POLITECNICO DI TORINO

Vs SN

¢ %ﬁ :‘:v . .
! /A% Politecnico
T W ge :
w2 di Torino
\\\ 1859 ,‘

de

-l
-\ LY ,’i‘

Master Degree in Data Science and Engineering

Master Degree Thesis

Deep Autoencoder networks and
Adversarial architectures for Retinal
Vessel Segmentation from Optical
Coherence Tomography Angiography
images

Supervisor
Prof. Kristen Mariko MEIBURGER
Candidates

Paola PRIVITERA
Chiara TOMEIL

AcADEMIC YEAR 2021-2022

Abstract

The retinal vessel segmentation is of great importance in the diagnosis of numerous dis-
eases including diabetic retinopathy, atherosclerosis and hypertension. The structure of
the vasculature is characterised by vessels of different thicknesses and lengths, and, given
the strong imbalance between the vascular part and the background, this segmentation
task is rather complex, especially if the specialist is not supported by Artificial Intelligence
algorithms.

In this work, the dataset OCTA-500 has been used to perform a supervised segmen-
tation. The portion of the dataset that has been selected contains 2D images from the
projection map of volumetric images obtained by Optical Coherence Tomography (OCT)
and Optical Coherence Tomography Angiography (OCTA), with associated segmentation
masks. These two imaging technologies are rapid and non-invasive techniques that allow
for microscopic imaging of both structural and vascular features of the retina. In par-
ticular, OCTA can provide a qualitative and quantitative assessment of the retinal and
choroidal microvascularisation.

After an overview of the current segmentation techniques, it has been decided to
employ algorithms based on the use of deep neural networks. Following the application
of several preprocessing steps, the analysis has been initially performed through the use
of a standard Autoencoder architecture. Subsequently, what is considered as one of the
state-of-the-art of segmentation has been applied, i.e. the U-Net structure. Moreover,
a comparative analysis has been carried out with some new versions of it, such as the
Attention U-Net and the Attention Residual U-Net. Finally, the potential of adversarial
training has been explored to understand the characteristics of GAN architectures in the
segmentation task, in particular with the use of the Pix2Pix GAN.

Ad hoc metrics have been chosen in order to measure the performance of such a
complex task and to train the model in the most correct way. The obtained results show
a great enhancement of the performance when using the OCTA projection maps instead of
the OCT ones. Indeed, for each implemented model, the Dice score related to the vascular
class is characterized by an increase up to 10%. Another significant improvement is the
one related to the use of maximum projection maps instead of full projection maps. The
best configuration found is the one related to the use of augmented OCTA images through
the U-Net network, reaching values of 87.6% for the Dice minority score and 77.93% for
the ToU minority score. On the other hand, using the maximum projection maps with
the same settings, values of 90.31% Dice and 83.32% IoU have been reached.

Contents

Medical image segmentation

1.1 Imaging techniques for retinal vessel segmentation
1.1.1 Flourescein angiography
1.1.2 Optical Coherence Tomography
1.1.3 Optical Coherence Tomography Angiography

Segmentation techniques

2.1 Traditional segmentation techniques
2.1.1 Model-based approaches
2.1.2 Pattern-based models oo

2.2 Deeplearning models.

Dataset OCTA-500

Preprocessing

4.1 Loading of the dataset

4.2 Normalisation e

4.3 Equalisation L
4.3.1 Histogram Equalisation
4.3.2 Contrast Limited Adaptive Histogram Equalisation
4.3.3 Results

4.4 Data augmentationo L
4.4.1 Augmentation techniques applied

Evaluation metrics and losses

5.1 Evaluation Metrics e
5.1.1 Traditional evaluation metrics
5.1.2 IoU and Dice coefficients

5.2 LoSSes e e
5.2.1 Binary Cross Entropy loss
5.2.2 Mean Squared Error loss. oL
5.2.3 Jaccardloss

0o O O Ot

11

15
15
15
16
17

19

23
23
25
25
27
28
28
29
30

6 Segmentation Algorithms

6.1 Traditional Autoencoder
6.1.1 Different uses
6.1.2 Autoencoder implementation
6.1.3 Results

6.2 U-Net e
6.2.1 U-Net implementation

6.3 Attention U-Neto
6.3.1 Attention U-Net implementation

6.4 Attention Residual U-Net
6.4.1 Attention Residual U-Net implementation

6.5 U-Net structuresresults,

6.6 Generative Adversarial Network - GAN
6.6.1 Pix2Pix GAN o
6.6.2 Pix2Pix GAN implementation

6.6.3 Results

7 Conclusion
7.1 Future works

Bibliography

43
43
44
45
49
56
o7
61
61
64
65
67
75
77
81
83

95
98

99

Chapter 1

Medical image segmentation

The segmentation technique, in the medical field, is crucial for several diagnostic and
analytical activities. Segmentation allows the isolation of organs, abnormalities, tumours
and numerous diseases. Using this technique, specialists are able to confine a particular
region of interest (ROI) inside the images, to measure tissues, cells, abnormalities and
contours, to facilitate the diagnosis and the choice of treatments and dosages. For a long
time, these needs have been addressed by manual human work, resulting in very labo-
rious activities. Today, with the introduction of Artificial Intelligence (AI), increasingly
advanced models have made possible the achievement of high-performance results.
Medical image segmentation is a special form of image segmentation, however, it is consid-
ered rather difficult due to the peculiarity of medical images, which are often characterised
by irregular shapes, high variety depending on the image collection techniques or different
patients, unpredictable factors and a sparsity of samples that makes segmentation a very
challenging task [1].

Figure 1.1: Examples of different kinds of medical image segmentation (obtained from
37])

Medical image segmentation

1.1 Imaging techniques for retinal vessel segmentation

Retinal vascular segmentation is used to highlight retinal vessels which are essential in the
diagnosis of several diseases, including diabetic retinopathy (DR), retinal venous occlusion
(RVO), uveitis and others. In detail, researches have shown a correlation between vessel
density and DR. In particular, diabetic patients are characterised by a lower retinal vessel
density and fractal dimension than healthy subjects. It has also been proved that the
smaller the vessel density, the more severe is the disease. The same is true for subjects
with RVO for which it is appreciable a reduction of the capillary density, regarding both
superficial and deep ones, or the presence of abnormal microvascular branches. Moreover,
this type of segmentation can be useful in the detection of choroidal neovascularisation,
frequent in patients affected by uveitis [2].

The main complexity of retinal vascular segmentation is related to the thin shape of
blood vessels, which are often irregular and difficult to detect. Moreover, the quality of
the images on which this technique is performed is crucial to ensure good results, since
noisy images with poor illumination or incorrect angulation can easily lead to rough errors
in segmentation and thus also in the diagnosis.

Various technologies can be used to obtain images on which to perform segmentation.
Widely used techniques includes fluorescein and indocyanine green angiography, but these
examinations are quite invasive, dye-based, and time-consuming, as well as involving the
risk of possible adverse allergic reactions. Flourescein Angiography (FA) is a technique
that can only detect superficial blood vessels, without being able to analyse the deep
structure of capillaries. These limitations have driven research towards something more
effective and less invasive, such as Optical Coherence Tomography Angiography (OCTA),
an imaging technique that can effectively obtain both retinal and choroidal circulations
by using a less invasive approach [3].

1.1.1 Flourescein angiography

The Flourescein Angiography (FA) technique was first introduced in 1961 by Novotny
and Alvis, revolutionising the study of retinal diseases by using intravenous injections
of a noniodinated contrast agent: flourescein sodium (CooH12Na205) [4]. Flourescein
absorbs blue and green lights and emits green light signals, allowing for a reasonably
detailed mapping of the retinal capillary circulation. However, it has been noticed that
the visibility of capillaries rapidly decreases with the increasing of the distance from the
foveal centre, especially for deep capillaries. Furthermore, only 40% of capillaries below
4.5 um can be detected by FA [3].

1.1 — Imaging techniques for retinal vessel segmentation

Figure 1.2: Flourescein angiography of a human eye (obtained from [38])

One way to enhance FA performance is to use Adaptive Optics Imaging, which can
significantly improve the resolution of the images by highlighting previously non-visible
details. However, Adaptive Optics Imaging techniques are highly expensive and limited
to small portions of the image, and so not widely used. With FA, rather limited results
are obtained in terms of choroidal circulation information. This is because the dye used
during the process obscures the details of the deeper carotid artery. For this reason, it
is customary to use another reagent, the Indocyanine Green (ICG), which instead
works on infrared frequencies, enabling a more effective visualization of medium to large
choroidal vessels.

Figure 1.3: Comparison between Flourescein dye (a) and Indocyanine Green dye (b) of
the right eye showing normal retinal and choroidal vessels (obtained from [5])

Despite its downsides, FA has been used for ages thanks to its ability in detecting
dynamic information on blood transit, the widespread use of the equipment, the capacity
of capturing a large part of the region of interest in a single image and, finally, the relative
speed, which allows vessel detection in a few fractions of a second.

However, apart from the positive sides that allowed FA to be the golden standard for
a long time, there are medical safety reasons for which researches have geared towards

7

Medical image segmentation

new acquisition techniques. Indeed, the intravenous injection required for FA frequently
causes allergic reactions, some of them quite severe. Examples of adverse reactions to
the reagents are vomiting and nausea, but also serious episodes related to respiratory
and cardiac difficulties and even death. Hence it is not recommended and considered
avoidable for several categories of patients such as pregnant women and children. It
is with the advent of Optical Coherence Tomography (OCT) that science has made a
significant progress to reduce the problems associated with Flourescein Angiography.

1.1.2 Optical Coherence Tomography

Optical Coherence Tomography (OCT) is an imaging technique that allows the
visualisation of the intermediate and deep capillary network, by using coherent reflected
light to capture volumetric structural data of retina with micrometer-resolution [6], [7].

OCT interferometrically measures the amplitude and delay of reflected or backscat-
tered light [3]. Light is a fundamental part of this technique and, due to its wave-nature,
it is characterised by a certain amplitude and wavelength. A beam of light is scanned
over the retina or over the front of the eye and the depth is calculated basing on the
interference of the reflected or backscattered light, and on the light that has travelled
a certain predefined path. The coherence is a peculiarity of light that occurs when two
waves have the same frequency, the same waveform and their phase difference is constant.
Tomography involves the use of penetrating waves in order to create sectional and there-
fore volumetric imaging. Indeed, OCT is an optical imaging modality that can perform
cross-sectional image of biological tissues within less than 10 um axial resolution using
light waves.

Reference Depth
Mirror :i Scan

Low Coherence Sample
light source Beam °

| Splitter Lens ®0O

C{a

V-
Photo \ Inlcrfcmgrur:

Detector 1

Figure 1.4: Operating scheme of OCT technique (obtained from [39])

1.1 — Imaging techniques for retinal vessel segmentation

More in detail, as can be seen in Figure 1.4, a light beam of 820 nm, close to infrared
light, is projected. The beam is split into Probe Beam and Reference Beam through the
Beam Splitter. The Probe Beam reaches the target tissue which is the retina, while the
Reference Beam reaches the reference mirror placed at a known distance. Then, the echo
time delay of the light reflected from the layers of the target tissue is compared with the
echo time delay of the light reflected from the reference mirror. A positive interference is
produced when the lights reflected from both the target tissue and the reference mirror
arrive simultaneously. On the other hand, a negative interference is obtained when the
two waves arrive in counterphase and thus, when there is a difference between the two
phases of m, where the factor defining the phase is 27 f, with f frequency. At the end, the
interference is measured by a photo-detector which produces a range of time delays in
order to compare the differences. In this way, the interferometer integrates several data
points of over 2 mm depth to construct a tomogram of retinal structures.

The procedure for the OCT exam is quite simple, the patient’s pupil is first dilated
with mydriatics (tropicamide) and then he is asked to look into the internal fixation target
light in the ocular lens. After that, the scanning beam is positioned over the target area
and the scans are obtained. To produce the final image, several data points are integrated
by the interferometer to construct the tomogram of the target area. Finally, the tomogram
is displayed in greyscale or false colours on a high-resolution computer screen.

Figure 1.5 provides an example of the scan obtained at the end of the process.

Figure 1.5: Colour OCT scan (obtained from [40])

e The red and yellow colours represent the areas of maximum reflection and optical
backscattering.

e The blue and black colours represent the areas of minimum reflection and optical
backscattering.

There exist several techniques through which OCT can be performed. Time Domain
OCT, Spectral Domain OCT and Spectral Swept Source OCT.

e The Time Domain OCT exploits a monocromatic light. Constructive interference
is observed as maximum intensity when the optical path of both waves are exactly
the same. By moving the mirror it is possible to see the different layers one at a
time, as shown in Figure 1.4. Light is pushed in very micro pulses (1-1071° sec).

9

Medical image segmentation

This is a slow technique, based on the mechanical movement of a mirror, and so
also the eye movement is captured, inducing artifacts and being able to acquire only
400 scans per second.

¢ In the Spectral Domain OCT a broadband light is used. This technique is based
on the transformation from time to frequency, and thus it depends on the Fast
Fourier Transform (FFT). If there are several waves of lights, which are charac-
terised by different lengths and frequencies, by passing them together, a combi-
nation through time can be obtained, as shown in Figure 1.6. By changing the
receiver to frequency instead of time, only three bands will be received, one band
at a certain frequency for each original wave. Any compound waves is composed of
different waves and, by applying the Fourier transform, it is possible to show how
many waves are there and the reflection of each frequency separately. By doing so,
a combination of waves can be divided into separate ones. Thus, in this case, there
is not a dependence on the mirror movement but on the velocity of light, meaning
that this imaging technique is very quick and allows reaching 26000-40000 scan-
s/sec. Moreover, as can be easily noticed in Figure 1.7, resolution is better, with 5
um compared to the previous technique with 10 pm. This very fast capturing of
the image allows to have the OCT Angiography (OCTA).

NNV

o
)& frequency

time

Figure 1.6: Frequency transformation for Spectral Domain OCT (adaptation of image
obtained from [41])

e The Spectral Swept Source OCT uses a broadband light but, instead of separat-
ing the waves at the detector level as for Spectral Domain OCT, here the separation
is applied at the level of the source of the light itself. Through the use of this tech-
nique, it is possible to show deeper structures, such as the laminar cribrosa or the

10

1.1 — Imaging techniques for retinal vessel segmentation

deep choroidal vessels.

Figure 1.7: Comparison of OCT cross-sectional imaging of the human eye in vivo: (A)
Time Domain OCT with an axial resolution of approximately 10 pum and speed allowing
for the acquisition of 400 optical A-scans per second; (B) Spectral Domain OCT with an
axial resolution equal to 2 pum and speed allowing for a measurement of 30000 optical
A-scans per second (obtained from [9])

1.1.3 Optical Coherence Tomography Angiography

Optical Coherence Tomography Angiography (OCTA), like OCT, is a rapid and
non-invasive technique. It uses the reflectivity of light on the surface of moving red blood
cells to accurately render blood vessels. When performing OCT, only the structural
information of the retina can be obtained, whereas with OCTA it is possible to get more
specific information on the retinal tissue vascular network. Movement is at the heart of
this technique as, unlike static tissues, the vascular part is in constant motion thanks to
the presence of blood. It is therefore sufficient to take several images of the same portion
of tissue at different time fractions and the difference will be due to the passage of blood,
thus allowing vessels to be identified. The dissimilarity between pairs of consecutive
images is then calculated basing on the phase of the Fourier transformed OCT data.
During an OCT scan there are several scanning directions that lead to the creation
of the complete tomogram (Figure 1.8). An A-scan is an unidimensional axis scan that
acts on the z-axis. A B-scan is a two-dimensional scan consisting of a series of A-scans

11

Medical image segmentation

and lies on the plane made up by the z-axis and y-axis. Finally, a set of B-scans provides
the depth information and thus creates the 3D volume tomogram, including the z-axis.

1D: A-Scan 2D: B-Scan 3D: Volumetric

Backscatter Intensity
—-

Elvkd Lk

(yadaq) uonoaug ey

No scanning with = Transverse
Fourier Domain OCT Transverse (X) Scanning (X and Y) Scanning

Figure 1.8: Schema of OCT scanning and scanner coordinate system. Left: 1D acquisi-
tion (A-scan). A single depth profile is acquired to measure backscattered intensity vs.
axial dimension (depth). Middle: 2D imaging (B-scan). The OCT beam is scanned in
a transverse direction while A-scans (red arrows) are captured. Right: 3D acquisition.
Multiple B-Scans are acquired such that A-scans are sampled on a 2D grid in the trans-
verse plane (obtained from [10])

As can be seen from Figure 1.9, numerous B-scans (N1, N2, N3) are performed from
the same source. The differences and various correlations are then calculated pair by pair
and then combined at the L3 level in the final OCTA. The procedure is repeated multiple
times to create the volumetric image. The acquisition time (TS) is determined by the
number of A-scans required to create a single B-scan. There is then a time required
to come back to the initial position, which is called fly-back-time (TF). These two time
parameters are crucial to define OCTA sensitivity and the saturation behaviour [3].

Figure 1.9: Simplified schema of how Optical Coherence Tomography Angiography works
(obtained from [3])

The capacity of having a good representation of blood vessels without the use of

12

1.1 — Imaging techniques for retinal vessel segmentation

reagents which can be potentially harmful to the patients, is a great advancement in
imaging techniques used for vascular segmentation. Indeed, it greatly reduces the pro-
cedure time and avoids invasive injections. Moreover, the radiation emitted by laser is
non-ionised and therefore rather harmless to humans.

With OCTA it is therefore possible to obtain high-contrast, very sharply defined im-
ages that perfectly indicate the retinal microvasculature. OCT and OCTA techniques are
often used simultaneously, in order to capture as much information as possible regarding
the images observed. The structural data provided by OCT are indeed intrinsic to the
images produced by OCTA. The disadvantages of using this new technique are certainly
the technical and computational resources required. In fact, since it is necessary to ac-
quire the same source several times, a very high A-scan speed is required. Furthermore,
although the technology is based on the presence of blood, it is not able to provide quan-
titative information on the actual presence of blood or about the blood flow itself, but it
is limited to the detection and delineation of blood vessels. Finally, it is necessary to note
the presence of some artifacts derived from the OCTA technique which, in some cases,
can lead to misleading results.

However, despite its weaknesses, this technique is considered an extremely powerful
tool for the analysis and diagnosis of numerous pathologies.

13

14

Chapter 2

Segmentation techniques

Vascular segmentation, as anticipated, is a rather complex task and retinal vascularisation
of images is a key component for retinal image analysis. In recent years, increasingly
complex approaches based on sophisticated convolutional neural network architectures
have pushed performance to new heights. However, beside that, there exist many different
segmentation techniques that can be distinguished in two main categories: traditional and
deep learning segmentation techniques. In the next paragraphs, a brief overview of the
functioning of these techniques is given.

2.1 Traditional segmentation techniques

2.1.1 Model-based approaches

Model-based approaches rely on explicit vessel models to perform the vasculature extrac-
tion. The most common are deformable models which can be divided in two main groups:
parametric deformable models and geometric deformable models.

Parametric deformable models

The snake technique is one of the principal approaches characterising the parametric
deformable models. It is based on the concept of active contours, which are parametric
curves that deform basing on the influence of internal and external forces. A snake consists
of a set of control points, i.e., snazxels, that are connected together and are associated
with an energy that increases or decreases according to the forces to which each snaxel is
subject to. The internal forces smooth out the contours, while the external forces drive
the snake to form the more defined contours of the figure that has to be segmented,
such as lines and angles. One of its weaknesses, being a parametric model, is the need
for initial parameters often given by the user, on which the outcome of the performance
heavily depends.

15

Segmentation techniques

(a) initial contour (b) final contour

Figure 2.1: Segmentation of a tumour in an MRI brain data performed through para-
metric active contour model (obtained from [14])

Deformable geometric models

Deformable geometric models try to solve problems related to the initial parameterisation.
In particular, curves and surfaces evolve using only geometric measures, resulting in a
parameterisation-independent evolution. Therefore, evolving curves and surfaces can be
implicitly represented as a set of levels of a higher-dimensional function. In this way,
changes in topology can be automatically handled without the use of parameters [11].
However, the main disadvantage is that they are characterised by higher computational
costs than snakes.

2.1.2 Pattern-based models

The aim of pattern-based models is to automatically find and detect the structures and
features of the objects to segment, which in this case correspond to the blood vessels.

Skeleton technique

One of the most common pattern recognition technique is the Skeleton approach. The
objective is to find the skeleton of the object to be segmented, gradually thinning the
subject, in order to find the essence of its shape. Various methods are used to extract
the internal structure, for example: “(i) apply thresholding and then object connectivity,
(ii) thresholding followed by a thinning procedure, and (iii) extraction based on graph
description” [12]. Finally, the blood vessel centerlines found through the application of
this method are then connected together in order to recreate the trees and the network
of the vascular tissue.

Ridge-based technique

Another popular method is the ridge-based technique. Given the nature of vascular tissue,
image ridges are nothing more than indicators of vessels. Each image is considered to have

16

2.2 — Deep learning models

three dimensions, the two relating to greyscale and the one relating to intensity ridge,
which approximates the skeleton of the objects. Figure 2.2 illustrates the transformation
from a 2D image to the 3D map applied to an MRI image. Starting from any pixel,
the method consists in finding the intensity vertices, the ridges that indicate the local
intensity peaks, i.e., the ridge points. This is done by scaling upward in the direction of
the maximum gradients of the surface to find peaks and locate ridges [12].

(a)

Figure 2.2: (a) An MRI slice and (b) Corresponding 2D intensity map in 3D (obtained
from [12])

Region growing technique

Region growing is a technique that involves, starting from a seed point, the grouping
of pixels according to their nature. In particular, if two pixels are close or have similar
characteristics (e.g., intensity value), they are grouped together because it is probable that
they are included in the same object. This model is very dependent on the initial seeds
chosen and often requires several stages of post-processing to be refined. Sometimes, the
region growing technique is used in combination with the ridge-based model to achieve
better segmentations [12].

2.2 Deep learning models

Various deep learning techniques can be used for the purpose of segmentation. In par-
ticular, the use of CNNs (Convolutional Neural Networks) is particularly suitable for the
analysis of images that are characterised by a very high number of features, since it is
possible to perform an automatic feature extraction. Neural networks are able to perform
pixel-based segmentation, classifying each pixel as belonging to the reference class or to
the background.

Most studies focus on the use of specialised networks for the segmentation task or,
more in general, widely used in the field of imaging, such as: U-Net, VGG, ResNet.

The downsides of the extensive use of deep learning are the computational resources
required, the huge amount of data needed to train a model, as opposed to other simpler

17

Segmentation techniques

techniques (e.g., shallow learning), and the complexity of the networks themselves, which
are often poorly comprehensible [13].

Deep learning models can address both supervised and unsupervised problems.

Supervised learning involves the use of labels and thus the availability of segmentation
masks that allow the model to be trained on the basis of certain ground truths. This is
not always possible, especially in the medical field, where the availability of samples is
often limited. However, it is currently the most reliable technique that allows the creation
of highly robust models.
Unsupervised learning refers to problems in which the ground truth masks are not
available. In these cases, the transfer learning technique can be applied, consisting in the
use of neural networks previously trained on data with the same domain and thus able
to generalise appropriately, or on data of another domain, and then proceeding with a
domain adaptation technique. The latter technique is particularly delicate in a medical
context as the creation of artifacts is very high.

18

Chapter 3

Dataset OCTA-500

The dataset chosen for this project is the OCTA-500, whose authors are Mingchao Li,
Yerui Chen, Keren Xie, Songtao Yuan, Qiang Chen, including the authors of the two
reference papers: Image Projection Network: 3D to 2D Image Segmentation in OCTA
Images [7] and IPN-V2 and OCTA-500: Methodology and Dataset for Retinal Image
Segmentation [8]. The access to the dataset can be requested from: https://ieee-dat
aport.org/open-access/octa-500. All the retinal images used in the project refer to
the cited dataset.

All the OCT and OCTA images are generated from the same commercial 70 kHz
spectral domain OCT system with a center wavelength of 840 nm (RTVue-XR, Optovue,
CA). In the dataset, the OCTA volumes are obtained from multiple OCT volumes through
the split-spectrum amplitude-decorrelation (SSADA) algorithm. Each OCT volume has
a size of 640 px x 400 px x 400 pzx corresponding to a 2 mm x 6 mm X 6 mm volume
centered at the retinal macular region. The OCTA volume size is 160 pz x 400 px x 400
px, then stretched into a size of 640 px x 400 px x 400 pz, using bilinear interpolation,
to match the OCT images. The different images are taken from eyes that were imaged
from Jiangsu Province Hospital between March 2018 to September 2018 [7].

The dataset (Figure 3.1) contains 500 subjects with 2 field of view (FOV) types,
including OCT and OCTA volumes that represent a micron-level resolution to present
the three-dimensional structure of the retinal vascular, 6 types of projections, 4 types of
text labels and 2 types of pixel-level labels. In particular, 300 subjects with FOV size of 6
mm X 6 mm X 2 mm and volume 400 px x 400 px x 640 px are represented by the sub-
dataset OCTA_6M. The remaining 200 subjects in the OCTA__3M dataset have FOV
dimensions 3 mm x 3 mm x 2 mm and volume 304 px x 304 px x 640 pz. It has been
decided to carry out the analysis on this second part of the database in order to be able
to handle images with a smaller original size more easily and requiring fewer resources,
but certainly more in-depth analyses can be conducted even taking into account the 300
images contained in OCTA_ 6M.

19

https://ieee-dataport.org/open-access/octa-500
https://ieee-dataport.org/open-access/octa-500

Dataset OCTA-500

B OCTA_3M | 200 subjects

(a) 2 Fields & 2 Modalities OCTA-500 Dataset Structure
. *—{ OCT volum:

.i ' e :
8 L 81.0CT FULL trvrngm)

‘_J Projection Maps

OCT volumes OCTA vulumes OCT volumes OCTA volumes f— BL.OCT ILM-OPL farecse)
e f— 83.0CT OPL-BM iavragsl

| B4.OCTA FULL jmerege)

(b) 6 Projection Maps (c) 4 Text Labels ‘31"": | ssocraim-ol
JU' subject: =
| Sututehtohchiutdhmits st .

OCTA_6M | 4005 x a00px | B6.OCTACPLE
Aot R _1 Text Information

0s/00 | 0D Dissase |oR —_— %
361,600 8-scans e —
S

(d) 2 Pixel Labels

Retinal Vessel Faveal Avascular Zone

Figure 3.1: Proposed OCTA-500 dataset (obtained from [8])

In the reference paper, the construction of the binary target segmentation masks is
described as follows: “The ground truth of Retinal Vessel segmentation is drawn on the
OCTA mazimum projection maps between the ILM layer and OPL. [...] Ten students and
three experts participated in the manufacture and revision of the ground truth. The ground
truth drawing of the RV is as follows: (1) The large blood vessels in the inner retina are
the segmentation targets in this study, which have a relatively obvious vascular topology
and high signal intensity. (2) Capillary plexus, lesion signals and background noise are
excluded. The capillary plexus in the inner retina with 6 mm x 6 mm field is different
from the large vessel target, because it has no clear vascular topology and relatively low
signal intensity.” [7]

In the first paper, the authors presented an innovative image projection network
(IPN) capable of achieving 3D-to-2D image segmentation in OCTA images. With their
technique, they managed to obtain the 2D segmentation mask from a 3D input data
with optimal results. For this project, however, it has been decided to directly use the
2D images from the projection maps provided by the database. This choice has been
made in order to be able to focus less on the manipulation of 3D images and more on the
application of the techniques usually used on datasets such as DRIVE or STARE, created
via different imaging techniques, on images derived from OCT and OCTA. In both papers,
experiments had also been carried out on projection maps alone, so a comparison data
was available.

The projection maps that have been taken into consideration are the two on which
also the reference papers carried out experiments.

o In particular, the first is the Full Projection Map (B1 and B4), which directly
averages the 3D OCT and the 3D OCTA volumes along the axial direction, provid-
ing a view of both retina and choroid. This type of projection map is the one on
which the main analysis has been focused.

20

Dataset OCTA-500

o The other projection map is the Maximum Projection Map (B5) of the inner
retina from the OCTA images, created taking the maximum along the projection
direction from the internal limiting membrane (ILM) layer to outer plexiform layer
(OPL), which can clearly show the vascular morphology of the inner retina. In the
maximum projection map, the blood flow signals of choroid and the artifacts are
removed, making the retinal vessel more clearly as visible in the figure of compar-
ison between FPM and MPM 3.2. The authors of the database used a a public
layer segmentation software (OCTExplorer 3.8) in order to generate the maximum
projection maps.

1.

(a) Full Projection Map (b) Maximum Projection Map

Figure 3.2: Comparison between full projection map (a) and maximum projection map
(b) (obtained from [42])

The decision to focus on the full projection maps was motivated by the desire to first
deal with the baseline proposed by the papers and therefore with images that are more
difficult to segment and that have much more noise than maximum projection maps.
However, following the first experiments, it has been decided to apply the models also
on the maximum projection maps on which, as expected, far superior results have been
achieved, reaching metrics at 90% and in line with the reference papers, as analysed in
the conclusions of this project.

21

22

Chapter 4

Preprocessing

For vascular segmentation of the ocular retina, it has been decided to use the 3 mm Xx
3 mm (3M) projection maps provided by the OCTA-500 dataset, focusing on segmen-
tation from 2D projection images. The volumetric data can be projected from different
retinal layers to facilitate the individual visualisation of each retinal plexus. In particu-
lar, as anticipated, full projection maps have been used in the present work, but also a
brief comparison with the maximum projection maps has been carried out. The original
dataset has been created to perform two main tasks, RV segmentation (retinal ves-
sel segmentation) and FAZ segmentation (foveal avascular zone). The FAZ area is a
blood-free zone, often correlated with diseases such as diabetic retinopathy and retinal
vein occlusion. However, in this study, it has been decided to implement only the first
type of segmentation, which is useful for the detection of numerous retinal diseases.

In order to make proper use of the segmentation models, an exploratory phase of the
data has been carried out, followed by a preprocessing phase, used to standardise the
samples, highlight their main characteristics and synthetically augment them trying to
reduce phenomena such as overfitting.

4.1 Loading of the dataset

The full implementation code is available in the GitHub repository: https://github.c
om/tomeichiara/RetinalVesselSegmentation. All necessary libraries and packages
are listed in the Import section of each notebook. All experiments have been performed
with Python version 3.7.13, 12 GB RAM and Colab GPU.

All the experiments have been carried out separately on OCT and OCTA images in
order to compare their performance, strengths and weaknesses. Future developments can
certainly include a merging of the two types of projection maps to obtain more informa-
tion. The noticeable differences in the representation of the two imaging techniques can
be evaluated by looking at Figure 4.1.

23

https://github.com/tomeichiara/RetinalVesselSegmentation
https://github.com/tomeichiara/RetinalVesselSegmentation

Preprocessing

[

Figure 4.1: OCT and OCTA comparison. Figure (a) shows the OCT retina image while
(b) the OCTA one. The segmentation mask (c) is the same for both since the source is
identical (obtained from [42])

In order to perform basic database operations such as loading and reading files, the
free library OpenC'V has been chosen.
Functions such as (4.1) have been used in case of particular computational needs or
related to the demands of the network models used in the current work.

Code Listing 4.1: Resize
img = cv2.resize(img, (256,256), interpolation = cv2.INTER_CUBIC)

In particular, it has been preferred to keep the images of their original size (304x304)
when the models allowed this. As an example, in case of architectures like the autoencoder
and the U-Net, the network depth and symmetry did not require the use of predefined
dimensions. This has allowed, in most cases, to work with the images at their original
resolution, even in the case of augmented datasets. Indeed, a slight drop in performance
has been noticed when switching to a more common size of 256 x256.

After reading the images, it has been decided to save them in numpy arrays to make
them easier to be handled.

| L4 ‘I‘a

Figure 4.2: Grey FAV area of target image (obtained from [42])

24

4.2 — Normalisation

In order to perform only RV segmentation, the original target images containing the
segmentation masks have been modified to eliminate the grey region dedicated to FAV
segmentation, visible in Figure 4.2.

After having verified the presence of only three colours in the segmentation masks
(i.e., white, black and grey), a thresholding function has been used to equalise the grey
part to the black background, so that the information on the foveal avascular zone (4.2)
was ignored during the segmentation process. On the other hand, the original images
derived from the full projection map have been preserved in their authentic version.

Code Listing 4.2: Thresholding for FAV removing

(thresh, blackAndWhiteImg) = cv2.threshold(img, 180, 256, cv2.
THRESH_BINARY)

The general procedure to adequately train the segmentation models is to partition
the dataset into specific subsets: training, validation, and test. Firstly, the dataset has
been split into train and test sets, by maintaining the 80% for the former and the 20%
for the latter. Secondly, in order to validate the great amount of parameters available
in the different deep learning models, the training set has been further split into a pure
training part and a validation set, keeping the 4:1 proportion. Note that the splits have
been randomly generated but kept the same for all the methods and for the different
runs, in order to have consistent results among the different trials.

4.2 Normalisation

Pixels assume values ranging from 0 to 255, where each number represents a particular
colour. However, when using this notation with such high numerical values on neural
networks, it is probable to run into various problems. To solve this, the entire numpy
vector has been simply normalised in order to have values from 0 to 1, by dividing the
original numbers by 255, allowing to obtain the exact same image but with a different
range of values. By doing so, the computational process will be simpler, leading to have
a better control of the “dynamic range” of the activations at different layers. This, in
turn, helps the optimisation process to converge in a more rapid and stable manner.
This type of normalisation, as well as the other preprocessing steps envisaged, are not
based on the mean and variance of the dataset, nor on any prior knowledge related to it.
Therefore, all preprocessing methods can be implemented even on test data while leaving
the verification phase as agnostic and independent as possible.

4.3 Equalisation

It is important to apply a preprocessing equalisation of the images as variations in colours,
luminosity, tones, or contrasts, due to different acquisition methods or different patients,
may deteriorate performance.

In the current work, two techniques have been implemented to improve contrast in
images, the Histogram Equalisation and the Contrast Limited Adaptive Histogram Equal-
isation (CLAHE).

25

Preprocessing

by

a)

b} fe)

Figure 4.3: OCT visual representation of different preprocessing techniques. Figure (a)
is the original image source, Figure (b) refers to the equalised one and in Figure (c) the
CLAHE technique is applied. Figure (d) represents the segmentation mask which is the
same for each of the previous image, since the ground truth is independent on the type

of technique

000 2500

35004

3000 2000

2500 4
1500

2000 4

1500 1000
1000 4
500
500 4

0 50 100 150 200 250
(@)

50 100 150 200 250
b)

3000 A

2500

2000

1500 4

1000 4

500 4

50 100 150 200 250
ic}

Figure 4.4: OCT histograms of different preprocessing technique. Figure (a) is the his-
togram related to the original image, Figure (b) the equalised one and Figure (c) shows
the one obtained after the application of CLAHE

Figure 4.5: OCTA visual representation of different preprocessing techniques. Figure
(a) is the original image source, Figure (b) refers to the equalised one and in Figure (c)
the CLAHE technique is applied. Figure (d) represents the segmentation mask since the
ground truth is the same for any type of representation

26

4.3 — Equalisation

2000

1500

1000

500

50 100 150 200 250 50 100 150 200 250
(a) iB) fc}

50 100 150 200 250

Figure 4.6: OCTA histograms of different preprocessing techniques. Figure (a) is the
histogram related to the original image, Figure (b) the equalised one and Figure (c)
shows the one obtained after the application of CLAHE

4.3.1 Histogram Equalisation

In a poorly contrasted image a large number of pixels occupies a small portion of the
available range of intensities. Through histogram modification, each pixel is reassigned to
a new intensity value so that the dynamic range of grey levels is increased [16]. The first
equalisation technique is the Histogram Equalisation, which is a way of stretching the
histogram to include all ranges in the image histogram.

The histogram is indeed used to represent the intensity of image pixels. In particular,
in the histograms shown in Figure 4.4 and 4.6, the x-axis represents the scale of the tone,
white on the right and black on the left, while the y-axis indicates the number of pixels
in the image for that particular tone.

Histogram equalisation is used to improve image contrast and it is one of the most
useful forms of nonlinear contrast enhancement [15]. To do this, the pixel density, which
may be very unbalanced on only certain values, is spread out over the entire z-axis,
stretching out the intensity range of the image. Indeed, in Figure 4.4 (a), values are con-
centrated in a rather unbalanced manner, while in Figure 4.4 (b) they are spread over the
most underpopulated regions. By looking at the corresponding graphic representations
of pixels (Figure 4.3 a-b), it is also evident how the contrast is significantly increased.

The histogram equalisation technique consists in mapping a specific distribution into
another one, which is more uniform and stretched out. From the details found in the
OpenC'V library, used to perform this transformation, it has been seen that, in order
to accomplish the equalisation effect, it is needed to remap the cumulative distribution
function cdf. For a certain histogram H (i), its cumulative distribution H’(7) is:

H'(i)=) H(j) (4.1)
0<j<i
In order to use this remapping function, it is needed to normalise 4.1 such that the
maximum value is the maximum value for the intensity of the image. Then, the following
procedure can be used to obtain the intensity values of the equalised image:
equalized(z,y) = H'(sre(x,y)) (4.2)
27

Preprocessing

4.3.2 Contrast Limited Adaptive Histogram Equalisation

The image enhancement technique is useful for reaching good quality results in processing
medical images. The histogram equalisation uses the global contrast of the image, and this
may lead to too bright and too dark regions. By doing so, most of the information may be
lost, especially when the histogram is not confined to a particular region. For this reason,
the Contrast Limited Adaptive Histogram Equalisation (CLAHE) technique
has been applied. It solves the problem by dividing the image into small tiles and then
equalizing the histogram within each tile, which by default has a size of 8x8, when using
the OpenCV library. Each pixel is transformed according to a new distribution that
follows the behaviour of its neighbourhood region. Indeed, the transformation function is
proportional to the cdf of pixel values in the neighbourhood. In some cases, pixels close
to the image boundaries, like the ones in the blue region of Figure 4.7, must be treated
in a particular way. For instance, the image can be extended by mirroring part of it, in
such a way to extend borders and allow the new transformation to be computed.

Figure 4.7: Pixels near image boundaries (obtained from [43])

However, this application could lead to an amplification of the contrast and the noise
for certain parts of the image, especially where the histogram is highly concentrated. For
this reason, a limitation of the contrast is applied to reduce the phenomenon of noise
amplification. In particular, when the histogram of a specific tile is above a certain limit
(which corresponds to 40 for the OpenC'V library), those pixels are clipped and uniformly
distributed to other bins before applying histogram equalisation. Through CLAHE is
possible to produce images in which the noisy content of an image is not enhanced, but
in which sufficient contrast is provided for the visualisation of the structures within the
image [16].

4.3.3 Results

From the results obtained, there is a slight increase in the performance when CLAHE
technique is applied. This difference is more evident in the OCTA dataset (Table 4.2)
and in particular in the performance related to the minority class, which corresponds to
the vascular part of the image. This may be due to the ability of CLAHE to adequately
highlight and contrast the vascular part from the background noise, but without going
to exacerbate the contrast that could lead to an excessive overlapping of the foveal area
and, in general, to the creation of artifacts.

28

4.4 — Data augmentation

Mean IoU IoU minority Dice minority

No Preprocessing 0.8028 0.6336 0.7757
Histogram Equalization 0.8025 0.6330 0.7752
CLAHE 0.8035 0.6347 0.7765

Table 4.1: OCT performance with U-Net

Mean IoU IoU minority Dice minority

No Preprocessing 0.8678 0.7545 0.8601
Histogram Equalization 0.8646 0.7487 0.8563
CLAHE 0.8704 0.7603 0.8638

Table 4.2: OCTA performance with U-Net

4.4 Data augmentation

In medical image segmentation, the lack of samples is a real and crucial issue. The
quality of segmentation often depends on the available dataset and the quantity of labelled
datasets to train the models with. Data augmentation and resampling processes help to
overcome this issue and to avoid phenomena such as overfitting, which is particularly
common in the absence of sufficiently large training datasets. Indeed, the lack of data
frequently leads the model to not generalise well. Moreover, the variance of training
results, applied on different datasets, is really evident and the network will only be able
to properly learn the specific data of the small training set, meaning that it will not
be able to generalise the learning procedure. This problem is maximised with the use of
complex neural networks, which require the training, and thus the updating, of thousands
of parameters. Indeed, it is well known how, as the complexity of the model increases, and
thus the number of weights to be updated increases, the network needs an exponentially
larger database to avoid incurring the problems of overfitting. It is therefore necessary to
consider data augmentation activities to build a robust model and an adequate pipeline.

29

Preprocessing

Raw sample Synthetic sample Augmented dataset
for training

Figure 4.8: Visualisation of Data Augmentation technique

However, data augmentation in the medical field is a rather complex operation that
has to be carried out carefully. Usually, small transformations are used during the training
phase to add variability and artificially augment the size of the training set. The most
common methods used to increase the dataset are geometric transformations such as
rotations and reflections, mechanical transformations like elastic or optical deformations,
and colour space transformations. In the current case, it is essential to apply the exact
same transformation not only to the original image, but also to the mask label (i.e., the
ground truth), as otherwise it would lead to misleading learning and would no longer
correspond to the image that have to be segmented.

4.4.1 Augmentation techniques applied

The resampling operations have been implemented only on the training set and never on
the test or validation part, in order not to compromise the reality of the data, because
the algorithm must remain blind to the data that will be provided as testing ones. For
this project, it has been used Albumentations, an open source Python library for fast and
flexible image augmentations: https://github.com/albumentations-team/albumenta
tions. Albumentations implements a large variety of image transform operations that are
optimized for performance, and also provides a concise, yet powerful image augmentation
interface for different computer vision tasks, including object classification, segmentation,
and detection. It is considered faster than any other image augmentation tool and, with
a low effort, it is possible to compose a large variety of operations into more complex
preprocessing pipelines [17].

Different data augmentation techniques have been applied, striving to choose those with a
low impact on the original information stored in the images, thus avoiding the creation of
artifacts or new synthetic misleading samples, which is crucial when dealing with medical
images, where precision plays a fundamental role.

30

https://github.com/albumentations-team/albumentations
https://github.com/albumentations-team/albumentations

4.4 — Data augmentation

The transformations that have been tried are the following:

e Horizontal flip: the image is flipped horizontally around the y-axis. The flipping
rearranges the pixels while protecting the features of the image.

Figure 4.9: Horizontal flip on OCTA image. Figures (a) and (b) correspond to the original
representation, while (¢) and (d) to the transformed one

e Vertical flip: the image is flipped vertically. It corresponds to composition of a
rotation of 180° and a horizontal flip.

Figure 4.10: Vertical flip on OCTA image. Figures (a) and (b) correspond to the original
representation, while (¢) and (d) to the transformed one

e Random rotation: the image is randomly rotated at 90°. It is possible to use
this angle due to the square size of all the images in the dataset. Indeed, in case of
rectangular images, the image dimension would not be preserved after rotation. In
such cases, only a 180° rotation is suggested.

Figure 4.11: Random rotation of 90° on OCTA image. Figures (a) and (b) correspond
to the original representation, while (¢) and (d) to the transformed one

e Transpose: the transposition of an image is performed by swapping the z-axis and
y-axis of its representation.

31

Preprocessing

Figure 4.12: Transpose transformation on OCTA image. Figures (a) and (b) correspond
to the original representation, while (¢) and (d) to the transformed one

o Elastic transformation: a distortion is added to the original image. It is part of
the spatial-level, non-rigid transformations. The global elastic deformation affects
a relatively large area of the image, leaving the image overall smooth and contin-
uous [18]. The deformation generates a coarse displacement grid with a random
displacement for each grid point. This grid is then interpolated to compute a dis-
placement for each pixel in the input image. The input image is then deformed
using the displacement vectors and a spline interpolation.

o)
Figure 4.13: Elastic transformation on OCTA image. Figures (a) and (b) correspond to

the original representation, while (c¢) and (d) to the transformed one

¢ Grid distortion: it is another type of non-rigid transformation based on an imag-
inary grid of the image.

Figure 4.14: Grid distortion on OCTA image. Figures (a) and (b) correspond to the
original representation, while (¢) and (d) to the transformed one

e Optical distortion: it is a geometric distortion where there is a deviation from a
rectilinear projection. It is a form of optical aberration. In this case, the vertical
lines appear to curve outwards, like a barrel.

32

4.4 — Data augmentation

Figure 4.15: Optical distortion on OCTA image. Figures (a) and (b) correspond to the
original representation, while (c) and (d) to the transformed one

e Random contrast: a random enhancement contrast is applied, where the contrast
is the degree of separation between dark and light regions of the image. It is a form
of pixel-based transformation, where the action is about colours and luminosity and
not about space.

Figure 4.16: Random Contrast on OCTA image. Figures (a) and (b) correspond to the
original representation, while (¢) and (d) to the transformed one

e Gaussian blur: the image is blurred, meaning that the noise level of the image is
reduced by applying a filter which, in this case, is a Gaussian filter with a random
kernel size. Also this one is a pixel-based transformation.

Figure 4.17: Gaussian blur on OCTA image. Figures (a) and (b) correspond to the
original representation, while (c¢) and (d) to the transformed one

Two composite transformations have been chosen. They randomly put together dif-
ferent types of transformations to add variability to the dataset. When applying the
composition, each transformation takes the output of the previous one as input.

e« Composition type 1: the first composition includes the Random Gamma trans-
formation (which affects the brightness of the image), one transformation among

33

Preprocessing

elastic, grid or optical distortions, and finally a rotation.

Figure 4.18: Composition of type 1 on OCTA image. Figures (a) and (b) correspond to
the original representation, while (c¢) and (d) to the transformed one

e Composition type 2: the second type of composite transformation is created by
combining the Sharpen transformation (which increases the level of detail in
the image, performing the opposite function to blurring) and the Random Contrast
transformation.

Figure 4.19: Composition of type 2 on OCTA image. Figures (a) and (b) correspond to
the original representation, while (c¢) and (d) to the transformed one

Augmentation downside

As previously mentioned, the use of some data augmentation techniques can lead to the
creation of artifacts which can be particularly dangerous in the medical field. For this
reason, it has been decided to avoid preprocessing techniques such as image patches.
When cropping the original image, especially for the purpose of segmentation, it is highly
suggested to include the entire subject of segmentation in the crop, by choosing an ade-
quate size of the patch. In case of a vascular segmentation, the part to be segmented is a
complex and articulated network that is perpetuated throughout the image. Therefore,
choosing a crop of an adequate size to contain the entire vasculature would be impossi-
ble, while choosing smaller crops would certainly lead to the loss of the overall sense of
the vascular network. Furthermore, some crops would contain completely black spaces
representing only the background, and this could lead to disturbing information for the
training. One method to overcome this could be to create large enough crops to maintain
an adequate portion of the network within them and, at the same time, apply some form
of Patch Smart sampling [19] in order to implement preliminary object detection and
eliminate those patches that are not meaningful to the model.

Moreover, the size of the available images in the dataset (304x304) has been considered

34

4.4 — Data augmentation

adequate for processing, while special attention would be given to patches in case of
particularly large images, such as the whole slide images characterising certain medical
imaging techniques.

Apart from the cropping technique, other data augmentation methods may be un-
suitable for medical databases and, for this reason, it has been decided to avoid using
techniques involving a particular local displacement, which would have introduced overlap
and discontinuity of the vessels network. Therefore, less invasive techniques have been
applied or, as in the case of elastic transformation, techniques that involved the entire
image, thus maintaining the continuity of the vasculature [18].

Augmentation results

Table 4.3 shows the results obtained with the original dataset and the augmented ones,
when running one of the best models with the best combination of hyperparameters.
In particular, the original dataset refers to the dataset preprocessed with CLAHE and
no resampling operation. Augmentationl dataset, instead, includes the application of
all the augmentation activities explained above. Note that, in order to maximize the
data available for the training phase, a different proportion has been chosen for splitting
the dataset, leaving only 10% of the samples available for testing instead of 20%. The
Augmentationl dataset contains a total of 1944 training data. Finally, Augmentation2
dataset is a particular version of the augmented dataset where have been chosen only
the transformations that maximized performance and decreased the risk of misleading
results. In detail, the selected augmentation techniques are Horizontal flip, Vertical flip,
Transpose, Elastic transformation, Grid distortion, Gaussian blur and the Composition
of Sharpen and Random contrast transformations, resulting in a total of 1296 training
samples for the Augmentation2 dataset.

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

Original 150 0.01 8 0.8704 0.7603 0.8638
Augmentation 1 30 0.01 16 0.8649 0.7478 0.8557
Augmentation 2 30 0.01 16 0.8809 0.7793 0.8760

Table 4.3: Performance comparison on OCTA dataset. Deep network model used for the
training: U-Net

Overall the model achieves the best performance when trained with the dataset aug-
mented with the tightest selection of transformations (i.e., Augmentation2). However,
note how the number of epochs is very different between the original dataset and the
augmented datasets, and this is due to temporal and computational limitations of the
experiments. Therefore, it is not excluded that better results can be achieved by run-
ning the network for a larger number of epochs, thus allowing the model to improve the
training tasks and learn more and better even from a noisier dataset.

35

36

Chapter 5

Evaluation metrics and losses

5.1 Evaluation Metrics

Image segmentation and in particular vascular segmentation consist in determining the
class of each individual pixel in the image, detecting if it is a background or a foreground
pixel. In order to effectively evaluate the tuning of the different hyperparameters and
the goodness of the neural networks, it is essential to introduce some evaluation metrics,
paying particular attention to some characteristic aspects of image segmentation. Indeed,
by nature, these problems are highly unbalanced because most of the pixels usually belong
the background and, for this reason, the pixel-wise accuracy is not always the most reliable
evaluation metric and may lead to overestimation and loss of significance [8].

5.1.1 Traditional evaluation metrics

Traditional evaluation metrics involve comparing the expected class label to the predicted
one and, therefore, are based on the concepts of True Positives (TP), False Positives (FP),
True Negatives (TN) and False Negatives (FN). In detail,

e TP: samples for which the prediction is positive and the true label is positive;
e FP: samples for which the prediction is positive but the true label is negative;
e TN: samples for which the prediction is negative and the true label is negative;

e FN: samples for which the prediction is negative but the true label is positive.

In this specific work, “TP identifies that pizel is a vessel in both the segmented and
ground truth image while in TN, the pizel is non-vessel in segmented and ground truth
images. FP identifies that pizel is a vessel in the segmented image but non-vessel in
observer marked image, also in FN, the pixel is a vessel in ground truth while non-vessel
in the segmented image.” [20]

1. Accuracy: it represents the fraction of predictions correctly classified by the model.

correctly classified samples TP+ TN
total number of samples tested TP + TN + FP + FN

37

Accuracy = (5.1)

Evaluation metrics and losses

It is the most popular metric for model evaluation, but it is not reliable when dealing
with significantly unbalanced datasets because it is not able to distinguish between
the numbers of correctly classified samples of different classes. Indeed, predicting
the majority class would always lead to a high value, even if the predictions of the
minority class are all wrong.

2. Precision: it determines the percentage of correctly labelled positive instances out
of all positive labelled instances.

samples correctly assigned to positive TP

Precision = (5.2)

total number of samples assigned to positive T TP + FP

In other words, it is a measure of how often the model is correct when it predicts
positive.

3. Recall: it indicates the percentage of correctly labelled positive instances out of
all instances that are actually positive.

samples correctly assigned to positive TP
Recall =

total number of samples actually belonging to positive - TP + FN

(5.3)
It is a measure of how often the model predict positive samples among all true
positive sample.

4. F1 score: it is the harmonic mean of precision and recall and it increases with
both precision and recall.

2 - precision - recall

F1 score = (5.4)

precision + recall

As previously explained, accuracy is not the best choice in case of unbalanced datasets,
because the inaccuracy of minority classes would be overshadowed by the accuracy of
majority classes. On the other hand, the recall metric can be useful because a high value
would indicate a good ability in correctly identifying pixels as vascular part. However,
by having only the recall indication, it would be impossible to understand if the model
actually correctly predicts the vessel part or if there is a particular disproportion in
classifying everything as vessel part no matter what it really is. For this reason the F1
score is usually a good trade-off because it incorporates both the information of the recall
index and the precision one.

5.1.2 IoU and Dice coefficients

In addition to traditional evaluation metrics, there exist other metrics which are specific
for the segmentation task.

The first is the Intersection over Union (IoU score or Jaccard score) (5.5) which
calculates the intersection between the predicted area and the ground truth one, over the
union. The aim is to maximize the intersection, where prediction and label overlap (i.e.,
True Positives), and to reduce the union, that refers to the area in which the prediction

38

5.1 — Evaluation Metrics

is outside the label. This metric provides a value in the range [0, 1]: in particular, 0
when none of the prediction and the label are matching, 1 if the entire segmentation is
correctly predicted.

TP
I score — .
oU TP+ FP+ FN (5-5)

ToU = O'U(n.-l apArea)
UnionArea ()

Figure 5.1: ToU graphical representation

Another very common metric used in the field of image segmentation is the Dice
score, which actually corresponds to the F1 score and thus it takes into account both
precision and recall (5.6). When viewed from a more graphic point of view, it is twice
the intersection over the sum between union and intersection.

2.-TP
(I'P+ FP)+ (TP+ FN)

(5.6)

Dicescore =

39

Evaluation metrics and losses

5.2 Losses

The loss function represents a leak, it indicates the way in which the errors made by the
algorithm are penalised and how the algorithm learns from them. Indeed, the aim is to
change the network weights such that the loss is minimised. In detail, the loss is used
to compute the gradient descent and proceed with the backpropagation by multiplying
the derivative of the loss by the learning rate and subtracting this value from the weight
of the network in the previous step. Therefore, the choice of the loss function has a
significant influence on the network learning.

5.2.1 Binary Cross Entropy loss

Binary Cross Entropy (BCE) loss, or Log loss, is considered as a baseline for many
different classification and segmentation tasks. The formula for the BCE loss can be seen
in equation (5.7).

N
BCErLoss = —) [ynlog(4n) + (1 — yn)log(1 — 4] (5.7)
n=1

It represents the probability of having classified the class correctly plus the probability
of having classified it incorrectly. The y letter refers to the true label image, y,, refers
to a single element of that label, § refers to the prediction of the output image and v,
to a single element of that prediction. “In this equation, it can be seen that BCE, while
incorporating an element of probability, smoothed out by the log component, still awards
both true positives and true negatives, while penalizing false positives and false negatives
[...] this can lead to simplistic solutions to segmentation when the data is significantly
sparse, by labelling all output as background.” [21]

5.2.2 Mean Squared Error loss

Mean Squared Error (MSE) is a loss that calculates the sum of the squared differences
between the true label and the estimated one (5.8), trying to penalise larger errors more

heavily.
N

2
MSELOSS = Z (yn Nyn) (58)
n=1
By its nature, it is rather close to the concept of accuracy. It is easy to implement and
widely used, however in the segmentation domain it can have some problems, for instance
related to the fact that it gives more importance to low level features rather than high
level ones, and therefore it usually provides blurry images. A technique to compensate
for this problem is the use of adversarial loss, which will be explored in the later chapter

on Pix2Pix implementation, or the use of Jaccard loss.

5.2.3 Jaccard loss

The loss chosen to be used for the majority of the models implemented in this work is
the Jaccard Loss, derived from the IoU score, since it has proven to be a quite stable

40

5.2 — Losses

loss. The model does not directly predict Os or 1s, but a probability for each pixel to
be vascular or background. For this reason, the IoU formula cannot be just based on
its discrete version, because TP is the number of pixels where both the prediction and
ground truth are 1. The predictions of the model are never actually 1, but probability
values in the range (0, 1) due to the sigmoid activation in the final upsampling layer of
the networks.

Therefore, for optimization purposes it has been necessary to rewrite the equation
in terms of the soft probabilities and to use an approximation of IoU. This gives the
equation for the approximation (5.9):

N ~
YnlYn
IoU, = — - - 5.9
Foss Z Yn + Yn — (ynyn) ()

n=1

41

42

Chapter 6

Segmentation Algorithms

6.1 Traditional Autoencoder

The autoencoder is a particular type of neural network that consists of two main parts,
the encoder and the decoder. Through the first component it is able to encode the
input object in a latent space, by creating a compressed representation of it. The
latent space is clearly visible in Figure 6.1 as a bottleneck that ensures that all data are
encoded within this space. From the data that has been encoded, the decoder has the
task of reconstructing the original object from the compressed information available in
the latent space. This presupposes the ability of the decoder to recreate the object itself,
without having access to the original information but only to a synthetic and compressed
representation of the source data [22].

Input layer Hidden layer Output layer

Figure 6.1: Autoencoder structure (adaptation of image obtained from [23])

The whole point of training an autoencoder is that supposedly the latent space has a
small number of parameters (very few information to be learnt). So, it tries to compress

43

Segmentation Algorithms

the information in input into a smaller representation such that the network can learn
what an image is, without necessarily having to learn the noise in it. However, it is not
a matter of image compression but the main ability of an autoencoder is to perform an
unsupervised feature extraction, ensuring that the features encoded in the latent space
are those necessary and essential for the reconstruction of the image itself. Moreover, a
latent space is needed because it allows keeping similar objects close to each other and
different objects far apart. Indeed, the better the latent space behaves, the easier is to
get significant results. Autoencoders have usually bad looking latent spaces where the
information is not put in a clear manner. This problem can be addressed by Varia-
tional Autoencoders (VAEs), which instead force the latent space to behave in a more
controlled way.

One of the main advantages of the autoencoder is that unpaired data can be used to
perform several tasks, i.e., without the need of having a label associated to the image or
the object in input. If the purpose is image reconstruction, it will be sufficient to input an
image x to the encoder and compare the reconstructed & with the image «x itself. Then,
the network will be driven to minimise what is defined as the reconstruction error, thus
minimising the difference between the reconstructed image and the real one:

minL(x, Z) (6.1)

6.1.1 Different uses

As previously anticipated, one of the simplest uses of an autoencoder is the reconstruction
of the source image, however also more complex tasks can be performed.

¢ One of the applications of autoencoders is the denoising task. Given a noise-free
image, the procedure consists in synthetically add noise to it and give this new
noisy image as input to the encoder. Then, the network is trained and, through the
reconstruction loss, it learns to produce images that tend to the original, noise-free
image. In this way, after the training phase of the network, it will be possible to
give the encoder any noisy image and obtain as output a completely denoised one.

e Another possible purpose for the use of an autoencoder is domain adaptation,
the basis of the concept of transfer learning. Through domain adaptation, the
model should be able to learn robust or high-level features, which are required in
order to be able to apply transfer learning. Domain adaptation utilises both source
and target data for learning, even though their distributions are not the same. The
goal is to share the knowledge among source and target data but only for related
tasks or domains [24]. A typical application refers to the case of confocal microscope
images and electron microscope images. Indeed, confocal images are more common
and easier to collect compared to electron microscope ones. In order to train the
system, it is necessary to provide as input to the network the confocal images and
also the corresponding electron ones. If the data are enough and the model is able
to generalise, it can be obtained a system that, given as input a confocal microscope
image, is able to build the equivalent electron microscope image.

44

6.1 — Traditional Autoencoder

« A simple but effective task that autoencoders can address is the image colourisa-
tion (Figure 6.2). The concept of image colouring is similar to the denoising task,
except that, instead of reconstructing a clean image without noise, here the purpose
is to obtain a coloured image in output, starting from the same black and white
image received in input. After a reasonable training phase, the network should be
able to generalise on unseen images and to compress the information in the latent
space in such a way to obtain, from any input image in black and white, the corre-
sponding coloured image.

The most common method of displaying colour images is RGB, but other approaches
are also possible, such as Lab Colour Space, which is usually preferred for switching
between greyscale and colour, thanks to its lower channel complexity.

Input image Reconstructed image

Latent Space
Representation

)

L Y J J Y J

Encoder Bottleneck Decoder

Figure 6.2: Example of autoencoder for image colourisation (adaptation of image obtained
from [44])

6.1.2 Autoencoder implementation

As anticipated, the segmentation technique involves the classification, and thus the as-
signment of a class label, of each pixel in the image. In the current work, a binary
classification was required to recreate the mask of the retinal vascular tissue. Therefore,
the input to the autoencoder is the original retinal image, OCT or OCTA, while the
prediction should converge to the binary mask available as ground truth.

In detail, the structure of the autoencoder used to perform the segmentation is com-
posed by the layers that can be observed in Figure 6.3.

45

Segmentation Algorithms

input_1 input:
[(None, 304, 304, 1)] | [(None, 304, 304, 1)]
InputLayer | output:
Y
conv2d | input:
(None, 304, 304, 1) | (None, 304, 304, 16)
Conv2D | output:
A J
max_pooling2d | input:
- (None, 304, 304, 16) | (None, 152, 152, 16)
MaxPooling2D | output:
Y
conv2d_1 | input:
(None, 152, 152, 16) | (None, 152, 152, 8)
Conv2D | output:

4

max_pooling2d_1 | input:
MaPoolmeaD (None, 152, 152, 8) | (None, 76, 76, 8)
axPooling output:
A J
conv2d_2 | input:
ConviD put (None, 76, 76, 8) | (None, 76, 76, 8)
onv output:
max_pooling2d_2 | input:
M _l; mg 2]; fp " (None, 76, 76, 8) | (None, 38, 38, 8)
axPooling output:
 J
conv2d_3 | input:
one, 38, 38, one, 38, 38,
ComvaD (N 38, 38, 8) | (N 38, 38, 8)
onv output:
A J
up_sampling2d | input:
Up_S p].il gZD fp n (None, 38, 38, 8) | (None, 76, 76, 8)
pSampling output:
Y
conv2d_4 | input:
one, 76, 76, one, 76, 76,
ConeD p— N 76, 76, 8 N 76,76, 8
onv output:
Y
up_sampling2d_1 | input:
Tns 2D (None, 76, 76, 8) | (None, 152, 152, 8)
pSampling output:
Y
conv2d_5 | input:
one, s s one, A A
ComvaD put N 152,152, 8) | (N 150, 150, 16)
onv. output:

up_sampling2d_2 | input:
- (None, 150, 150, 16) | (None, 300, 300, 16)
UpSampling2D | output:
 J
zero_padding2d | input:
(None, 300, 300, 16) | (None, 304, 304, 16)
ZeroPadding2D | output:
A J
conv2d_6 | input:
(None, 304, 304, 16) | (None, 304, 304, 1)
Conv2ZD | output:

Figure 6.3: Autoencoder layers

46

6.1 — Traditional Autoencoder

It has been decided to implement an autoencoder with convolutional layers for an
optimal feature map extraction. In the encoder part, layers of fundamental importance
are those represented by the max pooling operation [26], which has the role of calcu-
lating the maximum value between the patches of the feature map, necessary to create
a downsampled feature map. A combination of the convolutional and pooling opera-
tions leads to the central latent space, where the information is compressed. Then, there
is the decoder part, in which convolutional layers are followed by upsampling layers.
The upsampling activity allows the decoder to restore images from low resolution feature
maps.

There exist various types of upsampling and the most common are Nearest inter-
polation, Bilinear interpolation or Cubic interpolation. With Nearest interpolation, the
necessary pixels are recreated from the neighbour pixels. With Bilinear interpolation, new
pixel values are estimated by averaging the two nearest pixels, while Cubic interpolation
estimates the volume of the closest pixels. Another technique usually implemented to up-
sample is Transposed Convolution, a machine learning approach that consists in training
specific parameters and, thus, learning the upsampling technique in an end-to-end man-
ner thanks to the backpropagation steps. This last method can be very powerful because
it can learn parameters to get a good upsampling task. However, at the same time, it is
prone to create artifacts, especially in an easy network like the traditional autoencoder.
For this reason, it has been decided to use the Nearest interpolation upsampling technique
in the autoencoder architecture.

Code Listing 6.1: Autoencoder implementation code

input_img = keras.Input(shape=(304, 304, 1))

x = layers.Conv2D (16, (3, 3), activation=’relu’, padding=’same’) (input_img
)

x = layers.MaxPooling2D((2, 2), padding=’same’) (x)

x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’) (x)

x = layers.MaxPooling2D((2, 2), padding=’same’) (x)

x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’) (x)

encoded = layers.MaxPooling2D ((2, 2), padding=’same’) (x)

= layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’) (encoded)

= layers.UpSampling2D ((2, 2)) (x)

= layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’) (x)
layers.UpSampling2D ((2, 2)) (x)

= layers.Conv2D (16, (3, 3), activation=’relu’) (x)

= layers.UpSampling2D ((2, 2)) (x)

= layers.ZeroPadding2D (padding=(2, 2)) (x)

decoded = layers.Conv2D(1, (3, 3), activation=’sigmoid’, padding=’same’) (x

LT T T < B]
Il

)
opt = keras.optimizers.Adam(learning_rate=1r)
autoencoder = keras.Model (input_img, decoded)

autoencoder.compile (optimizer=opt, loss=[jaccard_coef_loss], metrics=[
jaccard_coef])

After each convolutional layer, an activation function is applied. The purpose of
activation layers is to add non-linearity to the network, as without it the complexity of the

47

Segmentation Algorithms

mapping functions that can be expressed by the network would be greatly reduced. Every
tensor coming out from the convolutional layer is passed to the activation function, that
changes the values of the matrix and therefore the complexity of the mapping functions.
Moreover, the activation layer can also be used to normalise values when needed. The
activation function used in each intermediate convolutional layer is the Rectified Linear
Unit (ReLU) function, which returns value 0 for negative inputs while preserving positive
inputs [25]. This function does not saturate values and always grows, which instead is
not granted when using Sigmoid activation. The ReLU is also used to overcome the
vanishing gradient problem because, at large input and output variations, the derivative
of the gradient would not go to zero anyway, as it would happen by using the Sigmoid
function.

Figure 6.4: Line plot of ReLU for negative and positive values (obtained from [25])

The vessel segmentation task is a binary semantic segmentation and for this reason
only an output is needed: the probability that a pixel belongs to a vessel or that it
belongs to the background. For example, if a threshold of 0.5 is set and the output gives
a probability of 0.1, it means that the current pixel should be considered as background,
while if it is above 0.5 it is probably a vessel. Then, these probabilities should be converted
into classes, and this is done by using yprearhresholded = Yprea > 0.5. To obtain this
probability value, the Sigmoid (6.2) has been chosen as final activation function.

1

S=—
1+e

(6.2)

It is a S-shaped function that maps the input into a value in the range 0 to 1. Indeed,
the Sigmoid function is used for models whose aim is to predict the probability as output
which, in this specific case, corresponds to the probability of belonging to the vascular
class or to the background one. As can be seen from the implementation code (6.1), Adam
optimizer has been used to optimize the gradient descent. It is a very useful optimization
algorithm when dealing with a large amount of parameters and data. In particular, it
is a stochastic gradient descent method that is based on the adaptive estimation of the
first-order and the second-order moments. The parameters 1 and (2 control the weight
decay rates of the moving averages [27].

The loss function and the evaluation metrics that has been implemented are the
Jaccard Loss and the Jaccard Coefficient, extensively described in chapter 5.1.2.

48

6.1 — Traditional Autoencoder

6.1.3 Results

In order to evaluate the performance of this first implemented model, various parameters
such as batch size, learning rate and epochs have been tuned, for various versions of the
dataset. What is referred below as the Original Dataset is the dataset composed of the
200 original images, divided into train, validation and test sets, to which the CLAHE
technique has been applied. The dataset defined as Augmented is the version to which
oversampling has been applied by using the transformations selected in chapter 4.4.1 -
(Augmentation results). Finally, it has been analysed the difference of the model
when trained with the OCTA database or with the OCT version, showing a significant
improvement in the performance with OCTA under all conditions investigated.

Original Dataset

The first thing that has been explored is the change in loss as the learning rate increases,
as shown in Figure 6.5, by using a batch size of 8 and 1000 epochs for all runs. As can
be easily noticed, the losses are characterised by different behaviours when changing the
learning rate.

Training and validation loss Training and validation loss

0 20 a0 600 a00 1000 0 20 0 00 a0 1000
zzzzzzzzzzzz

Figure 6.5: Tuning of learning rate. Training and validation losses from OCTA original
dataset not augmented.
Batch size = 8, Epochs = 1000. (a) LR = 1% (b) LR = 173

In Figure (a), with a learning rate of 1%, there is a rather small step size, which
means that the gradient steps during the backpropagation phase will be short and rather
conservative. This justifies the behaviour of the learning that still seems to be descending
after 1000 epochs, suggesting that, with more epochs and time available, improvements
in performance could be achieved. However, it is less steep than in Figure (b), where
lower loss values can be achieved. In this case, the learning rate is 173 and it is possible
to notice that, already after 800 epochs, a plateau seems to be reached. Proceeding
with a higher number of epochs would probably be counterproductive, leading to a larger
divergence between training and validation losses and therefore running into overfitting.

Figure 6.6 displays the performance on the test set, composed of 40 images. This
confirms, as anticipated by the loss behaviour, that the best performance is obtained

49

Segmentation Algorithms

with a LR equal to 173, while there is a significant drop with the higher value of LR,
meaning that, for larger steps, the model risks not to converge.

10
—— Mean lolU
lol minority
= Dice minority
0.8

06

0.4

Evaluation Metrics

02

N

0
00001 0001 001
Leaming Rate

Figure 6.6: Tuning of learning rate. Metrics obtained for OCTA original dataset not
augmented. Batch size = 8, Epochs = 1000

Augmented Dataset

Very similar performance can also be observed on the augmented dataset in Figure 6.7. In
particular, with a LR of 1% (a), the updating steps are shorter and with fewer oscillations,
indicating a more stable but slower model. However, by using a LR of 173 (b), the plateau
is reached already after 600 epochs, thanks also to a much larger number of samples with
respect to the original dataset.

Training and validation loss Training and validation loss

PN {7 W ATV SN | T

zzzzzzzzzzzz

Figure 6.7: Tuning of learning rate. Training and validation losses from OCTA aug-
mented dataset.
Batch size = 8, Epochs = 1000. (a) LR = 1% (b) LR = 173

Another significant difference between the two datasets can be noted in the higher
training loss with respect to the validation one, which can be justified by the presence of a

50

6.1 — Traditional Autoencoder

noisy training set in comparison with a rather standard validation one, which is easier to
be segmented. For this reason, it may be considered to further restrict the transformation
activities in order to have a less robust but more effective training of the model on the
domain of interest.

Figure 6.8 shows the performance on the test set, composed of 20 images.
The same conclusions can be drawn as for the original dataset, with a peak in performance
at LR equal to 173 and a drop for higher values of it.

140
— Mean lol
lal minority
—— Dice minority

0.8

o0&

04

Evaluation Metrics

02

[u]
00001 0001 001
Learmning Rate

Figure 6.8: Tuning of learning rate. Metrics obtained for OCTA augmented dataset.
Batch size = 8, Epochs = 1000

Furthermore, tuning has been performed also with respect to the batch size. Table 6.1
summarises the performance obtained with a batch size of 8, already anticipated by the
previous graphs. In Table 6.2, instead, the performance for a batch size equal to 16 can
be appreciated. However, by varying the batch size to 16, no significant improvements
have been noticed. For this reason, a batch of 8 has been chosen as the best performing
hyperparameter.

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

1000 0.0001 8 0.7931 0.6199 0.7654
1000 0.001 8 0.8097 0.6493 0.7873
1000 0.01 8 0.0334 0.0669 0.1254

Table 6.1: Tuning of learning rate with batch size = 8. Metrics obtained for OCTA
augmented dataset

51

Segmentation Algorithms

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

1000 0.0001 16 0.7864 0.6069 0.7554
1000 0.001 16 0.8070 0.6449 0.7841
1000 0.01 16 0.0334 0.0669 0.1254

Table 6.2: Tuning of learning rate with batch size = 16. Metrics obtained for OCTA
augmented dataset

Finally, by looking at the histograms of Figure 6.9, one can see the direct comparison
between the original dataset and the augmented one with the same hyperparameters. A
slight increase in performance due to a noisier and larger dataset is thus evident. However,
despite the autoencoder is a neural network, it is overall simple and not too deep, which
is the reason why the parameters to be updated during backpropagation are not as high
as for a U-Net or a GAN, and thus the need for very large datasets is partially buffered
by this.

Metrics
0.8097

0.7889 0.7873 Mean ol

o7 0.7583 ToU minority

Dice minority
0.6493
0.6107

Value
(=}
B

Original Augmentation 2

Dataset

Figure 6.9: Original dataset and augmented dataset comparison.
Epochs = 1000, Batch size = 8, LR = 173

Figure 6.10 shows the graphical result of the implemented algorithm. In particular,
the images are the result of the model with epochs = 1000, batch size = 8, LR = 173
and augmented dataset. By looking at the overlapping between the ground truth mask
and the predicted segmentation, it can be seen that the difference is minimal, resulting
in an average IoU value of 80.97%.

52

6.1 — Traditional Autoencoder

Masks Overlapping 1 Testing Image 2 Masks Overlapping 2

Testing Image 5

,-.,

Masks Overlapping &
/

Figure 6.10: Segmentation results on 6 test images with batch size = 8, epochs = 1000,
LR = 173. Overlapping between ground truth and predicted mask

However, by zooming in the image, as shown in Figure 6.11, it is possible to notice
how some parts are still incorrectly classified as background, even though they belong to
the vascular tissue, justifying a minority class IoU of only 64.93%.

Figure 6.11: Zoom over a segmented test image

53

Segmentation Algorithms

OCTA vs OCT

To conclude, one can state that the OCTA dataset performs significantly better than
the OCT one in all its forms, as illustrated in Figure 6.12. This might have been easily
predictable given the nature of the two imaging techniques, the former being focused on
the detection of the vascular network and the latter more suited to the general analysis
of the retinal structure.

10
—— Mean lol

loU minority
09 —— Dice mincrity

Evaluation Metrics

03
OCT Criginal OCT Augm. 2 OCTA Original OCTA Augm. 2

Figure 6.12: OCT vs OCTA performance comparison

Full Projection Map vs Maximum Projection Map

As mentioned in Chapter 3, it has been chosen to work mainly with full projection maps
to have the opportunity to improve the results proposed by the reference paper and to
deal with images that are noisier and more difficult to segment, assuming the fact that
excellent results could also be obtained with maximum projection maps. Below in Figure
6.13, the best results obtained with the two projection techniques are shown.

Metrics
Mean IoU
0.8 0.8007 0.8514 0.8406 -CfL' m I‘TOHt'yj.
. 0.7873 Dice minority
0.725

0.6 0.6493
z
=
>

0.4

0.2

0 — .
Full Projection Max Projection

Dat

w
w
1]
@

Figure 6.13: Comparison between full projection map and maximum projection map.
Augmented dataset, Batch size = 8, Epochs = 1000, LR = 173

54

6.1 — Traditional Autoencoder

It is possible to notice a significant improvement of 5% points in the Dice score and
almost 8% points in the IoU of the minority class. This shows how precision and recall
relative to the vascular part of the segmentation increase substantially. This behaviour
was to be expected given the nature of the maximum projection map, which is particularly
suited to highlight the retinal vascular structure.

55

Segmentation Algorithms

6.2 U-Net

With the use of autoencoders there is a loss of spatial information which, however, is
crucial for semantic segmentation since every pixel in the image should be classified.
Usually in the predicted masks, there are fuzzy, soft or rounded objects due to the loss of
most of the information outputted by the convolutional layers. The use of U-Net (Figure
6.14) satisfies to the need of retaining spatial information by providing this information
from the encoder to the decoder. In detail, through the use of skip connections, the
outputs of the convolutional layers in the encoder path are concatenated with those
resulting from each upsampling phase in the decoding part, in order to avoid the loss of
localization information [28].

Input

' 5 512 256
‘ I:-»U-% ‘ = conv 3x3, RelLU
t

256 256
H-
i copy and crop
512

[’tl’m Lt‘ll_}'>1:|->(:| § max pool 2x2
¥ 4 up-conv 2x2

1024
[— = conv 1x1

Figure 6.14: U-Net architecture. Each blue box corresponds to a multichannel feature
map. The number of channels is denoted on top of the box. White boxes represent
copied feature maps provided by grey skip connections. The arrows denote the different
operations (adaptation of image obtained from [28])

U-Net structure is particularly suited for the segmentation of images in an end-to-end
setting, meaning that, given a raw image input, it is able to provide a segmentation as
output. Indeed, it is designed for semantic segmentation and is composed by two paths,
as the traditional autoencoder: the path on the left (contraction or encoder path) and
the path on the right (expansion or decoder path). Like all other convolutional networks,
it consists of a large number of different operations. The input image is fed into the
network, then the data is propagated towards the network along all possible paths and,
at the end, the segmentation comes out. Each blue box in Figure 6.14 corresponds to
a multichannel feature map. Most operations are convolutions followed by a non-linear
activation function. Moreover, similarly to the autoencoder, the max pooling operation
is used to reduce the size of the feature map, by propagating the maximum activation
from each 2x2 window into the next feature map. After each max pooling operation, the
number of feature channels is increased by a factor of 2. The sequence of convolutions

56

6.2 — U-Net

and max pooling operations in the encoder path results in a spatial contraction where it is
possible to increase the “what” and at the same time decrease the “where”. On the other
hand, the decoder part of the architecture is dedicated to the creation of high-resolution
segmentation maps. It consists of a sequence of up-convolutions and concatenations
with the high-resolution features coming from the contraction path through the skip
connections. The up-convolution layers use a learnt kernel to map each feature vector to
the 2x2 pixel output vector, then followed by a non-linear activation function. The output
segmentation map has two channels, one for the foreground and one for the background,
which in this case correspond respectively to the vascular part in white and to the black
background.

6.2.1 U-Net implementation

In the current implementation of U-Net, each convolution block is defined by the code
(6.2).

The convolution operation is characterised by a 3x3 kernel size and padding is set as
“same”, meaning that it adds extra pixels to the edges, in order to force the dimension
of the output image to be the same as the input one.

Then, since each feature map in output from the convolutional layers is not normalised,
the Batch Normalization is applied to make the model easily converge. Indeed, this
method helps to speed up the network, but the drawback is that it requires more memory
for the calculation of mean and variance.

The activation function applied is the ReLU, as for the autoencoder model.

Moreover, it has been chosen to include the possibility of using a drop out, which is a form
of regularisation that allows certain neurons in the network to be switched off. During
training a tensor cell is kept active with a probability p and set to 0 otherwise. This
forces the network to behave in a more robust way, reducing the problem of overfitting.

Code Listing 6.2: Convolution block code

def conv_block(x, filter_size, size, dropout, batch_norm=False):

conv = layers.Conv2D(size, (filter_size, filter_size), padding="same")
(x)
if batch_norm is True:
conv = layers.BatchNormalization(axis=3) (conv)
conv = layers.Activation("relu") (conv)
conv = layers.Conv2D(size, (filter_size, filter_size), padding="same")
(conv)
if batch_norm is True:
conv = layers.BatchNormalization(axis=3) (conv)
conv = layers.Activation("relu") (conv)

if dropout > O:
conv = layers.Dropout (dropout) (conv)

return conv

57

Segmentation Algorithms

The convolutional block has been used to create the entire network as shown in code
(6.3). It is very similar to the structure of an autoencoder, except for the concatenations
characterising the skip connections.

Code Listing 6.3: Complete U-Net code
Downsampling layers

conv_64 = conv_block(inputs, FILTER_S, FILTER_NUM, drop, batch_norm)
pool_64 = layers.MaxPooling2D(pool_size=(2,2)) (conv_64)

conv_128 = conv_block(pool_64 ,FILTER_S,2*FILTER_NUM,drop,batch_norm)
pool_128 = layers.MaxPooling2D (pool_size=(2,2)) (conv_128)

conv_256 = conv_block(pool_128 ,FILTER_S,4*FILTER_NUM,drop,batch_norm)
pool_256 = layers.MaxPooling2D (pool_size=(2,2)) (conv_256)

conv_512 = conv_block(pool_256 ,FILTER_S,8*FILTER_NUM,drop,batch_norm)
pool_512 = layers.MaxPooling2D (pool_size=(2,2)) (conv_512)

conv_1024 = conv_block(pool_512,FILTER_S,16*FILTER_NUM,drop,batch_norm)
Upsampling layers

up_1024

layers.Conv2D (8*FILTER_NUM, (FILTER_SIZE,FILTER_SIZE), padding =
’same’) (conv_1024)
up_1024 = layers.UpSampling2D(size=(UP_SAMP_SIZE, UP_SAMP_SIZE),
data_format="channels_last") (up_1024)
up_1024 = layers.concatenate ([up_1024, conv_1024], axis=3)
up_conv_1024 = conv_block(up_1024 ,FILTER_S ,8+*FILTER_NUM,drop,batch_norm)

up_512 = layers.Conv2D (4*FILTER_NUM, (FILTER_SIZE,FILTER_SIZE), padding =
>same’) (up_conv_1024)

layers.UpSampling2D(size=(UP_SAMP_SIZE, UP_SAMP_SIZE),
data_format="channels_last") (up_512)

up_512 = layers.concatenate([up_512, conv_512], axis=3)

up_conv_512 = conv_block(up_512 ,FILTER_S ,4*FILTER_NUM,drop,batch_norm)

up_512

up_256

layers.Conv2D (2*FILTER_NUM, (FILTER_SIZE,FILTER_SIZE), padding =
>same’) (up_conv_512)
up_256 = layers.UpSampling2D(size=(UP_SAMP_SIZE, UP_SAMP_SIZE),
data_format="channels_last") (up_256)
up_256 = layers.concatenate([up_256, conv_256], axis=3)
up_conv_256 = conv_block(up_256 ,FILTER_S,2+*FILTER_NUM,drop,batch_norm)

up_128 = layers.Conv2D (FILTER_NUM, (FILTER_SIZE,FILTER_SIZE), padding = °
same’) (up_conv_256)

layers.UpSampling2D (size=(UP_SAMP_SIZE, UP_SAMP_SIZE),
data_format="channels_last") (up_128)

up_128 = layers.Conv2D(FILTER_NUM, (FILTER_SIZE,FILTER_SIZE), padding = ’

same’) (up_128)
up_128 layers.concatenate ([up_128, conv_128], axis=3)
up_conv_128 = conv_block(up_128 ,FILTER_S,FILTER_NUM,drop,batch_norm)

up_128

conv_final = layers.Conv2D(NUM_CLASSES, kernel_size=(1,1)) (up_conv_128)

58

6.2 — U-Net

conv_final = layers.BatchNormalization(axis=3) (conv_final)
conv_final = layers.Activation(’sigmoid’) (conv_final)
model = models.Model (inputs, conv_final, name="UNet")

The input layer has a number of dimensions equal to 1, which typically refers to a
greyscale image. In the next layer this dimension changes from 1 to 64 because there
are 64 digital filters applied to the image in input (304, 304, 1). As the depth of the
network grows, the number of filters increases by a factor of 2 until the last layer of
the encoder, where the filters are 1024. Then, in the decoding part, the output of each
upsampling layer is concatenated with the output of the symmetrical convolution that
took place in the encoding part. As the convolutions advance, the number of filters
decreases. Finally, the last Conv2D operation with 1x1 kernel and activation Sigmoid
provide the output. As anticipated with the autoencoder, Sigmoid has been used for the
purpose of binary segmentation, otherwise Softmax activation would have been applied
for multiclass segmentation.

A summary of opening and closing blocks can be seen in detail below. In particular,
Figure 6.15 shows the beginning of the U-Net with the sequence of two convolutional
blocks, at the end of which, the output is passed both to the max pooling operation and
to the skip connection to be concatenated to its symmetrical in the decoder part.

input_1 input:

[(None, 304, 304, 1)] | [(None, 304, 304, 1)]

l

(None, 304, 304, 1) | (None, 304, 304, 64)

l

(None, 304, 304, 64) | (None, 304, 304, 64)

)

(None, 304, 304, 64) | (None, 304, 304, 64)

l

(None, 304, 304, 64) | (None, 304, 304, 64)

l

InputLayer | output:

conv2d | input:

Conv2D | output:

batch_normalization | input:

BatchNormalization | output:

activation | input:
Activation | output:

conv2d_1 | input:

Conv2D | output:

batch_normalization_1 | input:
— (None, 304, 304, 64) | (None, 304, 304, 64)
BatchNormalization output:
activation_1 | input:

(None, 304, 304, 64) | (None, 304, 304, 64)

Activation | output:

o

(None, 304, 304, 64) | (None, 152, 152, 64)

'

Figure 6.15: U-Net initial blocks

max_pooling2d | input:
MaxPooling2D | output:

Figure 6.16, instead, displays the network closure where, after the upsampling oper-
ation, there is the concatenation of the feature map coming from the encoder and the

59

Segmentation Algorithms

output of the upsampling in the decoder.

!

(None, 152, 152, 64)

~,

[(None, 304, 304, 64), (None, 304, 304, 64)]

)

(None, 304, 304, 128)

batch_normalization_16 ‘ input: ‘ o~ 304, 304, 64)
l one, 304, 304,

)

(None, 304, 304, 64)

}

(None, 304, 304, 64)

Conv2D output:
‘ batch_normalization_17 ‘ input: ‘
(None, 304, 304, 64)
‘ BatchNormalization l output: [

)

(None, 304, 304, 64)

)

(None, 304, 304, 64)

}

(None, 304, 304, 1)

)

(None, 304, 304, 1)

up_sampling2d 3 | input: (None, 304, 304, 64)

UpSampling2D | output:

concatenate_3 nput:

Concatenate | output:

(None, 304, 304, 128) ‘

conv2d_20 | input:
(None, 304, 304, 64)

Conv2D output:

(None, 304, 304, 64)

\
‘ BatchNormalization lnutpm:

activation_16 | input:
(None, 304, 304, 64)
Activation output:

conv2d_21 | input:

(None, 304, 304, 64) ‘

(None, 304, 304, 64)

activation_17 | input:
(None, 304, 304, 64)

Activation output:

conv2d_22 | input:
(None, 304, 304, 1)

Conv2D | output:

batch_normalization_18 | input: ‘

(None, 304, 304, 1)

|
| BatchNormalization |Dutput:l

activation_18 | input:

(None, 304, 304, 1)
Activation output:

Figure 6.16: U-Net final blocks

60

6.3 — Attention U-Net

6.3 Attention U-Net

Attention U-Net is a variation of the traditional U-Net in which only relevant activations
are highlighted during training. This reduces the computational resources wasted on
irrelevant activations (referred to areas that are not interesting) and provides a better
generalisation of the network [29].

Attention means focusing only on the salient parts of the images which, in this specific
case, are related to the blood vessels, and thus giving less importance to the background.
In other words, it is a way to de-emphasise the background while, at the same time,
emphasise the foreground. There are two types of attention:

Hard attention:

o Highlight relevant regions by cropping the image.

o Use of one region of an image at a time; this implies it is non-differentiable (because
cropping is not a differentiable operation) and reinforcement learning is needed.

e Network can either pay attention or not, nothing in between.

o Backpropagation cannot be used.
Soft attention (attention gates):

o Weighting different parts of the image, by giving large weights to relevant crops
and small weights to less important parts.

e Can be trained with backpropagation.

e During training, also the weights get trained making the model pay more attention
to relevant regions.

To sum up, the main difference between hard and soft attention is that, in the latter,
weights are added to pixels according to their relevance within the image.

As previously explained, traditional U-Net is able to combine spatial information from
the encoder to the decoder, thanks to the use of skip connections. However, in the early
stages of the encoder path, the feature representation is still quite weak because features
are better learnt in deeper layers of the network. To solve the problem of poor feature
representation of the initial layers, soft attention is implemented at every skip connections
and actively suppresses activations at irrelevant regions, providing more weightage to the
features of interest.

6.3.1 Attention U-Net implementation

Figure 6.17 shows a modified version of the traditional U-Net in which the attention block
has been added. As input to the attention gate (AG) there are two arrows, the gating
signal (that is basically a query) and the skip connection.

61

Segmentation Algorithms

RE iqig |q| 8
X |z Orixixl |5l
E | B A EE||E| S
= | % x = DX o= x| 8
Sl = 18 |8 v ol (o S 1SS
2|z T Q —. 'R ST T
1=l) >).i.).i. f H x| x x ! X X x| >
o) b (N L SiEpls i) (298
);); e o Py ! x| x =
CIREINEIRE SRR BEIEIRE)
SRR f PX0x = | - X x (Conv 3x3x3 + ReLU) (x2)
IR R KR (K :
x x - - P = = Upsampllﬁg (by 2)
f f Q Q | e (o] Max-pooling (by 2)
x x x x| E 1 E E Skip Connection
o) =+ = e el
B ~ = = {_k?,' R R Gating Signal (Query)
;:r ;:r " Concatenation
x x /) Attention Gate
S

Figure 6.17: Attention U-Net segmentation model. Input image is progressively filtered
and downsampled by factor of 2 at each scale in the encoding part of the network. Atten-
tion gates (AGs) filter the features propagated through the skip connections (obtained
from [29])

By expanding the attention gate, visible in Figure 6.18, two inputs can be underlined:

e g, which is the gating signal that comes from the previous layer of the network.
Since it always derives from a deeper part of the network, it has a better feature
representation.

e z, which comes from the skip connections of the encoder path. Since it comes from
the upper layer, it provides a better spatial information.

Sigmoid (02) Resampler

Firx Hx Wyx D,

Figure 6.18: Schema of the proposed attention gate (obtained from [29])

The two inputs = and g are characterised by different dimensions because z is coming
from an upper layer of the network. However, to obtain a combination of the spatial and
the feature information, it is necessary that the two inputs have the same dimension.
For this reason, a convolutional operation with a padding stride = (2, 2) is applied to
x, in order to halve its dimension. By doing so, the two contributions z and ¢ can
be added. When adding them, aligned weights get larger, while unaligned weights get
relatively smaller. They are then passed through the ReLU activation function, which
allows to obtain values ranging from 0 to any positive number for the weights. Next,

62

6.3 — Attention U-Net

it is necessary to scale them to values included in the range 0 to 1, and this is done
through the application of a sigmoid function. The weights obtained are then resampled
or upsampled to the original size of z. Finally, the weights are multiplied element-wise
with the original vector z, in order to scale the vector itself based on relevance.

The technical implementation follows the same procedure used for the U-Net archi-
tecture, with convolutional blocks, max pooling, upsampling, batch normalisation and
activation functions, but with the addition of the attention block, as evident from the
(6.4) which mirrors the 6.18 structural scheme.

Code Listing 6.4: Attention U-Net Block

def attention_block(x, gating, inter_shape):
shape_x = K.int_shape (x)
shape_g = K.int_shape(gating)

Getting the x signal to the same shape as the gating signal
theta_x = layers.Conv2D(inter_shape, (2, 2), strides=(2, 2), padding=’
same’) (x) # 16
shape_theta_x = K.int_shape(theta_x)

Getting the gating signal to the same number of filters as the
inter_shape
phi_g = layers.Conv2D(inter_shape, (1, 1), padding=’same’) (gating)
upsample_g = layers.Conv2DTranspose (inter_shape, (3, 3),strides=(
shape_theta_x[1] // shape_gl1],
shape_theta_x[2] // shape_gl[2]),
padding=’same’) (phi_g) # 16

concat_xg = layers.add([upsample_g, theta_x])

act_xg = layers.Activation(’relu’) (concat_xg)

psi = layers.Conv2D(1, (1, 1), padding=’same’) (act_xg)

sigmoid_xg = layers.Activation(’sigmoid’) (psi)

shape_sigmoid = K.int_shape(sigmoid_xg)

upsample_psi = layers.UpSampling2D(size=(shape_x[1] // shape_sigmoid[1
1, shape_x[2] // shape_sigmoid[2]
)) (sigmoid_xg) # 32

upsample_psi = repeat_elem(upsample_psi, shape_x[3])
#upsample_psi = repeat_elem (upsample_psi, 3)

y = layers.multiply([upsample_psi, x])
result = layers.Conv2D(shape_x[3], (1, 1), padding=’same’) (y)

result_bn = layers.BatchNormalization () (result)
return result_bn

63

Segmentation Algorithms

6.4 Attention Residual U-Net

The Attention Residual U-Net is a neural network that employs, in addition to the con-
cept of attention, the idea of residual, thus combining the residual structure and the
channel attention mechanism.

The concept of residual has been firstly introduced by the inventors of ResNet archi-
tecture [30]. Deep neural networks learn a hierarchical set of representations (low, mid
and high-level features); in images, this is analogous to learning edges, shapes and then
objects. So, theoretically more layers should enrich the levels of the features. However,
adding more and more convolutional layers on top of activations and batch normalisations,
the training will eventually get worse. The authors of the paper offered a construction
insight: considering a shallow architecture and its deeper counterpart with more layers,
theoretically all the deeper model would need to do is to just copy the output from the
shallow model with identity mappings, in a way that the deeper model should produce
no higher training error than its shallow counterpart. However, the identity functions are
not an easy function to learn and so the residual functions formulate the layers by having
a reference to the input z through the skip connections.

Moreover, residual networks solve one of the biggest challenges in deep learning, known
as vanishing gradient. This phenomenon often occurs when the network depth is too
wide, and the gradients from where the loss function is calculated easily shrink to zero
after several applications of the chain rule. This implies that the weights do not update
their values and thus, no learning is achieved. On the other hand, with residual blocks,
the gradients can flow directly through the skip connections backwards from later layers
to initial filters; indeed, the network incorporates identity shortcut connections which
essentially skip the training of one or more layers - creating a residual block, allowing the
network to memorise from previous layers. Figure 6.19 shows the structure of a residual
block in ResNet.

X
Y
weight layer
F(x) el .
weight layer identity

Figure 6.19: Residual learning: a building block (obtained from [30])

Considering z as the input of a neural network, and given that the general aim is to
learn the true distribution H(z), the difference (or the residual) is:

F(z) = Output — Input = H(z) —z — H(x) = F(x) + x (6.3)
64

6.4 — Attention Residual U-Net

Figure 6.20 compares a standard convolutional neural network (left side) and a resid-
ual neural network (right side). In the standard CNN, the aim is to map the input x
directly to the output which is f(x). On the other hand, since finding the direct mapping
is not a trivial operation in deep networks, the main idea of residual blocks is to find the
residual R(x) = f(z) — x, which is then added to the identity connection z to obtain the
final output f(z) = R(z) + x.

To summarise, layers in a traditional network learn the true output, while layers in the
residual block learn the residual.

t !

| Activation function | | Activation function |
fx)
X
(+ —
Jx) Residual fx) —x
i ' i '
] | Weight layer | : 1 | Weight layer | :
1 1
|) ! . A :
: | Activation function | | : | Activation function | |
] ! | !
! I . ! I .
I | Weight layer | : I | Weight layer | :
l T ' | |
X X

Figure 6.20: Traditional CNN vs Residual Net (adaptation of image obtained from [32])

In traditional neural networks, each layer feeds into the next one because they are
connected one after the other, whereas in residual networks, each layer can feed into
the next layer and directly into the layers that are two or more hops away. In this
way, inputs can forward propagate faster through the residual connections across various
layers. By doing so, it is possible to stack more residual blocks on top of each other,
without decreasing in performance, as would happen in deep standard convolutional
neural networks.

6.4.1 Attention Residual U-Net implementation

In the Attention Residual U-Net there is a typical convolution block but then the outputs
are actually summed between the convolution block output and the original input itself,
meaning that, when the convolution block is trained, it is actually trained for the residual
part. The technical application of the structure described above can be seen in the code
(6.5), where a basic Convolution Residual block is created.

65

Segmentation Algorithms

Code Listing 6.5: Attention Residual U-Net - Convolution Block

def res_conv_block(x, filter_size, size, dropout, batch_norm=False):

conv = layers.Conv2D(size, (filter_size, filter_size), padding=’same’)
(x)
if batch_norm is True:
conv = layers.BatchNormalization(axis=3) (conv)
conv = layers.Activation(’relu’) (conv)
conv = layers.Conv2D(size, (filter_size, filter_size), padding=’same’)
(conv)
if batch_norm is True:
conv = layers.BatchNormalization(axis=3) (conv)
if dropout > O:
conv = layers.Dropout (dropout) (conv)
shortcut = layers.Conv2D(size, kernel_size=(1, 1), padding=’same’) (x)

if batch_norm is True:
shortcut = layers.BatchNormalization(axis=3) (shortcut)

res_path = layers.add([shortcut, conv])

res_path = layers.Activation(’relu’) (res_path)
return res_path

66

6.5 — U-Net structures results

6.5 U-Net structures results

As for the autoencoder model, in order to evaluate the performance various parameters
have been tuned. Both the original dataset and the augmented one (with the pre-selected
set of transformations) have been tested.

Traditional U-Net (Original Dataset)

The loss behaviour at the tuning of the learning rate can be observed in Figure 6.21. All
the runs have been carried out with a batch size of 8 and 150 epochs.

Training and validation loss Training and validation loss

— Taiing loss
— Validation loss

zzzzzzzzzzzz

Training and validation loss

Figure 6.21: Tuning of learning rate. Training and validation losses from OCTA original

dataset not augmented.
Batch size = 8, Epochs = 150. (a) LR = 173; (b) LR =172 (¢) LR = 1!

In Figure (a), the learning rate equal to 172 seems to be quite low for the U-Net
structure. Indeed, its behaviour after 150 epochs is still very steep and with margins for
improvement. With the autoencoder, this trend was much less evident, but it must be
taken into account that the epochs were 1000, a not testable condition with the U-Net due
to the temporal and computational constraints. The most promising behaviour seems to
be the one of the model trained with LR = 172 (b). The validation loss seems stable and
a plateau is already reached after 120 epochs. However, with a higher learning rate (LR

67

Segmentation Algorithms

= 171) a rather good but less stable result is achieved, characterised by more oscillations
due to the choice of a wider step, as appreciable in Figure (c).

In the Table 6.3, a summary of the main metrics evaluated on the test set can be
seen, confirming that a LR of 172 provides the best results.

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

150 0.001 8 0.8702 0.7597 0.8635
150 0.01 8 0.8704 0.7603 0.8638
150 0.1 8 0.8653 0.7506 0.8576

Table 6.3: Tuning of learning rate with batch size = 8 and epochs = 150. Metrics obtained
for OCTA original dataset

Traditional U-Net (Augmented Dataset)

Similar tuning steps have been done also for the augmented dataset. In Figure 6.22 the
loss trend can be appreciated.

‘Training and validation loss Training and validation loss

Training and validation loss

EEEEEE

Figure 6.22: Tuning of learning rate. Train and validation losses from OCTA augmented

dataset.
Batch size = 16, Epochs = 30. (a) LR = 173; (b) LR = 17%; (¢) LR = 1!

68

6.5 — U-Net structures results

The number of epochs has been decreased from 150 to 30, due to GPU and time
constraints. In particular, each run with the augmented dataset took about 90 minutes.
For this reason, the results are not directly comparable and therefore partial. However,
a very similar trend to the original dataset can be observed, but with an increase in
performance, even with a limited number of epochs available.

Given the small number of epochs, as expected, the lowest LR of 173 (a) led to a very
steep descending behaviour that could certainly be improved by increasing the epochs,
always taking into account to avoid overfitting. The best result is obtained with a LR
of 172 (b), while with the highest LR (c) it is noticeable an oscillatory behaviour. As in
the autoencoder model, there is a significant overlapping between training and validation
losses, due to the noisier and more numerous natures of the training part.

Table 6.4 summarises the different metrics obtained on the test set.

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

30 0.001 16 0.8759 0.7709 0.8706
30 0.01 16 0.8809 0.7793 0.8760
30 0.1 16 0.8739 0.7665 0.8678

Table 6.4: Tuning of learning rate with batch size = 16 and epochs = 30. Metrics obtained
for OCTA augmented dataset

A direct comparison between original and augmented dataset is provided by Figure
6.23, where a slight increase in the performance is evident with the augmented dataset.

Metrics
0.8704 0.8638 0.8809 0.8759 Mean IoU

IoU minority
0.7793 i
0.7603 Dice minority

0.6

Value

0.4

Origina Augmentation 2

Dataset

Figure 6.23: Original dataset and augmented dataset comparison.
For the original dataset: Epochs = 150, Batch size = 8, LR = 172. For the augmented
dataset: Epochs = 30, Batch size = 16, LR = 172

However, as previously anticipated, it must be noted that a direct comparison with

69

Segmentation Algorithms

the same epochs and batch sizes has not been possible due to the computational resources
available.

Below is shown the graphical result of the segmented images obtained after training
the model with the augmented dataset, 30 epochs, batch 16 and LR equal to 172. The
results are extremely more accurate than the ones of the autoencoder, as might be ex-
pected from a network better suited to the segmentation task. Indeed, a result of 88.09%
average IoU is obtained, versus a 80.97% for the traditional autoencoder. Looking into
a more detailed zoom of the overlapping between ground truth and prediction (Figure
6.25), a more accurate and detailed result can be seen, arriving at 77.93% IoU of the
minority class (the vascular part) versus 64.93% of the autoencoder.

Masks Overlapping 1

Testing Image 2

Masks Overlapping 2
!

Figure 6.24: Segmentation results of traditional U-net on 6 test images with batch size =
16, epochs = 30, LR = 172 and augmented dataset. Overlapping between ground truth
and predicted masks

70

6.5 — U-Net structures results

Figure 6.25: Zoom over a segmented test image

Traditional U-Net (OCT vs OCTA)

As already evident from the use of the traditional autoencoder, performance has increased
significantly in the transition from OCT to OCTA, and this is an excellent sign for this
extremely promising new technology in the field of vascular segmentation.

10
—— Mean lol
loU minerity
Dice minority
09
_P______-r-‘_______
:-.lq _d-P"-f
E o8 —
= —
5
§
E 07
w
06
05
OCT Original OCT Augm. 2 OCTA Original OCTA Augm. 2

Figure 6.26: OCTA vs OCT performance comparison

Traditional U-Net (Full Projection Map vs Maximum Projection Map)

As mentioned in Chapter 3, it has been chosen to mainly work with full projection
maps but also a brief comparison with maximum projection 2D images has been done.
Figure 6.27 shows a comparison between the best results obtained with the two projection
techniques.

71

Segmentation Algorithms

Metrics
W Mean IoU

W IoU minority
I I -
0

Full Projection Max Projection

a.

w

Q.

(=]

Value

Q.

+

Q.

=]

Dataset

Figure 6.27: Comparison between full projection map and maximum projection map.
Augmented dataset, Batch size = 16, Epochs = 30, LR = 172

In detail, it is appreciable an improvement of almost 3% points in the Dice score
and about 4.5% points in the IoU of the minority class when using the MPMs. The
improvement is less significant than the one obtained with the traditional autoencoder,
but the total result is very accurate, bringing this performance to be the best found so
far and in line with the performance found by reference papers [7] and [8].

72

6.5 — U-Net structures results

Attention U-Net

For the Attention U-Net, due to computational constraints related to RAM memory,
a batch size of 8 has been chosen, which is rather small despite the large size of the
database. In Figure 6.28 can be observed a similar trend to the traditional U-Net one,
with equal LR and epochs.

Training and validation loss Training and validation loss

Figure 6.28: Training and validation losses from OCTA augmented dataset.
(a) Traditional U-Net: Batch size = 16, Epochs = 30, LR = 172. (b) Attention U-Net:
Batch size = 8, Epochs = 30, LR = 172

In the Table 6.5, the metrics obtained with the main changes in the learning rate
are collected. The performance is very similar to the one of the traditional U-Net and
therefore no significant improvement is noticeable. The reason for this could be due to
several factors. Firstly, the behaviour of both models over a longer time period or epochs
should be investigated. Secondly, as the Attention U-Net is a rather deep network with
a higher complexity than the traditional U-Net, a larger dataset could certainly lead to
an increase in performance. Finally, due to the nature of the Attention U-Net, there is a
particular spatial focus that should help in isolating in the best possible way the features
of the object to be segmented (which in general could be cells or mitochondria); however,
in the case of a vascular segmentation and so of a network of vessels, the object to be
segmented can hardly be ascribed to a precise location and thus the attention module
could be less effective.

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

30 0.001 8 0.8829 0.7830 08783
30 0.01 8 0.8807 0.7786 08755
30 0.1 8 0.8826 0.7825 0.8780

Table 6.5: Tuning of learning rate with batch size = 8 and epochs = 30. Metrics obtained
for OCTA augmented dataset

73

Segmentation Algorithms

Attention Residual U-Net

A very similar analysis can be made for the Residual Attention U-Net. In Figure 6.29
can be seen a similar trend in the loss functions compared to the traditional U-Net and
also a slight increase in the validation loss, indicating a hint of overfitting.

Training and validation loss Training and validation loss

Figure 6.29: Training and validation losses from OCTA augmented dataset.
(a) Traditional U-Net: Batch size = 16, Epochs = 30, LR = 172. (b) Attention Residual
U-Net: Batch size = 8, Epochs = 30, LR = 172

In the Table 6.6 below, it is possible to get a closer look at the main results obtained
by changing the values of learning rate.

Epochs Learning Rate Batch Mean IoU IolU minority Dice minority

30 0.001 8 0.8772 0.7728 0.8718
30 0.01 8 0.8811 0.7794 0.8760
30 0.1 8 0.8767 0.7716 0.8711

Table 6.6: Tuning of learning rate with batch size = 8 and epochs = 30. Metrics obtained
for OCTA augmented dataset

However, despite the use of a more powerful network such as the Attention Residual
U-Net, no significant improvement in the performance can be appreciated, compared to
the previous two architectures. This may be due to the fact that, the concept of residual
and the implementation of residual blocks, are useful in case of very deep neural networks
to overcome problems such as degradation or vanishing gradient, which instead are not
present in this specific architecture, where the number of layers is not so high.

74

6.6 — Generative Adversarial Network - GAN

6.6 Generative Adversarial Network - GAN

Neural networks such as autoencoders are easy to implement, stable and quite effective.
Often, however, the training is based on the use of a loss function, like the MSE, which
relies on the low frequency components of the images, thus creating rather blurry images.

Generative Adversarial Networks are designed for image generation and their opera-
tion is based on the use of Adversarial loss. Instead of using a mathematical function,
a GAN uses a second neural network as the loss function for the first neural network.
In order to perform the training, it is necessary to calculate the similarity between the
predicted image and the real one, and this measure is carried out by the second neural
network. Thanks to their nature and to the fact that they do not need paired data, GANs
represent the state-of-the-art in image generation and image translation [33].

A basic structure of a Generative Adversarial Network is represented in Figure 6.30.
It is possible to distinguish between a generator part and a discriminator one. The aim
of the generator is the creation of fake images that should be as similar as possible to the
real ones, whereas the discriminator model tries to distinguish the real images from the
fake images created by the generator.

Real Images I .d’ ” g
= ‘ s
o L&
7| Discriminator Network | 1 o f .
| hd g
‘ - Fake 13

Generator Network £
(Fake images) ; k"‘ d i

[01 [-03]o0s [.. [o7]

Random Noise seed
(Latent vector)

Figure 6.30: Structure of a basic Generative Adversarial Network (adaptation of image
obtained from [45])

The generator receives as input a random latent vector and it has a similar role to
the decoder part of an autoencoder. Indeed, starting from the random latent vector, it
will be able to construct a “fake” image. The fake image is then passed through the
discriminator network that receives in input both the output of the generator and the
“real” image. The discriminator is usually a common convolutional network and, since
its purpose is to classify an image as “real” or “fake”, its output will simply be a binary
0 or 1 label. The training process results into two different kinds of losses, the generator
loss that should tell to the generator how to improve his task of creating images as similar
as possible to the real ones, and the discriminator loss that teaches to the discriminator

75

Segmentation Algorithms

how to distinguish a real image from a fake one.

In the picture 6.31 below, the process of “fooling” the discriminator can be appreci-
ated. An input vector is passed to the generator which generates a “fake” image that,
for his fake nature, would have a label 0. The image is then passed to the discriminator
but with a ground truth label 1, instead of 0. This step is for the purpose of “fooling”
the discriminator which, if sufficiently trained, should realize that the image received is
actually a fake image, and thus would predict a value of 0. If so, the loss between his
prediction (0) and ground truth (1) would be high and would return to the generator
the information that the generated image is still not similar to the real one and that the
discriminator is perfectly able to classify it as fake. Conversely, when the generator is suf-
ficiently able to generate images which are very similar to the real ones, the discriminator
will be fooled and will be convinced that it is looking at a real image.

input vector
|

Generator

— .

Discriminator

Al 1s
Sigmoid Cross
Entropy

Apply |
Gradienis

Figure 6.31: Generator loss and network updating (adaptation of image obtained from
[47])

This training technique is called adversarial because the two losses of the generator
and the discriminator constantly compete against each other, trying to generate images
that are as real as possible while at the same time perfectly learning to distinguish fake
from real ones. Indeed, when the discriminator has a lower loss because it is better at
discriminating between real and fake images, the generator loss will increase and vice
versa. Unfortunately, this also means that the losses are not useful to tell if the results
are good or bad, as it happens instead in standard neural networks. The easiest way to
evaluate a GAN is looking at the images and see if they look good or bad, but of course
it is not a quantitative approach. Indeed, it is not trivial to obtain quantitative data on
how a GAN performs. The most common metric is the Frechet Inception Distance which
computes the distance between the feature vectors of the real and generated images using
a pretrained Inception v3 classifier.

76

6.6 — Generative Adversarial Network - GAN

6.6.1 Pix2Pix GAN

The Pix2Pix GAN is a particular type of a conditional GAN [34]. A Generative Adver-
sarial network is considered as conditional generative model if, in addition to a random
latent vector, the class label is also provided and thus the generator is conditioned by
that. The input of the generator is therefore the concatenation of the random latent vec-
tor plus the class label. The discriminator, instead, takes as input two couples of image
and label, i.e., the fake pair and the real one (Figure 6.32).

ejep ey

loss
Discriminator
‘ Generator .

a) GAN architecture

aoeds Juaje]

1oqe1 3 e1ep [eay

Discriminator

Generator

|2qe] g 22eds Juae

b) CGAN architecture

Figure 6.32: Flow Diagram representing GAN (a) and Conditional GAN (b) (obtained
from [46])

Pix2Pix GAN has been conceived for the scope of image-to-image translation [35]. It
is a particular architecture that takes in input pairs of images corresponding to each other.
For instance, providing a segmented mask, the generator can create a realistic looking
images or vice versa. It can be used for image colourisation, converting day images into
night ones, or transforming areal views to maps.

As can be seen in Figure 6.33, in the Pix2Pix GAN the generator is represented by
a U-Net that takes in input the original image that have to be segmented. Through
the U-Net a “fake” segmented image is generated but, instead of just training the model
with the Jaccard loss as already seen in U-Net chapter, in this case the updating of
the model is made through the use of a discriminator structure. Indeed, the generated
“fake” segmentation is combined with the real original image and this couple is given to
the discriminator, which receives also the “true” couple composed by the ground truth
segmentation mask concatenated with the original image itself. The role of the discrimi-
nator, as for a general GAN;, is to distinguish between a real couple of image and a fake
one.

77

Segmentation Algorithms

Real input to the discriminator
oS 7]

Fake

50/50

Input ‘ . R Discriminator .
Fake input to the discriminator
Generator _ P -_— (Patch GAN)
} * (U-Net)

e T <A NERR

] -

s ;’A Zidas A Is the target image real or fake? .
A : [e Real
Real A -H |4 FakeB Real A

1

Figure 6.33: Flow Diagram representing Pix2Pix GAN

The discriminator is a binary classifier and, in particular, it is a PatchGAN [36], a
simple convolutional network that tries to classify if each NxN patch in an image is
real or fake (as opposed to classifying an entire image such in traditional GANs). This
discriminator is run convolutionally across the image, averaging all responses to provide
the final output, as can be observed in Figure 6.34. Using a 16 x16 PatchGAN is sufficient
to promote sharp outputs and achieve good results, but also leading to tiling artifacts.

Figure 6.34: PatchGAN discriminator. Each value of the output matrix represents the
probability of whether the corresponding image patch is real or artificially generated
(obtained from [36])

78

6.6 — Generative Adversarial Network - GAN

The 70x70 PatchGAN alleviates these artifacts and achieves slightly better scores.
Scaling beyond this to the full 304x304 image, does not appear to improve the visual
quality of the results and this may be because the full complete image has many more
parameters and greater depth than the 70x70 PatchGAN, and so it may be harder to
train [35].

Adversarial training is represented by the combination of a generator loss and a dis-
criminator loss. More specifically, in Figure 6.35 (a) the process of updating the weights
of the discriminator part can be seen. As previously mentioned, the discriminator takes
in input two couple of images (generated segmentation mask -+ input image & target
segmentation mask + input image). The discriminator classifies each input as fake (0)
or real (1) and, for each couple, the ground truth label is also provided (0 if the input
is fake while 1 if the input is real). The loss function between the discriminator predic-
tion and the ground truth is then calculated and the gradients are applied in order to
backpropagate the errors and teach to the discriminator how to improve its classification
ability.

Target
Input Image Image

Generator
:- I S I : Discriminator
:[Discriminator] { Discriminator } .

Target
Image

Input Image

Generator

All 1s

Sigmoid Cross
Entropy

All 1s All 0s

Sigmoid Cross
Entropy

Lambda

Sigmoid Cross
Entropy

-/

Apply
Gradients

Apply
Gradients

Figure 6.35: Discriminator (a) and Generator (b) updating and losses (adaptation of
image obtained from [47])

In the Figure 6.35 (b), the weights updating of the generator part is displayed. In
this part of the network, the U-Net generator receives in input the original image and,
as said, provides as output a “fake” generated segmentation mask. This “fake” image is
then compared with the target segmentation mask and the difference between these two
images is computed through the Jaccard coefficient (instead of the L1 loss used in [35]).

79

Segmentation Algorithms

At the same time, the couple composed by the generated mask and the original image
is passed through the discriminator which, in this case, is fooled because it receives as
ground truth label 1, even if the input pair of images is the fake couple. In this way, if the
discriminator is able to understand that the input couple is fake, then the loss generated
between his prediction (0) and the given ground truth (1) would be high, and this should
tell the generator that it is not good enough in generating images similar to the real ones
because the discriminator is still able to distinguish them. Vice versa, if the discriminator
is fooled, it means that the generator has become very good in generating fake samples,
and so it should increase its ability to distinguish a real image from a fake one. The
Jaccard loss previously computed is then summed (with a A = 100) to the Sigmoid Cross
Entropy coming from the discriminator. The combination of these two losses solves the
blurring problem and, at the same time, reduces the problem of visual artifacts. The
gradients are then applied and the discriminator is trained.

80

6.6 — Generative Adversarial Network - GAN

6.6.2 Pix2Pix GAN implementation

For what concerns the implementation of the Pix2Pix GAN, at the code (6.6) the structure
of the discriminator can be analysed. It can be noticed the use of the concatenation
between the original image and the segmentation mask, and the application of Adam
optimizer with a LR = 0.0002 as suggested from the paper [35].

Code Listing 6.6: Discriminator implementation code

def define_discriminator (image_shape ,target_shape):
weight initialization
init = RandomNormal (stddev=0.02,seed = 1305)
in_src_image = Input(shape=image_shape) #0Original image
in_target_image = Input(shape=target_shape) #Segmentation mask
concatenate images, channel-wise
merged = Concatenate () ([in_src_image, in_target_image])

C64: 4x4 kernel Stride 2x2

d = Conv2D(64, (4,4), strides=(2,2), padding=’same’, kernel_initializer=
init) (merged)

d = LeakyReLU(alpha=0.2) (4d)

C128: 4x4 kernel Stride 2x2

d = Conv2D(128, (4,4), strides=(2,2), padding=’same’, kernel_initializer
=init) (d)

d = BatchNormalization () (d)

d = LeakyReLU(alpha=0.2)(d)

C256: 4x4 kermel Stride 2x2

d = Conv2D (256, (4,4), strides=(2,2), padding=’same’, kermnel_initializer
=init) (d)

d = BatchNormalization () (d)

d = LeakyReLU(alpha=0.2) (d)

C512: 4x4 kernel Stride 2x2

[eN
]

Conv2D (512, (4,4), strides=(2,2), padding=’same’, kernel_initializer
=init) (d)

d BatchNormalization () (d)

d LeakyReLU (alpha=0.2) (d)

second last output layer : 4x4 kernel but Stride 1x1

d = Conv2D(512, (4,4), padding=’same’, kernel_initializer=init) (d)

d

d

#

d

BatchNormalization () (d)
LeakyReLU (alpha=0.2) (d)
patch output
= Conv2D(1, (4,4), padding=’same’, kermnel_initializer=init) (d)
patch_out = Activation(’sigmoid’) (d)
define model
model = Model([in_src_image, in_target_image], patch_out)
compile model

opt = keras.optimizers.Adam(learning_rate=0.0002,beta_1=
betal_discriminator)

model.compile (loss=’binary_crossentropy’,optimizer=opt,loss_weights=[0.5
D)

return model

The generator structure follows a U-Net model, already described in the previous

81

Segmentation Algorithms

chapter. Finally, the entire GAN is assembled (6.7) and the real and fake samples are
created (6.8) in order to feed them as input to the discriminator.

Code Listing 6.7: GAN implementation code (discriminator + generator)

def define_discriminator (image_shape,target_shape):
def define_gan(g_model, d_model, image_shape):
make weights in the discriminator not trainable
for layer in d_model.layers:
if not isinstance(layer, BatchNormalization):
layer.trainable = False

define the source image

in_src = Input(shape=image_shape)
suppy the image as input to the gemnerator
gen_out = g_model(in_src)

supply the input image and generated image as inputs to the
discriminator

dis_out = d_model([in_src, gen_out])

src image as input, generated image and disc. output as outputs
model = Model(in_src, [dis_out, gen_out])

compile model

opt = keras.optimizers.Adam(learning_rate=1lr_generator ,beta_1=

betal_generator)

#Total loss is the weighted sum of adversarial loss (BCE) and L1 loss

(MAE)
#Authors suggested weighting BCE vs L1 as 1:100.
model.compile (loss=[’binary_crossentropy’, jacard_coef_loss],optimizer=

opt, loss_weights=[1,100], metrics=[
jacard_coef])
return model

Code Listing 6.8: Sample couple generation implementation code

def generate_real_samples(dataset, n_samples, patch_shape):
unpack dataset
trainA, trainB = dataset
choose random instance

np.random.seed (1305)

ix = np.random.randint (0, trainA.shape[0], n_samples)
retrieve selected images

X1, X2 = trainA[ix], trainB[ix]

generate ’real’ class labels (1)

y = ones((n_samples, patch_shape, patch_shape, 1))
return [X1, X2], y

def generate_fake_samples(g_model, samples, patch_shape):
generate fake instance
X = g_model.predict(samples)
create ’fake’ class labels (0)
y = zeros((len(X), patch_shape, patch_shape, 1))
return X, y

82

6.6 — Generative Adversarial Network - GAN

6.6.3 Results

As in the previous models, a tuning of the hyperparameters has been evaluated in order
to assess the performance of the Pix2Pix GAN. In particular, the tuning of the learning
rate, batch size or number of epochs, is made difficult by the main characteristics of
the adversarial loss, which involves a continuous oscillation between discriminator and
generator improvements. Therefore, this trend makes it impossible to exclusively rely on
the study of training and validation losses. For this reason, it has been decided to always
carefully observe the segmentation trend in the training images and to have a look at the
results on the test set, epoch by epoch, in order to avoid the phenomenon of overfitting.

Figure 6.36 provides an example of the various steps that the network performs on
the training images.

(a) Epochs = 2

-

(c) Epochs = 8 (d) Epochs = 10

Figure 6.36: Graphical evidence of training steps at different epochs. OCTA augmented
dataset, batch size = 64, LR = 274

It is noticeable that, after the first two epochs, the segmentation is still very approx-
imate and full of noise, whereas it clearly improves at the fourth epoch, and then after
10 epochs a fairly accurate segmentation is reached, leading the model to a Mean IoU of
81.74% and a Dice score of 79.71% on the test set. This type of observation and analysis

83

Segmentation Algorithms

of the results has been carried out for each of the variations proposed below.

Original Dataset

As for the choice of parameters, it has been decided to start with the ones suggested by
the reference paper [35], i.e., batch size equal to 1 and LR equal to 274 for the generator.
The graph in Figure 6.37 represents the trend of the three reference metrics as the epochs

increase.

It can be seen that the model is able to perform a segmentation from the very first
epochs. There is then a settlement of performance around the tenth epoch and, after
that, the model seems to have reached a stable plateau.

10

09

0

07

Evaluation Metrics

0.6

05

—— Mean loU
lol minority
—— Dice minority

10

Epochs

12 14

16 13 20

Figure 6.37: Mean IoU, Minority IoU and Dice score of the test set. Original dataset
with batch size = 1, LR = 274, epochs = 20

From the Table 6.7 below, it is evident that as the epochs increase, there is no sub-

stantial improvement.

Epochs Learning Rate Batch Mean IoU IolU minority Dice minority

20
40
60
80

100

0.0002
0.0002
0.0002
0.0002
0.0002

1
1
1
1
1

0.8355
0.8359
0.8352
0.8374
0.8385

0.6953
0.6961
0.6946
0.6989
0.7012

0.8203
0.8209
0.8198
0.8228
0.8243

Table 6.7: Metrics over the test set. Original dataset with batch size = 1, LR = 274,

epochs = 100

The smaller the batch size, the sooner the peak performance is reached. For this

84

6.6 — Generative Adversarial Network - GAN

reason, as a second step, it has been chosen to increase the batch size value, while main-
taining the same learning rate.

In the Table 6.8 below, it is possible to observe the performance recap with batch size
equal to 8 and a LR of 27* as indicated by the paper. Here again, the model seems to
perform quite well immediately and the increase of performance, with increasing epochs,
is not very significant.

Epochs Learning Rate Batch Mean IolU IoU minority Dice minority

20 0.0002 8 0.8179 0.6626 0.7971
40 0.0002 8 0.8144 0.6555 0.7919
60 0.0002 8 0.8181 0.6632 0.7975
80 0.0002 8 0.8137 0.6545 0.7912
100 0.0002 8 0.8172 0.6613 0.7962

Table 6.8: Metrics over the test set. Original dataset with batch size = 8, LR = 274,
epochs = 100

It has been therefore increased the batch size to 64, observing indeed that, compared
to previous batches, the model appears to be slower and the peak of performance is
reached after many more epochs (Figure 6.38). However, as evident in the Table 6.9, the
metrics stand at lower values.

10

09

o0&

07

0.6

05

Evaluation Metrics

04
—— Mean loU
03 lol minority
—— Dice minority
02
10 20 30 40 50 B0 70 8O 90 100
Epochs

Figure 6.38: Mean IoU, Minority IoU and Dice score of the test set. Original dataset
with batch size = 64, LR = 274, epochs = 100

85

Segmentation Algorithms

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

20 0.0002 64 0.5529 0.2793 0.4367
40 0.0002 64 0.7401 0.5340 0.6962
60 0.0002 64 0.7911 0.6151 0.7617
80 0.0002 64 0.8040 0.6375 0.7786
100 0.0002 64 0.8047 0.6389 0.7797

Table 6.9: Metrics over the test set. Original dataset with batch size = 64, LR = 274,
epochs = 100

Thus, as expected, it is noticeable a relationship between the chosen batch size and
the speed of convergence of the model. Indeed, it has been seen that a very small batch
size causes the model to be immediately stuck in the learning process, whereas a high
batch size can allow the model to learn and improve for longer, but always settling on
lower metrics. It has been therefore decided to investigate the potential of a high batch
model, but with a larger learning rate, in order to speed up convergence and reduce the
problem of getting stuck without improvement, which is more common when using a
small step of the learning rate.

Graph 6.39 and Table 6.10 show the performance for the model with batch size = 64
and learning rate of the generator model equal to 172

10
09
03 /ﬂ/—_
ol
e 07
o
-
5 06
s
=
2 05
w
04
—— Mean loU
03 lol minority
—— Dice minority
02

10 20 30 40 50 B0 70 8O 90 100
Epochs

Figure 6.39: Mean IoU, Minority IoU and Dice score of the test set. Original dataset
with batch size = 64, LR = 172, epochs = 100

This results in a model that is able to improve, epoch after epoch, without immediately
reaching a plateau phase, and settling on higher values than those seen with the previous
hyperparameters.

86

6.6 — Generative Adversarial Network - GAN

Epochs Learning Rate Batch Mean IoU IoU minority Dice mineority

20 0.01 64 0.7773 0.5920 0.7437
40 0.01 64 0.8201 0.6675 0.8008
60 0.01 G4 0.8346 0.6944 0.8196
80 0.01 G4 0.8374 0.6990 0.8229
100 0.01 64 0.8414 0.7073 0.8285

Table 6.10: Metrics over the test set. Original database with batch size = 64, LR = 172,
epochs = 100

Finally, for the sake of completeness, it has also been decided to try a batch size 8,
still with learning rate 172. These parameters performed well in the use of the U-Net.
In fact, also here, good results have been obtained, as observable in Table 6.11, reaching
values of 84.7% of average IoU, 71.7% of minority class IoU and 83.5% of Dice score.

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

20 0.01 8 0.8519 0.7256 0.8410
40 0.01 8 0.8494 0.7216 0.8383
60 0.01 8 0.8476 0.7183 0.8361
80 0.01 8 0.8476 0.7179 0.8358
100 0.01 8 0.8471 0.7185 0.8351

Table 6.11: Metrics over the test set. Original dataset with batch size = 8, LR = 172,
epochs = 100

Augmented Dataset

The same type of investigation has been chosen also for the hyperparameters tuning of the
model trained with the augmented dataset (again with the same transformations applied
as in the previous models).

However, due to the limited computational resources, it has been decided not to use
the same number of epochs and to reduce them from 100 to 10. Only one training has
been done on 40 epochs, with the hyperparameters suggested by the paper (batch size
= 1, LR = 27%), in order to make a more direct comparison with the original dataset.
The result is illustrated by the Table 6.12 and it took approximately 124 minutes. For
this reason, for the subsequent experiments, it has been decided to keep the epochs to a
maximum of 10.

87

Segmentation Algorithms

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

2 0.0002 1 0.8486 0.7194 0.8368
4 0.0002 1 0.8526 0.7268 0.8418
6 0.0002 1 0.8564 0.7339 0.8466
8 0.0002 1 0.8561 0.7334 0.8462
10 0.0002 1 0.8538 0.7289 0.8432
40 0.0002 1 0.8550 0.7313 0.8448

Table 6.12: Metrics over the test set. Augmented dataset with batch size = 1, LR =
274 epochs = 40

Similar analyses to those above and with comparable results are shown below. In
particular, Table 6.13 refers to a batch size of 8 and Table 6.14 to a batch size of 64.

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

2 0.0002 8 0.8299 0.6850 0.8131
- 0.0002 8 0.8430 0.7101 0.8305
6 0.0002 8 0.8465 0.7163 0.8347
8 0.0002 8 0.8471 0.7168 0.8351
10 0.0002 8 0.8451 0.7128 0.8323

Table 6.13: Metrics over the test set. Augmented dataset with batch size = 8, LR =
274 epochs = 40

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

2 0.0002 64 0.5624 0.2906 0.4503
4 0.0002 64 0.7328 0.5232 0.6870
6 0.0002 64 0.8103 0.6514 0.7889
8 0.0002 64 0.8197 0.6669 0.8002
10 0.0002 64 0.8174 0.6626 0.7971

Table 6.14: Metrics over the test set. Augmented dataset with batch size = 64, LR =
274 epochs = 40

Finally, also for the augmented dataset, it has been decided to increase the learning
rate in order to make the model converge faster. In the Figure 6.40 below, it can be seen
the curve comparable with the one of the graph 6.39 of the original dataset. Both have
batch size = 64 and learning rate = 172,

88

6.6 — Generative Adversarial Network - GAN

10

09

08 %

07 ———

06 —

05

Evaluation Metrics

04

—— Mean loU
lol) minority
—— Dice minority

03

0.2
2 4 B B 10

Epochs

Figure 6.40: Mean IoU, Minority IoU and Dice score of the test set. Augmented dataset
with batch size = 64, LR = 172, epochs = 10

Details of the obtained metrics can be seen in the Table 6.15 below.

Epochs Learning Rate Batch Mean IoU IoU minority Dice minerity

2 0.01 64 07764 0.5880 0.7406
4 0.01 64 0.8181 0.6652 0.7990
6 0.01 64 0.8325 0.6910 0.8173
8 0.01 64 0.8534 0.7291 0.8433
10 0.01 64 0.8493 0.7213 0.8381

Table 6.15: Metrics over the test set. Augmented dataset with batch size = 64, LR =
172, epochs = 10

Finally, the combination of batch size 8 and learning rate 1~2 has been tried, reaching
the best results achieved so far with this model. The metrics are shown in the Table 6.16.

Epochs Learning Rate Batch Mean IoU IoU minority Dice minority

2 0.01 8 0.8558 07335 08463
- 0.01 8 0.8618 0.7437 0.8530
6 0.01 8 0.8623 0.7447 0.8537
8 0.01 8 0.8618 0.7439 0.8531
10 0.01 8 0.8625 0.7453 0.8541

Table 6.16: Metrics over the test set. Augmented dataset with batch size = 8, LR =
172, epochs = 10

89

Segmentation Algorithms

From the histograms depicted in Figure 6.41, it can be seen how the choice of in-
creasing the learning rate, compared to the hyperparameters initially suggested, led to
improvements and also how, with the augmented dataset, the model consistently in-
creased its performance by approximately two to three percentage points, especially with
regard to the ToU metric of the minority class.

Metrics

0.8625
0.85 0.8541
0.8451 0.8471
0.8323 L

0.8172

0.7962

Value

0.7453

0.7128 0.7169
0.65 0.6613

original (LR=0.0002) Augmented (LR=0.0002) original (LR=0.01) Augmented (LR=0.01)

Dataset

Figure 6.41: Comparison between original and augmented dataset with different learning
rates. The first triplet refers to the original dataset, batch size = 8, LR = 27* and the
second one refers to the augmented dataset with the same hyperparameters. The last two
triplets have batch size = 8, LR = 172 and they are respectively for the original dataset
and the augmented one

Figure 6.42 shows the graphical result on the best model obtained, i.e., using the
augmented dataset, batch size equal to 8 and learning rate equal to 172. An average IoU
value of 86.5%, Dice score of 85.41% and minority IoU of 74.53% have been achieved.
As can also be seen from the picture representing the zoom of a particular vascular part
(Figure 6.43), much more precision can be seen in comparison with the basic autoencoder
model, although the U-Net remains the model with the highest performance.

90

Mean I[oU
ToU minority
Dice minority

6.6 — Generative Adversarial Network - GAN

~ Testing Image 2 Masks Overlapping 2

Testing Image 6
e, o Fs

(k)

Figure 6.42: Segmentation results of Pix2Pix GAN on 6 test images with batch size = 8,
LR = 172, epochs = 10 and augmented dataset. Overlapping between ground truth and
predicted masks

Figure 6.43: Zoom over a segmented test image

91

Segmentation Algorithms

OCT vs OCTA

Finally, as already evident from the other models, performance is significantly higher for
the OCTA rather than for the OCT dataset. This can be observed in Figure 6.44.

10
—— Mean lel
lol minority
—— Dice minority
09
W /
L=
E 0.8 //’//l
-
(=]
=
5
o 0.7
=
w
06
05
OCT Original OCT Augm. 2 OCTA Original OCTA Augm. 2

Figure 6.44: OCT vs OCTA performance comparison

Full Projection Map vs Maximum Projection Map

As mentioned in Chapter 3, it has been chosen to mainly work with full projection maps
but also a brief comparison with maximum projection 2D images has been done. Below
in Figure 6.45 the best results obtained with this last projection technique are shown.

In particular, with the maximum projection maps, it has been possible to obtain an
improvement of almost 4.5% points in the Dice score and more than 7.5% points in the
IoU of the minority class. The improvement for the vascular part of the image is very
significant, leading this model to be perfectly comparable with the performance achieved
with U-Net, as can be seen in chapter 7.

92

6.6 — Generative Adversarial Network - GAN

Metrics
W Mean IoU
08 W IoU minority
: B Dice minority
0.6
@
=
s
0.4
0.2
0 P R
Full Projection Max Projection
Dataset

Figure 6.45: Comparison between full projection map and maximum projection map.
Augmented dataset. For the full projection: Batch size = 8, Epochs = 10, LR = 172,
For the maximum projection: Batch size = 8, Epochs = 8, LR = 172

93

94

Chapter 7

Conclusion

In this thesis work, different deep learning models have been developed in order to perform
a vascular segmentation of retina. For each specific step of the analysis, different options
have been evaluated through an extensive set of experiments.

Final results

In particular, one of the steps of the analysis aimed to analyse the potential of OCT and
OCTA imaging techniques as starting point for performing the segmentation. From the
experiments, it has been confirmed that, despite the application of various preprocessing
techniques or data augmentation operations, the images derived from the full projection
map of OCTA always outperforms with respect to the full projection map of OCT. This
behaviour is due to the nature of the different images, OCT being more focused on
structural information while OCTA is particularly suitable for extracting information on
the retinal vascular network. The increase in performance is significant, with some models
reaching values more than 10% higher than using OCT.

Various preprocessing techniques have been applied in order to improve the quality of
input data, highlight the relevant information and increase performance. In particular,
following a normalisation of the data, two types of equalisation have been chosen, his-
togram equalisation and CLAHE. The latter has proved to be the most performing one
and therefore it has been used to train all the implemented models.

The use of data augmentation techniques, as non-invasive as possible, has allowed to
have a larger dataset available on which analyses have been performed. After several
experiments, a specific set of transformations has been selected to balance the need for
more data and the need of not over-modifying the existing data, with the risk of creating
artifacts, which would be particularly dangerous in the case of medical images. By doing
so, it has been obtained an average increase in performance of up to 2.97% for the Pix2Pix
GAN, a network which is quite more complex than the others, and that therefore needed
more data to perform a good training.

The central part of the project involved the use of numerous segmentation models.
The autoencoder represented the baseline from which to start, reaching maximum Dice
value of 78.73% and IoU value of 64.93%, relative to the vascular class.

U-Net is the network that provided the highest performance, achieving an 87.59% Dice

95

Conclusion

score and 77.93% IoU, still on the minority class. The mean value of the IoU, averaging
vascular and non-vascular classes, reached a value of 88.09%. A slight improvement has
been obtained with the Attention U-Net architecture, with a Dice score of 87.80% and
an ToU of 78.25% for the class to be segmented.

Finally, the Pix2Pix GAN scored an 85.41% Dice Score and a 74.53% IoU minority,
ranking just below the U-Net performance.

It has been chosen to perform all the initial experiments on the full projection maps in
order to test the model with the most difficult inputs and to perform a direct comparison
between OCT and OCTA images, since the maximum projections maps were available
only for the OCTA volumes. However, it has been demonstrated that, using maximum
projection maps derived from OCTA, is by far the best starting point for performing
retinal segmentation from 2D images, thanks to the sharpness of the blood vessels and the
removal of noise from the choroid. Table 7.1 summarises the best performance obtained
and a direct comparison between the two types of projection maps, for the main networks.

Mean IoU IoU minority Dice minority

Autoencoder Full 80.97% 64.93% 78.73%
Autoencoder Max 85.14% 72.5% 84.06%
U-Net Full 88.09% 77.93% 87.6%
U-Net Max 90.44% 82.32% 90.31%
Pix2Pix GAN Full 86.25% 74.53% 85.41%
Pix2Pix GAN Max 90.44% 82.23% 90.25%

Table 7.1: Comparison of the best performance with OCTA full projection map and
OCTA maximum projection map for each model

Comparison with reference papers

The results obtained have been constantly compared with those of the reference paper
connected with the database used, [7] and [8]. Focusing on the first paper, it is possible
to make a direct comparison with the results shown in Table 7.2, as they used both
the OCTA full projection map and maximum projection map in respectively PRO'4U-
Net and PRO?+U-Net methods. The U-Net implemented in the current work, allowed to
obtain a value of 87.59% Dice and 77.93% IoU scores, against their results of 82.27% Dice
and 70.09% IoU. Even with the use of the maximum projection map, it is appreciable an
improvement of about 4% points for both metrics, as shown in Table 7.2. The increase
in performance could have been achieved thanks to the use of preprocessing or data
augmentation techniques that allowed more robust segmentation. Also the use of the
Jaccard loss, instead of the cross entropy chosen by the paper, certainly allowed the
network to be optimised in order to maximise the chosen metrics.

96

Conclusion

No. Issue Method DICE (%) JAC (%) BACC (%) PRE (%) REC (%)
1 FAZ 2D-to-1D 81.74+15.67 71.63£19.38 90.59+9.82 86.21+15.38 81.33+19.62
3D-t0-2D 88.61+11.61 81.23+16.35 94.7146.52 89.92+13.54 89.56+13.04

OoCT 83.02+4.20 71.17+5.68 88.7043.16 88.37+3.29 78.57+6.41

RV OCTA 87.78+2.73 78.33+4.25 91.5242.34 92.30+2.28 83.85+4.77
OCT+OCTA 88.15+2.77 78.92+4.34 91.71£2.28 92.68+2.39 84.20+4.62
2 ocT 72.25+21.52 60.28+22.60 88.00=12.70 76.20+23.04 76.36+25.45
FAZ OCTA 83.07+19.25 74.78423.22 90.99+10.54 89.26£18.65 82.16+21.06
OCT+OCTA 83.92+16.62 75.10+20.08 91.7149.15 88.80£15.45 83.58+18.33
OCT+OCTA+D* 88.61x11.61 81.23+16.35 94.7146.52 89.92+13.54 89.56+13.04

PRO'+FCN 76.07+4.27 61.56+5.28 85.2443.31 80.54+3.63 72.43+6.75

PRO*+FCN 81.70+2.26 69.12+3.18 88.36+1.92 85.74+2.66 78.18+3.91

RV PRO'+U-Net 82.27+4.21 70.09+5.73 88.3442.97 87.45+4.22 77.93+£5.93

3 PRO*+U-Net 86.9242.34 76.94+3.60 91.20+£1.97 91.01+2.75 83.34+4.04
IPN 88.15+2.77 78.92+4.34 91.71£2.28 92.68+2.39 84.20+4.62
Luetal. [5] 71.73£25.30 60.87+25.82 88.60=14.10 71.84£27.25 77.48+28.09
FAZ Diaz et al. [57] 79.70+21.25 69.88+21.15 94.64+11.39 73.53421.67 89.624+22.58
IPN 88.61x11.61 81.23+16.35 94.71+6.52 89.92+13.54 89.56+13.04

IPN-U 78.84+2.27 65.13+3.05 87.96+1.88 79.63+2.14 78.18+3.77

RV IPN-UC 87.45+£2.93 77.81+4.49 91.3942.52 91.84+2.32 83.65+5.15

IPN 88.15+2.77 78.92+4.34 91.71£2.28 92.68+2.39 84.20+4.62
4 IPN-U 84.79+11.66 75.13+15.40 93.7146.43 84.51+14.32 87.61+12.87
FAZ IPN-UC 86.51+13.96 78.42+18.25 93.39+7.88 89.35+14.64 86.92+15.75
IPN 88.61+11.61 81.23+16.35 94.7146.52 89.92+13.54 89.56+13.04

D’ is distance map. PRO' is OCTA full-projection map. PRO? is OCTA maximum-projection map between ILM layer and OPL.

Table 7.2: Results obtained in paper [7] (table obtained from [7])

Compared to the second paper, which was more recent and had several improvements,
the authors achieved results of 90.6% Dice and 82.88% IoU with the use of the maximum
projection map, in line with the results obtained in the current project.

RV Segmentation OCTA_6M (6mm x 6mm) OCTA_3M (3mm x 3mm)
Methods p* [G* [M* | DICE (%) JAC (%) BACC (%) | DICE (%) JAC (%) BACC (%)
2Dto 2D | Fast-FCN [44] - - - 86.59+322 7649+470 9200+188 | 8845+242 7938+375 93.62+1.28
Deeplab V3+ [45] - - - 8722+314 7747+463 9281+1.69 | 88.02+248 78.69+382 9271+151
Attention U-Net [46] - - - 88.67+276 79.75+423 9336+1.62 | 90.89+221 8338 +356 94.71+1.62
U-Net [36] - - - 8828+259 79.11+397 9298+1.62 | 90.60+2.16 8288+347 9491138
U-Net [36] - - v 88.44+258 79.37+£399 9294+159 | 90.19+221 8220%354 9423+146
U-Net 2+ [47] - - - 88.62+261 79.66+4.02 9330+153 | 90.84+220 83.29%355 9496+145
U-Net 2+ [47] - - v 88.15+293 7892+440 9286+1.74 | 90.31+223 8240+358 9439+148
U-Net 3+ [48] - - - 8849+280 7947+426 93.07+178 | 90.92+2.08 8341%336 9457+143
U-Net 3+ [48] - - v 88.78 + 2.63 79.92 +4.07 93.37 +1.57 | 90.93 +2.05 83.43 +3.35 95.12 + 1.40
3Dto2D | IPN[23] - - - 88.64+321 79.73+492 93.07+242 | 90.62+596 8325+7.78 93.87+4.19
IPN [23] - - v/ 88.30 +3.36 79.21 £5.11 92,79 %255 | 91.10%3.49 83.83 £5.29 94.63 £2.79
IPN V2 v - - 89.08+273 8041+429 9352+213 | 9246393 86.19+583 95.34+3.16
IPN V2 v - v 88.78+321 79.96+489 9340+216 | 9232+359 8591%544 95.05+3.03
IPN V2+ v v - 89.41+274 8095+4.32 9346+212 | 92.74+395 86.67+5.88 9522+3.12
IPN V2+ v v v 89.18+3.15 80.61+4.84 9337+216 | 92.63+343 8644+525 9520+290

Table 7.3: Results obtained in paper [8] (table obtained from [8])

97

Conclusion

7.1 Future works

All experimental phases have been carried out with 12 GB of RAM and Colab GPU,
which is often limited in usage time and therefore cannot be used indefinitely. Thus, it
can be assumed that, by having more computational resources, results could have been
improved. For instance, parameters like 20k iterations could have been tried, as suggested
by the reference papers, however requiring more than 10 hours of running time, which is
impractical for this specific case.

A first improvement might regard the training of the different models with the com-
bination of OCT and OCTA, as proposed by [8], resulting in an augmented dataset that
could be particularly useful for more complex networks such as Pix2Pix GAN, which
indeed provided the highest performance gains when using more data.

Another future work may involve the use of images available in the OCTA_6M
dataset, which are characterised by a larger dimension, that would allow to explore the
hypothesis of implementing data augmentation by means of patches, bearing in mind,
however, the problems related to cropping images containing a retinal structure and the
possibility of having non-significant crops. The use of smart patch sampling techniques
could be evaluated to limit the choice of crops to the object that have to be segmented [19].

In addition, the possibility of segmenting the FAZ (foveal avascular zone) could be in-
cluded in the analysis to obtain a more comprehensive segmentation and use this valuable
information for diagnostic purposes.

98

Bibliography

1]
2]

[11]
[12]

[13]

[14]

Priyanka Malhotra, Sheifali Gupta, Deepika Koundal, Atef Zaguia, Wegayehu En-
beyle, Deep Neural Networks for Medical Image Segmentation

Amir H Kashani, Chieh-Li Chen, Jin K Gahm, Fang Zheng, Grace M Richter, Philip
J Rosenfeld, Yonggang Shi, and Ruikang K Wang, Optical Coherence Tomography
Angiography: A Comprehensive Review of Current Methods and Clinical Applications
Richard F.Spaide, James G.Fujimoto, Nadia K.Waheed, Srinivas R.Sadda, Giovanni
Staurenghi, Optical coherence tomography angiography

Maria Cristina Savastano, Marco Rispoli, Bruno Lumbroso, Luca Di Antonio,
Leonardo Mastropasqua, Gianni Virgili, Alfonso Savastano, Daniela Bacherini and
Stanislao Rizzo, Fluorescein angiography versus optical coherence tomography an-
giography: FA vs OCTA Italian Study

Natalie Huang, W. Andrew Lee , Sean Rivera, Sandra Montezuma, Ruptured Retinal
Arterial Macroaneurysm Secondary to Toxoplasmic Kyrieleis Arteriolitis: A Case
Report

Mehreen Adhi and Jay S. Duker, Optical coherence tomography — current and future
applications

Mingchao Li, Yerui Chen, Zexuan Ji, Keren Xie, Songtao Yuan, Qiang Chen, and
Shuo Li, Image Projection Network: 3D to 2D Image Segmentation in OCTA Images
Mingchao Li, Yuhan Zhang, Zexuan Ji, Keren Xie, Songtao Yuan, Qinghuai Liu and
Qiang Chen, IPN-V2 and OCTA-500: Methodology and Dataset for Retinal Image
Segmentation

Shu Zheng, Yanru Bai, Zihao Xu, Pengfei Liu and Guangjian Ni, Optical Coherence
Tomography for Three-Dimensional Imaging in the Biomedical Field: A Review
Martin F. Kraus, Benjamin Potsaid, Markus A Mayer, Ruediger Bock, Motion cor-
rection in optical coherence tomography volumes on a per A-scan basis using orthog-
onal scan patterns

Chenyang Xu, Dzung L. Pham, Jerry L. Prince, Image Segmentation Using De-
formable Models

Cemil Kirbas, Francis Quek, A Review of Vessel Extraction Techniques and Algo-
rithms

Kristen M. Meiburger, Massimo Salvi, Giulia Rotunno, Wolfgang Drexle, Mengyang
Liu, Automatic Segmentation and Classification Methods Using Optical Coherence
Tomography Angiography (OCTA): A Review and Handbook

Foued Derraz, Mohamed Beladgham and M’hamed Khelif, Application of Active
Contour Models in Medical Image Segmentation

99

Bibliography

Mr.Salem Saleh Al-amri, Dr.N.V.Kalyankar, Dr.S.D.Khamitkar, Linear and Non-
linear Contrast Enhancement Image

Acharya and Ray, Image Processing: Principles and Applications

Alexander Buslaev, Alex Parinov, Eugene Khvedchenya, Vladimir I. Iglovikov,
Alexandr A. Kalinin, Albumentations: fast and flexible image augmentations
Daniel Bar-David, Laura Bar-David, Yinon Shapira, Rina Leibu, Dalia Dori, Ronit
Schneor, Anath Fischer, Shiri Soudry, Elastic deformation of optical coherence to-
mography images of diabetic macular edema for deep-learning models training
Massimo Salvi, Filippo Molinari, U Rajendra Acharya, Luca Molinaro, Kristen M
Meiburger, Impact of stain normalization and patch selection on the performance of
convolutional neural networks in histological breast and prostate cancer classification
Azhar Imran, Jianquiang Li, Yan Pei, Ji-Jiang Yang, adn Qing Wan, Comparative
Analysis of Vessel Segmentation Techniques in Retinal Images

Floris van Beers, Using Intersection over Union loss to improve Binary Image Seg-
mentation

Dor Bank, Noam Koenigstein, Raja Giryes, Autoencoders

Sergio Saponara, Abdussalam Elhanashi, and Qinghe Zheng, Recreating Fingerprint
Images by Convolutional Neural Network Autoencoder Architecture

Krishna Dev, Zubair Ashraf, Pranab K. Muhuri, Sandeep Kumar, Deep autoencoder
based domain adaptation for transfer learning

Abien Fred M. Agarap, Deep Learning using Rectified Linear Units (ReLU)
Hossein Gholamalinezhad , Hossein Khosravi, Pooling Methods in Deep Neural Net-
works, a Review

Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization
Olaf Ronneberger, Philipp Fischer, and Thomas Brox, U-Net: Convolutional Net-
works for Biomedical Image Segmentation.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazu-
nari Misawa, Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz,
Ben Glocker, Daniel Rueckert, Attention U-Net: Learning Where to Look for the
Pancreas

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for
Image Recognition

Md Zahangir Alom, Mahmudul Hasan, Chris Yakopcic, Tarek M. Taha, and Vijayan
K. Asari, Recurrent Residual Convolutional Neural Network based on U-Net (R2U-
Net) for Medical Image Segmentation

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, Dive into Deep
Learning

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Adversarial Networks
Mehdi Mirza, Simon Osindero, Conditional Generative Adversarial Nets

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, Image-to-Image Trans-
lation with Conditional Adversarial Networks

Ugur Demir, Gozde Unal, Patch-Based Image Inpainting with Generative Adversarial
Networks

100

Bibliography

Additional images sources

https://www.mdpi.com/2075-4418/11/8/1393
https://www.retinala.com/fluorescein-angiography.html
https://www.recendt.at/en/0CT.html
https://moorfield-optometry-specialist-eye-care.business.site/
https://www.youtube.com/watch?v=_8s2JgAgTmA&ab_channel=AdelAbdelshaf
ik

https://ieee-dataport.org/open-access/octa-500
https://www.semanticscholar.org/paper/Content-Based-Image-Retrieval-
Using-Machine-And-Kaur-Singh/8dcae44b8153df6b551950204e2cc4ceaecal816bce
https://link.springer.com/article/10.1007/s11042-021-11287-z
https://medium.com/@saibharath897/generative-adversarial-networks-gan
5—-560c5c988128
https://medium.com/@ma.bagheri/a-tutorial-on-conditional-generative-a
dversarial-nets-keras-implementation-694dcafa6282
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/gen
erative/pix2pix.ipynb

101

https://www.mdpi.com/2075-4418/11/8/1393
https://www.retinala.com/fluorescein-angiography.html
https://www.recendt.at/en/OCT.html
https://moorfield-optometry-specialist-eye-care.business.site/
https://www.youtube.com/watch?v=_8s2JgAgTmA&ab_channel=AdelAbdelshafik
https://www.youtube.com/watch?v=_8s2JgAgTmA&ab_channel=AdelAbdelshafik
https://ieee-dataport.org/open-access/octa-500
https://www.semanticscholar.org/paper/Content-Based-Image-Retrieval-Using-Machine-And-Kaur-Singh/8dcae44b8153df6b551950204e2cc4ceaea816bc
https://www.semanticscholar.org/paper/Content-Based-Image-Retrieval-Using-Machine-And-Kaur-Singh/8dcae44b8153df6b551950204e2cc4ceaea816bc
https://link.springer.com/article/10.1007/s11042-021-11287-z
https://medium.com/@saibharath897/generative-adversarial-networks-gans-560c5c988128
https://medium.com/@saibharath897/generative-adversarial-networks-gans-560c5c988128
https://medium.com/@ma.bagheri/a-tutorial-on-conditional-generative-adversarial-nets-keras-implementation-694dcafa6282
https://medium.com/@ma.bagheri/a-tutorial-on-conditional-generative-adversarial-nets-keras-implementation-694dcafa6282
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/generative/pix2pix.ipynb
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/generative/pix2pix.ipynb

102

Acknowledgements

A special thanks goes to our thesis supervisor, Prof. Kristen Mariko Meiburger,
for having given us the opportunity to study in deep topics of our interest and for
her being always available to us, for her kindness and willingness in giving us
ideas and useful suggestions

103

	Medical image segmentation
	Imaging techniques for retinal vessel segmentation
	Flourescein angiography
	Optical Coherence Tomography
	Optical Coherence Tomography Angiography

	Segmentation techniques
	Traditional segmentation techniques
	Model-based approaches
	Pattern-based models

	Deep learning models

	Dataset OCTA-500
	Preprocessing
	Loading of the dataset
	Normalisation
	Equalisation
	Histogram Equalisation
	Contrast Limited Adaptive Histogram Equalisation
	Results

	Data augmentation
	Augmentation techniques applied

	Evaluation metrics and losses
	Evaluation Metrics
	Traditional evaluation metrics
	IoU and Dice coefficients

	Losses
	Binary Cross Entropy loss
	Mean Squared Error loss
	Jaccard loss

	Segmentation Algorithms
	Traditional Autoencoder
	Different uses
	Autoencoder implementation
	Results

	U-Net
	U-Net implementation

	Attention U-Net
	Attention U-Net implementation

	Attention Residual U-Net
	Attention Residual U-Net implementation

	U-Net structures results
	Generative Adversarial Network - GAN
	Pix2Pix GAN
	Pix2Pix GAN implementation
	Results

	Conclusion
	Future works

	Bibliography

