
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master Degree Thesis

Formal verification of security properties for remote
attestation protocols

Supervisors
prof. Riccardo Sisto
prof. Fulvio Valenza
dott. Simone Bussa

Canditate
Alessandro Di Lorenzo

Academic Year 2021-2022

Summary

Formal verification refers to a set of techniques based on formal methods, which
aim to assess whether a certain formal model is well-defined or that a system sat-
isfies some specific properties. This kind of formal analysis lends itself very well
to the use of automated algorithms that help reach the desired outcome in rea-
sonable time. This technique has been successfully applied in the verification of
cryptographic protocols in the literature, to evaluate their security in case of hos-
tile actors interference; the main advantage of this analysis is its ability to identify
potential vulnerabilities that would not be intuitively detectable, as was the case
for widely used protocols which were believed secure for years.

A possible application of cryptographic protocols is to protect the process of
Remote Attestation, which is a key component of a trusted computing environ-
ment. In particular, the attestation purpose is to assess whether a certain system,
that wishes to join a trusted network, is not behaving maliciously. When the at-
testation process is carried out through a public network, it is necessary to employ
a number of security measures that can prevent adversaries from illegitimately
obtaining a trusted state.

Some automatic formal verification techniques, through the use of the popular
and successful tool ProVerif and its extension, are applied on two main security
protocol for Remote Attestation procedures developed in the context of a trusted
fog computing platform: a simpler implementation that is proved to have some
flaws in its definition and a more complex one, as an enhanced version of the pre-
vious, fixing most of the initial issues. The results obtained from the analysis are
only partial with respect to the initial objective to prove all properties on both
protocols, since the tool used is shown to not be the ideal choice for this particular
application.

1

Contents

List of Figures 4

1 Introduction 5
1.1 Thesis introduction . 5
1.2 Thesis description . 6

2 Formal verification of cryptographic protocols 7
2.1 ProVerif . 8

2.1.1 ProVerif limitations and global state extensions 9

3 Remote attestation in a trusted fog computing platform 11
3.1 Remote attestation . 11
3.2 The RAINBOW project . 13

4 Analysed protocols 15
4.1 Attestation by quote . 16

4.1.1 System model . 16
4.1.2 Request for measurement update 16
4.1.3 Attestation phase . 18

4.2 Oblivious remote attestation . 19
4.2.1 System model . 20
4.2.2 AK creation request . 22
4.2.3 PCR management . 23
4.2.4 Measurement update . 26
4.2.5 Oblivious remote attestation phase 28

5 Thesis objective 32

6 Formal modelling of analysed protocols 34
6.1 Attestation by quote . 34

2

6.1.1 Simple attestation phase . 34
6.1.2 PCR update request and attestation 36
6.1.3 Multiple fog nodes involvement 37
6.1.4 Fog node and TPM as separate entities 38
6.1.5 Verification of RAINBOW security properties 40

6.2 Oblivious remote attestation . 42
6.2.1 Attestation Key creation . 42
6.2.2 PCR or NV-PCR attachment 46
6.2.3 PCR or NV-PCR detachment 48
6.2.4 Measurement update . 51
6.2.5 ORA . 54

6.3 Variations with global state handling 57
6.3.1 Attestation by quote . 57
6.3.2 Oblivious remote attestation 59

7 Formal verification results 61
7.1 Attestation by quote . 61
7.2 Oblivious remote attestation . 63
7.3 Assessment on security properties 66

8 Conclusions 67

Bibliography 69

A Complete formal models implementation 71
A.1 Attestation By Quote . 71
A.2 Oblivious remote attestation . 75

A.2.1 AK creation . 75
A.2.2 NV-PCR attach . 79
A.2.3 NV-PCR detach . 82
A.2.4 Measurement update request 87
A.2.5 ORA . 91

3

List of Figures

3.1 Internal architecture of TPM 2.0 [20] 12

4.1 System model with orchestrator and managed VFs 17
4.2 Update measurements request . 18
4.3 Attestation by quote protocol . 18
4.4 Refined system model with initial knowledge 21
4.5 Complete workflow of the ORA protocol 22
4.6 AK creation phase . 24
4.7 Attaching normal or NV-PCRs . 25
4.8 Detailed steps of Algorithm 1 . 26
4.9 Detailed steps of Algorithm 2 . 27
4.10 Detailed steps of Algorithm 3 . 27
4.11 Detailed steps of Algorithm 4 . 28
4.12 Detachment of normal or NV-PCRs 29
4.13 Measurement update phase . 30
4.14 Oblivious remote attestation phase 31

7.1 Attack trace showing the fake update request 62
7.2 Attack trace with fake tracer values and node trusted 63

4

Chapter 1

Introduction

1.1 Thesis introduction
In recent years, the ever-growing diffusion of smart devices has led to the in-
tegration of novel technologies in a wide variety of fields ranging from industry
automation to connected cars to healthcare systems and many other aspects of
our life. The concept of Internet of Things is used to describe this conjunction be-
tween the digital and the physical world, where objects equipped with processing
hardware or sensors are able to connect and exchange data among themselves and
over the Internet.

In this context, cloud-based technologies, which have also become increasingly
popular in the last few years, represent an optimal method to manage the data
collected by the above mentioned devices. This can be done with both a centralised
approach, following the traditional cloud architecture where data is sent over the
network and processed remotely, or with a decentralised one, shifting most of
the computational work to devices which are closer to or part of the edge of the
network. Fog computing is a paradigm that follows the latter approach and it is
convenient in critical services where certain QoS requirements have to be fulfilled,
specifically in terms of processing speed in order to achieve real-time reaction when
needed, but also in terms of low bandwidth consumption.

It is clear that this kind of decentralised architecture needs particular care in
handling its security in order to guarantee identity management, resource integrity
and data protection. It is necessary to establish chains of trust between all par-
ticipating entities in the network, such that every node can be securely identified
and managed. This can be achieved through remote attestation schemes, ensuring
that a certain initially untrustworthy entity can be safely declared as trusted, that

5

Introduction

is it is not carrying out any adversarial activity, and included in the chain of trust.

Remote attestation can be achieved through different means by leveraging both
hardware and software components. The schemes for remote attestation can be
defined as security protocols whose specifications and implementation have to be
considered carefully since they can easily lead to errors, which, if left undetected,
can compromise the whole system they are applied to. Therefore, modelling and
verification of security protocols through formal methods is a technique often em-
ployed to identify potential errors and vulnerabilities and to test whether the
behaviour is the expected one in the presence of adversaries.

1.2 Thesis description
The following part of this thesis will be structured as described below

Chapter 2. Introduces the formal verification techniques and tools which will be
used in this work.

Chapter 3. Introduces the concept of remote attestation and its application in
the context of a trusted fog computing environment.

Chapter 4. Describes the design and functionalities of the protocols formally
verified in this work.

Chapter 5. Presents the objective of this thesis and the security properties that
need to be verified.

Chapter 6. Reports the implementation of the protocols as formal models to be
verified.

Chapter 7. Reports the results obtained by the automatic formal verification
carried out on the models described in the previous chapter.

Chapter 8. Conclusions.

Appendix A. Complete copy of the formal models developed.

6

Chapter 2

Formal verification of
cryptographic protocols

A cryptographic protocol is designed in order to satisfy specific security require-
ments. When the protocol is not designed correctly, however, it may fail its pur-
pose, thus exposing the system it was meant to protect to external interference
by possibly malicious actors. Nevertheless, carefully analysing a protocol by man-
ual review can often not be enough to identify potential flaws in the design. An
example for such flaws, which were discovered much later on widely used and pre-
sumably secure protocols, is given by the Needham–Schroeder case; both versions
of the protocol were found to be flawed: the symmetric key one allowed the use of
a compromised old session key, as discovered by Denning and Sacco [10], whereas
the public key authentication one allowed a man-in-the-middle attack, as described
by Lowe [13]. An appropriate solution to identify potential problems, which could
otherwise go undetected, is the use of formal methods. Once a formal model, that
is a formal mathematical abstraction, of a system has been specified, formal verifi-
cation techniques can be applied in order to assess whether some requirements are
satisfied. The latter are properties usually specified in a logic language which can
be verified with two possible methods: model checking and theorem proving. Given
a model M and a property f, model checking verifies whether f is true for M, or
otherwise provides a counter-example as proof of non-validity. Instead, given a
theory T and a property f, theorem proving aims to verify the validity of f for all
possible interpretations of T by providing a proof; if a proof is not found, nothing
can be known.

When handling cryptographic protocols, there are various scenarios that have
to be taken into account, such as concurrent sessions or the unpredictability of

7

Formal verification of cryptographic protocols

attacker behaviour. It is therefore necessary to define the scope of what an attacker
can do and when a protocol has to considered compromised. To this purpose, two
main approaches are reported below.

Symbolic models. Based on high-level abstractions; one notable example is the
Dolev-Yao model [11], which represents the network as a set of honest users
exchanging messages, consisting of symbolic terms, and which considers ideal
cryptographic operations, such that no attacks can be based on weak cryptog-
raphy exploitation. Moreover, the attacker can intercept all traffic traversing
the network, modify or delete messages, create new ones and also use every
cryptographic operation which is available to honest users. However, terms
which are specified as secret cannot be guessed or obtained by the attacker, at
least initially. Standard security properties like authentication, secrecy and
integrity can be verified by using both model checking or automated theorem
proving.

Computational models. More complex approach, since it uses a low-level rep-
resentation, but for this reason it is also potentially more accurate. Data is
modelled as bitstrings and cryptographic operations as algorithms, whereas
the attacker is considered any polynomial-time algorithm. The analysis is
probabilistic, which means that every operation is considered possible but
some are associated to a very negligible chance of being executed. The ob-
jective is to prove that no attacker can reach a given goal in polynomial time
with non-negligible probability.

Both approaches do not consider side-channel attacks, such as those based on
timing.

2.1 ProVerif
The tool used to carry out the verification of the protocols described in this thesis is
ProVerif [5], which is an automatic theorem prover based on the Dolev-Yao formal
model. The protocol formal specification is expressed by an extended version
of the Applied Pi-Calculus [1][2] which supports types, along with some queries
representing the security properties to be verified. Both are then processed and
translated into a set of Horn clauses to which a resolution algorithm is applied in
order to find a proof for the requested properties. If a proof is not found, then the
tool tries to reconstruct an attack, in the form of an execution trace which falsifies
the desired property. However, this process may yield false attacks and it is also
not exhaustive, that is, even if an attack was not found, it does not mean that no
attack is possible. ProVerif is able to prove reachability properties (e.g. secrecy
of some term), correspondence assertions (e.g. authentication or more generally

8

Formal verification of cryptographic protocols

correspondence between events) and observational equivalence (e.g. strong secrecy,
offline-guessing attacks or equivalence between processes that only differ by terms).

The pi-calculus used to specify the protocol is meant to represent concurrent
processes which interact through communication channels such as the Internet;
each honest actor in the protocol is modelled by a calculus process and there is
no need to model an attacker, since its behaviour is considered unpredictable.
ProVerif also supports unbounded parallel sessions of the protocol and the use of
a wide range of cryptographic primitives, including but not limited to symmetric
and asymmetric encryption, digital signatures, hashing, expressed through a set
of rewrite rules or equations.

2.1.1 ProVerif limitations and global state extensions
ProVerif has been successfully used to prove the correctness and security of several
protocols from the literature, such as the above-mentioned Needham-Schroeder
protocol; additionally, some notable example of case studies include the handover
procedures between LTE-LTE and LTE-UMTS cells [9], the authentication proto-
cols in Trusted Platform Modules [7], the secure messaging protocol of the Signal
app [12] and TLS 1.3 Draft-18 [4]. Nevertheless, there are protocols, particularly
those relating to hardware devices such as TPMs or smart cards, which may need
to deal with information that should be made available to all sessions of the pro-
cesses engaging in communication. Such kind of information cannot be handled
locally, but rather it should be modelled as a global state shared among different
sessions, potentially modifiable an unspecified number of times. Some protocols
may need the use of memory cells to represent the internal storage of hardware
devices, such as those holding cryptographic keys, as well as persistent databases
or counters.

The standard implementation of ProVerif does not explicitly support this kind
of functionality. A possible workaround to solve this issue is declaring a free
name, which is akin to a global variable in standard programming languages, of
type channel; this kind of variable allows for input and output by processes and
is normally intended for message exchange. Since free names are shared among
processes, a channel could be used as an abstraction of a global state with processes
reading and writing on it as if it was actual memory. A channel used in this manner
should be declared as private, since all free names are known also to the attacker
by default. However, this solution is not optimal as it would often still yield false
attacks or not provide any result. That is because, due to its internal abstractions
into Horn clauses, ProVerif introduces over-approximations that fail to handle
global states, as values inputted into a channel are persistent and not overwritten
whenever a new value is saved, meaning that the tool only guarantees that the
read value was previously written on the cell but not necessarily that it was the

9

Formal verification of cryptographic protocols

last one. This issue is well known and a certain number of alternatives have been
developed in order to overcome it. The work presented in this thesis will employ
two of these solutions.

StatVerif. [3] Stand-alone extension of ProVerif enriching its process calculus.
Introduces new constructs in the language to explicitly handle global states
and therefore allows for correct translation into Horn clauses that avoid the
above-mentioned false attacks. In particular, it introduces the new type key-
word cell which models a global variable that allows multiple read and write
operations, which replace the old value, and also locking and unlocking to
solve synchronisation issues with concurrent processes. However, while the
number of rewrites is theoretically unlimited, multiple value updates may
largely increase the complexity of the analysis leading very easily into state
explosion and therefore no termination in reasonable time.

GSVerif. [8] Acts as a front-end to be used in combination with standard ProVerif,
processing files written in the same specification language, aptly modified with
specific keywords, in order to produce a new file automatically annotated with
events that record channel usage, values and possibly freshness indicators. It
introduces specific keywords, to be used in the case of channels employed
as global states, as in the standard workaround, such as cell, counter,
uniqueAction, uniqueComm which all model a specific use case. Moreover,
the keyword precise is also available, which tries to automatically find the
best option, relatively to the implementation in the existing processes.

10

Chapter 3

Remote attestation in a
trusted fog computing
platform

3.1 Remote attestation
In the context of a trusted computing environment, one of the key principles
is the verification of consistent behaviour of communicating entities in order to
achieve unambiguous trust between them, as defined by the TCG [19]. The pro-
cess through which such trust is obtained is named Attestation and it is performed
by having an initially untrusted entity, a Prover, report its current integrity state
to an external trusted entity, the Verifier or Requestor, which can assess whether
the state of the Prover matches the expected one. Whenever this process im-
plies interaction through network protocols, the term Remote Attestation is
employed.

The main idea behind the concept of trusted computing is to have a specific
component acting as Root-of-Trust (RoT), that is a piece of software or hardware
which is inherently considered as trusted, thus serving as the starting point for
the chain of trust. A Trusted Platform Module (TPM) whose internal architecture
in shown in Figure 3.1, following the specifications by the TCG [21], is frequently
chosen as RoT of a system. In its most secure implementation, a TPM is a ded-
icated tamper-resistant hardware cryptographic processor, able to handle a wide
range of cryptographic primitives and algorithms, with secure internal storage for
cryptographic keys and integrity measurement of system components.

11

Remote attestation in a trusted fog computing platform

Figure 3.1. Internal architecture of TPM 2.0 [20]

The process of remote attestation, in particular, usually leverages on the in-
tegrity measurements stored in specific registers named Platform Configuration
Registers (PCR). These registers are used to accumulate values obtained by the
concatenation of the hashes of the Trusted Computing Base (TCB), that is the
set of all software and/or hardware components that are considered critical to the
security of the whole system. In particular, the PCR extension operation is carried
out as below

PCRnew := H(PCRold||hupdate)

Where H stands for the hashing operation with the chosen algorithm and hupdate
is the new digest computed over the latest measured component. Typically, at
the start of the measurement process the PCRs are initialised to zero. The final
value obtained represents the current integrity state of the system and it can be
used as proof of its correct behaviour. One of the simplest techniques for remote

12

Remote attestation in a trusted fog computing platform

attestation would be having the Prover send a digital signature over the PCR
values to the Verifier, which could in turn both verify the identity of the sender
and whether the values received are equal to those computed as the expected ones.

3.2 The RAINBOW project
The remote attestation protocols described in this thesis are developed within
the RAINBOW project [15], whose aim is to create a platform for trusted fog
computing which enables easy deployment and management of different, scalable
and secure IoT services, in the context of the ever-increasing diffusion of smart
devices, drones, connected vehicles and systems in Industry 4.0 and the need to
quickly process the data produced by shifting the main computational power from
a centralised cloud infrastructure to a distributed edge one. As reported on the
project official site [14] its main objectives are

Objective I. Provide an open and trusted fog computing reference architecture
and highly relevant industry use-cases that facilitate the design, development
and orchestration of scalable, heterogeneous, secure and privacy-preserving
IoT services and cross-cloud applications, incorporating technological and
business requirements coming from the industry, the research and academic
community.

Objective II. Provide a set of innovative mechanisms and middleware tools for
IoT orchestration, data collection and decentralised analytics that guaran-
tees network security, data protection, identity management and resource
integrity. The key characteristic of the middleware will be the embedded in-
telligence and remote attestation mechanisms for establishing trust and QoS
requirements while coping with performance and network uncertainties.

Objective III. Enable secure and efficient data storage and processing at the fog
and edge layer and facilitate the extraction of high-level analytic insights by
introducing novel decentralised algorithms and open APIs.

Objective IV. Prove the applicability, usability, effectiveness of the RAINBOW
integrated framework, models and mechanisms in industrial, real-life trust-
worthy services, applications and standards demonstrating and stress-testing
the RAINBOW artefacts, methodologies and services under pragmatic con-
ditions against a predefined set of use cases.

Objective V. Ensure wide communication and scientific dissemination of the in-
novative RAINBOW results to the industry, research and international com-
munity, to realise exploitation and business planning of the RAINBOW design
models, software kits and orchestration mechanisms, to identify end-users and

13

Remote attestation in a trusted fog computing platform

potential customers, as well as to contribute specific project results to relevant
open source communities.

14

Chapter 4

Analysed protocols

As per objective II of the RAINBOW project reported in Chapter 3, it is necessary
to enable the secure and privacy-preserving enrolment into the Chain-of-Trust of
fog/edge devices in order to establish trust-aware Service Graph Chains (SGCs),
such that all communications from edge devices to fog nodes and backend cloud
systems must support secure interactions between all participating entities. Some
of the fundamental security design principles chosen to create such a secure envi-
ronment contemplate

Root-of-Trust. TPM 2.0, following the official standard specification by the TCG
[21], is the designated trusted component. A hardware TPM shall be used
whenever the platform provides physical access, otherwise a software one must
be implemented in a trusted environment.

Key management. Each key should be used for one single purpose, and all of
them are to be securely stored and maintained by the TPM.

RAINBOW orchestrator. An orchestrator entity (Orc) will be in charge of
providing and updating policies on privacy and anonymity, managing the
distribution of certificates and handling of requests for measurement updates,
key creation and initial trust assessment.

Following this principles, the focus is on the provision of zero-touch configuration
capabilities (fog nodes, wishing to join a fog cluster, adhere to the compiled attes-
tation policies by providing verifiable evidence on their configuration integrity and
correctness) with particular attention in preserving the privacy and anonymity of
all participating nodes. The attestation protocols devised within the project and
verified in this thesis will be described below.

15

Analysed protocols

4.1 Attestation by quote
4.1.1 System model
The design of this protocol is described in public deliverable D2.2 [17] of the RAIN-
BOW project. The system model considered to enforce this protocol consists of a
set of Virtual Function (VF) instances spawned and controlled by the Orc as part
of different service chains. It is assumed that each VF is a containerised micro-
service, exploiting light-weight virtualisation techniques and therefore achieving
high-level scalability and agility, while executing in an independent virtual envi-
ronment equipped with a TPM, serving as RoT of the system. Furthermore, each
VF has an associated configuration which is defined as the set of all objects (i.e.
binary data) that are accessible through unique file identifiers and which are part
of its TCB, therefore the measuring results of all of these objects are securely
stored in the PCRs of the TPM. In formal terms the system can be described as

SG = {s1, s2, ..., sn}, n ∈ N∗

Where SG represents the Service Forwarding Graph maintained by the Orc, which
includes all service chains comprising of the VFs, such that

si = {vf1, vf2, ..., vfm}, m ∈ N∗, si ∈ SG

Additionally, each VF can be represented in its initial form by the following tuple

vfi = (id, vPCR, state, EKpub, AKpub)

where id is the identifier number of the VF, vPCR represents a set of mock PCRs
whose measurement is computed according to the current deployed policy and
which should match that of the actual PCRs it refers to if everything is behaving
correctly, state refers to the current trust state of the VF and EKpub and AKpub
respectively refer to the public parts of the Endorsement Key and the Attestation
Key of the vTPM associated to vfi. In order to provide real time measurement
during system execution without the need for a reboot in case of changes, each VF
is also equipped with a Runtime Tracer component (T rce), which can record the
state of binary data and securely store into the PCRs of the TPM. By definition,
given an object identifier, the T rce utility returns its corresponding binary data.
A graphical representation of the described system is shown in Figure 4.1.

4.1.2 Request for measurement update
With the purpose of being able to manage changes in the configuration during
the whole life cycle of a fog node, participating in the secure and trusted network,

16

Analysed protocols

Figure 4.1. System model with orchestrator and managed VFs

it is necessary for the Orc to notify all attested entities whenever new security
attestation policies are enforced (e.g. when new vulnerabilities are identified).
In such cases, the orchestrator autonomously computes the values relative to the
expected change in configurations and accumulates them in the vPCR structures
of the corresponding vTPMs of the affected VFs. Subsequently, the orchestrator
requests to perform a measurement update to the actual nodes which the VFs
represent, by sending them both the index i of the PCRs affected by the update
and the identifier for the new configuration file(s) to be measured. When a node
receives such a request, it invokes its Tracer component in order to obtain the
actual new configuration data, computes its hash (the algorithm solely depends
on implementation and therefore is not considered in this description) and then
invokes its TPM with a PCR_Extend request, providing the new hashed value
to be concatenated to the old one as shown in Section 3.1. This simple update
protocol is shown in Figure 4.2.

17

Analysed protocols

Figure 4.2. Update measurements request

4.1.3 Attestation phase

Once the new values have been correctly accumulated into the PCRs of the TPM
of the devices involved, the orchestrator should verify whether this update was
performed correctly and therefore evaluate the trustworthiness of the correspond-
ing device. The Orc is able to perform this evaluation because it actually knows
what the correct values are as shown in the previous phase above. At this point,
the orchestrator initiates the actual Attestation by quote protocol by sending both
the index I of the PCRs which need to be checked and a nonce n, in order to
ensure freshness and avoid replay attacks. Figure 4.3 shows all the steps of this
protocol.

Figure 4.3. Attestation by quote protocol

18

Analysed protocols

It is assumed that the Orc knows the correct hash of the PCRs to be measured
and the public part of the Endorsement Key of the TPM hosted on the device of
interest, since it is associated to the corresponding VF, as shown when describing
the system model above.

Once the node receives the index of the PCRs to be evaluated and the nonce
it invokes its TPM by using the LoadEK command which allows it to obtain the
handle of the its Endorsement Key KHEK and then uses the same handle, along
with the nonce and the indexes, to request the creation of a Quote structure to the
TPM, which in turn computes the value hConf which contains the hash of the PCRs
at the specified indexes; the TPM then builds the QCert object by combining the
hashed value, the indexes and the nonce and finally computes a digital signature
on it by using the private part of its EK. The signature and the Quote structure are
eventually sent back to the orchestrator, which verifies the signature on the quote
using the known EKpub and whether all the other values (i.e. hash, indexes and
nonce) match the correct ones. If the verification is successful the Orc declares
the Fog Node as Trusted by updating the state variable associated to its VF.

It is worth noting that this protocol can only attest integrity relatively to the
last known measurement, therefore whenever the update measurement request
protocol is executed, this protocol should be run in conjunction immediately after,
in order to always assure run-time integrity.

4.2 Oblivious remote attestation
Apart from the Attestation by quote discussed above, Deliverable D2.2 [17] of the
project also defines another attestation protocol, named Attestation by proof and
whose analysis is not included in this work, with the objective of providing a way
for VFs to verify trust among themselves and establish paths for the service chains
in a distributed manner, without interacting with the central entity, represented
by the Orc. The main idea behind this protocol is to have the VFs create an
asymmetric pair of Attestation Keys (AK), stored in the TPM, whose secret part
usage is bound to the presence of specific Orc-authorised values in a determined
set of TPM PCRs. Once the AK is created and certified by the orchestrator, the
VF it belongs to distributes its public part to all of its neighbours, namely all of
the other VFs in the SG, so that any VF that needs to verify the correct state of
another, simply has to send a nonce as a challenge and verify that the signature
computed over it is actually using the secret part of the AK.

This scheme for zero-touch configuration, however, is not optimal, as it presents
three main issues

Static nature of AK. Each AK is actually bound to the single policy being

19

Analysed protocols

enforced when it was created. This implies that whenever a new policy is
deployed a new AK must be created, verified, certified and distributed, there-
fore creating limitations on the efficiency of the whole RAINBOW attestation
services.

Attestation Agent security. It is assumed that each measurement operation is
carried out by the local AAgt of the VF, not taking into account the possi-
bility that the communication between the two parties may be compromised
by an adversary, supplying incorrect data.

Exclusive use of normal PCRs. The number of PCRs inside a TPM is limited,
and only a subset are static, that is they can’t reset during run-time. Since
each VF requires at least one associated static PCR, the number possible
deployable VFs becomes limited.

All of these problems are addressed and resolved by the reinforced zero-touch
configuration protocols presented in RAINBOW Public Deliverable D2.3 [18]. The
solutions devised to solve the issues presented above include the use of repurposable
Attestation Keys, Attestation Agents equipped with secure and unique hash keys
and the use of the TPM non-volatile memory to create static NV-PCRs.

4.2.1 System model
The model considered for the enhanced version of the previous protocols is actu-
ally similar to the one presented in Section 4.1. The Orc is spawning a set of
containerised VFs instances as part of Service Graph chains. However, each VF
is now equipped with three trusted components: a SW-TPM serving as RoT, a
secure attestation agent and a secure tracer to measure its current configuration.
A graphical representation of the system is shown in Figure 4.4. Each VF, in this
case, has two sets of PCRs to separately track the the contents of the standards
ones and of the ones created on non-volatile memory (NVPCRs). The VF initial
knowledge also include three key handles: a storage key (SK) for the creation of
AKs, its own SW-TPM endorsement key, which was negotiated with the orches-
trator at the time of its creation, and a handle to the public of the Orc own EK.
Every attestation agent has also a unique key, shared with the orchestrator, in or-
der to authenticate its involvement in the measuring process. This key is assumed
to only be accessible by privileged code of the attestation agent itself. The Orc
maintains the SG with each spawned VF, to which it associates the public part
of their endorsement key, the shared key with the attestation agent and both sets
of mock PCRs and NVPCRs.

The protocol scheme, named Oblivious Remote Attestation (ORA), which lever-
ages on this system model is basically an enhanced version of the Attestation by

20

Analysed protocols

Figure 4.4. Refined system model with initial knowledge

proof protocol described above, such that each VF can have its correct configu-
ration state attested by the Orc and be allowed to use the created attestation
key to attest its honest behaviour to any other VFs, without revealing any ac-
tual measurement information and therefore completely preserving privacy. While
Figure 4.5 shows the complete workflow of this attestation scheme, the protocol
is complex and comprising of various phases, which will be described in details in
the following sections.

The protocol starts when a new VF requests to join the network. The Orc
requests the creation of an attestation key which will locked to a flexible policy
bound to the endorsement key of the orchestrator itself, so that only the latter can
actually authorise the use of the new attestation key. The Orc verifies that the
creation of the AK was performed correctly and then enrols the new VF into the
service chain, while also advertising the public part of the new attestation key to all
the neighbours in the chain. At this point, in order to allow the newly enlisted VF
to prove its state, the Orc sends to it a policy digest over its current acceptable
configuration signed with its own private endorsement key. Whenever another

21

Analysed protocols

Figure 4.5. Complete workflow of the ORA protocol

VF from the same chain wants to assess the trustworthiness of the new one, it
sends a nonce as challenge and expects to receive a signature with the previously
advertised attestation key; the receiver of the challenge, measures its own state
into its SW-TPM and if it matches the one authorised by the orchestrator, it is
allowed to use its private attestation key to sign the challenge and thus proving
its correct state.

4.2.2 AK creation request
At the beginning of the protocol, the Orc requests the creation of the attestation
key. In particular, all of the steps of this phase are shown in Figure 4.6. The orches-
trator computes a policy digest over the command code of TPM2_PolicyAuthorize
and the name of its own endorsement key and sends it to the VF along with the
template specifications of the key to be created. The policy computed is flexible,
which means that any object bound to it can only be used inside the SW-TPM
when some policy authorised by its owner is fulfilled. The VF then invokes its
SW-TPM to create the AK requested, which is then returned along with a signed
ticket providing information on its actual creation inside the TPM. After that, the

22

Analysed protocols

VF uses the newly received AK, its own EK and the creation ticket to invoke the
TPM2_CertifyCreation command, such that the TPM provides proof of creating
the AK by signing it along with other internal state information. At this point,
the new AK is also stored permanently inside the SW-TPM non-volatile memory
through TPM2_EvictControl command, since the key is flexible and can remain
the same. Finally, the certificate and the AK are sent to the Orc, which verifies
that the signature is valid and that the creation of the key was correct; if the
verification is successful, the VF is included in the service graph chain.

4.2.3 PCR management
While standard static PCRs cannot be reset during run-time, NV-based PCRs do
not follow the same rule and can actually be deleted and recreated indefinitely
depending on how they are created. It is therefore necessary to enforce some
rules such that NV-PCRs behave in the same way as normal PCRs. Specifically,
the NV-PCRs will be created with binding to a flexible policy so that only the
Orc may authorise operations on the NV indexes. In particular, only deletion
requests by the orchestrator will be allowed to actually undefine the NV index;
by including into the authorisation policy of the NV-PCRs the command code of
TPM2_NV_UndefineSpaceSpecial, only specifically authorised policies will be able
to undefine the NV index; finally, only the NV index specified can be undefined
by a VF since the Orc will also include a digest over the name of that index.

Figure 4.7 shows the necessary steps for the attachment process for both normal
and NV-Based PCRs. In the case of normal PCRs the process is greatly simplified,
since it is only necessary for the Orc to specify which PCRs are to be used to
the virtual function. The orchestrator adds them to its own mPCRs structure
associated to the VF, while the latter adds them to its normal PCR structure.
Differently, when NV-based PCRs are to be attached, the Orc has to send more
information

• the identifier for the NV-PCRs.

• a template which described the characteristics of the NV slots, such as the
hashing algorithm to be used, the extension operation via TPM2_NV_Extend
and that a policy is required to authorise the deletion of the index.

• the authorisation policy which exclusively authorises the orchestrator to re-
quest the index deletion, as described in the previous paragraph.

• an initial value (IV) to be extended by the newly created NV-PCRs, since
the latter can only be certified when written at least once.

Once all of this information is received by the VF, it invokes its TPM to perform all

23

Analysed protocols

Figure 4.6. AK creation phase

the necessary operations for the creation, extension and certification of the newly
requested NV-PCRs. The certification information is then sent back to the Orc,
which in turn has to verify whether the certificate is authentic, that the structure
was actually generated by the TPM and that it is associated to the correct value
and authorisation policy previously specified.

When considering the detachment operation of PCRs, while with normal ones

24

Analysed protocols

Figure 4.7. Attaching normal or NV-PCRs

the protocol is extremely simplified, with the Orc just informing the VF about the
PCRs to remove from its structure, the case of NV-PCRs is much more complex.
Figure 4.12 shows all the steps required. The orchestrator requests the start of a
new policy session to the VF and receives back the session-generated nonce. At this
point, the Orc locally executes Algorithm 1, reported in Figure 4.8. The purpose
of the algorithm is to create a policy hpol, such that the TPM2_PolicySigned can
only be executed with a digest signed by the orchestrator, which is computed over
the nonce received, an expiration and a further digest hcp which is used to restrict
the session to the TPM2_UndefineSpaceSpecial command, along with NV-PCRs
identifier. At this point, the deletion request is passed on to the VF, which invokes
its TPM to verify that hpol was signed by the Orc and to run all subsequent policy
commands, which allow, if everything is actually correct, to set the policy session

25

Analysed protocols

in a state that certifies the fulfilment of the policy authorised by the orchestrator
and thus grants the limited execution of TPM2_NV_UndefineSpaceSpecial which
actually deletes the NV index from memory.

Figure 4.8. Detailed steps of Algorithm 1

4.2.4 Measurement update
The measurement update phase is carried out with the same principle of the one
described in Section 4.1.2. In fact, the orchestrator starts the request by locally
performing the measurement process and updating the mPCR structure of the
corresponding VF with the new values obtained by measuring the configuration
pointed by a Fully Qualified Path Name (FQPN), which is also authenticated
because the Orc shares the same unique key with the VF attestation agent. The
orchestrator then proceeds to apply Algorithm 2, shown in Figure 4.9, in order to
compute the expected policy digest with the correct values of the mock PCRs. This
digest, along with all information required to perform the measurement update, i.e.
the FQPN, the PCR type and the index affected, is sent to the VF. Once the VF
receives the data, the request is intercepted by its local AAgt, which proceeds to
obtain an authenticated measurement of the FQPN by using the T rce utility. The
VF then invokes the SW-TPM to verify that the received policy digest is actually
signed by the Orc, returning a ticket as proof in case of success. Afterwards,
the PCR extension phase actually starts by using the PCR extend command in
audit mode, in order to later provide to the orchestrator proof that the extension
was performed correctly, by accumulating the CPs and their Response Parameters

26

Analysed protocols

Figure 4.9. Detailed steps of Algorithm 2

Figure 4.10. Detailed steps of Algorithm 3

(RPs) into an auditDigest (this procedure is detailed by Algorithm 3 in Figure
4.10). Once the operation is complete, the SW-TPM certifies this digest with its
own EK and all the required data is sent back to the Orc. The latter applies
Algorithm 4, shown in Figure 4.11, in order to compute the expected audit digest
by using the correct command codes and a success response parameter; if the
digests match and if the signature is valid then it is assumed that the process was
successful. The whole protocol is shown below in Figure 4.13.

27

Analysed protocols

Figure 4.11. Detailed steps of Algorithm 4

4.2.5 Oblivious remote attestation phase
The final step of the protocol is the one that actually allows the distributed verifi-
cation of trust among nodes of the same service graph chain. Once the attestation
keys have been created and distributed and each node is in a correct state with
an authorised policy, it is possible to serve challenge requests between each other.
When a VF receives a nonce n as a challenge to prove its conformance, it simply
signs the value with its private AK and sends it back to the Verifier. The specific
steps are reported in Figure 4.14. The virtual function that receives a challenge,
first measures and verifies the content of all of its active PCRs (both normal and
NV-based), then invokes TPM2_PolicyAuthorize to verify whether the current
session policy digest matches the approved one and whether the ticket is valid. If
the outcome is positive, then the current policy digest is replaced in the SW-TPM
with the digest over the public part of the Orc’s EK, which allows the use of the
necessary attestation key for the digital signature.

28

Analysed protocols

Figure 4.12. Detachment of normal or NV-PCRs

29

Analysed protocols

Figure 4.13. Measurement update phase

30

Analysed protocols

Figure 4.14. Oblivious remote attestation phase

31

Chapter 5

Thesis objective

The work carried out for this thesis is focused on the formal verification of pro-
tocols presented in Chapter 4 with the formal methods described in Chapter 2.
In particular, in order to achieve the requirements of trust-aware service graph
chains with zero-touch configuration functionalities, all while preserving the pri-
vacy of the participating entities, RAINBOW public Deliverable D2.1 [16] defines
some specific properties

P1 Configuration Correctness. In order to maintain its trusted state, the con-
figuration of a device must always adhere to the attestation policies currently
deployed by the orchestrator, both at load-time and throughout run-time.

P2 SGC Trustworthiness. All nodes being part of a service chain must be in
a trusted state and they must have provided to the orchestrator verifiable
evidence about their correct behaviour. This follows as a consequence of P1,
by assuming that all nodes have had their configuration integrity verified.

P3 Attestation Key Protection. The security of attestation keys, bound to
specific authorisation policies, and in general of all keys involved in the pro-
tocols, must be guaranteed at all times. The secret part of the asymmetric
keys must always be securely stored inside a TPM and never made available
to an adversary.

P4 Immutability. The measurement process, given the same input data, must
always return the same result, such that the tracer always gives the correct
measurement.

One more property concerning the protection against timing attacks was spec-
ified, but as discussed in Chapter 2 these kind of side-channel attacks cannot be
modelled with the formal verification methods employed in this work.

32

Thesis objective

The following chapter will present the implementations of the protocols in the
ProVerif specification language, as well as in some of its variants, with the aim of
trying to verify the above-mentioned properties, through a combination of reach-
ability queries and correspondence assertions, which model the desired results.

33

Chapter 6

Formal modelling of
analysed protocols

The models presented in this chapter will only consist of the most relevant part,
that is the actual processes interacting and the queries included, while mostly
omitting the preamble with the definitions of types, functions and cryptographic
primitives. A complete working copy of the models is included in the Appendix.

6.1 Attestation by quote
The modelling of this protocol proceeded incrementally with the attestation phase
and the update request phase initially separated, testing various possible imple-
mentations in order to easily identify any possible shortcoming in its functionality.

6.1.1 Simple attestation phase
The first implementation consists of the standalone attestation by quote phase. In
its simplest form, the protocol consists of an orchestrator entity which needs to
verify whether the node entity is in a correct configuration state by checking specific
PCR values. The main process starts by creating the asymmetric endorsement key
EK belonging to the node of interest and then proceeds by outputting the public
part into the public channel representing the network. The process also spawns
two sub-processes, the Orc and the TPM, acting respectively as the orchestrator
and the node to be verified. At this stage of development, the whole node is only
represented by the its TPM, therefore excluding the chance of a dishonest device.

34

Formal modelling of analysed protocols

process
new ek: ekpair ;
(! out(c, pk(ek));0 | !Orc(pk(ek)) | !TPM(sk(ek), pk(ek)))

Then the Orc process starts the interaction by producing a nonce n and the set
of relevant indexes I and sending them to the TPM process. The latter retrieves the
specified values from its PCRs through the utility function extractRequestedPCR,
computes its hash hConf and constructs the quote structure with the hash, the
nonce, and index set, while also producing a signature over it with its private EK.
The implementation of the digital signature operation in the ProVerif environment
allows to retrieve the message directly from the signature, therefore only the latter
needs to be sent back to the orchestrator.

1 let Orc(pEK: publicEK) =
2 new n: bitstring ;
3 new I: bitstring ;
4 out(c, (n, I));
5 in(c, sig: bitstring);
6 let hConf = hash(extractRequestedPCR (I)) in
7 if checksign (sig , pEK) = ok() then
8 let (= hConf , =n, =I) = getmess (sig) in
9 event Trusted (); 0.

10
11 let TPM(sEK: secretEK , pEK: publicEK) =
12 in(c, (n: bitstring , I: bitstring));
13 let hConf = hash(extractRequestedPCR (I)) in
14 event SendingQuote ();
15 out(c, sign ((hConf , n, I), sEK));
16 0.

Once the orchestrator receives the signature it checks whether it is valid and
then verifies that the quote structure matches the values expected. This check
is expressed through the specific syntax of ProVerif pattern matching on line 8
above.

query event(Trusted ()) ==> inj -event(SendingQuote ()).
query event(Trusted ()).

The queries implemented for this model involve the events embedded in the
processes; in particular, one reachability query checks the execution of the Trusted
event, which means that the signature and the values where all correct , whereas
an injective correspondence query verifies that for each execution of the Trusted

35

Formal modelling of analysed protocols

event a unique execution of the SendingQuote event must have happened, ensuring
that the potential trusted state is only relative to the last quote structure sent.

6.1.2 PCR update request and attestation
The second implementation combines the update and the attestation phases; most
of the model is equal to the previous one with some key differences in the Orc and
TPM processes and the queries used.

1 let Orc(pEK: publicEK) =
2 new betaId: bitstring ;
3 new i: bitstring ;
4 new hBeta ’: bitstring ;
5 let vPCR = extendPCR (hash(hBeta ’)) in
6 event UpdateTrustedConfiguration ();
7 out(c, (i, betaId));
8 ...
9

10
11 let TPM(sEK: secretEK , pEK: publicEK) =
12 in(c, (i: bitstring , betaId: bitstring));
13 let beta = Tracer(betaId) in
14 let hBeta = hash(beta) in
15 let PCR = extendPCR (hash(hBeta)) in
16 event UpdatedPCR ();
17 ...

At first, the orchestrator creates the identifier of the new configuration file(s), the
hash of the latter and the set of the involved PCR indexes. After accumulating its
vPCR values, the Orchestrator executes the event UpdateTrustedConfiguration
and then sends the configuration identifier and the set of indexes on the public
channel to the TPM, which upon receiving the data calls the Tracer function to
measure the file, then computes the hash and extends the PCR content with the
new values; at this point the event UpdatedPCR is executed.

Two additional correspondence queries are employed with this model and they
are reported below
event(UpdatedPCR ())== > inj -event(UpdateTrustedConfiguration ()).
event(SendingQuote ())== > event(UpdatedPCR ()).

The first requires injective correspondence between two events, such that for each
execution of UpdatedPCR, a unique execution of UpdateTrustedConfiguration
must have happened; this verifies whether the update request is actually coming

36

Formal modelling of analysed protocols

from the orchestrator. The second query is a simple correspondence which ensures
that the attestation phase only executes after the update phase.

6.1.3 Multiple fog nodes involvement
A third implementation was developed with the purpose of testing whether a
specific fog node could be safely declared as trusted, when other nodes are concur-
rently interacting with the orchestrator. In particular, once again for the sake of
simplicity the update phase was omitted, since it would not be necessary for this
kind of test. Another sub-process is created by the main one at the start
process

new targetek : ekpair;
(!Orc(pk(targetek)) |
! Target_FogNodeTPM (pk(targetek), sk(targetek)) |
! Other_FogNodeTPM ())

While the node to verify receives its copy of the endorsement key, the other fog
node will produce locally its EK and then perform the same operation carried out
by the node of interest, i.e. create the Quote structure, signing it and sending it
to the orchestrator.
let Other_FogNodeTPM =

new ek: ekpair;
out(c, pk(ek));
in(c, (n: bitstring , I: bitstring));
let hConf = hash(extractRequestedPCR (I)) in

event SendingQuote (pk(ek));
out(c, sign ((hConf , n, I), sk(ek)));

0.

The orchestrator in this case will receive an unknown public endorsement key
and that will be the key used to perform the check on the signature it gets at the
end. The orchestrator, however, also knows the actual EK belonging to the node
it has to verify, so only if the key received and the actual one match, the node is
declared as trusted.
let Orc(TpEK: publicEK) =

in(c, XpEK: publicEK);
new n: bitstring ;
new I: bitstring ;
out(c, (n, I));
in(c, sig: bitstring);

37

Formal modelling of analysed protocols

let hConf = hash(extractRequestedPCR (I)) in
if checksign (sig , XpEK) = ok() then

let (= hConf , =n, =I) = getmess (sig) in
if (XpEK = TpEK) then event Trusted (TpEK);

0.

The queries used this time almost the same as the ones in the first model, but
in this case an additional constraint was included; the events are tied to a public
endorsement key, so that, in particular, the correspondence query implies that the
same key has to be used for both the creation of the Quote structure and the
declaration of trust.
query key: publicEK ;
event(Trusted (key)) ==> inj -event(SendingQuote (key)).
query key: publicEK ;
event(Trusted (key)).

6.1.4 Fog node and TPM as separate entities
This next implementation increases the complexity of the model by separating
the node and its TPM into two entities, which in this case are communicating
through a public channel; the public channel allows the Dolev-Yao adversary to
have complete control over the communication, so that it simulates a possibly
vulnerable and/or compromised node. The main process of the model, apart from
creating the endorsement key as usual, also creates the initial set of PCR values
to pass both to the orchestrator and the TPM, in order to model the fact that the
node was in a correct state before the new update phase.
process

new targetek : ekpair;
new oldPCR: PCRvalue ;
(ORC(pk(targetek), oldPCR) | FogNode |
TPM(pk(targetek), sk(targetek), oldPCR))

The execution of the sub-processes is similar to the previous one, with the
exception of the FogNode which acts as a mediator between the orchestrator and
the TPM, by passing the parameters and calling the tracer function to obtain
binary data of the configuration.
let FogNode =

in(c, (i:bitstring , betaID: bitstring));
event PCR_UpdateRequestReceived ();
let hBeta = hash(Tracer(betaID)) in

event PCR_Extend ();

38

Formal modelling of analysed protocols

out(node_tmp_c , (i, hBeta));

in(c, (n: bitstring , I: bitstring));
out(node_tmp_c , (n, I));
in(node_tmp_c , sig: bitstring);
out(c, sig);
0.

The extension operation of the PCR is also explicitly modelled this time, with
the use of the concatenate function both in the orchestrator and the TPM.
let ORC(pEK: publicEK , oldvPCR : PCRvalue) =

new betaID : bitstring ;
new i: bitstring ;
event PCR_UpdateRequest ();
out(c, (i, betaID));

new n: bitstring ;
new I: bitstring ;
out(c, (n, I));
in(c, sig: bitstring);
let hBeta ’ = hash(Tracer (betaID)) in

let vPCR = hashPCR (concatenate (oldvPCR , hBeta ’)) in
let hConf = hashPCR (getRequestedPCR (vPCR , I)) in
if checksign (sig , pEK) = ok() then

let (= hConf , =n, =I) = getmess (sig) in
event TrustedNode (pEK);

0.

let TPM(pEK: publicEK , sEK: secretEK , oldPCR : PCRvalue) =
in(node_tmp_c , (i: bitstring , hBeta: bitstring));
let PCR = hashPCR (concatenate (oldPCR , hBeta)) in

event PCR_Updated ();

in(node_tmp_c , (n: bitstring , I: bitstring));
let hConf = hashPCR (getRequestedPCR (PCR , I)) in

event SendingQuoteStructure (pEK);
out(node_tmp_c , sign ((hConf , n, I), sEK));

0.

Some additional events and queries have been included to verify the correct
execution order of the operations.
query event
(PCR_UpdateRequestReceived ()) ==> inj -event(PCR_UpdateRequest ()).
query event
(PCR_Updated ()) ==> inj -event(PCR_Extend ()).
query event (PCR_Updated ()).

39

Formal modelling of analysed protocols

The first injective correspondence is used to verify that the node actually receives
the update request from the orchestrator, whereas the second one to verify that
the actual update of the PCRs on the TPM follows a unique request from its node.
The last reachability query verifies that the update is actually executed.

6.1.5 Verification of RAINBOW security properties
This is the most complete and complex model for the Attestation by quote protocol,
aiming to verify the RAINBOW security properties mentioned in chapter 5. The
main process in this case creates the usual three actors, namely the orchestrator,
the node and the TPM, along with an additional actor which represent the tracer
utility. This separation serves the purpose of modelling a possible intervention of
an adversary in the communication to and from the tracer itself, thus helping to
prove the Immutability property.
let Tracer =

in(trc , cid: configid);
event TracerServingRequest ();
let configData = retrieveConfigData (cid) in

out(trc , configData);
0.

The rest of the model follows the usual execution order, with refined functions
for the retrieval and extension of PCR values and with additional events that serve
as a base for more specific correspondence queries.

1 let ORC(pek: pekey , pcrSet : pcrset) =
2
3 (* Policy Update *)
4 new cid: configid ;
5 new I: index;
6 event StartingConfigurationUpdateOrc (cid , I);
7 let configData = retrieveConfigData (cid) in
8 let newpcrSet = Set(pcrSet , I,
9 hash ((Get(pcrSet , I),hash(configData)))) in

10 out(chan , (cid , I));
11
12 (* Attestation by quote *)
13 new n: nonce;
14 out(chan , (n, I));
15 in(chan , sig: bitstring);
16 let hconf = hash(Get(newpcrSet , I)) in
17 if checksign (sig , xpek) = ok() then
18 let (hconf ’: bitstring , n’: nonce , I’: index) = getmess (sig)
19 in
20 if hconf ’= hconf && n’=n && I’=I then

40

Formal modelling of analysed protocols

21 event NodeTrusted (pek)
22 else event NodeNotTrusted (pek);
23 0.
24
25 let FogNode (pek: pekey) =
26 (* Configuration Update *)
27 in(chan , (cid: configid , I:index));
28 event StartingConfigurationUpdateFogNode (cid , I);
29 (* Request to the Tracer *)
30 out(trc , cid);
31 in(trc , configData : bitstring);
32 let hb = hash(configData) in
33 out(pchan , (hb , I));
34
35 (* Attestation by quote *)
36 in(chan , (n’: nonce , I’: index));
37 out(pchan , (n’, I ’));
38 in(pchan , sig ’: bitstring);
39 out(chan , sig ’);
40 0.
41
42
43 let TPM(pek: pekey , sek: sekey , pcrSet : pcrset) =
44 (* Configuration Update *)
45 in(pchan , (hb: bitstring , I: index));
46 event StartingConfigurationUpdateTPM (I);
47 let newpcrSet = Set(pcrSet , I, hash ((Get(pcrSet , I), hb))) in
48
49 (* Attestation by quote *)
50 in(pchan , (n’: nonce , I’: index));
51 let hconf ’ = hash(Get(newpcrSet , I ’)) in
52 out(pchan , sign ((hconf ’, n’, I’), sek));
53 0.

It is worth pointing out that the ORC doesn’t employ the tracer utility when
retrieving the new configuration on line 7 and that is to model the fact that the or-
chestrator is inherently trusted and therefore its values must always be the correct
ones. On lines 5 and 13 , the creation of the set of PCR indexes I and the nonce
n is done with new specific types, respectively index and nonce, differently from
the previous models, where a simple bitstring was used; this is because when
outputting the values together on a channel, the order was not always correctly
maintained by ProVerif and thus some errors could ensue in the input operation
in other processes.

The queries devised in this case include two reachability ones, to verify whether
the events for the declaration of trust are actually executed, and two correspon-
dence assertions;

41

Formal modelling of analysed protocols

query key: pekey; event(NodeTrusted (key)).
query key: pekey; event(NodeNotTrusted (key)).
query cid:configid , I:index;

inj -event(StartingConfigurationUpdateTPM (I)) ==>
(inj -event(StartingConfigurationUpdateFogNode (cid , I)) ==>
inj -event(StartingConfigurationUpdateOrc (cid , I))).

query key: pekey; inj -event(NodeTrusted (key)) ==>
inj -event(TracerServingRequest ()).

The third query is actually a triple injective correspondence check, such that the
whole configuration update process has to start from the orchestrator and proceed
to the node and then to the TPM. The last query verifies that the declaration of
trust follows an actual execution of the tracer utility, in order to ensure that the
correct data was used.

6.2 Oblivious remote attestation
This enhanced version of the protocol improves the functionalities of the previous
one, while inevitably increasing the complexity of the necessary operations to
perform at each step. For this reason, the modelled protocol phases presented in
the next sections will be considered only by themselves, not actually interacting
with each other. This is due to the fact that ProVerif would struggle to handle
such a complex system as a whole.

6.2.1 Attestation Key creation
The first phase modelled is the request to create a repurposable attestation key,
bound to a flexible policy, when a VF wishes to be included in the service chains
maintained by the orchestrator. The main process starts by creating the key ma-
terial for the EK of the orchestrator, then proceeds to create both the Storage Key
(SK), necessary to create the attestation key, and the EK for the TPM entity. In
this case, the keys management is more precise, as each one is bound to a handle
which includes the pair of asymmetric keys, a template that describes the charac-
teristics of the key, a policy to which the key can be bound and possibly another
handle to the parent key in the hierarchy. Each element of the tuple composing the
key handle is retrievable through specific functions, defined as rewrite rules and
publicly available, except for the one return the private part of the key; the latter
is declared as private, and can only be accessed by honest actors of the process,
therefore ensuring that keys are never compromised. This initial step is shown
below.

42

Formal modelling of analysed protocols

process
(* Orchestrator *)
new orcEK:keymat;
out(chan , pk(orcEK));

(* TPM *)
(* Create storage key SK *)
new skpair:keymat;
new sktemplate : bitstring ;
new skpolicy : bitstring ;
let tpmSKh = createHandle (sktemplate ,
nullhandle , skpolicy , pk(skpair), sk(skpair)) in
out(chan , pk(skpair));
(* Create Endorsement Key EK *)
new ekpair:keymat;
new ektemplate : bitstring ;
new ekpolicy : bitstring ;
let tpmEKh = createHandle (ektemplate ,
nullhandle , ekpolicy , pk(ekpair), sk(ekpair)) in
out(chan , pk(skpair));

(! TPM(tpmSKh , tpmEKh) |
! fogNode (tpmEKh , tpmSKh) |
!Orc(orcEK , getPK(tpmEKh)))

The orchestrator then is in charge of starting the interaction, by creating the
authorisation policy and the template information for the creation of the AK.
All command codes and response parameters for the TPM operation have been
modelled as immutable free names.
let Orc(orcEK:keymat , ptpmEK :pkey) =

(* Create the AK policy *)
let hpol = hash(hash ((zeros , CCpolicyauthorize ,
hash ((pkeyname (pk(orcEK)), skeyname (sk(orcEK))))))) in
(* Create AK template *)
new template : bitstring ;
out(chan , (hpol , template));
...

All the subsequent interactions mostly take place between the node and its
TPM, following all the necessary steps for the correct creation of the AK.
let fogNode (ekh:keyhandle , skh: keyhandle) =

(* Get the AK policy and template *)

43

Formal modelling of analysed protocols

in(chan , (hpol:bitstring , template : bitstring));

(* Send TPM_create request *)
out(tpmchan , (template , skh , hpol));
(* Get TPM created AK *)
in(tpmchan , (template ’: bitstring ,
skh ’: keyhandle , hpol ’: bitstring ,
pAK ’:pkey , sealedsAK ’:skey ,
hcreation ’: bitstring , t’: bitstring));

(* Send TPM_Load request *)
out(tpmchan , (template ’, skh ’, hpol ’, pAK ’, sealedsAK ’));
in(tpmchan , (akh:keyhandle , pakname : bitstring));

(* Send TPM_certifyCreation request *)
out(tpmchan , (akh , ekh , hcreation ’, t ’));
in(tpmchan , (certinfo :bitstring , signature : bitstring));

(* Send all the data to the orc *)
out(chan , (certinfo , signature , getPK(akh)));

0.

let TPM(tpmSKh :keyhandle , tpmEKh : keyhandle) =
(* TPM2_Create *)
in(tpmchan , (template :bitstring ,
skh:keyhandle , hpol: bitstring));
if skh = tpmSKh then
(* Generate the new key *)
new ak: keymat ;
new hcreation : bitstring ;
let t = hmac(tpmproof ,
(CREATION ,
(pkeyname (pk(ak)), skeyname (sk(ak))), hcreation)) in

(* Seal AK secret part with sSK *)
let sealedsAK = seal(sk(ak), getPK(tpmSKh)) in
let pAK = pk(ak) in
(* Create the wrap *)
let wrap = (template , skh , hpol ,
pAK , sealedsAK , hcreation , t) in
out(tpmchan , wrap);

(* TPM2_Load *)
in(tpmchan , (template ’: bitstring , skh ’: keyhandle ,
hpol ’: bitstring , pAK ’:pkey , sealedsAK ’: skey));
if skh ’ = tpmSKh then
let sAK ’ = unseal (sealedsAK ’, getSK(tpmSKh)) in
let akh = createHandle (template ’, skh ’,

44

Formal modelling of analysed protocols

hpol ’, pAK ’, sAK ’) in
out(tpmchan , (akh , pkeyname (pAK ’)));

(* TPM2_CertifyCreation *)
in(tpmchan , (akh ’’: keyhandle ,
ekh ’’: keyhandle , hcreation ’’: bitstring ,
t’’: bitstring));
(* Get the AK key from the handler *)
let pak ’’ = getPK(akh ’’) in
let sak ’’ = getSK(akh ’’) in
let xt = hmac(tpmproof ,
(CREATION , (pkeyname (pak ’’),
skeyname (sak ’’)), hcreation ’’)) in
if xt = t’’ then (* The key is associated to
the right ticket and has been created
inside the TPM *)
let certinfo = (pkeyname (pak ’’),
TPM_GENERATED , getTemplate (akh ’’),
getPolicy (akh ’’)) in
if ekh ’’ = tpmEKh then
out(tpmchan , (certinfo , sign(certinfo , getSK(ekh ’ ’))));
0.

Once the key has been certified, both the certificate and the public part of the
key are sent back to the orchestrator, which in turn verifies that all parameters
match the expected ones. In case the check is successful and the AK is correctly
created, the orchestrator sends a secret value into the public channel, whose reach-
ability is then evaluated through a query that allows to know whether the protocol
actually terminated.
let Orc(orcEK:keymat , ptpmEK :pkey) =

...
(* Get the AK public part ,
the certificate and the signature
over the certificate *)
in(chan , (certinfo :bitstring ,
signature :bitstring , pak:pkey));
if checksign (signature , ptpmEK) = ok() then
let (objname :bitstring ,
magic:bitstring ,
magic ’: bitstring , authpol : bitstring) = certinfo in
if objname = pkeyname (pak) then
if magic = TPM_GENERATED then
if magic ’ = template then
if authpol = hpol then
(* AK matches the policies *)
out(chan , s1);
0.

45

Formal modelling of analysed protocols

6.2.2 PCR or NV-PCR attachment
This phase describes the procedure necessary to attach new PCRs, that is add new
values to the PCR structure of both the VF and the Orc. This procedure is valid
for both normal and NV-based PCRs, however, this model will only be considering
the case of NV-PCRs, since, as described in Chapter 4 the attachment of normal
PCRs is fairly straightforward, whereas NV-PCRs need to have a specific policy
associated to their creation, in order to avoid unauthorised deletions not coming
from the orchestrator.

At the start of the main process the EKs for both the Orc and the TPM are
created, with the same handle tuple as the previous case, then all three sub-process
entities are spawned.
process

(* Orchestrator EK *)
new orcekpair : keymat ;
let orcEKh = createHandle (nulltemplate , nullhandle ,
nullpolicy , pk(orcekpair), sk(orcekpair)) in
out(chan , pk(orcekpair));

(* TPM EK *)
new tpmekpair : keymat ;
let tpmEKh = createHandle (nulltemplate , nullhandle ,
nullpolicy , pk(tpmekpair), sk(tpmekpair)) in
out(chan , pk(tpmekpair));

(TPM(tpmEKh) | Orc(orcEKh , pk(tpmekpair)) |
fogNode (tpmEKh))

The orchestrator starts the interaction by building the request for the creation
of new NV-PCRs. The request includes the authorisation policy, in which the
command codes are defined as free names in the preamble of the program, the
template, the index identifiers and the initial value (IV) that needs to be extended
into the newly created NV-PCRs in order to certify them; in the model the IV is
set to zero.
let Orc(orcEKh :keyhandle , ptpmEK :pkey) =

(* Build request to attach a new nv -pcr *)

let hpol = hash ((hash(hash ((zeros , CCpolicyauthorize ,
(pkeyname (getPK(orcEKh)), skeyname (getSK(orcEKh)))))) ,

CCpolicycommandcode ,
CCnvundefinespacespecial)) in

new tpl: bitstring ;
new idx: bitstring ;
let IV = zeros in
out(chan , (idx , tpl , hpol , IV)); ...

46

Formal modelling of analysed protocols

The fogNode process does not execute any particular operation except for the
exchange of messages and TPM invocation, therefore its code is omitted. The
TPM process sequentially executes the phases of NV-PCR creation, extension and
certification. In particular, the PCR structure is created in a similar manner as
the keys, i.e. a handle that refers to a tuple of data including the index identifiers,
the template, the authorisation policy and most importantly a private channel
(locally created in the process session) that models the actual content of the PCRs,
following the flawed representation of state in the standard ProVerif language.
let TPM(tpmEKh : keyhandle) =

(* TPM_NVDefineSpace *)
in(tpmchan , (idx:bitstring , tpl:bitstring ,

hpol: bitstring));
new nvpcrcontchan : channel ;
(* nv content initialized to zeros *)
out(nvpcrcontchan , zeros);
let nvprc = createNVPCR (idx , nvpcrcontchan , hpol , tpl) in
out(tpmchan , nvprc);

(* TPM_NVExtend *)
in(tpmchan , (nvpcr ’: nvpcrhandle , IV ’: bitstring));
let nvpcrcontchan ’ = getPCRContentChannel (nvpcr ’) in
(* Extend the value inside the PCR *)
in(nvpcrcontchan ’, oldvalue : bitstring);
out(nvpcrcontchan ’, hash ((oldvalue , IV ’)));

(* TPM_NVCertify *)
in(tpmchan , (nvpcr ’’: nvpcrhandle , ekh: keyhandle));
if ekh = tpmEKh then
let sEK = getSK(ekh) in
let tpl ’’ = getPCRTemplate (nvpcr ’’) in
let hpol ’’ = getPCRPolicy (nvpcr ’’) in
let idx ’’ = getPCRIndex (nvpcr ’’) in
let nvpcrcontchan ’’ = getPCRContentChannel (nvpcr ’’) in
in(nvpcrcontchan ’’, content ’’: bitstring);
let certInfo = (TPM_GENERATED , content ’’,
hash ((tpl ’’, WRITTEN , idx ’’, hpol ’ ’))) in
out(tpmchan , (certInfo , sign(certInfo , sEK)));

Once the new NV-PCRs are extended and certified, the certification info is
sent back to the orchestrator that, as usual, verifies that everything was executed
correctly by checking the signature over the certificate and the content specifying
that the creation actually happened inside the SW-TPM and that the content
was extended as expected. In case of success, the NV-PCRs are attached to the
structure.

47

Formal modelling of analysed protocols

let Orc(orcEKh :keyhandle , ptpmEK :pkey) =
...
in(chan , (certInfo :bitstring , signature : bitstring));

if checksign (signature , ptpmEK) = ok() then
let (magic:bitstring ,
nvcontent :bitstring ,
objname : bitstring) = certInfo in
if magic = TPM_GENERATED then
if nvcontent = hash ((zeros , IV)) then
if objname = hash ((tpl , WRITTEN , idx , hpol)) then
(* The created NV -PCR matches what has been required *)
out(chan , s1);

6.2.3 PCR or NV-PCR detachment
Similarly to the previous phase, the detachment operation can be carried out
for both normal and NV-based PCRs. The first case with normal PCRs is once
again fairly simple, so the model proposed below will only consider the NV-PCRs
detachment. This process is quite complex as it is necessary to verify that several
constraints are respected, in order to actually delete the NV index from memory.
The main ProVerif process this time, apart from the usual creation of the EK
for both the orchestrator and the TPM, also creates the initial existing NV-PCR
structure that needs to be deleted and assigns to it the policy that will have to be
matched in order to authorise the deletion.
process

...
(* Create nv register *)
new template : bitstring ;
let policy = hash ((hash(hash ((zeros , CCpolicyauthorize ,
(pkeyname (getPK(orcEKh)), skeyname (getSK(orcEKh)))))) ,

CCpolicycommandcode ,
CCnvundefinespacespecial)) in

new index: bitstring ;
new nvcontent : channel ;
let nvpcrh = createNVPCR (index , nvcontent ,
policy , template) in ...

The orchestrator starts the procedure for the deletion by requesting the involved
node to create a fresh policy session and to get the session generated nonce; in
this model it is directly the fogNode process which invokes the TPM to start the
new session, which in turn verifies that the command was correct and generates
the nonce n to pass back to the orchestrator.
let fogNode (tpmEKh:keyhandle , orcEKh: keyhandle) =

(* Start policy session request *)

48

Formal modelling of analysed protocols

out(tpmchan , START_POLICY_SESSION);
in(tpmchan , nonce: bitstring);
out(chan , nonce); ...

let TPM(tpmEKh:keyhandle , orcEKh: keyhandle) =
(* Start policy session *)
in(tpmchan , command : bitstring);
if command = START_POLICY_SESSION then
new nonce: bitstring ;
new sessionhpol : channel ;
new sessioncphash : channel ;
out(sessionhpol , zeros);
out(tpmchan , nonce);

Once the orchestrator has received the nonce, it executes Algorithm 1 (Figure
4.8) creating the hpol policy, its signature, as well as the digest ahash and its sig-
nature. These are needed to ensure that the PolicySigned command is executed
with a policy authorised by the orchestartor and that the session is then restricted
to the use of the UndefineSpaceSpecial command.
let Orc(orcEKh :keyhandle , ptpmEK :pkey , nvpcrh : nvpcrhandle) =

(* Algorithm 1: auth nv index deletion *)
in(chan , nonce: bitstring);
let idx = getPCRIndex (nvpcrh) in
let hpol = hash(hash(
(zeros , CCpolicysigned , pkeyname (getPK(orcEKh))))) in
let hhpol = hash(hpol) in
let signhhpol = sign(hhpol , getSK(orcEKh)) in
let hcp = hash ((CCnvundefinespacespecial , idx)) in
let ahash = hash ((nonce , zeros , hcp)) in
let signahash = sign(ahash , getSK(orcEKh)) in

out(chan , (nvpcrh , hcp , signahash ,
hpol , hhpol , signhhpol));

The rest of the code for the fogNode process is omitted as it only consists of a
sequence of commands to the TPM, whereas the latter process carries out all the
necessary steps by accumulating the policy digests computed in two local channels,
used as state variables.
...
(* TPM_VerifySignature *)

in(tpmchan , (hhpol:bitstring ,
signhhpol :bitstring , handle : keyhandle));
if handle = orcEKh then
if checksign (signhhpol , getPK(orcEKh)) = ok then

49

Formal modelling of analysed protocols

if getmess (signhhpol) = hhpol then
let t = hmac(tpmproof ,
(VERIFIED , hhpol , pkeyname (getPK(orcEKh)))) in
out(tpmchan , t);

(* TPM_PolicySigned *)
in(tpmchan , (signahash ’: bitstring ,
hcp ’: bitstring , nonce ’: bitstring , handle ’: keyhandle));
if handle ’ = orcEKh then
let ahash = hash ((nonce ’, zeros , hcp ’)) in
if checksign (signahash ’, getPK(orcEKh)) = ok then
if getmess (signahash ’) = ahash then
in(sessionhpol , oldsessionhpol ’: bitstring);
out(sessionhpol , hash(hash(
(oldsessionhpol ’, CCpolicysigned ,
pkeyname (getPK(orcEKh))))));
out(sessioncphash , hcp ’);

(* TPM_PolicyAuthorize *)
in(tpmchan , (hpol ’’: bitstring ,
t’’: bitstring , orcname ’’: bitstring));
in(sessionhpol , oldsessionhpol ’’: bitstring);
if oldsessionhpol ’’ = hpol ’’ then
let newt = hmac(tpmproof ,
(VERIFIED , hash(hpol ’’), orcname ’’)) in
if newt = t’’ then
out(sessionhpol ,
hash ((zeros , CCpolicyauthorize , orcname ’ ’)));

(* TPM_PolicyCommandCode *)
in(tpmchan , commandcode : bitstring);
let sessioncc = commandcode in
in(sessionhpol , oldsessionhpol ’’’: bitstring);
out(sessionhpol , hash ((oldsessionhpol ’’’,
CCpolicycommandcode , CCnvundefinespacespecial)));

(* TPM_NVUndefineSpaceSpecial *)
in(tpmchan , nvpcrh : nvpcrhandle);
if sessioncc = CCpolicycommandcode then
in(sessionhpol , hpolvalue : bitstring);
if hpolvalue = getPCRPolicy (nvpcrh) then
in(sessioncphash , cphashvalue : bitstring);
if cphashvalue = hash ((CCnvundefinespacespecial ,
getPCRIndex (nvpcrh))) then
(* Deletion can be done *)
out(chan , s1);

The process concludes at this point, as there is no need to return to the or-
chestrator for additional checks on the validity of the operations, since when the

50

Formal modelling of analysed protocols

session policy digest is in a state that marks the fulfilment of a policy authorised
by the Orc, then the UndefineSpaceSpecial command can be directly executed,
thus removing the specified NV index from memory. The value outputted at the
end is used to verify reachability and the correct termination of the protocol.

6.2.4 Measurement update
This phase describes the procedure with which the orchestrator requests a specific
node to update its current configuration by measuring the data pointed by the
Fully Qualified Path Name and accumulate the new values into its PCRs. The
main process in the model creates the EK for orchestrator and TPM and a PCR
structure with an initial value which will have to be extended. The update may
concern both normal and NV-based PCRs with minimal differences; the model
presented below will take into account the update of normal PCRs.

process
...

(* Create pcrs *)
new index: bitstring ;
new pcrcontent : channel ;
out(pcrcontent , pcr_iv);
let pcrh = createPCR (index ,
pcrcontent , nullpolicy ,
nulltemplate) in ...

The content of the PCR is once again modelled with a local channel used as
state variable, following the typical implementation in standard ProVerif. The
orchestrator starts by locally measuring a configuration obtained via the FQPN
and authenticating the measurement result through its attestation agent that holds
a unique shared with the VF of interest. It then executes Algorithm 2 (Figure
4.9) to compute the expected policy digest by extending its mock PCR structure
and then passes all necessary information to perform the update to the fogNode
process.
let Orc(orcEKh :keyhandle , ptpmEK :pkey , pcrh: pcrhandle) =

let hupdate = hmac(hk_orc_aagt , hash(tracer (fqpn))) in
(* Algorithm 2 *)
let pcrcontent = getPCRContentChannel (pcrh) in
in(pcrcontent , oldvalue : bitstring);
let newpcrvalue = hash ((oldvalue , hupdate)) in
out(pcrcontent , newpcrvalue);
let hpol = hash ((zeros , CCpolicypcr ,
getPCRIndex (pcrh), hash(newpcrvalue))) in
let hhpol = hash(hpol) in

51

Formal modelling of analysed protocols

let signhhpol = sign(hhpol , getSK(orcEKh)) in
out(chan , (hpol , signhhpol));
...

The fogNode process receives the data and passes it one to its SW-TPM which
verifies that the signature and the policy digest by the orchestrator are valid, by
producing a ticket as proof.
let fogNode (ptpmEK :pkey , porcEK :pkey) =

in(chan , (hpol:bitstring , signhhpol : bitstring));
out(tpmchan , (hpol , signhhpol));
...

let TPM(tpmEKh :keyhandle , orcEKh :keyhandle , pcrh: pcrhandle) =

in(tpmchan , (hpol:bitstring , signhhpol : bitstring));

(* TPM2_VerifySignature *)

if checksign (signhhpol , getPK(orcEKh)) = ok() then
if hash(hpol) = getmess (signhhpol) then

let t = hmac(tpmproof , (VERIFIED , hash(hpol),
pkeyname (getPK(orcEKh)))) in
out(tpmchan , t);

...

In order to prove to the orchestrator that the update process is performed
correctly, the node starts a HMAC session and runs the extend command in
audit mode, so that every command and response parameter is recorded into a
digest that will later be verified by the orchestrator. Specifically, the node uses its
own attestation agent to measure the FQPN and authenticate that measurement
that is then passed to the TPM process which performs the extension operation of
the PCRs and also executes Algorithm 3 (Figure 4.10) to create the session audit
digest.
let fogNode (ptpmEK :pkey , porcEK :pkey) =

...
in(tpmchan , t: bitstring);
new SessionType_HMAC : bitstring ;
out(tpmchan , SessionType_HMAC);

in(tpmchan , Hhs: bitstring);
new AUDIT: bitstring ;
let hfqpn = hmac(hk_orc_aagt , hash(tracer (fqpn))) in

out(tpmchan , (hfqpn , AUDIT));

in(tpmchan , sigAuditInfo : bitstring);
out(chan , sigAuditInfo);

52

Formal modelling of analysed protocols

let TPM(tpmEKh :keyhandle , orcEKh :keyhandle , pcrh: pcrhandle) =
...
(* TPM2_StartAuthSession *)

in(tpmchan , SessionType_HMAC : bitstring);
new Hhs: bitstring ;
out(tpmchan , Hhs);

(* TPM2_PCR_Extend *)

in(tpmchan , (hfqpn:bitstring , AUDIT: bitstring));

let pcrcontent = getPCRContentChannel (pcrh) in
in(pcrcontent , oldvalue : bitstring);
let newpcrvalue = hash ((oldvalue , hfqpn)) in
out(pcrcontent , newpcrvalue);
(* Algorithm 3 *)
let cpHash = hash ((CCpcrextend , getPCRIndex (pcrh),
authHash , hfqpn)) in
let rpHash = hash ((success , CCpcrextend)) in
let haudit = hash ((zeros , cpHash , rpHash)) in
(* TPM2_GetSessionAuditDigest *)
let sigAuditInfo = sign(haudit , getSK(tpmEKh)) in
out(tpmchan , sigAuditInfo);

At the end, the signed audit digest is sent back to the orchestrator that executes
Algorithm 4 (Figure 4.11), by computing the expected audit digest with the correct
parameters and a success response code. If the digest computed by the Orc matches
the one received from the node and the signature over it is valid, then measurement
is considered done correctly. A reachability query checks the secrecy of the value
made public at the end to verify whether the protocol terminates.

let Orc(orcEKh :keyhandle , ptpmEK :pkey , pcrh: pcrhandle) =
...
(* Algorithm 4 - Verify *)

in(chan , sigAuditInfo : bitstring);
if (checksign (sigAuditInfo , ptpmEK) = ok ()) then
let cpHash = hash ((CCpcrextend ,
getPCRIndex (pcrh), authHash , hupdate)) in
let rpHash = hash ((success , CCpcrextend)) in
let haudit = hash ((zeros , cpHash , rpHash)) in
if(getmess (sigAuditInfo) = haudit) then
out(chan , s1);

53

Formal modelling of analysed protocols

6.2.5 ORA
The Oblivious Remote Attestation phase is the actual core of the whole protocol
and it consists of the verification of trust between two Virtual Functions that
belong to the same service chain and know nothing about each other states, except
for the public part of their respective authorised attestation key. There is no
orchestrator represented in the model, only two VFs interact, in the role of Prover
and Verifier, with the addition of the SW-TPM of the Prover.

The main process creates the EK of the orchestrator, which is available to the
Prover and will be needed for the computation of the correct policy digest, even
though the orchestrator itself is not participating in the process. Furthermore, the
attestation key is created, along with both a set of normal PCRs (in the form of
a simple bitstring) and a set of NV-PCRs with the same handle of the previous
protocol phases and whose content is again represented by a private channel. At
this point it is also necessary to compute the correct authorisation policy which
will be bound to the attestation key through a handle, as well as the ticket proving
that the AK was created correctly.
process

(* Orchestrator EK *)
new orcekpair : keymat ;
let orcEKh = createHandle (nulltemplate , nullhandle ,
nullpolicy , pk(orcekpair), sk(orcekpair)) in
out(chan , pk(orcekpair));

(* Y Attestation Key *)
new akpair : keymat ;

(* Create PCRs *)
new pcrcontent : bitstring ;

(* Create nv register *)
new template : bitstring ;
new index: bitstring ;
new nvcontent : channel ;
new nvpcr: bitstring ;
out(nvcontent , nvpcr);

let nvpcrh = createNVPCR (index , nvcontent ,
nullpolicy , template) in

let args = (nvpcr , zeros) in
let nvstep = hash ((zeros , CCpolicynv ,
args , nvpcrhandlename (nvpcrh))) in
let pcrstep = hash ((nvstep , CCpolicypcr ,
pcrcontent , hash(pcrcontent))) in
let P = pcrstep in

54

Formal modelling of analysed protocols

let T = hmac(ticketproof , (VERIFIED , hash(P),
pkeyname (getPK(orcEKh)))) in
let authPol = hash ((P, CCpolicyauthorize ,
pkeyname (getPK(orcEKh)))) in
let AKh = createHandle (nulltemplate , nullhandle ,
authPol , pk(akpair), sk(akpair)) in

(!X(getPK(AKh)) |
!Y(P, T, AKh , getPK(orcEKh)) |
!TPM(pcrcontent , nvpcrh))

Afterwards, the X process, acting as Verifier, generates a nonce n as a challenge,
sends it to Y and awaits the signature over it to verify whether the other node is
in trusted state.
let X(ypAK:pkey) =

new n: bitstring ;
out(chan , n);
in(chan , sig: bitstring);
if(checksign (sig , ypAK) = ok ()) then

out(chan , s1);

0.

The nonce is received by Y which, as a consequence, invokes its TPM by starting
a new policy type session which returns a session handle; the latter holds both
an identifier for the session type and a private channel which serves as a state
variable, accumulating the policy digest, initially set to zero. The Prover then
goes on, interacting with the TPM for message exchange until the signature over
the nonce is actually obtained.
let Y(P:bitstring , T:bitstring ,

AKh:keyhandle , porcEK:pkey) =
in(chan , n: bitstring);

out(tpmchan , START_POLICY_SESSION);
in(tpmchan , Hps: sessionhandle);

out(tpmchan , (P, T, pkeyname (porcEK)));

out(tpmchan , (n, AKh));

in(tpmchan , sig: bitstring);
out(chan , sig);

55

Formal modelling of analysed protocols

let TPM(pcrcontent :bitstring , nvpcrh: nvpcrhandle) =
(* TPM2_StartAuthSession *)
in(tpmchan , policysession : bitstring);
new hpolchan : channel ;
out(hpolchan , zeros);
let Hps = createSession (policysession , hpolchan) in
out(tpmchan , Hps);
...

The TPM proceeds to retrieve the values for both its normal and NV-based
PCRs, and accumulates their hashed value, along with the correct policy command
codes, into the policy digest, repeatedly reading and writing on the state variable
channel.
let TPM(pcrcontent :bitstring , nvpcrh: nvpcrhandle) =

...
(* TPM2_PolicyNV *)

in(getPolicyDigest (Hps), emptyhpol : bitstring);
in(getPCRContentChannel (nvpcrh), nvpcr: bitstring);
let args = (nvpcr , zeros) in
let nvhpol = hash ((emptyhpol , CCpolicynv ,
args , nvpcrhandlename (nvpcrh))) in
out(getPolicyDigest (Hps), nvhpol);

(* TPM2_PolicyPCR *)

in(getPolicyDigest (Hps), nvhpol ’: bitstring);
let pcrhpol = hash ((nvhpol ’, CCpolicypcr ,
pcrcontent , hash(pcrcontent))) in
out(getPolicyDigest (Hps), pcrhpol);
...

Once all of the PCRs have been accounted for, the TPM can compute the proof
ticket and check that the current policy digest matches the one authorised by the
orchestrator and that the ticket matches the verified one. If everything holds, then
the current policy digest is replaced with a new digest computed over the name of
the orchestrator EK and the PolicyAuthorize command code. This allows the
TPM to use the secret part of the AK to sign the nonce challenge, sending it back
to the Verifier.
let TPM(pcrcontent :bitstring , nvpcrh: nvpcrhandle) =

56

Formal modelling of analysed protocols

...
(* TPM2_PolicyAuthorize *)

in(tpmchan ,
(P:bitstring , T:bitstring , porcEKname : bitstring));
in(getPolicyDigest (Hps), hpol: bitstring);
let t = hmac(ticketproof ,
(VERIFIED , hash(hpol), porcEKname)) in
if((P = hpol) && (T = t)) then
out(getPolicyDigest (Hps), zeros);
let newhpol =
hash ((hpol , CCpolicyauthorize , porcEKname)) in
out(getPolicyDigest (Hps), newhpol);

in(tpmchan , (n:bitstring , AKh: keyhandle));
if(newhpol = getKeyPolicy (AKh)) then

let sig = sign(n, getSK(AKh)) in
out(tpmchan , sig);

At the end a reachability query checks whether the protocol can terminate
correctly.

6.3 Variations with global state handling
The protocols described in the previous have also been modified to account for the
management of global state. Instead of relying on the standard implementation of
ProVerif with private channels, that implies the issues discussed in Section 2.1.1,
two alternative state extensions were tested.

6.3.1 Attestation by quote
the first protocol analysed does not necessarily need the use of state variables to
avoid verification error, but the different implementation was developed anyway
to test its applicability.

Concerning the StatVerif [3] language extension, both the simple attestation
protocol and the combination of update and attestation phases have been modified.
The addition include the use of two type cell variables declared in the preamble
of the file: one models the set of artificial PCRs on the orchestrator, and the other
the set of actual PCRs on the node to verify.

cell orc_tpm : pcrset.

57

Formal modelling of analysed protocols

cell node_tpm : pcrset.

These variables are set with the same initial value in the main process of the model:
orc_tpm := pcrSet;
node_tpm := pcrSet;

Then their value is simply read, extended and set again, while also locking the
access for concurrent sessions. Below is a minimal example on the orchestrator:
lock(orc_tpm);
read orc_tpm as pcrSet;

(* Policy Update *)
new cid: configid ;
new I: index;
event StartingConfigurationUpdateOrc (cid , I);
let configData = retrieveConfigData (cid) in
let newpcrSet = Set(pcrSet , I,
hash ((Get(pcrSet , I),hash(configData)))) in
out(chan , (cid , I));
orc_tpm := newpcrSet ;
unlock(orc_tpm);

With the GSVerif [8] front-end extension instead, it was necessary to add two
free names as private channels, marked with specific keyword cell. The two
channels are then used in the same exact way as the cells of the StatVerif model:
free orc_tpm : channel [private , cell].
free node_tpm : channel [private , cell].
...

out(orc_tpm , currPCR);
out(node_tpm , currPCR);
...

in(orc_tpm , pcrSet: pcrset);

(* Policy Update *)
new cid: configid ;
new I: index;
event StartingConfigurationUpdateOrc (cid , I);
let configData = retrieveConfigData (cid) in

58

Formal modelling of analysed protocols

let newpcrSet = Set(pcrSet , I,
hash ((Get(pcrSet , I),hash(configData)))) in
out(orc_tpm , newpcrSet);

6.3.2 Oblivious remote attestation
This protocol is the one that should actually benefit from the use of global states
for the repeated read and write operations necessary to handle the content of PCRs
or policy digests.

StatVerif

The implementation with the StatVerif extension was limited to only two phases
of the protocol, since it was determined that even with the simple update protocol
of the previous section, the state handling was too complex and the time required
for the analysis to terminate was not reasonable. In particular, global states as
cell variables were introduced in the NV-PCRs attachment phase and in the ORA
phase. The first one was modified by creating a cell for the content of the NV-PCR
to be attached, which is then read and re-set multiple times during the process.
For the attestation phase, instead, the cell was used to model the policy digest for
the TPM session.

GSVerif

The implementations developed with the GSVerif extension were more thorough,
as the results obtained with the Attestation by quote protocol were initially more
promising.

All of the protocol phases were modified with the exception of the Attestation
Key creation that needed no global state. The NV-PCRs attachment and detach-
ment were modified by marking the private channels, used for PCR content and
for policy digests, with the keyword cell. However, this implied some necessary
modifications to the way the model handled its variables, as the GSVerif exten-
sion specifies that names marked as cell can only appear as the first argument
of input and output operations. Therefore, the content channel had to removed
from the tuple pointed by the NV-PCR handle. The code shows an example of
this modification.

let TPM(tpmEKh: keyhandle) =
...
new nvpcrcontchan : channel [cell];

(* nv content initialized to zeros *)

59

Formal modelling of analysed protocols

out(nvpcrcontchan , zeros);
let nvprc = createNVPCR (idx , hpol , tpl) in
out(tpmchan , nvprc);
...
(* Extend the value inside the PCR *)
in(nvpcrcontchan , oldvalue : bitstring);
out(nvpcrcontchan , hash ((oldvalue , IV ’)));

The measurement update phase was instead modified similarly to the Attesta-
tion by quote protocol, with two private channels modelling the content of both
the orchestrator and TPM PCRs.
free pcrcontent_orc : channel [private , cell].
free pcrcontent_tpm : channel [private , cell].
...
(* In the main process *)
(* setting the same initial values *)
out(pcrcontent_orc , pcr_iv);
out(pcrcontent_tpm , pcr_iv);
...
(* In the Orc process *)
in(pcrcontent_orc , oldvalue : bitstring);
let newpcrvalue = hash ((oldvalue , hupdate)) in
out(pcrcontent_orc , newpcrvalue);

Finally, the Oblivious Remote Attestation phase was modified with the intro-
duction of the keywork precise for the channel that models the policy session
digest. The keyword precise, which lets the GSVerif front-end automatically
find the best option, was used in this case because the read and write operation
on the channel inside an if construct did not allow the use of the keyword cell
as in the other cases.
...
(* In the TPM *)
new hpolchan : channel [precise];
out(hpolchan , zeros);
(* TPM2_PolicyNV *)
in(hpolchan , emptyhpol : bitstring);
in(getPCRContentChannel (nvpcrh), nvpcr: bitstring);
let args = (nvpcr , zeros) in
let nvhpol = hash ((emptyhpol , CCpolicynv ,
args , nvpcrhandlename (nvpcrh))) in
out(hpolchan , nvhpol);

60

Chapter 7

Formal verification results

This chapter will report all the results obtained from the automatic analysis per-
formed with the ProVerif tool and its extensions, relatively to the security prop-
erties specified by the RAINBOW platform and described in Chapter 5. First,
the results for the Attestation by quote protocol will be presented, along with the
possible attack traces identified. The results of the analysis on the ORA protocol
will be reported after.

7.1 Attestation by quote
Considering the protocol versions implemented in Chapter 6 as a whole, three
main issues were identified, with two of them producing an actual attack trace.

Unauthenticated Update Request. The update requests sent to the nodes to
perform the measurement of the a new configuration and update its rela-
tive PCR values are actually not authenticated. For this reason, any adver-
sary may impersonate the orchestrator and provide false data to the nodes,
prompting them to perform the update procedure. This leads to a violation of
the Configuration Correctness property, since nodes, by accumulating bogus
values into their PCRs, will be in an incorrect configuration. Even when the
update request is actually sent by the orchestrator, it could be intercepted
by an attacker with Dolev-Yao capabilities and changed into arbitrary values.
This can also lead to the incapacitation of the node, in the manner of a DoS
attack, if an unchecked number of requests is received. The attack trace rel-
ative to this issue, automatically obtained by the ProVerif analysis, is shown
in Figure 7.1. The enhanced version of the protocol solves the problem by
having the orchestrator sign its requests with its Endorsement Key.

61

Formal verification results

Figure 7.1. Attack trace showing the fake update request

Compromised Tracer Component. The measuring returned by the tracer is
not authenticated and the communication between the component and the
TPM that has to perform the update process may be exposed to an attacker,
for instance in the case where the node equipped with the tracer has been
compromised. The Immutability property is violated in this case, since the
tracer could be returning the correct values that are modified with fake ones
by an adversary. If an attacker has compromised a node, it could be able to
produce the correct values by the tracer, such that the node would be con-
sidered trusted even though its configuration is not correct. This is shown
in the attack trace in Figure 7.2. This issue as well is solved by the en-
hanced protocol, in particular by having each attestation agent authenticate
the measurement with the unique key shared with the orchestrator.

Unauthenticated Attestation Request. This issue is basically a variation of
the first one, but no trace was found by ProVerif relative to it, since the
node configuration is not actually affected. If the attestation requests are not

62

Formal verification results

signed by the orchestrator, any adversary may forge a request with bogus
data and once again cause a DoS on the targeted node.

Figure 7.2. Attack trace with fake tracer values and node trusted

7.2 Oblivious remote attestation
The various phases of the protocol were analysed both with the standard ProVerif
tool and with its global state extension. All the models included some reachability
queries that aimed to assess whether the process could terminate correctly. Un-
fortunately, only the analysis on the model for the AK creation phase was able to
reach a definitive proof and terminate with a positive result. In fact the creation
of the attestation is performed correctly and the new key is securely stored into
the SW-TPM of the VF that wishes to join the service chain.

For all the other phases ProVerif was not able to provide a definitive proof on

63

Formal verification results

the validity of the queries requested. As a matter of fact, the derivations that
ProVerif computes actually reach a termination point, but since no trace is found
nothing can be inferred regarding the security of the system. This is most likely
due to the high complexity of the protocol analysed, comprising of many different
interactions between various actors. An example of such behaviour is reported
below relatively to the Measurement Update phase of the protocol.
-- Query not attacker (s1 []) in process 1.
Translating the process into Horn clauses ...
nounif mess(pcrcontent [], oldvalue_2)/ -5000
Completing ...
Starting query not attacker (s1 [])
goal reachable : mess(pcrcontent [], oldvalue_2) && mess(pcrcontent

[], oldvalue_3) && mess(pcrcontent [], oldvalue_4) -> attacker (s1
[])

ProVerif translates the process into Horn clauses and then establishes a goal
to reach to verify the requested query. The execution continues by reporting the
whole derivation steps, as in:
1. We assume as hypothesis that
mess(pcrcontent [], oldvalue_2).

2. We assume as hypothesis that
mess(pcrcontent [], oldvalue_3).

...

9. The attacker has some term signhhpol_3 .
attacker (signhhpol_3).

10. The attacker has some term hpol_3 .
attacker (hpol_3).

11. By 10, the attacker may know hpol_3 .
By 9, the attacker may know signhhpol_3 .
Using the function 2-tuple the attacker may obtain (hpol_3 ,

signhhpol_3).
attacker ((hpol_3 , signhhpol_3)).

...

19. The message oldvalue_2 that may be sent on channel pcrcontent
[] by 1 may be received at input {34}.

The message sign(hash ((zeros [], hash ((CCpcrextend [], index [],
authHash [], hmac(hk_orc_aagt [], hash(tracer (fqpn []))))),hash ((
success [], CCpcrextend [])))),sk(tpmekpair [])) that the attacker
may have by 18 may be received at input {41}.

So the message s1[] may be sent to the attacker at output {47}.

64

Formal verification results

attacker (s1 []).

20. By 19, attacker (s1 []).
The goal is reached , represented in the following fact:
attacker (s1 []).

The last step concludes the derivation after the initially set goal is reached, how-
ever the tool simply could not find a trace which proves this derivation, therefore
it cannot determine whether it is true or false.
Could not find a trace corresponding to this derivation .
RESULT not attacker (s1 []) cannot be proved .

Even when testing the global state extensions, which could supposedly improve
the queries and therefore help the automatic analysis to terminate, no concrete re-
sults could be obtained. In particular, the analysis with StatVerif was completely
unable to terminate since the multiple operations on the global state across con-
current sessions, quickly led to state explosion and an unreasonable computation
time, as shown in the output below.
-- Query not attacker (s1 [])
nounif attacker (cells (* hpol_186),v_187)/ -5000
Completing ...
200 rules inserted . The rule base contains 145 rules. 51 rules in

the queue.
400 rules inserted . The rule base contains 214 rules. 115 rules in

the queue.
600 rules inserted . The rule base contains 243 rules. 219 rules in

the queue.
...
2800 rules inserted . The rule base contains 750 rules. 1307 rules

in the queue.
3000 rules inserted . The rule base contains 809 rules. 1523 rules

in the queue.
...
4200 rules inserted . The rule base contains 1038 rules. 2001 rules

in the queue.
4400 rules inserted . The rule base contains 1089 rules. 2127 rules

in the queue.
...

With the GSVerif translations, the analysis was able to terminate, but once
again the results were the same as the standard ProVerif models, with no definitive
proof on the queries. In particular, with these modifications, multiple reachable
goals are analysed by the tool, which in the end are unified into a single clause
that still contradicts the initial query. Since no derivation could be found, ProVerif
arbitrarily terminates in order to avoid infinite loops.

65

Formal verification results

Iterating unifyDerivation .
Fixpoint reached : nothing more to unify.
The clause after unifyDerivation is
begin(VCell_bitstring (pcrcontent_orc [],(0, pcr_iv []))) && begin(

VCell_bitstring (pcrcontent_orc [],(1, hash ((pcr_iv [], hmac(
hk_orc_aagt [], hash(tracer (fqpn [])))))))) && begin(
VCell_bitstring (pcrcontent_tpm [],(0, pcr_iv []))) && begin(
VCell_bitstring (pcrcontent_tpm [],(1, hash ((pcr_iv [], hmac(
hk_orc_aagt [], hash(tracer (fqpn [])))))))) && begin(
VCell_bitstring (pcrcontent_tpm [],(2, hash ((hash ((pcr_iv [], hmac(
hk_orc_aagt [], hash(tracer (fqpn []))))),hmac(hk_orc_aagt [], hash(
tracer (fqpn [])))))))) -> attacker_bitstring (s1 [])

This clause still contradicts the query.
Could not find a trace corresponding to this derivation .
Stopping attack reconstruction attempts .

7.3 Assessment on security properties
Concerning the RAINBOW that needed proving, some final evaluation can be
given

P1 Configuration Correctness. The correct configuration of the device is guar-
anteed when the it performs the measurement update and the attestation to
the orchestrator. This property is proved through an injective correspondence
assertion in the Attestation by quote model.

P2 SGC Trustworthiness. All nodes participating in a service chain must be
in a correct configuration state. This property follows automatically once the
first one is proved; it can be assumed that if the protocol terminates correctly
for a node without external interference, then all nodes in the chain should
also be able to be safely declared as trusted. This is proved by a reachability
query on the Attestation by quote model to ensure the process termination.

P3 Attestation Key Protection. Even though the ORA protocol could not be
proved in its entirety, the AK creation phase was able to terminate correctly,
therefore ensuring that the attestation keys are safely created and stored in-
side the TPM. This is proved through a reachability query in the AK creation
model.

P4 Immutability. The data returned by the tracer must always be the correct
one. This property is verified with authentication for the tracer and it is
proved by a correspondence assertion.

66

Chapter 8

Conclusions

This chapter concludes the work done in this in thesis.

First of all, formal verification techniques were analysed for their specific ap-
plication on cryptographic protocols. In particular, automated theorem proving
tools such as ProVerif and its extensions were presented.

Furthermore, the trusted computing concept of remote attestation was anal-
ysed, along with its application on network protocols for a trusted computing
environment, such as the one provided by the RAINBOW project.

The work then focused on the modelling in the formal specification of ProVerif
of all the protocols analysed, with the objective to find an automatic proof for a
certain number of security properties, which cannot intuitively be inferred.

The complete models were analysed with the automatic theorem proving tools
described and some results were obtained. In particular, the security properties of
interest could mostly be proved for the first protocol analysed, whereas the second
one did not yield a satisfying outcome.

It was therefore proved that the ProVerif tool (as of version 2.02) was not the
correct choice for the analysis of the protocols described, even when aided by its
extensions aiming to improve its ability to terminate successfully on specific cases
with states. The high complexity of the protocols is not suitable to be handled
by the over-approximation applied by ProVerif when translating the model into
Horn clauses.

Future work

This work easily leads to an extension, with the exploration of other automatic
prover tools, such as Tamarin, which is natively able to deal with mutable states
and allows direct manual interaction with the process when the automation fails.

67

Conclusions

Another possibility could be the use of an updated and over-hauled version of
ProVerif, as described by its author [6], with improved precision and therefore
ability to terminate more often, as well as optimisations in the internal algorithms
that may improve its performance on complex cases.

68

Bibliography

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure commu-
nication. SIGPLAN Notices (ACM Special Interest Group on Programming
Languages), 36, 2001. ISSN 03621340. doi: 10.1145/373243.360213.

[2] M. Abadi, B. Blanchet, and C. Fournet. The applied pi calculus: Mobile
values, new names, and secure communication. Journal of the ACM, 65,
2017. ISSN 1557735X. doi: 10.1145/3127586.

[3] M. Arapinis, E. Ritter, and M. D. Ryan. Statverif: Verification of stateful
processes. 2011. doi: 10.1109/CSF.2011.10.

[4] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified Models and Ref-
erence Implementations for the TLS 1.3 Standard Candidate. In 2017
IEEE Symposium on Security and Privacy (SP), pages 483–502, 2017. doi:
10.1109/SP.2017.26.

[5] B. Blanchet. Proverif: Cryptographic protocol verifier in the formal model.
URL https://bblanche.gitlabpages.inria.fr/proverif/.

[6] B. Blanchet, V. Cheval, and V. Cortier. ProVerif with lemmas, induction, fast
subsumption, and much more. In IEEE Symposium on Security and Privacy
(S&P’22), pages 205–222, San Francisco, CA, May 2022. IEEE Computer
Society.

[7] L. Chen and M. Ryan. Attack, solution and verification for shared au-
thorisation data in tcg tpm. volume 5983 LNCS, 2010. doi: 10.1007/
978-3-642-12459-4_15.

[8] V. Cheval, V. Cortier, and M. Turuani. A little more conversation, a little less
action, a lot more satisfaction: Global states in proverif. volume 2018-July,
2018. doi: 10.1109/CSF.2018.00032.

69

https://bblanche.gitlabpages.inria.fr/proverif/

BIBLIOGRAPHY

[9] P. B. Copet, G. Marchetto, R. Sisto, and L. Costa. Formal verification of
LTE-UMTS and LTE–LTE handover procedures. Computer Standards & In-
terfaces, 50:92–106, 2017. ISSN 0920-5489. doi: https://doi.org/10.1016/j.
csi.2016.08.009. URL https://www.sciencedirect.com/science/article/
pii/S092054891630071X.

[10] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols.
Communications of the ACM, 24, 1981. ISSN 15577317. doi: 10.1145/358722.
358740.

[11] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29, 1983. ISSN 15579654. doi: 10.1109/
TIT.1983.1056650.

[12] N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated verification for se-
cure messaging protocols and their implementations: A symbolic and compu-
tational approach. 2017. doi: 10.1109/EuroSP.2017.38.

[13] G. Lowe. An attack on the needham-schroeder public-key authentication
protocol. Information Processing Letters, 56, 1995. ISSN 00200190. doi:
10.1016/0020-0190(95)00144-2.

[14] The RAINBOW Consortium. Rainbow project h2020 - concept and objectives,
2020. URL https://rainbow-h2020.eu/concept-and-objectives/.

[15] The RAINBOW Consortium. Rainbow project h2020 - a fog computing plat-
form, 2020. URL https://rainbow-h2020.eu/.

[16] The RAINBOW Consortium. D2.1, RAINBOW Attestation Model and Spec-
ification, 2021.

[17] The RAINBOW Consortium. D2.2, RAINBOW Collective Attestation Policy
Enablers Design, 2021.

[18] The RAINBOW Consortium. D2.3, RAINBOW Collective Attestation and
Runtime Verification, 2021.

[19] Trusted Computing Group. TCG Infrastructure Working Group Architecture
Part II - Integrity Management, 2006.

[20] Trusted Computing Group. Trusted Platform Module Library Part 1: Archi-
tecture, 2019.

[21] Trusted Computing Group. Tpm 2.0 library specification, 2019. URL https:
//trustedcomputinggroup.org/resource/tpm-library-specification/.

70

https://www.sciencedirect.com/science/article/pii/S092054891630071X
https://www.sciencedirect.com/science/article/pii/S092054891630071X
https://rainbow-h2020.eu/concept-and-objectives/
https://rainbow-h2020.eu/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/

Appendix A

Complete formal models
implementation

A.1 Attestation By Quote
(* RAINBOW Attestation By Quote *)

set ignoreTypes = false.

type ekey. (* endorsement key pair *)
type sekey. (* secret endorsement key *)
type pekey. (* public endorsement key *)
type pcrset . (* complete set of pcr content *)
type pcr. (* pcr content *)
type index. (* pcr indexes *)
type configid . (* configuration policy id *)
type nonce.

free chan: channel . (* public network channel *)
(* public channel to communicate with the tracer *)

free trc: channel .
(* private internal communication
between a node and its TPM *)
free pchan: channel [private].

(* Read configuration files *)
fun retrieveConfigData (configid): bitstring .

(* ----- cryptographic functions ----- *)
(* Cryptographic Hash *)
fun hash(bitstring): bitstring .

71

Complete formal models implementation

(* Digital Signature *)
type result .
fun sk(ekey): sekey.
fun pk(ekey): pekey.
fun ok (): result .
fun sign(bitstring , sekey): bitstring .
reduc forall m: bitstring , k: ekey;
getmess (sign(m, sk(k))) = m.
reduc forall m: bitstring , k: ekey;
checksign (sign(m, sk(k)), pk(k)) = ok ().
(* ----------------------------------- *)

(* Get and Set *)
fun Get(pcrset , index): bitstring .
fun Set(pcrset , index , bitstring): pcrset .
equation forall pcrs:pcrset , i:index , c: bitstring ;
Get(Set(pcrs ,i,c),i) = c.

(* Protocol events *)
event StartingConfigurationUpdateOrc (configid , index).
event StartingConfigurationUpdateFogNode (configid , index).
event StartingConfigurationUpdateTPM (index).
event NodeTrusted (pekey).
event NodeNotTrusted (pekey).
event TracerServingRequest ().

(* Queries *)
query key: pekey; event(NodeTrusted (key)).
query key: pekey; event(NodeNotTrusted (key)).
query cid:configid , I:index;
inj -event(StartingConfigurationUpdateTPM (I)) ==>
(inj -event(StartingConfigurationUpdateFogNode (cid , I)) ==>
inj -event(StartingConfigurationUpdateOrc (cid , I))).
query key: pekey;
inj -event(NodeTrusted (key)) ==>
inj -event(TracerServingRequest ()).

let ORC(pek: pekey , pcrSet : pcrset) =

(* Policy Update *)
new cid: configid ;
new I: index;
event StartingConfigurationUpdateOrc (cid , I);
let configData = retrieveConfigData (cid) in
let newpcrSet = Set(pcrSet , I,
hash ((Get(pcrSet , I),hash(configData)))) in
out(chan , (cid , I));

72

Complete formal models implementation

(* Attestation by quote *)
new n: nonce;
out(chan , (n, I));
in(chan , sig: bitstring);

let hconf = hash(Get(newpcrSet , I)) in
if checksign (sig , pek) = ok() then

let (hconf ’: bitstring ,
n’: nonce , I’: index) = getmess (sig) in
if hconf ’= hconf && n’=n && I’=I then
event NodeTrusted (pek)
else event NodeNotTrusted (pek);

0.

let FogNode (pek: pekey) =
(* sending out public key *)
out(chan , pek);

(* Configuration Update *)
in(chan , (cid: configid , I:index));
event StartingConfigurationUpdateFogNode (cid , I);
(* Request to the Tracer *)
out(trc , cid);
in(trc , configData : bitstring);
let hb = hash(configData) in

out(pchan , (hb , I));

(* Attestation by quote *)
in(chan , (n’: nonce , I’: index));
out(pchan , (n’, I ’));
in(pchan , sig ’: bitstring);
out(chan , sig ’);
0.

let TPM(pek: pekey , sek: sekey , pcrSet : pcrset) =
(* Configuration Update *)
in(pchan , (hb: bitstring , I:index));
event StartingConfigurationUpdateTPM (I);
let newpcrSet = Set(pcrSet , I,
hash ((Get(pcrSet , I), hb))) in

(* Attestation by quote *)
in(pchan , (n’: nonce , I’: index));
let hconf ’ = hash(Get(newpcrSet , I ’)) in

out(pchan , sign ((hconf ’, n’, I’), sek));
0.

73

Complete formal models implementation

let Tracer =
in(trc , cid: configid);
event TracerServingRequest ();
let configData = retrieveConfigData (cid) in

out(trc , configData);
0.

process
new target : ekey;
new pcrSet : pcrset ;
(ORC(pk(target), pcrSet) | FogNode (pk(target)) |
TPM(pk(target), sk(target), pcrSet) | Tracer)

74

Complete formal models implementation

A.2 Oblivious remote attestation

A.2.1 AK creation
(* Enhanced ORA protocol : Attestation Key creation *)

set ignoreTypes = false.

free chan: channel .
free tpmchan : channel . (* Channel between the fog node and its

tpm *)

type pkey.
type skey.
type keymat .
type result .
type keyhandle .

free tpmproof : bitstring [private].

free zeros: bitstring .
free CCpolicyauthorize : bitstring .
free CREATION : bitstring .
free TPM_GENERATED : bitstring .
free nullhandle : keyhandle .

free s1: bitstring [private].

(* Public -key encryption *)
fun penc(bitstring , pkey): bitstring .
fun pk(keymat):pkey.
fun sk(keymat):skey [private].
fun pkeyname (pkey): bitstring .
fun skeyname (skey): bitstring .
reduc forall x:bitstring , y: keymat ; pdec(penc(x, pk(y)), sk(y)) =

x.

(* Seal and unseal *)
fun seal(skey , pkey):skey.
reduc forall m:skey , k: keymat ; unseal (seal(m, pk(k)), sk(k)) = m.

(* Signatures *)
fun ok(): result .
fun sign(bitstring , skey): bitstring .
reduc forall m:bitstring , k: keymat ; getmess (sign(m, sk(k))) = m.
reduc forall m:bitstring , k: keymat ; checksign (sign(m, sk(k)), pk(k

)) = ok().

(* Symmetric encryption *)

75

Complete formal models implementation

fun senc(bitstring , bitstring): bitstring .
reduc forall x:bitstring , y: bitstring ; sdec(senc(x, y), y) = x.

(* Cryptographic Hash *)
fun hash(bitstring): bitstring .

(* HMAC *)
fun hmac(bitstring , bitstring): bitstring .

(* Handle key *)
fun createHandle (bitstring , keyhandle , bitstring , pkey , skey):

keyhandle .
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getTemplate (createHandle (x,y,z,j,k)) = x.

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getParentHandle (createHandle (x,y,z,j,k)) = y.
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getPolicy (createHandle (x,y,z,j,k)) = z.

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getPK(createHandle (x,y,z,j,k)) = j.
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getSK(createHandle (x,y,z,j,k)) = k [private].

(* Queries *)
query attacker (s1). (* Sanity check *)

let Orc(orcEK:keymat , ptpmEK :pkey) =
(* Create the AK policy *)
let hpol = hash(hash ((zeros , CCpolicyauthorize , hash ((

pkeyname (pk(orcEK)),skeyname (sk(orcEK))))))) in
(* Create AK template *)
new template : bitstring ;
out(chan , (hpol , template));

(* Get the AK public part , the certificate and the
signature over the certificate *)

in(chan , (certinfo :bitstring , signature :bitstring , pak:
pkey));

if checksign (signature , ptpmEK) = ok() then
let (objname :bitstring , magic:bitstring , magic ’: bitstring ,

authpol : bitstring) = certinfo in
if objname = pkeyname (pak) then
if magic = TPM_GENERATED then

76

Complete formal models implementation

if magic ’ = template then
if authpol = hpol then
(* AK matches the policies *)
out(chan , s1);

0.

let fogNode (ekh:keyhandle , skh: keyhandle) =
(* Get the AK policy and template *)
in(chan , (hpol:bitstring , template : bitstring));

(* Send TPM_create request *)
out(tpmchan , (template , skh , hpol));
(* Get TPM created AK *)
in(tpmchan , (template ’: bitstring , skh ’: keyhandle , hpol ’:

bitstring , pAK ’:pkey ,
sealedsAK ’:skey , hcreation ’: bitstring , t’:

bitstring));

(* Send TPM_Load request *)
out(tpmchan , (template ’, skh ’, hpol ’, pAK ’, sealedsAK ’));
in(tpmchan , (akh:keyhandle , pakname : bitstring));

(* Send TPM_certifyCreation request *)
out(tpmchan , (akh , ekh , hcreation ’, t’));
in(tpmchan , (certinfo :bitstring , signature : bitstring));

(* Send all the data to the orc *)
out(chan , (certinfo , signature , getPK(akh)));

0.

let TPM(tpmSKh :keyhandle , tpmEKh : keyhandle) =
(* TPM2_Create *)
in(tpmchan , (template :bitstring , skh:keyhandle , hpol:

bitstring));
if skh = tpmSKh then
(* Generate the new key *)
new ak: keymat ;
new hcreation : bitstring ;
let t = hmac(tpmproof , (CREATION , (pkeyname (pk(ak)),

skeyname (sk(ak))), hcreation)) in
(* Seal AK secret part with sSK *)
let sealedsAK = seal(sk(ak), getPK(tpmSKh)) in
let pAK = pk(ak) in
(* Create the wrap *)
let wrap = (template , skh , hpol , pAK , sealedsAK , hcreation

, t) in
out(tpmchan , wrap);

77

Complete formal models implementation

(* TPM2_Load *)
in(tpmchan , (template ’: bitstring , skh ’: keyhandle , hpol ’:

bitstring , pAK ’:pkey , sealedsAK ’: skey));
if skh ’ = tpmSKh then
let sAK ’ = unseal (sealedsAK ’, getSK(tpmSKh)) in
let akh = createHandle (template ’, skh ’, hpol ’, pAK ’, sAK ’)

in
out(tpmchan , (akh , pkeyname (pAK ’)));

(* TPM2_CertifyCreation *)
in(tpmchan , (akh ’’: keyhandle , ekh ’’: keyhandle , hcreation

’’: bitstring , t’’: bitstring));
(* Get the AK key from the handler *)
let pak ’’ = getPK(akh ’’) in
let sak ’’ = getSK(akh ’’) in
let xt = hmac(tpmproof , (CREATION , (pkeyname (pak ’’),

skeyname (sak ’’)), hcreation ’’)) in
if xt = t’’ then (* The key is associated to the

right ticket and has been created inside the TPM *)
let certinfo = (pkeyname (pak ’’), TPM_GENERATED ,

getTemplate (akh ’’), getPolicy (akh ’’)) in
if ekh ’’ = tpmEKh then
out(tpmchan , (certinfo , sign(certinfo , getSK(ekh ’’))));

0.

process
(* Orchestrator *)
new orcEK: keymat ;
out(chan , pk(orcEK));

(* TPM *)
(* Create storage key SK *)
new skpair : keymat ;
new sktemplate : bitstring ;
new skpolicy : bitstring ;
let tpmSKh = createHandle (sktemplate , nullhandle ,skpolicy ,

pk(skpair), sk(skpair)) in
out(chan , pk(skpair));
(* Create Endorsement Key EK *)
new ekpair : keymat ;
new ektemplate : bitstring ;
new ekpolicy : bitstring ;
let tpmEKh = createHandle (ektemplate , nullhandle ,ekpolicy ,

pk(ekpair), sk(ekpair)) in
out(chan , pk(skpair));

78

Complete formal models implementation

(TPM(tpmSKh , tpmEKh) | fogNode (tpmEKh , tpmSKh) | Orc(orcEK
, getPK(tpmEKh)))

A.2.2 NV-PCR attach
(* Attach and detach nv -PCR *)

free chan: channel .
free tpmchan : channel .

type keymat .
type skey.
type pkey.
type nvpcrhandle .
type keyhandle .
type result .

free nullhandle : keyhandle .
free nulltemplate : bitstring .
free nullpolicy : bitstring .
free zeros: bitstring .
free CCpolicyauthorize : bitstring .
free CCpolicycommandcode : bitstring .
free CCnvundefinespacespecial : bitstring .
free TPM_GENERATED : bitstring .
free WRITTEN : bitstring .

free s1: bitstring [private].
free s2: bitstring [private].

(* Asymmetric keys management *)
fun pk(keymat):pkey.
fun sk(keymat):skey [private].
fun pkeyname (pkey): bitstring .
fun skeyname (skey): bitstring .

(* Signatures *)
fun ok(): result .
fun sign(bitstring , skey): bitstring .
reduc forall m:bitstring , k: keymat ; getmess (sign(m, sk(k))) = m.
reduc forall m:bitstring , k: keymat ; checksign (sign(m, sk(k)), pk(k

)) = ok().

(* Cryptographic Hash *)
fun hash(bitstring): bitstring .

(* HMAC *)
fun hmac(bitstring , bitstring): bitstring .

79

Complete formal models implementation

(* Handle nv -PCR: (index , content , policy , template) *)
fun createNVPCR (bitstring , channel , bitstring , bitstring):

nvpcrhandle .
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRIndex (createNVPCR (x,c,y,z)) = x.
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRContentChannel (createNVPCR (x,c,y,z)) = c [private].
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRPolicy (createNVPCR (x,c,y,z)) = y [private].
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRTemplate (createNVPCR (x,c,y,z)) = z [private].

(* Handle key *)
fun createHandle (bitstring , keyhandle , bitstring , pkey , skey):

keyhandle .
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getKeyTemplate (createHandle (x,y,z,j,k)) = x.

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getKeyParentHandle (createHandle (x,y,z,j,k)) = y.
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getKeyPolicy (createHandle (x,y,z,j,k)) = z.

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getPK(createHandle (x,y,z,j,k)) = j.
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getSK(createHandle (x,y,z,j,k)) = k [private].

(* Queries *)
query attacker (s1).
query attacker (s2).

let Orc(orcEKh :keyhandle , ptpmEK :pkey) =
(* Build request to attach a new nv -pcr *)

let hpol = hash ((hash(hash ((zeros , CCpolicyauthorize , (
pkeyname (getPK(orcEKh)), skeyname (getSK(orcEKh)))))),

CCpolicycommandcode , CCnvundefinespacespecial))
in

new tpl: bitstring ;
new idx: bitstring ;
let IV = zeros in
out(chan , (idx , tpl , hpol , IV));

in(chan , (certInfo :bitstring , signature : bitstring));

80

Complete formal models implementation

if checksign (signature , ptpmEK) = ok() then
let (magic:bitstring , nvcontent :bitstring , objname :

bitstring) = certInfo in
if magic = TPM_GENERATED then
if nvcontent = hash ((zeros , IV)) then
if objname = hash ((tpl , WRITTEN , idx , hpol)) then
(* The created NV -PCR matches what has been required *)
out(chan , s1);

0.

let fogNode (tpmEKh : keyhandle) =
(* Attach new nv -PCR request *)
in(chan , (idx:bitstring , tpl:bitstring , hpol:bitstring , IV

: bitstring));

(* TPM_NVDefineSpace request *)
out(tpmchan , (idx , tpl , hpol));
in(tpmchan , nvpcr: nvpcrhandle);

(* TPM_NVExtend request *)
out(tpmchan , (nvpcr , IV));

(* TPM_NVCertify request *)
out(tpmchan , (nvpcr , tpmEKh));
in(tpmchan , (certInfo :bitstring , signature : bitstring));

out(chan , (certInfo , signature));

0.

let TPM(tpmEKh : keyhandle) =
(* TPM_NVDefineSpace *)
in(tpmchan , (idx:bitstring , tpl:bitstring , hpol: bitstring)

);
new nvpcrcontchan : channel ;
(* nv content initialized to zeros *)
out(nvpcrcontchan , zeros);
let nvprc = createNVPCR (idx , nvpcrcontchan , hpol , tpl) in
out(tpmchan , nvprc);

(* TPM_NVExtend *)
in(tpmchan , (nvpcr ’: nvpcrhandle , IV ’: bitstring));
let nvpcrcontchan ’ = getPCRContentChannel (nvpcr ’) in
(* Extend the value inside the PCR *)
in(nvpcrcontchan ’, oldvalue : bitstring);
out(nvpcrcontchan ’, hash ((oldvalue , IV ’)));

81

Complete formal models implementation

(* TPM_NVCertify *)
in(tpmchan , (nvpcr ’’: nvpcrhandle , ekh: keyhandle));
if ekh = tpmEKh then
let sEK = getSK(ekh) in
let tpl ’’ = getPCRTemplate (nvpcr ’’) in
let hpol ’’ = getPCRPolicy (nvpcr ’’) in
let idx ’’ = getPCRIndex (nvpcr ’’) in
let nvpcrcontchan ’’ = getPCRContentChannel (nvpcr ’’) in
in(nvpcrcontchan ’’, content ’’: bitstring);
let certInfo = (TPM_GENERATED , content ’’, hash ((tpl ’’,

WRITTEN , idx ’’, hpol ’’))) in
out(tpmchan , (certInfo , sign(certInfo , sEK)));

0.

process
(* Orchestrator EK *)
new orcekpair : keymat ;
let orcEKh = createHandle (nulltemplate , nullhandle ,

nullpolicy , pk(orcekpair), sk(orcekpair)) in
out(chan , pk(orcekpair));

(* TPM EK *)
new tpmekpair : keymat ;
let tpmEKh = createHandle (nulltemplate , nullhandle ,

nullpolicy , pk(tpmekpair), sk(tpmekpair)) in
out(chan , pk(tpmekpair));

(TPM(tpmEKh) | Orc(orcEKh , pk(tpmekpair)) | fogNode (
tpmEKh))

A.2.3 NV-PCR detach
(* Attach and detach nv -PCR *)

free chan: channel .
free tpmchan : channel .

type keymat .
type skey.
type pkey.
type nvpcrhandle .
type keyhandle .
type result .

free nullhandle : keyhandle .
free nulltemplate : bitstring .

82

Complete formal models implementation

free nullpolicy : bitstring .
free zeros: bitstring .
free CCpolicyauthorize : bitstring .
free CCpolicysigned : bitstring .
free CCpolicycommandcode : bitstring .
free CCnvundefinespacespecial : bitstring .
free TPM_GENERATED : bitstring .
free WRITTEN : bitstring .
free START_POLICY_SESSION : bitstring .
free VERIFIED : bitstring .

free tpmproof : bitstring [private].

free s1: bitstring [private].
free s2: bitstring [private].

(* Asymmetric keys management *)
fun pk(keymat):pkey.
fun sk(keymat):skey [private].
fun pkeyname (pkey): bitstring .
fun skeyname (skey): bitstring .

(* Signatures *)
fun ok(): result .
fun sign(bitstring , skey): bitstring .
reduc forall m:bitstring , k: keymat ; getmess (sign(m, sk(k))) = m.
reduc forall m:bitstring , k: keymat ; checksign (sign(m, sk(k)), pk(k

)) = ok().

(* Cryptographic Hash *)
fun hash(bitstring): bitstring .

(* HMAC *)
fun hmac(bitstring , bitstring): bitstring .

(* Handle nv -PCR: (index , content , policy , template) *)
fun createNVPCR (bitstring , channel , bitstring , bitstring):

nvpcrhandle .
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRIndex (createNVPCR (x,c,y,z)) = x.
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRContentChannel (createNVPCR (x,c,y,z)) = c [private].
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRPolicy (createNVPCR (x,c,y,z)) = y [private].
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRTemplate (createNVPCR (x,c,y,z)) = z [private].

(* Handle key *)

83

Complete formal models implementation

fun createHandle (bitstring , keyhandle , bitstring , pkey , skey):
keyhandle .

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getKeyTemplate (createHandle (x,y,z,j,k)) = x.
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getKeyParentHandle (createHandle (x,y,z,j,k)) = y.

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getKeyPolicy (createHandle (x,y,z,j,k)) = z.
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getPK(createHandle (x,y,z,j,k)) = j.

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getSK(createHandle (x,y,z,j,k)) = k [private].

(* Queries *)
query attacker (s1).
query attacker (s2).

let Orc(orcEKh :keyhandle , ptpmEK :pkey , nvpcrh : nvpcrhandle) =
(* Algorithm 1: auth nv index deletion *)
in(chan , nonce: bitstring);
let idx = getPCRIndex (nvpcrh) in
let hpol = hash(hash ((zeros , CCpolicysigned , pkeyname (

getPK(orcEKh))))) in
let hhpol = hash(hpol) in
let signhhpol = sign(hhpol , getSK(orcEKh)) in
let hcp = hash ((CCnvundefinespacespecial , idx)) in
let ahash = hash ((nonce , zeros , hcp)) in
let signahash = sign(ahash , getSK(orcEKh)) in

out(chan , (nvpcrh , hcp , signahash , hpol , hhpol , signhhpol)
);

0.

let fogNode (tpmEKh :keyhandle , orcEKh : keyhandle) =
(* Start policy session request *)
out(tpmchan , START_POLICY_SESSION);
in(tpmchan , nonce: bitstring);
out(chan , nonce);

(* Receive REQ delete *)
in(chan , (nvpcrh : nvpcrhandle , hcp:bitstring , signahash :

bitstring , hpol:bitstring ,
hhpol:bitstring , signhhpol : bitstring));

84

Complete formal models implementation

(* TPM_VerifySignature request *)
out(tpmchan , (hhpol , signhhpol , orcEKh));
in(tpmchan , t: bitstring);

(* TPM_PolicySigned request *)
out(tpmchan , (signahash , hcp , nonce , orcEKh));

(* TPM_PolicyAuthorize request *)
out(tpmchan , (hpol , t, pkeyname (getPK(orcEKh))));

(* TPM_PolicyCommandCode set request *)
out(tpmchan , CCnvundefinespacespecial);

(* TPM_NVUndefineSpaceSpecial request *)
out(tpmchan , nvpcrh);

0.

let TPM(tpmEKh :keyhandle , orcEKh : keyhandle) =
(* Start policy session *)
in(tpmchan , command : bitstring);
if command = START_POLICY_SESSION then
new nonce: bitstring ;
new sessionhpol : channel ;
new sessioncphash : channel ;
out(sessionhpol , zeros);
out(tpmchan , nonce);

(* TPM_VerifySignature *)
in(tpmchan , (hhpol:bitstring , signhhpol :bitstring , handle :

keyhandle));
if handle = orcEKh then
if checksign (signhhpol , getPK(orcEKh)) = ok then
if getmess (signhhpol) = hhpol then
let t = hmac(tpmproof , (VERIFIED , hhpol , pkeyname (getPK(

orcEKh)))) in
out(tpmchan , t);

(* TPM_PolicySigned *)
in(tpmchan , (signahash ’: bitstring , hcp ’: bitstring , nonce ’:

bitstring , handle ’: keyhandle));
if handle ’ = orcEKh then
let ahash = hash ((nonce ’, zeros , hcp ’)) in
if checksign (signahash ’, getPK(orcEKh)) = ok then
if getmess (signahash ’) = ahash then
in(sessionhpol , oldsessionhpol ’: bitstring);
out(sessionhpol , hash(hash ((oldsessionhpol ’,

CCpolicysigned , pkeyname (getPK(orcEKh))))));

85

Complete formal models implementation

out(sessioncphash , hcp ’);

(* TPM_PolicyAuthorize *)
in(tpmchan , (hpol ’’: bitstring , t’’: bitstring , orcname ’’:

bitstring));
in(sessionhpol , oldsessionhpol ’’: bitstring);
if oldsessionhpol ’’ = hpol ’’ then
let newt = hmac(tpmproof , (VERIFIED , hash(hpol ’’), orcname

’’)) in
if newt = t’’ then
out(sessionhpol , hash ((zeros , CCpolicyauthorize , orcname

’’)));

(* TPM_PolicyCommandCode *)
in(tpmchan , commandcode : bitstring);
let sessioncc = commandcode in
in(sessionhpol , oldsessionhpol ’’’: bitstring);
out(sessionhpol , hash ((oldsessionhpol ’’’,

CCpolicycommandcode , CCnvundefinespacespecial)));

(* TPM_NVUndefineSpaceSpecial *)
in(tpmchan , nvpcrh : nvpcrhandle);
if sessioncc = CCpolicycommandcode then
in(sessionhpol , hpolvalue : bitstring);
if hpolvalue = getPCRPolicy (nvpcrh) then
in(sessioncphash , cphashvalue : bitstring);
if cphashvalue = hash ((CCnvundefinespacespecial ,

getPCRIndex (nvpcrh))) then
(* Deletion can be done *)
out(chan , s1);

0.

process
(* Orchestrator EK *)
new orcekpair : keymat ;
let orcEKh = createHandle (nulltemplate , nullhandle ,

nullpolicy , pk(orcekpair), sk(orcekpair)) in
out(chan , pk(orcekpair));

(* TPM EK *)
new tpmekpair : keymat ;
let tpmEKh = createHandle (nulltemplate , nullhandle ,

nullpolicy , pk(tpmekpair), sk(tpmekpair)) in
out(chan , pk(tpmekpair));

(* Create nv register *)
new template : bitstring ;

86

Complete formal models implementation

let policy = hash ((hash(hash ((zeros , CCpolicyauthorize , (
pkeyname (getPK(orcEKh)), skeyname (getSK(orcEKh)))))),

CCpolicycommandcode , CCnvundefinespacespecial))
in

new index: bitstring ;
new nvcontent : channel ;
let nvpcrh = createNVPCR (index , nvcontent , policy ,

template) in

(TPM(tpmEKh , orcEKh) | Orc(orcEKh , pk(tpmekpair), nvpcrh)
| fogNode (tpmEKh , orcEKh))

A.2.4 Measurement update request
free chan: channel .
free tpmchan : channel .

type keymat .
type skey.
type pkey.
type pcrhandle .
type keyhandle .
type result .

free nullhandle : keyhandle .
free nulltemplate : bitstring .
free nullpolicy : bitstring .
free zeros: bitstring .
free pcr_iv : bitstring [private].
free CCpolicypcr : bitstring .
free VERIFIED : bitstring .
free authHash : bitstring .
free CCpcrextend : bitstring .
free success : bitstring .

free tpmproof : bitstring [private].
free hk_orc_aagt : bitstring [private].
free fqpn: bitstring [private].

free s1: bitstring [private].
free s2: bitstring [private].

(* Asymmetric keys management *)
fun pk(keymat):pkey.
fun sk(keymat):skey [private].
fun pkeyname (pkey): bitstring .
fun skeyname (skey): bitstring .

87

Complete formal models implementation

(* Signatures *)
fun ok(): result .
fun sign(bitstring , skey): bitstring .
reduc forall m:bitstring , k: keymat ; getmess (sign(m, sk(k))) = m.
reduc forall m:bitstring , k: keymat ; checksign (sign(m, sk(k)), pk(k

)) = ok().

(* Tracer *)
fun tracer (bitstring): bitstring [private].

(* Cryptographic Hash *)
fun hash(bitstring): bitstring .

(* HMAC *)
fun hmac(bitstring , bitstring): bitstring .

(* Handle PCR: (index , content , policy , template) *)
fun createPCR (bitstring , channel , bitstring , bitstring): pcrhandle .
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRIndex (createPCR (x,c,y,z)) = x.
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRContentChannel (createPCR (x,c,y,z)) = c [private].
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRPolicy (createPCR (x,c,y,z)) = y [private].
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRTemplate (createPCR (x,c,y,z)) = z [private].

(* Handle key *)
fun createHandle (bitstring , keyhandle , bitstring , pkey , skey):

keyhandle .
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getKeyTemplate (createHandle (x,y,z,j,k)) = x.

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getKeyParentHandle (createHandle (x,y,z,j,k)) = y.
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getKeyPolicy (createHandle (x,y,z,j,k)) = z.

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getPK(createHandle (x,y,z,j,k)) = j.
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getSK(createHandle (x,y,z,j,k)) = k [private].

(* Queries *)
query attacker (s1).

88

Complete formal models implementation

query attacker (s2).

let Orc(orcEKh :keyhandle , ptpmEK :pkey , pcrh: pcrhandle) =
let hupdate = hmac(hk_orc_aagt , hash(tracer (fqpn))) in
(* Algorithm 2 *)
let pcrcontent = getPCRContentChannel (pcrh) in
in(pcrcontent , oldvalue : bitstring);
let newpcrvalue = hash ((oldvalue , hupdate)) in
out(pcrcontent , newpcrvalue);
let hpol = hash ((zeros , CCpolicypcr , getPCRIndex (pcrh), hash(

newpcrvalue))) in
let hhpol = hash(hpol) in
let signhhpol = sign(hhpol , getSK(orcEKh)) in
out(chan , (hpol , signhhpol));

(* Algorithm 4 - Verify *)

in(chan , sigAuditInfo : bitstring);
if (checksign (sigAuditInfo , ptpmEK) = ok()) then
let cpHash = hash ((CCpcrextend , getPCRIndex (pcrh), authHash ,

hupdate)) in
let rpHash = hash ((success , CCpcrextend)) in
let haudit = hash ((zeros , cpHash , rpHash)) in
if(getmess (sigAuditInfo) = haudit) then
out(chan , s1);
0.

let fogNode (ptpmEK :pkey , porcEK :pkey) =
in(chan , (hpol:bitstring , signhhpol : bitstring));
out(tpmchan , (hpol , signhhpol));

in(tpmchan , t: bitstring);
new SessionType_HMAC : bitstring ;
out(tpmchan , SessionType_HMAC);

in(tpmchan , Hhs: bitstring);
new AUDIT: bitstring ;
let hfqpn = hmac(hk_orc_aagt , hash(tracer (fqpn))) in

out(tpmchan , (hfqpn , AUDIT));

in(tpmchan , sigAuditInfo : bitstring);
out(chan , sigAuditInfo);
0.

let TPM(tpmEKh :keyhandle , orcEKh :keyhandle , pcrh: pcrhandle) =

89

Complete formal models implementation

in(tpmchan , (hpol:bitstring , signhhpol : bitstring));

(* TPM2_VerifySignature *)

if checksign (signhhpol , getPK(orcEKh)) = ok() then
if hash(hpol) = getmess (signhhpol) then

let t = hmac(tpmproof , (VERIFIED , hash(hpol), pkeyname
(getPK(orcEKh)))) in

out(tpmchan , t);

(* TPM2_StartAuthSession *)

in(tpmchan , SessionType_HMAC : bitstring);
new Hhs: bitstring ;
out(tpmchan , Hhs);

(* TPM2_PCR_Extend *)

in(tpmchan , (hfqpn:bitstring , AUDIT: bitstring));

let pcrcontent = getPCRContentChannel (pcrh) in
in(pcrcontent , oldvalue : bitstring);
let newpcrvalue = hash ((oldvalue , hfqpn)) in
out(pcrcontent , newpcrvalue);
(* Algorithm 3 *)
let cpHash = hash ((CCpcrextend , getPCRIndex (pcrh), authHash ,

hfqpn)) in
let rpHash = hash ((success , CCpcrextend)) in
let haudit = hash ((zeros , cpHash , rpHash)) in
(* TPM2_GetSessionAuditDigest *)
let sigAuditInfo = sign(haudit , getSK(tpmEKh)) in
out(tpmchan , sigAuditInfo);
0.

process
(* Orchestrator EK *)
new orcekpair : keymat ;
let orcEKh = createHandle (nulltemplate , nullhandle , nullpolicy

, pk(orcekpair), sk(orcekpair)) in
out(chan , pk(orcekpair));

(* TPM EK *)
new tpmekpair : keymat ;
let tpmEKh = createHandle (nulltemplate , nullhandle , nullpolicy

, pk(tpmekpair), sk(tpmekpair)) in
out(chan , pk(tpmekpair));

90

Complete formal models implementation

(* Create pcrs *)
new index: bitstring ;
new pcrcontent : channel ;
out(pcrcontent , pcr_iv);
let pcrh = createPCR (index , pcrcontent , nullpolicy ,

nulltemplate) in

(TPM(tpmEKh , orcEKh , pcrh) | Orc(orcEKh , pk(tpmekpair), pcrh)
| fogNode (pk(tpmekpair), pk(orcekpair)))

A.2.5 ORA
free chan: channel .
free tpmchan : channel [private].

type keymat .
type skey.
type pkey.
type keyhandle .
type pcr.
type nvpcrhandle .
type sessionhandle .
type result .

free nullhandle : keyhandle .
free nulltemplate : bitstring .
free nullpolicy : bitstring .
free zeros: bitstring .
free CCpolicyauthorize : bitstring .
free CCpolicynv : bitstring .
free CCpolicypcr : bitstring .
free START_POLICY_SESSION : bitstring .
free VERIFIED : bitstring .

free tpmproof : bitstring [private].
free ticketproof : bitstring [private].

free s1: bitstring [private].
free s2: bitstring [private].

(* Asymmetric keys management *)
fun pk(keymat):pkey.
fun sk(keymat):skey [private].
fun pkeyname (pkey): bitstring .
fun skeyname (skey): bitstring .

(* Signatures *)

91

Complete formal models implementation

fun ok(): result .
fun sign(bitstring , skey): bitstring .
reduc forall m:bitstring , k: keymat ; getmess (sign(m, sk(k))) = m.
reduc forall m:bitstring , k: keymat ; checksign (sign(m, sk(k)), pk(k

)) = ok().

(* Cryptographic Hash *)
fun hash(bitstring): bitstring .

(* HMAC *)
fun hmac(bitstring , bitstring): bitstring .

(* Handle nv -PCR: (index , content , policy , template) *)
fun createNVPCR (bitstring , channel , bitstring , bitstring):

nvpcrhandle .
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRIndex (createNVPCR (x,c,y,z)) = x.
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRContentChannel (createNVPCR (x,c,y,z)) = c [private].
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRPolicy (createNVPCR (x,c,y,z)) = y [private].
reduc forall x:bitstring , c:channel , y:bitstring , z: bitstring ;

getPCRTemplate (createNVPCR (x,c,y,z)) = z [private].

fun nvpcrhandlename (nvpcrhandle): bitstring .

(* Handle key *)
fun createHandle (bitstring , keyhandle , bitstring , pkey , skey):

keyhandle .
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getKeyTemplate (createHandle (x,y,z,j,k)) = x.

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getKeyParentHandle (createHandle (x,y,z,j,k)) = y.
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getKeyPolicy (createHandle (x,y,z,j,k)) = z.

reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey
;

getPK(createHandle (x,y,z,j,k)) = j.
reduc forall x:bitstring , y:keyhandle , z:bitstring , j:pkey , k:skey

;
getSK(createHandle (x,y,z,j,k)) = k [private].

(* Handle Session : (Session Type , Policy Digest) *)
fun createSession (bitstring , channel): sessionhandle .
reduc forall x:bitstring , y: channel ;

getSessionType (createSession (x,y)) = x.

92

Complete formal models implementation

reduc forall x:bitstring , y: channel ;
getPolicyDigest (createSession (x,y)) = y.

(* Queries *)
query attacker (s1).
query attacker (s2).

let X(ypAK:pkey) =
new n: bitstring ;
out(chan , n);
in(chan , sig: bitstring);
if(checksign (sig , ypAK) = ok()) then

out(chan , s1);

0.

let Y(P:bitstring , T:bitstring , AKh:keyhandle , porcEK :pkey) =
in(chan , n: bitstring);

out(tpmchan , START_POLICY_SESSION);
in(tpmchan , Hps: sessionhandle);

out(tpmchan , (P, T, pkeyname (porcEK)));

out(tpmchan , (n, AKh));

in(tpmchan , sig: bitstring);
out(chan , sig);

0.

let TPM(pcrcontent :bitstring , nvpcrh : nvpcrhandle) =
(* TPM2_StartAuthSession *)
in(tpmchan , policysession : bitstring);
new hpolchan : channel ;
out(hpolchan , zeros);
let Hps = createSession (policysession , hpolchan) in
out(tpmchan , Hps);

(* TPM2_PolicyNV *)

in(getPolicyDigest (Hps), emptyhpol : bitstring);
in(getPCRContentChannel (nvpcrh), nvpcr: bitstring);
let args = (nvpcr , zeros) in
let nvhpol = hash ((emptyhpol , CCpolicynv , args ,

nvpcrhandlename (nvpcrh))) in
out(getPolicyDigest (Hps), nvhpol);

93

Complete formal models implementation

(* TPM2_PolicyPCR *)

in(getPolicyDigest (Hps), nvhpol ’: bitstring);
let pcrhpol = hash ((nvhpol ’, CCpolicypcr , pcrcontent , hash(

pcrcontent))) in
out(getPolicyDigest (Hps), pcrhpol);

(* TPM2_PolicyAuthorize *)

in(tpmchan , (P:bitstring , T:bitstring , porcEKname : bitstring));
in(getPolicyDigest (Hps), hpol: bitstring);
let t = hmac(ticketproof , (VERIFIED , hash(hpol), porcEKname))

in
if((P = hpol) && (T = t)) then

out(getPolicyDigest (Hps), zeros);
let newhpol = hash ((hpol , CCpolicyauthorize , porcEKname))

in
out(getPolicyDigest (Hps), newhpol);

in(tpmchan , (n:bitstring , AKh: keyhandle));
if(newhpol = getKeyPolicy (AKh)) then

let sig = sign(n, getSK(AKh)) in
out(tpmchan , sig);

0.

process
(* Orchestrator EK *)
new orcekpair : keymat ;
let orcEKh = createHandle (nulltemplate , nullhandle , nullpolicy

, pk(orcekpair), sk(orcekpair)) in
out(chan , pk(orcekpair));

(* Y Attestation Key *)
new akpair : keymat ;

(* Create PCRs *)
new pcrcontent : bitstring ;

(* Create nv register *)
new template : bitstring ;
new index: bitstring ;
new nvcontent : channel ;
new nvpcr: bitstring ;
out(nvcontent , nvpcr);

94

Complete formal models implementation

let nvpcrh = createNVPCR (index , nvcontent , nullpolicy ,
template) in

let args = (nvpcr , zeros) in
let nvstep = hash ((zeros , CCpolicynv , args , nvpcrhandlename (

nvpcrh))) in
let pcrstep = hash ((nvstep , CCpolicypcr , pcrcontent , hash(

pcrcontent))) in
let P = pcrstep in

let T = hmac(ticketproof , (VERIFIED , hash(P), pkeyname (getPK(
orcEKh)))) in

let authPol = hash ((P, CCpolicyauthorize , pkeyname (getPK(
orcEKh)))) in

let AKh = createHandle (nulltemplate , nullhandle , authPol , pk(
akpair), sk(akpair)) in

(!X(getPK(AKh)) | !Y(P, T, AKh , getPK(orcEKh)) | !TPM(
pcrcontent , nvpcrh))

95

	List of Figures
	Introduction
	Thesis introduction
	Thesis description

	Formal verification of cryptographic protocols
	ProVerif
	ProVerif limitations and global state extensions

	Remote attestation in a trusted fog computing platform
	Remote attestation
	The RAINBOW project

	Analysed protocols
	Attestation by quote
	System model
	Request for measurement update
	Attestation phase

	Oblivious remote attestation
	System model
	AK creation request
	PCR management
	Measurement update
	Oblivious remote attestation phase

	Thesis objective
	Formal modelling of analysed protocols
	Attestation by quote
	Simple attestation phase
	PCR update request and attestation
	Multiple fog nodes involvement
	Fog node and TPM as separate entities
	Verification of RAINBOW security properties

	Oblivious remote attestation
	Attestation Key creation
	PCR or NV-PCR attachment
	PCR or NV-PCR detachment
	Measurement update
	ORA

	Variations with global state handling
	Attestation by quote
	Oblivious remote attestation

	Formal verification results
	Attestation by quote
	Oblivious remote attestation
	Assessment on security properties

	Conclusions
	Bibliography
	Complete formal models implementation
	Attestation By Quote
	Oblivious remote attestation
	AK creation
	NV-PCR attach
	NV-PCR detach
	Measurement update request
	ORA

