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Abstract

Soft-Robotics is a new field research field, born to overcome the limitations of tradi-
tional rigid robots, soft-robots in particular can ensure a safer machine-human interaction
and have the flexibility to maneuver in unpredictable and challenging circumstances. Be-
cause of their structure and the materials used in their construction, they are characterized
by nonlinear behavior, thus resulting hyperedundant and underactuated. This suggests
that the relationship between the task space and the actuations space is challenging to
define and difficult to govern. The objective of this work was to employ artificial intel-
ligence to train a soft robot to throw objects in the direction of a predetermined target,
through the completion of a circular trajectory by the robot, in order to exploit the mo-
ment of inertia. The initial step in achieving this goal was the employment of a soft-robot
simulator named Elastica. Since the launch had to be carried out through a circular
trajectory of the robot, a preliminary analysis was done to determine how to actuate the
robot to carry out this movement. The actuations have been defined through the use of
two parameters. After, two neural networks were used to hcorrelate the actuations with
the target, the first one predicts the two parameters that define the actuations required for
the robot to move at a specific speed and on a specific curve, and the second predicts
when to the object should be released in order to hit the target. For each of the two
neural networks has been performed a model selection in order to determine the best
combination of hyperparameters that allow to increase their performance. Finally, some
tests have been carried out and their results reported, both for the simulator case and for
the robot case through the implementation of the models obtained before. In particular,
the distance between the desired target and the actual landing position has been saved,
concluding that machine learning techniques can teach to a soft-robot how to throw an
object.
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Chapter 1

Introduction

1.1 Introduction to Soft Robotics

Robots employed in manufacturing process are typically rigid-robots, able to compute
fast, strong, precise and periodic position control tasks in assembly lines, also thanks to
the materials that they are made of, rigid materials, such as alloys and metals [1]. Rigid
robots have as disadvantages, the unsafe interaction between human and machine due to
their often heavy structure and hard materials, the inability to work in unstructured and
unpredictable environments and the absence of flexibility, for this reason the soft-robots
were created. Soft robotics is a growing, new field that focuses on mechanical qualities
and on the integration of materials, structures, and software, in order to compensate for
shortcomings of rigid robots.

Bio-inspiration has been the key to this new category of robots, researchers looking
to animal world and considering the capability to move in complex and unpredictable
environments developed soft robots similar to worms and leeches [2], insect larvae
[3] and molluscs as octopus and jellyfish [4]. The main differences between these two
categories of robots are the materials they are made of, flexible, stretchable materials with
reversible and variable properties for soft-robots hard materials with invariable properties
for rigid-robots, in addition, the characteristic of the actuators, generally integrated and
distributed throughout the structure for sof-robots while at least one actuator for each
joint for rigid-robots [5].

The key features of soft robots are as follows:

* The capacity to bend continuously along their axis due to high deformable materials

1
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* The capability to interact and advance in environments where the movement is
limited, finding good applications in human assistance, in rescue situations and
medical field

 Safety, always thank to the soft materials that also have usually lower weight respect

to alloys or rigid materials, being in this way better for human interaction

* Difficult to control since characterized by numerous underactuated and compliant

degrees of freedom (DoFs) and due to deformable materials.

In literature is possible to find different types of actuators for soft robots and not only

one, below have been reported some of them:

¢ Fluidic actuation, where thanks to the increase and decrease of volume, extension,
contraction, bending and twisting are obtained in the robot’s movement. Can be
distinguished by the type of fluid used:

— Pneumatic actuation, where the air can be insert in the chamber to expand or
extracted from the chamber to contract.

— Hydraulic actuation, where liquid are used in substitution of air, making the
response of the robot faster but at the same time increasing the weight of the

robot and creating unwanted situations with liquid leaking.

Through the inspiration of biological muscles, researchers employed pneumatic
artificial muscles (PAM) such as McKibben artificial muscles composed of a flexi-
ble membrane able to contract, essentially works as follow, when the membrane is
inflated, it expands radially and contracts axially, when the membrane is deflated,
it reduces its section and increases its axial length. The application of McKibben
PAM opened the doors to a variation numerous systems, like the Pleated PAM [6]
or the use of vacuum [7]. Another approach for fluidic actuation, is to use variations
of the thickness of wall chambers in order to direct the bending of the robot with
the application of the same pressure. Or is possible to coil inextensible cables to

restrict the radial deformation and increasing the axial one.

* Tendon-driven actuation where through the pulling and the stretching of tendons

and cables the desired bending of the robot is obtained. Often the implementation
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of tendon-driven actuation is mixed with other types of actuation for example,in re-

lation with pressurized chambers, like the KSI tentacle manipulator [8], continuum
robot presented by Pritts [9], the Air-Octor manipulator [10] and the OCTARM

continuum robot [11]. In the Table 1.1 are reported some exaples of soft-robotic

manipulators.

TABLE 1.1: SUMMARY OF THE DESIGN AND CONTROL OF SOME EXAMPLES OF SOFT ROBOTS

Manipulator Year Publicati, Appl Desgin Actuation Type Actuators Functionalities Control
Various stiffness
KSI tentacle 1995 EndoscopyAgriculiwre - \yoqae  Hybria Bellow-shaped penumatic bladder gy ooy Model based
Nuclear Radially arranged cables
Shortening
Artificial muscle cotniuumrobot 2004 NSs Modular Intrinsic Pneumatic chambers Omnidirectional bending
Shortening
One pneumatic chamber Various stiffness
Air-Octor 2005 Search and rescue Modular Hybrid -
Radially placed cables Omnidirecctional bending
Elongation
Shortening
Industrial Model based
Oct Arm 2005-2008 Modular Intrinsic Radially placed pneumatics chambers Omnidirectional bending
Military Hybrid
Elongation
Elongation Model based
Octopus 2010-2016 Marine Single body Extrinsic Cable
Bending Learning based
Omnidirectional bending
BHA 2011-2016 Industrial Modular Intrinsic Bellow shaped pneumatic chambers Learning based
Elongation
Shortening
Latex chamber
Various stiffness
Shrinkable, soft manipulator 2014 NSS Modular Hybrid Radially place cables
Omnidirectional bending
Braided fabric
Elongation
Shortening
Intrinsic or Radially placed pneumatics chambers ~ Varipus stiffness
STIFF-FLOP 2014-2016 Surgery Modular
Hybrid Ganular jamming or Radially cables ~ Omnidirectional benidng
Elongation
Multisegment soft fluidic actuator 2015 NSS Modular Intrinsic Anisotropic pneumatic chambers Omnidirectional bending ~ Model based

* Stimuli-responsive smart material (SRM) actuation which as been proposed by the

material science community offering other options to soft-robots designers. Using

these types of actuations, robots with small weight are implemented. Some of them

are:

— Shape Memory Alloys (SMA)which through changes in temperature modify

their structure and liberate the stored elastic energy. They find good applica-

tions in cases where compactness is necessary such as, in mobile hinges on
foldable systems [12]

— Shape Memory Polymers (SMP) [13],similarly, take advantage of thermal,

light changes or chemical compounds to release energy. Respect to Shape

Memory Alloys, they present lower density and stiffness, consequently, the

3



Introduction

energy that they will release during the transitions will be limited. Through
prestressed material allow to develop thermo-activated synthetic muscle fas-
cicles, another possible approach is using also possible to use thermodynamic

effects to activate thermo-active actuators.

— Electro-Active Polymers (EAP), where through the implementation of an
electrical field the movement of ionic elements is created and generate forces.
Since the forces generated are low and the response of the system becomes
slower with the increase of the scales these types of actuation find applica-
tion in small/micro scale systems. Examples of implementation are micro-

manipulators [14], aquatic micro-walker [15] or actuators for vertebra [16].

1.2 State of the art of Soft Robot Controllers

Soft robots were born from the need to make up for the shortcomings or problems
of rigid robots, as mentioned above, they can be very useful for different applications,
situations in which a safe interaction with humans is necessary or with the achievement
of impossible points and places for classic rigid robots, but to meet these needs an
appropriate control of the soft robots is essential. This is not a simple goal, as the
characteristics and properties of soft robots make the job even more complicated, more in
detail, (1) the ability of elastic deformation through like bending, contraction or torsion,
leads to a infinite degrees-of-freedom (DoF) motions while in rigid robots, the movement
can be defined by three translations and three rotations; (2) materials with which soft
robots are made leads to nonlinear characteristics and behavior limiting high frequency
control; (3) the extensive range of design and actuation techniques, brings tho the need
of different controllers having robots with unique properties. Essentially is possible to

divide controllers by the model approach:

- model-based controllers based on analytical models and in necessary the knowledge

of the parameters of the model.
- model-free controller where typically machine learning is used.
It is also possible to divide the controller by the assumptions that are made;

- kinematic controllers where the assumption of steady-state conditions is required.

4



1.2 — State of the art of Soft Robot Controllers

- dynamic controllers when the above assumption is not possible.

* Model-based kinematic controllers, are the most used and adopted one, models can
be implemented assuming g a steady-state assumption leading to a low-dimensional
state space representation. If the soft robot is uniform and symmetric, external
forces effects are not taken into account and torsional effects are limited, is possible
to define the three-dimensional (3D) configuration space through three variable,
called, constant curvature approximation (CC) [17]. More complex methods cane
be implemented, such as, piecew ise constant curvature (PCC) where every single
CC section is stitched together in case of multisection soft robots[ 18];variable con-
stant curvature approximation (VCC) in which the curvature of the segment varies
with own radius; beam theroy which is a simplification of the linear theory of
elasticity and through large-deflections dynamics and axial extensibility to obtain
accurate setpoint tracking [19]; Cosserat rod theory to model complex nonlinear
soft robot manipulators [20]. These others methods even if are efficient are com-
putational complex. Another disadvantage of these controllers is due to the need

of feedback that a big amount of sensory data is mandatory.

* Model-free kinematic controllers, the advantage of this controller is that the knowl-
edge of the parameters od the model is not necessary, while the disadvantage is that
is not possible to guarantee converge of the controller since is not present a param-
eterized model. To learn the inverse kinematic, neural networks are implemented.

Some of the proposed approaches are:

— goal babbling [21], efficient for high redundant to elaborate samples from the

task space to actuation space

— distal supervised learning [22], to invert the learning network used for the
forward kinematic model. Nonetheless, in this method the stochasticity in not

taken into account end an error correction is not applied.

— fuzzy logic controllers [23], where through local approximation and interpo-

lation functions can be define the kinematic Jacobian.

— local mapping [24],through which the inverse kinematic problem is solved
considering it as a differential inverse kinematic problem and with which to

reduce the stochastic effects.
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* Model-based dynamic controllers, since to formulate the dynamic model is nec-
essary the kinematic model which as already mentioned is a challenging task
consequentially will lead to more uncertainty. In literature in possible to find the
following methods for model-based dynamic controllers:

— closed-loop task space dynamic controller [25], in which the kinematic has
been determined through the constant curvature model and the related dy-
namic model defined through Euler-Lagrangian form, in which should be

also considered the elastic potential energy respect to rigid robots.

— sliding node controller [26], always only in simulation, and just for closed-

loop configuration space control.

* Model-free dynamic controllers, which is still a new area of research. In the paper
[27], has been proposed machine learning to mitigate the dynamic uncertainties,
where is present feedback component, for tracking control strategy for uncertain
nonlinear systems and a feedforward component implemented through neural net-
works. Another approach was proposed with the use of reinforcement learning, and
then to reach a certain point the problem has been modeled like a Hidden Markov
Model [28]. One of the most recent model-free dynamic controller was composed
by a recurrent neural network (RNN) to learn the forward dynamic model and by

trajectory optimization to elaborate the model that has been found [29].

1.3 Proposed approach

The objective of this thesis is to understand how to teach a soft-robot to throw objects
to a specific target with taking advantage of the moment of inertia of the robot itself
and through the use of machine learning. In order to create and study the model of
this soft-robot, has been adopted a soft-robot simulator, called Elastica. Before different
methodologies where tested on the simulator to find the feasible one and then implemented
on the real soft-robot, the I-Support robot. The main difference between the simualtor
and the real robot is that in the simulator the soft-manipulator is defined as an isotropic
soft arm and the actuations are two torques, one oriented along the direction of the normal
with respect to the robot axis and one along the binormal.

The proposed approach can be described with the following steps:

6
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1. Create the dataset, since the proposed approach is a data-driven approach. To
produce the data different throws have been simulated during the motion of the
robot along the curve, and especially not for only one curve with a certain velocity

of the robot, but for a set of these variables.

2. Implementation of a neural network (NN) to approximate the correlation between
the actuation space and the task space, more precisely, two neural networks were
used to solve the problem. The proposed model was an inverse model, in fact
considering the landing coordinates of the launched object the neural network

should predict the actuation set necessary to reach that target

3. Definition and the tuning of all the parameters and hyper-parameters that charac-
terize the neural network, due to this, several neural network have been created and

considered.

4. Training of all these neural networks defined by different parameters and hyper-
parameters and comparison between them considering as an error the distance
between the actual landing position and the desired position, ie the target, obviously

choosing those with the lowest average error.

5. Throwing experiments. Considering the case of the simulator, 100 throws have
been simulated with randoms targets. While in the case of the I-support 77 throws

have been realized with 10 different targets.

1.4 Thesis organization

This is a brief overview of the chapters’ content of this work of thesis:

Chapter 1 provides an overview of different types of soft robots developed during the
time by the researchers, their disparate applications, and a wide range of methods and
strategies adopted to control them. Also provides a short description of the proposed
approach of this thesis and its purpose.

Chapter 2 provides an overview of machine learning fundamentals, some of the differ-
ent types of neural networks and their parameters, hyper-parameters and their functions

within the network.
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Chapter 3 provides the description and the functioning of the simulator used, Elastica,
the theory behind this simulator; the description of the soft robot used, the experimental
setups, the instrumentation and methodology used to extrapolate the data from the soft
robot.

Chapter 4 provides all the results obtained by simulating the launches and by throwing
objects with the real robot.

Chapter 5 presents the conclusions of this work also some considerations over the
proposed approach.



Chapter 2

Control models for throwing with Soft
Robots

The vast majority of the formulas in this chapter come from the free Deep Learning
book published in 2019 By Michael Nielsen [30]

2.1 Introduction to the controller

The aim of this work is to find a suitable controller for the soft-robot to throw an object
making a curved trajectory to take advantage of the moment of inertia. In this work a
model-free controller is proposed in order to generalize the solution for different soft-
robots and make it feasible not only for the one used here. Has been proposed a solution
with two neural networks to find the relation between actuations of the soft-robot and the
landing position of the launched object, more precisely a first neural network to define the
relation between the two parameters that define actuations and the landing positions and
a second neural network to understand at which instant the throw should be executed in
order to reach the desired target, landing position. The controller in question is a closed-
loop model-free controller, since a feedback is present, and an Artificial Neural Networks
(ANN) type is adopted for both networks. While can be used other types of neural
networks according to different problems, for instance Recurrent Neural Network (RNN),
applied for text processing, image tagger, sentiment analysis or translation. Another type
is the Convolutional Neural Network (CNN), finding application in image processing,

speech recognition, machine translation or computer vision. Talking again about the type

9
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used in this work, ANNSs, are famous due to the fact that are able to learn any nonlinear
function, as a result, these networks are commonly referred to as Universal Function
Approximators, and through their use, was possible to discover the mapping between the
actuation space and the object’s landing positions thanks to the first NN, while the instant
of time at which to throw the object is known thanks to the second NN, both trained with
the provided dataset. After this a target is chosen, the actuations necessary to reach that
target are predicted by ANNs and finally those actuations are applied to the soft-robot

and results are analyzed.

2.2 Neural Networks

Perceptrons are the key elements of a Neural Network, were invented in the 1950s
and 1960s by Frank Rosenblatt based on earlier work by Warren McCulloch and Walter
Pitts.

Ty - - » output

3
Figure 2.1: scheme of a perceptron/neuron

These elements have different binary inputs and provide a single binary output, defined

as follow:

0 i -wix; < threshold

output = RN (2.1)

L if 2jw;xj>threshold
essentially the output will be zero or one if the the weighted sum of all inputs (xy, x3, ...,)
is below above a threshold, the latter is then called bias, leading to the formula (2.2).
Both weights and biases are parameters of the Neural Network

0 if ZjoXj—b<0

output = 2.2)
1 lf Zj Wij - b > 0

10



2.2 — Neural Networks

where weights (w, wa, ...,) are indicating the relative importance of the inputs to the
output and bias (b) is a metric that indicates how simple it is to induce the perceptron to
produce a 1. Multiple perceptrons/neurons create a layer, and a Neural Network can be

composed of a differnt number of those layers, can be distinguished three types of them:

- input-layer which is the first one of the NN and here the neurons are called input-

neurons due to the fact that they receive inputs of the network
- output-layer which is the last layer fo the NN and contains the output neurons

- hidden-layer which can be more than one and is collocated between the input and

the output layer.

hidden layers

output layer

input layer

Figure 2.2: scheme of a neural network
All the neurons of a layer are connected with the next and the previous layer, taking this
into account can be defined:
. ai., called activation which is the output of the j# neuron of  layer
. zﬁ., the input of the j neuron of / layer

. wﬁ. ;> the weight applied to the input of neuron j by the output of neuron k on the
(I = 1) layer

Go through different layers mean that more complex decisions are made, with this idea

a multi-layer network may make sophisticated decisions. The network represented in

11



Control models for throwing with Soft Robots

Figure (2.2) is also a feedforward neural network since outputs of a layer are inputs
of the next one and informations are always propagated fed forward in fact there are
not feedback loops. Talking now about hyperparameters, able to control the previously
mentioned parameter weight and bias, one of those is the activation function. Activation

function characterize each neuron affecting the output by a specific and selected function.

d=o (Z wheal s b;.) @3
k

Some types of activation functions implemented for NN are listed below:

* Step or binary function

1.0 4 — step

0 if z<0
o(x)=f(z) = (2.4)
I if z>20

-100 -75 -50 -25 00 25 5.0 75 100
Input

Figure 2.3: Step Function

The function is not differentiable in O and can only provide a binary output.

* Sigmoid function

ox)=0(z) = (2.5)

-100 -75 -50 -25 00 25 5.0 75 100
Input

Figure 2.4: Sigmoid Function

Had been introduced in order to produce as output a value between 0 and 1 and
solve the problem of the step function.

» Tangent or hyperbolic tangent function

12



2.2 — Neural Networks

1.00  — Tanh

=
£ o000
]
3

-0.25 Z -2

-0.50 O'()C) = tanh(Z) = l (26)

el +e%

~1.00 T

-100 -75 =50 -25 00 25 5.0 75 100
Input

Figure 2.5: Hyperbolic Tangent
Function
This almost always works better than the sigmoid because the mean of the values
is 0 and not 0.5, but is not good for the output-layer due to the fact that makes more

sense have a binary classification.

* Rectified linear unit (ReLU) function

10 4 — RelU

output

\ 0 i =0
cw=f=1 7 F 2.7)
z if z=20

2

04

-100 -75 -50 -25 00 25 5.0 75 100
Input

Figure 2.6: ReLU Function
This is the most used for hidden-layers, has the advantage of not having any
backpropagation errors unlike the sigmoid function and its derivative is 1 for z > 0

and O for z < 0.

* Leaky ReLU function

13
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10 { — Leaky RelU

output

e =f=1""T =0 s
z if 220

-100 -75 =50 -25 00 25 5.0 75 100
Input

Figure 2.7: Leaky ReLU Function

An improved version of the ReLU function, instead of defining the ReLLU function
as 0 for negative values of x, we define it as an extremely small linear component
of x. Because our neurons have a modest negative slope, rather than not firing at all
for huge gradients, they actually output some value, making the layer much more

optimal.

As can be noticed, all the proposed activation functions are nonlinear, in fact linear

functions in the hidden layer are ineffective, can be helpful in regression problems.

2.2.1 Backpropagation and Gradient Descent Algorithm

Backpropagation is an algorithm for calculating the cost function’s gradient necessary
to optimize the paramenters of the NN, wieghts and biases. First version of this algorithm
was introduced in 1970 by Finnish master student Seppo Linnainmaa [31] [32], however,
it wasn’t completely appreciated until a well-known study from 1986 by David Rumelhart,
Ronald Williams and Geoffrey Hinton [33]. The aim of backpropagation is to provide
information about how adjusting the weights and biases affects the network’s overall
behavior, to do so we are interested on the partial derivative dC/dw, dC /b of the cost
function C respect to weight and bias of the network. Cost function determines how well
a Machine Learning model performs for a given set of data, furthermore it calculates the
difference between predicted and expected values and provides it as a single real number.

Some types are Mean Error (ME), Mean Squared Error (MSE), Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE). The one used in this work is the Mean

Squared Error, described in equation (2.9)

1
€= 35 2@ —a" WP (2.9)

14



2.2 — Neural Networks

where: n is the number of training examples; L is the number of layers; y = y(x) is the
desired output; and a* = a’ (x) is the vector of activations output obtained with input x.

Two assumptions must be made in order to apply the backpropagation method. The
first assumption is that the cost function may be expressed as an average C = ﬁ 2 Cy
of cost functions C for individual training samples, x. The second assumption necessary
regarding cost is that it can be expressed as a function of the outputs of the neural network

C = C(a"). Through these considerations, the formula will the one in equation (2.10)
_ 1 L1 L2
C=5lly-a"l —E;(yj—a,-) (2.10)

This establishes the basis for a minimization problem: the cost function is based on
the network’s weights and biases, and means that the parameters should be updated along
the steepest descent direction, as determined by the partial derivative of the cost function

for that parameter:

Sy = oC
W Wi = Woags
. ’r _ oC
bj — bj =w-ag-

where « is defined as the learning rate and controls how big steps are taken on each
iteration for updating parameters w and b.

To update those parameters is necessary to compute the partial derivatives of the
cost function and the backpropagation algorithm is the method to do so. Four essential
equations drive backpropagation. Using all equations together, we can compute both the
error ¢! and the cost function’s gradient. But first the error ¢ ! must be defined, which is
the vector of errors relating to layer / coming from the sum over all neurons of layer / of
the error 65 of neuron j in layer /

& = 27(;
J

This variable is introduced due to the fact that in each neuron is added a small change

(2.11)

Azﬁ., dealing to a neuron’s output like cr(z; + Azﬁ.) rather than a(zé), this modification
propagates through the network changing the overall cost by a quantity of STC,Azi.. Now,
'j

with this consideration, the four essential equations are introduced:

1) equation for the output layer’s error
oC
L _ 7oL
5j —@0’ (Zj) (212)
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2)

3)

4)

th

where % quantifies how fast C changes with respect to the j'* output activa-
J

tion, while 0"(sz.) quantifies how fast o~ changes with respect to z]L. . However in
backpropagation is used the matrix-based form of the equation (2.12), defined in
equation (2.13)

ol =v,cod'(zh) (2.13)

where V,C is a vector of partial derivatives dC/ Ga]L., which in case of quadratic

cost is V,C = (a® - y), in this way equation (2.13) will become

st = (ab - y) o o'(ZH) (2.14)

euqation for error 5' as function of error of next layer 5/'*"
61 — ((Wl+1)T51+1) o 0_/(Zl) (215)

Can be computed the error &' for any layer in the network by combining (2.12)
and (2.15), before computing 5% from (2.12), with this can be obtained 51 from
(2.15) for then compute 62 and so forth.

equation describing the rate of change of the cost in relation to any network bias

oC /
J
which thanks to (2.12) and(2.15) can be rewritten as in equation 2.17
oC
— =0 2.17
A (2.17)
equation describing the rate of change of the cost in relation to any network
weight
aC -1l
=a, 0, (2.18)
l k- j
awj X
which can be rewritten as in equation (2.19)
oC
—— = AinOour (2.19)
ow

where a;, represents the activation of the neuron input to the weight w and a,,,
represents the error of the neuron output from the weight w. Noticing that if a;;, is
small, % will tend to small value, which means that weights outputs produced by

low-activation neurons take a long time to learn.

16



2.2 — Neural Networks

Taking into account all these equations, parameters are updated as follow
I(,xl=1\T
W —>w;.:w_% > o0 (@)
- |
bj — b;. =w_—3,06"

and due to computational complexity, they are not updated at every step but at every m

backward passes, and this method is called stochastic gradient descent algorithm.

2.2.2 Normalization

In neural network’s learning is rare the use of raw data, in fact most of the time,
data are prepared in order to make the network optimization process easier and increase
the likelihood of favorable results. This can be done through normalization. The most

implemented methods are:

- Min-Max normalisation:

,  x—min(x)

"~ max(x) — min(x)

(w—10)+1 (2.20)

where x is the original data, x” is the normalized data, min(x) and max(x) are
respectively the maximum and the minimum value of the original data, finally u
and [ are the upper and lower value of the range of the normalized data, especially

for u = 1 and [ = O the data is scaled between 0 and 1

- Standardization:
x = w (2.21)
o (x)
where x is the original data, x” is the normalized data, u(x) is the mean of data x

and o (x) is the standard deviation of x.

As seen in 2.2.1 through gradient descent we’re aiming for the loss function surface’s
lowest value, and normalization helps since will lead to a more symmetric cost function,
avoiding the situation to end up in a local optima.

Input normalization is essentially important for two reasons, the first one is that in a
data set with numerous inputs, we’ll almost always have different scales for each feature
an this condition could lead to a stronger influence in the final conclusions for some of

the inputs, with an imbalance caused by their initial measurement scales rather than the
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intrinsic character of the data. The second reason is that rescaling the input within limited
ranges results in even smaller weight values, which makes output of the network units

near the saturation areas of the activation functions less likely.
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Chapter 3

Experimental Setup

3.1 Soft Robotics Simulator - Elastica

Soft robots are typically hyper-redundant and underactuated since the controller must
coordinate almost limitless degrees of freedom using a limited number of actuators, a
useful tool for these situations is Elastica. Elastica is a free and open-source simulation
environment used to solve soft mechanism problems and has been developed by the
Gazzola Lab in 2018 at the University of Illinois at Urbana-Champaign [34] [35]. Elastica
serves as a good testing ground for control methods of distributed mechanics thanks to
the software interface it offers, which enables the user to access well-developed control
libraries and quickly construct control tasks, actuation modalities, variables and physical
environments. The physics engine of Elastica uses a mechanism based on Cosserat rods,
thin three-dimensional continuum elements that may bend, twist, stretch, and shear at

every cross-section.

3.1.1 Cosserat Rods

In some cases the structure can be thought as a 1-dimensional rod and its mathematical
treatment can be much simplified when the length of such structures is significantly greater
than the radius (L/r > 1). Such 1-dimensional, slender constructions are mathematically
described by the Cosserat rod theory, which takes into account the effects of bending,
twisting, stretching, and shearing. This makes it possible for Cosserat rods to explain

the effects of all six of the rod’s degrees of freedom at each cross-section. The key
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assumptions used in Cosserat rod theory are:

* L >> r allowing the approximation of dynamical behavior by averaging balance

laws for each cross section
* uncompressibility

* linearly elasticity

i T(S) < ’T(S + dS)

n(s + ds)

Figure 3.1: Cosserat rod - model

The conservation of linear and angular momentum throughout the rod is the equation that

best describes its dynamics, but first is necessary to define some parameters:

r(s,t) which is the centerline and where s € [0, L] is the arch length of the rod and

t is the time

Laboratory frame, considering the generic vector x, will be X = x1i + xj + x3k

Local frame, considering always generic vector will be x = x;d + x2d3 + x3d3

Q ={d;, d», ds} which is the rotation matrix of local and laboratory frame, then

x = Qx and ¥ = Q" x. Q changes constantly along the rod, the rod’s curvature, k is

represented by this change, which is described as d,d; = k x d

§ which is the reference configuration

s which is the deformed configuration
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3.1 —Soft Robotics Simulator - Elastica

- e = ds/dS§ which is the stretch ratio
- t which is the unit tangent vector
- 7y = ef which is the local orientation of the rod

Taking into account Q(s,t) and its evolution during time can be defined the translation
velocity and angular velocity respectively v = ;7 and 0;d; = w X d;. Are also defined

structural and material parameters:

which is the cross-sectional area

>
Il
>

e

- B= e% which is the bending stiffness matrix

which is the shearing stiffness matrix

1
%%}
Il

o [

- I= 8—12 which is the second area moment of inertia

Now, thanks to the clarifications made before, it’s possible to express the conservation
of the momentum, distinguishing two equations, one of the linear moment and the other

one of the angular momentum, thus, the dynamics of the rod can be described.

Linear Momentum:
TS _
pA-aE':aS(Q T sef 3.1)
Angular Momentum:
1 Bk k x Bk . I
PL bw=a| = | + EX25 105 s so |+ (ol - | x 0+ 222  be+ec (3.2)
e e3 e3 e e e?

Thanks to the linear elastic assumption can be defined equations for torque curvature

relations and load-strain relations, but first should be defined the bending stiffness and

shearing stiffness, expressed through diagonal matrices 3x3.
[EI

Bending stiffness: B = El,
GL

[a.GA
Shearing stiffness: S = a.GA

EA
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where E is the elastic Young’s modulus, G is the shear modulus /; is the second area
moment of inertia, A is the cross sectional area and . is equal to 4/3 and is the constant
for circular cross sections. Now can be defined the two equations:

Load strain:

n=S(-o" (3.3)

Torque curvature:
=Bk - k%) (3.4)

where 0® and k° are reference curvatures.
Since the equations needed to simulate the dynamics and kinematics of the rods, as
defined earlier, do not always have an analytical solution, numerical methods must be

used. There are three steps to follow referring to the numerical method:

Figure 3.2: Cosserat rod - discretized model

1. Spatial Discretization
First, itis required to define the various quantities related to the nodes and segments.
At nodes, which are in total (n +1),i = [0, n]:
- v; = 0r;/0t, velocity
- m;, pointwise mass

- f,-, external forces acting on the node
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3.1 —Soft Robotics Simulator - Elastica

At every segments, which are n in total, j = [0,n — i]:

Q (1), local reference frame, which specify how the segment is oriented
- lj =rju —rj, the edge
- I; = |l}], current length
- l} = |l}|, reference length
- e; =1/}, stretch ratio
- tj =1;/1;, unit tangent vector
Is given to each segment a set of dynamical parameters in addition to geometric
ones:
- 0j =Qj(e;t;) — d3 j, shear strain vector
- wj, angular velocity
- A j» reference cross section area
-J j» mass second moment inertia
- B j» bend-twist matrix
- S j» shear-strain matrix
- ¢, external couples acting on each segment
Should be also specified that at each interior node, an area/region is defined as

|D;| = (l;-1 +1;)/2, called Voronoi region, moreover, D; is the Voronoi region at

rest and € = D; /ﬁ i 1s the dilation factor. Through these calrifications is possible

lo 0T . . A 3.1.+Br (1]
% and the bend-twist matrix as B; = BilitBiztlizt

to define curvature as k; = 5 ,
i i

both withi = [1,n — 1].

Finally, the equations of motion of the cosserat rod in spatially discretized form
will be:

OF; = Vv; i=1[0,n]

Odr,j = (Qfwj) x di,; j=[0n—-1],k=123

+F i=1[0,n],j=1[0,n—-1]

Q;SA]'U'J‘

m; - Ov; = Ah(e—
J

23



Experimental Setup

N A wi Ji.
& P +(thjXSja)j)+(Jj-TJX(UJ')+£-8,€J'+CJ'
i J
j=[0,n—-1],i=[1,n-1]

Z_;'atwj — Ah(Biki)+Ah(ki><l;3iki DA,'

Time Discretization

It can be used any reliable time stepping approach to help the system evolve using
a variety of various time stepping techniques. A simplistic, second-order Verlet

scheme is the approach preferred.

. Boundary conditions and interaction forces

It’s necessary to define initial conditions regarding position and velocity
ri(t=0)= r? and vi(t=0) = v?
and also a fixed point boundary condition r¢(z) = ry.

The objective is to incorporate various physical effects that will enable modeling

of how the system interacts with a complicated environment.

3.1.2 [Elastica parameters and dataset creation

The method used to choose the most suitable soft robot models that Elastica can

simulate is outlined in this section. The essential steps are:

1.

2.

3.

Dataset creation
Neural networks training

Comparison of the trained Neural networks

The following geometrical and structural simulator parameters for the rod are taken into

account:

Young’s modulus of the arm equal to E = 1 - 10’ Pa
Dissipation constant of the arm: 10
Density: 1000 kg/m>

Poisson ratio: 0.5
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3.1 —Soft Robotics Simulator - Elastica

- The origin of the reference system, where is attached the arm O = {0, 0,0}

- The arm’s length is 1 m and its circular section has radius equal to 0.05 m. Note

that L»r as the assumption necessary for Cosserat rod theory is respected.
- The arm is directed toward the negative part of the z-axis
- Muscle torque scaling factor for normal/binormal directions: 7
- Number of control points: 3
- Arm’s number of elements: 40
- Simulation’s time step: 2.5 - 1074
- Length of a simulation: 75000 timesteps

Following this methodology, data-set was generated applying different actuations to
the arm. Since for each control point it is necessary to express the normal and bi-normal
components of the torque, the input at the simulator is represented by an array of six

elements. These torques are defined as described in equations (3.5):

n=A-cos(wt) normal component
(3.5)

b =A -sin(wt) binormal component
where A and w are the two parameters used to modify the actuations in order to
explore the entire workspace of the arm. For parameter A, many functions have been
examined in order to give the arm the most fluid movement possible and to improve the
stabilization of the trajectory in a circle, which are shown in equation (3.6), (3.7), (3.8),
(3.9) and (3.10):

—— Amplitude with step funciton

0 if 1<0
A= (3.6)
A" if 120

Figure 3.3: Amplitude through

step function
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[H
—— Amplitude with ramp function
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Figure 3.4: Amplitude through

ramp function

05
—— Amplitude with power functicn
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Figure 3.5: Amplitude through

power function

05
—— Amplitude with logarithmic function
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Figure 3.6: Amplitude through

logarithmic function

(k-t)' if t<r¢t” 37

A if >t

(k'=1) if t<t*

A= (3.8)

A" 0f t>r1"

logiok-t+1) if t<t*
A* 0f t>rt
(3.9)



3.1 —Soft Robotics Simulator - Elastica

—— Amplitude with sinusoidal function

A sin(kt—72)+1 if t<t”
A* if t>t"
e 1 2 3 4 5 (3.10)

Figure 3.7: Amplitude through

sinusoidal function

where A* is the value of amplitude at regime, t* is the time instant for which the
system is at regime, chosen equal to 2 s, and k is a dependent value according to the
type of function used, t* and A*. The case in which the amplitude is obtained through a
sinusoidal function is the one taken into account because it accompanies the movement
better and guarantees a continuous and fluid motion avoiding abrupt movements of the
robots. In order to obtain a vast workspace has been considered as value of amplitude a
range from 0.25Nm to 0.5Nm with a step of 0.05, while as omega a range from 5rad/s
to 10rad/s with a step of 0.2, so producing a set of 156 distinct actuations. The ball,
which is connected at the end-effector, is launched to the floor that is 1.5m from the fixed
end of the arm. The equations listed in the Table 3.1 can be used to determine where the

ball will land given the end-effector position and velocity, respectively x = {xg, Vg, zr}

and v = {vyg, VvE, ZvE}

TaBLE 3.1: EQUATIONS FOR LANDING POSITIONS

Quantity Equations

VZE+\/(VZE)2_2g(hfl00r —ZE)
8

Landing time [s] t =
x-landing-coordinate [m] x; = vygt; + XE
y-landing-coordinate [m] y; =v,pt; + yE
z-landing-coordinate [m] z; = (v,gt; + zg) — %gtl2

As written before, 156 different actuations were implemented, and for each of these
100 points were collected, leading to a dataset of 15600 total positions, velocities and
accelerations. In figure 3.10 is depicted the entire Soft-robot data set in 3D space while

in figure 3.9 in the x-y plane.
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e e End-effector position
» Landing position

T

Figure 3.8: Soft-robot dataset in 3D
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3.2 — Description of the Soft Robot used

| |
® End-effector position
« Landing position

0.6

0.4 4

0.2

0.0

Displacement along y [m]

T T T
0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
Dislacement along x [m]

Figure 3.9: Soft-robot dataset in x-y plane

3.2 Description of the Soft Robot used

Even though only the proximal module is actuated in this work, the soft manipulator
used in the experiments and depicted in Figure 3.10 is a modular robot with three couples
of McKibben actuators per module. These actuators are placed at angle of 120° around
its circumference and is held together by a set of perforated plastic rings. By the use

of external bellow shape, the radial deformation of the internal chambers are restrained,
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allowing in this way a better elongation of the module of the arm. In order to limit the
weight of the arm, a robot with two different modules was used, characterized by a total
length of 409 + 1mm and by a weight of 230.5 £ 0.1g. The soft-robot is also composed
of a gripper of 27.5 + 0.1g, attached to the end of the distal module, consisting of two

fingers, which with an input pressure close and hold the object.

Module

_|\,\\
Figure 3.10: I-Support Robot

The robot is actuated through the actuation box which is supplied by three different

components, as shown in figure 3.11:
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3.2 — Description of the Soft Robot used

* Air compressor
* Power supply

* Input data, generated by the computer thanks to MATLAB, then transmitted to the

ArduinoDue, which controls the actuation box.

: - — : ~

7

=N |
Z e '
4 ﬁ‘?‘\ Compressor | ©
&4 __connection |
'\ 4
i

Figure 3.11: Actuation of the robot

The actuation box is composed of nine pressure valves (CAMOZZI K8P-0-E522-0),
the control unit made up of an ArduinoDue, and other custom electronics. Even if there
are present nine valves, only four were used, three to control McKibben actuators and

one to control the gripper.

3.2.1 Gripper delay

The gripper plays a crucial role in the throwing task, in fact the timing of its opening
has been studied. Since the opening of the gripper takes longer to occur in a real robot
while in the simulator is immediate, it is necessary to implement this gripper delay in
the neural network. The gripper was characterized employing fifty cycles of closing and
opening, and the duration from the time the pressure command is sent and the moment
the gripper fingers are 60mm (width of the thrown object) apart was timed. The results
obtained are shown in figure 3.13 and figure 3.12, also a closing delay has been noted and
reported, even if we are not interested in it since it has no effect on the launch because

the picking of the object is not implemented and the object is placed manually inside the

gripper.
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0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45
Time [s]

Figure 3.12: Gripper characterization

Figure 3.13: Signal and distance trend

3.3 Vicon

The Motion capture (Mocap) approach was used to reconstruct the robot’s motion
and continuously record its position over time, which is applied in many different fields
(engineering, film-making, video game, medical etc.), in this case has been implemented

through the use of Vicon system. There are numerous methods for motion capture:

- Optical-Passive where infrared cameras are used to track retroreflective markers.

It is the industry’s most widely used and adaptable method.

- Optical-Active where LED markers emit light that is detected by specialized cam-

€ras.
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3.3 — Vicon

- Inertial where cameras are not necessary. The object wears inertial sensors, also
referred to as IMUs, and the data from the sensors is wirelessly transferred to a

computer.

- Video/Markerless where instead of using markers, this method uses software to

monitor the individuals’ movements.

The method used by the Vicon sytem is the optical-passive since is the most precise,
adaptable, and popular type. After, the positions coordinates are obtained, is possible
though process to obtain the kinematic variables of motion, trajectories, velocities and
the accelerations of the robot. However there are some disadvantages in this Mocap, it
is expensive in time-consuming for data-post processing, it easily confuses or does not
reveal markers if they are too close to each other finally it is necessary to have a special
room for this system, as any external infrared source can alter the accuracy of the cameras.
In figure 3.14 is possible to see the set-up of the room, even if only partially. The system
was composed of a total of 6 cameras equipped with a strobe that generates infrared light,
which the markers reflect and return to the camera’s lens, all the cameras are obviously
pointing on the soft-robot, which is supported by a frame, the latter has the disadvantage

of being able to obscure the markers in some cases creating in this way occlusions.

Figure 3.14: Signal and distance trend
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3.4 I-Support model description

The essential steps to create the model of the I-support are:
* The creation of the dataset

* The training of the neural networks

* The comparison between trained neural networks

One of the most crucial phases is the creation of the dataset, any mistake made in this
phase will affect the whole work. The goal is to create a dataset large enough to inspect
the entire workspace of the robot and to be able to train the networks efficiently. For
each trajectory performed by the robot, 200 points were recorded after 5 seconds from
start of the movement and to obtain a dataset large enough, 117 different trajectories
were analyzed. Since the trajectories are dependent by the actuations, various actuations
where considered with different ranges for the parameters that characterized them. Since
the chambers are placed at angle of 120° one from the other all the actuations are out of
phase by one third of the period between two consecutive chambers. Three cases with

different actuations were analyzed to implement a circular trajecotry:
e case I:
A-sin(wt) if sin(wt) =0

0 if sin(wt)<O0

Actuation =

Figure 3.15: Pressure trend in each chamber in case 1
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3.4 — I-Support model description

* case 2:

Actuation = |A - sin (wt)|

pressure in 2nd <hamter [Pl
s 5 g g : H 2 4 g g
i
£

i
il

Figure 3.16: Pressure trend in each chamber in case 2

e case 3:

Actuation = A - sin (wt) + A

VAANY)

AR

Figure 3.17: Pressure trend in each chamber in case 3

The actuations considered the best and therefore implemented in this work are those of
case 3, since the pressure differential between the chambers in the first two cases was too

small to permit the robot to move widely and in a circular trajectory, which can be seen in
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Figures 3.18 and 3.19. As in the case of the simulator, the dataset has been obtained by
considering several values for the two parameters A (amplitude) and w (omega), which
describe the actuations, in particular, for the amplitude, a range from 0.1 to 0.5 with
steps of 0.05 was considered, while for omega, a range from 4 to 7 with stages of 0.25
was considered. In this way has been created a data-set of 23400 different end-effector
positions and velocities, however, since the objective of this work is to teach a robot how
to throw the relationships shown in table 3.1 in the previous chapter 3.1.2 are used in
order to save landing coordinates and the actuation set used to reach it, obtaining in this
way a dataset of landing positions, in figure 3.20 is reported the graph of positions of the
end-effector during the trajectory and the positions that the object reaches if launched in

those same points, but only for one actuation, in which A = 0.4bar and w = 5.25rad/s.

0.100

i O ® End-effector position

® End-effector position

0,075

0.050

0.025

0.000

Displacement along y [m]
Displacement along y [m]

~0.025

~0.050

-0.01

~0.075

—0.020 —0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020
Displacement along x [m]

Figure 3.18: End-effector positions in Figure 3.19: End-effector positions in
case 1 case 2
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0.30
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Figure 3.20: Landing positions for A = 0.4bar and w = 5.25rad/s

In figures 3.21 and 3.22 are reported positions of the end-effector and of landing

positions for all different actuations, namely, the entire data-set.

0.8

@ End-effector position Landing position
0.3 0.6 -
E E 04
> 0.2 bt
L= o
s 5 o021
8 0.0 8 —0.24
—0.44
-0.1
T T T T T -0.6 T T T T T T
-0.1 0.0 0.1 0.2 0.3 —-0.6 —-0.4 -0.2 0.0 0.2 0.4 0.6
Dislacement along x [m] Dislacement along x [m]
Figure 3.21: End-effector positions Figure 3.22: Landing positions

Finally to better notice the expansion of the workspace of the soft-robot is reported a

graphic with both landing positions and end-effector positions, in figure 3.23
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Displacement along y (m]

Dislacement along x [m]

Figure 3.23: entire workspace of I-support on x-y plane
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Chapter 4

Results

This chapter shows the models used and the results obtained. Specifically, paragraph
4.1 shows the models implemented and analyzed in the case of the simulator and in the
case of the I-support, while in paragraph 4.2 the results of the model realized through the
use of the Simulator are reported, and finally in paragraph 4.3 the results of the model

implemented with the I-support and the launches carried out.

4.1 Generation of Models

Starting from the datasets generated and described in chapter 3 one model is imple-
mented for the case of Simulator and one and one for the case with the I-support. For both
models different neural networks to learn the relationship between the actuation space

and the task space were realize and trained in order to find the most suitable.

4.1.1 Elastica model

As previously written, the goal is to ensure that the robot given a target is able to
choose the necessary actions to achieve it. By analyzing the problem in its entirety, two
sub-problems have been identified, the first is to understand with which angular velocity
and at what amplitude the robot should rotate, to identify the trajectory that robot should
follow, the second sub-problem is to understand at which instant the gripper should open
to make land the object as close to the target. The first sub-problem has been solved

thanks to the implementation of a neural network composed of one hidden-layer, an input
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layer of 2 neurons and an output layer of 2 nuerons, since it receives as inputs the two
coordinates of the target (x and y components), omitting the z component since it is
the same for all the targets and therefore not influencing, while as output produces the
two parameters, A and w that characterize the actuations needed. By doing this, we are
able to know which actuations should be used to reach the desired target, thus leading
us to understand at which moment should be opened the gripper in order to perform the
launch and therefore to the second sub-problem. The outputs of the first neural network
are sent to Elastica which starts the motion, during the motion, the second network is
constantly fed with the outputs of the first NN and with the coordinates of position of
the end-effector for the three previous time instants, meaning that has an input layer of
11 neurons, and predicts the coordinates of the landing position (x and y components) of
the object if would be thrown at the current time instant. The prediction of the second
NN is then compared with the desired target and if the difference between these two
distances is below a certain decided threshold the throw will be performed and the object
released otherwise will continue the simulation until the end, meaning that in the case this
threshold is not reached the object will not be thrown. The overall approach is described

in Figure 4.1

Target
First NN
Continue
7
Aw No
(t—-1),y@t-1)
landing -
) E(t—2),7-2) Second NN prediction "~ trehshold ?
Simulator
®(t—-3), y(t-3)
Yes
Throw

Figure 4.1: Entire strategy in case of Simulator
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Optimization of the hyperparameters of a neural netwrok is a challenging problem
with a sometimes empirical solution that, in any event, typically necessitates comparing
the best model versions, as in this work. In both neural netwroks, First NN and Second NN,
default values have been considered for partition between training, test set, learning rate,
number of epochs, loss function and optimizer, while have been changed the batch’s size,
number of units of the hidden layer and their activation function, everything summarized
in Table 4.1.

TaBLE 4.1: HYPER-PARAMETERS ELASTICA

Hyper-parameters  Batch’s size # Units Activation function
32 32 RelLU
64 64 Sigmoid
Changed 128 Tanh
256
Optimizer # Epochs Normalization
Fixed Adam 1000 Z-score (SS)

Loss function Training set Learning rate

MSE 90% 0.0001

After the neural networks have been trained, as written before, the results of the first
NN are compared taking into account the average error, which is the difference between
the prediction (A and w) of the NN and the actual values of A and w necessary to reach
the desired target. The neural network with batch’s size 64, number of neurons 128 and
Sigmoid function as activation has been found to be the best, that is, the one with the

lowest average error, as can be see in Figure 4.2.
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Figure 4.2: Results of First NN in Elastica model
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While, considering the second NN, the trained neural networks are compared evalu-

ating the average error as the Euclidean distance between the predicted landing position
and the desired landing position, and has been found that the most efficient is the NN

with batch’s size 64, number of neurons 256 and hyperbolic tangent function, Tanh as

activation. Results are reported in Figure 4.3.
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Figure 4.3: Results of Second NN in Elastica model

4.1.2 I-support model

The model for the case of the I-support is almost equal to the Elastica, it only has
some differences. Also in this case the position of the end-effector of the soft-robot
is constantly mapped thaks to the presence of the Vicon cameras, in fact without these
cameras the strategy would not work. The main difference with the Elastica model is
that in this case, inside the second neural network, the opening delay of the gripper is

implemented, in fact in the model previously discussed this delay is not presence due to
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the fact that the gripper opens immediately. Then now, the I-support robot through the use
of the Vicon system provides the coordinates of position of the end-effector for the three
previous time instants to the second neural network, and the latter provides the prediction
of the landing position if the gripper will open at the next eighth instant of time, since
the gripper takes 0.41 s to open which working at a frequency of 20Hz corresponds to 8
instants of time from when it receives the signal under pressure. The block diagram of

the model is reported in Figure 4.4

Target
First NN
Aw Continue
I-Support No
x(t—1),y(t-1)
landing e
Vi e x(t—=2),y(t—-2) Second NN prediction - trehshold ?
icon System
x(t—3), 5t —3)
Yes
Throw

Figure 4.4: Entire strategy in case of [-support

As in section 4.1.1 both neural networks are trained with a different tuning of the
hyper-parameters, compared to the previous training another value for the batch’s size is
considered there are two differences, one is that also neural networks with batch’s size 16
are trained and the other is that the normalization is not applyied only on inputs of NNs but
as well on the output but both additions are only for the second neural network, while for
the first neural network the hyper-parameters remain unchanged. The hyper-parameters

considered are summarized in Table 4.2
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TABLE 4.2: HYPER-PARAMETERS [-SUPPORT RoBOT

Hyper-parameters  Batch’s size # Units Activation function
16 32 RelLU
32 64 Sigmoid
Changed 64 128 Tanh
256
Optimizer # Epochs Normalization
Fixed Adam 1000 Z-score (SS)

Loss function Training set Learning rate

MSE 90% 0.0001

Considering the first NN, the trained neural netwroks are evaluated as before, taking
into account the average error between the predicted values of A and w and the actual
values. The results of these trained neural networks are roport in Figure 4.5 and it turned
out that the one with the best predictions is the one with batch’s size equal to 32, number

of neurons 256 and Relu as activation function.
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Figure 4.5: Results of First NN in I-support model
While for the second neural network, the evaluation of the trained neural networks are
exactly as in section 4.1.1. The neural network with lower average error on the prediction

is the one with batch’s size equal 32, 512 neurons and Relu function as can be seen in

Figure 4.6 .
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Figure 4.6: Results of Second NN in I-support model
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4.2 FElastica Results

The last part of the Elastica model, as specified previously, consists of a decision
block through which is decide whether or not to realize the throwing. More specifically,
once the prediction on the landing position of the object is produced by the second neural
network, it is compared with the desired target and if it is lower than the decided threshold,
in this case 0.04 m, then the launch will be carried out, otherwise it will continue the
simulation until its end. For the procedure one hundred random targets were defined, in
particular, each x component and y component of the target were chosen randomly in a
range between —0.7 m and 0.7 m. With a total of 100 targets, 84 of them were reached,
meaning that launches have been carried out while for he remaining 16 targets no launch
was performed since the predictions produced by the second neural network was never
close enough to the desired landing position. In Figure 4.7 are shown the 100 targets, the

predictions made of each target by the NN and the actual landing position of the object.
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Figure 4.7: Throws in Elastica

The difference between the desired position and the actual landing position has been
computed for each target, and an average of them evaluated, leading to ad average error
equal to 0.0175m

In Figure 4.8 can be seen all the targets respect to the entire Workspace with all the
positions reached by the object once has been thrown obtained for the creation of the
dataset.
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Figure 4.8: Targets and workspace in Elastica

4.3 I-Support Results

In the I-Support model, the decision block, in which the distance between the pre-
diction of the landing position produced by the second neural network and the desired
position is evaluated and compared. This distance is compared with a threshold, also in
this case equal to 0.04m as for the Elastica model. For the experiments, 10 targets were
selected, the procedure consisted in positioning a square box with a side equal to 14 cm

on the target position and carrying out 8 launch trials for each of them, actually in the
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case of one target, since unreachable, only 5 trials were carried out, thus obtaining a total
of 77 launches. Should be specified that respect to the Elastica model, here in the second
NN, the height of the floor is not anymore equal to —1 m but is —0.9 m since the heiht of

the box is 10 cm. The targets used are visible in the Figure 4.9

0.5 7 T T T T @ -Support Robot
X Target
XG 1 Box perimeter
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0.3 1
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Displacement along y [m]

—0.2 4 | | )(
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=03 0.2 =01 0.0 0.1 0.2 0.3 0.4 0.5
Displacement along x [m]

Figure 4.9: Targets for the I-Support

For each trial executed, a video has been recorded and the trajectories performed by
the end-effector and by the object have been collected. Mapping of the object’s position
was possible, placing two markers on the object, which were then detected by the Vicon

System, not creating any problem, in fact, as mentioned in section 3.3, the markers
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placed on the objected were too close to the markers placed on the gripper, this forced
the repetition of several trials, since the system was not able to recognize and save the
trajectory of the object. The results obtained are visible in Figure 4.9 and in Table 4.3

where are reported the result for each trial and the distance between the effective landing

position and the target position.
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Figure 4.10: Targets and throws for the I-Support
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4.3 — I-Support Results

TABLE 4.3: EXPERIMENT RESULTS SUMMARIZED

Target [m] outcome average distance
#IN #OUT #edge #notlaunched from the target [m]
A=(0.046, -0.199) 5 - 3 - 0.045
B=(0.279, 0.155) 5 1 1 1 0.064
C=(-0.099, 0.322) 4 1 3 - 0.079
D=(-0.213,-0.096) 6 1 1 - 0.057
E=(0.215, 0.35) 5 1 2 - 0.082
F=(0.211, -0.237) 7 1 - 0.037
G=(0.036, 0.427) - - - 5 -
H=(-0.183,-0.253) 6 - 2 - 0.058
1=(0.036, 0.252) 8 - - - 0.050
L=(-0.294, 0.226) 6 2 - - 0.056

Finally in Figure 4.11 and 4.12 are represented for completeness the trajectories of
two trials, trial 4 of target £ and trial 5 always of target £, with landing inside the box

and outside respectively.
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Figure 4.11: Trajectories of trial 4 target E
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Figure 4.12: Trajectories of trial 5 target E
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Chapter 5
Conclusions

This thesis aimed to use artificial intelligence to train a soft robot to throw objects
and a closed loop controller was created with this purpose in mind. This data-driven
methodology has been used on two separate platforms: the ideal Elastica soft robot
simulator and the real I-Support robot, a soft manipulator. The results obtained are quite
satisfactory despite the simplicity of the neural networks implemented since they are
both characterized by only one hidden layer. More in detail in the model created for
Elastica, the first neural network has an uncertainty of 0.0013 as regards the parameter
A and of 0.0042 as regards the w parameter, and they are much lower than the order of
magnitude of these two parameters, which is —1 for A and O for w. While the second
neural network has an uncertainty of 0.09 mm that is almost irrelevant respect to the
workspace of the robot, which can be contained approximately in a circle with radius
equal to 70 cm. In the model created for the I-support the accuracy registered in the
first neural network is 0.0001 and 0.001 considering respectively parameter A and w,
while in the second neural network the accuracy is equal to 6.25 mm always having a
workspace of the robot almost equal to an are with radius 70 cm since the furthest points
reached by the object on landing are at this distance from the I-support. In this case the
accuracy is lower maybe due to non linear condition of the robot and a dataset not well
distributed, as visible from the generated workspace, since there is a high concentration
of points in the more internal region. The strategy consists in giving a target and through
a sort of cascade NN architecture and with a feedback from the Vicon system, the soft
robot learns which actuations are necessary and which is the release point to make the

object land in the desired position. Regarding the Elastica model, one hundred of throws
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have been simulated and resulted with a success of the 84% and this percentage would
increase if only targets present in the analyzed workspace were considered. While in
I-support-model, seventy-seven throws have been performed and the success rate was of
the 67.5%. The variability in the throws can be addressed at different causes such as the
gripper, since the delay of the gripper was not always the same, the influence of the drag
on the object that is neglected in the simulated throw or also to the initial position of the
manipulator, as the soft-robot after each trial did not return to its previous position but
remained marginally deformed. In conclusion, machine learning techniques can teach to

a soft robot how to throw an object.
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