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Abstract

Multi-agent reinforcement learning (MARL) is a promising paradigm for learning
problems that involve multiple decision makers. Contrary to centralized MARL with
a central controller, decentralized (independent) MARL is a more practical paradigm
in terms of scalibility, privacy, and computational cost, yet more challenging due
to non-stationarity of the environment from an agent’s perspective. The non-
stationarity challenge arises as the evolution of the environment and each agent’s
payoffs will depend on the behavior of other agents. In value-based MARL, two-
timescale learning is shown to address this issue. In such a learning dynamics,
agents update their value function estimates at a timescale slower than their
local Q-function estimates, and therefore, the game is rendered locally stationary
with respect to the strategy of other agents. However, two-timescale dynamics
in decentralized Q-learning has been studied only in two-player zero-sum games.
In this thesis, we focus on a newly emerged and important class of stochastic
games, stochastic potential games (SPG). We develop a many-player extension of
the two-timescale decentralized Q-learning algorithm as the first game-agnostic
value-based MARL algorithm in stochastic games, and analyze its asymptotic
converges to Nash equilibria in SPGs. We evaluate the empirical performance of
the algorithm on two SPG benchmarks, network routing games and distancing
games.
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Chapter 1

Introduction

1.1 Motivations

1.1.1 MARL and Stochastic Potential Games

Multi-agent reinforcement learning (MARL) is a branch of reinforcement learning
(RL) where multiple decision makers (agents or players) interact with a shared
environment. As there are multiple players involved in MARL, it is closely related
to game theory (GT), and especially repeated games. In a classical MARL setting,
each agent tries to maximize its own notion of cumulative reward over repeated
trials (games). The nature of the environment and the reward function of the agents
can fit into one of three categories. In a purely cooperative setting, the agents
share the same reward function (they have identical interests), and are incentivized
to collaborate and maximize the shared reward. The second scenario is the fully
competitive zero-sum environment with conflicting interests among agents. The
pure competitive and collaborative settings have few practical and real-world use
cases, and therefore, we may consider a third and middle-ground scenario, i.e., a
non-zero sum mixed-motive environment where agents should balance collaboration
and competition to achieve a stable equilibrium. An important class of mixed-
motive environments is potential games that can be used to model a large number
of real-world scenarios, in areas such as routing in computer and transportation
networks that can be formulated as congestion games [1], resource allocation in
settings like public good games [2], relaxation-labeling in image classification and
segmentation [3, 4], and many more practical use cases [5]. Therefore, in this work,
we focus on a newly emerged setup for MARL, known as stochastic potential game
(SPG), also known as Markov potential game (MPG) [6, 7, 8, 9].
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Introduction

1.1.2 Decentralized Learning

MARL methods can be either centralized (coordinated), or decentralized (indepen-
dent). The latter methods take advantage of a central coordinator who is in contact
with all agents and can coordinate them to reach an equilibrium. On the other hand,
in decentralized methods, the agents should make their decisions independently
and only using local information. A degree of communication between neighboring
agents may also be allowed in this setting.

In centralized MARL, the coordinator is fully aware of the game setup and can
access the actions of all agents, and therefore, this setup is only feasible when we
can simulate the game in a controlled environment [10, 11]. Furthermore, central
algorithms may harm the privacy of agents and they may not scale as the number
of agents grows. In decentralized MARL, many problems related to privacy and
scalibility go away, as each agent only uses local information to make her decision.
However, a great challenge that emerges in this setting is the non-stationarity of
the environment [12, 13]. The changes in a MARL environment are a function of
all agents’ actions, however, each agent is not aware of the actions of other agents
and has to act only based on her local observations and rewards. Therefore, since
the opponents modify their strategies over time, the environment dynamics is non-
stationary from the agent’s prespective. Although information exchange between
neighboring agents may be possible in some cases and may sometimes alleviate part
of the non-stationarity problem, there are many cases where privacy, cost, or scale
of the problem make the local communication between agents harmful, expensive,
or futile. Therefore, a fully decentralized learning scheme that addresses the non-
stationarity challenge and in which agents act with complete independence, could
be beneficial in terms of privacy, cost, and scalibility in multi-agent reinforcement
learning.

1.2 Contribution

Motivated by the previous section, in this work, we consider a two-timescale
decentralized Q-learning algorithm that has been proposed for two-player zero-
sum Markov games [14]. We extend this dynamics to multi-player settings and
apply it to stochastic potential games. We observe that the learning dynamics
asymptotically converge to a Nash equilibrium of the SPG. To our knowledge, this
is the first value-based MARL work on SPGs. We run experiments on two SPG
benchmarks, distancing games [8] and network routing games [15], to evaluate the
empirical performance of the algorithm.
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Introduction

1.3 Outline
This thesis is organized in the following order. Chapter 2 provides the neces-
sary background and preliminaries in reinforcement learning, game theory, and
multi-agent reinforcement learning. Chapter 3 introduces the concept of stochas-
tic potential game and its benchmarks, and discusses previous works on SPGs.
Chapter 4 is dedicated to the learning dynamics and its convergence analysis. In
Chapter 5, we present our experimental results. Finally, Chapter 6 concludes the
thesis with a discussion on game-agnostic learning and possible directions for future
works.
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Chapter 2

Background and
Preliminaries

In this chapter, we provide the introductory notions in reinforcement learning, game
theory, and multi-agent reinforcement learning, and discuss the non-stationarity
issue in decentralized MARL.

2.1 Single-Agent RL
Broadly speaking, reinforcement learning is a sub-field of machine learning (ML),
and can be considered one of the three basic ML paradigms alongside supervised
learning and unsupervised learning. In RL, the learner (agent) is not explicitly
told what to do, but instead is left out in the wild to discover its environment and
maps its states to actions that yield her the maximum cumulative reward overtime.
She is highly dependent on trial and error during this process, and also may need
to handle an important challenge named distant (delayed) reward, as the agent’s
actions may not only affect the immediate reward but also the reward values in
the future [16].

RL lies between supervised and unsupervised learning. It is different from
unsupervised learning which is mostly involved in finding patterns and structures in
uncategorized data [17, 18]. It is also different from supervised learning where the
model takes labelled data as its input and tries to generalize to recognize and label
unlabelled samples [19]. In a complex and interactive environment, it is usually
impractical to obtain and label sample actions that are representative enough for
different situations that the agent may find herself in. Therefore, in RL, the agent
uses the reward signal as its compass, and builds a model to maximize its long-term
return, all through policy improvement by trial and error and without access to any
labelled data [20]. Another distinct difference between RL and both supervised and
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unsupervised learning is the trade-off between exploration and exploitation that
is only present in RL. An agent should exploit the actions that she knows would
yield the maximum cumulative reward with a high certainty, however, in order to
find such actions in different situations, she has to explore untried actions in order
to find them. How to balance exploration and exploitation is a dilemma that has
been focused on by mathematicians and computer scientists through years [16].
The importance of RL in machine learning, and in general artificial intelligence
(AI), is obvious when many renowned researchers believe that "Reward is Enough"
to exhibit almost any ability related to natural and artificial intelligence [21].

After this general introduction, we now mathematically formulate a single-agent
RL problem. A Markovian discrete environment, with which an agent interacts,
can be modelled through a Markov decision process (MDP) defined below.

Definition 2.1.1 (Markov decision process). A Markov decision process1 may be
described using a tuple of four key elements (S,A,P ,R), where,

• S is a set representing the different states in the environment.

• A is a set representing the possible actions an agent can take.

• P : S × A → ∆(S) is a probability mapping2 that at time step t ∈ N gives
the transition probabilities that the agent taking action a ∈ A in state s ∈ S
would go to the next state s′ ∈ S at time step t + 1.

• R : S ×A× S → R is the reward function that returns a bounded scalar in
the range [−Rmax, Rmax] to the agent as a result of its action a in state s and
the transition to s′.

Given an MDP, the goal of the agent interacting with it and following a policy
π, is to maximize her expectation of discounted sum of rewards over time,

Eat∼π

I
TØ

t=0
γtRat(st, st+1)

J
, (2.1)

where T is the terminating time step and is finite in episodic tasks, or is equal
to ∞ in continuing infinite-horizon tasks. γ ∈ [0,1] is a discount factor determining
the farsightedness of the agent (a lower value of gamma denotes a more myopic
and greedy agent). In continuing tasks, γ should be strictly less than one to ensure

1There are some generalizations to MDP to model partially observable environments. For
example, in a partially observable Markov decision process (POMDP), the environment dynamics
are determined by an MDP, however, the agent can only observe the environment through a set of
sensors and maintain a probability distribution of different observations given the current state.

2∆(S) denotes a probability simplex over the set S.
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a finite value for the discounted reward. The policy π : S → ∆(A) denotes a
probability mapping from each state to the set of possible actions. A policy is
deterministic at a given state s, if a single action, a has a probability equal to one,
and the other actions have zero probability of being selected. The ultimate goal of
the agent is finding an optimal policy that maximizes the cumulative reward in
(2.1).

In order to formulate a formal learning scenario, we can define some variables to
denote the quality of different states and different actions in those states. Therefore,
the state value function of state s under a policy π is defined as

V π(s) := Eat∼π

I
TØ

t=0
γtRat(st, st+1)|s0 = s

J
. (2.2)

We may also define the state-action value function, or Q-function under policy
π as

Qπ(s, a) := Eat∼π

I
TØ

t=0
γtRat(st, st+1)|s0 = s, a0 = a

J
. (2.3)

The Q-function, where Q stands for quality, shows the value of taking a specific
action in state s and following policy π afterwards. If we choose action a0 also
according to π, V π = Eπ{Qπ(s, a)}. We may write value functions for every state
in recursive form that are known as Bellman equations [22]

V π(s) = Ea∼π

I
Ra(s, s′) + γ

Ø
s′∈S

V π(s′)P(s′|s, a)
J

, ∀s ∈ S. (2.4)

The optimal values of these equations are represented using the Bellman opti-
mality equations for V ∗ [22],

V ∗(s) = max
a∈A

(Ra(s, s′) + γ
Ø
s′∈S

V ∗(s′)P(s′|s, a)), ∀s ∈ S. (2.5)

We may also write the optimal values of Q∗ for all state-action pairs using V ∗ as

Q∗(s, a) = Ra(s, s′) + γ
Ø
s′∈S

V ∗(s′)P(s′|s, a), ∀(s, a) ∈ S ×A. (2.6)

The equations in (2.5) constitute a non-linear system whose solution is guar-
anteed to exist for all finite MDPs [23]. After solving this system of equations
and finding V ∗, one may find the actions for which (2.5) yields its maximum. To
calculate the optimal policy at each state, we may assign a non-zero probability to
these actions, and a zero probability to others. Since there is no difference in value
for the optimal actions if they are more than one, the optimal policy can also be a
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purely deterministic policy favoring any of the optimal actions. Therefore, it can
be said that any finite MDP has a deterministic optimal policy π∗.

As a side note, it should be mentioned that the MDP framework as a model of
an RL environment is only valid if the environment possesses the Markov property

P(st+1 = s′, rt+1 = r|st, at) = P(st+1 = s′, rt+1 = r|st, at, rt, ..., s1, a1, r1s0, a0). (2.7)

Evidently, this assumption does not hold if one considers an arbitrary observation
as the state in a complex environment. However, performing encoding tricks, such
as augmenting several observations from consecutive time steps into a single state,
may create state representations that include approximately all information needed
for decision making. Furthermore, to theoretically prove convergence of many
RL algorithms, the Markov assumption is necessary. Assuming that the Markov
property holds and we perfectly know the dynamics of the environment, which
is not always the case, solving the system of Bellman optimality equations (2.5)
analytically for a complex environement with a large number of states is intractable.
It requires an exhaustive search and looking ahead every possible trajectory in
the MDP to find the optimal action in each state. A faster solution to find the
optimal policy in MDPs is dynamic programming (DP) [22]. DP methods solve a
complicated problem by breaking it down to smaller sub-problems recursively. The
two DP algorithms in RL are policy iteration and value iteration. Although these
algorithms find the optimal policy in polynomial time of the number of states and
actions in the worst case, they are rarely used in practice because they require a
complete model of the environment.

The DP approach is the most basic algorithm in the realm of model-based RL.
Any RL algorithm that uses a model, whether known (such as Monte Carlo tree
search (MCTS)) or learned (such as World Models [24]), to solve the MDP and
calculate an optimal value function or policy can be considered model-based [25].
On the other hand, model-free RL uses only experience in the environment without
explicitly building a model of the MDP to adjust its policy and achieve maximum
return. These model-free algorithms are either offline and wait until the end of
the episode before updating their estimates (Monte Carlo (MC) methods), or they
bootstrap in an online fashion, take advantage of the learned estimates up to now,
and form the reward prediction error (RPE) to update the value or action-value
estimates without the need to wait for the episode to terminate. This mode of
learning, known as temporal difference (TD) learning is useful for tasks with long
episodes and continuing tasks. It is worth mentioning that an algorithm may
involve both model-free and model-based learning elements. An example of such
agents is the renowned AlphaGo [10] that defeated the human world champion of
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the ancient board game, Go, in 20163.
Model-free RL is usually divided into two main categories; value-based methods

and policy-based methods.
In value-based RL, the agent optimizes its estimation of the action-value (Q)

function to obtain the optimal action choice in each state. If the policy being
optimized is the same as the one the agent is following, the method is called
on-policy. State–action–reward–state–action (SARSA) is an example of on-policy
value-based algorithms [26, 27]. On the other hand, if the followed policy differs
from the policy being optimized, the algorithm is said to be off-policy. Tabular
Q-learning [28] and deep Q-learning [29] that uses a deep neural network, known as
deep Q-network (DQN) instead of a table as the action-value function approximator,
are examples of off-policy value-based methods.

In policy-based RL, the objective is to directly optimize the policy (and not
the action-value function) using sampled reward values from the environment.
For instance, policy gradient (PG) methods optimize a parameterized policy with
respect to the expected return by gradient descent [30]. There are also policy-based
RL algorithms that do not rely on calculation of gradients, such as the ones using
evolutionary strategies or cross-entropy method [31, 32].

It should be noted that many modern model-free RL algorithms do not fit
exclusively under one of value-based or policy-based categories. Combining off-
policy value-based techniques with policy-based gradient-based strategies, has given
rise to a powerful family of model-free RL algorithms known as actor-critic (AC)
methods. In AC, optimization of the action-value function guides the agent in
improving her policy. After the success of DQN in solving RL tasks with continous
state and discrete action spaces, AC methods inspired applying deep learning in
tasks with continous action spaces, and in 2015, deep deterministic policy gradient
(DDPG) [33] was proposed. Figure 2.1 shows a compact taxonomy of RL algorithms
discussed up to now.

Since the decentralized MARL algorithm that we will be considering later on
is built upon single-agent Q-learning, at the end of this section, we provide this
algorithm and the conditions required for its convergence. Algorithm 1 represents
the tabular Q-learning algorithm for discrete state-action spaces.

To state the convergence criteria for Q-learning in finite MDPs, we first introduce
an important class of policies:
Definition 2.1.2 (GLIE Policy). A learning policy is greedy in the limit with
infinite exploration (GLIE) if it satisfies the following properties:

1. limt→∞ Nt(s, a) =∞ if limt→∞ Nt(s) =∞; all possible actions in a given state
are selected infinitely often if the state is visited infinitely often.

3https://www.alphagomovie.com/
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RL Algorithms

Model-Free

Given the MDP Learn the MDP

Value-Based Policy-Based

Gradient-Free Gradient-Based
On-Policy Off-Policy

Cross-Entropy 
Method

Evolutionary 
StrategiesMCTS, 

AlphaGo
World 

Models

Actor-Critic 
Methods

DDPG

Q-Learning, 
DQN

SARSA Policy Gradient 
Methods

Model-Based

Figure 2.1: Categorization of RL algorithms; reproduced with slight modifications
from [34].

Algorithm 1 Tabular Q-learning for Single-Agent RL
Parameters: set of states S, set of actions A, step size sequence {αt ∈ (0,1]},
an exploration probability ϵ ∈ [0,1).
Initialize Q(s, a) for all s ∈ S,a ∈ A arbitrarily except that Q(sterminal, .) = 0.

1: procedure Loop for each episode k:
2: Randomly select an initial state s.
3: Repeat for each state of the episode:
4: Choose action a using a GLIE policy derived from Q, e.g., ϵ-greedy:
5: With probability ϵ choose a random action a.
6: Otherwise, a = argmax

a∈A
Q(s, a).

7: Take action a, obtain reward a, and observe the next sate s′.

Q(s, a)← Q(s, a) + αt,(s,a)[r + γ max
a′∈A

Q(s′, a′)−Q(s, a)]. (2.8)

8: s← s′.
9: Until s is a terminal state.

10: end procedure

2. As the number of iterations goes to infinity, the policy converges to a greedy

9
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policy with respect to the action-vale (Q) function; limt→∞ πt = δargmax
a∈A

(Qt(s,.)),
where δj is a vector with all components equal to zero except the index
corresponding to j which is equal to one.

Following a GLIE policy is an essential condition in the proof of convergence
for RL algorithms with bounded estimates. An important policy that could easily
satisfy GLIE conditions is the ϵ-greedy policy. In ϵ-greedy, the agent follows a
greedy policy with respect to the Q-function with probability 1− ϵ, and selects a
random action with probability ϵ.

Lemma 2.1.1. The ϵ-greedy policy satisfies the GLIE conditions if at iteration t,
ϵt = 1

t
.

Now, we can state the convergence criteria for single-agent Q-learning [35, 28]:

Theorem 2.1.1. Given an MDP with finite state-action space, and a single agent
following tabular Q-learning in Algorithm 1, as t→∞, Qt converges to Q∗, and
πt converges to π∗ given the following conditions,

1. The agent follows a GLIE policy.

2. The reward values are bounded; Rat(st, st+1) ≤ D.

3. The learning rate satisfies the following properties as the number of episodes
goes to infinity: q∞

t=1 αt,(s,a) =∞, q∞
t=1 α2

t,(s,a) <∞, ∀s, a.

2.2 Game Theory
Before discussing the concept of multi-agent RL, as it is interrelated with game
theory and repeated games, we first give an introductory overview of the main
notions in game theory.

Game theory is a branch of mathematics that studies the interaction of multiple
decision makers (players) with individual payoff functions whose decisions affect
the payoff of other players. In a game, the players try to optimize their respective
objective functions, i.e., they are rational, while taking into account the knowledge
they have acquired and the expectation they have of the other players’ behavior,
i.e., they reason and act strategically [36]. Although a relatively new field, GT has
been found applications in multiple fields, such as economic, military, and political
strategic analysis, social sciences and social networks, robotics and multi-agent
systems, and optimization of electrical grids and communication networks [37].

The most basic form of a game is an strategic game in which players choose
their actions simultaneously once and for all after analyzing the reward function of
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other players and forming an expectation of their behavior. We may define this
type of game as below4:

Definition 2.2.1 (Strategic Game). A strategic game G can be defined by a tuple
of three sets (N ,A = {Ai|i ∈ N}, U = {ui|i ∈ N}), where

• N = {1,2,3, ..., n} is a set of n players with their own payoff function to
maximize5.

• Ai is a set of mi possible actions that player i could play.

• ui : A → R is the utility (payoff) function of player i and is dependent on the
actions of all players. For the sake of simplicity, we may write ui(a1, a2, ..., an)
as ui(ai, a−i), where a−i = (aj)j∈N ,j /=i = (a1, ..., ai−1, ai+1, ..., an) is the action
profile of all players except player i.

A common way to solve a strategic game when no communication or cooperation
among agents is allowed, is to assume that all players are rational and try to
maximize their payoff function. By acting rationally, the agents may reach an
equilibrium point known as a Nash equilibrium (NE) of the game [38],

Definition 2.2.2 (Deterministic Nash equilibrium in strategic games). An action
profile (a∗

1, a∗
2, ..., a∗

n) is a deterministic Nash equilibrium of the game if no player
can increase her payoff by individually deviating from the profile, i.e.,

ui(a∗
i , a∗

−i) ≥ ui(ai, a∗
−i) ∀ai ∈ Ai, i ∈ N. (2.9)

We may also define Nash equilibrium using the best-response (BR) set,

Definition 2.2.3 (Best-Response Set). The best-response set for player i is the
action set resulting from the maximization of ui with respect to other players’
strategies,

BRi(a−i) := argmax
ai∈Ai

ui(ai, a−i) (2.10)

A Nash equilibrium in a strategic game happens when the action selected by all
players falls into their respective best-response set,

(a∗
1, a∗

2, ..., a∗
n) ∈ NE(G) ⇐⇒ a∗

i ∈ BRi(a∗
−i), ∀i ∈ N (2.11)

where NE(G) is the set of deterministic Nash equilibria of the strategic game.

4All of the definitions from now on are given for games with discrete action space. Similar
definitions can be provided for continous action spaces.

5Alternatively, we may also assume that players minimize their individual cost functions.
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The best-response set provides us with a method to calculate deterministic Nash
equilibria of a game. We may calculate BR for all players and then find the profiles
where a∗

i ∈ BRi(a∗
−i) for all i ∈ N . This also implies that a game may not possess

a deterministic Nash equilibrium because such action profile may not exist.
Although a game may not possess a deterministic Nash equilibrium, we may

turn to another type of policies known as mixed strategies to extend the notion
of Nash equilibrium. For player i, we define a mixed strategy over her possible
actions as πi ∈ ∆(Ai). In other words, πi is a probability distribution over the
possible actions of player i, and πi[aj ] is the probability of choosing action aj in the
game. Consequently, we may define the expected utility tensor of player i following
a mixed strategy as,

Ui(πi, π−i) = (πi)T ui
Ù

j∈N,j /=i

πj (2.12)

where ui is the tensor of the utilities corresponding to deterministic action
profiles. Jon Nash proved the following theorem for finite games [39],

Theorem 2.2.1 (Existence of mixed NE in finite games). Every game with a finite
set of players and finite strategy sets, admits at least one mixed Nash equilibrium
profile (πi

∗, π−i
∗ ) where,

Ui(πi
∗, π−i

∗ ) > Ui(πi, π−i
∗ ), ∀i, πi (2.13)

Comment. In this thesis, the terms player, utility/payoff, strategy, and learning
dynamics are respectively equivalent to the terms agent, reward, policy, and learning
algorithm, and are used interchangably. The first set of terms are more common in
the game theory and learning in games literature, while the second set is usually
used in ML/RL literature.

It should be noted that the concept of Nash equilibrium is defined in the context
of non-cooperative games where agents do not cooperate with each other and
are completely selfish. In such a setting, there may exist other action profiles
where both agents can gain more than the Nash equilibrium of the game, yet they
cannot reach that profile without cooperation. A famous example of such a game
is the two-player prisoner’s dilemma (Table 2.1) where the green payoff cell is
not achievable when following the rationality principle because each agent has an
individual motivation to change her strategy and gain the payoff equal to 4, and
the only Nash equilibrium in this setting is the red cell.

We now introduce two important classes of games that have also been studied in
the context of repeated games and multi-agent RL; zero-sum games, and potential
games [40].

Definition 2.2.4 (Two-player zero-sum game). A two-player game is zero-sum if
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Table 2.1: Two-player prisoner’s dilemma

P2
P1 Confess Don’t confess

Confess 3, 3 0, 4
Don’t confess 4, 0 1, 1

the sum of two players’ payoffs for each possible action profile is equal to zero6,

u1(a1, a2) + u2(a1, a2) = 0, ∀(a1, a2) ∈ A1 × A2 (2.14)

Definition 2.2.5 (Potential game). A game (N, A = {Ai}, U = {ui}) is (exact)
potential, if there exists a potential function, Φ : A → R, s.t.,

ui(ai, a−i)− ui(a′
i, a−i) = Φ(ai, a−i)− Φ(a′

i, a−i), ∀i ∈ N (2.15)

In a potential game, the change in the utility of player i, when changing her
action unilaterally is proportional to the variation in the potential function. As
discussed in chapter 1, potential games are capable of modeling several practical
and real-world scenarios. Because the incentive of all players are mapped into
a single function, the pure Nash equilibria of the game correspond to the local
minima of the potential function. This is an important property that is used in
studying convergence of learning dynamics to Nash equilibria in repeated games.
Indeed, in the real world, games are not normally played once, and players have to
play a game with partial observability repeatedly and learn an optimal strategy.
Partial observability implies a player may not be fully-rational, she may not be
aware of her reward function and even may not be able to observe other players’
actions and rewards during the game. To analyze the game dynamics and the
equilibria that the game may converge to in the long run in such settings, we can
turn to algorithms designed for learning strategies in repeated games [41]. When
players adopt a learning strategy, they may not necessarily converge to a Nash
equilibrium, or they may converge to an approximate Nash equilibrium when the
number of iterations of the game is limited. Therefore, we may define an ϵ−Nash
equilibrium as

Theorem 2.2.2 (ϵ−Nash equilibrium). A mixed strategy profile (πi
∗, π−i

∗ ) is an
ϵ-Nash equilibrium if

Ui(πi
∗, π−i

∗ ) ≥ Ui(πi, π−i
∗ )− ϵ, ∀i, πi, (2.16)

6This class of games can be considered the purest form of non-cooperative games as there is
absolutely no incentive for the players to cooperate with each other [37].
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and a Nash equilibrium happens when ϵ is zero.
An important algorithm for learning in repeated games is fictitious play [42].

In fictitious play, each player has full observability over her own reward function.
However, she can only observe the actions of other players at each iteration, and
not the reward they get. Each player assumes that other players follow a stationary
mixed strategy, and at each round, she plays her best response to the empirical
frequency of the previous actions played by her opponents. In other words, at
each iteration, she gives a weight equal to the frequency of actions played by other
players. Therefore, the the probability player i assigns to player −i for playing a−i

j

will be,

γi
t(a−i

j ) =
ηi

t(a−i
j )q

a−i
k

∈A−i ηi
t(a−i

k )
(2.17)

where ηi
t(a−i

k ) is the number of times that player −i has played a−i up to iteration
t. ηi can be considered a mixed strategy profile for player −i. At each round,
player i plays her best response with respect to the mixed utility calculated over ηi,

BRi(ηi) := argmax
aj∈Ai

Ui(δj, ηi) (2.18)

where δj is a vector with all components equal to zero except the index corre-
sponding to j which is equal to one.

Fictitious play has been proven to converge to a pure Nash equilibrium in many
classes of games, including any two-player game with a generic payoff matrix [43]
and potential games with arbitrary number of actions and players [40].

Since deterministic best response in fictitious play may change abruptly (dis-
cretely), in case of a mixed Nash equilibrium, the actual behavior overtime may
not converge to the equilibrium, even though the beliefs converge to one [44]. To
avoid such a problem, stochastic fictitious play was introduced by Fudenberg and
Kreps [45], in which the deterministic BR is substituted by perturbed BR dynamics.
In perturbed BR, the player payoffs are perturbed with a random noise at each
iteration. Perturbed BR is proven to converge to a pure Nash equilibrium in
zero-sum, potential, and supermodular games as the noise vector corresponding to
each player’s payoff becomes sufficiently small [44].

2.3 Multi-agent RL
Unlike single-agent RL where the dynamics of the environement was only determined
by the actions of a single player, in MARL, the evolution of the environment and
the reward that each agent receives is dependent not only on her action, but on
the actions of all players. Apart from this difference, each agent is again assumed
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to solve a decision-making problem sequentially, and through trial and error. Due
to the involvement of multiple decision makers, it is reasonable to model a MARL
problem using a game-theoretic framework, known as a stochastic (Markov) game
[46, 47]:

Definition 2.3.1 (Stochastic (Markov) game). A stochastic (Markov) game7 is
defined by extending the definition of MDP to a multi-player setting, and therfore
can be described using a tuple of five key elements (N,S,A = {Ai|i ∈ N},P , R =
{Ri|i ∈ N}), where,

• N = {1,2,3, ..., n} is a set of n players.

• S is a set representing the different states of the game, and is shared by all
players.

• Ai is a set of mi possible actions that player i could play at each state.

• P : S ×A → ∆(S) is a probability mapping that at time step t ∈ N gives the
transition probabilities of the agents going from state s ∈ S to the next state
s′ ∈ S at time step t + 1 given the action profile (a1, ..., an) ∈ A.

• R : S×A×S → R is the reward function that returns a bounded scalar in the
range [−Rmax, Rmax] to each agent as a result of the action profile (a1, ..., an)
taken in state s and the transition to s′.

Based on this definition, every state of a stochastic game (SG) can be viewed
as a normal-form game with the important caveat that after taking actions, the
agents may transit to a different state based on the transition probability matrix.

There are generally two different paradigms when approaching an MARL prob-
lem. The first one is coordinated (centralized) MARL in which a central coordinator
has full observability over the joint actions, rewards, and observations of all agents,
and it coordinates their behavior in order to optimize their individual policy and
achieve an equilibrium profile. This setting requires either a simulation of the
game or an express two-way connection between the agents and the controller, and
considering the task of the controller, it usually needs to have a high computa-
tional capacity that grows with the number of agents. Up to now, the centralized
paradigm has been the focus of many seminal works in MARL [11, 10, 48, 49].

Centralized MARL deprives agents of their autonomy and competitive drive
that are important factors in non-cooperative games. Indeed, in many practical

7It is important to distinguish between stochastic games where agents make their decisions
simultaneously, and extensive-form or tree games where agents take their actions sequentially
after observing the actions of previous players.
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multi-agent scenarios, such as decision making in economics [50], the nature of
the game and the competition present, dictates that the agents take their actions
independently and without coordination. Furthermore, the scale and complexity of
a game that increases with the number of players, e.g., in large-scale robot systems
[51], motivates the use of distributed algorithms. The second paradigm in MARL
is decentralized and based on independent decision making of individual agents.
The main benefits of this paradigm are better scalability of the algorithm, and a
reduction in computational cost, both of which are the results of eliminating the
central controller. Furthermore, users may not be inclined to share their personal
data with a coordinator server, and therefore, decentralized techniques may also
be beneficial in terms of privacy. Before discussing the existing algorithms and
methods in decentralized MARL, we discuss an important challenge that any
MARL algorithm needs to address.

Unlike single-agent RL where the evolution of the environment is only a function
of the single agent’s behavior, in MARL, the joint policy of all participating agents
shape the environment dynamics. Coupling this joint dependence with the fact that
agents do not have access to other agents’ policies gives rise to the non-stationarity
challenge in MARL. From a single agent’s prespective, the environment dynamics
is dependent on hidden and observable variables which makes independent policy
optimization and decision making difficult. Adopting the centralized paradigm is
an evident way to deal with non-stationarity [52, 53, 49]. Therefore, in the next
section, we examine the methods that deal with this challenge in the decentralized
paradigm.

2.4 Dealing with Non-stationarity in Decentral-
ized MARL

Hernandez-Leal et al. [12] provides an interesting categorization for the techniques
that decentralized MARL algorithms use to deal with non-stationarity. The first
technique is ignoring the non-stationarity of the environment, and acting as if
the opponents are playing a stationary strategy. This approach may easily fail to
capture an optimal strategy if the opponents alter their policies. In the second
category, called forget, the agents continuously update their value estimates or
policies based on recent observations, and therefore, forget about the information in
the past. The third and fourth categories rely on communication channels between
agents, or a higher degree of observability, to respond to the respond to target
opponents [54, 55], or learn models of the opponents [56, 57]. The last category is
based on theory of mind and recursive reasoning where the agent assumes that the
opponent is strategically modeling her and creates her best response set based on
recursive reasoning [58, 59].
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Our area of interest in this thesis is the second category, forget. These algorithms
are mostly model-free as they are usually based on iterative updates of value and Q
functions, and policies. One approach that these algorithms use to deal with non-
stationarity is asymmetric and variable step sizes for different agents to continuously
adjust to opponents’ behavior [60, 61, 62]. Another approach is two-timescale
learning [63, 14] to create periodic local stationary environments for agents. We
particularly focus on this approach and the one proposed by Sayin et al. [14] in
decentralized Q-learning dynamics. In this dynamics, in the faster timescale, the
environement can be assumed to be locally stationary from an agent’s prespective,
while it changes in the background with the slow timescale updates.
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Chapter 3

Stochastic Potential Games

A large portion of works that approach MARL from a game theoretical prespective,
have focused on either zero-sum [64, 14, 65, 62], or fully-cooperative games [66, 67,
68, 69, 70], and the study of other types of games have been limited. However, as
discussed in Section 1.1, an important family of games that connects cooperation
and competition, and appears in numerous real-world scenarios, is potential games.
Furthermore, every general-sum game can be decomposed into three games, a non-
strategic game, a potential game, and a harmonic game [71]. Therefore, studying
MARL algorithms for stochastic potential games can be a step towards finding
algorithms for arbitrary general-sum games.

3.1 Related Works and Definitions
Stochastic (also known as dynamic or Markov) potential games were first studied
outside the MARL framework and assuming that the dynamics of the environement
are known, either with a centralized controller [72, 73, 74], or in a decentralized
fashion [75]. Recently, the study of SPGs from an RL prespective has become more
prevalent. Extending the policy gradient method [76] to a multi-player setting,
Leonardos et al. [8] and Zhang et al. [9] proved the last iterate convergence of
independent policy gradient (IPG) in SPGs. Fox et al. [77] showed the convergence
of independent natural policy gradient (INPG), and experimentally showed its
faster convergence compared to IPG. These three works define the SPG, and its
corresponding potential function, based on the state value function of the agents.
On the other hand, Mguni et al. [7] provides an alternative definition based on
reward functions in each state of the SG, and extend the game to continuous state
and action spaces. They propose two algorithms for finding the Nash equilibrium
in SPGs. The first one, SPotQ, is based on Q-learning and requires the potential
function to be known. The second one, SPot-AC, is an actor-critic algorithm that
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needs to learn the potential function using minibatch data samples. Therefore, in
both algorithms, the agents should be aware that the game is potential and either
have to know or estimate the potential function. To best of our knowledge, up
to know there has been no work adopting a pure value-based MARL approach
in SPGs. In this thesis we consider the SPG formulation of Mguni et al. [7] for
discrete action spaces, and study such a value-based dynamics to bridge this gap.
An SPG is defined as:

Definition 3.1.1 (Stochastic potential game). A stochastic game is potential, if
there exists a potential function Φ : S ×A → R such that for every player i ∈ N ,
every state s ∈ S, and action profiles (ai, a−i), (a′

i, a−i) ∈ A, the following holds,

ri(s, ai, a−i)− ri(s, a′
i, a−i) = Φ(s, ai, a−i)− Φ(s, a′

i, a−i). (3.1)

An intuitive condition that holds in many SPGs is state transitivity:

Definition 3.1.2 (State transitivity). An SPG is said to be state transitive if for
every player i ∈ N , every action profile (ai, a−i) ∈ A, and every state transition
from s to s′, the following holds,

ri(s, ai, a−i)− ri(s′, ai, a−i) = Φ(s, ai, a−i)− Φ(s′, ai, a−i). (3.2)

In other words, when transiting to another state, the difference in rewards is
the same for all agents. This assumption holds in many real-world applications
of SPGs, such as network routing congestion games [15] and distancing games [8].
Similar to Mguni et al. [7], in our analysis, we also assume that state transitivity
condition is satisfied.

3.2 Benchmarks
We consider two SPG benchmarks for experimental evaluation; network routing
games, and distancing games. It is worth stating that the SPG literature is relatively
young, and therefore, there are only few reported experimental results on these
benchmarks.

3.2.1 Network Routing Games
Network Routing Games A network routing game is defined over an acyclic directed
network of nodes, through which self-interested agents transfer their commodities.
Passing through every edge has a cost that is proportional to the number of agents
that are using the edge simultaneously. We consider an atomic routing game [15]
that involves n agents who are transporting their commodities from a source node
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to a destination node. The atomic term implies that the commodity of each agent
cannot be divided into smaller parts and should be transferred along a single edge.
Figure 3.1 shows two consecutive states of an atomic routing game with four agents.
If we do not impose any restriction on the simultaneity of the agents’ movement
through the network, we will have a total of |V |n states in the MDP that constitutes
the underlying SPG, where |V | is the number of nodes in the network. In other
words any configuration of the agents on different nodes is a state in the SPG.
Every edge has a cost function ce(.), and therfore, each state of this SPG is a
congestion game, and the potential function function is given by,

Φ(s, ai, a−i) =
Ø

e

neØ
k=1

c(k) (3.3)

where e is any edge that can be chosen as action by players in state s, and ne is
the number of players who choose edge e.

Source (S1) Dest. (S6)

S2

S3

S4

S5

Source (S1) Dest. (S6)

S2

S3

S4

S5

2

1

1

Figure 3.1: Two consecutive states in an atomic network routing game

3.2.2 Distancing Game
Distancing game [77] is an SPG environement that was introduced by Leonardos
et al. [8], and consists of two states, both of which are congestion games. Each
state has m = 4 facilities from which agents have to choose to stay when they
are in that state. The first state is a safe state, and agents will receive a positive
reward proportional to the value (weight) of their chosen facility and the number of
agents in that facility. The weight of the facilities {A, B, C, D} have the property
wD > wC > wB > wA. Whenever there are more than N/2 number of agents in a
single facility in the safe state, the agents will transit to the second state, spread
state. In this state, the agents receive a reward consisting of the same positive
reward as the safe state, but with a large negative constant added to it. In order
to transit back to the safe state, agents have to spread throughout the facilities as
much as possible; if there are more than two N/4 players in the same facility, the

20



Stochastic Potential Games

agents stay in this harmful spread state until they spread and move back to the
safe state. The potential function this game for each state is:

Φ(ssafe, ai, a−i) =
Ø

f

nfØ
k=1

kwf , (3.4a)

Φ(sspread, ai, a−i) =
Ø

f

nfØ
k=1

k(wf − c), (3.4b)

where f is one of the facilities, and nf is the number of agents choosing facility
f , and c is the constant penalty term. Figure 3.2 shows a configuration of n = 8
agents in the safe state.

Safe State

A B

C D

Spread State

A B

C D

Figure 3.2: Distancing game
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Chapter 4

Learning Dynamics and
Convergence Analysis

In this chapter, we outline the preliminary definitions and notations, and afterwards,
present the decentralized Q-learning two-timestep algorithm for n-player stochastic
games. Decentralized Q-learning was first introduced for two-player zero-sum
stochastic games by Sayin et al. [64, 78]. Afterwards, we analyze the asymptotic
convergence of this algorithm in stochastic potential games.

4.1 Definitions and Notations
In a given SG (Definition 2.3.1), where player i follows a stochastic policy πi ∈ ∆(Ai),
we denote the joint policy profile as π = (π1, π2, ..., πn) ∈ ∆(A) and define the
expected utility of player i when playing the SG over an infinite horizon as

U i(πi, π−i) = E(ai
t,a−i

t )∼π

I ∞Ø
t=0

γtri
st

(ai, a−i)
J

. (4.1)

where s0 is drawn from a probability distribution ps0 ∈ ∆(s), and the consecutive
states are determined by the transition mapping P : S ×A → ∆(S). An ϵ-Nash
equilibrium can be defined for an SG similar to a normal-form game as a strategy
profile π∗ = (π1

∗, π2
∗, ..., πn

∗ ) if the following holds,

Ui(πi
∗, π−i

∗ ) ≥ Ui(πi, π−i
∗ )− ϵ, ∀i, πi ∈ ∆(Ai), (4.2)

where ϵ = 0 results in a Nash equilibrium. It is proven that every finite SG
possesses at least one Nash equilibrium [79]. To attribute a value to a given state
from each agent’s prespective, we define the value function of player i in state s as
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vi
π(s) = E(ai,a−i)∼π

I
ri

s(ai, a−i) + γ
Ø
s′∈S

vi
π(s′)p(s′|s, ai, a−i)

J
. (4.3)

It follows that Ui(πi, π−i) = Es0∼ps0
{v(s0)}. Furthermore, the Q-function for

state s and a given action profile (ai, a−i) is defined as

Qi
π(s, ai, a−i) = ri

s(ai, a−i) + γ
Ø
s′∈S

vi
π(s′)p(s′|s, ai, a−i). (4.4)

This function can be called the global Q-function because it is a function of all
players’ actions and can be obtained only by full-observability over the game. The
global Q-function at state s can be interpreted as the utility function of player i
corresponding to that state over the iterations of the stochastic game. However,
there are two obstacles in the way of using algorithms designed for repeated games,
such as fictitious play, over this global Q-function; first, the Q-function is not
constant and evolves alongside the value function and the policy of other players,
and second, even if we could consider Q constant, in decentralized learning, the
agents would not have access to the actions of other players, and therefore, cannot
calculate the Q-function. Both of these challenges can be addressed by employing
the two-timestep decentralized Q-learning algorithm. In this algorithm, the agents
employ their state value estimations, that have become locally stationary in a slow
timescale, to approximate the expected quality of a given action with respect to
the other players’ strategy. This is done by introducing the local Q-function for
player i as

qi
π(s, ai) = Ea−i∼π−i

î
Qi

π(s, ai, a−i)
ï

(4.5)

4.2 Decentralized Q-Learning
The decentralized Q-learning is based on a two-timescale update rule. In the faster
timescale, agents assume that the environement is stationary, which is equivalent
to assuming that the value function is constant and as if they are playing a single-
state normal-form game. Consequently, they update their estimates of the local
Q-function accordingly (Q-update). In the slower timescale, the agents apply the
knowledge that they have gained from their observations since the previous slow
timescale update and update their estimates of the value function to make the stage
ready for another sequence of fast timescale updates with assumed stationarity.
The algorithm has been designed in a way that each agent may be oblivious to the
nature of the game or even the presence of other players.

Before presenting the algorithm, we define the type of policy that the agents
follow in the algorithm. Perturbed best-response (also known as smoothed or noisy
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best-response), that was mentioned in Section 2.2, can be defined for player i in
general terms as follows

Br(qi) = argmax
µ∈∆(A)

I
µqi − ν(µ)

J
(4.6)

where µ is a probability distribution (stochastic policy) over A, and ν is a
perturbation (noise) function, and µ · qi denotes the inner product of vectors µ and
qi. If the perturbation function ν is smooth, strictly concave, and with an unbounded
gradient at the boundary of ∆(A), (4.6) is shown to have a unique maximizer.
Choosing ν as the negative entropy function with a noise level (temperature) τ .

ν(µ, τ) = τ
Ø

aj∈A

µj log(µj) (4.7)

will result in a logit choice (softmax) BR function,

Br(qi, τ) = exp(qi/τ)q
aj∈A exp(qi

j/τ) (4.8)

Algorithm 2 presents the two-timescale decentralized Q-learning dynamics for a
SG with n players who follow a noisy Br policy. As can be seen in the algorithm,
the step sizes are normalized at every time step [14, 80, 41]. As will be seen in the
convergence proof, the normalization addresses the asynchronous updates of the
local Q-function entries. With this procedure, although different actions in a given
state may not be chosen with the same frequency, they are updates at the same
rate in the expectation.

The following assumptions on step sizes and the temperature parameter are
needed for the dynamics to converge.

Assumption 1. The step size sequences {αt ∈ (0,1)|t ∈ Z} and {βt ∈ (0,1)|t ∈ Z}
are non-increasing and satisfy

∞Ø
t=1

αt =∞,
∞Ø

t=1
βt =∞, lim

t→∞
αt = lim

t→∞
βt = 0 (4.12)

This assumption, similar to the one used in tabular Q-learning (Theorem 2.1.1)
is common in proving convergence of iterative algorithms using stochastic approxi-
mation theory [81, 82].

Assumption 2. Given J ∈ (0,1), a polynomial function P (.), that may depend on
J , exists such that for any factor λ ∈ (0,1), if the set {k ∈ Z+|k ≤ c, βk

αc
> λ} is

not empty, we will have

max
î
l ∈ Z+|l ≤ c, and

βl

αc

> λ
ï
≤ Jc, ∀c ≥ P (λ−1) (4.13)
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Algorithm 2 Decentralized Q-learning Dynamics
Preliminary comments:
qi

s,t denotes the local Q-values of player i in state s and time step t, and is a vector
with |Ai| elements. qi

s,t[j] denotes the jth entry this vector.
vi

s,t is a scalar denoting the value of state s from the prespective of player i at time
step t.
#s is the number of visits to state s up to now. This value is used to update the
step sizes and temperature parameter overtime.
α#s is the smaller step size (corresponding to the faster timescale) for updating local
Q-functions.
β#s is the larger step size (corresponding to the slower timescale) for updating state
value functions.
τ#s is the temperature parameter of the noisy best response policy.
α, β and τ are calculated at every visit to a state and all of them are inversely
proportional to the number of visits to that state (#s), and therefore decay overtime.

Require: Keep track of {qi
s,t, vi

s,t,#s}.
1: procedure Separately for each player i, run the following dynamics for

a pre-determined number of iterations or until a convergence criterion
is met.

2: Observe the current state st and receive the reward ri
t−1 for the previous action

ai
t−1 performed at state st−1.

3: Calculate the step sizes α#s, β#s and the temperature parameter τ#s based on
the number of visits to st up to now.

4: Normalize the step sizes ᾱi
t−1 = min(1, α#s), β̄i

t−1 = min(1, β#s) to have expected
synchronous updates of the Q-function entries.

5: Update the entry of the local Q-function corresponding to the chosen action ai
t−1

(other entries and other states’ estimates will not change):

qi
st−1,t[ai

t−1] = qi
st−1,t[ai

t−1] + α#st−1(ri
t−1 + γ(vi

st−1,t−1)− qi
st−1,t[ai

t−1]) (4.9)

6: Construct the noisy best response policy:

πi
t = Br(qi

st
, τ#st) (4.10)

7: Update the value function estimate of state s (the value of other states will not
change):

vi
st,t+1 = vi

st,t + β#st(πi
t · qi

st,t − vi
st,t) (4.11)

8: end procedure
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The above assumption ensures two-timescale learning but it is stronger than
limt→∞

βt

αt
to ensure that when states are not visited with the same rate, the fast

timescale updates of states with less frequent visits do not lag behind and interfere
with two-timescale learning.

Assumption 3. For any infinite sequence of actions, the environement dynamics
are such that we may reach from any state s to any other state s′ with a positive
probability and within a finite number of iterations n.

Assumption 4. The temperature sequence τt>0 is non-increasing and satisfies

lim
t→∞

(τt+1 − τt)
αt

= 0, and lim
t→∞

τt = 0 (4.14)

Furthermore, the step size sequence {αt}t>0 satisfies q∞
t=1 α2−ρ

t <∞, for some
ρ ∈ (0,1), and there exists T, T ′ ∈ (0,∞) such that αρ

t exp(4D/τt) ≤ T ′ for all
t ≥ T .

These two assumptions ensure that states are visited infinitely often, so that the
random noise in the perturbed BR vanishes and the policy becomes deterministic
as the number of iterations approach infinity.

Now, we state the main theorem for convergence of decentralized Q-learning in
SPGs.

Conjecture 4.2.1. Given a SPG with n players, if all agents follow the dynamics
in Algorithm 2, and Assumptions 1 to 4 hold, the agents asymptotically converge
to a pure Nash equilibrium policy of the SPG.

An idea for the potential proof of this conjecture is given in Appendix A. The
first part of the given analysis is similar to Sayin et al. [14] as the dynamics of
a single state are decoupled from other states, yet it is reformulated for a game
with n players instead of two. The following limiting ODE is extracted for the
decoupled dynamics

dqi
s(t)
dt

= Qi
sBr−i(q−i

s (t), τ(t))− qi(t) ∀(i, s) ∈ N × S, (4.15a)

dvi
s(t)
dt

= 0, ∀(i, s) ∈ N × S, (4.15b)

dτ(t)
dt

= 0, ∀s ∈ S, (4.15c)
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with the following simplification of notation

Qi
sBr−i(q−i

s (t), τ(t))
:= Qi

sBr
1(q1

s(t), τ(t))...Br
i−1(qi−1

s (t), τ(t))Br
i+1(qi+1

s (t), τ(t))...Br
n(qn

s (t), τ(t)).
(4.16)

Afterwards, we associate this ODE to the stochastic fictitious play dynamics
[44] by quantifying the difference error between them in order establish that the
learning dynamics converges to the same point as the fictitious play dynamics,
which is a Nash equilibrium, as this error and the temperature sequence converges
to zero. At the end of Appendix A, we also prove the convergence to a Nash
equilibrium under an extra assumption.
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Chapter 5

Experimental Results

In this chapter, we first consider two preliminary SPGs with a single state and
analyze the behavior of the learning dynamics and the limiting ODE (4.15a). After
that, we provide the experimental results obtained on the two SPG benchmarks,
network routing games, and distancing games. All codes related to experiments in
this chapter are publicly available online1.

5.1 ODE Simulation
In order to intuitively grasp the evolution of the dynamics, we simulate the limiting
ODE (4.15a) in two single-state potential games. Consider the two-player normal-
form game in Table 5.1. Considering, we simulated the ODE (4.15a) using dt = 10−6,
τ = 0.01, and γ = 0.5. As the state value functions are constant in (4.15b), they are
set to zero, so that the Q function would be equal to the reward function. evolution
of the local Q-functions for both players with two different initial conditions are
plotted in Figure 5.1.

Table 5.1: A single-state potential game with two players and two actions alongside
the potential function

P2
P1 a1 a2

a1 0.2, -0.3 0.4, 0.1
a2 0.5, 0.2 0.2, 0.1

Φ
0.1 0.5
0.4 0.3

1https://github.com/hafezgh/PoliTo-MSc-Thesis

28

https://github.com/hafezgh/PoliTo-MSc-Thesis


Experimental Results

Figure 5.1: The ODE simulation for the two-player normal-form potential game
in Table 5.1 with two different random initializations.

It can be seen that the local Q-functions converge to the global Q-values
corresponding to a Nash equilibrium. As supported by theory, this equilibrium
could be any of the possible Nash equilibria of the game, and not necessarily the
one corresponding to a strict Nash equilibrium or the maximum of the potential
function.

Figure 5.2 presents similar simulation results for the game in Table 5.2.

Table 5.2: A single-state potential game with two players and four actions
alongside the potential function

P2
P1 a1 a2 a3 a4

a1 0.1,-0.4 0.3,-0.2 0.4,0.3 -0.1,-0.5
a2 0.5,0.2 0.7, 0.4 0.2,0.3 0.1,-0.1
a3 0.2,-0.2 0.3,-0.1 0.0,0.0 0.4,0.1
a4 0.6, 0.9 0.4,0.7 0.1,0.8 0.0, 0.4

Φ
0.2 0.4 0.9 0.1
0.6 0.8 0.7 0.3
0.3 0.4 0.5 0.6
0.7 0.5 0.6 0.2

Again, the local Q-functions converge to the global Q-values corresponding to a
Nash equilibrium on the game depending on the initialization.

5.2 Single-state Potential Games
In this section, we run the dynamics for the two games in Table 5.1 and Table 5.2.
For this experiment and all the folloeing experiments, we use step sizes αt and βt,
and the temperature parameter τt with the following expressions and conditions
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Figure 5.2: The ODE simulation for the four-player normal-form potential game
in Table 5.2 with two different random initializations.

that have been shown to satisfy Assumptions 1, 2, and 4 [14]:

αt = t−ρα , (5.1a)

βt = t−ρβ , (5.1b)

τ ′
t = τ̄

1
1 + τ̄

ραρ

4D
log(c)

2−1
, (5.1c)

where 0.5 < ρα < ρβ ≤ 1, ρ ∈ (0,2− 1/ρα), and τ̄ > 0.
Figures 5.1 and 5.1 show the results of two runs corresponding to the games in

Table 5.1 and Table 5.2, respectively. The actions corresponding to the maximum
of local Q-values in both cases correspond to a Nash equilibrium of the game
((a1, a2), and (a3, a4) respectively).

5.3 Distancing Games
In this section, we report our results on an example of the distancing game
benchmark introduced in Section 3.2.2. The game is played with n = 8 players,
and m = 4 facilities in each state. Therefore, if more than 4 players choose the
same facility in the safe state, the agents transit to the spread state. In order to go
back to the safe state, exactly 2 agents should choose each facility in the spread
state. The optimum strategies in these two states are visualized in Figure 5.5.

In order to run the decentralized Q-learning dynamics on the distancing game,
we consider as the convergence criterion the L1 accuracy metric, which is the
average distance between the current policy and final perturbed BR policy of the
agents:
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Figure 5.3: An individual run of the decentralized Q-learning dynamics for the
potential game in Table 5.1
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Figure 5.4: An individual run of the decentralized Q-learning dynamics for the
potential game in Table 5.2

L1− accuracy = 1
N

Ø
i∈N

|BRi −BRi
final| =

1
N

Ø
i∈N

Ø
s∈S

Ø
ai

j∈Ai

|BRi(s, ai
j)−BRi

final(s, ai
j)|.

(5.2)
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(a) The optimum strategy in the safe state

Safe State
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C D

Spread State

A B

C D

(b) The optimum strategy in the spread
state

Figure 5.5: Optimum strategies in a distancing game

We stop the iterations when the L1-accuracy goes below a small threshold ϵ.
Note that the convergence of L1 to zero indicates that the temperature parameter
in BR have become small enough and the the perturbed BR has converged to
a deterministic BR that chooses the optimum action corresponding to a Nash
equilibrium in each state.

Figure 5.6 plots the L1-accuracy of 8 independent runs of decentralized Q-
learning on the distancing game with γ = 0.5, and Figure 5.7 plots the corresponding
means and shaded standard deviation of these runs. All independent runs converged
to the optimal strategies in 5.5. The configuration of specific agents in facilities in
each state may differ in different runs depending on the random seed.
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Figure 5.6: L1-accuracy trajectories for 8 independent runs of decentralized
Q-learning dynamics on the distancing game benchmark
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Figure 5.7: The mean and standard deviation of L1-accuracy trajectories for 8
independent runs of decentralized Q-learning dynamics on the distancing game
benchmark

5.4 Congestion Games
As the second benchmark, we report our results on an example of atomic network
routing game introduced in Section 3.2.1. We consider the game in Figure 5.8
where agents all start in the source node, and have to take the left or right action
in each intermediate stage until they reach the destination node. To make the
SG infinite-horizon, we move the agents back to the source node after they reach
the destination node. Based on this condition, the number of states in the game
will be (l − 1) × 2|N | + 1, where l is the number of internal layers, and N is the
number of agents. Therefore, the optimal policy in each state is for the agents to
spread throughout the possible routes in each state and minimize congestion in
the network. For example, the optimal number of agents in each route when they
are all going from source to destination is written on arrows in Figure 5.8. We run
the decentralized Q-learning dynamics in Figure 5.8 for N = 4 and N = 4 agents
corresponding to |S| = 17 and |S| = 17 states with a constant cost for each route
and γ = 0.5.

Figures 5.9 and 5.11 plot the L1-accuracy of 8 independent runs for N = 4
and N = 8 players, respectively, playing the game in Figure 5.8. Figures 5.10
and 5.12 plot the corresponding means and shaded standard deviation of these
runs for N = 4 and N = 8 players, respectively. All independent runs converged
to the optimal strategies for all states, i.e., minimum congestion at each route
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Figure 5.8: The atomic network routing game and its optimal strategy for reaching
the destination node

was achieved by agents splitting throughout the routes in each state. Again, the
configuration of specific agents in the network, i.e., their choice of routes in each
state differs in different runs depending on the random seed.
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Figure 5.9: L1-accuracy trajectories for 8 independent runs of decentralized
Q-learning dynamics on the network routing game benchmark for N = 4 agents
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Figure 5.10: The mean and standard deviation of L1-accuracy trajectories for
8 independent runs of decentralized Q-learning dynamics on the network routing
game benchmark for N = 4 agents
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Figure 5.11: L1-accuracy trajectories for 8 independent runs of decentralized
Q-learning dynamics on the network routing game benchmark for N = 8 agents
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Figure 5.12: The mean and standard deviation of L1-accuracy trajectories for
8 independent runs of decentralized Q-learning dynamics on the network routing
game benchmark for N = 8 agents
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Chapter 6

Discussion and Conclusion

In the final chapter of this thesis, we discuss an important property of the decen-
tralized Q-learning dynamics, i.e., game-agnostic convergence. We conclude the
thesis by summarizing our contributions, and outlining the potential directions for
future research.

6.1 Game-agnostic Learning Dynamics in MARL
In a very recent paper, Ding et al. [83] discuss a desirable property that a learning
dynamics may possess, named game-agnostic convergence. This property indicates
that the learning dynamics converges regardless of the type of the game being
played or the players’ awareness of this type. Although convergence has been
established for both zero-sum and potential games when players adopt fictitious
play [40, 44] or Q-learning [84, 85] in non-stochastic matrix games, this property
has not been explored in the realm of MARL and stochastic games. Ding et al. [83],
for the first time, show that a gradient-based algorithm, named Optimistic Gradient
Descent/Ascent [65] converges to Nash equilibrium in both Markov zero-sum and
potential two-player Markov cooperative games (an identical-interest case of Markov
potential games). Therefore, our results indicate that decentralized Q-learning is
potentially the first game-agnostic value-based MARL algorithm, and the first one
to converge in multi-player SPGs.

6.2 Conclusion and Future Work
In this thesis, for the first time, we applied a purely value-based MARL approach,
named decentralized Q-learning, to stochastic potential games, a class of Markov
games with the ability to model many real-world scenarios. Following the previous
established convergence in zero-sum games, our results indicate that decentralized
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Q-learning is a game-agnostic MARL algorithm. Possible directions for future
research include: analyzing the finite-time convergence properties of decentralized
Q-learning, extending the algorithm to continuous state spaces using function
approximation, and delving deeper into studying game-agnostic convergence of the
algorithm by considering other families of games.
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Appendix A

Analysis of Conjecture 4.2.1

The following theorem that is needed for decoupling the dynamics of each state, is
based on Proposition 4.1 and Corollary 6.6 of Benaim [82] is given as Theorem 2
in Sayin et al. [14]:

Theorem A.0.1. Consider the following discrete-time update rule,

xt+1 = xt + λt(F (xt) + ϵt + ωt), (A.1)

and its limiting ordinary differential equation (ODE),

dx(t)
dt

= F (xt). (A.2)

Assuming that the following are true,

1. There exists a Lyapunov function V : Rm → [0,∞) for the ODE in (A.2).

2. The sequence of learning rates are bounded, their sum is divergent, and they
are square-summable,

λt ∈ [0,1] ∀t,
∞Ø

t=0
λt =∞,

∞Ø
t=0

λ2
t <∞ (A.3)

3. All iterates xt ∈ Rm are bounded, supt ||xt||∞ <∞.

4. The vector field F : Rm → Rm is globally Lipschitz continuous.

5. The stochastic approximation term ωt ∈ Rm satisfies the following condition
for all T > 0,

lim
t→∞

sup
n>t:

qn−1
l=t

λl≤T

I-----
-----

n−1Ø
l=t

λlωl

-----
-----
J

= 0. (A.4)
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6. The error term ϵt ∈ Rm is asymptotically negligible, i.e., limt→∞ ||ϵt|| = 0 with
probability 1.

the limit set of (A.1) will be contained in the following set with probability 1,

{x ∈ Rm : V (x) = 0}. (A.5)

We now show that the normalization of the learning rates at each timestep,
would make the evolution of every entry of the local Q- function, synchronous in
the expectation. For player i, the stochastic approximation term in A.0.1 for all
ai ∈ Ai

s and iteration t is

ωi
st,t[ai

t] := 1ai
t=ai

ri
s(ai, a−i

t ) + γvi
st+1,t − qi

st,t[ai]
πi

t[ai]

− E
I

1ai
t=ai

ri
s(ai, a−i

t ) + γvi
st+1,t − qi

st,t[ai]
πi

t[ai]
---ht

J
, (A.6)

where ht = {qj
s,t, vj

s,t|(j, s) ∈ {1, ..., n} × S} is the set of all current value
and local Q-function estimates of players. To simplify the notation, we de-
note π1

t [ã1]...πi−1
t [ãi−1]πi+1

t [ãi+1]...πn
t [ãn] as π−i

t [ã−i], and qã1 ...
q

ãi−1
q

ãi+1 ...
q

ãn

as qã−i . Now, we can expand the expectation above,

E
I

1ai
t=ai

ri
s(ai, a−i

t ) + γvi
st+1,t − qi

st,t[ai]
πi

t[ai]
---ht

J

= π̄i
t[ai]

Ø
ã−i

π−i
t [ã−i]

Qi
st,t[ai, ã−i]− qi

st,t[ai]
πi

t[ai] (A.7)

Therefore, after eliminating πi
t[ai], (A.6) can be written as,

ωi
st,t[ai

t] := 1ai
t=ai

ri
s(ai, a−i

t ) + γvi
st+1,t − qi

st,t[ai]
πi

t[ai]

−
AØ

ã−i

Qi
st,t(ai, ã−i)π−i

t [ã−i]− qi
st,t[ai]

B
, (A.8)

Denoting the multi-dimensional tensor multiplication Qi
st,tπ

1
t ...π

i−1
t πi+1

t ...πn
t as

Qi
st,tπ

−i
t , based on Proposition 2 in Sayin et al. [14], we can write the update rule

in (4.9) as

qi
st,t+1 = qi

st,t + α#st

1
Qi

st,tπ
−i
t − qi

st,t + ωi
st,t

2
(A.9)
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We now consider the learning dynamics focused on a single state between two
consecutive visits of that state. We may write the system of equation between
these two visits of state s, as

qi
s,t′ = qi

s,t + α#s

1
Qi

s,tBr−i(q−i
s,t , τ#s)− qi

s,t + 0 + ωi
s,t

2
∀i ∈ N, (A.10a)

vi
ŝ,t′ = vi

ŝ,t + α#s(0 + ϵi
ŝ,t′ + 0), ∀(i, ŝ) ∈ N × S, (A.10b)

τ#s+1 = τ#s + α#s(0 + τ#s+1 − τ#s

α#s

+ 0). (A.10c)

where

ϵi
ŝ,t′ :=

vi
ŝ,t′ − vi

ŝ,t

α#s

, ∀(i, ŝ) ∈ N × S. (A.11)

In (A.10), the first term inside the parentheses correspond to F (xt), the second
term corresponds to ϵt, and the last term corresponds to ωt in (A.1).

Based on Lemma 2 in Sayin et al. [14], the error terms in (A.11) are asymptot-
ically zero. Now, based on Proposition 3 in Saying et al. [14] that ensures that
s→∞ as t→∞ for every s, following Theorem A.0.1, we can write the limiting
ODE of (A.10) as

dqi
s(t)
dt

= Qi
sBr−i(q−i

s (t), τ(t))− qi(t) ∀(i, s) ∈ N × S, (A.12a)

dvi
s(t)
dt

= 0, ∀(i, s) ∈ N × S, (A.12b)

dτ(t)
dt

= 0, ∀s ∈ ∫ . (A.12c)

With the following notation

Qi
sBr−i(q−i

s (t), τ(t))
:= Qi

sBr
1(q1

s(t), τ(t))...Br
i−1(qi−1

s (t), τ(t))Br
i+1(qi+1

s (t), τ(t))...Br
n(qn

s (t), τ(t))
(A.13)

Before approaching to the next step of the proof, we state the following lemma
about SPGs:
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Analysis of Conjecture 4.2.1

Lemma A.0.1. Assuming that the agents are playing an SPG (3.1.1) with state
transitivity (3.1.2), based on Proposition 4 in Mguni et al. [7], the global Q-function
of the game admits a potential function G:

Qi(s, (ai)′, a−i)−Qi(s, ai, a−i) = G(s, (ai)′, a−i)−G(s, ai, a−i), ∀(i, s) ∈ N × S.
(A.14)

We may add n auxiliary ODEs for πi that trivially hold when we follow a noisy
BR policy to the system of ODEs as

dπi
s(t)
dt

= Bri(qi
s(t), τ(t))− πi

s(t), ∀(i, s) ∈ N × S (A.15)

Merging (A.12) and (A.15) and removing the state subscript, we will have the
following system of ODEs for all i:

dqi(t)
dt

= QiBr−i(q−i(t), τ)− qi(t), (A.16a)

dπi(t)
dt

= Bri(qi(t), τ)− πi(t), (A.16b)

Our ultimate goal is to prove that the policies πi will converge to a Nash
equilubrium profile as t→∞.

To move towards this goal, we need to define a suitable Lyapunov function on
the system of ODE at hand. We first define the following property for qi,

Definition A.0.1 (Belief-based Q-function). We call the local Q-function, qi for
player i, belief-based, if there exists a strategy π−i ∈ ∆(A) (following the same
notation as (A.13)), where we could establish the following equality:

qi(t) = Qiπ−i(t) (A.17)

If we could establish that qi are belief-based for every time step, then, the ODEs
in (A.0.1) would follow the same trajectory as the stochastic fictitious play [44]
with the following system of ODE:

dπi(t)
dt

= Bri(Qiπ−i(t), τ)− πi(t), (A.18)

In Proposition 4.1, [44] proposes the following strict Lyapunov function for
stochastic fictitious play in potential games,

L(πi, π−i) = (πi)T Qiπ−i −
Ø
i∈N

ν(πi) (A.19)

where ν is the perturbation function in (4.6) that can be chosen as (4.7).
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Proposition 4.2 of Hofbauer [44] proves that the function in (A.19) is strictly
increasing and converge to rest points as long as the perturbation function ν is
sufficiently smooth, and in Proposition 3.1, it states that as the perturbations
become small enough, these rest points approximate a Nash equilibrium of the
underlying game.

The aforementioned proof is only valid if the belief-based property in Definition
A.0.1 holds for every time step. If that is true, based on Lemma A.0.1, the trajec-
tories of A.18 and A.16a would follow the same path towards a Nash equilibrium.
However, the belief-based property does not necessary hold for the whole trajectory.
It is possible to prove that qi becomes belief-based in the limit using the following
Lyapunov function,

H(t) =
Ø
i∈N

||qi −Qiπ−i||2 (A.20)

By definition, (A.20) is always greater or equal to zero. Using (4.15) and (A.15),
we can take the derivative of H

dH(t)
dt

= −nH(t) (A.21)

Therefore, H(t) is a Lyapunov function for the flow, and,

lim
t→∞
||qi

t −Qiπ−i
t ||2 = 0 (A.22)

Which proves that qi is belief-based asymptotically for every i.
We can form the belief-based error along the trajectory of A.22 as

ε(t) := qi(t)−Qiπ−i(t). (A.23)

A possible direction to complete the proof would be quantifying this error term
and establishing its rate of convergence towards zero.
Convergence Proof with an Extra Assumption: If we are able to estab-
lish the belief-based property (A.0.1) at the beginning of the trajectory with a
communication-based initialization among the agents, then based on Corollary 8.17
in Kelly and Peterson [86], the system of linear ODEs formed by merging (A.18)
and (A.16a) become coupled together and the system will have a unique solution
that based on Hofbauer [44] is a Nash equilibrium.
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