
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Learning Nonparametric Individualized
Treatment Response Curves

Supervisors

Prof. Mauro GASPARINI

Prof. Pekka MARTTINEN

Eng. Çağlar HIZLI

Candidate

Andrea COGNOLATO

July 2022



Abstract

Thanks to modern medical devices, clinicians are able to obtain accurate and
frequent measurements of the patient’s physiological state. Precision medicine
aims to individualize the treatment for each patient and design optimal treatment
regimes, using the vast amount of data stored in EHRs. Learning individualized
treatment responses accurately is an essential step to achieve the goals of precision
medicine.

In the literature, the majority of treatment response methods use parametric
functions to model the response curves. The functions are designed using domain
knowledge about the clinical behavior of the treatment and make strong assumptions
about the response curve’s shape. Part of my work was to develop a new nonpara-
metric model for treatment response curves that achieves competitive performance
against parametric models while allowing patient-specific customizations.

I have analyzed the differences between directly modeling the treatment responses
with a Gaussian Process (GP) and modeling the treatment dynamics using a
Latent Force Model (LFM). I evaluated three models on a challenging blood
glucose prediction dataset. Additionally, I have developed a method for using
the treatment’s covariates to scale the response curves: several experiments were
run comparing two GP regression models as well as several ways of sharing the
treatment response and treatment covariate model between patients. This code
and data are now public for reproducibility and as a building block for future work.
Finally, State-Of-The-Art (SOTA) performance on the dataset was obtained and
it was discovered that modeling the treatment dynamics with a LFM does not
significantly improve the predictive performance.

Results obtained from this thesis support the case for nonparametric models in
treatment response curve estimation, and lay a solid foundation for more sophisti-
cated, GP-based methods. By providing better estimation of physiological states, I
hope to empower clinicians and provide better, faster, and cheaper healthcare.
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Chapter 1

Introduction

In healthcare, clinicians determine how to treat each patient by combining knowl-
edge collected from the general population with data relative to the specific indi-
vidual. Thus, data is crucial in helping healthcare professionals to provide the best
possible treatment to patients.

The last few years have witnessed a huge growth in the amounts of medical
data, thanks to the advent of electronic health records (EHRs) and modern medical
devices. The goal of precision medicine is to improve the treatment for each patient
by providing individualized treatment strategies developed using this large amount
of data [1].

A key task in providing personalized treatments is learning individualized
treatment response (ITR) curves. That is, estimating the continuous response
over time of treatments from a time series of the patient’s state [2]. One example
application of ITR curves is to develop optimal dosing strategies for medications
[3].

Several studies have proposed models for ITRs that rely on parametric curves.
These parametric curves are designed using expert knowledge about the physiologi-
cal response to the treatment. The parametric models presented in the literature
display a wide variety of formulations, using models such as bell-shaped curves [4],
analytical solutions to LTI systems [5].

Only a few studies in literature, such as [6], propose modeling the treatment
response curve using a fully nonparametric approach. The key motivation for this
work is that nonparametric models are crucial in achieving the goals of precision
medicine, since their flexibility can capture individual-specific variations much
better than a parametric model.

The approach I used to solve the ITR estimation problem is to reimplement
current state of the art Gaussian Process (GP) based ITR methods from the
literature and to improve them by incorporating more data and more flexibility
into their formulation. The probabilistic foundations of GPs are crucial to obtain
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Introduction

credible intervals for our predictions, in order to correctly estimate uncertainty.
Additionally it is possible, but not straightforward, to customize the models and
incorporate constraints by designing new covariance functions, or kernels.

To incorporate domain-specific knowledge about the physiological dynamics of
treatments, I turned to Latent Force Models (LFMs) [7, 8]. By combining the
mechanistic approach of Ordinary Differential Equation (ODE) modeling with
nonparametric GPs, LFMs allow having flexible models with the extrapolation
abilities of mechanistic models.

Current nonparametric models do not try to model continuous treatment dosages
and only allow a finite number of treatment variants [6]. I have developed a method
to include treatment covariates to the response estimation. This allows to predict
the effect of treatments with doses never before experienced in the training dataset.

The methods are evaluated on their predictive performance for future treatments.
The first set of experiments uses simulated data to verify the correctness of the
implementations. Then a real-world dataset of blood glucose measurements is used
to evaluate the models on the challenging task of predicting the impact of meals
on blood glucose levels.

Findings show that GP-based nonparametric models can achieve satisfactory
performance in ITR estimation task. Additionally I have found that on noisy
datasets typical of the healthcare field [9], more sophisticated models often fail
because of their lower noise robustness. In these experiments, it was found that
simpler GP models are superior in terms of predictive performance, training time,
and inference time to the more complex LFM models. Finally, the results show that
using treatment covariates to estimate the effect of unseen dosages greatly improves
the predictive performance, but must be used carefully as it is very sensitive to
noise in the data.

I hope that these results can provide useful insights for researchers interested in
using nonparametric methods for ITR estimation. On a broader level, the goal is
to have a positive impact in the field of precision medicine. Providing healthcare
practitioners with better decision-making tools is crucial for improving the quality
of health care and the quality of life of those who need it.

This thesis is structured as follows: Section 2 presents the needed background
to develop the new methods and for the results, starting with Gaussian Processes
and their Multi-Ouput extensions in Sections 2.1 and 2.2. A short introduction to
Ordinary Differential Equations is given in Section 2.3. We proceed to merge GPs
and ODEs in Section 2.4, which develops the formulation of Latent Force Models.
The application of latent force models to treatment response curve estimation is
presented in Section 2.5. Section 3 introduces the task I will use to evaluate the
methods, the notation, and describes the available data. Section 4 presents the
newly developed methods, starting with the Time-Limited Squared Exponential
Kernel in Section 4.1. A new LFM model, the Time-Limited Latent Force model,
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is presented in Section 4.2. Then I discuss how to introduce treatment covariates in
Section 4.3 and finally how to extend these treatment models to multiple patients
in Section 4.4. Section 5 presents the experiments and their results, on simulated
and real-world data. To conclude, in Section 6 the results are summarized, their
significance discussed and directions for future research are considered.
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Chapter 2

Background

2.1 Gaussian Processes

2.1.1 Definition
A Gaussian Process (GP) is a random function. The evaluations of a GP at a finite
number of points form a joint Gaussian distribution [10].

Just like a multivariate normal distribution is completely determined by its
mean vector and covariance matrix, a GP is determined by its mean function m
and covariance function k. We use the following notation to indicate a real-valued
Gaussian process f :

f(·) ∼ GP(m(·), k(·, ·)),

where the two functions are defined as follows:

m : R → R
m(x) = E(f(x))

k : R × R → R
k(x, x′) = E((f(x) − m(x))(f(x′) − m(x′))).

Under this definition, the GP is an infinite-dimensional object. This property
is necessary to represent arbitrary functions. In our applications, we are mainly
interested in evaluating the GP at a finite number of points. This allows us to
work with multivariate normal distributions, a much simpler finite-dimensional
object. We call these n-dimensional Gaussian distributions the finite-dimensional
distributions of the process at x. We use the following notation to denote a GP
evaluated in a finite set of points x ∈ Rn:
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f = f(x)
f ∼ N (m(x), k(x, x)).

2.1.2 Covariance functions
The covariance function, also known as the kernel, is an important ingredient in
GP modeling. The function takes two points xi, xj as inputs, and is equal to the
covariance between f(xi), f(xj), the random variables obtained by evaluating the
GP at each one of the two points.

Let xi, xj ∈ R, then:

cov(f(xi), f(xj)) = k(xi, xj).

The behaviour of sampled functions heavily depends on the kernel choice. Let
us now see how different kernels result in different samples. To see this, we pick
an arbitrary set of test points x∗ ∈ Rn∗ . The mean and covariance functions are
evaluated at the test points to create a mean vector µ ∈ Rn∗ and covariance matrix
Σ ∈ Rn∗×n∗ , respectively. Finally, we sample random vectors from the relative
finite-dimensional multivariate normal distribution and plot them.

µ = m(x∗)
Σ = k(x∗,x∗)
f∗ ∼ N (µ, Σ).

The three kernels we will use to illustrate the differences are: squared exponential,
periodic, white noise.

k(x, x′) = σ2 exp
A

−1
2

(x − x′)2

ℓ2

B

k(x, x′) = σ2 exp
A

− 2
ℓ2 sin2

A
π

|x − x′|
p

BB

k(x, x′) =
σ2, if x = x′

0, otherwise
.

Figure 2.1 shows the covariance matrix and samples from each kernel.

2.1.3 Prediction
Having seen how a GP looks like a priori, that is without conditioning it on some
data, let us now see how to incorporate observations. We start by writing the
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Figure 2.1: Comparison of the covariance matrix and samples from three zero-
mean GPs with three different kernels. Left: A squared exponential kernel with
lengthscale parameter ℓ = 1. Center: A periodic squared-exponential kernel with
lengthscale parameter ℓ = 1 and period parameter p = 1. Right: White noise
kernel. All kernels have scale parameter σ = 1.

full joint distributions and then, using the conditioning property of multivariate
Gaussians, we will obtain the GP posterior distribution.

The joint distribution over noiseless training outputs f and test outputs f∗ is,
when assuming zero-mean:C

f
f∗

D
∼ N

AC
0
0

D
,

C
k(x, x) k(x, x∗)
k(x∗, x) k(x∗, x∗)

DB
,

where x are the training inputs, x∗ the test inputs, and where by k(x, x∗) we denote
the Rn×n∗ matrix obtained by evaluating k on all pairs of training and test inputs.

Using the conditioning property of multivariate Gaussians [11], we can obtain a
closed-form expression for the posterior distribution.

µ∗ = k(x∗, x)k(x∗, x∗)−1f ,

Σ∗ = k(x∗, x∗) − k(x∗, x)k(x∗, x∗)−1k(x, x∗),
f∗ | x∗, f , x ∼ N (µ∗, Σ∗).

Using the same properties, we can obtain the posterior distribution given noisy
observations y = f + ϵ, where ϵ ∈ Rn. The ϵ are independent and identically
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distributed (i.i.d.) Gaussian noise with known variance σ2
n. Thus, its covariance ma-

trix will be, cov(ϵ, ϵ) = σ2
nI. Rewriting the joint distributions of noisy observations

and test outputs givesC
y
f∗

D
∼ N

AC
0
0

D
,

C
k(x, x) + σ2

nI k(x, x∗)
k(x∗, x) k(x∗, x∗)

DB
,

and the resulting posterior distribution is

µ∗ = k(x∗, x)k(x∗, x∗)−1y,

Σ∗ = k(x∗, x∗) − k(x∗, x)(k(x∗, x∗) + σ2
nI)−1k(x, x∗),

f∗ | x∗, y, x ∼ N (µ∗, Σ∗).

Finally, the posterior predictive distribution is obtained by simply adding σ2
nI

to cov(f∗)

y∗ | x∗, y, x ∼ N (µ, Σ∗ + σ2
nI).

In figure 2.2 we see an application of the concepts presented so far. We fit a GP
model to some observations and show the posterior mean, some samples, as well as
the 95% credible intervals.

0 2 4 6 8 10
x

0

1

2

f(x
)

Gaussian Process Regression

Data
GP mean
GP samples
GP mean 95% CI

Figure 2.2: The chart shows an example of Gaussian Process Regression (GPR).
The data, shown as black crosses, is generated by adding i.i.d. Gaussian noise
with 0.5 standard deviation to the sin(x) function. A GP model with a squared
exponential kernel is fitted and the three hyperparameters ℓ, σ, σn are estimated
by MAP. We plot the posterior mean, posterior samples, and 2σ credible intervals
with thick blue line, thin blue lines, and shaded blue regions, respectively.
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2.1.4 Marginal Likelihood
Let us introduce the marginal likelihood p(y). The marginal likelihood is likelihood
p(y | f) integrated over the prior distribution p(f).

p(y) =
Ú

p(y | f)p(f)df .

We call it marginal, since we are marginalizing or "integrating away" the function
values of f .

A closed-form expression for p(y) can be derived by exploiting the fact that
y = f + ϵ, thus

E (y) = E (f) + E (ϵ) = 0,

V(y) = V(f) + V(ϵ) = k(x, x) + σ2
nI,

y ∼ N (0, k(x, x) + σ2
nI),

Finally, we use the definition of log-likelihood and to obtain the formula

log p(y) = −1
2fT (k(x, x) + σ2

nI)−1f − 1
2 log |k(x, x) + σ2

nI| − n

2 log 2π.

The marginal log likelihood can be efficiently computed by using the Cholesky
decomposition instead of directly inverting the covariance matrix.

2.2 Multi-Output Gaussian Processes

2.2.1 Introduction
Until this point, our description of Gaussian Processes has focused on one-dimensional
or real-valued GPs. Let us extend this definition to a larger class of models, vector-
valued or multi-output GPs (MOGPs) [12].

Consider two independent GPs: f1(·), f2(·). f1(·) has zero mean and covariance
function k1(·, ·). f2(·) has zero mean and covariance function k2(·, ·).

f1(·) ∼ GP(0, k1(·, ·))
f2(·) ∼ GP(0, k2(·, ·)),

Assume that we have an observation model with additive i.i.d. Gaussian errors.

y1 = f1 + ϵ1

ϵ1
i.i.d.∼ N (0, σ2

n1)
y2 = f2 + ϵ2

ϵ2
i.i.d.∼ N (0, σ2

n2),

8



Background

and that we have two datasets of training input and observation pairs.

x1, y1 ∈ RN1

x2, y2 ∈ RN2 ,

We can then write the joint distributionC
y1
y2

D
∼ N

AC
0
0

D
,

C
k1(x1, x1) + σ2

n1I 0
0 k2(x2, x2) + σ2

n2I

DB
.

Because the two GPs are independent, the covariance matrix is block-diagonal. In
the general non-independent case, the matrix has nonzero upper right and lower
left blocks.

To reinforce our intuition, see figure 2.3. In the left plot we display the joint
covariance matrix for two independent GPs. In the two panels on the right, we
plot each one of the two independent Gaussian Processes. As expected, since the
off-diagonal blocks in the covariance matrix are zeros, the two GPs are completely
uncorrelated.

0 5 10, 0 5 10

0

5

10,
0

5

10

cov(f( ), f( ))

1
0
1

f1( )

0 2 4 6 8 10

2.5
0.0
2.5

f2( )

Figure 2.3: Left: the covariance matrix for the joint distribution of two indepen-
dent one-dimensional GPs. For this plot, the two GPs use the same squared expo-
nential kernel with the only difference being the scale parameters: σ1 = 0.5, σ2 = 2.5.
Observe that this is a block-diagonal matrix. Right: samples from the zero-mean
GPs using this covariance matrix. Notice how they samples show no signs of
correlation.

2.2.2 Intrinsic Coregionalization Model
Instead of directly trying to define a covariance function for MOGPs, we are going
to pick a generative model for our outputs and derive its corresponding covariance
function.

9



Background

We are going to keep the same assumptions as earlier but with one crucial
modification. Let a ∈ Rd and define:

u(·) ∼ GP(0, k(·, ·))

f(·) = au(·) =


f1(·)

...
fd(·)

 =


a1u(·)

...
adu(·)

 ,

This model is called Intrinsic Coregionalization Model ICM [12]. In this model, we
assume that all outputs are generated by linearly transforming an underlying GP
u(·).

We now compute the multi-output kernel function for this multi-output GP. This
is a function that, given the indices i, j of two GPs in f and given two locations
x, x′, will be equal to the covariance between fi(x), the i-th element of f evaluated
at x, and fj(x′), the j-th element of f evaluated at x′. Let i, j ∈ 1, ..., d, then

cov(fi(·), fj(·)) : N × R × N × R → R
cov(fi(·), fj(·)) = aiajcov(u(·), u(·))

= aiajk(·, ·),

Now that we defined the covariance between two arbitrary output, we can write
in a single matrix expression the full multi-output covariance between all pairs of
outputs.

cov(f(·), f(·)) =


cov(f1(·), f1(·)) ... cov(f1(·), fd(·))

... . . . ...
cov(fd(·), f1(·)) ... cov(fd(·), fd(·))

 k(·, ·)

=


a1a1 ... a1ad

... . . . ...
ada1 ... adad

 k(·, ·)

=


b11 ... b1d
... . . . ...

bd1 ... bdd

 k(·, ·)

= aaT k(·, ·)
= Bk(·, ·).

where B ∈ Rd×d is a matrix of rank 1.
We plot the covariance matrix and samples from it in figure 2.4, proceeding in

a similar fashion as we did in figure 2.3. Unlike the previous plot, this time the
off-diagonal blocks of the covariance matrix are not zeros. These blocks, which we
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call cross-covariance matrices, define the dependence structure between the two
GPs. In this case, the two GPs are completely dependent on each other, with the
only difference being a scaling factor.

0 5 10, 0 5 10

0

5

10,
0

5

10

cov(f( ), f( ))

0.5
0.0
0.5

f1( )

0 2 4 6 8 10
2.5

0.0

f2( )

Figure 2.4: Left: the covariance matrix for the joint distribution of a Multi-
Output Gaussian Process (MOGP) generated using the Intrinsic Coregionalization
Model (ICM). For this plot, the two GPs use squared exponential kernels with scale
parameters: σ1 = 0.5, σ2 = 1.5 and a common lengthscale ℓ = 1. Observe that this
matrix is has a block structure, but it is not block-diagonal. Right: samples from
the zero-mean GPs using this covariance matrix. Notice how the samples from the
2nd GP f2(·) are, as expected, simply the scaled version of the 1st GP f1(·).

2.3 Ordinary Differential Equations
The majority of natural phenomenons involve change. To mathematically describe
change, we must be able to write equations that relate varying quantities.

The derivative y′(x) describes the rate of change of y with respect to x. Hence,
we will naturally want to write equations where a function and its derivative are
related. We will call these differential equations.

In our treatment, we will only consider 1-dimensional, single-argument functions.
This allows us to only consider Ordinary Differential Equations (ODEs).

2.3.1 Definition
Given G, a function of x, y, and the derivatives of y. Then an expression of the
form

y(n) = G(x, y, y′, ..., y(n−1)).
is what we call an explicit ordinary differential equation of order n [13].
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2.3.2 Linear ODEs
Let ai(x), f(x) be continuous functions of x. If the function G can be written in
the following form:

y(n) = G(x, y, y′, ..., y(n−1)) =
n−1Ø
i=0

ai(x)y(i)(x) + f(x).

then we say that it is a linear ordinary differential equation.
The f(x) term is called forcing or source term. If f(x) = 0 then we say that

the ODE is homogeneous, otherwise we call it inhomogeneous.

2.3.3 Exact solutions for 1st-order linear ODEs
Consider an equation of the form

y′(x) + ay(x) = f(x),

where f(x) is a continuous functions of x, a a constant. We have a formula for the
general solution

y(x) = exp(−ax)
Ú

exp(ax)f(x)dx + c exp(−at).

where c is an arbitrary real number.
To get a better intuition about the behaviour of this class of equations, figure

2.5 shows the forcing term and its effect on the solution of an inhomogeneous linear
ODE with constant coefficients.

2.4 Latent Force Models
Latent Force Models (LFMs) [8, 7] were introduced to bridge the gap between pure
data-driven modeling and purely mechanistic modeling.

Data-driven techniques such as GPs and neural networks make weak assumptions
about the underlying data generating process, thus "letting the data speak". In
mechanistic modeling, the typical paradigm of physics, the models rely on existing
physical laws combined with strong knowledge driven constraints, often expressed
as differential equations.

It is natural to expect a range of models which vary in the strength of their
mechanistic assumptions. Latent Force Models enrich GPs, a data-driven statistical
model, with physics-inspired mechanistic ideas. To do so, LFMs incorporate
differential equations into latent variable GP models. In our treatment, we will
only consider first-order ordinary linear differential equations. However, in the
literature, we see LFMs that use second-order linear ODEs [7], nonlinear ODEs [8,
14] and Partial Differential Equations (PDEs) [14].
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0 2 4 6 8 10
x

1

0

1

Solution of a 1st-order linear inhomogeneous ODE

f(x)
y(x)

Figure 2.5: Solution of a 1st-order linear inhomogeneous ODE. The ODE parame-
ters are a = 0.15, which we shall call the decay parameter, and f(x) = sin(x) which
we call forcing function. We numerically solve the initial value problem with initial
conditions y(0) = 0 and plot the solution y(x) in orange and the forcing function
f(x) in blue.

2.4.1 Definition

We start by considering our mechanistic ODE model.

y′(x) + Dy(x) = B + Sf(x).

We have a first-order linear ordinary differential equation with constant coefficients
and a nonzero forcing function.

The data-driven modeling aspect comes from the fact that we model the forcing
function f(x) using GPs. In this instance, we assume that the latent force comes
from a GP with zero-mean and squared exponential kernel with a length scale
parameter ℓ.

kff (x, x′) = exp
A

−1
2

(x − x′)2

ℓ2

B
f(·) ∼ GP(0, kff (·, ·)).

To become more familiar with this model, let us see in figure 2.6 some examples of
its behaviour with different parameters B, D, S. Because this model was originally
used to model gene transcription processes, the parameters names are: B basal
rate, D decay rate, S sensitivity.
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Figure 2.6: The four panels show the latent force/forcing term of the LFM (blue
line) as well as the numerical solution of the ODE problem (orange line). We give
the solver boundary conditions y(0) = 0. Each panel uses a different combination
of parameters. Notice how increasing the decay rate D greatly reduces the average
value of y(x) while increasing the sensitivity S increases such value.

2.4.2 Output kernel

Using the results from the ODE chapter, we can write a closed-form expression for
y(x). To get rid of the arbitrary c factor, we must assume that y(0) = B/D.

y(x) = B

D
+ S exp(−Dx)

Ú x

0
f(u) exp(Du)du,

In this model, the ODE’s forcing function is a GP. Because the ODE is linear,
its solution is a linear operator of the forcing function. The normal distribution
is closed under linear operations, this also applies to GPs [10]. From this we can
conclude that the ODE solution y(·) is also a GP.

y(·) ∼ GP(0, kyy(·, ·)),
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Let us now compute the output kernel kyy analytically.

kyy(x, x′) = cov(y(x), y(x′))
= E((y(x) − B/D)(y(x′) − B/D))

= E((S exp(−Dx)
Ú x

0
f(u) exp(Du)du)

· (S exp(−Dx′)
Ú x′

0
f(u′) exp(Du′)du′))

= E(S2 exp(−D(x + x′))
Ú x

0

Ú x′

0
f(u)f(u′) exp(D(u + u′))dudu′)

= S2 exp(−D(x + x′))
Ú x

0

Ú x′

0
E(f(u)f(u′)) exp(D(u + u′))dudu′

= S2 exp(−D(x + x′))
Ú x

0

Ú x′

0
kff (u, u′)) exp(D(u + u′))dudu′.

Substituting the definition of kff inside the double integral and using the properties
of the error function allows us to obtain a closed-form expression.

kyy(x, x′) = S2
√

πℓ

2 [h(x, x′) + h(x′, x)],

where

h(x′, x′) =exp(γ2)
2D

{exp [−D(x′ − x)]
C
erf
A

x′ − x

ℓ
− γ

B
+ erf

3
x

ℓ
+ γ

4D

− exp [−D(x′ − x)]
C
erf
A

x′

ℓ
− γ

B
+ erf (γ)

D
}.

Here erf(x) =
s x

0 exp(−u2)du and γ = Dℓ/2.
Looking at figure 2.7, we see how the covariance matrix of this kernel looks

like. In this instance, the kernel uses parameters B = 0, D = 0.5, S = 1.5, ℓ = 1.5.
Additionally, we take samples from a GP using this kernel and can indeed verify
that they look similar the ODE solutions we see in figure 2.6.

2.4.3 Output-latent kernel

To infer the latent forces that are responsible for the output’s behaviour we also
need an "output-latent" kernel that computes the cross-covariance between the
output y(x) and the latent force f(x′).

The derivation for the output-latent kernel follows the sames steps as the output
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Figure 2.7: Left: Covariance matrix of a GP with a LFM output kernel. In this
chart, the kernel uses parameters B = 0, D = 0.5, S = 1.5, ℓ = 1.5. Observe how,
in the top-left corner, all values are very close to zero. Right: samples from the
zero-mean GPs using this covariance matrix. Notice how, near zero, all of the
samples have small values. This is because of the initial condition y(0) = B/D = 0
which we have used to derive the kernel’s formula.

kernel:

kyf(x, x′) = cov(y(x), f(x′))
= E((y(x) − B/D)f(x′))

= E((S exp(−Dx)
Ú x

0
f(u) exp(Du)du)f(x′))

= E((S exp(−Dx)
Ú x

0
f(u)f(x′) exp(Du)du))

= S exp(−Dx)
Ú x

0
E(f(u)f(x′)) exp(Du)du

= S exp(−Dx)
Ú x

0
kff(u, x′) exp(Du)du.

Again, for squared exponential kernels this can be obtained explicitly leading to

kyf(x, x′) =
√

πℓS

2 exp(γ2) exp(−D(x′ − x))
C
erf
A

x′ − x

ℓ
− γ

B
+ erf

3
x

ℓ
+ γ

4D
.

In figure 2.8 we see Gaussian Process Regression (GPR) with a GP that used
the covariance function that we have derived. The latent force function is chosen
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to be sin(x). Then we use an ODE solver that solves the LFM ODE problem to
generate the data. To the resulting ODE solution, we add i.i.d. Gaussian noise
with 0.5 standard deviation. In the left panels we plot the data using black crosses
as well as the posterior mean, and 2σ credible intervals with thick blue line, and
shaded blue regions, respectively.

The right panel uses the cross-covariance function to estimate the latent force
posterior from data. The latent force posterior is also a GP with the following
mean and covariance:

µ∗ = kfy(x∗, x)kyy(x∗, x∗)−1y,

Σ∗ = kff (x∗, x∗) − kfy(x∗, x)(kyy(x∗, x∗) + σ2
nI)−1kyf (x, x∗),

f∗ | x∗, y, x ∼ N (µ∗, Σ∗).

The posterior mean (solid orange line) and its 2σ credible interval (shaded
orange region) are plotted. Additionally, we plot the true latent force sin(x) and
verify that it is always inside the shaded interval.

2.5 LFMs for Treatment Response Estimation
Up to this point we have introduced Gaussian Processes and Linear Ordinary
Differential Equations. These two concepts were then merged together to develop
Latent Force Models. We have motivated LFMs as a way to mix data-driven,
weakly mechanistic models like GPs and knowledge-driven, stronly mechanistic
models like ODEs. We will now see a real-world application of LFMs, as we will
use them to model treatment response curves.

We will present a simplified version of [6]. We limit ourselves to discussing the
model for treatment responses, without introducing the extra complexity required
to model the baseline signal and without discussing how a hierarchical structure
can be used to improve the prediction across multiple individuals.

2.5.1 Model definition
Let τ be the time. Let y(τ) be the physiological quantity we are interested in
modeling. Let t = {tm | m = 1, . . . , M} be a set of treatment times i.e. the time at
which a specific treatment was administered to the patient.

We write the differential equation of the LFM describing the time evolution of
the physiological quantity under the effect of M independent treatments f :

y′(τ) = B − Dy(τ) + S
MØ

m=1
f(τ ; tm).
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Gaussian Process Regression
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Figure 2.8: The chart shows an example of Gaussian Process Regression (GPR)
using a GP kernel based on a Latent Force Model. The data, shown as black crosses,
is generated by giving the sin(x) function to an ODE solver that solves the LFM
ODE problem. Then, to the resulting ODE solution, we add i.i.d. Gaussian noise
with 0.5 standard deviation. A GP model with a LFM kernel is fitted. Left: The
data is plotted using black crosses. We plot the posterior mean, and 2σ credible
intervals with thick blue line, and shaded blue regions, respectively. Right: We plot
the estimated latent force (solid orange line) and its 2σ credible interval (shaded
orange region). We plot the true latent force sin(x) and verify that it is always
inside the shaded interval.

2.5.2 Time-marked Latent Forces
The forcing function f(τ ; tm) is a GP. But, since our goal is to model treatments,
we must add one crucial condition. The effect of the treatment must be constant
before the treatment time tm. To model this, we turn to time-marked or causal
GPs [6]:

kff (τ, τ ′; tm) = exp
I

− [h(τ − tm) − h(τ ′ − tm)]2
ℓ2

J
f(τ ; tm) ∼ GP(0, kff (·, ·; tm)),

where h(τ) = τI(τ > 0) is the clipping function that enforces causality by cancelling
any effect before the treatment time.

For clarity, let us now compare in figure 2.9 the covariance matrices and samples
of two GPs using the standard squared exponential kernel and the time-marked
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squared exponential kernel, respectively.
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Figure 2.9: Top left: covariance matrix for a squared exponential (SE) kernel with
length scale ℓ = 1. Top right: samples from a GP with zero mean and SE kernel.
Bottom left: covariance matrix for a time-marked squared exponential (TMSE)
kernel with length scale ℓ = 1 and treatment time tm = 4. Top right: samples from
a GP with zero mean and TMSE kernel.

2.5.3 Output kernel
Just like we did in the LFM section, we can write the analytical solution to the
ODE. Again, we must assume that y(0) = B/D.

y(τ) = B

D
+ S

MØ
m=1

exp(−Dτ)
Ú τ

0
f(u; tm) exp(Du)du,

We can now proceed and compute the analytical expression for the output
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kernel.

kyy(τ, τ ′) =cov(y(τ), y(τ ′))
=E((y(τ) − B/D)(y(τ ′) − B/D))

=E((S
MØ

m=1
exp(−Dτ)

Ú τ

0
f(u; tm) exp(Du)du)

· (S
MØ

m′=1
exp(−Dτ ′)

Ú τ ′

0
f(u′; t′

m) exp(Du′)du′))

=E(S2 exp(−D(τ + τ ′))

·
MØ

m=1

MØ
m′=1

Ú τ

0

Ú τ ′

0
f(u; tm)f(u′; tm) exp(D(u + u′))dudu′)

=S2 exp(−D(τ + τ ′))

·
Ú τ

0

Ú τ ′

0
E(

MØ
m=1

MØ
m′=1

f(u; tm)f(u′; t′
m)) exp(D(u + u′))dudu′

= S2 exp(−D(τ + τ ′))

·
Ú τ

0

Ú τ ′

0

MØ
m=1

kff (u, u′; tm) exp(D(u + u′))dudu′.

We have obtained a formulation similar to the single-force LFM. The formula
derived in Section 2.4 cannot be reused here for two reasons: The latent force
kernel kff is a time-marked squared exponential instead of a squared exponential.
There are M latent forces instead of a single one.

While it is possible to obtain a closed-form solution, we will neither present
the steps nor the final formulas here. The same goes for the "cross-covariance" [6]
output-latent kernel. For more details check the supplementary material or the
code samples provided with this document.

In figure 2.10 we can see the result of our efforts. The treatment response shows
exponential growth/decay before the treatment time tm, due to the constant value
of the latent force, and then it behaves like a squared exponential GP convolved
with an exponential function.

2.5.4 Limitations

Let us now discuss some limitations of this model. While applying to a real-world
data set, we have found four main issues:

• Treatments are nonzero (but constant) before the treatment time.
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Figure 2.10: Left: covariance matrix for the kyy output kernel with parameters
B = 0, D = 0.5, S = 1.5, tm = 4, ℓ = 1. Right: samples from the output kernel.

• Treatments have infinite duration. The effect persists long after the treatment
time. This is not a realistic assumption if our goal is to model real-world drug
effects [15].

• Treatments are independent. This is not realistic as it is reasonable to assume
that the same drug, taken with the same dosage will have very similar effects
regardless of the administration time.

• The dosage or, more generally, the treatment’s covariates have no effect on
the treatment response.
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Chapter 3

Problem Formulation

We address the problem of treatment response curve estimation. Our goal is to
estimate the effects of a treatment or intervention on a physiological quantity. This
effect is modeled as a continuous function of time and, optionally, of the treatment’s
covariates. Estimating a treatment response curve is used to predict the state of a
patient under the administration of drugs and other therapeutic interventions.

In this section, we will introduce the high-level components of the models used
in the methods and results sections, describe the dataset used to train the models,
and the details of the task.

3.1 Model

Let f(τ) be a physiological quantity of an individual. Let fb(τ) be a continuous
function that models the baseline state, that is, the state without any treatments or
interventions. In the literature, this is also called counterfactual trend [4, 16]. Let
ft(τ) be a continuous function that models the treatment response to a treatment.
This function is the main focus of this dissertation and it is known in the literature
as the treatment response curve [2]. Different treatment response curve models will
have different ft formulations.
The generative model we have chosen for the physiological quantity is

f(τ) = fb(τ) +
MØ

m=1
ft(τ − tm),

The treatment response functions ft are additive both within themselves and with
the baseline function.
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Figure 3.1: Illustration of the distinct functions in the model and how they are
combined to form the final prediction. In this example, the physiological quantity
f(τ) is the sum of a sinusoidal baseline fb(τ) = sin(2πτ) and treatment response
curves ft(τ ; tm) = exp{−0.5(τ − tm − 2)2/0.52}. Two treatments are applied at
t1 = 1.5 and t2 = 5.7. Finally, y(τ) is sampled in 50 points uniformly distributed in
[0, 40], after having added i.i.d. Gaussian noise with standard deviation σ = 0.15.

Let y(τ) be the noisy physiological quantity. The noise model is zero-mean inde-
pendent and identically distributed Gaussian noise.

y(τ) = f(τ) + ϵ(τ)
ϵ(τ) ∼ N (0, σ2

obs).

There might be extra data associated with the treatments. We shall call it treatment
covariates and denote it with xm.

Figure 3.1 illustrates how all of the aforementioned functions come together to
form the model for treatment effects.

3.2 Data
Let τ = {τi | i = 1, 2, . . . , N} be irregularly-sampled times, sorted temporally. Let
y = {yi | τ = 1, 2, . . . , N} be noisy observations of the physiological quantity that
we want to estimate the effect of a treatment on. Every observation yi occurs at
a time τi. Let t = {tm | m = 1, 2, . . . , M} be irregularly-sampled times at which
a treatment is administered. Notice that generally N /= M , i.e. the observations
and treatments are not necessarily aligned. Let x = {xm | m = 1, 2, . . . , M} be
treatment covariates associated with every treatment, e.g. a drug’s dosage, the
amount of carbohydrates, proteins, and fats in a meal. Our complete dataset D is
thus a 4-tuple D = {τ , y, t, x}.
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Figure 3.2: Illustration of how the model is trained on the training dataset Dtrain,
and then tested using the test dataset Dtest. The only difference between the two
datasets is that in the test dataset we do not have access to ytest. All of the other
values: time, treatment times, and treatment covariates are available.

3.3 Task
Our goal is to estimate the values of f(τ), the noiseless physiological quantity, for
any future time point τtest, given new treatment times ttest and treatment covariates
xtest. In order to evaluate the performance on unseen data, we split the dataset D
into Dtrain and Dtext, using a time-series holdout split, such that D = Dtrain ∪ Dtest.
Given the historical dataset Dtrain = {τtrainytrain, ttrain, xtrain}. The estimate f(τ)
is then evaluated at τtest and compared with ytest, the true noisy observations at
τtest. In figure 3.2 we show the data used to train the model as well as the data
used in the prediction task the model is evaluated on.

3.4 Multiple individuals
So far, we have formulated the problem as if we had data about a single individual.
This formulation could also have worked with multiple individuals, as long as they
are treated as independent between each other, which is known as an unpooled
formulation [17].

Motivated by the fact that we want to share data across multiple individuals,
we now introduce the notation for multiple individuals. Let p = 1, 2, . . . , P be the
index of a specific individual. Let N (p), M (p) ∈ N be number of observations and
the number of treatments for an individual p. Then, let y(p) ∈ RN(p) the noisy
observations, measured at times τ (p) ∈ RN(p) . Let t(p) ∈ RM(p) be the treatment
times, and x(p) ∈ RK×M(p) be the treatment covariates.
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Notice how, in general N (p) /= N (p′). This means that the number of observations
can vary vastly between two different individuals and that they are not necessarily
temporally aligned.

We also define the generative model for the p-th individual:

f (p)(τ) = f
(p)
b (τ) +

MØ
m=1

f
(p)
t (τ − tm).

This could also be rewritten using the formalism of Multi-Output Gaussian
Processes, as we will see in later chapters.
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Chapter 4

Methods

4.1 Time-Limited Treatment Responses
Here, we propose our first model for learning nonparametric treatment response
curves. Unlike the subsequent models, this model does not use ODEs to model the
dynamics of physiological quantities. Instead, the treatment responses are modelled
directly using GPs with a modified squared exponential kernel.

4.1.1 Model Definition
We start from the generative model defined in Chapter 3.

f(τ) = fb(τ) +
MØ

m=1
ft(τ − tm),

The baseline function fb is a constant, motivated by the facts that in the dataset
we see no clear patterns outside of the ones explained by treatments and that in
non-diabetic patients the baseline can be accurately approximated by a constant
baseline [18].

fb(τ) = k,

The treatment response function ft is a zero-mean GP with a custom kernel
kftft :

ft(·) ∼ GP(0, kftft(·, ·)).

4.1.2 Non-independent treatments
Consider two treatments ft, f ′

t . They are two functions sampled from a Gaussian
Process GP(0, kftft(·, ·)). In the LFM for Treatment Response Estimation model

26



Methods

[6], the assumption is that ft and f ′
t are two independent samples from the GP.

Thus cov(ft, f ′
t) = 0, or ft, f ′

t
iid∼ GP(0, k(·, ·)). For our model, we assume that they

are the same sample from the GP, or ft = f ′
t , ft

iid∼ GP(0, k(·, ·)).
Thus, if we assume that all treatments are independent, the covariance function

is nonzero only between two treatments administered at the same time, which we
consider to be the same treatment:

cov(ft(τ − tm), ft(τ ′ − tm′)) =
kftft(τ − tm, τ ′ − tm′), if m = m′

0, otherwise
,

whereas, in our non-independent formulation, since we assume that all treatments
have the same response function, regardless of administration time, the correlation
between the responses is always nonzero:

cov(ft(τ − tm), ft(τ ′ − tm′)) = kftft(τ − tm, τ ′ − tm′), ∀m, m′ ∈ 1, . . . , M.

4.1.3 Time-Limited Squared Exponential Kernel
The main issue with using a SE kernel for treatment responses is that the GP
samples are not time-limited functions. On the other hand, we expect the treatment
effect to have a starting time and a finite duration [15]. To model this, we modify
the SE kernel to generate functions that are zero before 0 and zero again after T ,
the treatment’s duration. A variant of this procedure has been discussed in [19, 6],
to model time-marked data with GPs.

To design a kernel that produces zero-valued functions we take a regular SE
kernel and then set its value to zero whenever τ, τ ′ < 0 or τ, τ ′ > T . We call this
Time-Limited Squared Exponential kernel (TLSE):

kSE(τ, τ ′) = σ2 exp
I

−1
2

(τ − τ ′)2

ℓ2

J

kTLSE(τ, τ ′) def=
kSE(τ, τ) if 0 < τ, τ ′ < T

0 otherwise
.

In Figure 4.1 we compare the covariance matrices and their samples for GPs
with SE and TLSE kernels. As expected, the samples for the SE GP have infinite
duration, while ones from the TLSE GP have limited duration between the starting
time tm and the final time tm + T .

4.1.4 Output kernel
Let us now derive the output kernel for this model. Since now we are using a
single treatment response function instead of M independent ones, the covariance
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structure will be different and we cannot reuse the results from Section 2.5.

kff (τ, τ ′) = cov(y(τ), y(τ ′))

= cov
fb(τ) +

MØ
m=1

ft(τ − tm), fb(τ ′) +
M ′Ø

m′=1
ft(τ ′ − tm′)


= E

A MØ
m=1

ft(τ − tm)
B M ′Ø

m′=1
ft(τ ′ − tm′)


=

MØ
m=1

M ′Ø
m′=1

E(ft(τ − tm)ft(τ ′ − tm′))

=
MØ

m=1

M ′Ø
m′=1

kftft(τ − tm, τ ′ − tm′).

Comparing it with the output kernel from Section 2.5 we see that here we have two
summations over tm whereas the other model only had one. This is because here
we are sharing the same response function for all treatments whereas the other
model considers all treatment responses as independent.

4.1.5 Limitations
This is the simplest model that has been developed as part of this dissertation.
While its simplicity is an attractive factor, mainly thanks to its interpretability
and performance, it has two limitations:

• No knowledge of treatment covariates. Since this model does not use
any data from the treatment covariates, it will predict the same effect for two
vastly different dosages. This is especially an issue when modeling the effect
of meals, which can vary greatly in their caloric content.

• No explicit model for treatment dynamics. On the spectrum of weakly
mechanistic to strongly mechanistic models, this one clearly is closer to the
former. The only knowledge-driven modeling aspect we have used is the kernel
design. We would like to understand whether it is reasonable to introduce
additional knowledge of the treatment dynamics through a Latent Force Model.

• Performance. Because one single response function is shared across all
treatments, the covariance function must consider the effect of all treatments
when computing each treatment. In other words, each treatment depends
on all of the other ones, which means that for M treatments, computing the
covariance between any two time point requires O(M2) operations.
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Figure 4.1: Comparing the covariance matrices and 3 GP samples for a Squared
Exponential (SE) kernel and Time-Limited Squared Exponential (TLSE) kernel.
Both kernels share the same length scale ℓ = 1. This TLSE kernel is using a
treatment duration T = 6 and its inputs were delayed by tm = 2, so we expect
its effect to end at tm + T = 2 + 6 = 8. Notice the discontinuities near the times
where the treatment starts and stops its effects. In practice they do not appear to
be problematic.

4.2 Time-Limited Latent Forces

The goal of our second model is use our knowledge about the treatment dynamics
for better treatment response estimation. We build on previous work on Latent
Force Models (LFMs) for Treatment Response Estimation [6], with some crucial
modifications that we argue are required for adequate modeling of treatment.

Our main contribution is to update the existing SOTA [6] model to include the
two constraints developed in our first model.
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4.2.1 Model Definition
Starting from our common generative model:

f(τ) = fb(τ) +
MØ

m=1
ft(τ − tm),

we decide to use a constant baseline function fb(τ) = k.
The treatment response function ft is inspired by LFM models and it is defined

as the solution to an Ordinary Differential Equation. We define that the time
evolution of the treatment function ft depends on its current value scaled by a
decay rate term D plus a latent force fl(τ) scaled by a sensitivity term S:

f ′
t(τ) = −Dft(τ) + Sfl(τ),

The latent function fl is modelled with a GP. Since this function describes the
underlying "effect" of a treatment, our previous arguments about causality and
time-limitedness still apply. For these reasons, we do not use a squared exponential
kernel like [7] or a time-marked squared exponential kernel [6], but instead our
newly developed time-limited squared exponential kernel (TLSE).

fl(·) ∼ GP(0, kTLSE(·, ·)).

Again, since we are using a linear ODE its solution is a linear functional L of the
forcing function. And since the forcing function is a GP, any linear combination
will still be a GP, albeit with a different covariance function.

We can write the analytical solution to the ODE:

ft(τ − tm) = S exp(−Dτ)
Ú τ

0
fl(u − tm) exp(Du)du

= L[fl](τ).

Finally, we assume that there is only one latent force, sampled from a GP, that
is shared by all treatments. On the other hand, other works [7, 6] assume that every
treatment uses a separate latent force and that all latent forces are independent
between each other.

In Figure 4.2, we compare the covariance matrix and samples for the latent
forces and outputs between two models. The first model is an LFM for Treatment
Response Estimation discussed in the background section, the second one is the
one we have just described. We can notice that in the Time-limited LFM output
kernel, after the treatment duration is over and the treatment’s latent force is 0,
the output physiological quantity shows exponential decay behaviour.
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Figure 4.2: Comparison between Time-Marked (TM) and Time-Limited
(TL) SE kernels for Latent Forces and LFM outputs. The first two panels
display the two kernels used for the LFM’s latent forces. Inside the [tm, tm + T ]
interval the samples from the two kernels, TMSE and TLSE, behave identically.
Before tm the TMSE samples are constant while the TLSE samples are zero. After
tm + T there is SE behavior when using the TMSE kernel. Using the TLSE, by
contrast, all the samples are zero after tm + T . The differences in the latent forces
influence the LFM output kernels too. The LFM kernel uses TM latent forces, the
TLLFM kernel uses TL latent forces. For the TMSE kernel, before tm there is
exponential decay behaviour, while for the TLSE kernel the LFM output is zero
just like its latent forcing function. After tm + T the LFM kernel does not change
while the TLLFM kernel shows exponential decay, due to the latent forces being
zero. All kernels share the same length scale ℓ = 1 and treatment time tm = 3.
The time-limited kernels use a treatment duration T = 4. All LFM kernels use
decay rate D = 0.5 and sensitivity S = 1.5.
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4.2.2 Limitations
Having now included some knowledge-driven inductive bias inside our model,
thanks to the LFM formulation, our model should, in theory, be able to fit more
complex datasets and provide better extrapolation performance with less data.
This, however comes with three flaws:

• Stronger Assumptions of LFM model. The stronger assumptions intro-
duced by the mechanistic ODE model allow the model to extrapolate beyond
the observation better than a purely data-driven model. But, by using LFMs,
we are forcing the model to learn latent functions inside a linear, inhomoge-
neous, constant coefficient ODE. This is a very strong assumption about the
data generating process and it could be a very bad approximation of the real
phenomenon.

• Performance. The LFM output kernels, both time-marked and time-limited
involve heavy use of nontrivial mathematical operations such as division, the
complementary error function, and exponentiation. Because of this, fitting
the model becomes very compute and memory intensive, even when using
hardware accelerators such as GPUs.

• No knowledge of treatment covariates. Like the first model, we have not
used data about the treatment covariates.

4.3 Treatment Covariates
One of the main goals of this work is to improve the existing LFM for treatment
response estimation by using the information contained in treatment covariates. We
study the behaviour of scaling the treatment response curves by a factor obtained
as a function of the treatment covariates.

We extend our existing generative model by applying a scaling factor S(xm) to
each one of the treatments ft. The treatment covariates xm are defined next. The
scaling factor is a function of the covariates xm of the m-th treatment:

f(τ) = fb(τ) +
MØ

m=1
S(xm)ft(τ − tm).

4.3.1 Linear Scaling
Let x be the treatment covariates.
Let xm ∈ x = {x1, x2, ..., xm} be the covariates associated to one specific treatment
m. For our analysis, we will consider xm ∈ RK . Each component xim can be, for
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example, the dose of one of the active ingredients of the drugs, or the amount of
macro-nutrients in a meal.

We define the scaling function S to be a linear combination of the individual
covariate components plus an intercept γ.

S(xm) def= βT xm + γ.

where β ∈ RK , γ ∈ R.

4.4 Individual-level Treatment Sharing
Up to this point, all of our models have considered a single individual at a time. We
assume that the treatment responses of two separate individuals are not independent
of each other. With this assumption, the predictions for one individual can be
improved by sharing statistical strength individuals. We discuss how to implement a
model that incorporates information from multiple individuals using the formalism
of Multiple-Output Gaussian Processes (MOGPs).

4.4.1 Model definition
We add support for multiple individuals in the generative model defined in Section
3.1 using the framework of Multi-Output Gaussian Processes.

Let P be the number of individuals and let p be a specific individual. We define
the generating process for the p-th individual as:

f (p)(τ) : R → R

f (p)(τ) = f
(p)
b (τ) +

MØ
m=1

f
(p)
t (τ − tm),

If the set of treatment functions {f
(p)
t }P

p=1 contains P independent functions, then
we call this a separate treatment response model. If the set contains the same single
function ft for all p, i.e. one single treatment response curve for all treatments and
individuals, then we call this the shared model.

Let us now consider the MOGP f(τ ) defined as:

f(τ ) : RP → RP

f(τ ) =


f (1)(τ (1))
f (2)(τ (2))

...
f (P )(τ (P ))

 ,
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Then we can write the matrix-valued covariance function:

cov(f(τ ), f(τ ′)) : RP × RP → RP ×P

cov(f(τ ), f(τ ′)) =
cov(f (1)(τ (1)), f (1)(τ ′(1))) ... cov(f (1)(τ (1)), f (P )(τ ′(P )))

... . . . ...
cov(f (P )(τ (P )), f (1)(τ ′(1))) ... cov(f (P )(τ (P )), f (P )(τ ′(P )))

 .

Notice that τ (p) /= τ ′(p′). The observations are not homotopic, but rather heterotopic
i.e. not aligned. If they were aligned, or homotopic, we could exploit the block
structure of the matrix to reduce the amount of computation [12].

In figure 4.3 we can view and compare the covariance matrices generated by the
multi-output kernel. The kernel is evaluated on two individuals, each one receiving
one treatment at times 1 and 5, respectively. Hence the treatment time vectors
will be t(1) = [1], t(2) = [5]. The same procedure is repeated with two different base
kernels, a time-limited SE Kernel and a time-limited LFM kernel. Then samples
from the two individual’s GPs are plotted on the same panel. Notice how the
treatment response functions have the same shape for the two individuals, even
though they have different starting times.

4.4.2 Hierarchical Linear Scaling Coefficients
Let us now introduce the treatment covariates in this model. We do this by
following the linear scaling approach described earlier into this chapter. This means
that our generative model will be:

f (p)(τ) = f
(p)
b (τ) +

MØ
m=1

S(p)(xm)ft(τ ; tm),

S(p)(xm) = (β(p))T xm + γ(p).

Deciding how much information about the coefficients β(p), γ(p) should be shared
across individuals is the differentiating factor for the next three models.

• Unpooled. In the unpooled model, we learn a separate set of coefficients for
every individual. While allowing for the largest flexibility, this model is also
very sensitive to noise in the dataset, which could lead it to learn unreasonable
coefficients in the training phase, leading to poor predictive performance.
Using formulas, we would write the Bayesian model as

β(p) ∼ N (µ(p)
β , σ

(p)
β )

γ(p) ∼ N (µ(p)
γ , σ(p)

γ ).
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• Pooled. The pooled model is on the opposite side of the spectrum compared
to the unpooled one. Rather than learning a separate set of parameters for
each individual, we learn a single set shared by all individuals. This allows
us to learn a very small number of parameters with a very large number of
samples, protecting us from the risk of overfitting.

β(p) ∼ N (µβ, σβ)
γ(p) ∼ N (µγ, σγ).

• Hierarchical. We aim to get the best of both worlds with a hierarchical
model. Here, we model the coefficients as the sum of a shared component plus
individual-specific corrections. Ideally, this allows us to both learn a robust
baseline and give us enough flexibility to model patient-specific reactions.

µ
(p)
β ∼ N (νβ, τβ)

µ(p)
γ ∼ N (νγ, τγ),

β(p) ∼ N (µ(p)
β σ

(p)
β ),

γ(p) ∼ N (µ(p)
γ σ(p)

γ ).
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Figure 4.3: Comparison of the covariance matrices and GP samples generated
by the multi-output kernel. The kernel is evaluated on two individuals, each one
receiving one treatment at times 1 and 5, respectively. Two base kernels are used:
a time-limited SE Kernel and a time-limited LFM kernel. Both kernels share the
same length scale ℓ = 1 and duration T = 3.5. The LFM kernel has decay rate
D = 0.9 and sensitivity S = 1.5. Samples from the GP of each individual are
plotted in the same panel, in blue and orange for individual 1 and 2, respectively.
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Chapter 5

Experiments

In this section, we demonstrate the efficacy of our methods in modeling multiple
treatment effects on two datasets, an artificial simulated dataset and a real dataset
using data from the Helsinki University Hospital.

We describe the generation procedure of the simulated dataset and the data and
preprocessing steps for the real dataset. First, we use simulated data to discuss
the shortcomings of methods from previous works. Additionally, we show that
our newly presented methods can fit the artificial dataset successfully, achieving
satisfactory performance. Finally, we train our newly developed methods on the
real dataset and we show empirical performance results for our method using the
metrics of prediction accuracy.

5.1 Simulated Data

5.1.1 Dataset Generation
We simulate artificial data using a Latent Force Model.

f(τ) = fb(τ) +
MØ

m=1
ft(τ − tm)

fb(τ) = 0
f ′

t(τ) = B − Dft(τ) + Sfl(τ)

fl(τ) = exp
A

−1
2

τ 2

12

B
,

where we have chosen the basal rate parameter B = 0, the decay rate D = 0.2, the
sensitivity S = 0.1. The treatment times are {15, 25}.

The ODE is numerically solved through SciPy’s solve_ivp routine. The nu-
merical solution is evaluated at 100 points, which form the full dataset.
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Finally, independent and identically distributed Gaussian noise is added to every
point in the dataset, with zero mean and standard deviation σ = 0.05.

y(τ) = f(τ) + ϵ(τ)
ϵ(τ) ∼ N (0, σ2).

5.1.2 Experiments

The goal of these experiments is twofold. First to verify the correctness of model
implementations. Second, to verify that the LFMs can recover the underlying
dynamics correctly.

The dataset is used to evaluate three models:

• Time-Marked Latent Force. A simplified version of model described in
[6]. We choose to implement the model described in the paper with three
simplifications: We assume that there is only one single individual. We only
model one single output. Our baseline model is the constant function, instead
of a GP with a squared exponential plus periodic kernel.

f(τ) = fb(τ) +
MØ

m=1
ft(τ − tm),

fb(τ) = k,

f ′
t(τ) = −Dft(τ) + Sfl(τ),
fl(·) ∼ GP(0, kTMSE(·, ·)).

• Time-Limited Treatment Response. The first model described in the
methods section. The treatment responses are modeled with the newly-
introduced Time-Limited Squared Exponential (TLSE) kernel.

f(τ) = fb(τ) +
MØ

m=1
ft(τ − tm),

fb(τ) = k,

ft(·) ∼ GP(0, kTLSE(·, ·)).

• Time-Limited Latent Force. The second model described in the methods
section. The latent forces are GPs using the TLSE kernel, and thus the
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treatment responses use a custom Time-Limited LFM kernel.

f(τ) = fb(τ) +
MØ

m=1
ft(τ − tm),

fb(τ) = k,

f ′
t(τ) = −Dft(τ) + Sfl(τ),
fl(·) ∼ GP(0, kTLSE(·, ·)).

5.1.3 Results
We plot the results of our simulated data experiments in figure 5.1.

• Time-Marked Latent Force
The model successfully fits the dataset. This is the expected behaviour as the
dataset itself was generated using a latent force model.
Looking at the bottom panel, we see one of the main limitations of this
methods: the first latent force (blue solid line) captures the effect of the
two treatments, while the second latent force (orange solid line) does not.
Additionally, we see that the first latent force and the second latent forces are
nonzero before the first treatment. The first latent force is negative and the
second is positive so the cumulative effect is zero. While this fact is not an
issue for fitting the data, it does not make sense when trying to interpret the
latent forces from a clinical perspective.
Furthermore, we stress the fact that since all latent forces are assumed to be
independent, it is not clear what the prediction setup would look like.
Finally, the uncertainty of the latent forces’ means is high. This is not an
issue per se, but we expected less uncertainty when training on such a large
amount of data. The uncertainty, again, can be explained by the fact that
forces are not limited to being zero before the effect. Thus, the two latent
forces are "fighting" each other and we see the full spectrum of possible forces
whose sum is zero.

• Time-Limited Treatment Response
The model fits the dataset, albeit the fit is worse than the other two. For this
model, latent forces plot are not available as the treatment response is directly
modelled with a time-limited SE GP.
Introducing a constraint on the support of the treatment responses shows its
benefits immediately with this model. The two latent forces are not "fighting"
each other anymore, which introduced a lot of variance in the last model.
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(a) Time-Marked Latent Force
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(c) Time-Limited Latent Force

Figure 5.1: Comparison of model fits on simulated data. The three
groups show one distinct model each: Time-Marked Latent Force (TMLF), Time-
Limited Treatment Response (TLTR), Time-Limited Latent Force (TLLF). The
first panel of each group displays the posterior mean and 95% credible interval
for the physiological quantity f . The second panel, only available for latent force
models, displays the posterior mean and 95% credible interval for the latent forces
ft. In the second panel, the true latent forces that were used to simulate the dataset
are plotted as dashed lines. Finally, the vertical lines indicate the treatment times
t.
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The main issue observed with the this model is due to its kernel. The Time-
Limited kernels generate discontinuous latent functions which, in this case,
make it hard to fit a dataset generated by smooth functions.
As we are directly modeling the treatment response curve with a GP, rather
than the latent forces, we do not have a second panel.

• Time-Limited Latent Force

The model successfully fits the dataset. Since this kernel is derived from the
LFM formulation and the dataset is generated using a LFM, we expect the fit
to be great.
Again, making the latent forces a time-limited signal is paying off significantly.
Compared to Time-Marked Latent Force, the uncertainty of the latent force
posterior mean is much smaller. The smaller uncertainty can be explained by
the fact the the two latent forces almost never overlap each other, thus the
possible number of curves that explain the dataset is much smaller than in
the prior model. This hypothesis can be confirmed by looking at the region
of the plot where the time τ ∈ [19, 21], where the two latent forces overlap.
There the variance is much higher, resembling our first plot.
In addition, since the two latent forces are fully dependent, rather than being
completely independent, the hypothesis space shrinks significantly and thus
the variance of the estimates does as well.
On a final note, we can observe in the bottom panel that the latent force’s
mean and the true latent force have similar shapes but different amplitudes.
There is a simple explanation for this phenomenon. Both the latent forces’
kernel and the sensitivity parameter S control the amplitude of the final latent
force. Since there are two parameters that influence in the same way the same
quantity we end up having a non-identifiable system. This means that, to
compare the amplitude between two different fits we may want to normalize
the final sensitivities or avoid training them altogether, and just relying on
the flexibility of the GP kernel.

From this experiment, we can draw the following conclusions.
First, Time-Marked Treatment Response model, while being a great foundation

for treatment response curve estimation, has two critical flaws: First, the latent
forces have infinite duration. Second, the latent forces are independent between
each other. For these two reasons, we will not use this model on real data.

Second, introducing a time-limited kernel and dependence between forces greatly
reduces the uncertainty of the model. For these reasons, we will continue using
these models in the second set of experiments on the real-world glucose dataset.
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5.2 Glucose Data

5.2.1 Dataset

We evaluated our methods using clinical data collected at Helsinki University
Hospital and provided by the Obesity Research Unit at the University of Helsinki.

The dataset contains blood glucose measurements and meal macronutrient data
of 14 non-diabetic individuals observed across three days. The blood glucose
measurements are collected by a portable continuous glucose monitoring system
at approximately every fifteen minutes. In total, there are around 300 real-valued
observations per individual.

The meal times (treatment times) and meal macronutrient contents (treat-
ment covariates) have been collected for all meals during the study period. The
macronutrients are five: starch, sugar, fiber, fat, and protein.

The goal is to learn the response curve associated with every meal and to predict
as accurately as possible the effects of an arbitrary meal on the blood glucose levels.

The data is preprocessed by selecting all meals where the sum of starch and
sugar is above the threshold of 10. In our experiments, we only include starch and
sugar as treatment covariates.

Since this is a real-world dataset, there are several sources of errors, both
systematic and random. The blood glucose measurements are noisy, due to the
limitations of the sensors. Since the treatment times and covariates are reported
by the users, there are frequent reporting errors both in the meal timing and the
amount of macronutrients consumed in each meal.

Figure 5.2 displays the blood glucose trajectories as well as the associated
treatment times and covariates for the first four individuals of the dataset.

5.2.2 Evaluation Setup and Metrics

To evaluate the predictive performance, the dataset is split in two folds using a
time-series holdout scheme. The training set consists of the first two days and the
test set is the third day. The models are trained on the training set and then must
predict on the test set.

The metric used for evaluation is Mean Squared Error (MSE). For every individ-
ual p in the dataset, we compute the MSE using the true values from the test set
and the model’s predictions. All the MSEs are then averaged to obtain the mean
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MSE (mMSE), the metric we use to compare models.

MSE(p) = 1
N

NØ
i=1

(y(p)
i − f (p)(τi))2,

mMSE = 1
P

PØ
p=1

MSE(p).

5.2.3 Experiments
In our experiments, we train and compare the predictive accuracy metrics for 8
different models. We evaluate several different combinations of kernels, treatment
response curve sharing, and scaling coefficients sharing.

We compare the predictive performance against a baseline model, described in
[4], which we call EiV model. This model uses a parametric bell-shaped treatment
response function, and a GP model that combines constant and squared exponential
kernels for the baseline function. Unlike our proposed models, the EiV model uses
a sophisticated Errors-in-Variables (hence the name) or measurement error model
in order to be robust to the many sources of noise of this dataset.

We begin by comparing the Time-Limited Treatment Response model against the
Time-Limited Latent Force model. Because both of these models use a time-limited
response or force, we will drop it from their name and refer to the Time-Limited
Treatment Response Model as SE-ITR and the Time-Limited Latent Force model
as LF-ITR. The models are trained one individual at at time, learning a separate
treatment response curve for every individual. Finally, the treatments are scaled
with a linear combination of the treatment’s covariates. The scaling coefficients
can either be fixed or a separate set is trained for every individual (unpooled).

For a visual comparison of the SE-ITR and LF-ITR models with separate curves
and unpooled coefficients see the first two panel groups of figure 5.4.

After having identified the best performing kernel, we compare four possible
methods for determining the scaling coefficients. Non-trainable fixed coefficients,
separate set of trainable coefficients for every individual (unpooled), one set of train-
able coefficients shared across all individuals (pooled) and the finally hierarchical
coefficients.

The last panel group of figure 5.4 shows the SE-ITR model with pooled treatment
response curves and pooled coefficients trained on individuals 0 and 1 at the same
time.

5.2.4 Results
The goal of the first set of experiments is to identify the best performing kernel.
We report our results in table 5.1. Our results suggest that, for this dataset, the
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SE-ITR model’s errors are lower than the LF-ITR model. Additionally, we have
found that learning the hyperparameters of the LF-ITR model is challenging and
that the optimization’s results heavily depend on the initial conditions. This is
because even small changes in the ODE parameters such as the decay rate or the
sensitivity cause big variations in the response curve’s shape and magnitude.

In light of the model comparison results, we run a second set of experiments
using the best performing model: SE-ITR. From this experiment, we find that
sharing the same treatment response curve across individuals performs better than
learning a separate curve for every individual.

We claim that the shared models perform better than the separate ones because
of the superior robustness to noise of the shared models. This claim is supported
by our comparison of per-individual MSEs. We compare two SE-ITR with identical
scaling coefficients but the first model learns separate response curves while the
second uses shared ones.

In figure 5.3 we see a comparison of the Mean Squared Errors (MSEs) for every
individual. The top panel compares the MSEs of two SE-ITR models with fixed
scaling coefficients. The bottom panel compares the MSEs of two SE-ITR models
with unpooled scaling coefficients. For fixed scaling coefficients, the performance
of the two models is comparable for all individuals except individuals 4 and 5.
For unpooled scaling coefficients, the performance is also comparable for most
individuals but there is more variance in the performance differences, attributable
to the higher flexibility of the unpooled model than the fixed one.

Finally, after having determined the best-performing kernel and treatment
response curve sharing method, we focus our attention on how to share the scaling
coefficients. Our experiments show that all scaling coefficients sharing methods have
similar performance, with the pooled model, which learns one set of coefficients for
all individuals having the lowest error. Again, we claim that the the pooled model
works better because of its superior noise robustness compared to the alternatives.
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Model Treatment Response Curve Scaling Coefficients mMSE
EiV [4] 0.738
SE-ITR separate fixed 0.640
SE-ITR separate unpooled 0.641
LF-ITR separate fixed 0.670
LF-ITR separate unpooled 1.221
SE-ITR shared fixed 0.572
SE-ITR shared unpooled 0.573
SE-ITR shared pooled 0.564
SE-ITR shared hierarchical 0.568

Table 5.1: Prediction results on test data. The mean Mean Squared Error
(mMSE) is computed for the models described in our method. The best performing
model uses a Time-Limited SE kernel for modeling the treatment response curves,
shared treatment response curve between patients, and a single set of scaling
coefficients for all patients (unpooled scaling coefficients).
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Figure 5.2: Visualization of the 3-days of blood glucose dataset. For each pair
of panels, the top panel displays the blood glucose observation time-series with
black signs joined by solid gray lines. The treatment times appear on all panels
as solid black vertical lines. The bottom panels displays the treatment covariates
associated with every treatment. Areas overlaid in gray are the testing set where
the model is evaluated, the remainder is the training set.
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Figure 5.3: Comparison of the Mean Squared Errors (MSEs) for every individual.
The top panel compares the MSEs of two SE-ITR models with fixed scaling
coefficients and the bottom panel compares the MSEs of two SE-ITR models with
unpooled scaling coefficients.
The difference between separate and shared is plotted and, as expected, it is positive
in most individuals, consistent with the lower mMSE of the shared model.
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(a) Time-Limited Treatment Response model (SE-ITR), separate treatment response
curves, unpooled scaling coefficients.
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(b) Time-Limited Latent Force model (LF-ITR), separate treatment response curves,
unpooled scaling coefficients.
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(c) Time-Limited Treatment Response model (SE-ITR), shared treatment response
curves, pooled scaling coefficients.

Figure 5.4: Prediction of blood glucose level after a meal. The first panel
of each group displays with a solid blue line the posterior mean and 95% credible
interval for the blood glucose levels. The black vertical lines mark the treatment
times. The second panel displays the amounts of sugar and starch for every meal,
referred to as treatment covariates. The last group contains two pairs of panels
because the model was trained on two patients at the same time, in order to share
the treatment response curve and scaling coefficients.
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Chapter 6

Discussion

This final section contains a summary of the results and the conclusions we have
drawn from the experiments. Then, we propose some directions for future research
and finally, we consider the potential impact of our work.

6.1 Summary of results
We have verified the correctness of our implementations of methods from related
works and of our proposed methods on a simulated dataset. The dataset is simulated
using a LFM, which allows us to verify that the Time-Marked Latent Force (TMLF)
and Time-Limited Latent Force (TLLF) models can indeed recover the original
latent forces.

Through this experiment we identify two limitations of the TMLF model: The
latent forces are not limited in time, which causes the latent forces of two different
treatment to overlap each other. The latent forces are independent, which forbids
us from using the model for prediction forward in time.

On the other hand, the results obtained by the Time-Limited Treatment Re-
sponse (TLTR) and Time-Limited Latent Force models are satisfactory and thus
we select these models for the next stage. We evaluate the models on a blood
glucose prediction task using real data collected by the Helsinki University Hospital.
Our experiments show that the TLTR model has better predictive performance,
faster training time, and higher noise robustness than the TLLF model.

The experiments on real data continue by evaluating the impact of sharing the
treatment responses and scaling coefficients across multiple individuals for the
TLTR model. We find that sharing the response curve improves the predictive
performance and that using a single set of scaling coefficients for the whole group
of individuals results in the best performing model. We claim that superior
performance of the shared model is due to the higher robustness of the model to
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noise and errors in the data.

6.2 Directions for the future
The overarching conclusion from our experiment is that, on dataset with large
amounts of noise and errors, simpler models work better than more sophisticated
one due to more noise robustness. We hope to repeat these experiments on
additional datasets with smaller amounts of data but also smaller noise, to see if
the knowledge-driven inductive bias of LFMs can help in those situations.

On a more technical note, we are interested in evaluating new methods for
scaling the treatment response curve using treatment covariates. For example,
using nonlinear models such as logistic-regression or neural networks. Addition-
ally, given recent advancements in variational inference techniques and automatic
differentiation, we believe that it is possible to successfully extend our model to
nonlinear ODEs.

Finally, our experiments relied on Maximum a Posteriori (MAP) optimization
to find the kernel hyperparameters. Ideally, we would use Markov Chain Monte
Carlo (MCMC) techniques for estimating them, in order to obtain credible intervals
on the hyperparameters and, in general, to achieve more robust predictions. That
will probably require improving the performance of our log-likelihood evaluations
significantly, which we believe is possible by using sparse GP techniques such as
inducing points.

6.3 Possible impact
The results achieved in our experiments provide useful insights for future research
in individualized treatment response estimation. While showing that highly flexible
models like GPs can indeed estimate plausible treatment response curves, we warn
about the risks of biased estimates and overfitting on datasets with high amounts
of noise.

We believe that the methods we developed, even if not used directly for treat-
ment response estimation, can be used as a guiding tool for developing more
physiologically accurate parametric treatment curves.

On a broader level, our goal is to participate in the advancement of the field
of precision medicine. By providing clinicians with better tools to estimate the
future state of their patients, we hope that they can make decision that improve
the quality of health care and the quality of life of those who need it.
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