned in Section 3.4.3, a 2D Lidar is not enough to detect all the obstacles at
different heights. To solve this problem, data from a camera that has a wider field of
view in the vertical direction is fused. The ROS package depthimage_to_laserscan
generates a laserscan message by cutting the depth image provided by the camera
at a specific height. From Fig. 5.16, it can be seen that a box below the detection
height of the Lidar can be detected by the camera, and the corresponding laserscan
(the red point cloud) is converted.

5.6 ROS distributed system
Distributed computing is a key component of ROS’ design. A well-written node
does not presuppose where it will be situated in the network, enabling processing
to be moved around at runtime to match the available resources. As described in
Section 3.4.2, the higher-level controller of the AMR is designed as a distributed
system. To build a ROS distributed system, multiple machines should be connected
to the same local network. By adding the IP address and the host name in the
/etc/hosts file to each machine, bi-directional connections among them can be
constructed. Then one of them is set as master while the others are slaves. roscore
is run by the master, and ROS_MASTER_URI is configured on all the machines.
With all these steps, a ROS distributed system is validated.

5.7 Experimental results
5.7.1 Experiments of avoiding static obstacles
Firstly, the cost map of the CIM4.0 laboratory is built by gmapping as shown in
Fig. 5.17.

83

Simulations and experimental results

Then, similar to the simulation, several boxes are put in the corridor randomly
to test the ability of the AMR to to avoid static obstacles that are newly appearing
in the environment. As a comparison, both A* with DWA and D* Lite with DAPF
are implemented. The results are shown in Fig. 5.18 and Fig. 5.19:

Starting from the same location and navigating to the same goal, both of them
are set with a maximum linear velocity of 0.3m/s.

1. It takes 0.35s for D* Lite and DAPF to reach the goal point, while it takes 50s
for A* and DWA to reach the last obstacle and stop there without accomplishing
the task.

2. DAPF moves the robot smoothly because the driving force generated by the
field is continuous and the local goal is updated in real-time thanks to the strategy
proposed in Section 4.2.3. The movement of DWA is with pauses since DWA plans
a short local path one after another within the dynamic windows, which cannot
be connected perfectly considering the change of velocity and acceleration in the
robot’s state. This phenomenon can be witnessed, especially when turning.

3. DWA can not take full advantage of the OMR even if the parameter
holonomic_robot is set as true. It takes 30s to pass the first passage between
two boxes, while DAPF takes 7s. Besides, DWA fail to plan a path in front of
the last obstacle, but actually, there is enough space for the rover to pass, which
indicates the poor performance of DWA in narrow spaces.

5.7.2 Experiment of avoiding moving obstacle
To test the ability of DAPF to avoid moving obstacles, a tester sitting on a swivel
armchair moves heading to the robot to perform as a moving obstacle. The result
of the experiment is shown in FIg. 5.20:

Taking the white line on the floor as reference, it can be seen that, at the
beginning, the AMR and the swivel wheelchair are moving towards each other
along the same line. When the wheelchair enters the detection region of the AMR,
it immediately moves to the side to give way to the wheelchair. As analysed in
Section 4.2.4, the extra force component Freqv results from the relative velocity
plays the most important role in avoiding moving obstacles, which drives the robot
to move in the direction that the projection of the relative velocity on the line
connecting robot and obstacle is decreased. All these processes happened within
7s, proving the fast reaction of the AMR when encountering a moving obstacle.

84

Simulations and experimental results

(a) filtered front Lidar data

(b) filtered rear Lidar data

(c) merged Lidar data

Figure 5.15: Fusion of two Lidars

85

Simulations and experimental results

(a) (b)

Figure 5.16: Lidar and camera fusion

Figure 5.17: Cost map of the CIM4.0 laboratory

86

Simulations and experimental results

(a) time: 00:00 (b) time: 00:05 (c) time: 00:10 (d) time: 00:15

(e) time: 00:20 (f) time: 00:25 (g) time: 00:30 (h) time: 00:35

Figure 5.18: Experimental of avoiding static obstacles by D* Lite and DAPF

87

Simulations and experimental results

(a) time: 00:00 (b) time: 00:10 (c) time: 00:20

(d) time: 00:30 (e) time: 00:40 (f) time: 00:50

Figure 5.19: Experimental of avoiding static obstacles by A* and DWA

88

Simulations and experimental results

(a) time: 00:01 (b) time: 00:03 (c) time: 00:04

(d) time: 00:05 (e) time: 00:07

Figure 5.20: Experiment of avoiding moving obstacle

89

Chapter 6

Conclusion and future work

The main purpose of this thesis is to develop and implement an obstacle avoidance
algorithm to be executed on the AMR of FIXIT. Based on the comprehensive
analysis of state of the art of path planning algorithms, a Dynamic Artificial
Potential Field (DAPF) method is proposed as the Local Path Planning (LPP)
to make up the drawbacks of traditional APF, with the ability to avoid moving
obstacles. Combined with the D* Lite as Global Path Planning (GPP), the
performance of the collision avoidance is verified by the ROS simulation and
experiments on the designed real robot.

1. The URDF model of the robot and the environment model are built according
to the real ones, and they are simulated by Gazebo and visualized by RViz.

2. A real robot with a three-layer mechanical system: chassis, control, and
application layers; and a two-layer control system: a higher-level distributed
computer system and a lower-level motion control system, is designed based on
ROS to perform the path planning algorithms.

3. For the disadvantage that the traditional APF generates the path with a
certain randomness and may not be the global optimal one, a strategy of following
the global path by setting the local goal point in real time is proposed. Furthermore,
A DAPF is proposed as the LPP algorithm, which takes into consideration the
moving obstacle detected by OpenCV tools such as background subtraction and
blob detection and tracked by the Kalman filter, estimating its position and velocity.

The proposed algorithm is not only verified by the experiments but also compared
to the ROS provided A* and DWA methods, which stress the improvement of the
navigation efficiency and the performance of avoiding moving obstacles. Meanwhile,
there are several aspects of the work in this thesis that can be further improved:

1. Considering the fact that the AMR can move in omnidirection, although
two Lidars and two depth cameras are fused, it is not sufficient to cover all the
obstacles at different heights with 360◦ view. A 3D Lidar can be used to solve this
problem if the budget permits.

90

Conclusion and future work

2. The moving object detection technique provided by OpenCV is not accurate
enough. Certain static objects are recognized as moving ones during navigation
due to the movement of the robot, which disturbs the AMR to implement tasks.

3. The FIXIT project is a cooperation between the rover and the drone. But
until now, the autonomous navigation is performed without utilizing the data from
the drone, and vice versa. Developing the rover and drone as a unified system
could be a interesting future work.

91

Bibliography

[1] Yi Wang, Hai-Shu Ma, Jing-Hui Yang, and Ke-Sheng Wang. «Industry 4.0:
a way from mass customization to mass personalization production». In:
Advances in Manufacturing 5.4 (2017), pp. 311–320 (cit. on p. 1).

[2] Kyriakos Manousakis, Tony McAuley, Raquel Morera, and John Baras. «Using
multi-objective domain optimization for routing in hierarchical networks». In:
2005 International Conference on Wireless Networks, Communications and
Mobile Computing. Vol. 2. IEEE. 2005, pp. 1460–1465 (cit. on p. 4).

[3] Biwei Tang, Zhanxia Zhu, and Jianjun Luo. «Hybridizing particle swarm
optimization and differential evolution for the mobile robot global path
planning». In: International Journal of Advanced Robotic Systems 13.3 (2016),
p. 86 (cit. on p. 4).

[4] Purushothaman Raja and Sivagurunathan Pugazhenthi. «Optimal path plan-
ning of mobile robots: A review». In: International journal of physical sciences
7.9 (2012), pp. 1314–1320 (cit. on p. 4).

[5] Zexuan Zhu, Fangxiao Wang, Shan He, and Yiwen Sun. «Global path planning
of mobile robots using a memetic algorithm». In: International Journal of
Systems Science 46.11 (2015), pp. 1982–1993 (cit. on p. 4).

[6] Peng Yang, Ke Tang, Jose A Lozano, and Xianbin Cao. «Path planning for
single unmanned aerial vehicle by separately evolving waypoints». In: IEEE
Transactions on Robotics 31.5 (2015), pp. 1130–1146 (cit. on p. 4).

[7] N Buniyamin, N Sariff, WAJ Wan Ngah, and Z Mohamad. «Robot global
path planning overview and a variation of ant colony system algorithm». In:
International journal of mathematics and computers in simulation 5.1 (2011),
pp. 9–16 (cit. on p. 5).

[8] Jared Giesbrecht. Global path planning for unmanned ground vehicles. Tech.
rep. DEFENCE RESEARCH and DEVELOPMENT SUFFIELD (ALBERTA),
2004 (cit. on p. 5).

92

BIBLIOGRAPHY

[9] Christos Alexopoulos and Paul M Griffin. «Path planning for a mobile robot».
In: IEEE Transactions on systems, man, and cybernetics 22.2 (1992), pp. 318–
322 (cit. on p. 5).

[10] Edsger W Dijkstra et al. «A note on two problems in connexion with graphs».
In: Numerische mathematik 1.1 (1959), pp. 269–271 (cit. on p. 5).

[11] Anthony Stentz. «Optimal and efficient path planning for partially known
environments». In: Intelligent unmanned ground vehicles. Springer, 1997,
pp. 203–220 (cit. on p. 5).

[12] Sven Koenig and Maxim Likhachev. «Dˆ* lite». In: Aaai/iaai 15 (2002),
pp. 476–483 (cit. on pp. 5, 55, 58).

[13] Sven Koenig and Maxim Likhachev. «Incremental a». In: Advances in neural
information processing systems 14 (2001) (cit. on p. 5).

[14] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. «Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces».
In: IEEE transactions on Robotics and Automation 12.4 (1996), pp. 566–580
(cit. on p. 5).

[15] Panagiotis G Zavlangas and Spyros G Tzafestas. «Motion control for mobile
robot obstacle avoidance and navigation: a fuzzy logic-based approach». In:
Systems Analysis Modelling Simulation 43.12 (2003), pp. 1625–1637 (cit. on
p. 5).

[16] Howard Li, Simon X Yang, and Mae L Seto. «Neural-network-based path
planning for a multirobot system with moving obstacles». In: IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
39.4 (2009), pp. 410–419 (cit. on p. 5).

[17] Hong Qu, Simon X Yang, Allan R Willms, and Zhang Yi. «Real-time robot
path planning based on a modified pulse-coupled neural network model». In:
IEEE Transactions on Neural Networks 20.11 (2009), pp. 1724–1739 (cit. on
p. 5).

[18] Xiao-Ping Zeng, Yong-Ming Li, and Jian Qin. «A dynamic chain-like agent
genetic algorithm for global numerical optimization and feature selection».
In: Neurocomputing 72.4-6 (2009), pp. 1214–1228 (cit. on p. 5).

[19] Yong Zhang, Dun-wei Gong, and Jian-hua Zhang. «Robot path planning in
uncertain environment using multi-objective particle swarm optimization».
In: Neurocomputing 103 (2013), pp. 172–185 (cit. on p. 5).

[20] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. «A Formal Basis for the
Heuristic Determination of Minimum Cost Paths». In: IEEE Transactions
on Systems Science and Cybernetics 4.2 (1968), pp. 100–107. doi: 10.1109/
TSSC.1968.300136 (cit. on p. 6).

93

https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136

BIBLIOGRAPHY

[21] František Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin Florek,
Tomáš Fico, and Ladislav Jurišica. «Path planning with modified a * algorithm
for a mobile robot». In: Procedia Engineering 96 (2014), pp. 59–69 (cit. on
p. 6).

[22] Antti Autere et al. Extensions and Applications of the A* Algorithm. Helsinki
University of Technology, 2005 (cit. on p. 7).

[23] Judea Pearl. Heuristics: intelligent search strategies for computer problem
solving. Addison-Wesley Longman Publishing Co., Inc., 1984 (cit. on p. 7).

[24] John H Reif. «Complexity of the mover’s problem and generalizations». In:
20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
IEEE Computer Society. 1979, pp. 421–427 (cit. on p. 8).

[25] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and
Seth Teller. «Anytime motion planning using the RRT». In: 2011 IEEE
International Conference on Robotics and Automation. IEEE. 2011, pp. 1478–
1483 (cit. on p. 8).

[26] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio Fraz-
zoli, and Jonathan P How. «Real-time motion planning with applications
to autonomous urban driving». In: IEEE Transactions on control systems
technology 17.5 (2009), pp. 1105–1118 (cit. on p. 9).

[27] Steven M LaValle et al. «Rapidly-exploring random trees: A new tool for
path planning». In: (1998) (cit. on p. 9).

[28] Gregory Antonovsky. Bidirectional RRT* FND algorithm. 2018. url: https:
//github.com/onlinex/bidirectionalRRTStarFND.git (cit. on p. 9).

[29] Sertac Karaman and Emilio Frazzoli. «Sampling-based algorithms for optimal
motion planning». In: The international journal of robotics research 30.7
(2011), pp. 846–894 (cit. on p. 10).

[30] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. «In-
formed RRT*: Optimal sampling-based path planning focused via direct
sampling of an admissible ellipsoidal heuristic». In: 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE. 2014, pp. 2997–
3004 (cit. on p. 10).

[31] Steven M LaValle, James J Kuffner, BR Donald, et al. «Rapidly-exploring
random trees: Progress and prospects». In: Algorithmic and computational
robotics: new directions 5 (2001), pp. 293–308 (cit. on p. 10).

94

https://github.com/onlinex/bidirectionalRRTStarFND.git
https://github.com/onlinex/bidirectionalRRTStarFND.git

BIBLIOGRAPHY

[32] James J Kuffner and Steven M LaValle. «RRT-connect: An efficient approach
to single-query path planning». In: Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065). Vol. 2. IEEE. 2000, pp. 995–
1001 (cit. on p. 10).

[33] Bing Kang, XH Wang, and Fu Liu. «Path planning of searching robot based
on improved ant colony algorithm [J]». In: Journal of Jilin University (Engi-
neering and Technology Edition) 44.4 (2014), pp. 1062–1068 (cit. on p. 10).

[34] MAO Lin-bo, LIU Shi-rong, and YU Jin-shou. «An improved ant colony
algorithm for mobile robot path planning». In: 8 (2006), pp. 997–1001 (cit. on
p. 10).

[35] Thomas Stützle and Holger Hoos. «Improvements on the ant-system: In-
troducing the max-min ant system». In: Artificial neural nets and genetic
algorithms. Springer. 1998, pp. 245–249 (cit. on p. 10).

[36] Bing Shuang, Jiapin Chen, and Zhenbo Li. «Study on hybrid PS-ACO algo-
rithm». In: Applied Intelligence 34.1 (2011), pp. 64–73 (cit. on p. 10).

[37] De-Lin Luo and Shun-Xiang Wu. «Ant colony optimization with potential field
heuristic for robot path planning». In: Systems Engineering and Electronics
32.6 (2010), pp. 1277–1280 (cit. on p. 10).

[38] Nicolas Monmarché, Frédéric Guinand, and Patrick Siarry. Artificial ants.
Wiley-ISTE Hoboken, 2010 (cit. on p. 10).

[39] Christian Blum. «Beam-ACO—Hybridizing ant colony optimization with
beam search: An application to open shop scheduling». In: Computers &
Operations Research 32.6 (2005), pp. 1565–1591 (cit. on p. 10).

[40] Marco Dorigo and Luca Maria Gambardella. «Ant colony system: a coop-
erative learning approach to the traveling salesman problem». In: IEEE
Transactions on evolutionary computation 1.1 (1997), pp. 53–66 (cit. on
p. 11).

[41] url: https://complex-systems-ai.com/en/algorithms-desaims/ant-
colony/ (cit. on p. 11).

[42] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. «The dynamic window
approach to collision avoidance». In: IEEE Robotics & Automation Magazine
4.1 (1997), pp. 23–33 (cit. on p. 13).

[43] Oliver Brock and Oussama Khatib. «High-speed navigation using the global
dynamic window approach». In: Proceedings 1999 ieee international conference
on robotics and automation (Cat. No. 99CH36288C). Vol. 1. IEEE. 1999,
pp. 341–346 (cit. on pp. 13, 14).

95

https://complex-systems-ai.com/en/algorithms-desaims/ant-colony/
https://complex-systems-ai.com/en/algorithms-desaims/ant-colony/

BIBLIOGRAPHY

[44] url: http://wiki.ros.org/dwa_local_planner (cit. on p. 13).
[45] Zhang Hong, Sun Chun-Long, Zheng Zi-Jun, An Wei, Zhou De-Qiang, and

Wu Jing-Jing. «A modified dynamic window approach to obstacle avoidance
combined with fuzzy logic». In: 2015 14th International Symposium on Dis-
tributed Computing and Applications for Business Engineering and Science
(DCABES). IEEE. 2015, pp. 523–526 (cit. on p. 14).

[46] Omer Ali Abubakr, Mohammed Abdel Kareem Jaradat, and Mamoun Adel
Hafez. «A reduced cascaded fuzzy logic controller for dynamic window weights
optimization». In: 2018 11th International Symposium on Mechatronics and
its Applications (ISMA). IEEE. 2018, pp. 1–4 (cit. on p. 14).

[47] Sean Quinlan and Oussama Khatib. «Elastic bands: Connecting path plan-
ning and control». In: [1993] Proceedings IEEE International Conference on
Robotics and Automation. IEEE. 1993, pp. 802–807 (cit. on p. 14).

[48] Thorsten Brandt and Thomas Sattel. «Path planning for automotive collision
avoidance based on elastic bands». In: IFAC Proceedings Volumes 38.1 (2005),
pp. 210–215 (cit. on p. 14).

[49] Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. «Timed-Elastic-
Bands for time-optimal point-to-point nonlinear model predictive control».
In: 2015 European Control Conference (ECC). 2015, pp. 3352–3357. doi:
10.1109/ECC.2015.7331052 (cit. on p. 14).

[50] url: https://epsavlc.github.io/2019/08/06/teb_g2o.html (cit. on
p. 15).

[51] Kristin Glass, Richard Colbaugh, David Lim, and Homayoun Seraji. «Real-
time collision avoidance for redundant manipulators». In: IEEE transactions
on robotics and automation 11.3 (1995), pp. 448–457 (cit. on p. 15).

[52] Chia-Chia Kao, Chih-Min Lin, and Jih-Gau Juang. «Application of potential
field method and optimal path planning to mobile robot control». In: 2015
IEEE International Conference on Automation Science and Engineering
(CASE). IEEE. 2015, pp. 1552–1554 (cit. on p. 16).

[53] Jean Bosco Mbede, Xinhan Huang, and Min Wang. «Fuzzy motion planning
among dynamic obstacles using artificial potential fields for robot manipula-
tors». In: Robotics and autonomous Systems 32.1 (2000), pp. 61–72 (cit. on
p. 16).

[54] J Randolph Andrews and Neville Hogan. «Impedance control as a framework
for implementing obstacle avoidance in a manipulator». MA thesis. M. I. T.,
Dept. of Mechanical Engineering, 1983 (cit. on p. 16).

96

http://wiki.ros.org/dwa_local_planner
https://doi.org/10.1109/ECC.2015.7331052
https://epsavlc.github.io/2019/08/06/teb_g2o.html

BIBLIOGRAPHY

[55] Daniel Koditschek. «Exact robot navigation by means of potential functions:
Some topological considerations». In: Proceedings. 1987 IEEE International
Conference on Robotics and Automation. Vol. 4. IEEE. 1987, pp. 1–6 (cit. on
p. 16).

[56] Elon Rimon and Daniel E Koditschek. «The construction of analytic diffeo-
morphisms for exact robot navigation on star worlds». In: Transactions of
the American Mathematical Society 327.1 (1991), pp. 71–116 (cit. on p. 16).

[57] Pradeep Khosla and Richard Volpe. «Superquadric artificial potentials for
obstacle avoidance and approach». In: Proceedings. 1988 IEEE International
Conference on Robotics and Automation. IEEE. 1988, pp. 1778–1784 (cit. on
p. 16).

[58] Murat Köseoğlu, Orkan Murat Çelik, and Ömer Pektaş. «Design of an au-
tonomous mobile robot based on ROS». In: 2017 International Artificial
Intelligence and Data Processing Symposium (IDAP). IEEE. 2017, pp. 1–5
(cit. on p. 17).

[59] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, Andrew Y Ng, et al. «ROS: an open-source Robot
Operating System». In: ICRA workshop on open source software. Vol. 3. 3.2.
Kobe, Japan. 2009, p. 5 (cit. on pp. 17, 20).

[60] url: http://library.isr.ist.utl.pt/docs/roswiki/ROS%5C%282f%5C%
29Concepts.html (cit. on p. 19).

[61] ChangLong Ye, ShuGen Ma, and Li Hui. «An omnidirectional mobile robot».
In: Science China Information Sciences 54.12 (2011), pp. 2631–2638 (cit. on
p. 20).

[62] url: https://en.wikipedia.org/wiki/Ackermann_steering_geometry
(cit. on p. 20).

[63] Ioan Doroftei, Victor Grosu, and Veaceslav Spinu. Omnidirectional mobile
robot-design and implementation. INTECH Open Access Publisher London,
UK, 2007 (cit. on p. 21).

[64] Chao Ren and Shugen Ma. «Dynamic modeling and analysis of an omnidi-
rectional mobile robot». In: 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2013, pp. 4860–4865 (cit. on p. 21).

[65] Florentina Adăscăliţei and Ioan Doroftei. «Practical applications for mobile
robots based on mecanum wheels-a systematic survey». In: The Romanian
Review Precision Mechanics, Optics and Mechatronics 40 (2011), pp. 21–29
(cit. on p. 22).

97

http://library.isr.ist.utl.pt/docs/roswiki/ROS%5C%282f%5C%29Concepts.html
http://library.isr.ist.utl.pt/docs/roswiki/ROS%5C%282f%5C%29Concepts.html
https://en.wikipedia.org/wiki/Ackermann_steering_geometry

BIBLIOGRAPHY

[66] Stephen L Dickerson and Brett D Lapin. «Control of an omni-directional
robotic vehicle with Mecanum wheels». In: NTC’91-National Telesystems
Conference Proceedings. IEEE. 1991, pp. 323–328 (cit. on p. 23).

[67] url: https://en.wikipedia.org/wiki/Mecanum_wheel#cite_note-5
(cit. on p. 24).

[68] Mahmood Reza Azizi, Alireza Rastegarpanah, and Rustam Stolkin. «Mo-
tion planning and control of an omnidirectional mobile robot in dynamic
environments». In: Robotics 10.1 (2021), p. 48 (cit. on p. 24).

[69] url: http://library.isr.ist.utl.pt/docs/roswiki/urdf(2f)XML.
html (cit. on p. 28).

[70] url: https://articulatedrobotics.xyz/ready-for-ros-7-urdf/ (cit.
on p. 30).

[71] url: http://wiki.ros.org/urdf/XML/joint (cit. on p. 31).
[72] Tully Foote. «tf: The transform library». In: 2013 IEEE Conference on

Technologies for Practical Robot Applications (TePRA). 2013, pp. 1–6. doi:
10.1109/TePRA.2013.6556373 (cit. on pp. 32, 33).

[73] Patricio Castillo-Pizarro, Tomás V Arredondo, and Miguel Torres-Torriti.
«Introductory survey to open-source mobile robot simulation software». In:
2010 Latin American Robotics Symposium and Intelligent Robotics Meeting.
IEEE. 2010, pp. 150–155 (cit. on p. 34).

[74] url: http://wiki.ros.org/move_base (cit. on p. 37).
[75] url: http://wiki.ros.org/costmap_2d (cit. on p. 38).
[76] url: https://groups.csail.mit.edu/drl/courses/cs54-2001s/odomet

ry.html (cit. on p. 39).
[77] Gang Peng, Wei Zheng, Zezao Lu, Jinhu Liao, Lu Hu, Gongyue Zhang, and

Dingxin He. «An improved AMCL algorithm based on laser scanning match
in a complex and unstructured environment». In: Complexity 2018 (2018)
(cit. on p. 40).

[78] url: http://wiki.ros.org/nav_core (cit. on p. 41).
[79] Rachael N Darmanin and Marvin K Bugeja. «Autonomous Exploration and

Mapping using a Mobile Robot Running ROS.» In: ICINCO (2). 2016, pp. 208–
215 (cit. on p. 43).

[80] url: https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-xavier-nx/ (cit. on pp. 48, 49).

[81] url: https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-nano/product-development/ (cit. on pp. 48, 49).

98

https://en.wikipedia.org/wiki/Mecanum_wheel#cite_note-5
http://library.isr.ist.utl.pt/docs/roswiki/urdf(2f)XML.html
http://library.isr.ist.utl.pt/docs/roswiki/urdf(2f)XML.html
https://articulatedrobotics.xyz/ready-for-ros-7-urdf/
http://wiki.ros.org/urdf/XML/joint
https://doi.org/10.1109/TePRA.2013.6556373
http://wiki.ros.org/move_base
http://wiki.ros.org/costmap_2d
https://groups.csail.mit.edu/drl/courses/cs54-2001s/odometry.html
https://groups.csail.mit.edu/drl/courses/cs54-2001s/odometry.html
http://wiki.ros.org/nav_core
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/

BIBLIOGRAPHY

[82] url: https://www.slamtec.com/en/Lidar/A1 (cit. on p. 50).
[83] url: https://www.slamtec.com/en/Lidar/A1Spec (cit. on p. 51).
[84] url: https://www.intelrealsense.com/depth-camera-d435i/ (cit. on

p. 52).
[85] Ganesan Ramalingam and Thomas Reps. «An incremental algorithm for a

generalization of the shortest-path problem». In: Journal of Algorithms 21.2
(1996), pp. 267–305 (cit. on p. 54).

[86] Sven Koenig, Maxim Likhachev, and David Furcy. «Lifelong planning A». In:
Artificial Intelligence 155.1-2 (2004), pp. 93–146 (cit. on p. 54).

[87] Anthony Stentz et al. «The focussed dˆ* algorithm for real-time replanning».
In: IJCAI. Vol. 95. 1995, pp. 1652–1659 (cit. on p. 55).

[88] Kaili Xie, Jie Qiang, and Haitao Yang. «Research and optimization of d-*t lite
algorithm in track planning». In: IEEE Access 8 (2020), pp. 161920–161928
(cit. on pp. 55, 56).

[89] Yang Zhaofeng and Zhang Ruizhe. «Path planning of multi-robot cooperation
for avoiding obstacle based on improved artificial potential field method». In:
Sensors & Transducers 165.2 (2014), p. 221 (cit. on p. 59).

[90] url: https://docs.opencv.org/4.x/d1/dc5/tutorial_background_
subtraction.html (cit. on p. 75).

[91] url: https://learnopencv.com/blob-detection-using-opencv-python-
c/ (cit. on p. 76).

99

https://www.slamtec.com/en/Lidar/A1
https://www.slamtec.com/en/Lidar/A1Spec
https://www.intelrealsense.com/depth-camera-d435i/
https://docs.opencv.org/4.x/d1/dc5/tutorial_background_subtraction.html
https://docs.opencv.org/4.x/d1/dc5/tutorial_background_subtraction.html
https://learnopencv.com/blob-detection-using-opencv-python-c/
https://learnopencv.com/blob-detection-using-opencv-python-c/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Structure of thesis

	State of the art
	Path Planning
	Global Path Planning
	A* algorithm
	Rapidly-exploring Random Tree algorithm
	Ant Colony Optimization algorithm

	Local Path Planning
	Dynamic Window Approach
	Time Elastic Band
	Artificial Potential Field method

	Architecture of Autonomous Mobile Robots based on ROS
	Robot Operating System
	Design goals
	Computation graph level

	Kinematic model of OMR with Mecanum wheels
	Omnidirectional Mobile Robot
	Kinematic model

	Simulation
	The URDF model
	tf: the transform library
	Gazebo
	Navigation stack
	Simultaneous Localization and Mapping (SLAM)

	Real robot
	Mechanical system
	Control system
	Microcomputers and Perception sensors

	Development of path planning
	GPP using D* Lite
	D* Lite compared with A* and LPA*
	Principle of D* Lite

	LPP using DAPF method
	Classical Artificial Potential Field method
	Improved Artificial Potential Field method
	Strategy of following global path
	Dynamic Artificial Potential Field (DAPF)

	Simulations and experimental results
	Comparison of A* and D* Lite Algorithms
	Strategy of following global path
	Estimation of the position and velocity of moving obstacles
	Build the local cost map
	Add moving obstacle
	Background Subtraction
	Blob detection
	Tracking

	Simulations
	Simulation of avoiding static obstacles
	Avoid moving obstacle

	Sensor fusion
	Odometry and IMU fusion
	Two Lidars fusion
	Lidar and camera fusion

	ROS distributed system
	Experimental results
	Experiments of avoiding static obstacles
	Experiment of avoiding moving obstacle

	Conclusion and future work
	Bibliography

