
Politecnico di Torino

Master of Science in Computer Engineering

Master Degree Thesis

Security Misconfigurations
Detection and Repair in Dockerfile

Supervisor:

Prof. Paolo Ernesto Prinetto

Company Supervisors:

Dott. Riccardo Bortolameotti

Giuseppe Massaro

Candidate:

Lorenzo Antonio De Giorgi

Academic Year 2021/2022



2



Abstract

Containers offer a lightweight model for quick deployment of applications in cloud-

based infrastructures, based on small, modular and transient services.

Several companies in IT industry adopt this mode of deployment instead of hypervisor-

based infrastructures for different reasons: container images are portable in any lo-

cations without the need of being modified, containers offer near-native performance

and permit a high degree of scalability.

Despite the numerous advantages, containerization technology raises different secu-

rity concerns. In this regard, the most alarming factor is the minor layer of isolation

between instances compared with hypervisor-based solutions. In this sense, the first

barrier against several attacks is a container configured according to the most recent

security best practices.

Unfortunately, manually hardening containers in a wide and complex environment

is an error-prone and time-consuming activity. For this reason, numerous tools has

been designed in order to help developers in this task.

Among the different containerization technologies, this work is focused on the de-

facto standard in this field: Docker. In particular, this work aims to describe security

misconfigurations that might affect Dockerfile and outline the current awareness of

developers about them.

We perform a thorough evaluation of existing tools that identify misconfigurations

in Dockerfile, using well-know and publicly available datasets. As a result of this

evaluation, we discuss how common are security misconfigurations in Dockerfiles

and the lack of tools that help to automatically repair such misconfiguration. In

order to fill this gap, we develop a system which allows detecting and automatically

repairing security misconfiguration in Dockerfile.

3



Contents

1 Introduction 6

1.1 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Thesis description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Container and virtualization technologies . . . . . . . . . . . . 10

2.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Main components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Docker Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Docker Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Dockerfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Security risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Best security practices in Dockerfile . . . . . . . . . . . . . . . . . . . 16

3 State of the Art 22

3.1 Security smells in IaC scripts . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Dockerfile misconfigurations . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Detection and Repairing Techniques . . . . . . . . . . . . . . 29

3.2.2 Rule-based detection tools . . . . . . . . . . . . . . . . . . . . 32

3.3 Automatic Program Repair . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Static template based . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Machine learning based . . . . . . . . . . . . . . . . . . . . . . 37

4 Security misconfigurations assessment 40

4.1 Datasets overview and preprocessing . . . . . . . . . . . . . . . . . . 40

4.2 Misconfigurations assessment . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Evaluation of existing tools . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Security best practices awareness . . . . . . . . . . . . . . . . 52

4.4.2 Existing tools limitations . . . . . . . . . . . . . . . . . . . . . 53

4



5 System Implementation 55

5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Main components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.3 Template engine and converter . . . . . . . . . . . . . . . . . 60

5.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Evaluation 66

6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Conclusion 73

8 Appendix 74

8.1 Improvements in Bash and Dockerfile grammar rules . . . . . . . . . 74

8.1.1 Improvements in Dockerfile grammar rules . . . . . . . . . . . 74

8.1.2 Improvements in Bash grammar rules . . . . . . . . . . . . . . 75

Bibliography 76

5



Chapter 1

Introduction

Over the last years, there has been an increasing use of virtualization technologies in

order to improve the scaling ability quickly and effortlessly. Among all the different

technologies, container-based solutions has been widely adopted from several com-

panies to host distributed applications because of their flexibility and performance.

Specifically, containerization is a virtualization technology that allows to package

an application along with its dependencies in a self-contained unit which can run on

different locations without any alteration [5].

Since containers are tightly integrates into the host operating system, they allow

better performances compared with traditional virtual machines but, on the other

hand, they offer a lower level of isolation between the virtualized environment and

the host.

The de-facto standard in this field is Docker1 which is an open source solution that

ease the creation and the distribution of containers. Through the use of a textual

file called Dockerfile, it is able to package application that can be easily deployed

both in on-premise and cloud-based environments.

With the spread of Docker as virtualization technology, new threats have emerged.

In fact, wrong configurations might provide several entry points for malicious acts.

Furthermore, the tight bond between the container and the host allows the potential

attack to jeopardize not only the application itself but the underlying environment

as well [3].

Given the fastest growing of Docker, numerous new components have been added to

it, such as Docker Swarm and Docker Compose. While these tools further simplify

the developing and deploying phases, at the same time, they increase the attack

surface, thus they require to be hardened in order to ensure a secure environment.

1https://www.docker.com/

6



1.1 Thesis objective

The work presented in this thesis has been accomplished in collaboration with the

engineering division of ReaQta.

In particular, we have decided to focus on the basic constituent of each Docker con-

tainer: the Dockerfile.

As a first goal, we want to estimate the extent of Dockerfile security misconfigu-

rations by means of publicly available datasets. Due to this estimation, we can

evaluate whether the developers are generally aware of all the best practices in

Dockerfile hardening.

Detecting and removing all the possible source of insecurity manually is a complex

and time-consuming task, for this reason the second step is to probe the presence

of existing tools able to automate these operations. Once these tools have been

identified, we want to know if they are actually effective.

Finally, we want to capitalize the previous findings by building a custom tool which

might help the developers by complementing and enhancing already existing tools.

Specifically, the contributions of this work are the following:

• Assessing the extent of Dockerfile security misconfigurations by analyzing

thousands of different Dockerfile coming from publicly available datasets.

• Investigating the presence of tools able to detect and repair security miscon-

figurations in these Docker artifacts.

• Implementing and evaluating a system which is able to detect and fix insecure

Dockerfile.

1.2 Thesis description

After Chapter 1 introduced the goals to achieve, the rest of the thesis is structured

as follows:

• Chapter 2 presents the basic knowledge that are useful for the better com-

prehension of this work. Specifically, it explains what the Docker ecosystem

is composed of and why it has become the standard virtualization technology

nowadays. Moreover, it outlines the components involved in the creation and

deployment of containers. Finally, it highlights the security risks deriving from

the use of insecure Dockerfile.

• Chapter 3 discusses the works that have been written so far about security

misconfigurations, taking into account both Dockerfile and other similar tech-

nologies. It also explores the most recent findings about automatic program

repair, thus software able to fix other software, paying particular attention to

the ones able to deal with Dockerfile.

7



• Chapter 4 describes the process taken into account to assess the current

level of awareness about Dockerfile misconfigurations. Secondly, it provides a

comparison among different existing tools to detect misconfigurations in Dock-

erfile. We also discuss the results obtained, pointing out the gap underlying

the current tools and the reasons that motivate us to build a new tool.

• Chapter 5 describes the system that we have built, starting from the ar-

chitecture overview and continuing with the description of each component.

Furthermore, it uses a sample to delineate the system workflow and to specif-

ically explain how an insecure Dockerfile is repaired.

• Chapter 6 explains the tests we have conducted on our system in order to

prove its validity and show the limitations. We also discuss the steps that

could be taken in order to improve the tool effectiveness and which features

could be introduced to enhance its capabilities.

• Chapter 7 summarizes the results that we obtain in the previous chapters,

in respect of the goals that we have established in the first place.

• Chapter 8 reports technical details about the systems building that we omit

in the previous chapters for sake of simplicity.

8



Chapter 2

Background

This chapter aims to provide knowledge about the main topics of this work. It begins

with the definition of Abstract Syntax Tree in Section 2.1, which is an important

way to represent source code and allows to easily manipulate it. In Section 2.2 is

presented the containerization technology that we have decided to focus on: Docker.

In Section 2.3 we describe more in detail Docker, focusing on its internal details.

This accurate description is fundamental to understand the security risks behind

Docker, pointed out in Section 2.4. In particular, Section 2.5 contains security best

practices involving a fundamental Docker component: Dockerfile.

2.1 Abstract Syntax Tree

Repairing misconfigurations implies a modification of the original source code and in

some cases, these modifications can deeply affect the code. Furthermore, detecting

wrong configurations in large source code might be difficult due to the high number

of instructions and parameters.

Therefore, working at text line granularity might increase the complexity of the de-

tection and repairing processes. In order to overcome these limitations, it is possible

to work at Abstract Syntax Tree level.

An Abstract Syntax Tree (AST) is a tree-based representation of source code, writ-

ten according to a specific formal language.

The formal language specifies a set of grammar rules that determine how to trans-

late different instructions into nodes belonging to the AST.

This representation captures solely the fundamental underlying concepts, while

omitting unnecessary details [31].

Formally, an AST is a labeled ordered rooted tree. Let T be an AST, thus a set

of nodes. A tree T has one node r that is root. Each node t ∈ T has a parent

p ∈ T ∪ ∅. The only node which has p ∈ ∅ is r. Then each node t ∈ T has a

sequence of children. Each node has a label which correspond to the name of its

rule in the grammar file, and might have a value which corresponds to the actual

token in the code [11].

9



The conversion from source code to AST is obtained by means of a parser which

analyzes each specific construct in the code and builds a new node out of it. It is

worth mentioning that a source code could be parsed in different AST according to

the specific grammar rules used: for instance, a node could encode a whole instruc-

tion or finer grain expressions.

AST are widely used by the compilers as intermediate representation of the source

code [16]; moreover, they are used by numerous works to easily manipulate and

compare different source codes [17][1][10]; indeed, we have chosen this representa-

tion precisely because it would be easier to manipulate the Dockerfile in order to fix

them.

2.2 Docker

Docker is an open-source project to automate the deployment of applications into

containers. It was released in March 2013 by dotCloud (later became Docker Inc.),

a Platform-as-a-Service provider company. Over the years, it had gained public

and media attention: by 2018 it had reached nearly 50.000 GitHub starts and over

14.000 forks. It has accepted a huge number of pull requests from companies like

Red Hat, IBM, Google and Microsoft.

The reason behind its success is clear: it responded to a need for a high number

of companies, thus building software in a flexible way and deploying it reliably and

consistently in different environments.

The means to reach its goals is the use of containers, a small unit containing the

software and all the needed dependencies and context to run it, regardless of the

underlying environment. Even though the concept of container was not new when

Docker was lunched, Docker has the credit for making a lightweight and fast workflow

to produce and deploy containers as well as introducing some innovative features.

2.2.1 Container and virtualization technologies

Virtualization technologies allow multiple tenants to share the same physical ma-

chine with a high degree of isolation. This is a key requirement, especially in modern

cloud-based infrastructures, where the same physical machine is shared in order to

fully exploits the machine capabilities and lower the costs. Two categories of virtual-

ization have been established so far: container-based and hypervisor-based solutions.

Containerization is a technology to virtualize applications in a lightweight way

through the construction of containers: instances of images which holds the applica-

tion itself and dependencies needed to run it. Over the years, it has been designed

different container engines which allow this type of virtualization, but most of them

share the same working principles. Under the hood, container engines like LXC 1,

exploit the host Linux kernel mechanisms such as namespaces and cgroups. These

1https://linuxcontainers.org/

10



mechanisms were originally developed to enforce isolation between processes, then

they have been leveraged to create this new type of lightweight virtualization. This

close tied between containers and host is the essential aspect of this technology,

which comes with both advantages and drawbacks. Using this Application-level vir-

tualization allows each container to share the OS of the host machine, yielding to

deployments that consume less resources compared with other virtualization solu-

tions.

Hypervisor-based solutions are based on a component called hypervisor or Virtual

Machine Monitor (VMM) which is in charge of managing the operations of a vir-

tualized environment on top of a physical machine. The VMM spawns multiple

virtual machines, which are isolated instances of the physical machine. The virtu-

alization process can happen at different layers of the physical machine, according

to the hypervisor capabilities and the needs of the machine owner. As opposed

to container, virtual machines do not share the OS with the underlying machine.

Moreover, the hypervisor provides an additional layer of isolation between the host

and guest machine while adding a significant overhead on the virtualization. Gen-

erally, hypervisor-based solutions are considered more secure than container-based

solutions because the hypervisor allows a higher degree of isolation between the host

and the guest machine. On the other hand, container-based solutions are considered

more effective due to the absence of overhead induced by the hypervisor.

2.2.2 Architecture

Docker adopts the client-server architecture illustrated in Fig. 2.1. Basically, Docker

provides a set of commands that the client component can use to talks with the

Docker host. The Docker host component can be on the same machine of the client

or on a remote machine. The client component is in charge of directing the Docker

host thought the respective commands sent by using a set of RESTful API.

The Docker host listens for API requests and, based on the commands received, in-

structs the Docker daemon. The Docker daemon is a fundamental component, which

allows managing different objects such as images and container (further described

in Section 2.3). Furthermore, the Docker daemon allows publishing the images in

private and publish Docker registries.

2.3 Main components

In Section 2.2.2 are mentioned some components that have to be further described

for the understanding of the possible threats.

In particular, we mention the Docker daemon as the component in charge of manag-

ing containers and image lifecycles. To be more precise, this component consists of

different subcomponents which work together to reach the same goals while allowing

the engine to be flexible and modular.

It is worth pointing out that the Docker architecture has been changing and improv-

11



Figure 2.1: Docker architecture from Docker official website

ing over the years. In the first release, Docker engine had two major components:

the Docker daemon and LXC 2: the former was a monolithic library in charge of

handling Docker client, Docker API, container runtime, images building process and

more; the latter allows exploiting the mechanisms in the underlying kernel (such as

namespace and cgroups) to build the containers.

The major problem with this architecture were two: first it was not flexible enough

to allow changes, second, LXC is Linux-specific while Docker had aspirations of be-

ing multi-platform. Moreover, since the jobs of LXC was fundamental for Docker

aims, relying on external tools was a huge risk. Over the years, the efforts of Docker

Inc. has been aimed to break down the monolithic Docker daemon and to replace

LXC technology.

Since Docker is a project in constant evolution, at the time of writing the major

components are as described in the following sections [24].

2.3.1 Docker Engine

The Docker Engine has been built according to the Open Container Initiative (OCI)

specifications 3. The OCI is an open source community aiming to create open stan-

dards about container technologies. In particular, OCI defines two sets of specifica-

tions: Image specifications, which define a way to package applications in container

images and Container runtime specifications, which define how containers work and

how they run.

In order to implement these specifications, the Docker daemon lost some functional-

2https://linuxcontainers.org/
3https://opencontainers.org/

12



Figure 2.2: Docker Daemon architecture

ities that it had in the initial releases, and these functionalities have been assigned

to new components. In particular, two new important components have been im-

plemented: runc 4 and containerd 5. runc has the job to create and run containers

interacting with existing low-level Linux features, instead, containerd manages the

container lifecycle operations.

Finally, another important component is shim which stands between containerd and

runc. It is in charge of decoupling the running containers from the daemon (allowing

for example to upgrade the daemon without disrupting running containers). The

outlined modules are organized as the in the fig Fig. 2.2: containerd uses runc to

create new containers by forking new instances of runc. Once a container is cre-

ated, runc processes exit and shim processes becomes the container’s parent. As

container’s parent, shim keep stdin and stdout streams open and reports the con-

tainer’s exit status back to the daemon.

The Docker daemon is still in charge of different tasks such as image management,

image building, REST API, authentication, networking and orchestration[24].

4https://github.com/opencontainers/runc
5https://containerd.io

13



2.3.2 Docker Image

A Docker image is the starting point to create containers. In fact, the concept of

image and container are strictly tied: it is possible to consider a container as a

running instance of an image. This means that the image a container is created

from, contains the operating system and the application file to run the required

application or service.

Despite the number of file images should potentially contain, they are usually

lightweight and fast. This is because of how they are built: as we mention, im-

ages do not contain the kernel, which is shared with the underlying OS. Specifically,

an image is a set of read-only layers stacked on top of each other: every layer con-

tains some file of the filesystem and, altogether, they compose the final and complete

filesystem. In this sense, Docker daemon employs a storage driver which is in charge

of presenting all the layers as a single unified filesystem.

The major difference between an image and a container is that the container adds a

new top writable layer to store ephemeral data produced during the runtime. Once

the container is deleted, this top layer is dismissed as well. This way to organize an

image in layers is beneficial to reduce the container size on disk: since the only dif-

ference among containers sharing the same image is the top writable layers, different

containers can share the same underling layers without duplicate them every time

a new container is spawned. Then, when a container attempts to write a file in one

of the underlying layers, that file is copied to the top writable layer and modified.

This is known as copy-on-write (CoW) strategy [8].

Finally, it is worth mentioning that Docker images are stored in the so-called image

registries. The most common registry is Docker Hub 6. To be pointed out that other

third-party registries with different features exists. These registries allow retrieving

(this action is known as pulling) new images or to store new images (this action,

instead, is known as pushing)[24].

2.3.3 Dockerfile

Dockerfile are text documents which contain instructions about how to assemble a

Docker image. Each instruction is contained in one line and they are executed one

after the other to create the final image. As we mention in Section 2.3.2, every new

image is built by adding new layers on top of a previous image; in the same way,

a Dockerfile starts with an instruction (FROM) which specifies the starting image,

also called base image.

Having a valid Dockerfile it is not the only prerequisite to allows Docker to build

an image: in fact, Docker need also a build context. A build context is a set of file

at a specific directory to be added into the image to properly make it works. The

build context is sent to the daemon and it is possible to refer to it in the Dockerfile

through particular commands (such as ADD and COPY).

6https://hub.docker.com/

14



It is important to highlight that the way a Dockerfile is written has a huge impact

both on the size and on the security of the image. We discuss security aspects in

Section 2.4.

Regarding the size, during the Dockerfile writing, it should be considered that every

instruction add a new layer in the image; then some of these instructions add some

layer that actually increase the image size (ADD, COPY, FROM). Because of this

reason, some best practices should be put in place in order to avoid creating images

with huge size. One of the most famous is the builder pattern: briefly, it consists of

producing two Dockerfile, one for the development and one for the production. The

former could have a greater size, since it is in charge of setting up the development

environment and producing the final artifact. The latter contains only the final

artifact and the needed dependencies to make it works, but it does not contain

developing tools. Obviously, the latter is the one that will be used in production

or shared in a registry. This pattern is such important that Docker introduces new

instructions to implement it without the effort of writing two distinct Dockerfile and

this practice is known in Docker ecosystem as multi-stage build [24][7] .

2.4 Security risks

Docker has transformed the way in which containers are created and deployed, lead-

ing to a fast and huge adoption from several companies. Because of the wide use of

this technology, it is mandatory to put in place mechanisms to ensure the security

of the containers itself and of the host machine as well.

Security risks derived from the adoption of Docker containers might come from dif-

ferent layers, thus different kind of hardening processes should be performed. In this

section, we report some security best practices in the use of Docker, following the

recommendations reported by the Center for Internet Security (CIS) Docker Bench-

mark report v.1.3.1 ([4]). Since this work is focused on security aspects regarding

Dockerfile, we discuss them apart in Section 2.5.

Host configuration According to CIS Docker Benchmark, one of the most im-

portant act before running Docker in production environment is to properly set up

and harden the host machine. Their recommendations aim to logically separate

containers and host space, while consenting only the authorized information to pass

across the two partitions. Moreover, auditing processes which involve the different

Docker components (containerd, shim, runc, etc.) should be in place.

Docker daemon configuration Having a vulnerable version or setup for the

Docker daemon could lead to an easy exploit both of the running containers and

the daemon itself. This is a fundamental aspect because, Docker daemon, by de-

fault, runs with root privileges, since it requires access to the Docker socket which is

usually owned by the user root. Nevertheless, the same use cases allow running the

Docker daemon in rootless mode. For this reason, it is worth analyzing the specific

15



case and, according to the “principle of least privileges” [28], run the daemon in

rootless mode if it is possible, in order to mitigate potential vulnerabilities in the

daemon and container runtime.

On the same page, overcoming the default behavior to allows all network traffic

among different containers is needed in order to avoid unwanted disclosure of infor-

mation to other containers. Still regarding networking mechanisms, since the Docker

daemon can be available remotely over a TCP port, it is required to configure TLS

authentication in order to restrict access to it.

When the container runs without a pre-defined non-root user, it is recommended to

enable user namespace support in order to have a unique range of user and group

IDS which are outside the traditional user and group range used by the host. It is

important especially for the root user: in this way, the root user can have the ex-

pected administrative privileges inside the container but can effectively be mapped

to an unprivileged UID on the host system. This means that if an attacker can

break the container, he will not be a root user in the host system too. Unfortu-

nately also this configuration, is not always possible since it is incompatible with a

certain number of Docker features.

Container runtime Configuration There are some security implications in pa-

rameters the containers are started with. In fact, some runtime parameters can be

exploited to compromise the host and the containers running on it. Thus, it is very

important to verify which parameters are associated with the containers.

Using third-parties Linux application security system, such as AppArmor and SELinux

to enforce security policies and augments the default Discretionary Access Control

(DAC) model, is a great way to protect host and containers. In also important

to avoid some common pitfalls in the container configurations: for instance, it is

a common practice to use unnecessary privileged containers, which lifts some lim-

itations enforced by the daemon. This leads to containers which have most of the

rights of the underlying host. Another common misconfigurations is sharing sensi-

tive directories of host (such as /etc and /usr) with the container: not only this

misconfiguration could lead to data leaks but, if they are mounted in read-write

mode, it could be also possible to make changes to files within them. It is also very

common to run the SSH daemon within the container: this increases the complexity

of security management by making difficult keys managements.

2.5 Best security practices in Dockerfile

After defining the security best practices involving different Docker components, we

specifically focus on security best practices to be adopted during Dockerfile writing.

Both the official Docker documentation 7 and CIS Docker Benchmarks, offer a useful

list of Dockerfile best practices to follow with the purpose of preserving functionality

7https://docs.docker.com/develop/develop-images/dockerfile best-practices/

16



and safety.

In this section, we go through their recommendations, reporting those that concern

the security of the host and the container.

Running Docker container in rootless mode

1 FROM base -image

2 RUN apt -get update

Listing 2.1: Misconfigured script for “Running Docker container in rootless mode”

1 FROM base -image

2 RUN apt -get update

3 USER baseusr

Listing 2.2: Correct script for “Running Docker container in rootless mode”

When we build Dockerfile, unless it is explicitly stated, the default user inside the

container is the root user. Running a container with root user when the user does

not need such privileges is a clear violation of the “least privilege principle”.

The security risk is that the root user can do whatever it wants inside the container

and, moreover, it ease operations of container breakout.

Using tagged minimal base images and multistage builds

1 FROM node:8 as build

2 WORKDIR /app

3 COPY package.json index.js ./

4 RUN npm install

5 EXPOSE 3000

6 CMD ["index.js"]

Listing 2.3: Misconfigured script for “Using tagged minimal base images and multi-

stage builds”

1 FROM node:8 as build

2 WORKDIR /app

3 COPY package.json index.js ./

4 RUN npm install

5 FROM gcr.io/distroless/nodejs

6 COPY --from=build /app /

7 EXPOSE 3000

8 CMD ["index.js"]

Listing 2.4: Correct script for “Using tagged minimal base images and multistage

builds”

17



The reason behind it is that the image size could be considered a proxy for attack

surface measurement: the more packages or services are included into the image, the

higher the probability that some of those are vulnerable, thus the higher the attack

surface.

The best practice addresses this issue by using a tagged minimal base image, thus

images containing only the bare minimum in terms of installed packages and services.

Another strategy could be using multi-stage builds, as showed in Listing 2.4. Multi-

stage building consists of using multiple FROM instructions; each FROM instruction

begins a new stage. It is possible to copy files from stage to another in order to leave

only the necessary file in the final stage.

In Listing 2.4, after building the application in the first building stage (lines 1-4),

that building stage is dismissed and the resulting image is composed only by the

artifacts copied in the line 6.

Moreover, it is worth pointing out, that the final stage uses a distroless image8 (line

5), thus an image that contains the application and its dependencies without any

other features of a regular distribution. It is worth noting that, in any case, the base

image should be tagged with an immutable tag. A common use case is to use the

“latest” tag to pull the latest version of an image. This function is useful in some

scenarios but it might constitute a security risk. Every time we use a mutable tag

as “latest”, we are performing a non-deterministic action, since that tag can point

to different images in different times. It is preferable to refer to a base image with

an immutable tag, as a specific image version.

Using COPY command with specific parameters

1 COPY . .

Listing 2.5: Misconfigured script for “Using COPY command with specific param-

eters”

1 COPY target/app.jar /app

Listing 2.6: Correct script for “Using COPY command with specific parameters”

This is a simple best practice consisting on using most specific parameters when it

is needed to copy some file or directories inside the container filesystem.

It should be done because the COPY instructions is recursive inside the building

context and this behavior may have two possible consequences:

• Copying unnecessary data and consequently increasing attack surface

• Accidentally copying sensitive data

Another solution is to use a .dockerignore file to exclude some file from the building

process.

8https://github.com/GoogleContainerTools/distroless

18



Update and install packages in the same RUN instruction

1 FROM ubuntu :18.04

2 RUN apt -get update

3 RUN apt -get install -y \

4 package -bar \

5 package -baz \

6 package -foo =1.3.*

Listing 2.7: Misconfigured script for “Update and install packages in the same RUN

instruction”

1 FROM ubuntu :18.04

2 RUN apt -get update && apt -get install -y \

3 package -bar \

4 package -baz \

5 package -foo =1.3.*

Listing 2.8: Correct script for “Update and install packages in the same RUN in-

struction”

Having two distinct RUN instructions for these commands can cause troubles with

the cache: if new packages are added and the Dockerfile is rebuilt, Docker will use

the packages cached in the layer generated with the instruction in the line 2. This

may lead to outdated package installations.

For the same reason, version pinning for packages is a good practice as well.

Using COPY instead of ADD

The security risk behind this practice comes from the capabilities of the ADD: this

instruction implements some more features compared to the COPY instruction. In

particular, ADD supports downloading file from remote URLs with the associated

risk of downloading a malicious file. Moreover, ADD supports auto-extracting fea-

tures of some archive formats 9 and the user could accidentally open a zip-bomb.

Another very related best practice is to prefer using curl or wget shell commands to

download the file because it is possible to add the rm shell command in the same

instruction, avoiding increasing the layer size.

Don’t leak sensitive info to docker images

1 FROM ubuntu:vivid

2 RUN apt -get update && apt -get -y upgrade

3 RUN apt -get -y install nginx && apt -get clean

4 RUN echo "daemon off;" >> /etc/nginx/nginx.conf

9https://docs.docker.com/engine/reference/builder/

19



5 ENV mysecret=secret

6 COPY file:0 ed4cccc887ba42ffa23befc786998 in \

7 /etc/nginx/conf.d/example.conf

8 COPY file :15688098 b8085accfb96ea9516b9 in \

9 /etc/nginx/ssl/nginx.key

10 COPY file:bacae426a125600d9e23e80ad12e17b5 in \

11 /etc/nginx/ssl/nginx.crt

12 CMD ["nginx"]

Listing 2.9: Misconfigured script for “Don’t leak sensitive info to docker images”

1 FROM ubuntu:vivid

2 RUN apt -get update && apt -get -y upgrade

3 RUN apt -get -y install nginx && apt -get clean

4 RUN echo "daemon off;" >> /etc/nginx/nginx.conf

5 CMD ["nginx"]

Listing 2.10: Correct script for “Don’t leak sensitive info to docker images”

Dockerfile’s instructions may be used to store or move sensitive information, for in-

stance through the ENV or COPY instructions, as in the example. Storing sensitive

information or hard-coding them is a bad practice, especially if the container have to

be deployed in a public register. Moreover, sensitive information may be cached in

intermediate layers even if you deleted them on other layers. If sensitive information

have to be shared with the container, the simplest and more effective way to do it

is to share them leveraging a volume.

Removing unnecessary dependencies

1 FROM debian

2 RUN apt -get update \

3 && apt -get -y install \

4 Openjdk -8-jdk ssh vim

Listing 2.11: Misconfigured script for “Removing unnecessary dependencies”

1 FROM debian

2 RUN apt -get update \

3 && apt -get -y install --no -install -recommends \

4 Openjdk -8-jdk ssh vim

Listing 2.12: Correct script for “Removing unnecessary dependencies”

This practice refers to using the –no-install-recommends option (or related options)

during package installation. This is a simple practice that, as highlighted in 2.5,

aims to reduce the image size and consequently to reduce the attack surface.

20



Expose only the needed ports

It is a best practice to expose only the ports that the application running inside the

containers needs. Moreover, it is considered a particular wrong practice to directly

publish the port 22 on the container. Note that the EXPOSE instruction does not

actually expose the port (it happens at runtime), but only indicates the ports on

which a container listens for connections to the person who runs the container.

Using official image when possible

Using unofficial images increase the risks of employing a malicious image. It is

also a good practice because official images usually adopt best practices, which

consequently lowers the risk of having vulnerabilities.

Image should be pulled from the organization’s private registry

If it is necessary to use custom images, it is better that such images have been

pulled from a private and secure registry. Since anyone can publish images on

public repositories, they could be malicious or vulnerable.

21



Chapter 3

State of the Art

In this chapter, we discuss detecting and repairing technologies applied to miscon-

figurations, with particular attention to those commonly found in Dockerfile scripts.

Since Docker is under the umbrella of Infrastructure-as-Code (IaC) technologies,

in Section 3.1, we firstly introduce the concept of security smells which describe

antipatterns in IaC scripts that may inject some security risks. In Section 3.2 we

analyze the techniques used by similar works for Dockerfile antipatterns detection

and eventually rule learning. In particular, in Section 2.5, we list the main miscon-

figurations that may be present in Dockerfile scripts and, for each of them, discuss

the security risks involved, and in Section 3.2.2 we list and compare existing com-

mercial tools for configuration error detection. In Section 3.3 we discuss Automatic

Program Repair which are a set of tools and techniques to repair errors in source

codes.

3.1 Security smells in IaC scripts

According to [27], a code smell is a piece of code which does not respect well-known

coding patterns and could yield to maintenance problems. Even if we can not assume

with certainty that a code smell will cause problems, it still deserves attention.

In particular [27], focus on a specific class of code smell, named security smell. As

for code smells, a security smell is a piece of code which does not respect established

coding patterns, risking the infrastructure security. The concept of security smell

could be very similar to the best known concept of vulnerability, but it is worth

pointing out the differences among the two terms. Security smell is different from

vulnerability because the latter is defined as a weakness that can be exploited instead

the former don’t describe how exploits can be enacted [25].

Authors conduct a study about security smell identification in IaC scripts, targeting

the currently most famous IaC technologies: Ansible, Chef and Puppet. After

evaluating 3.339 scripts, the report describes several recurring security weaknesses,

which are related to the Common Weakness Enumeration (CWE)[23].

The security weaknesses are:

22



Administrator by default It refers to the pattern of specifying default users as

administrative users. It is an antipattern because it could violate the principle

of least privilege ([28]). The smell is related with “CWE-250: Execution with

Unnecessary Privileges” 1.

Empty password It refers to the pattern of setting as password, a string of length

zero. Having a length zero password does not always lead to security breach,

but it makes it easier to guess the password itself. This smell is related to the

“CWE-258: Empty Password”2.

Hard-coded secret It is the practice to code secrets, such as usernames and pass-

words, directly in the scripts. Related weaknesses from CWE are: “CWE-259:

Use of Hard-coded Password” and “CWE-798: Use of Hard-coded Creden-

tials”3 4.

Unrestricted Internet Protocol IP It is the pattern of assigning the address

0.0.0.0 to a service. It can cause security concerns, because this particular

address allows connections from every network. The smell is related to “CWE-

284: Improper Access Control”5.

Suspicious comment It refers to the practice of writing important information

related to the scripts in the comments. It is the case of comments which reveal

bugs that need to be fixed. The smell is related to “CWE-546: Suspicious

Comment”6.

Use of HTTP without TLS It is the pattern of using HTTP protocol without

the Transport Layer Security (TLS) protocol. Unless other mechanisms are in

act, information will go through the network without encryption. It may be

an issue for privacy and data integrity. It is related to “CWE-319: Cleartext

Transmission of Sensitive Information”7.

Use of weak cryptography algorithms This smell refers to the practice of using

weak algorithms, such as MD4 and SHA-1, for encryption purposes. It is

related to “CWE-327: Use of a Broken or Risky Cryptographic Algorithm”8

and “CWE-326: Inadequate Encryption Strength”9.

No integrity checks It is related to the pattern of downloading contents without

checking it via checksum and GNU Privacy Guard (GPG). It is a security

1https://cwe.mitre.org/data/definitions/250.html
2https://cwe.mitre.org/data/definitions/258.html
3https://cwe.mitre.org/data/definitions/259.html
4https://cwe.mitre.org/data/definitions/798.html
5https://cwe.mitre.org/data/definitions/284.html
6https://cwe.mitre.org/data/definitions/546.html
7https://cwe.mitre.org/data/definitions/319.html
8https://cwe.mitre.org/data/definitions/327.html
9https://cwe.mitre.org/data/definitions/326.html

23



smell because the developer can not be sure if the downloaded content has

been tampered by an attacker. It is associated with “CWE-353: Missing

Support for Integrity Check”10.

Missing default in case statement It is the practice of not handling all input

combination in a case-conditional structure. It is risky because an attacker

can guess an unhandled input, trigger an error and possibly having access to

system information in terms of stack traces and faults. It is associated with

“CWE-478: Missing Default Case in Switch Statement”11.

In order to derive information about the distribution and the frequency of these

security smells, it is crucial to identify such smells from the collected scripts. For

that purpose, the authors build a rule-based detection tool named Security Linter

for Infrastructure as Code (SLIC)[25]. After manually writing the rules, the authors

make the following remarks:

• Approximately 17.9 - 32.9% of the IaC scripts in the dataset include at least

one security smell category.

• The most frequent security smell category is hard-coded secret: 6.8 - 24.8% of

the collected scripts include at least one hard-coded secret.

• For every 1.000 IaC Line of Code (LoC), security smells appear in 13.3 - 31.5

LoC.

In addition, in a similar previous work [25], the authors state that a security smell

can persist in a script for as long as 98 months.

As the author suggests, numerous studies try to characterize insecure IaC scripts

in order to figure out if there are some correlations that could be used to prioritize

inspection efforts. A representative example is [26], in which the authors try to

characterize defective IaC scripts by means of Natural Language Processing (NLP)

techniques.

After preprocessing IaC scripts in the form of text tokens, the authors apply Bag-

of-Words (BAG) model and Term Frequency-Inverse Document Frequency (TFDF)

techniques to build features vectors, and then, they use Principal Component Anal-

ysis (PCA) to select the most influencing tokens.

After this features selection phase, they have some text features which are corre-

lated with defective IaC scripts, but since these features are tokens (i.e. string with

one or few words), they might be pointless on their own. The authors address that

problem by applying a qualitative analysis called Strauss-Corbin Grounded Theory

(SGT) on the identified tokens. By means of SGT, it is possible to derive properties

of defective IaC scripts from the identified text features.

The authors uncover three properties that characterize defective IaC scripts and

that could be very useful to prioritize verification and validation efforts:

10https://cwe.mitre.org/data/definitions/353.html
11https://cwe.mitre.org/data/definitions/478.html

24



Filesystem operations are related with performing input and output tasks, such

as setting permissions of files and directories.

Infrastructure provisioning mostly concerns setting up and managing infras-

tructures for special systems such as data analysis and database systems. Re-

sults indicate that the capability of provisioning via IaC tools can introduce

defects.

Managing user accounts concerns about setting up accounts and user creden-

tials.

As example, [26] reports the case of filesystem operations as the operations more

susceptible to defects (23% in one of the dataset). In order to perform this operation,

experts have to set up values, as file locations and permissions, but doing this, they

may inadvertently make mistakes.

In addition to define properties of defective IaC scripts, [26] builds a machine learning

model by means of Random Forest technique and text-features previously extracted,

in order to predict if a given IaC script is defective.

A similar work has been proposed by [6] which analyze 104 Ansible projects and

leverage different machine learning techniques to predict defective IaC scripts.

It uses 108 features to train the model which cover different aspects of the developing

process instead of just focusing on the scripts. These metrics have been classified

into three categories:

• IaC-oriented (ICO) metrics: structural metrics derived from the analysis

of the IaC source code. They belong to previous works which focuses on IaC

scripts and more traditional code metrics that can be adapted to IaC scripts.

• Delta metrics: 46 metrics which capture the amount of changes in a file

between two successive releases

• Process metrics: 16 measures that consider aspects concerning the devel-

opment process rather the code (e.g. number of developers that change a

file).

The work points out, after experimenting with different machine learning algorithms

and different combination of metrics, that Random Forest is the best predictor, and

that the best performance are reached with the ICO metrics alone.

3.2 Dockerfile misconfigurations

Being part of Infrastructure-as-Code tools, Dockerfile do not come without risks,

and they may be affected by the presence of security smells and misconfigurations

as well [32]. This problem has worsened by the opportunity to embed Bash code.

In recent times, different studies emphasize the need to write Dockerfile following

25



the Docker official documentation’s best practices 12 in order to not risk containers

and hosts security.

In [34], the authors study the differences among Dockerfile evolutionary trajecto-

ries basing on different variables that affect both quality and build latency time.

A Dockerfile evolution is the changing of the Dockerfile according to the project

requirements.

This work can be considered as an attempt to characterize a Dockerfile according

to different metrics, as has been done with other IaC technologies in [26].

From the previous work [33], the authors cluster six different categories of evolu-

tionary trajectories:

Increasing and holding Developers added new instructions to the Dockerfile in

the project’s early period, but after reaching a certain size, they just update

the environment variables or change instruction locations.

Constantly growing Developers keep adding to the Dockerfile, causing its size to

continually increase.

Holding and increasing Dockerfile was stable in the early periods, but then it

increases by adding new instructions.

Increasing and decreasing Developers kept adding until it reach a large size,

then they remove useless plugin/services or move settings to additional script

files.

Holding and decreasing Developers changed Dockerfile during the project’s early

period, and then they try to reduce its size.

Gradually reducing Developers keep removing useless instructions or change the

base image to continually reduce image layers.

In the Table 3.1, it is possible to find the percentages of projects belonging to the

six categories and the identifications (ID) of each cluster.

Authors compare the clusters assuming C-2, which is the one with the most occur-

rences, as baseline. C-1 and C-6 seem to help reduce quality issues, instead C-4 has

more quality issues. The reasonable justification is because of the pre-accumulation

quality issues in the earlier period.

In particular, the subsequent study consists on analyzing 2.804 projects which con-

tains 76.925 versions of Dockerfile by means of 2 linear regression models: the quality

issue model and the build latency model.

The research demonstrates that the most positive factor influencing quality issues

is the number of layers in the image: more image layers could bring more quality

issues. A quality issue in this sense may be the one reported by [20].

A counterintuitive result is the following: quality issues may decrease if image layer

12https://docs.docker.com/develop/develop-images/dockerfile best-practices/

26



size increases. The authors explain this result, stating that large layer size may

mean that instructions have detailed and complete parameters.

Another finding is that additional scripts may reduce quality issues: it can be easily

explained because additional scripts reduce the burden on the original Dockerfile.

In this case, it is important to not relocate possible issues to the additional scripts.

On the other hand, a greater number of different instructions tend to have less qual-

ity issues since it assumes that the developers used the right Dockerfile instructions

for the intended purposes.

ID Name % of projects

C-1 Increasing and holding 28

C-2 Constantly growing 31.6

C-3 Holding and increasing 19.2

C-4 Increasing and decreasing 10.2

C-5 Holding and decreasing 9.5

C-6 Gradually reducing 7.7

Table 3.1: The six different clusters of [34]

Another relevant study is Wu et al. [32] which focuses on a particular class of quality

issues related to Dockerfile named Dockerfile smells.

Formally, a Docker smell is defined as an instruction of a Dockerfile that violates the

recommended best practices and potentially affect a project’s quality negatively.

In [32], authors conduct an extensive study on 6.000 GitHub open-source projects

containing Dockerfiles and belonging to the Top-10 popular programming languages.

The authors identify two different smell categories:

• DL-smell: refers to the issues against the Dockerfile best practices.

• SC-smell: refers to the quality issues against the Bash scripts practices.

Then, according to the presence or not of smells, a project can be classified as Smell

Project (S-Project) or a Health Project (H-Project).

The study collects and processes 6.000 projects and then analyzes them by means of

the analyzer named Haskell Dockerfile Linter13 (further explained in Section 3.2.2).

Haskell Dockerfile Linter parses the Dockerfile and try to match its rules against the

scripts in order to report smells (DL-Smell). In turn, Dockerfile Linter stands on the

shoulders of ShellCheck, a tool to analyze and detect bash best practice violations

(SC-Smell).

The quantitative analyses reveal alarming findings: 83.8% of the projects have at

least one smell in Dockerfile code, 61.5% have DL-smells, 0.5% have SC-smells and

13https://github.com/hadolint/hadolint

27



61.5%

0.5% 21.8%

16.2%

Have DL-smells
Have SC-smells
Have both
Healthy

Figure 3.1: Percentage of different smells classes according to [32]

21.8% have both. This means that S-projects have an average 5.6 smells in their

Dockerfiles.

The study reveals also that DL-smells and SC-smells are correlated; in fact a project

that show presence of large number of DL-smells (or SL-smells), moderately indicates

the presence of large number of SC-smells (or DL-smells). Moreover, as expected,

popular and young projects tend to have fewer Dockerfile smells.

A qualitative analysis, conducted randomly selecting 60 S-projects, shows also some

interesting examples of incorrect practices in relation with the languages used. For

example, Ruby projects tend to use ADD instruction, especially when it does not

require its tar auto-extraction capabilities, instead Shell projects tend to use apt-get

update and apt-get install in the RUN instruction which is prone to go against the

best practices.

In [20], authors focus on a particular class of smells called Temporary File Smell (TF

smell). A TF smell occurs when the developer delete a file from the image outmost

layer, but that file had been added in previous layers. In this case, the file will be

deleted from the outmost layer but not from the previous ones, yielding a pointless

image size increase.

1 FROM centos :7

2 COPY jdk -8u171 -linux -x64.tar.gz

3 RUN tar zxvf jdk -8u171 -linux -x64.tar.gz

4 RUN rm -f jdk -8u171 -linux -x64.tar.gz

Listing 3.1: ”TF smell example”

For instance, in the Listing 3.1, developers add a new layer with the deletion of

jdk-8u171-linux-x64.tar.gz (line 4) and it seems to completely remove the file from

the image. Conversely, it removes only the file from that layer, but it is still present

28



in the layer in which the file has been copied (line 2).

TF smells can occur through different patterns, such as using wget bash command

inside a RUN instruction and the rm command in another RUN.

The main challenge is to be able to correctly identify all the TF smells. The authors

develop two different approaches for this purpose: one based on dynamic analysis

and one based on static analysis.

Dynamic analysis

The approach based on dynamic analysis consists of injecting logging code into the

file system and rebuilding the kernel in order to trace the temporary file creation

and deletion. Through an automated analysis of the resulting log, it is possible to

effectively classify TF smells instances. The disadvantage of this approach is that it

can generate numerous logs and significantly reduce system performance. According

to authors experiment, a performance lost of 37.1% occurred.

Static analysis

The second approach is based on static analysis. The major challenge using static

analysis is to correctly identify the path of the different file since they can be found

in different instructions, with absolute path or path relative to the current working

directory. Moreover, the massive use of wildcard characters makes it very difficult

to correctly know if, after the creation, a file has been deleted in the following

instructions.

After building the AST of the Dockerfile, the main idea is to use a State Table (ST)

to store the variables that represents the current status of resources. In this way,

the State Table is designed to dissolve ambiguities. In particular, ST stores the

CurrentDirectory variable which is used to record the absolute directory path of the

current working directory, and it is updated as the tool go through the AST. It also

stores the type (file or directory) of the paths, and these variables are update during

the AST examination as well. Finally, it stores the environment variables.

Thanks to the ST, during the analysis phase, a list of created file and a list of delete

file are set up. On these lists, a file matching is carried out to discover if a file has

never been deleted.

3.2.1 Detection and Repairing Techniques

The problem of security misconfigurations detection and repair concerning Docker-

files can be split into two different sub-problems: the problem of detection and the

problem of repairing.

At the best of our knowledge, Dockerfile misconfiguration repairing problem has not

been addressed in literature as intended in the Chapter 1. In the same way, far

29



too little has been said about the problem of misconfigurations detection applied to

Dockerfiles.

Nevertheless, in recent times, different commercial tools come out to help developers

writing Dockerfile in accordance with best practices. Since these tools use the same

rule-based approach, they are covered apart in Section 3.2.2.

Detection Techniques

Regarding misconfigurations detection, the work which is most similar to ours is

[14], where the authors aim to build a tool to support developers during Dockerfile

writing.

The tool, named Binnacle14, consists of two main components: the rule miner and

the rule enforcer. The rule miner is in charge of automatically detecting recurrent

rules by analyzing hundreds of thousand of Dockerfiles. The rule enforcer, instead,

is in charge of enforcing the previously discovered rules in a new Dockerfile.

Dockerfile are transformed into Abstract Syntax Tree (AST) by means of a phased

parsing, which is very convenient when it comes to deal with languages that allow

embedded scripting.

The phased parsing approach consists of building the AST through different phases;

in each phase, the AST is progressively enriched.

Moreover, both components make use of an abstraction process which replace every

literal value with either zero, one or an abstract node. Specifically, the abstract node

type is assigned based on a regular expression matching. This abstraction process

helps Binnacle, by giving the necessary vocabulary to reason about properties of

interest.

The rules discovered from the rule miner and checked by the rule enforcer consist

of an antecedent, which is a sub-tree that may be matched in the Dockerfile’s AST,

and a consequent, which is a sub-tree representing the code that should be appeared

along with the antecedent. According to the position of the consequent with the

respect of the antecedent, it is possible to have different classes of rules.

A strong limitation of this work is that the miner is only capable of returning a

specific class of rules named Local Tree Association Rule (local TAR). In the Local

TARs the consequent sub-tree exists within the antecedent sub-tree. This limitation

is given by the inability to arbitrary find rules from a corpus of hundreds of thousands

of trees. It is worth highlighting, that this limitation affects only the miner and not

the enforcer.

Moreover, another limitation is given by the fact that not all the Bash commands can

be parsed because the authors choose to support only the commonly used command-

line tool (which cover over 80% of command-line tool invocations though).

The process of Local TAR mining among a dataset of AST-parsed Dockerfile is the

following for a given node type of interest:

14https://github.com/jjhenkel/binnacle-icse2020

30



1. Identification of the set of all sub-trees rooted in a node of the given type.

2. On the identified sub-trees, employing a frequent sub-tree mining algorithm

to recover a set of likely consequent.

3. Returning rules in which the antecedent is the root of a sub-tree (where the

type matches the input node type) and the consequent is a sub-tree identified

by the frequent sub-tree algorithm.

The process of enforcement is the following.

Given a Dockerfile and a set of TARs, for each rule:

1. The Dockerfile is parsed into AST and the enforcement engine attempts to

match the TAR’s antecedent. If no matches, it continues with the next rule.

2. Depending on scope and location, the enforcement engine chooses a region of

the input tree where it looks for the consequent sub-tree.

3. The enforcement engine attempts to align the consequent of the TAR with a

sub-tree, within the chosen region. If there are no matches, the rule has been

violated.

Another contribution made by [14] regards the creation of 15 rules named Gold

Rules. Gold Rules are rules manually extracted from the so-called Gold Dataset

which is a dataset of 400 Dockerfile coming from the official docker-library reposi-

tory and that presumably have a higher standard of quality. These Gold Rules are

used as reference for Binnacle evaluation.

Repairing Techniques

The most significant work concerning Dockerfile repairing tools is [15]. Although

it differs in the motivation that lead to the repair, it is worth analyzing this work

because of the repairing process.

The authors develop a tool named Shipwright which is a human-in-the-loop system

to automatically repair or suggest to the developers.

In this case, the repair action is needed not because of the presence of misconfigu-

rations but due to broken Dockerfile, thus Dockerfiles that fail to be built.

Shipwright builds Dockerfile with their context file and retrieve build logs. On those

build logs, a token splitting (which consist of split on snake and camel case and on

several operators) and a string normalization are applied.

The preprocessed data are passed to BERT, a pre-trained transformer-based neural

model which output the embedded vectors. The vector space composed by the vec-

tors of all the build logs is clustered with HDBSCAN.

Then a human expert obtains, for each cluster, a likely root cause of failure and if

possible, offer a repair or a suggestion.

31



The process of finding a repair is a step taken by a human expert with the assistance

of Shipwright which builds a search string from log’s keywords and reports a list of

top-5 URLs as output for human inspection.

Focusing on the fixes, they consist of a pattern and a repair. The pattern is a regular

expression that matches a string either in the error logs or in the Dockerfile. The

repair is a transformative function which describes how to fix the Dockerfile.

Even if there are no significant details about the implementation of these transfor-

mative functions, authors specify the functions have been manually written because

it is not a time-consuming error-prone task.

The clustering approach can be helpful because it gives the developers the chance

to generalize a repair, thus to repair Dockerfiles which have similar causes of failure

with the same repair pattern. Due to this approach, 13 repairs has been created

from the dataset.

Specifically, Shipwright has been able to cluster 34% of the 5.405 broken Dockerfile

in 144 clusters and for 36.5% of these clusters the author confirms that they consist

of Dockerfile that have the same root cause. Of the 34% clustered Dockerfile, Ship-

wright was able to find a repair to 20.84% and suggestions to an additional 69.63%.

For non-clustered Dockerfile, Shipwright is able to produce automated repairs in

18.18% of the file and to provide suggestions in 46.63% of the file.

3.2.2 Rule-based detection tools

This section is focused on a particular class of existing tools which implements a

static rule-based approach for Dockerfile misconfigurations.

We have chosen the following tools as representative of this class for the variety of

languages used, scope of the tool, number of policies and embedding code support.

Haskell Docker Linter 15 This tool has been already used in [34] to find weak-

nesses in the code. It is an open-source project written in Haskell which parses

the Dockerfile into AST and check human-written rules on top of it. Moreover,

it leverages ShellCheck to lint Bash code.

Checkov 16 It is a static code analysis for different IaC tools written in Python and

developed by BridgeCrew 17. It counts over 1000 built-in policies but having a

wide scope on the different IaC technologies, only 8 of those regard Dockerfile

and none of these regards Bash code.

Trivy 18 is a scanner for vulnerabilities in different IaC files. It has been written

in Go and developed by Aquasecurity 19. Currently, it supports 50 different

rules regarding Dockerfile and Bash.

15https://github.com/hadolint/hadolint
16https://github.com/bridgecrewio/checkov
17https://bridgecrew.io
18https://aquasecurity.github.io/trivy/v0.22.0/
19https://www.aquasec.com

32



Kics 20 is a static tool analyzer developed by Checkmarx 21 to find security vulner-

abilities and compliance issues in different IaC scripts. Currently, it supports

more than 50 policies for Dockerfile, and it also includes Bash code analyses.

Docker-bench-security 22 is a shell script which attempts to automatize Docker-

file best-practice of the CIS Docker Benchmark v1.3.123. It does not support

embedded Bash code.

We test the capabilities of these tools against an ad-hoc written Dockerfile which

contains all the misconfigurations listed in 2.5

1 FROM pmietlicki/apache -php5 .6.30

2 RUN apt -get update

3 RUN apt -get --allow -unauthenticated install -y nano

4 ENV mysecret=secret

5 COPY . .

6 COPY important_key /var/www/html

7 ADD Context_test/test.tgz /var/www/html

8 ADD https :// tmpfiles.org/dl /170022/ test.tgz /var/www

9 EXPOSE 8000 80 443 22

Listing 3.2: Misconfigured Dockerfile

We define the associations among misconfiguration and its code location in Table 3.3.

Table 3.2: Comparative table of rule based tools

Haskell

Docker Linter

Checkov Trivy Kics Docker-

Benchmark-

sec

Container in

rootless mode

With an

explicit

USER

instruction

Use minimal

base images

Use multistage

building

Continued on next page

20https://github.com/Checkmarx/kics
21https://checkmarx.com/
22https://github.com/docker/docker-bench-security
23https://www.cisecurity.org/benchmark/docker/

33



Table 3.2: Comparative table of rule based tools (Continued)

Haskell

Docker Linter

Checkov Trivy Kics Docker-

Benchmark-

sec

Restrict COPY

command

scope

Update and

install in the

same RUN

Use COPY

instead of

ADD

Avoid COPY

sensitive

information

Avoid ENV

with sensitive

information

Use official

images

Image pull

from

organization

private

repository

Install only

verified

packages

Not Use ADD

to download

files

Tag image

version

Only

‘latest’

tag

Only

‘latest’

tag

34



Misconfiguration Line of Code

Root user in container No line with USER instruction

No minimal image or multistage building No multistage procedure

COPY without defined parameters 5

Apt-get update and install in the different run 2-3

Using ADD instead of COPY 6

Sensitive information leak 4

Install Unnecessary packages 3

No official image 1

Image not pulled from private registry 1

Table 3.3: Association misconfiguration and Listing 3.2’s line of code

As it possible to notice from Table 3.2, almost all the tools can detect the same mis-

configurations such as “Container in rootless mode” or“Apt-get update and install

in the same RUN”.

On the other hand, there are some misconfigurations, such as “Avoid COPY sensi-

tive information” and “Not Use ADD to download file”, which no tool can detect.

We formulate the hypothesis that some misconfigurations can be hard to detect due

to the difficulty in coding a static rule to detect them. Taking as example “AVOID

ENV with sensitive information”, it requires to correctly and statically determine if

the arguments of ENV instruction are private information.

3.3 Automatic Program Repair

In the following, we present the state of the art regarding automatic program repair

(APR). As already said, none of these tools are able to deal with Dockerfiles or

IaC scripts, but we believe that it is useful to discuss them in order to correctly

be able to classify and compare our tool. Moreover, some approaches are still valid

regardless of the specific implementation.

We distinguish among works which leverage machine learning (ML) techniques and

works which adopt a static approach.

3.3.1 Static template based

Even if it has been developed for Java projects, [22] proposes SpongeBugs, which

is the most similar tool with the respect of the approach used and the classes of

errors addressed. In fact, it targets code smells, thus patterns that may indicate a

poor programming practice as opposed to the rest of tools which focus mainly on

behavioral bugs.

SpongeBugs fixes 11 distinct rules checked by SonarQube and Spotbugs, two static

code analysis tools for Java projects. The 11 rules have been chosen among the

35



most 400 most violated rules in the two static analyzers, with the criteria of being

possible to define a syntactic fix templates that are guaranteed to remove the source

of warnings without changing the behaviors.

SpongeBugs is implemented in Rascal24, a domain-specific language for source code

analysis and the repairs are performed in the following three steps:

1. Fast and imprecise textual search based on conditions needed for rule triggering

2. Full and more expensive AST matching to the results of step 1

3. Execution and generation of a patch to fix the rule violation

It is worth highlighting the two phased approach for rule matching, which try to

overcome the trade-off between computation effort and accuracy. Moreover, Sponge-

Bugs does not use any type of learning in order to make the process fast and precise.

The disadvantage of this approach is that it is not flexible, since it can not auto-

matically learn new repairing templates.

Authors identify the following limitations to this work:

1. Local Analysis: the analysis scope is strictly limited to each method

2. Contextual restrictions: some rules are analyzed with additional restric-

tions on their context of applicability. For example, it does not check rules

inside lambda expressions

3. Typing information: SpongeBugs analysis of typing information is incom-

plete

4. Toolchain: other limitations derived from the tools used to build SpongeBugs,

in particular Rascal’s Java 8 grammar, which is not complete

These limitations have as consequence a high rate of false negative during the eval-

uation: 15% of rule violations reported by SonarQube are not detected and hence

not fixed by SpongeBugs. This result was predictable, since it is a consequence of

design decisions in order to trade off detection capability for precision during the

correction, which is about 85%.

Always leveraging SonarQube as Java code static analyzer, [10] builds Sorald.

As SpongeBugs, Sorald does not use any learning, but instead it uses human-written

templates which transform a buggy AST into a fixed one.

Despite using the same tool, Sorald approach is different from SpongeBugs. Sorald

employs SonarQube to detect rule violations into source: it means that the buggy

line detection is performed by an external tool instead of using the two phase parsing

of SpongeBugs.

24https://www.rascal-mpl.org/

36



Moreover, the transformation in Sorald is conducted on the AST and not on the

code. As consequence of these two difference, Sorald developers do not write the

detection rules, but they leverage those of the static analyzer and secondly, Sorald

developers implement a process to transform the fixed AST into fixed source code

preserving the formatting.

In order to recover the source code from the AST, at the very beginning, they sepa-

rate the documentary structure from the AST, by building a Source Fragment Tree.

At the end of the fix, they match unchanged AST nodes with the corresponding

source fragment from the original source.

The study shows that during the evaluation, 80% of violations are detected and 94%

of these are fixed.

3.3.2 Machine learning based

A complete different approach has been adopted by the following works, which use

different ML algorithms to automate the repairing process.

The authors of [18] focuses on the developing of DLFix which is a tool for APR in

Java projects.

There are some new key ideas behind DLFix. First, it differs from other similar

works ([30], [12]) that use neural network techniques because it leverages tree-based

Recurrent Neural Network (RNN) instead of a sequence-to-sequence Neural Ma-

chine Translation (NMT). The major problem with NMT for coding repair is that

the knowledge on which part of the code should be fixed in not encoded in the

model. The NMT-based model is trained with pairs of buggy methods and the cor-

responding fixing ones, thus the model must implicitly align the source code before

and after the fix. An RNN-based model is beneficial to avoid incorrect alignment

between the source code before and after the fix.

Another feature comes from the idea of training a different model for context learn-

ing.

Moreover, DLFix adopts a Convolutional Neural Network based model to push the

correct fix onto the top-1 position among other fixing candidates.

The model that learns the code transformation is a two-layer model: the first one is

called Context Learning Layer (CLL). It is in charge of context learning, and it is

composed by a tree-based LSTM model and a tree-based encoder decoder model. As

we said, the context is treated separately, and it is possible by comparing buggy and

fixed AST and replacing the modified sub-tree with a summarized node. This phase

outputs a vector which be used as further input for the next phase. The separation

of context learning and transformation learning helps the tool to consider also the

surrounding code into the fixing and to avoid incorrect alignments.

The second phase is called Transformation Learning Layer (TTL) where the before

and after sub-trees are used for learning the code transformation. Moreover, the

37



context vector from previous layer is used as an additional input. It uses the same

tree-based encoder-decoder model as the first layer.

After the model has been trained given a buggy sub-tree, it automatically generates

the fixed sub-tree.

Then, a program analysis phase, in which DLFix tries to recompose the original

fixed code, produces a list of final candidates.

At the end of the process, a CNN-based binary classificator is trained in order to

push onto the top the perfect correction candidate.

The study points out that DLFix reaches 39% Top1 accuracy, where TopK is an

evaluation metrics that indicates the number of times that a correct patch is in the

ranked list of top K candidates. DLFix outperforms comparing with other tools

which have a 2% - 15.8% Top1.

In, [1], the authors present Getafix which is an approach to produce human-like fixes

based on a novel hierarchical clustering algorithm and which has been deployed on

Facebook.

Getafix needs a set of changes that fix a specific class of bugs to be able to generate

changes. The three main steps are the following:

1. Split set of example fixes into AST-level edit scripts

2. Learning recurring fix patterns from these edit steps basing on the hierarchical

algorithm

3. Given an unseen bug, finding a suitable fix patterns and validating it against

the static analyzer to ensure that the fix removes the warning

During the learning process, Getafix identifies changes at the AST level and gener-

ates concrete edits: pairs of sub-ASTs of the original before and after ASTs. Each

AST node has a label, a value and child nodes. Furthermore, child nodes have also

a description of their relationship to the parent node.

The next step is to generalize the concrete edits. To do that, it adds “holes” inside

the concrete edits to represent part of the tree that may change according to the

specific buggy code. This step is performed by applying the anti-unification algo-

rithm, which merges nodes that have the same labels, the same values and the same

number of children, into a combined sub-tree. Finally, it replaces them with a hole.

The major idea is to recursively combine pairs of concrete edit until all edits are

combined into a single edit pattern. At each iteration, the algorithm picks a pair

of edit patterns to combine, so that their anti-unification yields the least loss of

concrete information.

This procedure yields a hierarchy of edit patters, where leaf nodes represent concrete

edits and higher-level nodes represent increasingly generalized edit patterns. Note

that the merge order is important to minimize the loss of concrete information.

Having a hierarchy of fixing patterns for a class of bugs may lead to have more

38



than one candidate: Getafix chooses the most suitable by ranking candidate with 3

scores.

As a result, given 6 class of bugs, the Top1 accuracy varies from 12% to 91% based

on the type of bug.

A similar work has been done by [19]: the authors develop AVATAR APR system

which exploits fix patterns of static violations for patch generation.

The pattern mining procedure starts by leveraging ASTs: the buggy code version

and the fixed version are given to GumTree ([11]), an AST-based code differencing

tool, to produce the AST edit script. The edit script describes the repair actions to

be taken in order to implement the patch.

The main idea behind this work starts from the problem of grouping similar edit

scripts in order to infer the common subset of edit actions. That has been done by

leveraging CNNs deep learning techniques to learn edit script features, which are

then used to cluster similar scripts. At the end, the largest common subset of edit

script among all the scripts in a cluster is considered as the fix pattern.

Once that a suspicious fault location has been detected by an external tool, AVATAR

iteratively attempts to match the location with a pattern from the database of mined

fix patterns.

39



Chapter 4

Security misconfigurations

assessment

The first goal of this chapter is to evaluate the awareness about Dockerfile security

best practices by the developers. We perform these analyses by using datasets

coming from real scenarios as proxy measure to judge if developers are mindful of

the risks that come by using insecure Dockerfile.

The second purpose of this chapter is to evaluate the effectiveness of existing tools

in detecting and repairing this kind of security misconfigurations.

In particular, in Section 4.1 we describe the datasets used in all the following analyses

and the preprocessing phase exploited to ensure the testing validity.

In Section 4.2 we analyze in details the datasets to determine whether and to what

extent the datasets are affected by security misconfigurations. In Section 4.3 we

analyze existing detection tools to investigate whether they are equivalent in terms

of misconfigurations found. We discuss the results of the analyses in Section 4.4.

In order to perform analyses, we use two datasets of Dockerfile. These datasets were

already used in the analysis of [14] and are thoroughly described in [13]. We report

here some important information for the purpose of our analyses.

4.1 Datasets overview and preprocessing

The choice of the datasets was basically dictated by the considerable number of

unique Dockerfiles in them. As the authors of [13] claim, despite Dockerfile are one

of the most prevalent DevOps artifact, there is a shortage of good and numerous

datasets of Dockerfile.

Nonetheless, we consider the datasets chosen enough good for our analysis because

of the features reported below.

For the purpose of our analysis, we consider the two datasets that [13] named re-

spectively Standard and Gold dataset. In this work, we refer to the two datasets

using the same name, thus Standard and Gold dataset.

The Standard dataset was collected by using GitHub’s API to query every public

40



Table 4.1: Datasets filtering process

Dataset Original file Excluded file Remaining file

Standard 178.505 16.167 (9.06%) 162.338 (90.94%)

Gold 435 248 (57.07%) 187 (42.9%)

Table 4.2: Misconfiguration in Standard and Gold dataset

Standard Gold

Sec. misconfig. 315.883 161

N. sec. misconfig/N. file 1.94 0.86

Affected file 158.498 (97.63%) 152 (81,28%)

repository with ten or more stars from January 1st, 2007 to June 1st, 2019. After

different phases of filtering, the Standard dataset contains 178.505 unique Docker-

file.

The Gold dataset contains 435 Dockerfile and comes from the docker-library or-

ganization on GitHub. These files are particularly important because they belong

to repositories managed and maintained by Docker experts and we expected to be

better written and thereby having less security misconfigurations.

It is worth pointing out is the lack, in both datasets, of building context file (de-

scribed in Chapter 2): in fact, the datasets come without any context file that is

required to build the Dockerfile into an image. This factor, limits the analysis that

we can carry out as described in Section 6.2.

The analyses have been conducted on the datasets after a filtering phase. For

different causes listed in Section 6.2, we have not been able to correctly build an

Abstract Syntax Tree from all the Dockerfile in the datasets, and this means that

we can not further use our tool to analyze them. In order to speed up the analysis,

we decide to rule out all these Dockerfile from the beginning. In we show Table 4.1

the number of Dockerfile involves in this process.

4.2 Misconfigurations assessment

Since the Standard dataset contains a large number of Dockerfiles coming from real

scenarios, doing a misconfiguration evaluation on this dataset let us get a feel of

the standard Dockerfile quality. It means that we might know whether the normal

user tends to be aware of Dockerfile best practices and whether he carefully applies

them.

Moreover, having the Gold dataset provides a lucky chance to us to test the aware-

ness of the best practices on the part of experts.

Concretely, we perform these tests in order to answer different questions.

41



First, we want to know how many Dockerfile in the datasets are affected by security

misconfigurations, highlighting the distribution of such misconfigurations.

Second, we want to prove if the Gold dataset contains less security misconfigurations

than the Standard one, since the Dockerfile in it have been written by experts.

Third, we want to know if any correlation exists among the different security mis-

configurations.

After discussing the security misconfigurations that might affect Dockerfile in Sec-

tion 2.5, we pick some of them to be evaluated in the analyses. Specifically, we do

not consider all the misconfigurations which can not be detected by at least one of

the existing tools. Ultimately, the security misconfigurations that we are going to

deal with in this chapter are:

1. Last user is root

2. Missing USER instruction.

3. Using ‘latest’ tag in the base image

4. Using ADD instead of COPY

5. Exposing port 22

6. Update and install packages in different RUN instructions

7. Installation of additional packages

8. Hard-coded secrets

We also introduce the ability to detect hard-coded secrets in the Dockerfile, since

this security misconfiguration can be detected solely by our tool, as we discuss it in

Chapter 6.

As we mention in Section 3.2.2, there are multiple existing scanners able to detect

both security and not security misconfigurations. Among these, we have chosen Kics

(3.2.2) to conduct the following analyses because it is the only tool able to detect all

the security misconfigurations listed before while its results are still coherent with

the ones of other tools as we point out in Section 4.4.

As first action, we run Kics on both datasets and collect all the resulting data in

Table 4.2 to have a general overview about the number of misconfigurations found.

As preliminary remark, it is possible to notice that the number of affected file is

higher on the Standard dataset than on the Gold one. To some degree, this is an

expected result and might confirm that Gold dataset has been written with higher

security standards. However, even the Gold dataset contains a very high percentage

(81.28%) of affected Dockerfile.

Also, the ratio between the number of security misconfigurations and the total num-

ber of file in each dataset confirms that the Gold dataset contains fewer misconfig-

urations in relation to the number of file.

42



last user is root
missing user instruction

latest tag on image
additional package

add instead of copy
update in different run

port 22 exposed
hard coded secrets

Security misconfigurations

0

20000

40000

60000

80000

100000

120000

140000

160000

Oc
cu

rre
nc

es

2030

159375

10712

63007
56673

18329

1261 4496

Figure 4.1: Security misconfigurations occurrences in Standard dataset

43



Then we move on analyzing the types of misconfigurations that we could find in the

datasets in order to verify if there are some misconfigurations which occur far more

frequently than other and if the results are the same for both the datasets.

From Fig. 4.1, we can highlight that the most frequent misconfigurations are respec-

tively: “Missing USER instruction”, “Installing additional packages” and ”Using

ADD instead of COPY”. The first one is a serious misconfiguration, since it allows

the resulting image to be run with root privileges, as described in Section 2.5. “In-

stalling additional package” refers to the practice of increasing the attack surface by

installing not needed dependencies and the last one refers to the practice of using

ADD instruction instead of COPY one, which is more safe.

As shown in Fig. 4.2, the distribution is almost the same in the Gold dataset: the

two most frequent misconfigurations still are “Missing USER instruction” and “In-

stalling additional package” but none of the remaining ones are present.

last user is root
missing user instruction

latest tag on image
additional package

add instead of copy
update in different run

port 22 exposed
hard coded secrets

Security misconfigurations

0

20

40

60

80

100

120

140

Oc
cu

rre
nc

es

0

152

0
9

0 0 0 0

Figure 4.2: Security misconfigurations occurrences in Gold dataset

A different point of view is given by the Fig. 4.3 where we plot the security miscon-

figuration densities for each misconfigured Dockerfile in both datasets.

The densities are computed as:

44



0.0 0.2 0.4 0.6 0.8 1.0
Density

0

10000

20000

n.
 o

f f
ile

Standard dataset

0.2 0.4 0.6 0.8 1.0
Density

0

10

20

n.
 o

f f
ile

Gold dataset
mean

Security misconfiguration density

Figure 4.3: Security misconfigurations density in both datasets

density =
num. of instructions affected by a security misconfiguration

num. of instructions

This measure give some information about how the misconfigurations are, in av-

erage, distribute inside a single Dockerfile. The distributions are quite different in

the two datasets: in the Standard one it varies approximately between 0.1 and 0.5,

instead in the Gold dataset, there are some peaks approximately between 0 and 0.09

and between 0.3 and 0.5.

It means that, on average, a Dockerfile in the Standard Dataset contains more in-

secure instructions than in the Gold Dataset.

An important value to check is the number of file having a density of 1.0: Dockerfile

with that value have at least one misconfiguration in every line. This peak is salient

in the Standard dataset: more than 20.000 Dockerfile are entirely insecure. On the

other hand, there is no peak in the chart of the Gold dataset.

After discussing which and how many misconfigurations influence the datasets, we

want to examine the number of completely secure Dockerfile, namely the Dockerfile

which are not affect by any security misconfigurations.

This data can be easily inferred from Table 4.2 but since it is a very important point

45



97.6%

2.4%

Standard dataset
Security misconfigurations

81.3%

18.7%

Gold dataset
Security misconfigurations

44.2%
55.8%

Standard dataset
Sec. misconfigurations without "Missing USER instr."

4.8%

95.2%

Gold dataset
Sec. misconfigurations without "Missing USER instr."

Misconfigured
Secure

Figure 4.4: Percentages of secure and insecure Dockerfile with different set of mis-

configurations

for this work, we want to make it more clear. Another reason behind discussing this

data aside, is evaluating how much this value varies considering different set of mis-

configurations.

Starting from the first row of Fig. 4.4, it results that almost all the Dockerfile are

insecure in both datasets (97.6% for the Standard dataset and 81.3% for the Gold

dataset). In this definition, we consider insecure the Dockerfile that contain at least

one misconfiguration among the one listed in Section 4.1.

If we drop the most frequent misconfiguration (“Missing USER instruction”), we get

a huge improvement in terms of secure Dockerfile: the Standard dataset contains

55.8% of secure file and the Gold dataset contains 95.2%. This shows that the most

frequent issues is also responsible for the lack of security of the majority of Dockerfile.

46



AWS Access Key

Base64 High Entropy String

Basic Auth Credentials

Hex High Entropy String
JSON Web Token

NPM tokens
Secret Keyword

Slack Token
0

500

1000

1500

2000

2500

3000

3500

1 61 124

547

1 7

3752

3

Secret types

Figure 4.5: Secret types in Standard dataset

As last analysis, we want to know if there are some relevant correlations among

the different misconfigurations. In order to perform this analysis, we compute the

correlation matrix using the Pearson correlation coefficient on the Standard dataset

and plot the results in Fig. 4.6.

Although there are no strong positive correlations, the matrix highlights a slight

positive correlation between the act of updating the package manager in a RUN in-

struction alone and the act of installing additional packages. Both these misconfigu-

rations affects Bash code embedded in the Dockerfile through the RUN instructions.

It might mean low awareness of Dockerfile authors about how to correctly integrate

Bash code in a Dockerfile.

Another remark is the expected negative correlation between the missing of USER

instruction and the presence of “USER root” instruction, since both misconfigura-

tions are mutually exclusive.

Hard-coded secrets As we said at the beginning of this section, we introduce the

ability to detect hard-coded secrets in the datasets, by using the system described

in Chapter 5. From the findings represented in Fig. 4.1, we uncover the presence of

a fair amount of secrets in the Standard dataset. On the other hand, Fig. 4.2 shows

no presence of secrets in Gold dataset.

We further analyze the types of secrets which have been embedded in the Dockerfile

and summarize the results in Fig. 4.5. The “Secret Keyword” type is the most

recurring one with 3.752 occurrences. It refers to the presence of specific keywords

that might indicate the existence of hard-coded secrets; examples of such keywords

are: “api key”, “password”, “db key” etc. The second most recurring category, even

though with considerably fewer occurrences (547), is the “Hex High Entropy String”:

as mentioned in [21], high entropy is a fundamental feature of strong passwords,

47



last user is root

missing user instruction

latest tag on image

additional package

add instead of copy

update in different run
port 22 exposed

hard-coded secrets

last user is root

missing user instruction

latest tag on image

additional package

add instead of copy

update in different run

port 22 exposed

hard-coded secrets
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.6: Correlation matrix misconfigurations on the standard dataset

thus having strings with high entropy might indicate the presence of hard-coded

passwords. In this specific case, the secret is encoded according to the hexadecimal

scheme. The same logic is applied to the “Base64 High Entropy String” category,

where the secrets are encoded according to the Base64 scheme and which contribute

to the total amount with 61 occurrences. Another relevant type is the ”Basic Auth

Credentials” that, by using regular expressions, catch authentication credentials in

formatted URI 1.

The remaining categories have very few instances (between 1 and 7) and regards

specific technologies such as AWS 2 and NPM 3.

HEALTHCHECK instruction missing During the assessment, we do not in-

clude the “HEALTHCHECK instruction missing” as a security misconfiguration,

even if it has been reported in the CIS Docker Benchmark (version 1.3.1) 4.

Briefly, the HEALTHCHECK instruction indicates how to test a container to check

whether it is still working. From a security prospective, the lack of this instruction

may come under the definition of security misconfiguration because an unavailable

1https://datatracker.ietf.org/doc/html/rfc3986
2https://aws.amazon.com/
3https://www.npmjs.com/
4https://www.cisecurity.org/benchmark/docker

48



99.1%

0.9%

92.0%

8.0%

No HEALTCHECK instruction
HEALTHCHECK instruction is present

Figure 4.7: Percentage of Dockerfile with HEALTHCHECK instruction in Standard

dataset

service violates the availability property in the CIA triad [29].

We come to the conclusion that, if we do not have any other information than the

Dockerfile itself, it can not be considered a security misconfiguration a priori. This

because the service availability might be checked at a higher level in the system,

such as with an orchestration tool.

Despite this, for the sake of completeness, we briefly evaluate the presence of this

instruction in the datasets. In Fig. 4.7 is clearly visible how the absence of the

HEALTHCHECK instruction is highly prevailing in both datasets. If we had in-

cluded this as a security misconfiguration, it would have been by far the most re-

curring one. This chart is also important for Section 4.3, where we highlight how

these misconfigurations heavily affects the results of the current tools analysis.

4.3 Evaluation of existing tools

In this section, we analyze the selected tools described in Section 3.2.2 and compare

their effectiveness on the datasets.

As a first step, we run the selected scanners on the datasets. The results are sum-

marized in the Table 4.3 where the number of file affected by security related and

not security related misconfigurations have been split respectively in the columns

“Security” and “Other”.

In order to further investigate the results in Table 4.3, we plot the number of security

misconfigurations identified by the four tools on the Standard dataset in Fig. 4.8.

49



Table 4.3: Scanner results on both datasets
Gold Standard

Security Other Security Other

n. of file % of file Avg n.of file % of file Avg n. of file % of file Avg n.of file % of file Avg

Hadolint 6 3.21 0.26 138 73.8 2.57 61.040 37.6 0.73 125.176 77.11 3.66

Checkov 177 94.65 1.04 172 91.98 0.92 156.040 96.12 1.35 161.554 99.52 1.22

Trivy 177 94.65 0.95 27 14.44 0.18 154.395 95.11 1.36 71.901 44.29 0.78

Kics 152 81.28 0.86 183 97.86 4.04 158.184 97.44 1.92 161.608 99.55 5.78

A first consideration that could be done, looking at Table 4.3, involves how dif-

ferent scanners picture a different evaluation of the same dataset. As example,

Trivy detects an enormous difference evaluating security and not security miscon-

figurations in both datasets, inducing the user to think that the file affected by a

security misconfigurations are higher than the ones affected by other misconfigura-

tions. Completely opposite results are given by Hadolint, while Checkov and Kics

indicate a balance between the two categories. The evident fluctuation caused by

the scanners used lead us to further investigate and determine which scanner is the

most accurate.

First we take into account Trivy since it gives very different results: as we can notice

in Table 4.3, it founds very little number of file affected by not security misconfig-

urations compared with other tools. We found out that this unusual behavior is

determined by two causes: firstly, a lower number of policies involving not security

misconfigurations (the number of policies for each tool has been reported in Ta-

ble 4.4) and secondly, which not security misconfigurations it is able to detect.

Concerning the former, Trivy uses 19 policies against respectively 71 and 42 of

Hadolint and Kics. An obvious claim is that Checkov has a low number of policies

as well (6 policies), even less than Trivy, but its results are still comparable, in

terms of affected file, with Hadolint and Kics. This claim lead us to on the latter

case: it is possible to point out that the higher number of file affected by other

misconfigurations reported by Checkov and Kics come from the “HEALTHCHECK

instruction missing” misconfiguration. This issue can not be recognized with Trivy,

so it detects less file affected by not security misconfigurations.

In this regard, it is also possible to remark that Hadolint can not detect the missing

of the HEALTHCHECK instruction as well (actually it can, but it is deactivated by

default). Despite this, its results for other misconfigurations are quite high. This

because, even if it can not detect that misconfiguration, it has 71 other policies

concerning different not security misconfigurations, more than any other.

Continuing to analyze Hadolint, it is worth mentioning the low number of file af-

fected by security misconfigurations reported by it. This behavior can be easily

explained once again by looking at the number of policies in place: security policies

compose approximately the 5% of the entire policy list. The consequence is that the

detection of not security misconfigurations occurs more frequently than the security

related one.

50



last user is root

missing user instruction
latest tag on image

additional package
add instead of copy

update in different run
port 22 exposed

0

20000

40000

60000

80000

100000

120000

140000

160000 hadolint
checkov
kics
trivy

Figure 4.8: Misconfigurations occurrences

In Fig. 4.8 we can analyze how many misconfigurations can be detected with the

different tools: Kics is the only one capable of catching all the misconfigurations we

are taking into account. On the other hand, Hadolint is the one that is doing worst

in terms of security misconfigurations recognized, as it misses half of the misconfig-

urations taken into account.

Almost all the tools but Hadolint, concur that the most frequent misconfiguration

is “Missing USER instruction”. Hadolint, not being able to detect it, shows “Using

ADD instead of COPY” as the most recurrent issue. Kics, Trivy and Checkov agree

regarding the less frequent misconfiguration as well, reporting “Port 22 exposed”.

Once more, Hadolint does not have a policy for detecting this, so it reports “Last

user is root”.

Previously commenting Table 4.3, we notice that there are some differences in the

number of file affected by security misconfigurations. We justified it by highlighting

the different number of policies in place for each tool. Analyzing Fig. 4.8, we can

further investigate these differences by noticing which policies mostly contribute to

this discrepancy.

As already said, “HEALTHCHECK instruction missing” heavily contribute to raise

other misconfigurations count for each tool that can recognize it. The same can be

said with “Missing USER instruction” for the security misconfigurations: Checkov

51



and Kics have higher number of warnings than Hadolint due to the detection of that

misconfiguration.

Trivy detects both “HEALTHCHECK instruction missing” and “Last user is root”

with the same policy: since we can not automatically distinguish the root cause,

in Fig. 4.8 we put warnings belonging to both categories under the “‘Last user is

root” category and zero the “Missing USER instruction” category. This choice is

still coherent with the ultimate consequence of not adding the USER instruction: if

no user is explicitly specified, the image will run with root user.

Table 4.4: Scanner policies

Scanner Security policies Other policies Total policies

Hadolint 4 71+ 75+

Checkov 7 6 13

Trivy 4 19 23

Kics 8 42 50

4.4 Discussion

After the analyses on the misconfigurations affecting the datasets and the effec-

tiveness of detection tools, in this section we put together all the results trying to

picture the current situations about Dockerfile best security practices awareness and

existing detection tools effectiveness.

4.4.1 Security best practices awareness

The analyses on the Standard dataset reveal that the majority of Dockerfile in it

can be considered insecure: 97.6% of the Dockerfile contains at least one security

misconfiguration.

The situation is even worse considering the fact that a Dockerfile in that dataset, in

average, has a security density of 0.36; therefore 36% of the instructions are affected

by at least one security issue. It is slightly better if we consider the Gold dataset:

81.3% of the dataset is misconfigured, with an average density of 0.24.

One of the intention of this study is to prove whether the Dockerfile in the Gold

dataset are actually better written than the ones in the Standard dataset. Our

analyses prove this hypothesis both by showing a lower percentage of affected file in

the Gold dataset and a lower security density. Even if the Gold dataset percentages

are quite closer to the one of Standard dataset (81.28% for the Gold and 97.63%

for the Standard dataset), we should take into account the majority of issues in the

Gold dataset come from the single misconfiguration “Missing USER instruction”;

by not considering it, the percentages of secure Dockerfile increase to 55.8% for the

52



Standard and 95.2% for the Gold dataset. Since the Standard dataset has also a

greater variety of misconfigurations in its Dockerfile than the Gold dataset, we can

definitely affirm that Gold dataset has been written with higher security standards.

Concerning potential correlations among the misconfigurations, it is an interesting

point noticing a positive correlation of the issues “Install and update in different

RUN” and “Installation of additional packages”: indeed both of them concern em-

bedded Bash commands. Specifically, in order to recognize and avoid this kind of

misconfigurations, Dockerfile authors should have an understanding of how Docker

file system works since the former increases unnecessarily the image size and the lat-

ter is unsafe because of Docker caching mechanism. Therefore, we can affirm that

the presence of these misconfigurations are an indicator of an unawareness about

how to effectively embed Bash code in a Dockerfile. This can find support for its

validity by considering the Gold dataset, where the presence of “Install and update

in different RUN” misconfiguration does not appear and “Installing additional pack-

age” appears only in 9 Dockerfile out of 161.

If we use the Standard dataset as proxy for the current awareness of security best

practice, we can draw the conclusion by asserting that, since Dockerfile misconfig-

urations found are numerous and various, it is still needed more awareness about

Dockerfile security best practices and the risky consequences of bad written Dock-

erfile.

4.4.2 Existing tools limitations

Since an extensive number of Dockerfiles is affected by some security misconfigura-

tion, different tools exist to audit them before they are used in production.

We have already mentioned in Section 3.2.2 that the majority of the rule-based scan-

ners have been written to check file belonging to different IaC technologies. This

is not a problem per se but, by looking at the policies in place, emerge the trend

to underestimate the importance of a well-written Dockerfile. As example, we take

in account Checkov which, at the time of writing, has approximately 900 policies

for Kubernetes file and only 13 for Dockerfile. It is certainly true that auditing

Kubernetes configuration file is far more complex than a single Dockerfile, but it

does not mean that 13 policies are enough to completely secure a Dockerfile. We

can compare Checkov with Hadolint, the only tool exclusively focused on Dockerfile:

it uses more than 75 policies to completely check Dockerfile.

On the same page, it is even worse if we consider misconfigurations related to se-

curity. From our analyses, we determine that only one tool, Kics, is able to detect

all the security misconfigurations chosen. In addition, it should be considered that

the set of security misconfigurations analyzed in this work is only a subset of the

total security issues, since some of them can be detected by no tools as represented

in Table 3.2.

53



Besides the insufficient number of policies, the problem of secure Dockerfile is wors-

ened by the fact that often different tools output different results based on how

the policies have been built. Thus, before using a certain scanner, it is essential to

comprehend how it works, which misconfigurations could be caught and how the

results should be interpreted.

Another problem that affect all the tools we analyzed is how the user should fix se-

curity misconfigurations once the scanner reported them. In fact, to the best of our

knowledge, it does not exist any detection tool which is also able to automatically

correct security misconfigurations in a Dockerfile.

This is an evident limitation of the existing tools that we try to solve with the tool

described in Chapter 5.

54



Chapter 5

System Implementation

As we point out in Section 6.2, one of the limitations of the existing tools is their

inability to fix the Dockerfile once a misconfiguration has been reported, without

involving the developer itself. A manual fixing procedure requires some kind of

expertise and knowledge about the security best practices, while not excluding an

ineffective or bad repair.

To the best of our knowledge, it does not exist any tool able to automatically fix

security misconfigurations in Docker artifacts. As we consider in Section 3.2.1,

Shipwright is the tool that comes closer to this idea, albeit it is focus on repairing

errors which lead to the building process failure.

In the direction of filling this gap, we have worked to a system which is automatically

able to detect and correct some security misconfigurations discussed so far, and we

present it in this chapter. In particular, in Section 5.1 we outline a general overview

about the tool, the technologies that we use to build it and a high-level view of the

architecture. In Section 5.2 we describe in details each component and its purpose.

In Section 5.3 we illustrate the workflow: how each element exchange information

with others to produce the final outcome.

5.1 Architecture

A high-level overview of the tool architecture is represented in Fig. 5.1, where it is

possible to identify the main components; in particular:

• Parser: it is responsible for parsing the Dockerfile and transforming it in AST

(tree representation of the code described in Section 2.1). It makes use of a

custom version of tree-sitter1 parser to recognize Dockerfile instructions and

their parameters. The resulting AST is further adjusted by a custom logic.

• Detector: this component is in charge of detecting potential security mis-

configurations and appending their IDs to the AST’s nodes. Since it already

1https://tree-sitter.github.io/tree-sitter/

55



Figure 5.1: System architecture

exists valuable scanners for this scope, it makes use of them.

• Template engine: this element is actually able to secure the detected mis-

configured instructions. All the repairs happen in the AST produced by the

parser according to the directives given by the repairer. Internally, it exploits

human written templates to fulfil its purpose, which indicates how to modify

the AST still maintaining the right degree of generalization.

• Converter: it is a small component which go through the AST and convert

it back into a valid Dockerfile.

During the developing phase, we focus on making the architecture as much expan-

sible and flexible as possible. Namely, almost each component can be replaced or

adjusted with little endeavor: for example, other templates can be written, and new

scanners could be implemented.

The system has been built entirely in Python 3.82 because of this versatility and

ease of use, which allow us to build a complete system in relative limited time.

Finally, despite the workflow is extensively described in Section 5.3, for better com-

prehension of the following sections, we give here a general insight.

The procedure starts by parsing the Dockerfile into an AST to ease the analysis.

One or more scanners detect the misconfigurations in the original Dockerfile and

append them to respective nodes in the AST. A template engine scans the AST

2https://www.python.org

56



Figure 5.2: Parser component

looking for reparable issues. When it founds them, it modifies the original AST.

Once all the misconfigurations have been fixed, the new AST is converted back into

a Dockerfile.

5.2 Main components

After presenting a general overview of the architecture, we analyze in details each

component in order to better understand its job inside the entire system. As we

mention in the previous section, the system is built around the four components

which are described in the following sections.

5.2.1 Parser

The final purpose of the Parser represented in Fig. 5.2 is to convert the Dockerfile

into a proper AST, usable in the further analyses.

In the system, mostly of this job has been done by tree-sitter library. Briefly, tree-

sitter is an open-source tool able to parse different artifacts into AST. The parsing

process is made possible by particular file, the grammar file, which contain directives

about how to build the AST.

In accordance with tree-sitter documentation3, each node comes with different fields.

Among all the fields, we have put particular attention to three of them because they

are essential for the building of the final Dockerfile.

These fields are:

• Type node: it identifies the node type of the AST. In turn, the node type

identifies the Dockerfile instruction a node is referring to. For example, the

run instruction type refers to the Dockerfile RUN statement.

• Text: it contains the text of the instruction. In most of the cases, each child

node contains a portion of the parent node text. In this regard, it is worth

3https://tree-sitter.github.io/tree-sitter/using-parsers

57



noting that the root node contains the entire Dockerfile.

• Line: it identifies the line of the Dockerfile that a particular node comes from.

It is useful to be able to assign the misconfigurations found by the scanners to

the right nodes.

The AST produced by tree-sitter parser has been built according to specific grammar

rules documented in the Dockerfile grammar file [9].

There is a major problem in using the straight AST obtained from tree-sitter : it

does not parse the embedded Bash code. Parsing it might not be required but since,

there are some misconfigurations involving just the Bash code, further actions are

needed.

The problem has been solved implementing a custom logic (Custom Logic component

in Fig. 5.2) which performs the following steps:

1. Detaching the unparsed Bash code from tree at shell command node level.

2. Using tree-sitter with Bash grammar file to parse the code inside the shell command

nodes.

3. Attaching the Bash AST to the previous AST by means of shell command

node.

The Custom Logic component is also responsible for slight modifications in the AST

structure.

Moreover, we have made different minor modifications, still described in Chapter 8,

both on Dockerfile([9]) and Bash ([2]) grammar file of tree-parser. These adjustments

on the grammar file and the ones made by the Custom logic, have been needed to

overcome some limitations in the grammar rules, and to facilitate the conversion of

the AST back to a Dockerfile.

Nevertheless, we have not been able to completely rearrange grammar rules for our

purposes because of the complexity of this task, and this choice is the cause of some

limitations described in Section 6.2.

5.2.2 Detector

The detector is the component in charge of detecting misconfigurations and append

them to the right nodes of the AST produced by the parser.

In particular, it is an interface able to transform the outputs of existing scanners

into useful information to be attached to the AST.

This design choice comes from the idea of making the system flexible enough to

exploit already existing valid scanners, while not preventing other developers to

create and use their own scanner.

The internal details of this element are represented in Fig. 5.3. As it is possible to

notice, the component has four main subcomponents:

58



Figure 5.3: Detector component

59



• Starter: it is in charge of starting the external scanner process and collect its

output. It is worth noting that the scanning process is done on the original

Dockerfile contained into the root node.

• Reader: since different tools have different output format, this component

transforms each output in a format understandable by the system. In par-

ticular, it passes to the next subcomponent a list of tuples with the miscon-

figuration ID (generated from the scanner itself) and the line in which the

misconfiguration occurs.

• Enhancer: element which job is to enhance the AST nodes with corresponding

misconfigurations produced from the reader.

• Scanner template: manually written template that give directives to the de-

tector about how to configure other subcomponents. For example it indicates

how the scanner should starts and how to convert its output format.

In our implementation, the system gives the opportunity of using simultaneously

different scanners on the same Dockerfile in order to detect as many misconfigura-

tions as possible and fix them in a single run.

In particular, for this work, we both use Kics scanner to detect the security mis-

configurations listed in Section 4.1 and still develop our own scanner to detect a

misconfiguration (“Hard-coded secret in the Dockerfile”) that no other scanner can

detect on Dockerfile.

Regarding the custom scanner, we integrate detect-secret project4 as external scan-

ner in order to detect different kind of secrets.

5.2.3 Template engine and converter

The template engine represented in Fig. 5.4 is the component that actually allows

the system to repair misconfigurations. In particular, it scans the AST enhanced

with the misconfigurations and, for each of them, it finds a corresponding Repair

template. If a template exists, it starts the repairing process by modifying the AST.

It is worth poiting out that, the templates have been written by human experts.

Each Repair template contains two sections: the context and the edit actions. The

former indicates the misconfiguration topology, namely it denotes the misconfigura-

tion as a particular node combination. The latter contains the set of actions needed

to modify the current topology, thus to repair the AST. The Repairer structure is

divided into two subcomponents, reflecting the template’s sections:

• Context checker which double-check the presence of the issue in the AST with

the context provided by the template and eventually return the nodes to be

modified along with other information useful for the editor.

4https://github.com/Yelp/detect-secrets

60



Figure 5.4: Template-engine component

• Editor which modifies the structure of the tree exploiting the context provided

by the context checker and the action reported in the templates.

The Converter is in charge of converting back the AST into a Dockerfile. As we

mention in Section 5.2.1, each node contains the Text field. Thus, the Converter

iterate over the complete AST and put together the Text field of each node. More-

over, since some nodes could have the same text sequences, a custom logic inside

the Converter avoid the presence of redundant information.

1 # My Dockerfile

2 FROM debian:stretch -slim

3 RUN apt -get update

4 RUN apt -get install -y gcc

5 WORKDIR /usr/src/hello

Listing 5.1: ”Dockerfile sample”

5.3 Workflow

In this section, we illustrate the workflow behind the misconfiguration detection and

correction; in particular, we cover the path of an insecure Dockerfile given in input

to the system until the creation of new a secure Dockerfile.

For example, we consider the Dockerfile in Listing 5.1.

61



Figure 5.5: Example of AST generated by tree-sitter from Listing 5.1

From the Dockerfile to the AST The sample Listing 5.1 contains three security

misconfigurations out of the ones listed in Section 4.2:

• Updating and installing packages in different RUN instructions: it

uses “apt-get update” and “ apt-get install” in two different RUN statements

(lines 3 and 4).

• Installing additional packages: it does not prevent the package manager

to install recommended packages with the “–no-install-recommends” option

(line 4).

• Missing USER instruction: it builds an image which is going to start with

root privileges.

When the Dockerfile is passed as input, the first step taken by the system is trying

to convert it into an AST. Specifically, the Parser creates the AST in two phases:

it derives a first draft of AST by using tree-sitter, then a custom logic enhances it

with the AST of the embedded Bash codes and performs other minor modifications.

The tree after the first parsing phase is showed in Fig. 5.5; instead, the final AST is

represented in Fig. 5.6.

The final AST differs from the intermediate one because of the nodes highlighted in

green, which represent the ASTs of the two Bash codes.

Looking for misconfigurations in the AST The final AST is passed to the

Detector which allows running different external scanners on it and, as final result,

enrich the nodes with possible misconfigurations.

In Fig. 5.7 each red node contains two information about the misconfiguration that

affect it: the misconfiguration ID given by the scanner and the line corresponding to

62



Figure 5.6: Example of final AST generated from Listing 5.1

Figure 5.7: Example of AST enhanced with misconfigurations ID

63



Figure 5.8: Example of fixed AST

that node. In particular, in this example, the root node is responsible for the missing

of a USER instruction, its run instruction left child is responsible for running apt-

get update and apt-get install in different RUN statements and its right child for the

installation of recommended packages.

The work of the Detector is made possible by the Scanner templates which describe

how to interface external tools with the system.

In this example, we run as scanner Kics, which identify the three misconfigurations,

and a custom scanner which is able to detect hard-coded secrets in the artifact but

in this case does not produce any warning. Regarding Kics, the scanner launches

the process and collect the resulting output in JSON format5. Then it transforms

the output into (ID, line) tuples where the ID is the misconfiguration identification

number given by Kics and the line is the line affected by that misconfiguration.

Misconfigurations corrections This resulting AST, enhanced with the miscon-

figurations found, is ready to be fixed by the Template Engine. Since the system

work with an AST, the fixes have to be expressed in terms of node topologies as

well. This particular expression is provided by the Repair templates, one for each

misconfiguration. In particular, each template contains the misconfiguration topol-

5https://www.rfc-editor.org/rfc/rfc8259.html

64



ogy and the actions, in terms of operations to be done on the nodes, to fix the AST.

The result of the Template Engine is a new, fixed AST represented in Fig. 5.6. As

it is possible to notice, the nodes in green have been changed. In particular, the

two branches that belonged to the two different RUN instructions have been merged

together; instead, a new run instruction node has been created to create the new

user. Finally, a user instruction has been added in order to set the new user as

entry user.

From the AST back to the Dockerfile The last step is to convert the fixed

AST back into a Dockerfile. This procedure is performed by the Converter which

scans the nodes of the AST and, through the Text fields described in Section 5.2.1,

it is able to write back each node with the right syntax. The resulting Dockerfile is

in Listing 5.2 where the misconfigurations have been repaired in the following way:

• Update and install packages in different RUN instructions: the two

RUN statements have been merged together (line 3).

• Installing additional packages: The “–no-install-recommends” option has

been added to the apt-get install Bash command (line 4).

• Missing USER instruction: a new user has been created and set as entry

user (lines 6-7).

1 # My Dockerfile

2 FROM debian:stretch -slim

3 RUN apt -get update && apt -get install -y

4 --no -install -recommends gcc

5 WORKDIR /usr/src/hello

6 RUN adduser userapp

7 USER userapp

Listing 5.2: ”Fixed Dockerfile from Listing 5.1”

65



Chapter 6

Evaluation

After presenting the system we have built, we want to assess whether it could work

effectively in real scenarios. For this reason, we set up different tests in order to

prove its validity.

In this chapter, we discuss the tests we have performed on the system; in partic-

ular in Section 6.1 we describe the different tests, how we perform them and the

corresponding results. In Section 6.2 we discuss the test results, along with the

limitations that we encounter both in the system implementation and in the testing

phase. Finally, in Section 6.3 we propose some ways to improve our system and

enhance its capabilities.

6.1 Results

As a first test, we want to know how many misconfigurations, both in Gold and

Standard dataset, the system is able to repair. Specifically, we consider a misconfig-

uration repaired if, after a scanning process, no warnings are raised by the scanner

about it.

It is worth mentioning that the system is not able to fix all the security misconfigu-

rations listed in Section 4.2 for the reason mentioned in Section 6.2. Specifically, the

system does not have a repair template (component described in Chapter 5) for the

misconfigurations: “Using ‘latest’ tag in the base mage” and “Hard-coded secrets”;

therefore the misconfigurations that can be repaired are:

• Last user is root

• Missing USER instruction

• Using ADD instead of COPY

• Exposing port 22

• Updating in different RUN instructions

• Installation of additional packages

66



The steps that we take to run the tests are the following:

1. We analyze the Dockerfile and collect data about the misconfigurations found

in them.

2. We run the system on the Dockerfile in order to repair the misconfigurations

found and produce fixed versions of the original Dockerfile.

3. We analyze again the Dockerfile produced by the system and collect data about

eventually not fixed misconfigurations.

4. We compare the data produced in point 1 with the ones produce in point 4

and summarize our findings in Table 6.2 and Table 6.1.

In Table 6.2 are highlighted the number of security misconfigurations found in both

datasets by the system, the number of misconfigurations that we could repair and

the number of misconfigurations that the system actually repaired. It is important

to point out that with the term Security misconfigurations in Table 6.2, we refer to

all the misconfigurations detectable by the system and listed in Section 4.2; instead

with the term Reparable misconfigurations we refer to the misconfiguration that the

system is able to detect and fix, which has been listed before.

We uncover that, with the repair templates that we have, we can potentially re-

pair 95.19% of the misconfigurations in the Standard dataset and the 100% of the

misconfigurations in the Gold one. After running the repairing process, the system

has been able to actually repair 90.05% security misconfigurations in the Standard

dataset and 78.26% misconfigurations in the Gold dataset. We discuss the results

and the limitation in Section 6.2 but we can mention that the missed repairs are

mainly due to imperfect grammar rules of the parser.

We further investigate problems occurred during the repairing phase and outline the

findings in Fig. 6.1. In this chart, we list the reparable misconfiguration categories

and, for each of them, we report the number of misconfigurations that the system

has been able to repair. For the Standard dataset, the misconfiguration “Updating

in different RUN instructions” has been most difficult to repair. On the other hand,

almost every misconfiguration in the “Missing USER instruction” categories have

been fixed.

Regarding the Gold dataset, it contains only two type of misconfigurations, as al-

ready mentioned in Section 4.2: “Installation of additional packages” and “Missing

USER instruction”. Only half of the former have been repaired, instead all the latter

have been fixed.

We evaluate the repairing process considering the number of fixed Dockerfile as

well, and summarize the findings in Table 6.1. In our findings, we define an affected

Dockerfile as a Dockerfile which contains at least one of the misconfigurations de-

tectable by the system and listed in Section 4.2. We refer to a reparable Dockerfile

67



Standard Gold

Affected Dockerfile 158.498 (100%) 152 (100%)

Reparable Dockerfile 157.758 (99.53%) 152 (100%)

Completely repaired Dockerfile 144.532 (91.18%) 119 (78.28%)

Partially repaired Dockerfile 7.268 (4.58%) 4 (2.63%)

No repaired Dockerfile 1.419 (0.89%) 0 (0.0%)

Broken Dockerfile 4.539 (2.86%) 29 (19.07%)

Table 6.1: Repaired Dockerfile in both datasets

Standard Gold

Security misconfigurations 315.883 (100%) 161 (100%)

Repairable misconfigurations 300.675 (95.19%) 161 (100%)

Repaired misconfigurations 284.469 (90.05%) 126 (78.26%)

Table 6.2: Repairable misconfigurations in both datasets

as a Dockerfile which contains at least one reparable misconfiguration. Furthermore,

we consider a Dockerfile partially fixed if at least one security misconfiguration has

been repaired; instead, we consider a Dockerfile completely fixed if all the security

misconfigurations have been repaired.

Finally, we consider a Dockerfile broken, if, after the repairing phase, some syntax

issues have been introduced.

The findings reported in Table 6.1 pointed out that the repair templates in place

are able to potentially repair 99.53 % of Dockerfile for the Standard dataset and the

entire Gold dataset (100%).

After the fixing process, in the Standard dataset, 91.18% of the artifacts do no longer

contain none of the fixable misconfigurations while in the Gold dataset, 78.28% of

Dockerfile have been completely fixed. Some Dockerfile have been partially repaired

(4.58% for the Standard dataset and 2.63% for the Gold one); instead, 0.89% of

the file in the Standard dataset contains the same fixable misconfigurations as be-

fore the repairing. The system shows major limitations with some Dockerfile: in

fact, some of them have been irreversibly broken by the introduction of some syntax

errors. In particular, this issue affects a significant part of the Gold dataset (19.07%).

Moreover, in order to further verify the validity of the repairs, we perform a test

Standard Gold

Analyzed Dockerfile 1.702 (100%) 152 (100%)

Dockerfile buildable before repairing 275 (16.15%) 38 (25%)

Dockerfile buildable after repairing 275 (16.15%) 38 (25%)

Table 6.3: Results about buildable Dockerfile

68



involving the building process.

The aim of the experiment, is to prove that the repairing process does not affect

the semantic of the Dockerfile. In other words, we want to know whether the re-

pairing process prevents a Dockerfile to be built. In this test, two factors have to be

highlighted. First, we run the test only on the Dockerfile that can be built: as we

mention in Chapter 4, both datasets come without building context (a component

described in Section 2.2) and this reason does not allow us to build images out of

all the Dockerfile. For some Dockerfile, context file are not needed, thus we can still

build them in order to verify whether our repairs cause some issues. In this sense, a

buildable Dockerfile is an artifact which can be built without any other file. More-

over, due to performance issues described in Section 6.2, we have not been able to

perform this experiment for the entire Standard dataset. In that case, we randomly

choose a certain amount of Dockerfile.

The results are summarized in Table 6.3: the Analyzed Dockerfile are the artifacts

that we take into account. Specifically, we consider the entire Gold dataset (152

file) and 1702 file for the Standard dataset. Among the Analyzed Dockerfile, only

part of them can be built without building context (Docker component described in

Chapter 2), in particular 16.15% for the Standard and 38% of the Gold Dataset.

Finally, Dockerfile buildable after repairing represents the number of Dockerfile that,

after the repairing process, are still buildable; in this case, all the previously build-

able Dockerfile, are still buildable after the process.

6.2 Discussion and Limitations

One of the goal of this work, mentioned in Section 1.1, is to assess the effectiveness

of the developed system described in Chapter 5. The tests conducted on the system

show a good overall performance in the Dockerfile repairing process; as we outline

in Table 6.2, approximately 90% of the reparable misconfigurations have been fixed.

Moreover, approximately 9 Dockerfile out of 10 don’t contain any of 5 security is-

sues highlighted in Section 6.1. Clearly, the system reaches its initial goal of making

Dockerfile more safe without involving any manual activities during the process.

The repairing process is proved to be not disruptive for generated Dockerfile: only

2.86% of the produced Dockerfile come with syntax issues and; also, their semantic

have not been altered as proved by the number of still buildable Dockerfile.

Furthermore, the modular and flexible architecture described in Section 5.1, allows

developers to integrate its custom detection and repairing processes, further increas-

ing system capabilities and adapting it to particular needs.

Nevertheless the good effectiveness, the system shows the limitations that we sum-

marize below.

Low number of reparable misconfigurations As we already mention in Sec-

tion 4.4, the system is able to repair only a subset of all the security misconfigurations

listed in Section 2.5. This limitation is strictly tied with the capabilities of existing

69



port 22 exposed
last user is root

additional package

add instead of copy

update in different run

missing user instruction
0

50000

100000

150000

n.
 o

f o
cc

ur
re

nc
es

Standard dataset
Repaired
Not Repaired

additional package

missing user instruction
0

50

100

150

n.
 o

f o
cc

ur
re

nc
es

Gold dataset
Repaired
Not Repaired

Figure 6.1: Repairing statistics in both datasets

70



tools: since the system uses external scanners to detect misconfigurations, if none of

them is able to find a particular misconfiguration, similarly the system can not. We

demonstrate that it is possible to overcome this limitation by implementing custom

detection processes. We do this with the detection of custom secrets: in fact, none

of the existing tools, specified designed for detecting misconfigurations in Dockerfile,

have this capability; Despite this, the system is able to detect them due to a custom

detection process.

Using human written templates It could be claimed that the system still need

human experts to write the templates, so that the approach is not completely au-

tomatic. As we already mention in Section 3.3, the choice of using human written

templates over a machine learning based system comes with benefits and drawbacks.

Having static templates definitely contributes to have precise corrections without the

effort of training AI models. However, the number of issues fixable might be lower

than solutions which adopt some kind of ML system because of the absence of an

active learning process.

In the concrete case of this system, aware of this, we have chosen the static template

based approach considering two factors: the desired precision and the data that we

have at our disposal. Regarding the latter, the Gold dataset could have been a good

foundation for the learning system, but the number of file is too little. On the other

hand, as we point out in Section 4.2, the Standard dataset contains a large amount

of misconfigurations to be considered as training dataset. Regarding the former,

the results obtained from the tests confirm that the system is precise in repairing

misconfigurations, being able to get rid of the majority of misconfiguration while

not disrupting the fixed version of Dockerfile.

Parsing issues One of the major limitation the system is affected of, concerns the

parsing process: we already mention this issue in Chapter 4 where we state that we

filter out some Dockerfile because of the inability of parsing them. The root of the

problem lies in the grammar rules of the parser described in Section 5.2.1. While

they can parse the majority of Dockerfile and embedded Bash code, there are still

some specific patterns which are impossible to properly parse. This inability led

to produce a wrong AST and thus to generate back a wrong Dockerfile. Moreover,

some rules had been written in such a way that do not ease the process of getting

back a new Dockerfile.

We try to limit the drawbacks by manually modified existing rules and adding new

ones for our own purposes. Nevertheless, this job is complex and time-consuming

since the rules are strictly tied.

It is worth pointing out that these limitations mostly affect the Gold dataset, since

the Dockerfile in it are, on average, more complex in terms of number of instructions

and embedded Bash code used.

71



Building issues When we set up the test described in Section 4.3 that should

prove that the repairing does not affect the building process, we mention that we

have not been able to conduct it on the entire Standard Dataset. This limitation

comes from the fact that building a Dockerfile could be a time-consuming task, and

it is unfeasible to perform it for thousands Dockerfile. Moreover, DockerHub registry

puts a limit on the number of pull requests that could be done in limited amount of

time. Despite this, we consider the results obtained enough to prove our point.

6.3 Future work

A good starting point for eventual future works on the system, should be overcom-

ing the existing limitations described in Section 6.2. In particular, we mention the

issues with the parser: complete and coherent grammar rules to be used inside the

parser would be highly important in order to be able to use the system on Dockerfile

particularly complex in terms of number of instruction and embedded Bash code.

Furthermore, it would be fundamental in order to automate repairing process for

large amount of Dockerfile as we do in the tests described in Section 6.1.

Future works could also focus on exploiting the system architecture and enhancing

its capabilities; in fact, it can be easily integrated new scanners and new repair

templates in it. A valuable aim in this sense should be implementing detecting and

repairing processes in order to fully cover the security best practices exposed in Sec-

tion 2.5.

It is also possible to replace the way it detects and repairs: the system could be a

good framework to experiments new ways of detection and fixing by using machine

learning based approaches as described in Section 3.3 instead of the current template

based approach. In this sense, a viable approach is to mix the two techniques, thus

being able to automatically generate new repair templates.

Apart from the system developed, given the low awareness about Dockerfile security

best practices, proved in Section 4.2, we believe that the topic is open to further im-

plement new systems and methodologies, in order to make the Dockerfile hardening

process evermore easy and automatic. Unfortunately, with the growing use of this

type of virtualization technology mentioned in Chapter 1, securing Docker artifacts

is not an optional choice, but an important imperative.

72



Chapter 7

Conclusion

The growing usage of containers technologies, in particular Docker, represents a

great possibility to ease development and deployment phases; but it does not come

without security risks. In this sense, an important aspect for container security is

the building of secure images.

This work took its cue from these considerations and proceeded with the intention to

evaluate the most recent findings in security misconfigurations detection and repair

in Dockerfile. Through different experiments, we were able to determine the extent

of this kind of misconfigurations in real-world artifacts. Moreover, we were also

able to compare these results with Dockerfile written by experts. Our findings show

an overall low degree of awareness since the majority of Dockerfile analyzed do not

follow the current security best practices compared with the ones written by experts.

The consequence is to possibly expose containers to severe risks.

Unfortunately, our researches show that there are no tools able to replace the manual

work of hardening Dockerfile, since every current tool is developed to just detect

misconfigurations. Moreover, these tools lacks of the ability to detect most of the

security issues that could affect Dockerfile.

With this work, we tried to fill this gap by developing a system which allow, not

only to detect, but also to fix security issues in Dockerfile.

The tests performed on the system show an overall good performance, being able to

repair the majority of the Dockerfile taken into account.

We strongly believe that the developed system could be a first step toward the

creation of a more sophisticate and complete repairing software for Dockerfile. For

this reason, as a final contribution, we proposed some works that could be done, in

order to further ease the writing of secure Dockerfile by enhancing the tool developed.

73



Chapter 8

Appendix

In this chapter, we report technical details that we have previously omitted for the

sake of simplicity.

8.1 Improvements in Bash and Dockerfile gram-

mar rules

During the system implementation described in Chapter 5, we mention the limita-

tions of the parsing library, tree-sitter, used to build the AST. In order to be able to

correctly parse the Dockerfile and build the AST, we perform some adjustments to

both Bash and Dockerfile grammar rules. Specifically, we modify the grammar.json

file in the repositories [9] and [2].

8.1.1 Improvements in Dockerfile grammar rules

We modify the Dockerfile grammar rules for two purposes: to fix eventually issues

and to make the AST easier to be converted back into a Dockerfile.

Making STOPSIGNAL command visible According to the original grammar

rules, some node type is not visible in the final AST, STOPSIGNAL node type

is one of these. In the grammar rule, we modify the properties of this node to

make it visible in the final AST, thus, to be able to parse Dockerfile containing

STOPSIGNAL instruction.

Creation of a new rule We create a new type in the grammar rule, named

unquoted string value for the purpose of allowing variable expansion in the ENV

instructions.

Limitations Nevertheless our efforts, modifying the entire grammar rules is a

complex and time-consuming task, since the rules are strictly tied. For these reasons,

some particular syntaxes and constructs in Dockerfile can not be corretly parsed.

74



For example, an instruction such as the one listed in Listing 8.1, can not be built

because ONBUILD grammar rule does not expect a following RUN instruction.

ONBUILD RUN set -ex && pipenv install --deploy --system

Listing 8.1: Unquoted string value type

8.1.2 Improvements in Bash grammar rules

Bash grammar rules play an important role in the parsing of the Dockerfile, since

they allow to further enhance the AST, with parsed Bash code. Despite Bash rules

are more complete than Dockerfile ones, we perform some slightly modification to

ease the conversion process.

Making special character type visible In order to have special characters

nodes during the creation of the new Dockerfile, we make visible (and thus usable)

the special character type, which is hidden by default. We do not consider these

nodes as part of the original AST, since AST should not contain syntax elements,

according to the definition in Section 2.1. Nevertheless, we use them to complement

the conversion of the AST back to a Dockerfile.

Fix comment rule We fix an issue involving parsing comments in Bash. In the

fixed version, we add of an end-line characters in the parsing sequence. This is

because without that, the line following the comments is considered a comment line

too.

Limitations Despite the completeness of this grammar, during our tests we hit

some limitations by parsing certain Bash scripts. As example, the presence of com-

ments inside the “apt-get install” Bash command, make it impossible to obtain

the right AST. As we already discuss for the Dockerfile grammar rules, completely

modify these rules is a complex task. Nevertheless, our tests confirm that these

limitations are acceptable, since we are able to parse the majority of the Dockerfile

in the datasets.

75



Bibliography

[1] Johannes Bader et al. “Getafix: Learning to Fix Bugs Automatically”. In:

Proc. ACM Program. Lang. 3.OOPSLA (Oct. 2019). doi: 10.1145/3360585.

url: https://doi.org/10.1145/3360585.

[2] Bash grammar rules for tree-sitter. url: https://github.com/tree-sitter/

tree-sitter-bash (visited on 06/13/2022).

[3] Thanh Bui. “Analysis of docker security”. In: arXiv preprint arXiv:1501.02967

(2015).

[4] CIS Docker Benchmark. url: https://www.cisecurity.org/benchmark/

docker (visited on 07/10/2022).

[5] Container and Kubernetes: market dynamics report, 2021. url: https://www.

redhat.com/rhdc/managed-files/cl-containers-kubertnetes-market-

dynamics-f29518-202106-en.pdf (visited on 06/13/2022).

[6] Stefano Dalla Palma et al. “Within-Project Defect Prediction of Infrastructure-

as-Code Using Product and Process Metrics”. In: IEEE Transactions on Soft-

ware Engineering (2021), pp. 1–1. doi: 10.1109/TSE.2021.3051492.

[7] Docker documentation. url: https://docs.docker.com/ (visited on 07/10/2022).

[8] Docker Storage Driver. url: https://docs.docker.com/storage/storagedriver/

(visited on 07/10/2022).

[9] Dockerfile grammar rules for tree-sitter. url: https://github.com/camdencheek/

tree-sitter-dockerfile (visited on 06/13/2022).

[10] Khashayar Etemadi et al. “Sorald: Automatic Patch Suggestions for Sonar-

Qube Static Analysis Violations”. In: ArXiv abs/2103.12033 (2021).

[11] Jean-Rémy Falleri et al. “Fine-Grained and Accurate Source Code Differ-

encing”. In: Proceedings of the 29th ACM/IEEE International Conference

on Automated Software Engineering. ASE ’14. Vasteras, Sweden: Associa-

tion for Computing Machinery, 2014, pp. 313–324. isbn: 9781450330138. doi:

10.1145/2642937.2642982. url: https://doi.org/10.1145/2642937.

2642982.

[12] Hideaki Hata, Emad Shihab, and Graham Neubig. “Learning to generate cor-

rective patches using neural machine translation”. In: arXiv preprint arXiv:1812.07170

(2018).

76

https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585
https://github.com/tree-sitter/tree-sitter-bash
https://github.com/tree-sitter/tree-sitter-bash
https://www.cisecurity.org/benchmark/docker
https://www.cisecurity.org/benchmark/docker
https://www.redhat.com/rhdc/managed-files/cl-containers-kubertnetes-market-dynamics-f29518-202106-en.pdf
https://www.redhat.com/rhdc/managed-files/cl-containers-kubertnetes-market-dynamics-f29518-202106-en.pdf
https://www.redhat.com/rhdc/managed-files/cl-containers-kubertnetes-market-dynamics-f29518-202106-en.pdf
https://doi.org/10.1109/TSE.2021.3051492
https://docs.docker.com/
https://docs.docker.com/storage/storagedriver/
https://github.com/camdencheek/tree-sitter-dockerfile
https://github.com/camdencheek/tree-sitter-dockerfile
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982


[13] Jordan Henkel et al. “A dataset of dockerfiles”. In: Proceedings of the 17th

International Conference on Mining Software Repositories. 2020, pp. 528–532.

[14] Jordan Henkel et al. “Learning from, understanding, and supporting DevOps

artifacts for Docker”. In: 2020 IEEE/ACM 42nd International Conference on

Software Engineering (ICSE). IEEE. 2020, pp. 38–49.

[15] Jordan Henkel et al. “Shipwright: A Human-in-the-Loop System for Docker-

file Repair”. In: 2021 IEEE/ACM 43rd International Conference on Software

Engineering: Companion Proceedings (ICSE-Companion). 2021, pp. 198–199.

doi: 10.1109/ICSE-Companion52605.2021.00087.

[16] Joel Jones. “Abstract syntax tree implementation idioms”. In: Proceedings of

the 10th conference on pattern languages of programs (plop2003). 2003, pp. 1–

10.

[17] Dongsun Kim et al. “Automatic Patch Generation Learned from Human-

Written Patches”. In: Proceedings of the 2013 International Conference on

Software Engineering. ICSE ’13. San Francisco, CA, USA: IEEE Press, 2013,

pp. 802–811. isbn: 9781467330763.

[18] Yi Li, Shaohua Wang, and Tien N. Nguyen. “DLFix: Context-Based Code

Transformation Learning for Automated Program Repair”. In: Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering.

ICSE ’20. Seoul, South Korea: Association for Computing Machinery, 2020,

pp. 602–614. isbn: 9781450371216. doi: 10.1145/3377811.3380345. url:

https://doi.org/10.1145/3377811.3380345.

[19] Kui Liu et al. “AVATAR: Fixing Semantic Bugs with Fix Patterns of Static

Analysis Violations”. In: 2019 IEEE 26th International Conference on Soft-

ware Analysis, Evolution and Reengineering (SANER) (2019), pp. 1–12.

[20] Zhigang Lu et al. “An Empirical Case Study on the Temporary File Smell

in Dockerfiles”. In: IEEE Access 7 (2019), pp. 63650–63659. doi: 10.1109/

ACCESS.2019.2905424.

[21] Wanli Ma et al. “Password entropy and password quality”. In: 2010 fourth

international conference on network and system security. IEEE. 2010, pp. 583–

587.

[22] Diego Marcilio et al. “SpongeBugs: Automatically generating fix suggestions

in response to static code analysis warnings”. In: Journal of Systems and

Software 168 (2020), p. 110671. issn: 0164-1212. doi: https://doi.org/

10.1016/j.jss.2020.110671. url: https://www.sciencedirect.com/

science/article/pii/S016412122030128X.

[23] MITRE. Common Weakness Enumeration.

[24] Nigel Poulton. Docker Deep Dive. O’Reilly, 2020.

77

https://doi.org/10.1109/ICSE-Companion52605.2021.00087
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1109/ACCESS.2019.2905424
https://doi.org/10.1109/ACCESS.2019.2905424
https://doi.org/https://doi.org/10.1016/j.jss.2020.110671
https://doi.org/https://doi.org/10.1016/j.jss.2020.110671
https://www.sciencedirect.com/science/article/pii/S016412122030128X
https://www.sciencedirect.com/science/article/pii/S016412122030128X


[25] Akond Rahman, Chris Parnin, and Laurie Williams. “The Seven Sins: Security

Smells in Infrastructure as Code Scripts”. In: 2019 IEEE/ACM 41st Interna-

tional Conference on Software Engineering (ICSE). 2019, pp. 164–175. doi:

10.1109/ICSE.2019.00033.

[26] Akond Rahman and Laurie Williams. “Characterizing Defective Configuration

Scripts Used for Continuous Deployment”. In: 2018 IEEE 11th International

Conference on Software Testing, Verification and Validation (ICST). 2018,

pp. 34–45. doi: 10.1109/ICST.2018.00014.

[27] Akond Rahman and Laurie Williams. “Different Kind of Smells: Security

Smells in Infrastructure as Code Scripts”. In: IEEE Security Privacy 19.3

(2021), pp. 33–41. doi: 10.1109/MSEC.2021.3065190.

[28] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information

in Computer Systems. 1975.

[29] Spyridon Samonas and David Coss. “The CIA strikes back: Redefining con-

fidentiality, integrity and availability in security.” In: Journal of Information

System Security 10.3 (2014).

[30] Michele Tufano et al. “An empirical investigation into learning bug-fixing

patches in the wild via neural machine translation”. In: Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineer-

ing. 2018, pp. 832–837.

[31] David S Wile. “Abstract syntax from concrete syntax”. In: Proceedings of the

19th international conference on Software engineering. 1997, pp. 472–480.

[32] Yiwen Wu et al. “Characterizing the Occurrence of Dockerfile Smells in Open-

Source Software: An Empirical Study”. In: IEEE Access 8 (2020), pp. 34127–

34139. doi: 10.1109/ACCESS.2020.2973750.

[33] Yang Zhang, Huaimin Wang, and Vladimir Filkov. “A clustering-based ap-

proach for mining dockerfile evolutionary trajectories”. In: Science China In-

formation Sciences 62 (2018), pp. 1–3.

[34] Yang Zhang et al. “An Insight Into the Impact of Dockerfile Evolutionary

Trajectories on Quality and Latency”. In: 2018 IEEE 42nd Annual Computer

Software and Applications Conference (COMPSAC). Vol. 01. 2018, pp. 138–

143. doi: 10.1109/COMPSAC.2018.00026.

78

https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1109/ICST.2018.00014
https://doi.org/10.1109/MSEC.2021.3065190
https://doi.org/10.1109/ACCESS.2020.2973750
https://doi.org/10.1109/COMPSAC.2018.00026

	Introduction
	Thesis objective
	Thesis description

	Background
	Abstract Syntax Tree
	Docker
	Container and virtualization technologies
	Architecture

	Main components
	Docker Engine
	Docker Image
	Dockerfile

	Security risks
	Best security practices in Dockerfile

	State of the Art
	Security smells in IaC scripts
	Dockerfile misconfigurations
	Detection and Repairing Techniques
	Rule-based detection tools

	Automatic Program Repair
	Static template based
	Machine learning based


	Security misconfigurations assessment
	Datasets overview and preprocessing
	Misconfigurations assessment
	Evaluation of existing tools
	Discussion
	Security best practices awareness
	Existing tools limitations


	System Implementation
	Architecture
	Main components
	Parser
	Detector
	Template engine and converter

	Workflow

	Evaluation
	Results
	Discussion and Limitations
	Future work

	Conclusion
	Appendix
	Improvements in Bash and Dockerfile grammar rules
	Improvements in Dockerfile grammar rules
	Improvements in Bash grammar rules


	Bibliography

