
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Study and development of fault tolerant
operating systems on FPGA for

aerospace applications

Supervisors

Prof. Luca STERPONE

Ing. Daniele RIZZIERI

Ph.D Sarah AZIMI

Candidate

Salvatore Gabriele LA GRECA

July 2022

Summary

In the last few years, the number of missions devoted to universe exploration has
increased. Predictions show that the amount of missions in the current decade
is expected to be almost three times the amount of missions in the previous
one, without considering low-cost and low-weight missions, like the ones including
CubeSats. Therefore, the total quantity of electronic devices and the job complexity
assigned to them is increasing as well.

Electronic devices must be tailored to work reliably, whatever the purpose of
a spacecraft, from the smallest one to a complete rover exploring another planet.
Particularly, this concept holds in a complex environment like space, where there
are many disturbances such as diverse temperature variations or radiations. The
latter is one of the most common causes of failure in spacecrafts and the greatest
enemy of electronic components. Thus, a system needs to be as dependable as
possible. The dependability of a system is mainly affected by aspects like reliability,
availability and safety, especially for space applications.

Nowadays, FPGAs are increasingly being used in aerospace applications due to
their flexibility: this is a key aspect of the success of missions because of their high
costs, high duration and high complexity. As an example, the Mars Perseverance
Rover is almost based on FPGAs. As an example, in the rover’s architecture,
an FPGA can be found in the automatic entry unit. This unit is responsible for
the automatic entry, descent and landing on Mars. Once the rover is landed, it
would be useless and would become dead hardware. However, it is based on FPGA
hardware so it has been reprogrammed by NASA engineers from Earth to handle
computer vision tasks.

Consequently, this thesis aims to study and develop some techniques to mitigate
errors induced in soft-cores by “Single Event Upset” faults, which are very common,
especially in FPGAs. This area of interest is particularly crucial because complex
software, like operating systems, running on top of this hardware, that may be
faulty, can create uncoverable and dangerous situations.

ii

Before going deep into the argument, the thesis starts by explaining what an
FPGA is, its differences from ASICs and the reason why the space industry is
moving towards this technology. Furthermore, Chapter 2 introduces some concepts
about radiations on electronic devices, how are they classified and what effects they
can cause on a system. In addition to that, Chapter 3 introduces, with a great
level of detail, all the tools and techniques used. The main purpose behind this
chapter is to give to the reader a deeper knowledge of the arguments treated in
this thesis work and to be able to recreate the proposed solution in the future, in
almost a straightforward way.

After that, the reader should be capable of understanding all the concepts that
are mentioned in the main chapter of this thesis. Indeed, Chapter 4 analyzes
different solutions that have been taken into consideration. The advantages and
disadvantages of each solution are also discussed. Without entering into many
details, the proposed solution aims to detect faults caused by SEUs in the Xilinx
Microblaze CPU by using a custom peripheral. The custom peripheral has been
developed in order to be fault-tolerant itself thanks to a Triple Module Redundancy
design.

Finally, when a fault is detected, a partial reconfiguration of the FPGA is
triggered. This action consists of a partial scrubbing of the configuration memory
of the FGPA, in the area where the MicroBlaze physically is. This is achieved
by the usage of a partial bitstream, to restore the original behavior. The partial
reconfiguration allows for achieving a faster downtime, and consequently a higher
availability of the system. This process is entirely managed by the DFX (Dynamic
Function Exchange) Controller IP, offered by Xilinx. The DFX Controller loads
the configuration file from the memory and sends it to the configuration port of
the FPGA.

Moreover, a custom workflow has been developed to allow partial reconfiguration
of a MicroBlaze in an older version of Vivado. Additionally, a custom script has
been developed based on this workflow, thus providing designers and developers an
easy and most automatized way to convert an existing Xilinx design into a design
that supports the partial reconfiguration of the Microblaze.

To conclude, Chapter 5 and Chapter 6 are devoted to the analysis of the results
coming from this work and the analysis of the possible implications, applications
and future work that can be done addressing further research interests.

iii

Acknowledgements

This thesis work would not be possible without the support of many people. I
would like to thank my supervisors for their support and help in the development
of this thesis.

Thanks to my partner, Heidi G., for constantly listening to me rant and talk
about strange things over and over, and for the sacrifices you have made and shared
with me in order to help me pursue this Master’s Degree. I also want to express
my deep appreciation for Carol who taught me the importance of wit, sound sleep,
and playfulness and for her cuddly, fidelity and love.

Thanks to my parents, my father Gioacchino, my mother Maria Carmela and
my sister Alice Carlotta, for your endless support, both economically as well as for
believing in me with regular encouragement in every step to continue in my path.

I also would like to thank all my respected teachers and colleagues in the Control
and Computer Engineering department.

Without all of you, I could have never reached this point in my life.

“Life is a journey, and every journey eventually leads to home.”
Crestfallen Saulden, Dark Souls II

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1
1.1 Thesis Motivation . 3

2 General Background 4
2.1 Hardware Technology . 4

2.1.1 FPGA Architecture . 4
2.1.2 FPGAs vs. ASICs . 6
2.1.3 FPGA or ASIC in Aerospace Applications? 7

2.2 Radiations . 9
2.2.1 Radiation sources . 9
2.2.2 Radiation problems on Earth: the Super Mario 64 glitch . . 10
2.2.3 Types of radiation . 10
2.2.4 Single Event Effects . 11

3 Thesis Background 16
3.1 PYNQ-Z2 Development Board . 16
3.2 Xilinx soft-core: the MicroBlaze . 18
3.3 Xilinx FPGA Standard Design Flow 19

3.3.1 Steps towards the Bitstream Generation 20
3.3.2 Fundamentals of the Xilinx’s Bitstream structure 22
3.3.3 Software Development . 26

3.4 Fault Injection Tool . 27
3.5 Integrated FPGA Debugger . 29

vi

4 Analysis and hardening of an FPGA Design with a MicroBlaze 31
4.1 How SEUs affect the MicroBlaze? 32
4.2 Strategies and adopted solutions . 38
4.3 Development of a watchdog . 40

4.3.1 What is a watchdog? . 40
4.3.2 How to implement a watchdog? 41
4.3.3 How to harden the watchdog? 45
4.3.4 Integration of the watchdog in the design 50

4.4 Design with Partial Reconfiguration 56
4.4.1 Vivado Design Flow for Dynamic Function Exchange 57
4.4.2 DFX with MicroBlaze in Vivado 2021.1 60
4.4.3 Xilinx DFX Controller . 62

4.5 Integration of the watchdog and the DFX 63
4.5.1 Partial bitstream storage . 63
4.5.2 How to enable the ICAP port 65
4.5.3 ICAP instantiation . 66
4.5.4 Connection of the Watchdog and the DFX Controller 68
4.5.5 DFX Decoupler: what is it? 69

4.6 From a manual workflow to a fully automated one 70
4.6.1 The automatation script . 71
4.6.2 Script for partial bitstream to C header generation 74

5 Experimental Analysis 76
5.1 Fault Injection Environment . 76

5.1.1 Watchdog Inhibition . 79
5.2 Experimental Results . 80

6 Conclusions 85
6.1 Future Work . 86

A Watchdog FSM - VHDL Code 87

B Watchdog - C drivers 90

C Fault Injection - SDE output with correction 92

Bibliography 94

vii

List of Tables

3.1 ZYNQ 7020 SoC Memory Map . 18
3.2 7 Series Configuration Packet: Type 1 Header OP Field 25
3.3 7 Series Configuration Registers . 25

4.1 SEU consequences in SRAM-based FPGAs [32] 32
4.2 Fault injection result for the basic MicroBlaze design 37
4.3 Detailed explanation of the states of the FSM 44
4.4 Voter truth table. The red cells indicate the faulty output. 46
4.5 Output signal matrix for the no-tmr version. 48
4.6 Comparison between full bitstream and partial bitstreams sizes. . . 60
4.7 ICAPE2 Interface description. 66

viii

List of Figures

2.1 Simplified schematic of an FPGA cell 5
2.2 The intrisic BJTs in the CMOS Technology that can cause a Latchup.

Deepon, CC BY-SA 3.0, via Wikimedia Commons 12
2.3 Example of a Single Event Upset in a memory element. 13
2.4 Simple SRAM Cell layout. Inductiveload, Public domain, via Wiki-

media Commons. 13
2.5 Example of error-detection circuitry in SRAM. 14

3.1 Schematic of the PYNQ-Z2 Development Board 16
3.2 Schematic of ZYNQ 7020 SoC . 17
3.3 [23]Overview of a Microblaze SoftCore 19
3.4 Example of Block Design . 20
3.5 Basic scheme of a fault injection tool [24] 27
3.6 Example of a ILA IP instantiation in a Block Design. 30
3.7 ILA’s debugging GUI in Vivado. The ILA is waiting for the trigger,

and the trigger is set waiting to have a certain signal equal to 1. . . 30

4.1 Schematic of a basilar MicroBlaze design 33
4.2 Resulting hierarchy of the MicroBlaze design 34
4.3 Resulting floorplan of the MicroBlaze design, with the PBLOCK on

the top side. Microblaze cells are highlighted in red 36
4.4 High level scheme of the fault tolerant design. 39
4.5 Timing diagram of a very basic watchdog. 41
4.6 Timing diagram of a more sophisticated watchdog. 41
4.7 Possible digital circuit implementation of a watchdog. 42
4.8 Timing diagram of a more sophisticated watchdog. 44
4.9 Triple Modular Redundacy (TMR) scheme. 45
4.10 1-bit voter circuit scheme. 46
4.11 Basic TMR scheme vs. full TMR circuit scheme. 47
4.12 Input signal matrix for the no-tmr version. 48
4.13 Interfaces of the TMR Watchdog. 49

ix

4.14 Conceptual representation of the final watchdog IP. 50
4.15 Instantiation of the Watchdog IP. 53
4.16 Watchdog IP configuration wizard. 54
4.17 Example of partial reconfiguration modules. 56
4.18 Example of modules grouped under a partial reconfiguration area. . 57
4.19 Partition definition with two reconfigurable modules, each one with

its own wrapper and .xci file. 59
4.20 Flow used to generate a fully working Reconfigurable MicroBlaze

design. 62
4.21 Basic scheme of the DFX Controller flow. 62
4.22 ICAP Interface. 66
4.23 ICAP Interface as seen by an ILA core. 68
4.24 Enhanced majority voter design. 68
4.25 DFX Decoupler scheme. 70
4.26 Decoupling of a Reconfigurable MicroBlaze region. 70
4.27 Scheme of the script flow. 71

5.1 Hardware schematic to count the number of times the watchdog
time outs. 77

5.2 Hardware schematic to inhibit the watchdog using a physical switch. 79
5.3 Chart representing the executed Fault Injection campaigns. 81
5.4 Charts showing the times the reconfiguration is triggered (or not)

and how many times it solved the issue (or not). 82
5.5 UART loopback schematic. 83
5.6 Chart representing the repeated Fault Injection campaigns with the

new firmware. 84
5.7 Charts showing the times the reconfiguration is triggered (or not)

and how many times it solved the issue (or not). Second run with
the new firmware. 84

x

Acronyms

SEU
Single Event Upset

COTS
Commercial Off-The-Shelf

FPA
Field Programmable Gate Array

ASIC
Application Specific Integrated Circuit

CLB
Configurable Logic Block

LAB
Logic Array Block

LUT
Look-up Table

HDL
Hardware Description Language

CPU
Central Processing Unit

DSP
Digital Signal Processing

xii

CMOS
Complementary Metal-Oxide Semiconductor

TMR
Triple Module Redundancy

SEE
Single Event Effect

SOC
System On Chip

xiii

Chapter 1

Introduction

In the last past few years, the number of missions devoted to the exploration of
the universe has increased. Predictions show that the number of missions in the
current decade is expected to be almost three times the number of missions in the
previous decade, without considering low-cost and low-weight missions like the
ones including CubeSats.

Due to this increase in the number of missions, the overall number of electronic
devices on board has increased, and the job complexity assigned to those devices
has increased as well. Nowadays, electronic components are used not only for
navigation purposes but also for the analysis and manipulation of data. The most
advanced spacecrafts are capable of deciding autonomously the trajectory to follow
or applying some complex algorithms to the data collected before sending them
back to the ground.

Whatever the purpose of a spacecraft, from the smallest one to a complete rover
exploring another planet, electronic devices must be tailored to work reliably, even
in a complex and harsh environment like space, where there are many disturbances
like big temperature variations or radiations, one of the most common causes of
failure in the spacecraft and greatest enemy of electronic components.

To understand better the problem, we can start with a real-world example,
a piece of history. On September 22, 2021, the ESA’s INTEGRAL spacecraft
autonomously entered into emergency safe mode [2]. INTEGRAL is a space
telescope for observing gamma rays, and it was launched into Earth’s orbit in 2002.
Something catastrophic was happening for the mission itself: one of the spacecraft’s
three reaction wheels had switched off without warnings. This caused a ripple
effect that brought the satellite to begin to rotate uncontrollably.

This episode created a lot of problems for the mission itself, and the team of

1

Introduction

engineers responsible for the INTEGRAL spacecraft had to deal with it: because
the spacecraft was spinning, data from the spacecraft were reaching ground control
in a difficult way, and the batteries were quickly discharging because of the missing
orientation of the solar panels towards the Sun. ESA was going to lose a 19-year-old
space telescope.

With only a few hours of energy left to save the mission, the Integral Flight
Control Team, together with Flight Dynamics and Ground Station Teams started
working on a solution, and with quick thinking and ingenious ideas, they found
the cause of the problem and rescued the spacecraft. The root of the problem was
radiation. Charged, ionized particles, from the Van Allen belt, caused an SEU in
the control system of the spacecraft, deciding erroneously to shut down the reaction
wheel.

This story is an example of the problems that can happen during space missions
due to radiation affecting the onboard electronics. From this example, we can
understand how crucial is fault-tolerant analysis during all the stages of development
of a new space component, in order to produce a dependable system. The concept
of a dependable system is a complex one, and in space missions, there are mainly
three factors that can affect the dependability of a system:

• Reliability: the probability of a system to work as expected, continuously, in a
given period (usually it coincides with the period of the mission itself).

• Availability: the probability of a system to work as expected at a generic
moment in time, in the future.

• Safety: the ability of a system to work in a given environment, without any
risk of serious damage.

With the increasing need for protection against unwanted effects caused by
radiations, since the first interplanetary mission in the 60s with the Mariner 2
mission, there have been an increasing number of studies and techniques developed
to deal with the problem. At the hardware level, there are hardware mitigation
techniques, where radiation-tolerant components are used. They are usual referred as
radiation-hard or rad-hard for simplicity. In most of the cases, COTS (Commercial
Off-The-Shelf) hardware [3] is used, which is hardware meant to be used in a
generic environment, and on top of that logical mitigation techniques [4] are used
to protect the system from the effects of radiation. The latter solution is easier to
implement, and it is more efficient than the former one in terms of costs.

2

Introduction

1.1 Thesis Motivation
The main motivation for the development of this thesis is to develop some techniques
to deal with the problem of radiation in space. In particular, the main goal is
to investigate the outcome that can occur when SEU faults affect the CPU (in
particular a Xilinx Microblaze soft-core, which will be explained in more detail
later on) of a system (like the navigation system of a spacecraft), and how to deal
with them by applying some innovative ideas to enhance the system’s robustness
and so the global fault tolerance of the system.

Consequently, the goal is to study and develop some techniques to mitigate
errors induced in soft-cores by Single Event Upset faults, which are very common,
especially in FPGAs. This area of interest is particularly crucial because complex
software, like real-time operating systems (for instance, FreeRTOS), running on
top of this hardware, that may be faulty, can create uncoverable and dangerous
situations [5].

The hardware model on which the techniques are based is the FPGA. FPGAs
are used on a lot more space missions nowadays than in the past, for all the reasons
that make FPGAs better than ASICs, mainly due to their flexibility. Because
of the complexity of space missions, flexibility is a key factor in the success of a
mission, both during the development and the operational phases.

For this thesis, the usage of FPGAs has one big advantage, among other
things: randomly generated SEU faults can be injected easily without using any
sophisticated [6] hardware, a PC is enough. This is crucial in the study of radiation
effects: it’s possible to develop a systematic way to inject faults, and they can be
repeated over time in order to be able to study the effect of the same SEU with
different solutions. Obviously, FPGAs meant to be used in space need to undergo
a lot of tests [7], for example in facilities where ultra-high heavy-ion test beams are
used to see how the FPGA reacts to real radiation effects.

3

Chapter 2

General Background

Before going further with the problem analysis, it is better to introduce a few
background concepts. In particular how FPGAs work, what kind of radiations
exists and how FPGAs are affected by them.

2.1 Hardware Technology

2.1.1 FPGA Architecture
Field Programmable Gate Arrays FPGAs are used in a wide range of applications,
from signal processing to machine learning applications. In particular, it is an
integrated circuit designed to be general-purpose: after manufacturing, it has no
functionalities. It is hardware that can be programmed to perform specific tasks.

It differs from a CPU, which is an already designed hardware. A CPU does only
one thing in a very optimized way: execute code, from a pre-defined Instruction
Set. In this case, the action of programming is referred to as the process of writing
a series of instructions that the CPU will eventually execute. This is done by
exploiting Programming Languages. An FPGA, instead, is like LEGO bricks. Each
LEGO brick does not have any function or purpose alone, but when put together
with other bricks, it can be used to perform a specific task. Here, the action of
programming is referred to the process of writing a description on how all the bricks
must be assembled to perform the specific task we want. The description is done
by exploiting Hardware Description Languages (HDL) like VHDL or Verilog.

The basic FPGA design consists of I/O pads (to connect with the outside world),
a set of routing channels and a set of LEGO bricks. A LEGO brick in the FPGA
is a logic block (and depending on the vendor, it can be called CLB or LAB) that

4

General Background

can be programmed to perform a very specific task that helps in achieving the goal
of the User’s Application in the overall design.

Figure 2.1: Simplified schematic of an FPGA cell

A basic logic block consists of a few Logic Elements. As shown in figure 2.1, a
Logic Elements is made of LUTs, a Full-Adder (FA), a D-Type Flip Flop and a
bunch of multiplexers. This particular architecture can work in two modes: normal
mode and arithmetic mode. Thanks to the Flip Flop, FPGAs can implement
operations where some kind of memory is required.

Modern FPGAs are very complex and expand upon the above capabilities
to include other functionalities in silicon. Those are commonly used functions
embedded in the circuit. They reduce the overall area required and give those
functions increased speed compared to building them from logical primitives (be-
cause are implemented in silicon, and built out of transistor instead of LUTs,
enabling ASICs-level performance). Examples of these include multipliers, generic
DSP blocks, embedded processors, high-speed I/O logic (like PCI/PCI-Express
controllers, DRAM Controllers and so on and so forth) and embedded memories.

Once the User completes the design (i.e. the description of the FPGA is written
using some HDL language), the design needs to be mapped on top of the FPGA’s
hardware resources. This is done using the Vendor’s specific software and it is in
charge of deciding which FPGA’s Logic Element (LE) is assigned to which subpart
of the description and how each LE is configured. Then, all the LEs needs to
be connected among themselves and the I/O pads, and this is done by routing
algorithms that decide the best way to connect them. Once all the implementation

5

General Background

steps are done, a configuration file is generated that will eventually be used to
program the FPGA and is called bitstream.

All the programmable bits (like the content of the LUTs, some multiplexers
selection signals or the routing details) are stored in the FPGA in memory elements
that are outside the FPGA’s functional blocks (i.e. the ones that can be used by the
user to implement the application). Those memory elements can be thought of as
a big array of bits, or a shift register. It is the configuration memory: it stores the
configuration bits of the entire FPGA and is loaded with the bitstream when the
FPGA itself is programmed. Most FPGAs rely on an SRAM-based approach to be
programmed: this allows them to be in-system programmable (so the FPGA chip
can be programmed without unmounting it from the board and from the system
itself) and re-programmable (can be programmed as many times we want), but
require external boot devices. When the FPGA is powered off, the configuration
memory content is lost because the SRAM is a volatile memory. Hence, it requires
an external memory where the bitstream can be retrieved to re-program it. The
SRAM approach is based on the Complementary Metal-Oxide-Semiconductor
(CMOS) technology.

Consequently, FPGAs are alternatives to hard-core CPUs. This means that a
CPU can be implemented out of logic primitives on an FPGA and is defined as
soft-core, alongside the hardware that is used to implement the application like
peripherals, memory and other components. Modern FPGAs support at runtime
programming, this lead to the idea of reconfigurable systems, where for example a
CPU can be reconfigured in order to enable/disable some of its functionalities to
suit the task at hand. The concept of reconfigurable systems is also used in another
manner and will be explained further in the next chapters.

2.1.2 FPGAs vs. ASICs
An ASIC (application-specific integrated circuit) is an integrated circuit chip
customized for a particular use. ASIC chips are typically fabricated using metal-
oxide-semiconductor (MOS) technology. Thanks to the miniaturization of the
MOS-based transistors and the improvement in the design tools, the maximum
complexity (and hence functionality) possible in an ASIC has grown from 5000
logic gates to over 100 million.

They are designed using the same HDLs Languages as the FPGAs, but the
similarities stop there. Once the description is complete, specific ASIC softwares
are used to synthesize and implement on top of a technology library. While the
corresponding technology library in FPGAs is simpler (made of LEs and routing
elements), on ASICs it is a lot more complex. A typical ASIC technology library

6

General Background

consists of a set of basic logic gates (like 2 input NAND, 3 input OR, 2 input Full
Adder (FA), etc.) provided by the manufacturer that assembles the chip. Once
an HDL description is mapped on top of the ASIC library, the so-called gate-level
netlist is sent to the manufacturer. Here, ad-hoc technicians will start to work
on this netlist, doing the route & place of the netlist and as an output of this
process, a set of masks is generated. The masks are used to print the circuit on
the silicon. On top of all this process, test engineers must prepare a set of tests in
order to verify the correct functionalities of the circuit during the various stages of
the manufacturing process, until the end of the process itself.

This allows the implementation of entire microprocessors, memories (including
ROM, RAM, EEPROM and flash) and other large components in a single chip.
Usually, for lower production volumes, FPGAs may be more cost-effective than an
ASIC design. This is due to the non-recurring engineering (NRE) cost of an ASIC,
which can run into millions of dollars.

To recap:

• ASICs circuits are faster, and less power-hungry than FPGAs.

• ASICs are more complex to design and implement (hence more expensive)
than FPGAs.

• FPGAs are more flexible than ASICs.

2.1.3 FPGA or ASIC in Aerospace Applications?
In the aerospace industry, we are witnessing a turnaround in the last years regarding
hardware technology. FPGAs are typically much less radiation-hardened than
ASICs, so they are more prone to SEUs as well as lower total ionizing dose tolerance,
but there are techniques to reduce these deficiencies. However, FPGAs are used
on a lot more missions nowadays than 15 years ago, for all the reasons that make
FPGAs a better choice than ASICs.

As an example, Mars Exploration Rovers were something like 90% ASICS. The
last JPL’s Martian Rover, Perseverance, is a very complex system and it is a very
challenging design from the engineering point of view: it has multiple sensors and
cameras to collect as much data as possible and, due to the volume of live data
being recorded and the long data transmission time from Mars to Earth, a powerful
processing system is essential. Early Mars rovers were basing their workload mainly
on CPUs and ASICs as the processing units, while nowadays FPGAs are taking on
much of the workload, like in Perseverance.

7

General Background

There are different reasons behind this choice. The first one is the flexibility
given by their re-programmability: because of the different stages a mission is
made of, some parts of the system could be useful only in some of those stages
(maybe intermediate ones) and they will never be used again. This is a waste of
resources: FPGAs can give great help in this aspect and Perseverance rover is an
example. It utilizes an almost two decades old FPGA technology (Xilinx Virtex-5,
introduced in May 2006 on 65 nm technology) as one of the main processing units.
This unit is responsible for rover entry, descent and landing on Mars. Once the
rover landed, this unit would be useless becoming a dead hardware. However, it is
based on FPGA hardware so it has been reprogrammed by NASA engineers from
Earth to handle computer vision tasks.

Other units on Perseverance such as radars, cameras, UHF transceivers, radar,
and X-rays (used to identify chemicals) are controlled using Xilinx’s FPGAs.
Another interesting point is that Perseverance uses machine learning algorithms
running on FPGAs, and they are so well optimized that it is achieving higher
performance levels (about 18 times) than the Curiosity rover (which landed on
Mars in 2012 and is still active).

Another advantage of using FPGAs is the faster time-to-space. Different points
help in achieving this advantage. Not only the development on FPGAs is faster
than on ASICs (cost of design, development and fabrication of an ASIC are not
present), but the most important thing is that there are many and many changes
in the processing unit architecture during the project development phase. There is
usually a very restricted launch window for the mission that can be missed, and
FPGAs help in two ways mainly:

• Physically changing or adding more to a space system is a real challenge. The
installation itself is not that difficult, but the system has to be recertified,
proving that it is still dependable. Furthermore, FPGAs simplify this greatly:
the only thing to prove is that the FPGA chip is safe to fly with. Once this is
done, the overall number of different parts to be certified is reduced. Second,
a bitstream or software change takes a lot less time to certify.

• Software and Hardware development can be done in parallel. This is a great
advantage for the software development team because a first iteration of the
hardware can be prepared and ready to be used by the software team faster
and the software team can start to work on the software itself.

FPGAs are not only helpful during the development phase, but even during
the operational phase. Missions are prepared to last a relatively long time, but
usually, the quality of the work is so high that they last much longer. Examples

8

General Background

are Mars rovers: Opportunity landed on the Red Planet in 2003 and it was ended
by a Martian dust storm in 2018, so it lasted for 15 years. Curiosity landed in
2012 and it is still active in 2022. This is a so long period that, speaking again
about re-programmibility, the processing system architecture may require changes
to let the mission continue working. Different things can go wrong in a decade
and having a fully reconfigurable system (from remote in particular) is a must,
giving ground engineers a lot more possibilities to fix the system or to add/remove
components.

On the radiation-tolerant side, vendors offer radiation-tolerant FPGAs. On
top of that, it is possible to apply some logic changes to the design like TMR
(Triple Module Redundancy) to a portion of the design or even to the entire design.
Basically, it consists in triplicating the design and adding a voter at the outputs.
If a radiation error occurs, it will theoretically affect only one module so there will
be two different results from the three modules (two correct and one wrong caused
by the radiation). The voter will select the correct result (that is the majority).
This is an example of making a design more robust to radiation.

2.2 Radiations
We are going to understand better why radiation effects regarding electronic devices
are one of the primary concerns for the aerospace industry.

2.2.1 Radiation sources
Where does the radiation originate from? Unfortunately, the Universe and in
particular the Solar System are full of radiations. The natural space radiation envi-
ronment can damage electronic devices in different ways, ranging from degradation
in performance to a complete functional failure. More and more a space system
goes deeper in space, and less and less it is protected by the Earth’s atmosphere.

Close to the Earth, there are three sources of radiation: the Van Allen Belts,
the Sun and the Cosmos itself. Van Allen Belts are zones of energetic charged
particles, that are generated for example by the Sun, and captured by the Earth’s
magnetosphere. By trapping those charged particles, the magnetic field deflects
them and protects the atmosphere from destruction. The two Earth’s main belts
extend from an altitude of 640 km to 58.000 km, in which radiation levels vary.
Between the two belts, the inner and the outer there is a zone called safe zone where
the level of radiation is pretty low. Spacecrafts traveling beyond the LEO (Low

9

General Background

Earth Orbit) go through the two belts, and beyond the belts, they face additional
hazards from cosmic rays and solar particle events (coronal mass ejections and
solar flares).

2.2.2 Radiation problems on Earth: the Super Mario 64
glitch

Here on Earth, electronic devices are often not shielded or designed to tolerate
radiations. Usually, only safety-critical systems undergo the same kind of radiation-
tolerant techniques as the ones used in the space system, like Aviation and Nuclear
Power Plants, for instance.

Even if there is a big magnetosphere protecting the planet’s surface, some
charged particles still escape and travel until they reach the ground and some
everyday devices. In 2013, a player was challenging another player in Nintendo’s
Super Mario 64 game. Suddenly, Mario was teleported into the air, saving crucial
time and providing an incredible advantage in the game. The glitch caused the
attention of a lot of players, and a $1000 reward was offered to anyone who could
replicate the glitch. Users tried in vain to recreate the scenario, but no one was
able to emulate that giant leap. In the end, after eight years, users concluded that
the glitch was not replicable because it was caused by a charged particle coming
from the outer space that caused a bit-flip in the value that defines the player’s
height.

Another curious case was the one related to the electronic voting machine in
Belgium in 2003. A bit-flip here caused an adding of 4096 extra votes to a candidate.
The error was only detected because there were more preferential votes than the
candidate’s list, which is impossible in the voting system. The official explanation
was “the spontaneous creation of a bit at the position 13 in the memory of the
computer”. it is not a coincidence that the added value was exactly 4096, in
hexadecimal 0x1000, that is 212.

2.2.3 Types of radiation
The most common way to classify radiations is based on their effects on electronic
devices. If the effect is the result of cumulative damage (i.e. passage of many
charged particles in different moments in time, and each particle has a relatively
low energy) then it can be a total ionizing dose or a displacement ionizing dose. If
the effect is the result of a single charged particle (with high energy) then it can
be destructive or non-destructive, and they are usually referred to as SEE (Single
Event Effects).

10

General Background

Total ionizing dose

Most electronic devices are based on MOS transistors, forming the basis for digital
logic. The common way to use those transistors is as electronic switches: there are
two isolated contacts, the source and the drain (i.e. the switch is off, no current).
When a positive charge is applied to the gate (in the case of an NMOS transistor),
electrons (that are negative charges) are allowed to pass from the two isolated
contacts (i.e. the switch is on).

When ionizing radiations pass through the device, electrons are moved away
from the material leaving “holes” of missing charge, acting as positive charge
carriers. These holes can find their way to the gate oxide and become trapped:
this phenomenon is called total ionizing dose. The effect of this phenomenon is
the same as applying some positive voltage to the gate. With enough accumulated
charges, the effect is to have the transistor always on, or better, in the stuck-on
state.

Displacement ionizing dose

Another form of cumulative damage is the displacement ionizing dose. This is the
effect of a single charged particle passing through the device. What happens is
that an atom is displaced from the material, modifying the crystal structure of the
material itself. These microscopic effects create traps and recombination centers,
eventually leading to the modification of the free flow of the current. This will
ultimately impact the device’s performance.

2.2.4 Single Event Effects
When a single high-energy charged particle passes through the device, it can cause
a destructive or non-destructive effect. The particle creates a momentary change
of charge in the device, creating an unexpected current that can affect the device
in various ways. Some effects may be completely destructive, while others may
degrade performance to the point that the device doesn’t work anymore within the
limits required by the circuit or the system itself. Other effects cause the device
to momentarily work in a wrong way, causing a functional failure (so it is not
destructive from the point of view of the device but can cause a functional error,
for example, a wrong value in the memory from 0xe to 0xf).

Among the destructive effect, the most common are Single Event Latchup (SEL),
Single Event Burnout (SEB) and Single Event Gate Rupture (SEGR).

11

General Background

Single Event Latchup

In CMOS technology, there are a lot of intrinsic BJT (Bipolar Junction Transistor).
When a special arrangement of PMOS and NMOS transistors is used, resulting in
an n-p-n-p structure (corresponding to an NPN and a PNP transistor stuck next to
each other), a CMOS Latchup structure is created. If one of these two transistors
is activated (accidentally by a high-energy charged particle), the other one will be
activated too, creating a feedback loop. They will both keep each other activated
for as long as some current flows through them. This phenomenon will increase
the current draw and can bring to the destruction of the device. Usually, the only
way to correct this situation is to make a power cycle, so completely shutting down
the device and then restarting it. However, latent damage may exist that may not
appear until later.

Figure 2.2: The intrisic BJTs in the CMOS Technology that can cause a Latchup.
Deepon, CC BY-SA 3.0, via Wikimedia Commons

Single Event Burnout

Can happen when an incident particle initiates an avalanche charge multiplication
effect. This leads to an increasing current, leading to a thermal runaway of the
device, causing local melting or ejection of molten material in a small-scale explosion.
Obviously, the result is the destruction of the device.

Single Event Gate Rupture

SEGR is the destructive rupture of the gate oxide (or any dielectric layer in a
transistor). The effects can be observed in power MOSFETs as an increase in the
current flow when turned on, or in digital circuits with stuck bits.

12

General Background

Single Event Upset

This is the most common non-destructive effect. As known as bit-flip, it is caused
by a particle that forces a digital signal to an opposite value momentarily. It can
lean in a temporary modification of the digital output in a combinatory circuit, and
the modified value can be memorized in a flip-flop or any other memory element if
sampled at the same time radiation arrives. In more complex circuits, it can cause
other malfunctions like resets and memory values modification.

1 0 0 1 0 0 1 0

1 0 0 1 1 0 1 0

Figure 2.3: Example of a Single Event Upset in a memory element.

What is shown in Figure 2.3 can for example happen in an SRAM memory. Each
cell is made of cross-coupled transistors. Each side couple is connected forming an
inverter (NOT logic function), and the output of the inverter is connected to the
gates of the second couple.

VDD

M6M5

M2 M4

M3M1

WL

BLBL

Q
Q

Figure 2.4: Simple SRAM Cell layout. Inductiveload, Public domain, via Wiki-
media Commons.

13

General Background

In Figure 2.4, a simple layout is proposed. In order to have a logic 0 as output
(BL = 0), M3 is active (thus M4 is not active). So M2 is active (thus M3 is not
active). If radiation strikes one of those transistors, can happen that the M3’s gate
voltage goes low, causing a flip of the configuration and thus a flip of the stored
bit.

As explained in Section 2.1.1, most FPGAs’ memory configurations are based
on SRAM technology. A fault that occurs in a configuration SRAM of an FPGA
can lead to completely disastrous failures compared to traditional SRAM used
purely for memory storage. This is because upsets have no effect until an address
pointing to a word affected by an upset is read out of SRAM.

Luckily, error detection and correction circuits can be used to detect and correct
the fault, without causing a failure in the undergoing operations. Those are based
on the usage of redundant bits for each word. As an example, Hamming codes to
detect and correct single-bit error, SEC-DED (Single Error Correction - Double
Error Detection) to correct a single error and detect one or double errors, or SEC-
DED-DAEC [18] (Single Error Correction-Double Error Detection-Double Adjacent
Error Correction) to correct adjacent errors in multiple words. An example of error
detection circuitry is shown in Figure 2.5.

Word n-1

Word 0

Address

Data
n words

DATA CRC

COMPARE

Stored CRC

Error

Figure 2.5: Example of error-detection circuitry in SRAM.

In an FPGA, the configuration SRAM is not utilized the same way as traditional
SRAM. Indeed, direct (logic) connections from the configuration to the user logic
exist. If an upset occurs in a used configuration bit, then upset occurs in logic.

14

General Background

Because of this difference in the SRAM usage (not dealing with data words anymore
but every bit is meaningful at any moment), traditional SRAM detection and
corrections schemes can’t be applied to FPGAs anymore. If a bitflip occurs, the
FPGA configuration itself is modified, leading to a malfunction of a module or a
routing modification.

The actual technology trend see scaling down to smaller sizes [19], trying to
pack more transistors in less area. This scaling affects how radiations modify the
behavior of the devices. Those devices are generally less affected by cumulative
damage, which means that total ionizing dose or displacement damages are less
likely to occur due to the smaller area of each transistor so less area where charges
can accumulate or material displacement. On the other hand, Single Event Effects
are more likely to occur, because a single particle can hit more than one transistor,
causing more complex damage like multiple bit-flips at once.

15

Chapter 3

Thesis Background

This chapter is about the background of the thesis, in order to understand better
further chapters and as a help and reference to reproduce the results of this thesis
in the future.

3.1 PYNQ-Z2 Development Board
The PYNQ-Z2 is a development board designed for the Xilinx University Program.
It is equipped with a Xilinx ZYNQ 7020 SoC (XC7Z020-1CLG400C), 512 MB
of DDR3 RAM and 16 MB of QSPI Flash Storage. The board provides a clock
reference thanks to a crystal oscillator with a frequency of 50 MHz. The reference
clock is used by the PS and can be provided to the PL too.

VP K9

GND J10 K10 GND
XVREF L9

VN

GND J10 K10 GND

L10

BTN3
L19

BTN2
L20

BTN1
D20

BTN0
D19

LD3
M14

LD2
N16

LD1
P14

LD0
R14

BOARD PORT LABEL ZYNQ PORT LABEL DIFFERENTIAL POSITIVE ZYNQ PORT LABEL MISC. 3V35V0 GND

SW0
M20

SW1
M19

SPI
W15 MISO
H15 SCK

F16 SS
T12MOSI

3V3

GND

S
C

L
P

16
S

D
A

P
15

A
Y

13
G

G
N

D
A

R
13

N
17

A
R

12
P

18
A

R
11

R
17

A
R

10
T

16
A

R
9

V
18

A
R

8
V

17

IO
R

E
F

3V
3

R
S

T
D

9
3.

3V
3V

3
5V

5V
0

G
N

D
G

N
D

G
N

D
G

N
D

V
IN

A
0

Y
11

E
17

A
1

Y
12

E
18

A
2

W
11

K
14

A
3

V
11

K
16

A
4

T
5

J2
0

A
5

U
10

G
19

A
R

7
U

17
A

R
6

R
16

A
R

5
T

15
A

R
4

V
15

A
R

3
V

13
A

R
2

U
13

A
R

1
U

12
A

R
0

T
14

R
P

IO
26

W
9

G
N

D

R
P

IO
19

Y
8

R
P

IO
13

W
8

R
P

IO
06

Y
17

R
P

IO
05

Y
19

R
P

IO
S

D
Y

16
G

N
D

R
P

IO
11

W
10

R
P

IO
09

V
10

R
P

IO
10

V
8

3V
3

R
P

IO
22

U
8

R
P

IO
27

V
7

R
P

IO
17

U
7

G
N

D
R

P
IO

04
Y

18
R

P
IO

03
W

19
R

P
IO

02
W

18
3V

3

R
P

IO
21

Y
9

R
P

IO
20

A
20

R
P

IO
16

B
19

G
N

D
R

P
IO

12
B

20
G

N
D

R
P

IO
07

U
19

R
P

IO
08

F
19

R
P

IO
25

F
20

G
N

D

R
P

IO
S

C
Y

17

R
P

IO
24

Y
7

R
P

IO
23

W
6

G
N

D
R

P
IO

18
C

20
R

P
IO

15
Y

6
R

P
IO

14
V

6
G

N
D

5V
0

5V
0

LD5
R M15
B G14
G L14

LD4
R N15
B L15
G G17

ZYNQ 7020

GND

W14 JB1P
Y14 JB1N
T11 JB2P
T10 JB2N

3V3 3V3
GND

W13JB4N
V12JB4P
W16JB3N
V16JB3P

PMODB

P
M

O
D

B

PMODA

GND

Y18 JA1P
Y19 JA1N
Y16 JA2P
Y17 JA2N

3V3 3V3
GND

W19JA4N
W18JA4P
U19JA3N
U18JA3P

P
M

O
D

A

Figure 3.1: Schematic of the PYNQ-Z2 Development Board

16

Thesis Background

The SoC is made of two subparts: a Processing System (PS) and a Programmable
Logic (PL). The PS is the main part of the SoC, containing two 650 MHz ARM
Cortex-A9 processors, 512 KB L2 Cache, 256 KB On-Chip Memory and other
modules like FPUs, Flash Controller, DRAM Controller, GPIOs and so on.

X-Ref Target - Figure 1-1

2x USB

2x GigE

2x SD

Zynq-7000 SoC

I/O
Peripherals

IRQ

IRQ

EMIO

SelectIO
Resources

DMA 8
Channel

CoreSight

Components

Programmable Logic

DAP

DevC

SWDT

DMA
Sync

Notes:

1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AXI 32bit/64bit, AXI 64bit, AXI 32bit, AHB 32bit, APB 32bit, Custom
3) Gray blocks in APU are applicable to dual core devices.

ACP

256K

SRAM

Application Processor Unit

TTC

System
Level

Control
Regs

GigE

CAN

SD
SDIO

UART

GPIO

UART

CAN

I2C

SRAM/
NOR

ONFI 1.0
NAND

Processing System

Memory
Interfaces

Q-SPI
CTRL

USB

GigE

I2C

USB

SD
SDIO

SPI

SPI

Programmable Logic to Memory
Interconnect

MMU

FPU and NEON Engine

Snoop Controller, AWDT, TimerGIC

32 KB
I-Cache

ARM Cortex-A9
CPU

ARM Cortex-A9
CPU

MMU

FPU and NEON Engine

Config
AES/
SHA

XADC
12 bit ADC

Memory
Interfaces

512 KB L2 Cache & Controller

OCM
Interconnect

DDR2/3,3L,
LPDDR2

Controller

UG585_c1_01_060618

32 KB
D-Cache

32 KB
I-Cache

32 KB
D-Cache

M
IO

Clock
Generation

Reset

Central
Interconnect

General-Purpose
Ports

High-Performance Ports

Figure 3.2: Schematic of ZYNQ 7020 SoC

A schematic is shown in Figure 3.2. The second part is the PL, which consists
in an FPGA with the following characteristics:

• 13,300 logic slices, each with four 6-input LUTs and 8 flipflops

• 630 KB block RAM (BRAM)

• 220 DSP slices

• On-chip Xilinx analog-to-digital converter (XADC)

The PL can access the Processing System’s memory space, as shown in Table
3.1, through High Performance and/or General Purpose AXI Ports. This enables

17

Thesis Background

the usage, for example, of the DDR3 RAM and the On-Chip Memory (OCM)
from the PL. The board can be programmed through a JTAG interface, which
allows uploading firmware to be executed from the PS or to program the PL via
a bitstream. Moreover, it provides a virtual UART interface that can be used as
input/output both for the PS and the PL.

Memory Mapping
Address Start Address End Device
0x00000000 0x3FFFFFFF DDR & OCM
0x40000000 0xBFFFFFFF PL
0xC0000000 0xDFFFFFFF Reserved
0xE0000000 0xE02FFFFF Memory mapped devices
0xE0300000 0xE0FFFFFF Reserved
0xE1000000 0xE3FFFFFF NAND, NOR
0xE4000000 0xE5FFFFFF SRAM
0xE6000000 0xF7FFFFFF Reserved
0xF8000000 0xF8FFFFFF AMBA APB Peripherals
0xF9000000 0xFBFFFFFF Reserved
0xFC000000 0xFDFFFFFF Linear QSPI - XIP
0xFE000000 0xFFEFFFFF Reserved
0xFFF00000 0xFFFFFFFF OCM

Table 3.1: ZYNQ 7020 SoC Memory Map

3.2 Xilinx soft-core: the MicroBlaze

The Microblaze is a soft-core (or soft-microprocessor) designed for Xilinx’s FPGAs.
Introduced in 2002, it is based on a RISC architecture, with an ISA (Instruction Set
Architecture) similar to the DLX architecture. It is a pipelined processor and, with
few exceptions, the MicroBlaze can issue a new instruction every cycle, maintaining
single-cycle throughput under most circumstances.

The Microblaze has an interface to the AXI Interconnect, used to connect to
other peripherals and memories. It has a dedicated bus, LMB Bus, for access to
local-memory (FPGA’s BRAMs): this can be used both for Instruction (ILMB)
and Data (DLMB) storage.

18

Thesis Background

BUS
IF

Instruction
Buffer

Program
Counter

Instruction
Decode

Special Purpose
Registers

General Purpose
Registers
(32 x 32b)

BUS
Data

ALU

SHIFT

Barrel Shift

Multiplier

Divider

FPU

ILMB DLMB

Optional Features

Figure 3.3: [23]Overview of a Microblaze SoftCore

A general overview of the Microblaze architecture is shown in Figure 3.3. Because
it is meant for FPGAs, and FPGAs are flexible by construction, a Microblaze
instance can be personalized in many ways to fit the user’s needs. Examples of
configurations are the cache size (or the cache can be enabled or disabled at all),
pipeline depth (3-stage, 5-stage, or 8-stage) and bus interfaces. There are some
presets, like the area-optimized one which uses a 3-stage pipeline and sacrifices clock
frequency for the reduced logic area. The performance-optimized preset expands
the execution pipeline to 5 stages. One of the most important configuration is
related to the supported ISA: key processor instructions which are rarely used but
more expensive to implement in hardware can be selectively added/removed (e.g.
multiply, divide, and floating-point operations).

3.3 Xilinx FPGA Standard Design Flow
Xilinx offers a software suite for Xilinx’s FPGAs. The provided software suite is
Vivado Design Suite, and this thesis has been developed using version 2021.1. The
suite supports designers in all the steps of the design process, from the initial HDL
design to the final FPGA bitstream generation. At each stage of the design flow, the
design can perform analysis and verification, by performing logical simulations of
the design, estimation of power consumption, constraints definition, I/O and clock
planning, design rule checks (DRC) and modification of implementation results.

Together with the HDL description, Vivado offers an IP catalog. IP stands for
Intellectual Property, and each IP is an already developed and tested design ready
to be integrated into the user’s own design. An example of IP offered by default
is the Microblaze IP, which contains the Microblaze core. The Vivado’s Catalog
is a comprehensive list of all the IP offered by different repositories: Xilinx’s IP,

19

Thesis Background

IP obtained from third parties, and end-user designs targeted for reuse as IP in a
single environment.

One of the key features of the Vivado Design Suite is the choice given to the
user to perform the design flow through the Graphical User Interface (GUI) or
by TCL commands. The GUI, known as Vivado Integrated Design Environment
(IDE), allows the user to follow the evolution of the design visually from the HDL
and IP instantiation up to its implementation on physical resources. The TCL
commands allow the user to control the design flow by employing scripts. The
interesting thing is that each action performed by the user in the GUI corresponds
to an exact TCL command that can be seen from the TCL Console available in
the IDE. This allows the user to understand what is the TCL command for that
specific action and to script the design flow easily.

3.3.1 Steps towards the Bitstream Generation
The starting point of the design flow is the description of the system. The de-
scription can be made of a set of HDL files (Vivado supports Verilog, VHDL and
SystemVerilog), a set of design constraints (XDXC) and a set of IP instantiations.

Thus, a design can be a combination of IPs and hand-written HDL code or it can
be a full IP-centric design, where the user instantiates IPs he/she wants to use and
interconnects them (usually via AXI Interface but also other interfaces or custom
interfaces, it depends on the IP). For the IP-centric design flow, Vivado offers
the Block Design tool, which allows the user to visually instantiate e move and
connect IPs visually, where each IP corresponds to a block, and to connect them by
drawing connections similar to a schematic or using connection automation features
provided with a set of DRCs (to ensure proper IP configuration and connectivity),
as shown in Figure 3.4.

dfx_decoupler_0

DFX Decoupler

s_DBG
rp_DBG

decouple

dfx_decoupler_1

DFX Decoupler

s_DLMB
rp_DLMB

s_ILMB
rp_ILMB

s_AXI_DP
rp_AXI_DP

decouple

microblaze_0

MicroBlaze

INTERRUPT
DLMB

ILMB

M_AXI_DP

DEBUG

Clk

Reset
AXI Interconnect

M00_AXI

M01_AXI

M02_AXI

M03_AXI

M04_AXI

M05_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

S01_ACLK

S01_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN

S02_ACLK

S02_ARESETN

M03_ACLK

M03_ARESETN

M04_ACLK

M04_ARESETN

M05_ACLK

M05_ARESETN

microblaze_0_local_memory

DLMB

ILMB

LMB_Clk

SYS_Rst

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO
S_AXI_HP0_FIFO_CTRL

M_AXI_GP0
S_AXI_HP0

M_AXI_GP0_ACLK

S_AXI_HP0_ACLK
FCLK_CLK0

FCLK_RESET0_N

rst_ps7_0_50M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

util_vector_logic_0

Utility Vector Logic

Op1[0:0]

Op2[0:0]
Res[0:0]

util_vector_logic_2

Figure 3.4: Example of Block Design

20

Thesis Background

Moreover, the Block Design Tool allows the user to define the memory mapping
of the AXI peripherals concerning the AXI masters. In the example above there
are two masters, the ZYNQ7 Processing System and a Microblaze, and both of
them are connected to the same AXI Interconnect IP. All the other peripherals
are connected to the same AXI Interconnect IP. So, in the end, there are two
separated memory address spaces (one for each master) and each master will be
able to access all the peripherals as the other master. The Block Design tool then
allows validating the design, as the memory map correctness, and will package the
design into a single design source.

Now that the design is defined, the user can proceed with a logic simulation or
with the Synthesis of the design. Of course, in order to test the design, the user
needs to write its testbench. The testbench is usually an HDL file where the DUT
(Device-Under-Test, that is the module the user wants to simulate) is instantiated
and proper stimuli are applied. The simulator is then able to run simulate and let
the user see all the waveforms.

Before going ahead with the Synthesis step, it is possible to assign some con-
straints. Those constraints, defined in an XDC file, regard for example the PIN
assignment (it is possible to assign a port of the design to a physical pin of the
FPGA) or the placement of some modules in a particular region of the FPGA.

Once the constraints are defined, the Synthesis can be performed. The Synthesis
is the process of transforming an HDL description into a gate-level representation.
The output is a netlist of the whole design. Vivado performs the Synthesis in a
bottom-up approach, that is, the lower modules are synthesized first, and then the
higher modules are synthesized. If the design contains IPs, these are synthesized
first. The user can decide the Synthesis approach adopted by the tool, for example,
if the synthesis must follow a timing optimization strategy or an area optimization
approach.

The next step is Implementation. The Implementation is the final step, where
the gate netlist, produced as an output of the synthesis step, is mapped to the
FPGA-specific resources and the design is routed. The implementation step is the
most complex one and is made of different steps:

• Design Optimization: the netlist is optimized to reduce the number of required
resources and to fit the target FPGA device.

• Placement: each block required by the design is mapped into a physical
resource of the FPGA. There are many resources available with the same
behavior where the block can be mapped. The choice may be driven by the
need to minimize or balance the wiring across the FPGA and/or to minimize

21

Thesis Background

the circuit delay (i.e. maximize the speed). The placement tries to follow
the constraints defined in the XDC file. If it is not possible to fulfill the
constraints, the placement will fail and the user will be notified.

• Post-Placement Physical Optimization: the placement is further optimized.

• Route Design: the design is routed, meaning that the physical resources are
connected among them as needed.

Once the design has been implemented, the final step of the bitstream generation
can be performed. The default generated bitstream is a binary bitstream (.bit),
that can be used to program the FPGA. However, the user can also generate
bitstreams in different formats.

3.3.2 Fundamentals of the Xilinx’s Bitstream structure
The bitstream is a file that is usually given as input to some tools that programs
the FPGA, via some defined interface. Because of the different tools and interfaces
used for different scenarios, the bitstream format is not always the same. The most
common formats are:

• .bit: a binary file that contains initially a header, followed by the raw bitstream.

• .rbt: same structure as .bit, but it is ASCII encoded, meaning that the
header is human-readable and the raw bitstream is written as literal ’0’ and
’1’ characters for each bit.

• .bin: a binary file that contains only the raw bitstream.

• .mcs: a file that can be used to program a PROM (includes addresses and
checksum info).

Even tho the .bin file contains all the necessary data for programming an FPGA,
the .bit file is the default format generated by Vivado.

Bitstream Header

The header contains some information like the design name, build date, and FPGA
target name. Those pieces of data are ignored by the FPGA. The main reason for
this format to exist is that the header is required by tools like Vivado, to better
analyze it before starting the programming.

The hex dump of a .bit file header looks like the following:

22

Thesis Background

1 00000000: 00090 ff0 0 ff00ff0 0 ff00000 0161002 a |............. a.*|
2 00000010: 64657369 676 e5f31 3 b557365 7249443 d | design_1 ; UserID =|
3 00000020: 30584646 46464646 46463 b56 65727369 |0 XFFFFFFFF ;Versi|
4 00000030: 6 f6e3d32 3032312 e 31006200 0 c377a30 |on =2021.1. b..7 z0|
5 00000040: 3230636 c 67343030 0063000 b 32303232 |20 clg400 .c ..2022|
6 00000050: 2 f30362f 31360064 00093133 3 a34363a |/06/16. d ..13:46:|
7 00000060: 30340065 003 dbafc ffffffff ffffffff |04.e .=..........|
8 00000070: ffffffff ffffffff ffffffff ffffffff |................|
9 00000080: ffffffff ffffffff 000000 bb 11220044 |.............". D|

10 00000090: ffffffff ffffffff aa995566 20000000 |.......... Uf ...|

There are several fields in the header, each one is indicapted by a letter (a, b,
c, d, e). The first one containts the design name design_1, the UserID and the
Vivado version used to generate the bitsteam. The second one contains the FPGA
part on which the bitstream has been generated for (i.e. 7z020clg400). The c and
d fields are the date and time, respectively. The e field contains some additional
information. Each letter is followed by the length of the field (including a trailing
0x00). After the header, there are few bytes that are used only to add some padding
(0xffffffff) to the bitstream.

Raw Bitstream

Here the configuration logic starts its job. The configuration logic is part of the
FPGA that can be accessed via a configuration port and acts as a State Machine.
Each value written in the bitstream is like a command to the configuration logic,
that may or may not change the state machine’s state.

In the ZYNQ system, that are mainly two configuration ports: the ICAP and
the PCAP. Both are used to program the FPGA, but the first one can be used
only by the hard-cores in the SoC, while the second one can be used by the FPGA
to program itself. The ICAP and PCAP are mutually exclusive, so only one of
them can be used at a time. They are connected with a 2:1 mux, and the selection
pin is connected to a bit in one of the configuration registers of the ARM cores.

At startup, the PCAP is enabled by default, and the ICAP can be enabled if
requested. The processor may steal the PCAP back (and stop the ICAP) at any
time. This choice has been made in order to ensure that the ARM TrustZone
remains in control of the security of the system all the time. ICAP is a potential
backdoor, and would compromise security if the processor could not prevent and
regulate its use.

The raw bitstream in Xilinx’s 7 series FPGA consists of three sections:

23

Thesis Background

• Bus Width Auto Detection

• Sync Word

• FPGA Configuration

The bus width auto detection section is a byte pattern inserted at the beginning
of every bitstream. The pattern is made of 0x999999bb and 0x11220044 and they
may be surrounded by some padding bytes. The configuration width detection
logic always checks the low eight bits, For the x8 bus, the configuration bus width
detection logic first finds 0xBB on the D[0:7] pins, followed by 0x11. For the x16
bus, the logic first finds 0xBB on D[0:7] followed by 0x22. For the x32 bus, the logic
first finds 0xBB, on D[0:7], followed by 0x44. If the byte after 0xbb is not correct,
the bus width detection logic’s state machine is reset, until a valid sequence is
found.

When it is found, it switches to the appropriate external bus width state and
starts looking for the Sync Word. The sync word is 0xaa995566. When the sync
word is found, the configuration logic switches to the FPGA configuration state
and starts processing configuration packets in the bitstream. Configuration data
can be sent both in serial or in parallel mode, where the bus width is fixed thanks
to the previous step. Once the Sync Word is detected, the communication mode is
fixed and the configuration logic will only work on 32-bit, big-endian words. Thus,
the Sync Word is used to establish a 32-bit alignment, too.

Each configuration packet begins with a one-word header. The header is
composed of the following fields:

31 29 28 27 26 13 10 0

Type OP Address Payload Length

The content of the header changes according to the Type field. The Type 1
header is the shown one. Type 2 packets are used when the payload length exceeds
the 11 bits available in a type 1 packet. Type 0 should exist, even if it is not
documented.

The OP field is used to specify the operation to be performed. The following
values are possible:

24

Thesis Background

OP Description
00 NOP
01 Read
10 Write

Table 3.2: 7 Series Configuration Packet: Type 1 Header OP Field

For NOP operations, which usually are found as 0x20000000 in the bitstream,
the address and payload length are ignored. The address field can be useful in one
case: the type 2 packets do not contain any address field, to extend the payload
length maximum value. Thus, the configuration logic will use the address field of
the previous type 1 packet to determine the address of the type 2 packet. The flow
would be a NOP packet with a valid address field followed by a type 2 packet.

Address specified in the configuration packets are mapped to variable-width
registers. Some of the registers are:

Register Address Length Description
CRC 00000 Fixed Automatical updated register: when

a packet is received, the configuration
logic computer the CRC incrementally
and updates the register.

FAR 00001 Fixed Start address for the next read or write
operation for the configuration memory

FDRI 00010 Variable Register where configuration data are
wrote. This is the real content of the
configuration memory of the FPGA, the
one indicating how the physical cells are
used and the interconnections

CMD 00100 Fixed Used to perform one-shot actions. For
example the RCRC resets the CRC reg-
ister or the START command begins
the startup sequence of the FPGA when
the configuration is done.

STAT 00111 Fixed The Status Register (STAT) indicates
the value of numerous global signals in
the FPGA.

Table 3.3: 7 Series Configuration Registers

25

Thesis Background

3.3.3 Software Development
Xilinx provides some tools to help software developers to develop applications for
hard ARM cores (such as in the ZYNQ7020) or soft-cores such as Microblaze (one
or multiple instances of the core). The most important one is Xilinx Software
Command-Line Tool (XSCT). XSCT is a tool that allows developers to easily
manage the FPGA via a command-line interface and to write scripts, based on
TCL, to automate some steps.

XSCT allows mainly two things: creating and managing projects and accessing
the FGPA’s JTAG interface to program the FPGA itself or to debug applications.
For what concerns the JTAG access, XSCT offers functions like the upload of a
bitstream to program the FPGA, upload of .ELF executable files to be run by a
specific core (it can be either an ARM core or a Microblaze), the ability to control
a core (start, stop, reset, etc.), the ability to read and write registers and access
the memory space of a core and ultimately to debug an application.

A more high-level tool is available, called Vitis. Vitis is a software development
environment for FPGA development. It is a tool that allows developers, through
an eclipse-based environment, to easily manage projects and applications. Vitis is
a wrapper around XSCT.

A Xilinx Software project is made of a platform project. A platform project
is a description of the hardware architecture on which the software will run. To
create a platform project, the starting point is to extract a hardware description
from a hardware design. The hardware description contains information like the
available cores, the memory space for each core, the available peripherals (and
relative software drivers, if not standalone) and the bitstream to program the FPGA.
Vivado can generate such a description only for Block Design-based projects, via
the export_hardware TCL command or via the GUI itself, which produces the
.xsa file.

Vitis, or XSCT, take the .xsa file as input to create a platform project. Once it
is created, it is possible to create a system project. A system project is a software
project that contains multiple applications, each one based on a specific core. An
application project can be standalone (so a bare-metal firmware), FreeRTOS based
or petaLinux based (if available).

Once a project is created, software developers can start writing their code (usually
in C) and customize the Board-Support Package (BSP) that allows changing basic
things like the stdout and stdin used peripherals to print or read some text,
respectively.

26

Thesis Background

3.4 Fault Injection Tool
Fault injection is a widely used technique for fault tolerance evaluation. A common
architecture for this kind of tools is presented in Figure 3.5:

Controller

Fault Injection Execution Monitor

Error
Campaign LOG

Figure 3.5: Basic scheme of a fault injection tool [24]

In the general scheme, the following elements are present:

• Controller : it is the main application and the orchestrator of all the other
components of the tools.

• Fault Injection: it is the module responsible for injecting faults into the system,
according to a specific error campaign.

• Execution: the output of the fault injection is executed.

• Monitor : the behavior of the system is monitored and logs are generated.

A widely accepted classification of the different injection strategies is summarized
as follows:

Hardware-Based fault injection consists of the generation of physical errors
into the integrated circuits. They can be divided into fault injections with
contact and fault injections without contact. The one with contact consists in
perturbating the integrated circuits via perturbation introduced at the pins
(for example a rapid and minimal change of the power supply voltage) while
in the case without contact there is an external source that produces physical
phenomena such as heavy-ion radiations that induce faults in the integrated
circuits.

Software-Based fault injection consists of the generation of software errors.
They can be artificially inserted into a software system, both at compile time
or at run time. The ones at compile-time [25] are inserted into the source code
of the software or at the assembly level after the compilation of the original

27

Thesis Background

source code itself. The ones at run-time are inserted through a trigger (for
example a timeout or a software trap) that executes the fault injection module,
altering the behavior of the software.

Simulation-Based fault injection simulation-based fault injection is a tech-
nique that allows to simulate of the system and to inject faults into it. The
faults are injected from within the simulation environment, and it can be done
by modifying directly the high-level description of the design with a faulty
model or by using built-in commands in the simulator that force error in the
simulation of the design, not in the hardware description of the hardware
itself. Example of simulation-based fault injection systems are SST [26] and
VERIFY [27].

Emulation-Based fault injection emulation-based fault injection is a technique
consisting of a real implementation in an FPGA. For these platforms, the
development board is connected to a PC that acts as a Controller by defining
the fault injection campaign, controls the execution of the faulty design and
monitors the behavior of the system under test.

The Fault Injection tool used is a kind of Emulation-Based fault injection [28].
Its goal is to create a faulty bitstream starting from the base one. Consequently,
the faulty bitstream simulates a fault by forcing a random bit-flip, as a SEUs does.
The tool offers the possibility to target a specific portion of the FPGA, in order
to test the fault tolerance of a subpart of the design, instead of the whole one.
This allows designers to execute a targeted fault campaign of the design under
consideration.

Thanks to tools like PyXEL [29] it is possible to obtain a visual low-level
representation of the bitstream. This allows an understanding of how and where
the design’s modules are mapped into the bitstream and consequently how each bit
in the bitstream is connected to the design. Hence, by forcing some modules to stay
in a specific portion of the FPGA, using some constraints as explained in chapter
3.3.1, it is possible to understand the position of the modules in the bitstream.

As a result, it is finally possible to have a targeted fault campaign. The
Controller, part of the tool, can start producing n-faulty bitstreams, where n is
given as input by the user. Once all the faulty bitstreams are generated, the
Controller starts the Execution part.

As an important note, because of the bit-flips introduced into the bitstream,
is necessary to remove any CRC checksum that may be present, that is checked
during the upload in the FPGA, as explained in chapter 3.3.1. To overcome this

28

Thesis Background

problem, Vivado must be instructed to generate a bitstream without CRC. It can
be done with the following TCL commands:

1 open_run impl_1
2 set_property BITSTREAM.GENERAL.CRC DISABLE [get_designs impl_1]
3 write_bitstream

The first execution only is related to the golden bitstream and the Monitor will
capture the golden result, i.e. the correct and expected result. The result is intended
as the stdout output of a testbench firmware, over the UART. The firmware can
implement, for example, a simple algorithm like matrix multiplication or bit count.
Obviously, the more the algorithm is varied, in terms of used instructions and
hardware, the more the chance to detect an injected fault, because of the higher
probability to stimulate that fault.

All the remaining Execution outputs are compared against the golden, thus
each run is classified as correct or faulty. When the campaign ends, a summary is
produced, as shown in the following example, extracted from a very small fault
injection campaign:

1 Total injected bitflips = 17
2

3 --- FUNCTIONAL ANALYSIS ---
4 Correct results -> 14 [82.35%]
5 Faulty results (SDE) -> 0 [00.00%]
6 MicroBlaze halted -> 3 [17.65%]
7 Total exceptions -> 0 [00.00%]

3.5 Integrated FPGA Debugger
A powerful tool offered by Xilinx is the Integrated Logic Analyzer (ILA) IP. It is
a logic analyzer core that can be used to monitor the internal signals of a design.
The ILA core includes many advanced features of modern logic analyzers, including
Boolean trigger equations, and edge transition triggers. Thus, it is possible to
debug in real-time the internal behavior of the design directly by Vivado, without
the need for external tools.

To bebug a port, the ILA core must be instantiated, for example in a Block
Design, and connected to the signals to debug. The configuration wizard allows to
easily monitor an entire AXI bus or simple signals.

29

Thesis Background

design1_ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

probe1[0:0]

probe2[0:0]

probe3[0:0]

probe4[0:0]

probe5[2:0]

probe6[2:0]

rst_ps7_0_50M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

util_vector_logic_0

Utility Vector Logic

Op1[0:0]

Op2[0:0]
Res[0:0]

util_vector_logic_2

Utility Vector Logic

Op1[0:0]

Op2[0:0]
Res[0:0]

util_vector_logic_3

Utility Vector Logic

Op1[0:0]

Op2[0:0]
Res[0:0]

util_vector_logic_4

Utility Vector Logic

Op1[0:0] Res[0:0]

vsm_VS_0_hw_triggers[0:0]

Figure 3.6: Example of a ILA IP instantiation in a Block Design.

When the designer is satisfied with the number of signals to monitor, it is
possible to continue with the normal Vivado Design Flow until the Implementation
and Write Bitstream phases. The implementation requires a bit more effort due
to the creation of the dbg_hub core, which is the intermediary between the ILAs
inserted into the design (where the signals to debug are connected) and the JTAG
interface used to access and debug the design.

To access the Debug functionalities, open Vivado’s Hardware Manager and
connect to the Hardware Server. If the FPGA is already configured, Vivado
automatically opens the GUI to access and visualize all the signals and set various
triggers. The GUI is similar to the one used to simulate the design:

Figure 3.7: ILA’s debugging GUI in Vivado. The ILA is waiting for the trigger,
and the trigger is set waiting to have a certain signal equal to 1.

30

Chapter 4

Analysis and hardening of
an FPGA Design with a
MicroBlaze

An SRAM-based FPGA is sensitive to SEUs, as explained in Chapter 2. To better
understand the effects of radiation on the FPGA, it is better to see a design as an
abstraction of two layers. The two main layers are:

• Application layer : includes the logic and memory elements as described by
the user.

• Configuration layer : includes the logic and memory elements that are used to
implement physically the user’s design in the FPGA.

From the logical point of view, a particle causing an SEU can affect one of the
two layers, producing different consequences:

• SEUs in the Application Layer manifest as transient errors that could affect
the stored data or the state of the user logic memory elements such as BRAMs
or Flip-Flops.

• SEUs affecting the Configuration Layer manifest as persistent errors, that
could be reverted using a reconfiguration process.

The first ones are transients because they are in the user logic and are directly
controlled by the user. Because of that, they may be detected or corrected, it
depends on how the logic has been designed. The seconds are persistent because
they directly affect how the bottom hardware layer works: from the point of view
of the user, it is like a real hardware fault that cannot be corrected.

31

Analysis and hardening of an FPGA Design with a MicroBlaze

Persistent errors can have two main consequences:

• They can change a routing element connection or can completely disconnect
internal wires.

• They can change the behavior of a LUT.

SEUs in the configuration layer are the most common type of errors in SRAM-
based FPGAs because the application layer virtually uses less area than the
configuration layer. A summary of the different causes of SEUs is presented in the
following table:

Layer Element SEU Consequence

Configuration

Muxes Wrong input selection, open net,
wrongly driven or left open

Routing PIP Wrong connection or disconnection
between nets

Buffers Output net wrongly driven or left
open

LUT Wrong function inputs and outputs
Logic Control Bits Wrong function inputs and outputs

Tie Offs Wrong function initialization

Application RAM Blocks Wrong application data
CLB Flip-Flops Wrong application data or state

Table 4.1: SEU consequences in SRAM-based FPGAs [32]

The following analyzes are focused on SEUs affecting the configuration layer, as
they are the most common type of errors in SRAM-based FPGAs. However, the
proposed techniques allow designers to detect and correct SEUs in the application
layer, too.

4.1 How SEUs affect the MicroBlaze?
As anticipated in the previous sections, the object of interest of this thesis work
is the analysis of the MicroBlaze behavior when affected by SEUs and how those
effects can be mitigated by constructing a series of ad-hoc hardening techniques.

First, in order to understand how the MicroBlaze reacts to SEUs affecting itself,
a series of fault injection campaigns must be executed. The idea is to start with
a very minimal hardware design that includes a MicroBlaze and a set of minimal

32

Analysis and hardening of an FPGA Design with a MicroBlaze

peripherals. Thanks to the Block Design tool, the preparation of the design is very
simple and straightforward, and the result is shown in Figure 4.1:

DDR
FIXED_IO

mdm_1

MicroBlaze Debug Module (MDM)

S_AXI MBDEBUG_0

S_AXI_ACLK

S_AXI_ARESETN

Interrupt

Debug_SYS_Rst

microblaze_0

MicroBlaze

INTERRUPT
DLMB

ILMB

M_AXI_DP

DEBUG

Clk

Reset

microblaze_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

S01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

S01_ACLK

S01_ARESETN

microblaze_0_local_memory

DLMB

ILMB

LMB_Clk

SYS_Rst

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

M_AXI_GP0M_AXI_GP0_ACLK

FCLK_CLK0

FCLK_RESET0_N

rst_ps7_0_50M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

Figure 4.1: Schematic of a basilar MicroBlaze design

In the schematic, the following blocks are present:

• ZYNQ7 Processing System: it represents the ZYNQ7020’s Processing System
(PS) from the point of view of the Programmable Logic (PL), as explained in
Chapter 3.1. It can offer a wide range of functionalities to the PL. For the
moment, it is only used as a clock source and as a reset source. Via the ZYNQ7
PS block’s configuration wizard, it is possible to configure a Phase-Locked
Loop (PLL) in order to generate a clock for the PL with a specific frequency.
For now, the PLL is configured to generate a clock for the PL with a frequency
of 50 MHz, the same as the reference one given by the PYNQ-Z2 board.

• Processor System Reset: it is a soft IP that provides a mechanism to handle
the reset conditions for a given system. The core handles numerous reset
conditions at the input and generates appropriate resets at the output. For this
simple design, the PSR can handle reset requests both from the PS and from
the Debug Core. It generates an active-high reset signal for the MicroBlaze
core and for the Local Memory. Moreover, it generates an active-low reset
signal for the AXI peripherals.

• MicroBlaze: it represents the MicroBlaze instance under test. It has as inputs
some debug signals from the Debug Core, the clock and the reset signal coming
from the PSR. It offers as outputs the two memory buses for the Local Memory,
one for the data memory (DLMB) and one for the instruction memory (ILMB).
The last output is the AXI bus, which is used to access the peripherals through
a AXI Interconnect.

33

Analysis and hardening of an FPGA Design with a MicroBlaze

• Local Memory: it is a sub-design (automatically generated by Vivado) that
interfaces some BRAMs (a special kind of memory offered by the FPGA)
with the Local Memory Bus (LMB). Block RAMs (or BRAMs) means Block
Random Access Memory. Block RAMs are used for storing large amounts of
data inside FPGAs.

• AXI Interconnect: it is a sub-design (automatically generated by Vivado). As
the name suggests, it is used to connect one or more AXI memory-mapped
master devices to one or more memory-mapped slave devices.

• MicroBlaze Debug Module: it is the Debug Core, and its main job is to enable
JTAG-based software debugging of the MicroBlaze core. Moreover, it includes
a configurable UART via an AXI interface. The UART’s RX and TX signals
are transmitted over the device JTAG port and can be accessed via the XSCT
tool. With this setup, XSCT offers designers the possibility to interact with
the MicroBlaze core via a UART and to control the MicroBlaze core (status,
registers, and software debug in general).

Figure 4.2: Resulting hierarchy of the MicroBlaze design

By looking at the schematic, there are two AXI masters connected to the AXI
Interconnect. Hence, there are two different memory address spaces, and they are
configured as follows:

34

Analysis and hardening of an FPGA Design with a MicroBlaze

0x4140_0fff

0x4140_0000
4 KB MDM UART

0x413f_ffff

0x0001_0000
– reserved –

0x0000_ffff

0x0000_0000

64 KB DLMB

/microblaze_0

0x4140_0fff

0x4140_0000
4 KB MDM UART

 /processing_system7_0

Finally, the design definition is ready and it can be synthesized and implemented.
Because the aim of this design is to be analyzed by injecting faults, the MicroBlaze
has been constrained to be placed in a specific portion of the FPGA, as explained
in Chapter 3.4. This is possible with Vivado by defining a PBLOCK.

A PBLOCK is a collection of cells, grouped in one rectangular area or region
that specifies the device resources contained by the PBLOCK. PBLOCKs are used
during floorplanning. A design floorplan is broadly defined as a set of physical
constraints used to control how the logic is placed into the FPGA. A good floorplan
can help reduce routing congestion and improve the quality of timing results.
On the other hand, a bad floorplan can reduce performances as well as unmet
constraints if the required placement is unfeasible.

As an example, the above design is implemented with the following constraints:
1 create_pblock pblock_1
2 add_cells_to_pblock [get_pblocks pblock_1] [
3 get_cells -quiet [
4 list design_1_i / microblaze_0
5]
6]
7

8 resize_pblock [get_pblocks pblock_1] -add {
9 SLICE_X54Y102:SLICE_X67Y148

10 }
11

12 set_property IS_SOFT 0 [get_pblocks pblock_1]

35

Analysis and hardening of an FPGA Design with a MicroBlaze

In the above constraints, a PBLOCK called pblock_1 is first defined. Then
all the cells belonging to the Microblaze instance (design_1_i/microblaze_0) are
added to the PBLOCK, and finally, the PBLOCK is resized. The resize operation
is used to define the physical resources that are included in the PBLOCK. As the
final operation, the PBLOCK is marked as a not soft PBLOCK, which means that
each MicroBlaze cell must be placed obligatorily in that specific PBLOCK, and so
it is a hard constraint.

Once the constraints are ready, the design can be synthesized and implemented.
The resulting floorplan is shown in the following figure:

Figure 4.3: Resulting floorplan of the MicroBlaze design, with the PBLOCK on
the top side. Microblaze cells are highlighted in red

Finally, it is possible to launch the fault injection tool by providing the bitstream
with no CRC and a .elf file to be executed by the MicroBlaze at each run. The
resulting fault injection campaign is shown in the following:

36

Analysis and hardening of an FPGA Design with a MicroBlaze

Functional Analysis
Total Percentage

Correct results 9618 77.94 %
Faulty results (SDE) 131 1.06 %
MicroBlaze halted 2359 19.12 %
Raised exceptions 233 1.89 %
Total injected bitflips 12341 100.00 %

Exceptions
Total Percentage

XEXC_ID_FSL 2 0.02 %
XEXC_ID_UNALIGNED_ACCESS 65 0.53 %
XEXC_ID_ILLEGAL_OPCODE 107 0.87 %
XEXC_ID_M_AXI_I_EXCEPTION_or_XEXC_ID_IPLB_EXCEPTION 0 0.0 %
XEXC_ID_M_AXI_D_EXCEPTION_or_XEXC_ID_DPLB_EXCEPTION 55 0.45 %
XEXC_ID_DIV_BY_ZERO 3 0.02 %
XEXC_ID_STACK_VIOLATION_or_XEXC_ID_MMU 0 0.0 %
XEXC_ID_FPU 0 0.0 %

Table 4.2: Fault injection result for the basic MicroBlaze design

From the above results, it is possible to see that in the majority of the cases,
the MicroBlaze correctly executes its job. This is because the executed firmware
possibly stimulates only a sub-part of the core. However, there are a lot of faulty
cases (> 21%), and they are divided into three categories:

• SDE : the MicroBlaze executes the entire code until the end (the end condition
is detected when the MicroBlaze prints a specific string, like DONE_1 DONE_1
DONE_1). However, the output differs in some measures from the golden one.

• Halted: the MicroBlaze is halted, meaning that the end condition is not
detected.

• Exception: the MicroBlaze raised an exception.

Even tho SDEs and exceptions can be directly detected by the firmware running
on the core, it is not possible to detect the halted state. In theory, would be
possible to detect and try to correct the FPGA configuration. Nonetheless, trying
to do so would lead to two main problems:

1. Halt conditions are the majority of the cases (> 19% or about 86% among the
faulty conditions). In this case, the firmware is almost not able to run and
the fault would not be detected.

37

Analysis and hardening of an FPGA Design with a MicroBlaze

2. During SDEs or exceptions, the MicroBlaze runs until the end of the code,
but it is not guaranteed that all the instructions are executed or are executed
correctly.

Thus, a different approach is needed to detect and correct the fault.

4.2 Strategies and adopted solutions
Because of the problems raised in the previous section, different approaches need
to be evaluated. This thesis work is focused on SEUs affecting the configuration
layer of the FPGA, as they are more likely to occur. The adopted strategy can
detect and correct those errors, previously defined as persistent errors, and may
correct errors in the application layer too, under the condition that the overall
design (hardware or software) is engineered in such a way to detect them.

To overcome those persistent errors, there are some techniques able to exploit
the particular reconfigurable capabilities of the FPGAs. The following are some of
the techniques taken into account:

Data Scrubbing is a general technique based on the concept of a virtual back-
ground task that periodically checks memory content for errors, then corrects
detected errors using redundant data in the form of different checksums or
copies of data. It is useful to correct and prevent (accumulation) errors in
the information stored in memory. In FPGAs, scrubbing can be used to
mitigate both persistent errors in SRAM cells (i.e., the configuration memory)
and transient errors in user-memory elements such as BRAMs. To perform
configuration memory scrubbing, the configuration memory data must be
read sequentially from the start to the end and compared to the original
configuration bitstream or an error check code such as a cyclic redundancy
check (CRC). Scrubbing can be performed (both check and correction) without
interrupting the device’s functionalities. In aerospace applications, scrubbing
is a common technique to mitigate the effects of SEUs. However, there are
a few aspects to overcome like often the scrub operation must be performed,
because of the very limited area and power constraints. Hence, scrubbing
alone is a weak mitigation strategy without any other technique applied [33].
This is mainly because if a configuration bit is hit while the circuit is active,
the error propagates in the design and can lead to a failure and the scrubber
has no time to fix the error. An example of good design would be having a
scrubber joined by a design with a triple modular redundancy check. The
TMR design can detect and mask the error by itself, without causing a failure
and meanwhile, the scrubber can be notified of the error and fix it. In this
sense, scrubbing can be useful against error accumulation too.

38

Analysis and hardening of an FPGA Design with a MicroBlaze

Dynamic partial reconfiguration [34] allows run-time reconfiguration without
application layer interruption. This technique cannot detect errors by itself, so
it must be combined with other error detection techniques such as those based
on redundancy. These correction techniques take advantage of the subdivision
of the configuration memory into frames, which contain information related to
the configuration of specific parts of the design. While these techniques allow
increasing the protection capability against radiation effects, they introduce
several penalties to the design, particularly in terms of performance. In litera-
ture, some techniques are proposed, like innovative placement algorithms able
to improve the running frequency up to 44% by reducing the interconnection
delays between resources [35].

The chosen strategy is to use the Dynamic Partial Reconfiguration technique. For
this thesis work, only the MicroBlaze area is configured as dynamic reconfigurable.
As said, this is useful only to fix errors in the configuration area related to the
FPGA, but something that detects the error is needed. Hence, a self-made watchdog
is developed to detect the error and trigger the reconfiguration. The reconfiguration
is handled by a dedicated controller. A high-level scheme of the design is presented
in the following figure:

Microblaze Watchdog
Watching
channel

Reconfiguration
Controller

Error /
Trigger

Partial Reconfiguration

Figure 4.4: High level scheme of the fault tolerant design.

In figure 4.4, the following parts are highlighted:

MicroBlaze it is intended both as the instance of the MicroBlaze itself and as the
physical area of the FPGA where the MicroBlaze is mapped and configured
as dynamic reconfigurable.

Watchdog its job is to continuously check the MicroBlaze’s status via a watching

39

Analysis and hardening of an FPGA Design with a MicroBlaze

channel (that is, a channel that is used to monitor the MicroBlaze’s status)
and if the MicroBlaze is halted, it triggers the reconfiguration via a dedicated
signal Error/Trigger.

Reconfiguration Controller it is the controller that handles the partial recon-
figuration when it is signaled to do so by the watchdog. It is responsible for
the reconfiguration of the MicroBlaze’s area.

4.3 Development of a watchdog
Among the modules to be added to the design in order to achieve a fault-tolerant
design, the watchdog is the most critical one. If it fails in detecting errors, the overall
design doesn’t result protected from SEUs affecting the MicroBlaze. This is because
the watchdog would not able to detect the error and trigger the reconfiguration.

4.3.1 What is a watchdog?
In computer systems, a watchdog is essentially a timer (that may be hardware or
software) that is used to detect and recover from computer malfunctions. Watchdog
timers are widely used in computers to facilitate the automatic correction of
temporary hardware faults. Can be thought of as a down-count timer. When the
timer elapses, it generates a timeout signal.

During normal operation, the computer regularly restarts the watchdog timer
to prevent it from timing out. If due to a hardware fault or program error, the
computer fails to restart the watchdog, the timer will elapse generating a timeout
signal. The timeout signal is used to initiate corrective actions. The act of restarting
the watchdog timer is usually called kicking.

Both generally speaking or strictly related to this case of study, a watchdog
timer provides automatic detection of catastrophic malfunctions that prevent the
computer from kicking it. However, there are often less severe types of faults that
do not interfere with the kicking operation but still require watchdog oversight. In
the specific case, can be for example a fault affecting the Arithmetic Logic Unit
(ALU) of the MicroBlaze or the AXI interface towards peripherals. To support
these, the system should be designed so that the watchdog timer is not kicked
anymore in these less-severe faults. This can be done by writing some software
routines that can self-test the CPU and its functionalities. The CPU will kick the
watchdog only if all tests have passed.

40

Analysis and hardening of an FPGA Design with a MicroBlaze

4.3.2 How to implement a watchdog?
Once understood the principles of a watchdog, it is possible to implement it and
tailor its functionalities to the needs of having a fault-tolerant system on FPGA.
From a high-level perspective, the watchdog is at heart a timer. This means that
it must have some form of timing, so it needs a clock and reset signals. Moreover,
the timer must restart every time the kicking action is performed. If the timer
elapses, it generates a timeout signal. The following is a timing diagram of this
basic watchdog:

CLK

RST

COUNT[1::0] 3 2 1 3 2 2 1 0

KICK

TIMEOUT

Figure 4.5: Timing diagram of a very basic watchdog.

In figure 4.5, the system initially is in an unknown state. Once the reset signal
RST arrives, synchronously the watchdog is reset and starts counting down. When
the timer reaches 1, luckily a KICK signal arrives (green line), signaling that the
CPU is correctly working, and the timer is restarted from the initial value of 3. 4
clock cycles later, the timer reaches 0, and the TIMEOUT signal is generated (red
line) because no KICK signal has arrived.

A more sophisticated implementation of a watchdog could be based on a up-
count timer, an input data containing the maximum number of clock cycles the
timer can count before it generates a timeout signal, and a start signal that is used
to start the timer. The following is a timing diagram of this implementation:

CLK

RST

VALUE[2::0] 7 3

START

COUNT[2::0] 0 1 0 1 2 0 1 2 3

KICK

TIMEOUT

Figure 4.6: Timing diagram of a more sophisticated watchdog.

41

Analysis and hardening of an FPGA Design with a MicroBlaze

In the figure above, we have a different working mechanism compared to the
previous one. After the reset signal RST, the timer is reset to its initial value of 0
and stays in this state until the START signal is received. At this point, the input
value VALUE is set at 7 from the external: 7 is the final value of the timer, if this
value is reached, the timer expires. Once the START signal is received (blue line),
the timer starts counting up. The next clock cycle sees a change in the maximum
value, from 7 down to 3. The KICK signal is generated two times (green line),
signaling that the CPU is correctly working, and the timer is restarted from 0. At
a certain point in time, the timer reaches 3 but the KICK signal is not arriving,
thus at the next clock cycle, the TIMEOUT signal is generated (red line).

REGISTER

RST

KICK

O
R

+1

START

EQ
?

S

R

Q

Q

Timeout

S

R

Q

Q

AND

VALUE

0

1

Figure 4.7: Possible digital circuit implementation of a watchdog.

This implementation can be used as it is and can achieve good results. A possible
circuit implementation, even with some timing differences, can be seen in Figure
4.7. The problem is that the KICK signal represents a single point of failure in
terms of fault tolerance. If the CPU is hit by an SEU, it can leave the signal stuck
in a high state, and the watchdog will continuously reset the timer, maskin the
real CPU’s status.

To overcome this problem, a more sophisticated signaling mechanism is used. To
keep things simple, the act of kicking is done at every H → L or L → H transition
of the KICK signal. This way, if the signal is stuck in a certain state, the watchdog
will expire correctly. The final circuit implementation is based on a Finite State
Machine, that is, a set of states that are interconnected by transitions. It is faster
to implement when things get more complicated, and it is easier to understand
than the previous diagram. The following is a diagram of the Finite State Machine
that implements the final version of the watchdog:

42

Analysis and hardening of an FPGA Design with a MicroBlaze

START
count = 0RST

DOOMED
timeout = 1

CHECK 0
count += 1

CHECK 1
count += 1

start = 1
kick = 1

start = 1
kick = 0

count ≥ value
kick = 1

count ≥ value
kick = 0

count ≤ value
kick = 0

count ≤ value
kick = 1

count < value
kick = 1

count < value
kick = 0

Formally speaking, this FSM is a Moore machine. In the theory of computation,
it means that the current output values are determined only by the FSM current
state [36]. Inputs only affect the next state, and state transitions may happen only
at each rising edge of the clock signal.

The idea behind the logic of this FSM is that at the reset, the FSM waits for the
START signal. Once it is detected, it goes into a loop between two complementary
states. They are implemented in such a way to be able to detect signal transitions.
The FSM stays in this loop until the count reaches the input value, and if this
happens and the kick signal still doesn’t toggle, the FSM goes into a final state
asserting the timeout signal. The FSM will stay in this state until it is reset again.
If the input timeout value changes, it is captured only when a transition is detected.
The following is a description of the states in the FSM:

43

Analysis and hardening of an FPGA Design with a MicroBlaze

State Output Brief Description

START
COUNT = 0

TIMEOUT = 0
STARTED = 0

This is the initial state after the reset of the machine.
Here the count stays at 0, waiting for start = 1. When
the start signal is asserted, it goes to CHECK 1 or
CHECK 0, depending on the current kick value (be-
cause of the transition detection, if kick = 0, the
watchdog waits for kick = 1, L → H transition, and
vice versa).

CHECK 0

COUNT += 1
TIMEOUT = 0
STARTED = 1

Watchdog started and waiting for the kick signal to
go low. When the kick signal goes low, the FSM
goes to CHECK 1, detecting the H → L transition.
While the transition is not detected, the count keeps
increasing at each clock tick. When the count reaches
the input value, the watchdog goes to DOOMED.

CHECK 1

Watchdog started and waiting for the kick signal to
go high. When the kick signal goes high, the FSM
goes to CHECK 0, detecting the L → H transition.
While the transition is not detected, the count keeps
increasing at each clock tick. When the count reaches
the input value, the watchdog goes to DOOMED.

DOOMED
COUNT += 0

TIMEOUT = 1
STARTED = 1

The watchdog is expired. The timeout signal is as-
serted and the FSM waits indefinitely until a reset
arrives.

Table 4.3: Detailed explanation of the states of the FSM

CLK

RST

VALUE[2::0] 7 2

START

KICK

STATE START CHECK1 CHECK0 DOOMED

COUNT[2::0] 0 1 0 1 2 0 1 2

TIMEOUT

STARTED

Figure 4.8: Timing diagram of a more sophisticated watchdog.

44

Analysis and hardening of an FPGA Design with a MicroBlaze

The FSM has been implemented as a High-Level State Machine (HLSM). An
HLSM is a natural extension of an FSM, used to capture more complex behaviors,
including multi-bit data inputs and outputs rather than just single bits, local
storage and supports arithmetic operations like adds and comparisons, rather than
just basic boolean operations. It has been implemented in VHDL and the code is
available in Appendix A. In figure 4.8, the timing diagram of the final watchdog
behavior is presented.

4.3.3 How to harden the watchdog?
Once the watchdog is implemented, it needs to be hardened. This is needed to
prevent the watchdog from being inhibited by an SEU affecting it. The most
basic type of fault tolerance technique is the Triple Modular Redundacy (TMR).
It basically consists in having three different modules that, given the same input
generate the same output in normal conditions. The three outputs are given as
input to a voter circuit.

MODULE 1

MODULE 2

MODULE 3

VO
TER

Y
INPUT

Figure 4.9: Triple Modular Redundacy (TMR) scheme.

The three modules can be identical or have a different implementation, but they
must all generate the same output given the same input.

The voter circuit is a majority-voting system, which means that if all the three
outputs are the same, the voter circuit gives as output one of the three inputs. If
one of the three outputs is different (because one of the three modules is faulty),
the voter circuit is capable of detecting the difference and outputs the non-faulty
result. Thus, the fault is masked and it is not propagated to the rest of the system.
The truth table of a 1-bit voter circuit is the following:

45

Analysis and hardening of an FPGA Design with a MicroBlaze

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 4.4: Voter truth table. The red cells indicate the faulty output.

It can be implemented as a circuit in the following way:

Y = majority(A, B, C) = AB + AC + BC =
AB + AC + BC = AB · AC · BC

(4.1)

A

B
C

Y

Figure 4.10: 1-bit voter circuit scheme.

The majority gate itself could fail, representing a single point of failure. This
can be protected by applying triple redundancy to the voters themselves. Hence,
three voters are used, one for each copy of the next stage of TMR logic, as shown
in the following figure:

46

Analysis and hardening of an FPGA Design with a MicroBlaze

MODULE

MODULE

MODULE

MODULE

MODULE

MODULE

MODULE

MODULE

MODULE

MODULE

MODULE

MODULE

Figure 4.11: Basic TMR scheme vs. full TMR circuit scheme.

Even tho the second scheme doesn’t present any single point of failure, most
systems stick with the simplest scheme. This is because the majority of gates are
much less complex than the systems that they guard against, so they are much
more reliable. In those cases, by using some reliability calculations, it is possible
to find the minimum voter realiability required to have a fully functional TMR
scheme.

However, because this section is about how to harden a watchdog implemented
in FPGA, even interconnections can be affected by faults due to SEUs affecting
the route part of the configuration layer. Consequently, a full TMR scheme is the
most reliable way to protect the watchdog.

Hence, the idea is to instantiate the watchdog component three different times
and vote each input and output with three different voters. The overall design is
implemented in Verilog. To simplify the code, two matrices of signals have been
created: one for the no-tmr version and one for the tmr version. As an example,
because of the full TMR scheme, there are three different START signals (at this
point of the design, the driver of these signals is not yet specified). The idea is to
access these 3 different instantiations of signals by using indexes and not directly
the signals themselves with different names (for example START_0, START_1

47

Analysis and hardening of an FPGA Design with a MicroBlaze

and START_2) to not create a confusional code and to be able to automatize the
code generation.

START

KICK

INST #0 INST #1 INST #2

Figure 4.12: Input signal matrix for the no-tmr version.

The above scheme can be read as follows:

• The START (KICK) signal instance 0 is at row 0 (1), column 0.

• The START (KICK) signal instance 1 is at row 0 (1), column 1.

• The START (KICK) signal instance 2 is at row 0 (1), column 2.

The same concept applies to the output signals of the voters. Three voters
create three different output signals and each voter has as input the same triplet of
signals as the other ones. Hence, the tmr matrix works as the no-tmr one. The
following table shows an example, supposing the no-tmr matrix is configured as
the one shown in Figure 4.12 for what concerns the START signal:

Voter # A B C Y
1 NOTMR[0][0] NOTMR[0][1] NOTMR[0][2] TMR[0][0]
2 NOTMR[0][0] NOTMR[0][1] NOTMR[0][2] TMR[0][1]
3 NOTMR[0][0] NOTMR[0][1] NOTMR[0][2] TMR[0][2]

Table 4.5: Output signal matrix for the no-tmr version.

The main problem with this solution is that all the three voters are performing
exactly the same things on the same inputs and producing the same outputs. Ideally,
this is the aim of the design, but once it is synthesized, everything is collapsed into

48

Analysis and hardening of an FPGA Design with a MicroBlaze

a single voter and a single watchdog. This happens because the synthesizer tries to
optimize the design by reusing and sharing the logic between similar components.
A situation that must be absolutely avoided, because the aim is exactly to have
three different copies of everything: signals, voters and watchdogs.

To overcome this problem, the synthesizer must be notified about what it can
optimize and what it can not. The following is an example of instantiation of the
two matrices of signals and voters in Verilog, telling the synthesizer that they must
not be optimized out:

1 (* dont_touch = "true" *) wire notmr [3:0][2:0];
2 (* dont_touch = "true" *) wire tmr [3:0][2:0];
3

4 generate
5 genvar jdx;
6 for (jdx = 0; jdx < 3; jdx = jdx + 1) begin
7 for (idx = 0; idx < 4; idx = idx + 1) begin
8 (* dont_touch = "true" *) voter_bus #(
9 .NBITS (1)

10) voter_ith (
11 . DATA_IN0 (notmr[idx][0]) ,
12 . DATA_IN1 (notmr[idx][1]) ,
13 . DATA_IN2 (notmr[idx][2]) ,
14 . DATA_OUT (tmr[idx][jdx])
15);
16 end
17 end
18 endgenerate

Finally, the design is implemented. All the inputs that go to the watchdog
are taken from the tmr matrix, and all the outputs generated by the watchdogs
(for example the three timeout signals) go to the no-tmr matrix. The latter are
automatically voted because of the previous instantiation of the voter components,
as shown above. The final outputs of the overall TMR Watchdog are connected to
the respective TMR version of the signals.

TMR
WATCHDOG

START [2:0]

KICK [2:0]

VALUE [N-1:0]

TIMEOUT [2:0]

STARTED [2:0]

Figure 4.13: Interfaces of the TMR Watchdog.

49

Analysis and hardening of an FPGA Design with a MicroBlaze

4.3.4 Integration of the watchdog in the design
The watchdog is finally created but it is still not easily usable. The goal is to
have a watchdog that can be easily inserted into any design. To achieve this, the
watchdog can be packaged as an IP to allow the user to easily integrate it with the
Block Design tool. Vivado offers an easy-to-use IP creation wizard, through which
a design can be packed and distributed, together with a C library for high-level
interaction with the hardware via software drivers.

Unfortunately, this is not enough. The idea is to connect the watchdog to the
MicroBlaze, in this way it would be able to control it (for example the kicking
action) and check its status. The problem is that the watchdog uses discrete signals
as an interface and there is no direct way to access these signals from the CPU.
There are two possible ways to overcome this situation:

• The MicroBlaze controls the watchdog via a GPIO peripheral. This is the most
simple way to do it, but it is not very flexible. The various GPIO channels
are connected to the watchdog signals and the CPU can control the GPIO
channels via the AXI interface.

• The MicroBlaze direct interfaces with the watchdog through a dedicated
AXI interface. This is the most flexible way to do it but increases the
implementation complexity of the watchdog IP.

The second option is the most convenient because there are fewer actors in the
overall fault-tolerance chain that can be affected by faults. Luckily, the Vivado IP
creation wizard provides an automatic way to create an AXI wrapper on top of
which the watchdog can be instantiated and the different signals connected to the
various registers. Hence, the watchdog can be controlled and monitored by the
MicroBlaze via those, as shown in the following.

Watchdog AXI
Peripheral

ADDRESS

DATA

CONTROL

AX
I I

N
TE

R
FA

C
E

TMR
Watchdog

Registers Stack

STATUS

Figure 4.14: Conceptual representation of the final watchdog IP.

50

Analysis and hardening of an FPGA Design with a MicroBlaze

By design choice, there are 4 registers, one for each of the 3 watchdog instances.
The second nibble in the lowest byte of the address is the index of the corresponding
watchdog. They follow the Full TMR design as explained in the previous section,
internally coded with no-tmr and tmr matrices. Read-only fields are taken from
the no-tmr matrix, in this way the CPU or any other AXI master can check if there
are faulty modules.

The following is a description of how the register space is divided and seen by
AXI masters:

Register 4.1: Control Register (0x00 - 0x10 - 0x20)

31 2

Kick

1

Sta
rt

0

Start Setting this bit activates the Watchdog. If already
activated, this bit has no effects.

Kick The kick bit is directly connected to the kick signal of
the watchdog. The MicroBlaze is in charge of writing
the right value in this field (i.e. do the right transitions).

Register 4.2: Status Register (0x04 - 0x14 - 0x24)

31 2

Erro
r

1

Sta
rte

d

0

Started The bit is set if the watchdog is started.

Error The bit is set if the watchdog timed out.

51

Analysis and hardening of an FPGA Design with a MicroBlaze

Register 4.3: Timeout Register (0x08 - 0x18 - 0x28)

Tim
eou

t

31 0

Timeout 32 bit value that represents the number of cycles re-
quired before the watchdog times out.

Register 4.4: Toggle Rate Register (0x0C - 0x1C - 0x2C)

Tog
gle

Rate

31 0

Toggle Rate 32 bit value that represents the actual toggling rate of
the watchdog, in clock cycles. The CPU can use it to
estimate, for example, if there are differences between
the expected toggling rate and the real one.

To ease the job of programmers, the Watchdog IP offers a driver with a set of
functions to control the watchdog. It is based on a newly defined data type that
represents the Watchdog register memory space conveniently, by using C structs,
unions and bitfields constructs. The full description is shown in Appendix B.

1 typedef struct {
2 union {
3 u32 * baseAddress ;
4 watchdog_module_t * module ;
5 struct {
6 watchdog_module_t module0 ;
7 watchdog_module_t module1 ;
8 watchdog_module_t module2 ;
9 } * modules ;

10 };
11 } GBcnCtrl ;

52

Analysis and hardening of an FPGA Design with a MicroBlaze

Once the Watchdog IP repository han been added to the list of IP repositories
in Vivado (V ivado → IP → Repository → +), it can be instantiated in the design
and connected to a AXI Interconnect to make it accessible to masters, like the
MicroBlaze, via an intermediate AXI Interconnect:

DDR
FIXED_IO

beacon_watchdog_0

beacon_watchdog_v1.0 (Pre-Production)

S00_AXI
STATUS_STARTED[2:0]

STATUS_ERROR[2:0]

CONTROL_START[2:0]

CONTROL_STB[2:0]

s00_axi_aclk

s00_axi_aresetn

mdm_1

MicroBlaze Debug Module (MDM)

S_AXI MBDEBUG_0

S_AXI_ACLK

S_AXI_ARESETN

Interrupt

Debug_SYS_Rst

microblaze_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

S01_AXI

M01_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

S01_ACLK

S01_ARESETN

M01_ACLK

M01_ARESETN

microblaze_0_local_memory

Figure 4.15: Instantiation of the Watchdog IP.

As conceptually shown in Figure 4.14, the IP presents two interfaces:

• S00_AXI : The AXI interface is used to communicate with the watchdog from
an AXI master. It includes the s00_clk and s00_rstn signals.

• Custom Interface: The custom interface is meant to expose some signals
towards other peripherals that may or may not need it. Each of those signals
is a vector of 3 sub-signal, one for each watchdog module. In particular,
the CONTROL_START and CONTROL_STB are directly connected to
the register’s bits Start and Kick without any TMR transformation. The
STATUS_STARTED and STATUS_ERROR are instead the TMR version of
the watchdog’s started and timeout signals, respectively.

The IP can be easily customized via a custom IP wizard or via TCL commands.
The following is the GUI wizard:

53

Analysis and hardening of an FPGA Design with a MicroBlaze

Figure 4.16: Watchdog IP configuration wizard.

It is possible to set a custom initial value for the timeout register and the default
start condition of the watchdog: if it is checked, at each reset the watchdog is
immediately started without waiting for the Start bit to be set. This can be useful
for different purposes, but in particular for fault injection testing.

Finally, when the IP is instantiated in a Block Design and the final .xsa file is
generated, watchdog drivers are automatically inserted and ready to be used with
Vitis. Thus, it is able to generate a Board Support Package (BSP) that contains
and defines these new drivers.

Follows an example of the usage of the drivers to control the watchdog. It
demonstrates the usability of the final design, with a set of very high-level functions.
The example demonstrates a possible way to organize the kicking act across the
code to cover not only CPU hangs but also other faults (computational errors,
self-test code, etc.).

54

Analysis and hardening of an FPGA Design with a MicroBlaze

1 # include " beacon_watchdog .h"
2

3 /* header file for the hardware parameters ,
4 like peripheral addresses */
5 # include " xparameters .h"
6 int main () {
7 GBcnCtrl hBcn; // Handle to the watchdog
8 uint32_t value;
9

10 value = XPAR_BEACON_WATCHDOG_0_S00_AXI_BASEADDR ;
11 GBcnCtrl_Initialize (&hBcn , value);
12

13 // Timeout set to 2 seconds (double of the watchdog ’s clk freq)
14 GBcnCtrl_SetTimeoutValue (&hBcn , XPAR_CPU_CORE_CLOCK_FREQ_HZ <<1);
15 GBcnCtrl_Start (& hBcn);
16

17 value = hBcn.modules -> module0 . DATAREG ;
18 printf (" Module 0 Timeout Value: %d\r\n", value);
19

20 value = hBcn.modules -> module1 . DATAREG ;
21 printf (" Module 1 Timeout Value: %d\r\n", value);
22

23 value = hBcn.modules -> module2 . DATAREG ;
24 printf (" Module 2 Timeout Value: %d\r\n", value);
25

26 while (1) {
27 checksum ^= (res += 2);
28

29 // Example of self test check on checksum
30 if(checksum & 0x3 == 0x0) {
31 // FAULT !! Stop kicking , hardware needs to be reset!
32 while (1); // Waiting for timeout expiration
33 }
34

35 // Kicking (automatic transition detection)
36 GBcnCtrl_Toggle (& hBcn);
37 }
38

39 }

55

Analysis and hardening of an FPGA Design with a MicroBlaze

4.4 Design with Partial Reconfiguration

Partial reconfiguration is a way to change or update an FPGA design without the
need to re-program the whole FPGA. Hence, it is possible to reprogram only a
portion of the design without interrupting the rest of the design. In Xilinx’s world,
this is called Dynamic Function Exchange (DFX).

There are different reasons why people do this. The main reason is area: perhaps
the FPGA is already full but more functions need to be pushed to the FPGA,
and a way to achieve this is to partially reconfigure the design. Hence, the whole
system is analyzed and blocks that are not used at the same time are grouped
together. Each of the identified groups is assigned to a piece of FPGA fabric and
that portion is marked as reconfigurable.

RECEIVER

D
EM

U
X

STREAM 'XOR'

STREAM 'XNOR'

Controller

Figure 4.17: Example of partial reconfiguration modules.

In the above figure, an example is shown. There is a receiver module that
receives data from some source (it can be an Ethernet interface for instance). The
system needs to compute a checksum of the received data, but not always in the
same manner. Hence, two modules compute the checksum in two different ways.
The whole design as it is does not fit in the FPGA, but luckily the two modules are
not used at the same time so they can be grouped. The group is then marked as
reconfigurable and the controller, before requesting to compute a checksum to the
needed module, reconfigures the area with the module that the controller designed
as the one needed to compute the checksum. In this way, the system continues to
work in other sub-parts of the design, and meanwhile, the partial reconfiguration
and the checksum computation are performed. The final design is the following:

56

Analysis and hardening of an FPGA Design with a MicroBlaze

 RECEIVER
STREAM 'XOR'

STREAM 'XNOR'

Controller
Partial Reconfiguration

Area #0

Trigger Reconf

Figure 4.18: Example of modules grouped under a partial reconfiguration area.

Furthermore, partial reconfiguration is not limited only to functionality exchange.
It can be used to implement a partial scrubbing of the design, for example when a
fault affecting a reconfigurable area is detected. This is the case under study for
what concerns this thesis work, as shown in Figure 4.4. This allows to reconfigure
the area without interrupting the rest of the design and mainly it is faster, reducing
the down-time of the system, thus improving the overall availability. Moreover, the
bit-flip causing the fault is definitely removed thanks to its reconfiguration.

For what concerns Xilinx, the Dynamic Function Exchange is achieved by
downloading a partial bitstream into the FPGA via a Configuration Access Port
(CAP) that can be accessed directly from the FPGA itself. The partial bitstream
is generated by adding some steps to the standard Vivado Design Flow.

As explained in Section 3.3.2, ZYNQ systems offer two dedicated ports, one for
the PS and one for the PL. The PS port is the Processor Configuration Access
Port (PCAP) and the PL port is the Internal Configuration Access Port (ICAP).
As explained, they are mutually exclusive.

4.4.1 Vivado Design Flow for Dynamic Function Exchange
Unluckily, Vivado versions prior to 2021.2 do not support DFX for Block Designs.
Hence, for what concerns modules to be grouped under a partial reconfiguration
partition, the designer must move the reconfigurable IP instances outside the Block
Design and manually instantiate them in the top-level module.

As a reference, a design with a custom 2-bit counter IP is used. The designer
wants to have another counter IP to be used alternatively that is able to count up to

57

Analysis and hardening of an FPGA Design with a MicroBlaze

15 (4-bit counter), without using more area. Hence, the two counters are grouped
under a partial reconfiguration partition. Each counter is defined as Reconfigurable
Module (RM) and within a partition, only one RM at a time can be available.

A reconfigurable partition is seen by other modules as the same component:
other modules do not need to care about the reconfigurable module. Hence, a
partition is defined by a single HDL wrapper with the same port definitions for all
the modules in the partition. Thus, if there are two IPs and both of them have a
CLK and Reset port and the third port is different (the first IP has a 2-bit port
while the second one has a 4-bit port), a common definition needs to be found. In
this simple case, the third port in the partition wrapper will have 4 bits and the
IP with the 2-bit port is extended to four by fixing the higher bits at 0.

Through Vivado’s IP Catalog, first, a Binary Counter IP is instantiated with a
2-bit counter. Then a Binary Counter IP is instantiated with a 4-bit counter. Once
an IP is instantiated, a .xci file is generated. A .xci file is an XML file that records
the values of project options, customization parameters, and port parameters used
to create the IP. Once this is done, one wrapper for each IP must be created with
the same port definition. The wrapper related to the 2-bit counter is instantiated in
the top-level module. This means that the 2-bit counter is designed as the default
module and it is inserted in the full bitstream, leading to a normal bitstream
and design generated until now. Furthermore, there is a high chance that the
reconfigurable modules (RMs) need something from the Block Design part. In that
case, the designer must make available to the outside the needed signals to connect
the reconfigurable modules, through the usages of Block Design’s port definition
both for input and output signals.

Once the sources are defined, the Vivado Project must be converted into a
DFX-capable Project. This can be done via Tools → Enable Dynamic Function
Exchange. This is an irreversible process. It is possible now to define a new partition
with a right-click on the main wrapper and select Create Partition Definition. Once
the partition is created, it is possible to see it inside the Partition Definitions tab.
Here, a default reconfigurable module is created with the wrapper and the .xci
file previously selected. It is possible to create a new reconfigurable module inside
the partition where the .xci and wrapper of the second IP must be added (via a
manual selection of the files).

58

Analysis and hardening of an FPGA Design with a MicroBlaze

Figure 4.19: Partition definition with two reconfigurable modules, each one with
its own wrapper and .xci file.

After the partition definition is completed, it is time to tell Vivado how the
possible configurations for the various partitions are defined. Consequently, Vivado
will be able to create bitstreams for each of the configurations indicated. To achieve
this, on the left sidebar click on Dynamic Function Exchange Wizard. For this
simple example, there are two configurations: one with the 2-bit counter and the
other with the 4-bit counter.

Finally, it is possible to start the Synthesis process. After it has finished, a new
set of contrainsts must be defined. In particular, the default wrapper instantiation
(the one indicated in the top-level module) must be inserted in a PBLOCK. Once
created, the PBLOCK is automatically set as IS_SOFT = 0. This represents the
area of the FPGA marked as reconfigurable for the partition the instance belongs
to.

At this point, everything is defined and ready to be implemented onto the FPGA.
If the Flow is executed until the final write_bitstream step, the full bitstream is
generated (as usual) and one partial bitstream for each of the configurations is
generated. In particular, for each configuration a different run is executed, thus for
each of them, the implementation and write_bitstreams steps must be performed.
Of course, partial bitstreams have a lower size, where the size is logically direct
proportional to the area of the PBLOCK:

59

Analysis and hardening of an FPGA Design with a MicroBlaze

Bitstream Type Partition Size
Full Whole Design 3.9 MB
Partial Count 2 Module 640 KB
Partial Count 4 Module 640 KB

Table 4.6: Comparison between full bitstream and partial bitstreams sizes.

As shown in the table above, the two partial bitstreams have the same size. This
is because both of them reconfigure the same PBLOCK, thus the same area. It is
possible to test the partial reconfiguration with XSCT using the following script,
as an example:

1 connect
2 target 4 # targets the FPGA
3

4 # loads the full bitstream
5 fpga design_1.bit
6

7 # loads the partial bitstream after the full one has been loaded
previously

8 fpga -partial design_1_inst_counter4bit_wrapper_partial.bit

4.4.2 DFX with MicroBlaze in Vivado 2021.1
In the previous section, an example of Dynamic Function Exchange is presented. As
explained, with versions of Vivado older than 2021.1, the DFX flow requires a manual
instantiation and management of the various IPs involved in the reconfigurable part.
With newer versions, indeed, a new feature called Block Design Containers (BDC)
allows users to segment designs into multiple block designs, enabling modular and
team-based design flows, including DFX flows.

A BDC can be set as reconfigurable, turning it into a Reconfigurable Partition
(RP) and enabling each design source within it to be considered an RM. The
DFX Wizard populates each RP with all possible RMs for each RP before defining
Configuration and Configuration Runs, similar to the RTL project flow for DFX.

However, using simple IPs or simple HDL designs, the manual flow outside the
Block Design tool is feasible. Unfortunately, when a designer wants to partial
reconfigure a MicroBlaze, two problems arise, where the second one is a direct
consequence of the first:

60

Analysis and hardening of an FPGA Design with a MicroBlaze

1. deciding to partial reconfigure a MicroBlaze with the flow described previously
becomes immediately unfeasible due to the high number of ports and signals
to manually manage outside the Block Design environment.

2. softwares like Vitis are based on the description included in the .xsa file. This
file is generated, as explained previously, using Vivado. This description file is
exclusively based on the Block Design tool part of the project, because Vivado
has no way to understand how the designer is connecting and configuring
IPs outside the Block Design. Thus, working with Vitis becomes impossible
because Vitis will tell the user that there is no MicroBlaze available in the
design.

For what concerns this thesis work, a hack is necessary to solve those problems.
When the Block Design tool is used, internally Vivado creates a single HDL file
(VHDL or Verilog, it depends on the settings of the project itself). This HDL file
contains the whole description of the Block Design and all the necessary signal
connections. This file can be copy-pasted in a completely different project and set
as a top-level module. This is the chosen way to overcome the first problem: avoid
manually instantiating the MicroBlaze IPs. This creates a new problem: all the
IPs definitions (.xci files) used in the Block Design are not available in the new
project, so it is not synthesizable basically. This problem can be easily solved by
importing the IPs definitions from the original project to the new one.

This new project is now ready to be configured and make the MicroBlaze a
Reconfigurable Module inside its own reconfigurable partition. Hence, it is possible
to follow the steps described in the previous section. The only operation to do
manually is to substitute the MicroBlaze instance with its own wrapper, that can
be generated easily. Only a configuration is possible (in the most basic scenario
as this one), thus Vivado generates only a partial bitstream together with the full
bitstream as usual.

The second problem is still there. From a purely HDL description of the design,
Vivado is not able to generate a .xsa description. However, the two projects
are practically the same, so the .xsa file originated from the base project can
be extracted (it is essentially a .zip file) that contains a .xml description of the
peripherals and memories, available CPUs, software drivers and the full bitstream to
use to let Vitis program the FPGA. Basically, the bitstream can be substituted with
the one generated by the second project (containing the Reconfigurable MicroBlaze)
and the game is done.

61

Analysis and hardening of an FPGA Design with a MicroBlaze

HDL from BD

XSA Generation

Original
Project (BD)

MicroBlaze
inside a
Wrapper

MicroBlaze
as RM

Implementation
&

Bitstreams

XSA files
extraction

Full Bitstream
Substitution

Fully working
XSA with a

Reconfigurable
MicroBlaze

Partial Bitstream
to reconfigure
the MicroBlaze

area

Figure 4.20: Flow used to generate a fully working Reconfigurable MicroBlaze
design.

4.4.3 Xilinx DFX Controller
During the previous sections, DFX has been successfully achieved both for simple
modules and for more complex ones like a full MicroBlaze. However, there is still
no way to perform the partial reconfiguration from within the FPGA itself.

Luckily, Xilinx provides an IP that is able to manage the partial reconfigurations
from within the FPGA and ease the process for designers and developers. It is
the Xilinx Dynamic Function eXchange Controller (DFX Controller) IP core, that
provides management functions for self-controlling partially reconfigurable designs.

Partial Bitstream
DownloadCommands DFX Controller

Partial Bitstream
Loading

AXI
Memory

ICAP

Partial Reconfiguration
Area

Figure 4.21: Basic scheme of the DFX Controller flow.

62

Analysis and hardening of an FPGA Design with a MicroBlaze

As shown in the figure above, the DFX Controller’s main job is to fetch the
partial bitstream data from an AXI memory peripheral and send it to the ICAP.
This action is performed under certain commands (or triggers) sent from another
actor in the system.

The DFX Controller can be managed both statically via a GUI Wizard (or
TCL) during the IP definition or dynamically from a CPU (like the MicroBlaze)
or any other master in the system using a dedicated AXI interface. Internally it
is organized as a series of Virtual Sockets. It supports up to 32 Virutal Sockets
and each Virtual Socket can manage up to 128 Reconfigurable Modules. A Virtual
Socket allows to manage each RM inside it as a whole group: it means that reset
signals and other signals are shared between all the RMs inside it.

For what concerns this thesis work, a Virtual Socket with a single Reconfigurable
Module is enough to manage the MicroBlaze reconfiguration. For each Reconfig-
urable Module, the DFX Controller allows defining the memory address where the
partial bitstream can be found and the size in bytes. Moreover, it allows to set up
the type of reset required. In fact, when a module is reconfigured, it should be
reset to be sure that it starts from a clean state.

Last but not least, the DFX Controller allows to trigger a reconfiguration via:

• a software trigger, via DFX Controller’s AXI registers.

• a hardware trigger, via a dedicated interface.

4.5 Integration of the watchdog and the DFX
It is finally time to put everything together. The scheme to apply is shown if Figure
4.4, where the watchdog is a simple IP that can be used to trigger the MicroBlaze
reconfiguration when an error occurs. The DFX Controller is used to manage the
reconfiguration process.

4.5.1 Partial bitstream storage
The first problem to solve is the storage of the partial bitstream. As an example, the
generated partial bitstream for the MicroBlaze RM measures 389928 bytes (around
380 KB). A possible storage solution would be the usage of the BRAMs available
inside the FPGA and connecting them to the AXI bus via the AXI Interconnect
using a Local Memory Controller IP. Unluckily, the used FPGA does not have so
many BRAMs available (and a few are used as Instruction and Data memory for
the MicroBlaze itself), thus this solution is unfeasible. The proposed solution is to

63

Analysis and hardening of an FPGA Design with a MicroBlaze

use the on-board DDR memory, which offers 512 MB of storage easily accessible via
the AXI bus by enabling the Slave interface S_AXI_HPO in the PS’s IP (ZYNQ7
Processing System IP). This interface can be connected to the AXI Interconnect as
other slaves, like the peripherals. Once connected, all the masters in the AXI Bus
can access the PS’s internal address space from 0x00000000 to 0x1FFFFFFF. As
shown in Table 3.1, at address 0x00000000 there is the On-Chip Memory (OCM)
where usually the ARM cores executes the code from. To avoid conflicts, only the
second half of the DDR is used (so from 0x10000000 to 0x1FFFFFFF).

To make things easier, the partial bitstream is statically inserted in the .elf file
executed by one of the two ARM cores. To achieve this, the partial bitstream
is first converted to a C array of 32-bit items, via a script explained in Section
4.6.2. However, this is not enough because the array would be allocated in the
.text section of the .elf file, that is placed at low memory addresses (below the
0x10000000 target). To solve this, in the linker script generated by Vitis (regarding
the ARM0 project), a new memory portion is defined: it points to the second
half of the DDR memory. Then, a new section called .partialbs is created. The
following is an extract of the linker script:

1 /* Define Memories in the system */
2 MEMORY
3 {
4 ps7_ram_0 : ORIGIN = 0x0 , LENGTH = 0 x30000
5 ps7_ram_1 : ORIGIN = 0xFFFF0000 , LENGTH = 0xFE00
6 /*2 nd DDR half */
7 2 ndhalf : ORIGIN = 0x10000000 , LENGTH = 0 x10000000
8 }
9 /* Define the sections , and where they are mapped in memory */

10 SECTIONS
11 {
12 .text : {
13 KEEP (*(. vectors))
14 *(. boot)
15 *(. text)
16 /*-------*/
17 *(. vfp11_veneer)
18 *(. ARM.extab)
19 *(. gnu. linkonce . armextab .*)
20 } > ps7_ddr_0
21 /** other sections **/
22 . partialbs : {
23 *(. partialbs)
24 } > 2 ndhalf
25 }

64

Analysis and hardening of an FPGA Design with a MicroBlaze

GCC (the C compiler used by Vitis) allows to map memory regions as preferred
as well as to force the placement of a certain variable in a certain place in memory.
This can be achieved as follows:

1 u32 __attribute__ ((section (". partialbs "))) data [] = {
2 0xFFFFFFFF ,
3 0xFFFFFFFF ,
4 0xFFFFFFFF ,
5 0xFFFFFFFF ,
6 0xFFFFFFFF ,
7 0xFFFFFFFF ,
8 /* *....* */
9 0xAA995566 , // SYNC WORD

10 /* *....* */
11 };

4.5.2 How to enable the ICAP port
For this work, the ARM core is not only used to load the partial bitstream in
memory. As explained previously, the ARM cores hold full control of the two
configuration ports (ICAP and PCAP) for security purposes. Before executing the
partial configuration, the ARM core must release the hold on the ICAP and this is
done in two consecutive steps:

1. The ARM core disables the PCAP (because they are mutually exclusive).

2. The ARM core enables the ICAP.

This can be done easily with the XDevCfg driver offered by Xilinx:

1 # include " platform .h"
2 # include "data.h" // Contains the partial bitstream array
3 # include " xdevcfg .h"
4

5 int main () {
6 XDcfg XDcfg_0 ;
7

8 XDcfg_Config *conf = XDcfg_LookupConfig (XPAR_XDCFG_0_DEVICE_ID);
9 XDcfg_CfgInitialize (& XDcfg_0 , conf , conf -> BaseAddr);

10 XDcfg_DisablePCAP (& XDcfg_0);
11 XDcfg_SelectIcapInterface (& XDcfg_0);
12

13 while (1);
14 }

65

Analysis and hardening of an FPGA Design with a MicroBlaze

4.5.3 ICAP instantiation

The second last step is to connect the DFX Controller to the ICAP port. For
security reasons, it is not directly available to the user. It is an HDL primitive that
needs to be manually instantiated in the design so it needs to be manually inserted
in the HDL code generated by the Block Design Tool and connected to the ICAP
interface of the DFX Controller.

The ICAP port can be accessed via different blocks, but the most simple is the
ICAPE2. It offers different input and outputs port, as shown below:

Figure 4.22: ICAP Interface.

The following is a short description of the ports:

Port Data Width Description
CLK 1 bit The clock signal (max 100 MHz → 32 bit

data bus = 3.2GB/s).
CSIB 1 bit The chip select signal (active low).
RDWRB 1 bit The read/write signal.

I 32 bit The input data.
O 32 bit The output data.

Table 4.7: ICAPE2 Interface description.

The ICAP interface can be use used to monitor (for example via a Integrated
Logic Analyzer IP, as explained in Section 3.5) the configuration process when it is
used as port for delivering bitstreams. The O port of the ICAPE2 block is a 32-bit
bus, but only the lowest byte is used. The mapping of the lower byte is as follows:

66

Analysis and hardening of an FPGA Design with a MicroBlaze

Register 4.5: ICAP (O port)

31 8

CFGERR_B

7

DALIG
N

6

RIP

5

IN
_ABORT_B

4 3 0

CFGERR_B Configuration Error:
0 = A configuration error has occurred.
1 = No configuration error.

DALIGN Sync word (0xAA995566) received:
0 = No sync word received.
1 = Sync word received.

RIP Readback in Progress:
0 = No readback in progress.
1 = A readback is in progress.

IN_ABORT_B ABORT in progress.
0 = Abort is in progress.
1 = No abort in progress.

The following is the VHDL code for instantiating the ICAP port in a design:
1 ICAPE2_inst : ICAPE2 generic map (
2 DEVICE_ID => X" 3651093 ", -- Simulation only.
3 ICAP_WIDTH => "X32", -- Input/ Output data width.
4 SIM_CFG_FILE_NAME => "NONE" -- Simulation only.
5) port map (
6 O => O, -- 32- bit output : Configuration data output bus
7 CLK => CLK , -- 1-bit input: Clock Input
8 CSIB => CSIB , -- 1-bit input: Active -Low ICAP Enable
9 I => I, -- 32- bit input: Configuration data input bus

10 RDWRB => RDWRB -- 1-bit input: Read/Write Select input
11);

An example of the ICAPE2 during the initial phases of the configuration process
is shown in Figure 4.23. When the trigger is asserted (vsm_VS_0_hw_triggers_1),
the DFX Controller starts sending the configuration data taken from the partial
bitstream uploaded in the memory. The ICAP’s O port initially is at 0x9B that

67

Analysis and hardening of an FPGA Design with a MicroBlaze

means no cfg error, no sync word, no readback in progress, no abort in progress.
When the SYNC WORD is received, the ICAP’s O port is updated to 0xDB: only 1
bit changed, indicating that the sync word was received.

Figure 4.23: ICAP Interface as seen by an ILA core.

4.5.4 Connection of the Watchdog and the DFX Controller
All the actors are now ready to be integrated. In particular, the timeout signal of
the watchdog should be used as a trigger for the DLX to start the reconfiguration.
Moreover, when the DFX finishes the reconfiguration, both the MicroBlaze and
the Watchdog must be reset to avoid any unexpected behavior and to restart the
watchdog’s timer itself (as explained in Section 4.3.2, the watchdog is designed to
remains in the DOOMED state until a reset arrives).

First, the DFX Controller is configured to allow hardware triggers. This means
setting up a signal width of 1 bit for the vsm_VS_0_hw_triggers signal and to
assign the MicroBlaze RM previously configured as the RM to load when the
triggers arrive. The problem is that the watchdog outputs a 3-bit wide signal
as a timeout signal, due to the TMR design. This can be used to feed a final
voter to convert a 3-bit wide signal to a 1-bit wide signal. At this point the voter
represents a single point of failure, but as explained the probability of its failure
is low. However, if its probability is not sufficiently low, it is possible to use a
different voter implementation like the following one:

O
R

AN
D

AN
D

AN
D

Y

M
A

B

C

Figure 4.24: Enhanced majority voter design.

68

Analysis and hardening of an FPGA Design with a MicroBlaze

The above scheme [37] is made of a 1-bit OR gate, three 2-bit AND gates and a
3-bit OR gate. This design allows reaching a higher Fault Masking Ratio (FMR),
specified as the ratio of the total number of correct voter output states in the
presence of internal and/or external faults, which are masked, divided by the total
number of potential internal and/or external fault occurrences. From the given
definition, it may be understood that FMR has to be high (ideally 1) to achieve
good (absolute) fault tolerance. A normal majority voter has an FMR of 42.86 %
while the enhanced majority voter has an FMR of 75.00 %.

Secondly, when the DFX Controller ends the reconfiguration process, the signal
vsm_VS_0_rm_reset is asserted for 1 clock cycle, as specified in the RM’s configu-
ration. This is conncted to the Reset signal of the MicroBlaze that is active high,
feeding an OR gate together with the active-high mb_reset signal arriving from
the Processor System Reset IP. In this way, both the DFX Controller and the PSR
are able to reset the CPU when required.

To reset the watcdog, the reset signal needs to be negated because the Watchdog’s
reset signal is active low, as other AXI IPs are. Because the Watchdog can be reset
both by the DFX Controller and the PSR, as for the MicroBlaze, a NOR gate is
fed with the one coming from the DFX Controller and the one coming from the
PSR in the active-high form, that is peripheral_reset.

Finally, the DFX Controller’s ICAP port is connected to the ICAPE2’s instance.
The DFX Controller ICAP’s I port is connected to the ICAPE2’s O port, and the
DFX Controller ICAP’s O port is connected to the ICAPE2’s I port.

4.5.5 DFX Decoupler: what is it?
There is one important aspect that was not mentioned in the previous sections.
During the Partial Reconfiguration of a partition, unpredictable signal activity can
happen between the Reconfigurable Partition and the remaining part of the system.
To overcome this problem, Xilinx provides the Dynamic Function eXchange (DFX)
Decoupler IP, for a complete logical isolation capability for DFX designs.

During the reconfiguration process, the DFX Controller asserts a decouple signal
that remains high for the entire duration of the process. This signal is used to
decouple the system from the logic under reconfiguration and avoid strange signal
activities. For example, can happen that an AXI write request signal is asserted
wrongly, leading to a modification of a random memory location with an unexpected
value. By decoupling the AXI interface from the rest of the system, this can be
avoided.

69

Analysis and hardening of an FPGA Design with a MicroBlaze

Partial Reconfiguration
Area

Logic

Logic

Logic DFX
Decoupler

DFX
Decoupler

M
U

X

DFX
Controller

Decouple

DFX
Decoupler

Figure 4.25: DFX Decoupler scheme.

In a complex system, like the case under study, there are a lot of signals that
need to be decoupled. Luckily, the DFX Decoupler IP’s Configuration Wizard offers
the ability to create decoupler interfaces for each standard interconnection like AXI
or LMB. For what concerns a simple MicroBlaze architecture, the following is the
adopted solution:

dfx_decoupler_0

DFX Decoupler

s_DBG
rp_DBG

decouple

dfx_decoupler_1

DFX Decoupler

s_DLMB
rp_DLMB

s_ILMB
rp_ILMB

s_AXI_DP
rp_AXI_DP

decouple

microblaze_0

MicroBlaze

INTERRUPT
DLMB

ILMB

M_AXI_DP

DEBUG

Clk

Reset
AXI Interconnect

S00_AXI

M00_AXI

S01_AXI

M01_AXI

M02_AXI

S02_AXI

M03_AXI

M04_AXI

M05_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

S01_ACLK

S01_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN

S02_ACLK

S02_ARESETN

M03_ACLK

M03_ARESETN

M04_ACLK

M04_ARESETN

M05_ACLK

M05_ARESETN

microblaze_0_local_memory

DLMB

ILMB

LMB_Clk

SYS_Rst

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO
S_AXI_HP0_FIFO_CTRL

M_AXI_GP0
S_AXI_HP0

M_AXI_GP0_ACLK

S_AXI_HP0_ACLK
FCLK_CLK0

FCLK_RESET0_N

rst_ps7_0_50M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

util_vector_logic_0

Utility Vector Logic

Op1[0:0]

Op2[0:0]
Res[0:0]

util_vector_logic_2

Utility Vector Logic

Op1[0:0]

Op2[0:0]
Res[0:0]

util_vector_logic_3

vsm_VS_0_hw_triggers[0:0]
Figure 4.26: Decoupling of a Reconfigurable MicroBlaze region.

4.6 From a manual workflow to a fully automated
one

The presented workflow allows enabling partial reconfiguration of a MicroBlaze,
even on an old version of Vivado. The workflow is presented in Figure 4.20 and is
made of 5 major steps, summarized as follows:

70

Analysis and hardening of an FPGA Design with a MicroBlaze

1. Starting from a working project based on Block Design, with a MicroBlaze
core, a DFX Controller and a Watchdog, the HDL description from the BD is
extracted.

2. A new project is created and the previous HDL description is copied into it.
The MicroBlaze instance is replaced with its own wrapper and the wrapper
instantiates the MicroBlaze. All the .xci files from the base project are copied
into the new project.

3. The new project is converted into a DFX-based project and the MicroBlaze
wrapper is added in a new reconfigurable partition as Reconfigurable Module
(RM). Finally, a PBLOCK is defined for the MicroBlaze wrapper.

4. The new project is implemented and bitstreams are generated.

5. From the base project, the XSA is generated, files within it are extracted
and the bitstream is substituted with the one generated in the previous step.
Then, all the files are inserted in a new .xsa archive to generate the new .xsa.

Thus, the workflow is made of five simple steps that require a certain amount
of time to be completed. The designer needs to execute all of them every time
she/he wants to change something in the original project. Hence, the workflow is
not suitable for a continuous integration process and some sort of automation is
required.

4.6.1 The automatation script
Luckily, all the flow can be almost easily scripted. In the following, the developed
script is presented by dividing it into different subparts and each subpart is described
by a dedicated pseudo-code algorithm. The overall flow is divided into five main
blocks:

Pre-Processing VHDL
Manipulation Post-Manipulation Implementation Post-Implementation

Looks for the
BD's HDL
description

Looks for the
.xdc file

Looks for the
.xsa file

Looks for the
top level entity

Replace the
MicroBlaze with

its wrapper

General Stuff
clean

Checks if the
uBlaze is added

in a PBLOCK

All the .xci file
are listed

Vivado runs in
command-line

mode

VHD and .xci
files are
imported

Synthesis.
Implementation.

Bitstream generation

.xsa file
creation

Original
Project (BD)

Reconf.
Project

Figure 4.27: Scheme of the script flow.

71

Analysis and hardening of an FPGA Design with a MicroBlaze

Pre-processing block

The pre-processing block is the first block to be executed in the automatic workflow
script. It takes as input the original project path and checks if the project is a
valid candidate for the workflow:

1. Given the project path, the project name $pn is extracted.

2. The script checks for the existence of the $pn.gen folder. This is a required
folder that contains the generated HDL description of the Block Design. The
script recursively checks for a path matching */bd/*/synth/$dn.vhd. If the
path is found, means that the script knows the block design name $dn and
found its VHDL description file.

3. The script searches any .xdc file that may contains the PBLOCK definition in
the $pn.srcs folder. However, the designer can supply its own .xdc file. The
PBLOCK is not checked at this time.

4. The script searches for the .xsa file. If not found, the script terminates asking
the user to create it from within Vivado before running the script.

VHDL Manipulation block

If the Pre-processing block runs successfully, the HDL Manipulation block can
be executed. This is the most compilcated one. It takes as input the previous
VHDL description file $dn.vhd and a secondary VHDL file named adding.vhd
that contains partial definitions of some hardware that the designer wants to add
to the system outside the Block Design, like for example the ICAPE2.

1. The whole $dn.vhd file is parsed. Each entity is extracted and stored separately
in a list of entities. Each entity is made of libraries, entity definition and
architecture content. The same is done for the adding.vhd file.

2. Each entity is analyzed, looking for a MicroBlaze instance in its architecture.
If found, the entity is marked as the top-level entity. The user can decide to
indicate another entity as top level one, if the found entity is not the one he
wants to use or if it is wrong. Each of the next steps is performed on the
top-level entity.

3. The script looks for the MicroBlaze’s component declaration.

4. The script looks for the MicroBlaze instance, given the previous component
name.

5. The script creates a new entity, named ublaze_wrapper and:

72

Analysis and hardening of an FPGA Design with a MicroBlaze

(a) Extracts the ports declaration from the MicroBlaze component and adds
them to the new entity ports definition. The entity part of the whole
wrapper is created.

(b) The architecture is defined. First, the original MicroBlaze component is
appended as it is, then it is instantiated and each port is connected to
the ports of the entity wrapper under creation.

(c) The newly created entity is saved in a new file ublaze_wrapper.vhd.

6. The original microblaze component is replaced by the new wrapper component.
The instance is left as it is, only the instance name is changed, referencing the
new wrapper component.

7. Some synthesizer attributes referenced to the older MicroBlaze instance are
now referenced to the new wrapper instance.

8. If in the base project, the DLX Controller’s ICAP interface is made external
through a port, Vivado automatically creates some attributes and entity ports
to let them connect outside. They are removed.

9. The definitions from the adding.vhd file are now merged. For each component
in the architecture defined in the adding.vhd file, the script adds both the
component and the relative instance to the top entity. It looks for the ICAPE2
instance too and adds it to the top entity (it is trated as special, becuase in
this case there is no component declaration as other components).

10. All the entities are appended in a new file top.vhd.

Post-manipulation block

This is the third last block to be executed. At this point in time, if everything
succeeded, the script knows the top-level name, the MicroBlaze instance name and
any other useful information about the design. It proceeds with the following steps:

1. The script knows the MicroBlaze wrapper instance name and now looks for
the PBLOCK where it is assigned in the previous found .xdc file. If this is
not found, the script terminates with an error.

2. The script prepares a list of all the .xci files in the base project. It searches
for possible .xci file related to the adding.vhd file in the adding_xci folder
and appends them too.

73

Analysis and hardening of an FPGA Design with a MicroBlaze

Implementation block

Now the scripts created all the files and information to create a new project and
implement it. Vivado is launched in command-line mode and a TCL script is
sourced to perform the following steps:

1. The script creates a new project and VHDL is set as the active language.

2. Imports the top.vhd, ublaze_wrapper.vhd and the .xdc file into the new
project.

3. Takes the .xci list previously prepared and adds each file to the new project.
They are references to the original files, not a copy.

4. Enables the project as a DFX-based project. Creates a definition partition
and a reconfigurable module. The wrapper is added to the partition. A single
reconfigurable configuration is created.

5. The project is synthesized and implemented. The bitstreams are generated
both in .bit and .bin formats.

Post-implementation block

This is the last block to be executed. It takes as input the generated full bitstream
and the previously found .xsa file. The scripts unzip the .xsa file, substitute the
old bitstream with the new one and re-zip the .xsa file.

4.6.2 Script for partial bitstream to C header generation
Because of the choice to store the partial bitstream in memory by using the same
.elf file executed by the ARM core to configure the PS, a script is needed to generate
the C header file that contains the partial bitstream.

An error to avoid is the usage of the bitstream in the .bit format instead of the
.bin one to perform a partial reconfiguration via the ICAP interface. As explained
in Section 3.3.2, the difference between the two is that the .bit format contains
a header while the .bin format does not. Hence, the header can have a different
length, depending for example on the design name chosen by the user, thus can
create an offset inside the bitstream. As an example, it can shift the SYNC WORD
by 8 bits. The ICAP interface is not able to evaluate the header nor is capable of
evaluating a shifted bitstream. Hence, the ICAP remains in the NOSYNC state
or it goes in the CFGERR state. The .bit file is only useful to Vivado and XSCT
because of the header, otherwise, it is only a waste of memory and must be not
used outside Vivado tools.

74

Analysis and hardening of an FPGA Design with a MicroBlaze

The script’s job is to prepare a u32 C array and fill it with the content of the
partial .bin bitstream. The script allows the creation of an array with a specific
size. It accomplishes this by adding some NOP instructions to the array at the end,
only if the size of the bitstream is less than the required one. This can be useful if
the DFX Controller is configured with a specific size for the partial bitstream to
be loaded, and the designer discovers only at the end that the generated partial
bitstream is smaller than the configured one. In this way, is possible to avoid
changing the DFX Controller’s settings and to perform the implementation again.

Moreover, the script allows writing the content in little-endian or big-endian
format. This is useful because if the bitstream is saved in memory with the wrong
format and the ICAP reads it, it does not recognize the SYNC WORD and hence
does not performs the partial reconfiguration.

The following is an example of the script usage:
1 format =big
2 required_size =389928
3 align =0 # do not touch!
4 output =data.h
5

6 ./ to_header path/to/ partial .bin $format $required_size $align >
$output

75

Chapter 5

Experimental Analysis

The following is a description of the environment that has been set up for the
fault injection tests, using chosen benchmark applications and the hardware design
preparation behind the related choices. The second part of this chapter illus-
trates in detail the obtained experimental results, highlighting some interesting
considerations.

5.1 Fault Injection Environment

Before proceeding with the fault injection campaign, which aims to demonstrate
the effectiveness of the developed fault tolerance design, the Fault Injection Tool
requires some extra hardware for a good understanding of the obtained results.

Watchdog Configuration

The watchdog IP, during the design stage, is configured through its customization
wizard with a default timeout value of 2 seconds (two times the clock frequency)
and it is started by default. This choice has been taken because under normal
operational conditions, the MicroBlaze is capable of starting the watchdog and
setting a correct timeout value.

Instead, with the chosen fault injection method, the MicroBlaze directly starts
with a bit-flip in his configuration, hence it may be not able to start correctly the
watchdog or set a valid timeout value. Therefore, the campaign results would not
be valid.

76

Experimental Analysis

Hardware to count the number of timeouts

In order to understand if the watchdog is capable of covering a good number of
faults by expiring, the design has been equipped with a UP counter. The counter
is reset once at each FGPA programming with a new full bitstream. The counter
is incremented every time the watchdog expires by connecting the CLK port to
the timeout signal, and its value is obtained via an AXI GPIO peripheral that is
connected to the AXI Interconnect.

MicroBlaze

AXI
Interconnect

ARM 0

Watchdog

DFX
Controller

GPIO

CounterTimeout

Figure 5.1: Hardware schematic to count the number of times the watchdog time
outs.

Both the MicroBlaze and the PS can access it. Because the MicroBlaze is under
test and may not be able to access correctly the GPIO peripheral, the value is read
from one of the ARM cores in the PS side.

Benchmark Firmware

As explained in previous sections, a good benchmark software is required for a
good fault injection campaign for two reasons:

• A good benchmark software can stress various aspects of the MicroBlaze’s
hardware (ALU, Decode Unit, Controller Unit, etc.) and reveal a hidden fault.

• A good benchmark software can self-test itself (checking the correctness of the
produced results) and trigger the reconfiguration when needed.

The following is an extract of the firmware running on the MicroBlaze, that
computes the Fibonacci series up to a certain point and checks the results via a
simple checksum check:

77

Experimental Analysis

1 int main () {
2 int i;
3 uint64_t op1 = 0, op2 = 0, res = 0, checksum = 0;
4 GBcnCtrl hBcn;
5

6 i = XPAR_BEACON_WATCHDOG_0_S00_AXI_BASEADDR ;
7 GBcnCtrl_Initialize (&hBcn , i);
8

9 print(" started ? ", GBcnCtrl_IsStarted (& hBcn) ? 1 : -1);
10 i = hBcn.modules -> module0 . DATAREG ;
11 print(" timeout : ", i ? i : -1);
12 GBcnCtrl_SetTimeoutValue (&hBcn , XPAR_CPU_CORE_CLOCK_FREQ_HZ <<1);
13 GBcnCtrl_Start (& hBcn);
14 print(" started ? ", GBcnCtrl_IsStarted (& hBcn) ? 1 : -1);
15 i = hBcn.modules -> module0 . DATAREG ;
16 print(" timeout : ", i ? i : -1);
17

18 op1 = op2 = 1;
19 print(" Fibonacci current value ", op1);
20 print(" Fibonacci current value ", op2);
21

22 while (1) {
23 checksum ^= (res = op1 + op2);
24 if(res > 0 xfffff) {
25 res = 1;
26 op2 = 0;
27 print("\n\ rDONE_1 DONE_1 DONE_1 \r\n");
28 break;
29 }
30

31 print(" Fibonacci current value ", (uint64_t)res);
32 op1 = op2;
33 op2 = res;
34 for (i = 0; i < 1e5; i++); // a bit of delay
35 GBcnCtrl_Toggle (& hBcn);
36 }
37

38 printt (" CHECKSUM : ", checksum);
39 if (checksum == 1673873) {
40 print(" DONE_2 DONE_2 DONE_2 \r\n");
41 for (i = 0; i < 5e6; i++); // delay
42 GBcnCtrl_Toggle (& hBcn); // all fine!
43 } else {
44 print("WRONG CHECKSUM !\r\n");
45 while (1); // stops toggling because wrong checksum
46 }
47 }

78

Experimental Analysis

How the fault injection tool access the number of expired times

The Fault Injection Tool has been enhanced to support the retrieval of the number
of times the watchdog expires at each run. It does it via an XSCT script that
appends in a file the retrieved number, as follows:

1 connect -url tcp:127.0.0.1:3121
2

3 # selects the ARM #0 core
4 targets -set -nocase -filter {name =~ "*A9* #0"}
5 set outfile1 [open " faulty_bitstreams / uB_results / dfx_cnt.txt " a+]
6

7 # reads the value from the GPIO register
8 puts $outfile1 [mrd -value 0 x41200008 1]
9 close $outfile1

5.1.1 Watchdog Inhibition

In some cases may be useful to inhibit the watchdog. This allows to detach the
timeout signal from the DFX Controller, thus the reconfiguration is not triggered.
This is useful for example to debug the firmware. In this case, the firmware
stops kicking the watchdog during the interruption of the software and thus the
MicroBlaze is automatically reconfigured and restarted. To allows the inhibition by
toggling a physical switch on the board, the following hardware scheme is adopted:

MicroBlaze Watchdog

Counter

Timeout

AN
D

Board
Switch

Board
Switch

DFX
Controller

Figure 5.2: Hardware schematic to inhibit the watchdog using a physical switch.

79

Experimental Analysis

5.2 Experimental Results
In this section, the main obtained results are presented and discussed. During the
overall test period, ten campaigns of fault injection have been performed. Each
campaign is made of 100 injections. Some of them are aborted, thus the mean
number of completed injections per run is around 96, leading to a total of 966
injections.

For each fault, there can be three possible outcomes, and each one can have a
different reason behind it:

• Correct result:

1. The fault has not been excited by the software so it is naturally masked
and the result is automatically correct.

2. The fault caused a CPU halt (no detected output on the UART). The
system corrected the fault and the final output is correct. It is identical
to the golden one, hence it is marked as correct.

• The output is different from the golden one (SDE):

1. The fault has not been detected by the watchdog, thus it is not fixed.
2. The MicroBlaze noticed the fault while executing the program and printing

messages and it has been fixed. However, the output is different from the
golden one, even if the final result is correct. Marked as SDE anyway. An
example is shown in Appendix C.

3. The MicroBlaze noticed the fault and tried to fix it, unsuccessfully. The
output is different and the result remained incorrect.

• The MicroBlaze is halted:

1. The hang is detected by the watchdog, but it could not be fixed.
2. The MicroBlaze does not output anything on the UART, even if the

watchdog is kicked correctly. No output means that the CPU is in the
hang state but a correct kicking act means that the CPU is working so
the reconfiguration is not triggered.

80

Experimental Analysis

The following one is a summary of the obtained results from the conducted
campaigns:

0.00%

25.00%

50.00%

75.00%

100.00%

CORRECT % SDE % HANG %

Fault Campaigns

Figure 5.3: Chart representing the executed Fault Injection campaigns.

Each value is represented as the percentage of the total number of injections for
each campaign. The blue ones represent the correct results. The overall correct
results among all the campaigns are 872, 27 of which have been corrected by the
fault tolerance system.

Among the red ones representing SDEs, the total is 23. Among these 23 SDEs,
11 have been successfully corrected, while the other 12 have not been corrected.
Among those 12 not corrected SDEs, 1 has been detected but the system could
not fix them, while the remaining 11 have not been detected at all. This can be
easily fixed by increasing the quality of self-test routines in the firmware, looking
for example for differences in the produced UART output and the expected one or
by comparing written memory values with the expected ones. Consequently, this
may help in increasing the coverage of those faults.

The remaining yellow cases represent situations where the MicroBlaze is com-
pletely halted, even 1fter one or multiple reconfigurations have been performed.
There is a total of 71 hangs, 1 of which has not been detected at all. As the not
detected SDEs, this can be fixed by increasing the quality of self-test routines. The
remaining cases are the uncoverable ones.

Those values are presented in the following charts:

81

Experimental Analysis

CORRECT

SDE

HANG

0 250 500 750 1000

NOT TRIGGERED NOT CORRECTED CORRECTED NOT AFFECTED

CORRECT, SDE and HANG

CORRECT

SDE

HANG

0% 25% 50% 75% 100%

NOT TRIGGERED NOT CORRECTED CORRECTED NOT AFFECTED

CORRECT, SDE and HANG

Figure 5.4: Charts showing the times the reconfiguration is triggered (or not)
and how many times it solved the issue (or not).

As a side note, the unrecoverable cases are particular cases where it is not possible
to say if the overall fault tolerance system is working or not. Unfortunately, the
bitstreams cannot be fully controllable and the used fault injection tool randomly
injects bit flips in an area that is thought to be 100% dedicated to the MicroBlaze.
Unfortunately, in the reality it is not true: a bitflip could affect a configuration
instruction instead of a configuration bit, leading to a misconfiguration anywhere
else in the overall FPGA, thus it cannot be fixed by the partial reconfiguration.

By improving the quality of the self-test routines, the fault tolerance system may
be able to detect the faults and fix them. As an example, the software has been
enhanced to detect errors in memory access and division or modulus operations.
Those two mathematical operators are used to convert an integer into its string
representation. The two operators are mutually tested at each operation by first
applying the division operator then it is again multiplied by the dividend and
finally the computed modulus is applied. This is the definition of the remainder.
The following is the implementation:

1 while (a != 0) {
2 /* module operation test */
3 pmod = a % 10;
4 if ((a/10) *10 + pmod != a || a - (a/10) *10 != pmod)
5 while (1); // HALT. Triggers the watchdog .
6

7 str[i--] = pmod + ’0’;
8 if (str[i + 1] - ’0’ != pmod) // Checks stored value
9 while (1); // HALT. Triggers the watchdog .

10

11 a /= 10;
12 }

82

Experimental Analysis

In addition, the firmware checks that each character sent over the UART is
the same as the one expected. This is done by comparing the expected character
with the one received. If they are different, the MicroBlaze is halted, triggering
the watchdog. To achieve this, the UART has been instantiated with a loopback
connection from the TX channel to the RX channel, as follows:

MicroBlaze UART

TX

RX

Figure 5.5: UART loopback schematic.

The firmware implements a custom print routine that checks the received
character and if it is different from the expected one, it triggers the watchdog.
Moreover, it accesses the string memory (to send it) both with byte-oriented access
and word-oriented access. The latter is used to check that the string is correctly
stored in the memory and that the MicroBlaze does not have any fault in the
memory access unit.

1 void print(char *buf) {
2 int i; char *pbuf = buf; char ch , tst; u32 *pt;
3

4 for (i = 0; buf[i]; i++); // length computation
5 while (* pbuf) {
6 XUartLite_Send (phRef , (u8 *)pbuf , 1); // Send the character
7

8 // Receive the character
9 while (! XUartLite_Recv (phRef , (u8 *)&ch , sizeof ch));

10

11 /* Tests single byte memory access vs 32 bit memory access */
12 pt = (u32 *)((u32)pbuf & 0 xfffffffc); /* 32b aligned addr */
13 tst = ((* pt >> (((pbuf - (char *)pt)) << 3)) & 0xff);
14 if (ch != *pbuf || ch != tst) while (1); // HALT.
15 pbuf ++; i--;
16 }
17

18 if (i || *pbuf) while (1); // just to be sure
19 }

83

Experimental Analysis

Everything is now set and ready to be tested again. The previous 10 campaigns
are executed again, with the same seeds to generate the faults. This means that
the tool is able to generate again the same faults as before, thus the new firmware
results can be compared with the previous ones:

0.00%

25.00%

50.00%

75.00%

100.00%

CORRECT % SDE % HANG %

Fault Campaigns

Figure 5.6: Chart representing the repeated Fault Injection campaigns with the
new firmware.

The new firmware is able to detect almost all the faults, lowering in the number
of not detected among the SDEs to 1 (2.9% among the SDEs) and to 0 among the
HANGs, as shown in the following chart:

CORRECT

SDE

HANG

0 250 500 750 1000

NOT TRIGGERED NOT CORRECTED CORRECTED NOT AFFECTED

CORRECT, SDE and HANG

CORRECT

SDE

HANG

0% 25% 50% 75% 100%

NOT TRIGGERED NOT CORRECTED CORRECTED NOT AFFECTED

CORRECT, SDE and HANG

Figure 5.7: Charts showing the times the reconfiguration is triggered (or not) and
how many times it solved the issue (or not). Second run with the new firmware.

84

Chapter 6

Conclusions

This thesis finally reaches its end, It sees the development of a complete fault
tolerance system able to increase the dependability of the system itself and to
protect in most of cases the MicroBlaze from possible SEUs that can cause faults
and errors. It has been achieved by a combination of a fault-tolerant watchdog,
completely designed from scratch to be tailored to the needs of the project, and
the enabling of partial reconfiguration of a complex IP like the MicroBlaze, by
exploiting a little hack that leads to a complete automation script able to convert a
normal project designed with normal tools, like the Block Design Tool, in a project
with a fully working reconfigurable MicroBlaze.

After the development, fault campaigns took place. Unfortunately, the bitstream
manipulation is a lot tricky and fault injection campaigns of the chosen types are not
well supported yet, and the tools are limited. Several corrections have been applied
to make the output data more readable and useful for further analysis. Moreover,
as the main objective, an in-deep evaluation of the fault injection campaign data
has been performed, in order to better understand the effects of the injected faults
on the system and the way they can be used to improve the dependability of the
system itself.

The developed system has been engineered with the idea to be implemented
in a more complex one, where almost everything is triplicated, at least for what
concerns the most critical parts like a single point of failure in the reconfiguration
system. This can be the DFX Controller, the ICAPE2, or even the timeout signal
itself can be a SPoF because of a possible fault in the routing configuration.

The developed mitigation technique is unique in its genre, permitting to compre-
hend which types of faults can be mitigated and which not, without the need for a
radiation test conducted in a dedicated facility, using real highly energetic particle
beams. Regarding this type of test, another main application of the developed

85

Conclusions

system is to understand how the system can react to different faults prior to the
radiation test itself, and thus to predict which parts of the system are likely to be
more vulnerable than others and which instead are probably going to appear as
more robust.

6.1 Future Work
The thesis has been developed with the idea of being implemented in a more
complex system, so it can be easily extended for future works. In particular, the
watchdog can be developed further to monitor multiple kicking acts from different
sources like multiple MicroBlaze instances or add other types of checks like bus
activity detection. An example of this could be the monitoring of a read/write
signal in a memory bus (like the AXI one). If the system is designed to periodically
execute read or write operations from the memory, this can be monitored and if
the processor or any other master that reads from the memory stops working, the
watchdog can be let expire and trigger a reconfiguration.

Moreover, other modules can be marked as reconfigurable, by extending the
presented workflow and the related scripts. And with an extended watchdog, it is
possible to partially reconfigure only specific partitions of the system or the whole
system.

Speaking of which, the watchdog is protected against single faults but not against
fault accumulation. If a difference among the voters is detected, the watchdog itself
can be reconfigured.

86

Appendix A

Watchdog FSM - VHDL
Code

1 library IEEE;
2 use IEEE. STD_LOGIC_1164 .ALL;
3 use ieee. numeric_std .all;
4

5 entity top_beacon_watchdog is
6 generic (DW: integer := 32);
7 port (
8 CLK: in std_logic ;
9 RST: in std_logic ;

10 DATAIN : in std_logic_vector (DW -1 downto 0);
11 START: in std_logic ;
12 STB: in std_logic ;
13 TOGRATE :out std_logic_vector (DW -1 downto 0);
14 WORKING :out std_logic ;
15 ERR: out std_logic
16);
17 end top_beacon_watchdog ;

Listing A.1: Watchdog FSM - VHDL Code (Entity)

1 architecture arch of top_beacon_watchdog is
2 type fsm_state is (S_START , S_CHECK_0 , S_CHECK_1 , S_DOOMED);
3 signal curr_state , next_state : fsm_state ;
4 signal curr_timeout : std_logic_vector (DW -1 downto 0);
5 signal next_timeout : std_logic_vector (DW -1 downto 0);
6 signal curr_cnt , next_cnt : std_logic_vector (DW -1 downto 0);
7 signal curr_toggle_rate : std_logic_vector (DW -1 downto 0);
8 begin

Listing A.2: Watchdog FSM - VHDL Code (Architecture Header)

87

Watchdog FSM - VHDL Code

1 TOGRATE <= curr_toggle_rate ;
2

3 process (curr_state , curr_timeout , curr_cnt , DATAIN , STB , START)
4 begin
5 next_state <= curr_state ; next_timeout <= curr_timeout ;
6 next_cnt <= std_logic_vector (unsigned (curr_cnt) + 1);
7 ERR <= ’0’; WORKING <= ’1’;
8

9 case(curr_state) is
10 when S_START =>
11 next_timeout <= DATAIN ; next_cnt <= (others => ’0’);
12 WORKING <= ’0’;
13 if START = ’1’ then
14 if STB = ’0’ then next_state <= S_CHECK_1 ;
15 elsif STB = ’1’ then next_state <= S_CHECK_0 ;
16 else next_state <= S_DOOMED ;
17 end if;
18 end if;
19 when S_CHECK_0 =>
20 if unsigned (curr_cnt) < unsigned (curr_timeout) then
21 if STB = ’0’ then
22 next_cnt <= (others => ’0’);
23 next_timeout <= DATAIN ; next_state <= S_CHECK_1 ;
24 end if;
25 else
26 next_cnt <= (others => ’0’); next_timeout <= DATAIN ;
27 next_state <= S_CHECK_1 ;
28 if STB /= ’0’ then next_state <= S_DOOMED ; end if;
29 end if;
30 when S_CHECK_1 =>
31 if unsigned (curr_cnt) < unsigned (curr_timeout) then
32 if STB = ’1’ then
33 next_cnt <= (others => ’0’);
34 next_state <= S_CHECK_0 ; next_timeout <= DATAIN ;
35 end if;
36 else
37 next_cnt <= (others => ’0’);
38 next_state <= S_CHECK_0 ; next_timeout <= DATAIN ;
39 if STB /= ’1’ then next_state <= S_DOOMED ; end if;
40 end if;
41 when S_DOOMED =>
42 next_cnt <= (others => ’0’); ERR <= ’1’;
43 when others =>
44 WORKING <= ’0’; next_state <= S_START ;
45 end case;
46 end process ;

Listing A.3: Watchdog FSM - VHDL Code (Combinational process)

88

Watchdog FSM - VHDL Code

1 process (clk)
2 begin
3

4 if rising_edge (clk) then
5 if (RST = ’1’) then
6 curr_state <= S_START ;
7 curr_cnt <= (others => ’0’);
8 curr_timeout <= (others => ’0’);
9 curr_toggle_rate <= (others => ’0’);

10 else
11 curr_state <= next_state ;
12 curr_timeout <= next_timeout ;
13 curr_cnt <= next_cnt ;
14

15 if unsigned (next_cnt) = 0 then
16 if unsigned (curr_cnt) > unsigned (curr_toggle_rate) then
17 curr_toggle_rate <= curr_cnt ;
18 end if;
19 end if;
20

21 end if;
22 end if;
23

24 end process ;
25

26 end arch;

Listing A.4: Watchdog FSM - VHDL Code (Sequential process)

89

Appendix B

Watchdog - C drivers

Listing B.1: Watchdog - C drivers - Secondary data types definition
1 typedef union {
2 u32 U32VALUE ;
3 struct f {
4 u32 START : 01;
5 u32 STB : 01;
6 u32 _reserved : 30;
7 } FIELDS ;
8 } union_ctrlreg_t ;
9

10 typedef union {
11 u32 U32VALUE ;
12 struct {
13 u32 STARTED : 01;
14 u32 ERROR : 01;
15 u32 _reserved : 30;
16 } FIELDS ;
17 } union_statreg_t ;
18

19 typedef struct {
20 union_ctrlreg_t CONTROLREG ;
21 union_statreg_t STATUSREG ;
22 u32 DATAREG ;
23 u32 TOGGLERATEREG ;
24 } watchdog_module_t ;

90

Watchdog - C drivers

Listing B.2: Watchdog - C drivers - Main data type definition
1 typedef struct {
2 union {
3 u32 * baseAddress ;
4 watchdog_module_t * module ;
5 struct {
6 watchdog_module_t module0 ;
7 watchdog_module_t module1 ;
8 watchdog_module_t module2 ;
9 } * modules ;

10 };
11 } GBcnCtrl ;

Listing B.3: Watchdog - C drivers - Driver function prototypes
1 int GBcnCtrl_Initialize (GBcnCtrl * InstancePtr , u32 BaseAddr);
2 void GBcnCtrl_SetTimeoutValue (GBcnCtrl * InstancePtr , u32 Timeout);
3 void GBcnCtrl_Start (GBcnCtrl * InstancePtr);
4 void GBcnCtrl_Toggle (GBcnCtrl * InstancePtr);
5 u32 GBcnCtrl_GetToggleRate (GBcnCtrl * InstancePtr);
6 int GBcnCtrl_IsExpired (GBcnCtrl * InstancePtr);
7 int GBcnCtrl_IsStarted (GBcnCtrl * InstancePtr);

91

Appendix C

Fault Injection - SDE output
with correction

1 Hi
2 Is bcn started ? 1
3 timeout : 200000000
4 Is bcn started ? 1
5 timeout : 200000000
6 Successfully ran Hello World application
7 Fibonacci current value 1
8 Fibonacci current value 1
9 Fibonacci current value 2

10 Fibonacci current value 3
11 Fibonacci current value 5
12 Fibonacci current value 8
13 Finbonacci current value 13
14 Finbonacci current value 21
15 Finbonacci current value 34
16 Finbonacci current value 55
17 ..
18 Fibonacci current value 46368
19 Fibonacci current value 75025
20 Fibonacci current value 121393
21 Fibonacci current value 196418
22 Fibonacci current value 317811
23

24 DONE_1 DONE_1 DONE_1
25 CHECKSUM : 852044
26 WRONG CHECKSUM !

Listing C.1: SDE output - before correction

92

Fault Injection - SDE output with correction

1 Hi
2 Is bcn started ? 1
3 timeout : 200000000
4 Is bcn started ? 1
5 timeout : 200000000
6 Successfully ran Hello World application
7 Fibonacci current value 1
8 Fibonacci current value 1
9 Fibonacci current value 2

10 Fibonacci current value 3
11 Fibonacci current value 5
12 Fibonacci current value 8
13 Finbonacci current value 13
14 Finbonacci current value 21
15 Finbonacci current value 34
16 Finbonacci current value 55
17 ..
18 Fibonacci current value 46368
19 Fibonacci current value 75025
20 Fibonacci current value 121393
21 Fibonacci current value 196418
22 Fibonacci current value 317811
23 DONE_1 DONE_1 DONE_1
24 CHECKSUM : 1673873
25 DONE_2 DONE_2 DONE_2

Listing C.2: SDE output - after correction

93

Bibliography

[1] Xilinx. Touchdown! NASA’s Perseverance Rover Lands on Mars with Xilinx
FPGAs On Board. 2021. url: https://www.xilinx.com/about/blogs/
xilinx- xclusive- blog/2021/rover- lands- on- mars- with- xilinx-
fpgas-on-board.html.

[2] European Space Agency. Three hours to save Integral. 2021. url: https:
//www.esa.int/Enabling_Support/Operations/Three_hours_to_save_
Integral (cit. on p. 1).

[3] L. Sterpone and M. Violante. «A new analytical approach to estimate the
effects of SEUs in TMR architectures implemented through SRAM-based
FPGAs». In: IEEE Transactions on Nuclear Science 52.6 (2005), pp. 2217–
2223. doi: 10.1109/TNS.2005.860745 (cit. on p. 2).

[4] L. Sterpone and M. Violante. «Analysis of the robustness of the TMR archi-
tecture in SRAM-based FPGAs». In: IEEE Transactions on Nuclear Science
52.5 (2005), pp. 1545–1549. doi: 10.1109/TNS.2005.856543 (cit. on p. 2).

[5] Luca Sterpone and Massimo Violante. «An Analysis of SEU Effects in Em-
bedded Operating Systems for Real-Time Applications». In: 2007 IEEE
International Symposium on Industrial Electronics. 2007, pp. 3345–3349. doi:
10.1109/ISIE.2007.4375152 (cit. on p. 3).

[6] L. Bozzoli, C. De Sio, B. Du, and L. Sterpone. «A Neutron Generator Testing
Platform for the Radiation Analysis of SRAM-based FPGAs». In: 2021
IEEE International Instrumentation and Measurement Technology Conference
(I2MTC). 2021, pp. 1–5. doi: 10.1109/I2MTC50364.2021.9459804 (cit. on
p. 3).

[7] Boyang Du, Luca Sterpone, Sarah Azimi, David Merodio Codinachs, Véronique
Ferlet-Cavrois, Cesar Boatella Polo, Rubén García Alía, Maria Kastriotou,
and Páblo Fernandez-Martínez. «Ultrahigh Energy Heavy Ion Test Beam on
Xilinx Kintex-7 SRAM-Based FPGA». In: IEEE Transactions on Nuclear
Science 66.7 (2019), pp. 1813–1819. doi: 10.1109/TNS.2019.2915207 (cit. on
p. 3).

94

https://www.xilinx.com/about/blogs/xilinx-xclusive-blog/2021/rover-lands-on-mars-with-xilinx-fpgas-on-board.html
https://www.xilinx.com/about/blogs/xilinx-xclusive-blog/2021/rover-lands-on-mars-with-xilinx-fpgas-on-board.html
https://www.xilinx.com/about/blogs/xilinx-xclusive-blog/2021/rover-lands-on-mars-with-xilinx-fpgas-on-board.html
https://www.esa.int/Enabling_Support/Operations/Three_hours_to_save_Integral
https://www.esa.int/Enabling_Support/Operations/Three_hours_to_save_Integral
https://www.esa.int/Enabling_Support/Operations/Three_hours_to_save_Integral
https://doi.org/10.1109/TNS.2005.860745
https://doi.org/10.1109/TNS.2005.856543
https://doi.org/10.1109/ISIE.2007.4375152
https://doi.org/10.1109/I2MTC50364.2021.9459804
https://doi.org/10.1109/TNS.2019.2915207

BIBLIOGRAPHY

[8] Engineering National Academies of Sciences and Medicine. Testing at the
Speed of Light: The State of U.S. Electronic Parts Space Radiation Testing
Infrastructure. Washington, DC: The National Academies Press, 2018. isbn:
978-0-309-47079-7. doi: 10.17226/24993. url: https://nap.nationala
cademies.org/catalog/24993/testing-at-the-speed-of-light-the-
state-of-us.

[9] Jatan Mehta. Space grade electronics: How NASA’s Juno survives near Jupiter.
The Planetary Society. Apr. 17, 2018. url: https://www.planetary.org/
articles/0417-space-grade-electronics.

[10] Heidi Garcia Canizares. «(GeoRadar survey of a test site: verification of
underground cartography. Investigation of the floor of the Salone dei Cinque-
cento in Palazzo Vecchio) Indagine GeoRadar di un sito di test: verifica della
cartografia sotterranea. Indagine del pavimento del Salone dei Cinquecento a
Palazzo Vecchio.» Corso di laurea triennale in Ingegneria Informatica. Firenze,
Italy: Università di Firenze, 2019.

[11] Jeffrey S. George. «An overview of radiation effects in electronics». In: AIP
Conference Proceedings 2160.1 (2019), p. 060002. doi: 10.1063/1.5127719.
eprint: https://aip.scitation.org/doi/pdf/10.1063/1.5127719. url:
https://aip.scitation.org/doi/abs/10.1063/1.5127719.

[12] L. Sterpone, B. Du, and S. Azimi. «Radiation-induced single event transients
modeling and testing on nanometric flash-based technologies». In: Microelec-
tronics Reliability 55.9 (2015). Proceedings of the 26th European Symposium
on Reliability of Electron Devices, Failure Physics and Analysis, pp. 2087–
2091. issn: 0026-2714. doi: https://doi.org/10.1016/j.microrel.2015.
07.035. url: https://www.sciencedirect.com/science/article/pii/
S0026271415301220.

[13] R.C. Baumann. «Radiation-induced soft errors in advanced semiconductor
technologies». In: IEEE Transactions on Device and Materials Reliability 5.3
(2005), pp. 305–316. doi: 10.1109/TDMR.2005.853449.

[14] Luca Sterpone and Sarah Azimi. «Radiation-induced SET on Flash-based
FPGAs: Analysis and Filtering Methods». In: ARCS 2017; 30th International
Conference on Architecture of Computing Systems. 2017, pp. 1–6.

[15] S. Azimi, B. Du, and L. Sterpone. «Accurate analysis of SET effects on
Flash-based FPGA System-on-a-Chip for satellite applications». In: 2016
16th European Conference on Radiation and Its Effects on Components and
Systems (RADECS). 2016, pp. 1–4. doi: 10.1109/RADECS.2016.8093203.

95

https://doi.org/10.17226/24993
https://nap.nationalacademies.org/catalog/24993/testing-at-the-speed-of-light-the-state-of-us
https://nap.nationalacademies.org/catalog/24993/testing-at-the-speed-of-light-the-state-of-us
https://nap.nationalacademies.org/catalog/24993/testing-at-the-speed-of-light-the-state-of-us
https://www.planetary.org/articles/0417-space-grade-electronics
https://www.planetary.org/articles/0417-space-grade-electronics
https://doi.org/10.1063/1.5127719
https://aip.scitation.org/doi/pdf/10.1063/1.5127719
https://aip.scitation.org/doi/abs/10.1063/1.5127719
https://doi.org/https://doi.org/10.1016/j.microrel.2015.07.035
https://doi.org/https://doi.org/10.1016/j.microrel.2015.07.035
https://www.sciencedirect.com/science/article/pii/S0026271415301220
https://www.sciencedirect.com/science/article/pii/S0026271415301220
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/RADECS.2016.8093203

BIBLIOGRAPHY

[16] ECSS Secretariat. Techniques for radiation effects mitigation in ASICs and
FPGAs handbook. 2016. url: https://ecss.nl/hbstms/ecss-q-hb-60-
02a-techniques-for-radiation-effects-mitigation-in-asics-and-
fpgas-handbook-1-september-2016-published/.

[17] Kenneth A. LaBel. Radiation Effects on Electronics. NASA. url: https:
//nepp.nasa.gov/docuploads/392333B0-7A48-4A04-A3A72B0B1DD73343/
Rad_Effects_101_WebEx.pdf.

[18] Nandivada Sridevi, K. Jamal, and Kiran Mannem. «Implementation of Error
Correction Techniques in Memory Applications». In: 2021 5th International
Conference on Computing Methodologies and Communication (ICCMC). 2021,
pp. 586–595. doi: 10.1109/ICCMC51019.2021.9418432 (cit. on p. 14).

[19] Matthew J. Gadlage, Paul H. Eaton, Joseph M. Benedetto, Marty Carts,
Vivian Zhu, and Thomas L. Turflinger. «Digital Device Error Rate Trends in
Advanced CMOS Technologies». In: IEEE Transactions on Nuclear Science
53.6 (2006), pp. 3466–3471. doi: 10.1109/TNS.2006.886212 (cit. on p. 15).

[20] G.C. Cardarilli, F. Kaddour, A. Leandri, M. Ottavi, S. Pontarelli, and R.
Velazco. «Bit flip injection in processor-based architectures: a case study».
In: Proceedings of the Eighth IEEE International On-Line Testing Workshop
(IOLTW 2002). 2002, pp. 117–127. doi: 10.1109/OLT.2002.1030194.

[21] M. Violante, L. Sterpone, M. Ceschia, D. Bortolato, P. Bernardi, M.S. Reorda,
and A. Paccagnella. «Simulation-based analysis of SEU effects in SRAM-based
FPGAs». In: IEEE Transactions on Nuclear Science 51.6 (2004), pp. 3354–
3359. doi: 10.1109/TNS.2004.839516.

[22] Boyang Du and Luca Sterpone. «Online monitoring soft errors in reconfig-
urable FPGA during radiation test». In: 2017 IEEE International Instrumen-
tation and Measurement Technology Conference (I2MTC). 2017, pp. 1–5. doi:
10.1109/I2MTC.2017.7969976.

[23] Pieter Anemaet and TV As. «Microprocessor soft-cores: An evaluation of
design methods and concepts on FPGAs». In: part of the Computer Architec-
ture (Special Topics) course ET4078, Department of Computer Engineering
(2003) (cit. on p. 19).

[24] Oscar Ruano, Francisco Garcia-Herrero, Luis Alberto Aranda, Alfonso Sanchez
-Macian, Laura Rodriguez, and Juan Antonio Maestro. «Fault Injection
Emulation for Systems in FPGAs: Tools, Techniques and Methodology, a
Tutorial». en. In: Sensors (Basel) 21.4 (Feb. 2021) (cit. on p. 27).

[25] Daniele Rizzieri. «Software-Based Radiation Effects Analysis on AP-SoC
Embedded Processor». Corso di laurea magistrale in Mechatronic Engineering
(Ingegneria Meccatronica). Torino, Italy: Politecnico di Torino, 2021 (cit. on
p. 27).

96

https://ecss.nl/hbstms/ecss-q-hb-60-02a-techniques-for-radiation-effects-mitigation-in-asics-and-fpgas-handbook-1-september-2016-published/
https://ecss.nl/hbstms/ecss-q-hb-60-02a-techniques-for-radiation-effects-mitigation-in-asics-and-fpgas-handbook-1-september-2016-published/
https://ecss.nl/hbstms/ecss-q-hb-60-02a-techniques-for-radiation-effects-mitigation-in-asics-and-fpgas-handbook-1-september-2016-published/
https://nepp.nasa.gov/docuploads/392333B0-7A48-4A04-A3A72B0B1DD73343/Rad_Effects_101_WebEx.pdf
https://nepp.nasa.gov/docuploads/392333B0-7A48-4A04-A3A72B0B1DD73343/Rad_Effects_101_WebEx.pdf
https://nepp.nasa.gov/docuploads/392333B0-7A48-4A04-A3A72B0B1DD73343/Rad_Effects_101_WebEx.pdf
https://doi.org/10.1109/ICCMC51019.2021.9418432
https://doi.org/10.1109/TNS.2006.886212
https://doi.org/10.1109/OLT.2002.1030194
https://doi.org/10.1109/TNS.2004.839516
https://doi.org/10.1109/I2MTC.2017.7969976

BIBLIOGRAPHY

[26] O. Ruano, J.A. Maestro, P. Reyes, and P. Reviriego. «A Simulation Platform
for the Study of Soft Errors on Signal Processing Circuits through Software
Fault Injection». In: 2007 IEEE International Symposium on Industrial Elec-
tronics. 2007, pp. 3316–3321. doi: 10.1109/ISIE.2007.4375147 (cit. on
p. 28).

[27] V. Sieh, O. Tschache, and F. Balbach. «VERIFY: evaluation of reliability
using VHDL-models with embedded fault descriptions». In: Proceedings of
IEEE 27th International Symposium on Fault Tolerant Computing. 1997,
pp. 32–36. doi: 10.1109/FTCS.1997.614074 (cit. on p. 28).

[28] Daniele Rizzieri. FPGA Bitstream Fault Injector. https://github.com/
danirizziero/FPGA_bitstream_injector. 2021 (cit. on p. 28).

[29] Ludovica Bozzoli, Corrado De Sio, Luca Sterpone, and Cinzia Bernardeschi.
«PyXEL: An Integrated Environment for the Analysis of Fault Effects in
SRAM-Based FPGA Routing». In: 2018 International Symposium on Rapid
System Prototyping (RSP). 2018, pp. 70–75. doi: 10.1109/RSP.2018.86320
00 (cit. on p. 28).

[30] Niccolo Battezzati, Luca Sterpone, and Massimo Violante. Reconfigurable
Field Programmable Gate Arrays for Mission-Critical Applications. Jan. 2011,
pp. 1–220. isbn: 978-1-4419-7594-2. doi: 10.1007/978-1-4419-7595-9.

[31] Melanie Berg, AS&D in support of NASA/GSFC. Michael Campola NASA/GSFC.
FPGA Mitigation Strategies for Critical Applications. NASA. Sept. 21, 2018.
url: https://ntrs.nasa.gov/api/citations/20180006778/downloads/
20180006778.pdf.

[32] Ghazanfar Asadi and Mehdi B. Tahoori. «Soft Error Rate Estimation and Mit-
igation for SRAM-Based FPGAs». In: Proceedings of the 2005 ACM/SIGDA
13th International Symposium on Field-Programmable Gate Arrays. FPGA
’05. Monterey, California, USA: Association for Computing Machinery, 2005,
pp. 149–160. isbn: 1595930299. doi: 10 . 1145 / 1046192 . 1046212. url:
https://doi.org/10.1145/1046192.1046212 (cit. on p. 32).

[33] Ken LaBel, Jonathan Pellish, Ray Ladbury: NASA Goddard Space Flight
Center. Hak Kim Christina Siedlick: MEI Technologies in support of NASA
Goddard Space Flight Cente. Differentiating Scrub Rates between Space-
Flight Applications and Accelerated Single Event Radiation Testing for SRAM
based Field Programmable Gate Arrays. NASA. Apr. 9, 2013. url: https:
//nepp.nasa.gov/files/24438/Berg_SEE-MAPLD2013_Scrubbing.pdf
(cit. on p. 38).

97

https://doi.org/10.1109/ISIE.2007.4375147
https://doi.org/10.1109/FTCS.1997.614074
https://github.com/danirizziero/FPGA_bitstream_injector
https://github.com/danirizziero/FPGA_bitstream_injector
https://doi.org/10.1109/RSP.2018.8632000
https://doi.org/10.1109/RSP.2018.8632000
https://doi.org/10.1007/978-1-4419-7595-9
https://ntrs.nasa.gov/api/citations/20180006778/downloads/20180006778.pdf
https://ntrs.nasa.gov/api/citations/20180006778/downloads/20180006778.pdf
https://doi.org/10.1145/1046192.1046212
https://doi.org/10.1145/1046192.1046212
https://nepp.nasa.gov/files/24438/Berg_SEE-MAPLD2013_Scrubbing.pdf
https://nepp.nasa.gov/files/24438/Berg_SEE-MAPLD2013_Scrubbing.pdf

BIBLIOGRAPHY

[34] Luca Bozzoli Ludovica; Sterpone. «Soft-Error Analysis of Self-reconfiguration
Controllers for Safety Critical Dynamically Reconfigurable FPGAs». In: Ap-
plied Reconfigurable Computing. Architectures, Tools, and Applications. Ed. by
Fernando Rincón, Jesús Barba, Hayden K. H. So, Pedro Diniz, and Julián
Caba. Cham: Springer International Publishing, 2020, pp. 84–96. isbn: 978-3-
030-44534-8 (cit. on p. 39).

[35] Luca Sterpone, Niccolo Battezzati, and Massimo Violante. «A New Placement
Algorithm for the Optimization of Fault Tolerant Circuits on Reconfigurable
Devices». In: WREFT ’08. Ischia, Italy: Association for Computing Machinery,
2008, pp. 347–352. isbn: 9781605580920. doi: 10.1145/1366224.1366228.
url: https://doi.org/10.1145/1366224.1366228 (cit. on p. 39).

[36] Alonzo Church. «Edward F. Moore. Gedanken-experiments on sequential
machines. Automata studies , edited by C. E. Shannon and J. McCarthy,
Annals of Mathematics studies no. 34, litho-printed, Princeton University
Press, Princeton1956, pp. 129–153.» In: Journal of Symbolic Logic 23 (1958),
pp. 60–60 (cit. on p. 43).

[37] P Balasubramanian and K Prasad. «A Fault Tolerance Improved Majority
Voter for TMR System Architectures». In: (2016). doi: 10.48550/ARXIV.
1605.03771. url: https://arxiv.org/abs/1605.03771 (cit. on p. 69).

[38] Corrado De Sio, Sarah Azimi, and Luca Sterpone. «FireNN: Neural Networks
Reliability Evaluation on Hybrid Platforms». In: IEEE Transactions on
Emerging Topics in Computing 10.2 (2022), pp. 549–563. doi: 10.1109/TETC.
2022.3152668.

[39] Sarah Azimi, Corrado De Sio, and Luca Sterpone. «A Radiation-Hardened
CMOS Full-Adder Based on Layout Selective Transistor Duplication». In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29.8
(2021), pp. 1596–1600. doi: 10.1109/TVLSI.2021.3086897.

[40] Boyang Du, Sarah Azimi, Annarita Moramarco, Davide Sabena, Filippo
Parisi, and Luca Sterpone. «An Automated Continuous Integration Multitest
Platform for Automotive Systems». In: IEEE Systems Journal 16.2 (2022),
pp. 2495–2506. doi: 10.1109/JSYST.2021.3069548.

[41] C. De Sio, S. Azimi, L. Bozzoli, B. Du, and L. Sterpone. «Radiation-induced
Single Event Transient effects during the reconfiguration process of SRAM-
based FPGAs». In: Microelectronics Reliability 100-101 (2019). 30th European
Symposium on Reliability of Electron Devices, Failure Physics and Analysis,
p. 113342. issn: 0026-2714. doi: https://doi.org/10.1016/j.microrel.
2019.06.034. url: https://www.sciencedirect.com/science/article/
pii/S0026271419305621.

98

https://doi.org/10.1145/1366224.1366228
https://doi.org/10.1145/1366224.1366228
https://doi.org/10.48550/ARXIV.1605.03771
https://doi.org/10.48550/ARXIV.1605.03771
https://arxiv.org/abs/1605.03771
https://doi.org/10.1109/TETC.2022.3152668
https://doi.org/10.1109/TETC.2022.3152668
https://doi.org/10.1109/TVLSI.2021.3086897
https://doi.org/10.1109/JSYST.2021.3069548
https://doi.org/https://doi.org/10.1016/j.microrel.2019.06.034
https://doi.org/https://doi.org/10.1016/j.microrel.2019.06.034
https://www.sciencedirect.com/science/article/pii/S0026271419305621
https://www.sciencedirect.com/science/article/pii/S0026271419305621

BIBLIOGRAPHY

[42] L. Sterpone, S. Azimi, and B. Du. «A selective mapper for the mitigation of
SETs on rad-hard RTG4 flash-based FPGAs». In: 2016 16th European Con-
ference on Radiation and Its Effects on Components and Systems (RADECS).
2016, pp. 1–4. doi: 10.1109/RADECS.2016.8093152.

[43] Sarah Azimi and Luca Sterpone. «Digital Design Techniques for Dependable
High Performance Computing». In: 2020 IEEE International Test Conference
(ITC). 2020, pp. 1–10. doi: 10.1109/ITC44778.2020.9325281.

[44] Sarah Azimi, Boyang Du, and Luca Sterpone. «Evaluation of transient errors
in GPGPUs for safety critical applications: An effective simulation-based
fault injection environment». In: Journal of Systems Architecture 75 (2017),
pp. 95–106. issn: 1383-7621. doi: https://doi.org/10.1016/j.sysarc.
2017.01.009. url: https://www.sciencedirect.com/science/article/
pii/S1383762117300528.

[45] C. De Sio, S. Azimi, and L. Sterpone. «On the analysis of radiation-induced
failures in the AXI interconnect module». In: Microelectronics Reliability
114 (2020). 31st European Symposium on Reliability of Electron Devices,
Failure Physics and Analysis, ESREF 2020, p. 113733. issn: 0026-2714. doi:
https : / / doi . org / 10 . 1016 / j . microrel . 2020 . 113733. url: https :
//www.sciencedirect.com/science/article/pii/S0026271420305400.

99

https://doi.org/10.1109/RADECS.2016.8093152
https://doi.org/10.1109/ITC44778.2020.9325281
https://doi.org/https://doi.org/10.1016/j.sysarc.2017.01.009
https://doi.org/https://doi.org/10.1016/j.sysarc.2017.01.009
https://www.sciencedirect.com/science/article/pii/S1383762117300528
https://www.sciencedirect.com/science/article/pii/S1383762117300528
https://doi.org/https://doi.org/10.1016/j.microrel.2020.113733
https://www.sciencedirect.com/science/article/pii/S0026271420305400
https://www.sciencedirect.com/science/article/pii/S0026271420305400

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis Motivation

	General Background
	Hardware Technology
	FPGA Architecture
	FPGAs vs. ASICs
	FPGA or ASIC in Aerospace Applications?

	Radiations
	Radiation sources
	Radiation problems on Earth: the Super Mario 64 glitch
	Types of radiation
	Single Event Effects

	Thesis Background
	PYNQ-Z2 Development Board
	Xilinx soft-core: the MicroBlaze
	Xilinx FPGA Standard Design Flow
	Steps towards the Bitstream Generation
	Fundamentals of the Xilinx's Bitstream structure
	Software Development

	Fault Injection Tool
	Integrated FPGA Debugger

	Analysis and hardening of an FPGA Design with a MicroBlaze
	How SEUs affect the MicroBlaze?
	Strategies and adopted solutions
	Development of a watchdog
	What is a watchdog?
	How to implement a watchdog?
	How to harden the watchdog?
	Integration of the watchdog in the design

	Design with Partial Reconfiguration
	Vivado Design Flow for Dynamic Function Exchange
	DFX with MicroBlaze in Vivado 2021.1
	Xilinx DFX Controller

	Integration of the watchdog and the DFX
	Partial bitstream storage
	How to enable the ICAP port
	ICAP instantiation
	Connection of the Watchdog and the DFX Controller
	DFX Decoupler: what is it?

	From a manual workflow to a fully automated one
	The automatation script
	Script for partial bitstream to C header generation

	Experimental Analysis
	Fault Injection Environment
	Watchdog Inhibition

	Experimental Results

	Conclusions
	Future Work

	Watchdog FSM - VHDL Code
	Watchdog - C drivers
	Fault Injection - SDE output with correction
	Bibliography

