
Politecnico di Torino

Master Thesis
Nanotechnologies For ICTs

A.y. 2021/2022

Single neuron SNN with Memristor
Generated Delays for Real-Time

Analysis of Temporal Signals

Supervisors Candidate
Prof. Carlo Ricciardi D’Agostino Simone
Dr. Melika Payvand

Abstract

The most powerful computing machine for doing classification with low energy con-
sumption is the brain with its known and unknown behaviors and working principles.

Partially inspired to the brain, neural networks established a paradigm in which the
computational power is increased with a trade-off in terms of accuracy and power consump-
tion. Indeed, in such a paradigm, neurons, synapses and the architectures deriving from
their combination are used for solving non-linear classification tasks with the objective to
reach the highest possible accuracy without any regard to power consumption.

Neuromorphic computing aim is to solve the energy-accuracy trade-off by using all
the possible knowledge from biology in order to define a scientific paradigm in which
the biology knowledge is not only mathematically represented, but also implemented on-
chip for taking advantage from Silicon technology higher efficiency in terms of electrical
behavior. Moreover, thanks to the rise of memristor technology, the integrability and
scalability of such devices increased in the last years following the energy efficiency trend.

Such chips are based on the so-called spiking neural networks, i.e. neural networks
which are quasi-totally inspired by brain mechanism from the signal encoding into spikes
-as the name suggests- to neuron and synapse models arriving up to, in certain cases, the
network structure. These networks allow to combine deep learning approach for achieving
high accuracy results with ultra-low power consumption thanks to brain inspiration and
analog electronics circuits.

In this thesis a novel architecture based on multi-synapse on dendrites connections
-inspired from novel biological discoveries- exploiting temporal delays generated through
memristors is presented for doing ultra-low power real-time classification of time-varying
signals. Its results on MIT-BIH ECG dataset obtained through hardware-aware Python-
based simulations are presented as a proof of concept of the effective working of the network
showing how large memristor employment can allow to reach lower energy consumption
and higher scalability while reaching very high accuracy results.

I

Acknowledgments

The first acknowledgment should go to all the people that accompanied me towards
my graduation. My colleagues in the bachelor and master programs that shared studies
and exams difficulties, my colleagues and players when coaching basketball that taught
me important values such as punctuality and perseverance, my tutors during bachelor
internship Ettore and Paolo for having given me a mindset in solving problem no matter
how hard they are and to my professors able to transmit passions and competences even
during COVID hard times.

Then, many thanks should go to Giacomo’s group at Institute of Neuroinformatics for
having received me as a part of the big family that they are. In particular, Melika guided
me like no other supervisor could have done; Arianna, Matteo, Mattia and Yigit for having
always time to talk about common problems and to give me interesting inputs.

Anyway, the most of my gratitude should go to my group of friend "Gli Squali" (The
Sharks) for always building a stimulating environment for my personal growth, to my
uncles Luca and Anna and my little cousin Mia for having hosted my like a son and a
brother, to my girlfriend Martina who always stood by me giving all the possible love and,
finally, to my family Eugenio, Laura, Marco, Elena and my grandparents that supported
me not only economically but gave me education, possibilities and inspiration even if not
living in the best of countries.

II

Contents

1 Introduction 1
1.1 Reasons . 1
1.2 Neuromorphic engineering and brain working principles 2

1.2.1 Neuron . 3
1.2.2 Dendrites and axon . 4
1.2.3 Synapses . 5

1.3 Neural networks . 7
1.3.1 Artificial Neural Network . 8
1.3.2 Spiking Neural Networks . 11

2 Memristive Technologies 13
2.1 Memristor: the missing circuit element . 13
2.2 Types of memristive technologies . 16

2.2.1 Oxide-based memristors . 16
2.2.2 Phase change memristors . 18

2.3 OxRAM technology . 19

3 Spiking Neural Networks 22
3.1 Spiking neural network principles . 22

3.1.1 Information encoding . 22
3.1.2 Synapse models . 24
3.1.3 Neuron models . 26
3.1.4 Learning in SNNs . 29
3.1.5 SNNs implementations . 31

3.2 Spiking neural network time signal analysis 35
3.2.1 Feed-forward SNN . 35
3.2.2 Recurrent SNN . 37

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals 39
4.1 Architecture . 39
4.2 Hardware-aware coding . 41

4.2.1 Time discretization . 42
4.2.2 Network hyperparameters . 46
4.2.3 Power and energy consumption . 48

4.3 Training method . 50
4.3.1 Training hyperparameters . 51
4.3.2 Positive weights . 52
4.3.3 Low-bit precision for weights training 52
4.3.4 Training loop and inference . 53

4.4 Results . 55
4.4.1 Single Patient classification . 55
4.4.2 Multi patient classification . 62

5 Conclusions 66
5.1 Future works . 66

References 68

What I cannot create, I do not understand.
Richard Feynman, last words on his blackboard

1. Introduction

Solving non-linear problems, classifying data, recognizing hidden patterns are some of the
skills required to new technologies for solving everyday tasks in medicine, engineering,
economics and other fields of study.

At the same time, power efficiency become more and more an essential quality for
finding environment friendly technologies.

In this section, brain inspired models will be presented as a possible solution to these
requirements with their connection to the brain working principles and the improvement
of bio-chemical mechanisms that can be found in nature.

1.1. Reasons
In order to solve computing tasks on large amount of data which are not solvable through
algorithms, i.e. problems of which solutions are still not known and based on non-linear
relations, from the 1940s on, some attempts to project and realize machines able to mimic
and improve brain ability to adapt and learn based on what is called Hebbian learning[62]
were done using early computers[47].

Among years, in order to reach the brain capability and to accomplish the task diffi-
culties, different models, architectures and approaches were tried starting from the early
perceptron[70] which is actually considered the first artificial neural network. In fact, the
paper about was opening with three questions:

• How is information about the physical world sensed, or detected, by the biological
system?

• In what form is information stored, or remembered?

• How does information contained in storage, or in memory, influence recognition and
behavior?

It could be said that in these three questions are expressed all the challenges which re-
searchers in the field of neural networks are nowadays facing.

Moreover, it is possible to find the reasons that lead to the developing of these tech-
nologies: knowledge and utility.

The knowledge is well explained by the first two questions and can be summarized in
"how does the brain work?". Indeed, despite good progresses in medical research through
centuries about the body behavior, the brain has always been -and in part still is- a black
box which makes the body properly working and it is able to process information and data
to create abstractions. Moreover, there was and there is the problem of interaction with
the external world: how does the brain is capable to treat all kind of data, being them
varying in space or in time or in both, in the same way?

1

1 Introduction

On the other hand, the third question adds a second layer to the argument: once that
the brain has the possibility to collect and store data, how does it use them? This is the
utility reason, i.e. the aim becomes to project something capable of collecting, store and
use new data of which the correlation and the solution is not know. The need is a machine
which can learn and can recognize new patterns instead of only predetermined patterns.

All this must compete with an with the incredible energy efficiency of the brain[37].

1.2. Neuromorphic engineering and brain working
principles
Neuromorphic computing is relatively new branch in the technology research in which the
aim is to solve real world task while mimicking the brain and nervous system dynamics
made of mixing analog and digital components, distributed representations, in-memory
computation, self-organization, learning and adaptation[58].

The basic assumption is that the brain takes information from the outside world through
its natural sensors such as eyes, ears, nose and so on, process this analog data converting
them into a general representation and then performs computation on them.

Since the beginning there is the problem to deal with such a general purpose data
representation: an encoding of data which allows to store and treat all the analog signals
which can be collected in the same way from a circuit -the brain or the neuromorphic one-
which uses the same elements -neurons and synapses- for analyzing them all.

Then, there is the computation problem: once that analog signals from the world are
encoded, how does the brain extract information and how does it learn?

The brain is, in fact, a neural network composed by biological elements such as the
neurons, the synapses and the dendrites; since first researches on the neuron structure and
its role in the brain[51], it is clear that it is a cell composed by a cell body (or soma)
connected to an axon along which it transmits electrical signals and to dendrites from
which it receives electrical signals from other neurons [Fig. 1.1]; both the cell body and
the dendrites are covered with synapses connected to axons from other neurons, these
synapses have the role to act as doors for incoming signals.

From electrical pulses across nerves, ions channels open and close sending to the neuron
an electrical pulse, each electrical pulse generate a slight change in the potential of the
cell’s membrane. Once that the difference between the inside and the outside of the cell
is high enough, the neuron will send an electrical pulse through the axon. During all the
time, synapses are receiving neurotransmitters which can be considered as quanta of neural
signals, i.e. carriers for the pulses inside the brain[41].

This is the dance inside the brain which allows animals and humans to interact with
the external world by classifying, analyzing and filtering incoming analog output signals
by using from 1 billion to 100 billions neurons depending on the species[41] which are
interconnected in thousands different ways (a neuron in vertebrate cortex can connect to
more than 104 postsynaptic neurons[50]).

The final aim of neuromorphic engineering is to take advantage of brain mechanisms in
order to improve them for conserving the energy efficiency while improving computational
performances. This is reached through two steps which are still the main goals in the

2

1.2 Neuromorphic engineering and brain working principles

Figure 1.1: Neuron anatomy including the single synapse representation. Image from [41]

research fields of neural networks, neuromorphic computing and machine learning:

• modeling;

• "technological" improvements.

Indeed, the modeling is what allows to keep the energy efficiency of the brain: a proper
encoding, the structure and function of each element in the circuit and the computational
paradigm could allow to reach energy efficiency in neuromorphic computing.

Then, the change of technology should be intended as the switch from organic and poor
performing electrical elements and materials in brain to Si, metals and derived elements
allowing to increase significantly the precision and the performance of the neural network
out coming from these changes.

Before proceeding with the explanation of these improvements it is important to un-
derstand better the role of each component of the brain circuit in order to reach a good
modeling. Even if this remains a hard goal for neuroscience, some principal mechanisms
are clear and can be explained.

1.2.1. Neuron
The neuron is the core of the computation processes in the neural network constituting
the brain and acts as an integrator of electrical pulses coming from other neurons or from
inputs. Usually, it is referred as the central process unit of the brain[50].

3

1 Introduction

Its most important characteristic is the membrane potential which is defined as the
difference in charge between the inside and the outside of the body cell[41] given by con-
centrations of ions Ca2+, Cl-, K+, Na+ and A-[65]. In order to compute the potential, it is
possible to consider ion energy E(x) as the energy of a particle with charge q in an electric
field whose potential is u(x):

E(x) = q · u(x)

since the probability that the ion will take a state with energy E is proportional to the
Boltzmann relation, it easily writable that:

n(x) = exp

[
q · u(x)
kBT

]
where n(x) is the ion density and it is given by the fact that the number of ions is huge[50].

Considering two points x1 and x2 inside and outside the body cell, the potential between
the two points is obtained by inverting the relation between n(xi) = ni and u(x1)−u(x2) =
u obtaining the Nernst potential:

u =
kT

q
ln

(
n1

n2

)
(1.1)

At rest, the neuron is characterized by a so-called resting potential which is negative
and corresponds to urest = −65mV. When it is feed with an input pulse, the membrane
potential can increase or decrease depending on the synapse -which could be excitatory or
inhibitory- before starting to decay back to the rest potential.

The decay could be easily explained by the fact that ions move to bring back the
equilibrium in the system moving under the field generated by their displacement[50]. In
this case the Hodgkin and Huxley model[57] shows how the semi-permeable membrane can
be treated as a capitor which is charged on only one side when a current is injected inside
the soma.

If all the presynaptic input are considered, a single neuron is receiving ions -i.e. voltage
pulses- and summing them to reach a resulting membrane potential u. E.g. a neuron
connected to j presynaptic neurons which send pulses at times t

(f)
j , where f represent the

location in time of the pulse from presynaptic neuron j, the resulting potential at time t

will be:
u(t) =

∑
j

∑
f

ϵj(t− t
(f)
j)− urest (1.2)

where ϵj is the postsynaptic potential caused by the presynaptic neuron j.
If the membrane potential u overcomes a critical threshold ϑ -which is in the range

[20, 30]mV- the neuron will emit a pulse of amplitude equal to 100mv which has the
particular shape of a spike[50]. This is the so-called action potential and it is sent to
neurons which are considered postsynaptic with respect to the considered one.

Finally, before going back to the resting voltage, the neuron passes through a phase of
hyperpolarization in which the potential is lower than urest.

1.2.2. Dendrites and axon
Dendrites and axons are the wires which bring pulses to the neuron and the movement of
charges along them is due to ions generated potentials.

4

1.2 Neuromorphic engineering and brain working principles

The problem for studying this kind of effect is called electrodiffusivity and is very
complicated to both study and compute.

Preliminary studies uses cable theory to model these mechanisms[34], but they are not
including the extracellular potential which is important to study the network activity.

This is why, in order to properly model the potential, it is necessary to use more
complicated models as the Poisson-Nernst-Planck Equations where the movement of ions
in a static solvent as a consequence of drift-diffusion is used[69].

1.2.3. Synapses
Synapses are the contact point between an end of a presynaptic neuron’s axon and a
dendrite or the soma of a postsynaptic neuron.

Chemical synapses work thanks to neurotransmitters which are released in presence of
an incoming pulse and, after diffusing across the intrasynaptic space -or cleft-, reach the
specific receptors on the target cell[41]. As a key-lock system, the neurotransmitters open
specific channels in the membrane which allows ions to enter the cell causing membrane
potential variation following (1.1) and (1.2) [Fig. 1.1].

Electrical synapses or gap-junction can also be found, but not too much is known about
them[50].

Synapses are a very -maybe the most- important element in brain neural since, thanks
to their plasticity, they are responsible of the weight associated to the interaction between
two neurons which determines learning and memory.

There are mainly two categories of plasticity:

• short-term plasticity: divided into potentiation (STP) and depression (STD);

• long-term plasticity: divided into potentiation (LTP) and depression(LTD).

Short-term synaptic plasticity

Short-term synaptic plasticity is responsible to the short term memory and adaptation to
input signals; it is very frequent and observed virtually in every synapse observed in organ-
ism from the simplest to the most evolved[44]. Different short-term plasticity mechanisms
have been observed:

• paired-pulse facilitation and depression: depending on the response to the first
stimuli if a second one is sent to the neuron in a short time window (< 20ms or
∈ [20, 500]ms); it is very likely due to residual Ca2+ ions left by the first stimuli;
normally, synapses can show both paired-pulse potentiation or depression depending
on recent history;

• potentiation and depression following train of stimuli: thanks to the prolongation of
the sequence of input stimuli the longing of the effect to [0.2, 5] s;

• modulation of reception by presynaptic receptors: by the release of neuromodulators
postsynaptic neuron can influence the release of neurotransmitters;

5

1 Introduction

• Involvement of glia: glia cells can influence short-term plasticity by controlling the
speed of neurotransmitters in their clearance or by releasing substances that can
influence synaptic efficiency;

Long-term synaptic plasticity

Long-term synaptic plasticity is depending on experience and is a long-lasting influence on
the weight that different presynaptic events have on a specified neuron. It was hypothesized
more that 100 years ago by S. Ramon y Cajal[44] and furthermore theorized by D. O.
Hebb[55].

Despite in [55] there is not a mathematical model -which is essential to develop a
scientific theory- of the hypothesis, it is possible to express it in such a way[49].

On the presynaptic side, the learning can be described in function of firing rate or spike
time arrival while, on postsynaptic side the neuron can be described as usual in terms of
membrane potential, firing rate or backpropagating action potentials (BPAPs).

Starting from the rate-based mechanism, it should start from the description of the
activity of a neuron i, which is given by a non-linear function g correlating firing rate νi
to membrane potential ui:

νi = g(ui)

in such a description the activity of the membrane potential is given by the weighted sum
of the presynaptic activity of neurons j:

ui =
∑
j

wijνj

since the weight wij between neurons i and j should increase if they are both active to-
gether, six aspects become important: locality, cooperativity, synaptic depression, bound-
edness, competition and long-term stability.

If the locality, i.e. weight between neurons i and j should not be influenced by other
neurons activity, imposes to write the equation of learning as:

d

dt
wij = F (wij , νi, νj) (1.3)

the other five aspects can induce to write such an unknown F as an expansion considering
firing rates low enough to be considered stationary, i.e. around νi = νj = 0:

d

dt
wij ≈ccorr

2 (wij)νiνj + cpost
2 (wij)ν

2
i + cpre

1 (wij)ν
2
j+

cpre
1 (wij)νi + cpost

2 (wij)νj + c0(wij) +O(ν)
(1.4)

where posing all terms equal to zero except ccorr
2 (wij) would give the simplest Hebbian

learning rule (anti-Hebbian if the parameter is negative).
In order to include also depression to the model, it is possible to use c0(wij) in combi-

nation with cpre
1 (wij) and cpost

1 (wij).
Furthermore, the spike-based mechanism can be seen as a generalization of (1.4). Con-

sidering the simplest spiking neuron model, i.e. the leaky integrate-and-fire (LIF) neuron,
the equation (1.3) derived from locality can be rewritten in terms of membrane potential:

d

dt
wij(t) = F [wij(t), u

post
i (t′), upre

j (t′′)] (1.5)

6

1.3 Neural networks

where t′ < t and t′′ < t indicate that weight changes depend also on the history of the
potentials.

Notice that, in more complex models, the local Ca2+ concentration is influencing F ,
but it is possible to assume that the Ca2+ concentration depends on the previous firing
history so that no additional variable should be accounted for[49].

If, for simplicity, urest = 0 and (1.5) is expanded around upost
i = upre

j = urest:

dwij

dt
=c0(wij) +

∫ ∞

0
αpre
1 (wij , s)u

pre
j (t− s) ds+∫ ∞

0
αpost
1 (wij , s

′)upost
i (t− s′) ds′+∫ ∞

0

∫ ∞

0
αcorr
2 (wij , s, s

′)upre
j (t− s)upost

i (t− s′) ds′ds+ ...

(1.6)

the considerations did for ccorr
2 (wij), c0(wij) in (1.4) are still valid for corresponding terms

in (1.6).

Synaptic metaplasticity

Finally, there is metaplasticity[1] which is the plasticity of the plasticity. Indeed, it com-
prises mechanisms which makes LTD or LTP more difficult by changing the thresholds for
this mechanisms.

1.3. Neural networks
The main objective for neural networks is to implement brain-like systems where the com-
putation is obtained using connections between artificial neurons through synapses.

In order to collocate them, should be clear that in the field of Artificial Intelligence
(AI), in the field of Machine Learning (ML), Neural Networks can be classified in the field
of brain inspired ML[24].

Among years, a lot of different architectures and structures have been used for solving
a vast amount of tasks, but they can be grouped into two main categories:

• Artificial Neural Networks (ANN);

• Spiking Neural Networks (SNN);

these two categories share some basis and differentiate for others, as they do with respect
to the brain.

In such models made of interconnected nodes, the synapses are represented by weights
and the neurons are the nodes and represented by a function which takes multiple inputs
and gives back a single output. Since this first -very simple- definition of neural networks,
are evident the problem posed in the previous section: modeling and technology.

The simplest network is the perceptron [Fig. 1.2a], i.e. a feedforward network with only
one neuron which takes input from outside sensors and process it following the equation:

f(x) =

{
1 if w · x+ b > 0

0 otherwise
(1.7)

7

1 Introduction

where x is the input vector containing the signals from outside sensors, w is the weight
vector in which each component is used to weight an outside sensor output, f(x) is the
output of the neuron. Since the output can be 0 or 1, the networks is called binary classifier.
Here the model of the neuron is given by a weighted sum of its inputs and the input can
be encoded into any numerical representation.

Basing on this very simple architecture, feedforward networks started to be developed:
neurons are nodes of the network, the signal travels through one direction and it can
contain zero or more hidden layers [Fig. 1.2b].

Then, among years, much more complicated architectures such as recurrent NN (RNN),
convolutional NN (CNN), time delay NN (TDNN) and many others were presented.

It is is important to always keep in mind what are the main problems and goals when
projecting a NN: technology and modeling.

Figure 1.2: a) structure of the perceptron modeled with machine learning standards. Image from
[3]; b) structure of a feedforward neural network with one hidden layer. Image from
[15];

1.3.1. Artificial Neural Network
Artificial Neural Networks (ANNs) are nowadays the most used and studied neural net-
works. Being mainly software based, they allow for much more freedom in selecting models
when projecting.

Technology

The technology used more frequently for ANN is the classical CPU-GPU-RAM system
that can be found on servers or PCs rather than Field-Programmable Gate Array (FPGA)
or Application-Specific Integrated Circuits (ASICs) used in order to speed up the compu-
tations[72].

The software are implemented using specific libraries such as PyTorch, TensorFlow,
Keras, etc. which are normally written using Python or C++;

8

1.3 Neural networks

Modeling

For what concerns the modeling, thanks to the software-based architecture of this NN, it
is possible to use a large amount of way to model and combine various components.

Starting from the input signals, they can be encoded in all possible ways allowed from
bit-representation and, even if some standard ways emerged among years, the chosen en-
coding system can influence the quality of results[17].

The neuron model can be generalized using the expression:

f(x(tk)) = F

(∑
i

wi(tk) · xi(tk) + b

)
(1.8)

it is important to notice that the base for the model is the perceptron equation (1.7) to
which a transfer function F is added. The possibility to choose any mathematical function
as transfer function[61] is the great advantage of this kind of NN since it is possible to adapt
it to the problem that has to be solved. E.g., the perceptron has the Heaviside function
as transfer function centered in a value which will define the threshold of the neuron ϑ (in
(1.7) is ϑ = 0).

Synapses are represented by weights as in the hebbian theory, while the dendrites and
axons are collapsed into synapses represented through lines in graphic representations.

As said before, when one or more neurons are connected, a NN is formed and the model
used for the structure -architecture- is variable and decided starting on the task that the
network has to solve. All architectures can be grouped in categories:

• feedforward networks [Fig. 1.3a]: there is no limit on the number of layers, but the
condition is that information must flow from input to output without any backloop;

• recurrent ANN [Fig. 1.3b]: there are no limits to backloop, these guarantee a dynamic
temporal behavior and process time-varying signals; all other categories are special
cases of RNN;

• Hopfield ANN [Fig. 1.3c]: particular backloop are used to store stable target vectors
so that the NN can recall them when feed with similar input; no unit has connections
with itself and the connections are symmetric, i.e. wij = wji;

• Elman and Jordan ANN [Fig. 1.3d and 1.3e]: are simple three layer RNN in which
only the hidden layer (Elman) or only the output layer (Jordan) have a recurrent
connection with input layer;

• long short term memory [Fig. 1.3f]: are capable of remembering an input of any
time interval needed and this is why they outperform simple RNN;

• bi-directional ANN [Fig. 1.3g]: consist of two individual RNN which do not predict
only future steps in time series but also past steps; they need two learning phases
and used to predict complex timeseries;

• self-organizing map [Fig. 1.3h]: are related to feedforward and commonly arranged
in hexagonal or rectangular shape, they uses unsupervised learning paradigm to
represent high-dimensional data in low-dimensional representations so that are useful
for this kind of dataset and tasks;

9

1 Introduction

• convolutional NN (CNN): the architecture consists of two main parts which are fea-
tures extractors and the classifier; the feature extractors are then divided into con-
volution and max-pooling layers and the output is represented on a 2D plane called
feature mapping; it is highly optimized for processing 2D and 3D images;

Figure 1.3: a) feedforward ANN; b) recurrent ANN; c) Hopfield ANN; d) Elman ANN; e) Jordan
ANN; f) long short term memory ANN; g) bi-directional ANNs; h) self-organization
maps: rectangular and hexagonal. Images from [61]

The last brain characteristic that has to modeled is the learning, i.e. the treatment of
synapse plasticity. In order to modify the weights during the training phase of the ANN,
four different paradigms have been established[24]:

• supervised learning: makes use of labeled data which are shown during each epoch to
the NN in order to see what is the predicted value ŷk = f(x(tk)) and how to modify
network parameters to decrease the distance between the label of the data yk =

y(tk) and the predicted value. Such a distance is evaluated by means of a so-called

10

1.3 Neural networks

loss function l(yk, ŷk). The objective of modifying the parameters of the network
by decreasing the loss function is achieved with the stochastic gradient descendent
method coupled with the back-propagation algorithm. Some important parameters
in this paradigm are defined: momentum, learning rate and weight decay; all of them
have the goal to increase the speed of training, reach the minimum of the loss function
and to prevent the overfitting of the network, i.e. to have a good generalization from
the training phase;

• semi-supervised learning: makes advantage of partially labeled dataset;

• unsupervised learning: uses unlabeled data in order to make the network learning
important hidden features inside input data and often clustering, dimensionality
reduction and generative techniques are exploited;

• reinforcement learning: is used to teach the network to interact with unknown envi-
ronments. From the sampling xk from the environment and prediction ŷk = f(xk)

from the network, a cost function ck ∼ P (ck|xk, ŷk) where the probability function
P is unknown. Since the cost function is not totally known, the training is much
harder, but necessary for unknown environment.

The most used paradigm is, nowadays, the supervised learning whose main interest
components for connecting it to the brain is the back-propagation, i.e. the way which is
used to combine the loss function minimization with the weights update. Once that the
loss function has been computed, the weight update is established as:

∆wij = −η
∂E

∂wij
= −ηfi(x)δj (1.9)

where δj can be computed recursively using the chain rule and s obtained from all the δn
in the layer above; fi(x) is the output of neuron i.

There is no evidence of bio-plausibility of back-propagation, even if NN trained with
such a method can account for observed neural response, so the hypothesis that brain uses
back-prop-like methods to learn is not to be excluded a priori[32].

1.3.2. Spiking Neural Networks
Here an overview will be given and then explained in details in section 3.

In the field brain inspired ML there is the sub-field of Spiking Neural Networks[24]
(SNNs) which is including a big quantity of different approaches to brain inspired NNs
spacing from software to hardware with a common input encoding; indeed, spikes are used
instead of bit-represented numbers as for ANNs.

Technology

On the technology side, a large quantity of chip have been presented among years for
implementing SNNs such as DYNAPs[29], Loihi[21], TrueNorth, etc. supported by PyTorch
hardware-aware codes[75] and dedicated libraries such as Brian2[52] or similar.

11

1 Introduction

Modeling

On the modeling side, the input for all these kinds of NNs is modeled through train of
spikes, i.e. train of voltage pulses which are weighted and sent to the neuron before being
summed. The method for encoding signals into spikes is still an open challenge and models
ranging from bio-inspired systems like the cochlea for audio signals[5] to more complex and
general models like number representations through train of spikes[73].

Figure 1.4: Integrate and fire neuron model related to ions movements in the body cell of the
neuron

The neuron can be modeled depending on the implementation that should be done of
the SNNs starting from the decision between hardware and software. The most elementary
and common class of models is the so-called integrate-and-fire in which the membrane
is modeled as an RC circuit with a voltage supply at urest an the voltage potential u

corresponds to the voltage dropping on the capacitor [Fig. 1.4], but more complicated and
functional will be analyzed.

The synapses still have the weight interpretation as in the ANN case, but can be
implemented in different ways: from the simple number representation in software imple-
mentations to active circuits for synaptic dynamics and spike-based plasticity emulation
for short term plasticity[7] to passive circuits for long term plasticity through the use of
memristor devices.

Finally, learning policies for SNNs are defined depending on the architecture and the
aim of the network. This phase can be done online or offline, on chip or out of chip, taking
into account the synapse that has to be implemented, raising to several methods[15, 35]:

• shadow training: an ANN is trained and then weights are transferred to the SNN;

• back-propagation on SNN: can be done by using hardware-aware codes;

• local learning rules: weights updates are functions of signals that are spatially and
temporally local;

• mixed precision update: used for taking into account memristors non-idealities and
perform on-chip learning;

12

2. Memristive Technologies

Starting from the late 1970s when L. O. Chua[43] theorized the memristor as the missing
circuit element, a lot of research has been done in this direction giving the possibility
to implement new technologies for realizing memories and computing systems with an
extremely high energy efficiency.

The realization of passive circuit elements with the possibility to preserve the memory
of the past history opens a huge quantity of possible applications ranging from classic
computation to neuromorphic chips.

2.1. Memristor: the missing circuit element
The first idea of memristor was presented in 1971 by L. O. Chua[43] in which it was referred
as the missing element circuit. Indeed, at that time three different passive circuit elements
were used:

• resistor: connecting the current to the voltage through the characteristic of resistance

R =
dv
di

;

• capacitor: connecting the voltage to the charge through the characteristic of capaci-

tance C =
dq
dv

;

• inductor: connecting the current to the magnetic flux through the characteristic of

inductance L =
dϕ
di

;

but there was no element connecting the magnetic flux ϕ to the charge q [Fig. 2.1a], i.e.
there was a missing relation of the kind:

M =
dϕ(q)

dq
(2.1)

W =
dq(ϕ)

dϕ
(2.2)

Such a missing element was associated to the resistor also with the name because of its
SI unit; indeed, M(q) and W (ϕ) are measured in:

[M(q)] =

[
dϕ

dq

]
=

Wb
C

=
V · s
C

=
V
A

=
[v
i

]
= Ω (2.3)

[W (ϕ)] =

[
dq

dϕ

]
=

C
Wb

=
C

V · s
=

A
V

=

[
i

v

]
= S (2.4)

After that all circuit theory criterion have been satisfied and that the memristor is
proved to be a circuit element[43], there is the most important characteristic of such an

13

2 Memristive Technologies

element to be presented: the hysteresis loop of its memristance, i.e. the resistance of the
memristor depends on its past history.

If (2.1) is considered, it is clear that it depends on:

q(t) =

∫ t

−∞
i(τ)dτ

and the same holds for W (ϕ), being ϕ the integral over time of the voltage v(t). This
demonstrates the memory effect of a memristor and explain its name: a resistance with
memory. For the sake of completeness, the relation (2.1) can be rewritten as:

ϕ = M(q)q

where the magnetic flux ϕ can be developed as:∫ t

−∞
v(τ)dτ = M(q(t))q(t)

and, differentiating, it is easy to obtain:

v(t) =
dM
dt

q(t) +M(q(t))i(t)

so that RM can be defined:

RM = i−1(t)
dM

dt
q(t) +M(q(t)) (2.5)

=⇒ v(t) = RM i(t)

for the chain rule:
dM
dt

=
dM
dq

dq
dt

and equation (2.5) can be simplified as:

RM (q(t)) =
dM
dq

q(t) +M(q(t))

so that, the final relation will read:

v(t) = RM

[∫ t

−∞
i(t)dt

]
i(t) (2.6)

when the memristance M depends only on the charge q(t)[67], otherwise it can be expressed
as a functional depending on x which includes n possible variables:

RM = RM (x, i, t)

This memory of the resistance (or conductance) of a memristor results on a pinched hys-
teresis loop in the I-V characteristic which defines two types of memristors: self-crossing
pinched loop or not [Fig. 2.1a] .

The characteristic of such a loop are depending on the excitation characteristics and it
is a necessary feature -for a device defined memristor- when driven by a bipolar periodic
signal[30].

14

2.1 Memristor: the missing circuit element

Figure 2.1: a) the missing circuit element with the missing circuit relation, memristor symbol is
also represented; b) the two types of pinched hysteresis loops. Image from[67]

Moreover, the hysteresis loop defines the two working states of the memristor: the high
resistance state (HRS) and the low resistance state (LRS) which correspond -respectively-
to the blue path and the red path in Fig. 2.1b. These two states are extremely important
when using memristor for in-memory computing and their characteristics depend on the
device. The two operations defined are the set when passing from HRS to LRS and reset
when passing from LRS to HRS.

Finally, the hysteresis loop defines also the switching behavior of a device which can
be classified as unipolar or bipolar[20]. In fact, an unipolar switch will happen when the
switching from HRS to LRS (or the opposite) is depending only on the magnitude of the
applied voltage, while the change of polarity is required to switch on (set) and off (reset)
a bipolar mode device [Fig. 2.2].

Figure 2.2: memristor switching behavior of a unipolar device (left) and a bipolar device (right).
Image from [20]

On the physics point of view, the first memristor model was proposed by HP for oxide-
based memristors, since PCM were not existing, and was based on liner ion drift:

V =

(
Ron

w(t)

D
+Roff

(
1− w(t)

D

))
I

dw
dt

= µv
Ron

D
I

where w is the length of dopant filament, D is the total length of the memristor, µv is the
average mobility of ions, Ron is the LRS resistance, Roff corresponds to the resistance of
the undoped region and w is a state variable that modulate the resistance depending on
the applied electric field.

15

2 Memristive Technologies

2.2. Types of memristive technologies
The requirements for a memristor device are not easy to satisfy and, thus, the research
can be still considered at the beginning of its aim 50 years later the theory by Chua.

Nowadays two main technologies can be found in this field of study: oxide-based mem-
ristor and phase-change memristor[36]. In addition, some other materials like electrolytes,
heterogeneous materials, perovskite material and others[36, 59] have been proposed for
specific tasks.

2.2.1. Oxide-based memristors
The most common structure used for this kind of devices is given by metal-insulator-metal
(MIM) structures where the insulator is a binary oxide like HfO2, SiO2, TiO2 or CuO.

The memristive switching in such devices could be analog (gradual) or abrupt (binary)
[Fig. 2.3]. This allows to OX-memristors the chance to be selected for two different kinds
of work: memory for digital computing where two bits are required, devices for analog
computing where a discrete representation with more states is required.

Figure 2.3: Abrupt (left) vs. analog (right) switching behavior of a memristor

Moreover, thanks to the large variety of materials that could be used and their rela-
tive common fabrication processes, these devices can be integrated with standard CMOS
technology.

The switching mechanism can be generated in two different ways, this will result in
two main device categories:

• valence change (VC) device: are also called anionic devices, the conductivity changes
thanks to conductive path generated into the oxide from the movement of Oxygen
anions under an external electric field;

• electrochemical metallization (EC) device: use an electrochemically active electrode
plus a noble counter electrode in order to form a conductive path inside the oxide
made of dissolved metal cations from the active electrode; indeed, these devices are
also called cationic devices.

Despite the usage of different materials and physical mechanisms, the common aim of all
this devices is to form a conductive filament inside the oxide so that the resistance from
a very high value can pass to a lower one allowing the device to switch from HRS to LRS
[Fig. 2.4].

16

2.2 Types of memristive technologies

Figure 2.4: Conductive filament representation during the four possible phases. Image from [20]

On the engineering side, a lot of different structures have been implemented among
years in order to reduce the set and reset require voltage or improve the conductivity when
the device is in the ON state. Some examples are the addition of a capping layer, which
could be a film of a different metal in order to increase the switching properties, or the
insulator doping with metals or transition metal oxides (TMOs). While the fabrication
techniques range from classical physical deposition to more advanced chemical transforma-
tion as the atomic layer deposition (ALD).

Since in the following HfO2 technology is presented, here a model is quickly ana-
lyzed[28]. Starting from a piece-wise linear model and adding the non-linear dependence
of resistance change with respect to the applied voltage and the resistance saturation, it is
possible to write:

dRM

dt
=

−CLRS

(
V (t)− Vtp

Vtp

)PLRS

fLRS(RM (t)) if V (t) > Vtp

CHRS

(
V (t)− Vtn

Vtn

)PHRS

fHRS(RM (t)) if V (t) < Vtn

0 otherwise

(2.7)

where C coefficients include the term:

∆r

tsw

with ∆r = HRS − LRS, tsw is the time required to pass from HRS to LRS if is tswp or
from LRS to HRS if tswn. Moreover, Vtp and Vtn are the voltage thresholds for switching
and fLRS and fHRS are the terms describing the resistance saturation:

f(RM (t)) =

(
1 + exp

[
θLRSLRS −RM (t)

βLRS∆r

])−1

if V (t) > Vtp(
1 + exp

[
RM (t)− θHRSHRS

βHRS∆r

])−1

if V (t) < Vtn

(2.8)

with θHRS , θLRS , βHRS , βLRS and the values of HRS and LRS which are fitting parame-
ters.

It is important to notice that, in the model above, the change of the resistance in
time is described instead of the physical description of much more complicate switching
mechanisms taking into account tunneling or exponential ionic drift making the maturity

17

2 Memristive Technologies

of such models still questionable[28]; furthermore, it cannot be adapted to all memristor
types.

2.2.2. Phase change memristors
Phase change memory (PCM) are a relatively new type of memristors which rely on Chalco-
genide materials[36]. Such materials were already used in the 1990s for information storage
systems such as CDs, DVDs and so on, where power optical heating systems as lasers are
available.

The switching effect is obtained from the change of the crystalline structure of the
material when melted and the cooled. In fact, thanks to Joule self-heating, it is possible
to melt the material applying a sequence of current pulses.

When the current pulse is short in time with a high amplitude, the material starts
melting and, since the pulse decreases rapidly, the part of the melted material becomes
disordered so that, if it is cooled down quickly, the material falls in its amorphous phase
inducing the HRS in the device. On contrary, if the current pulse is long in time and
low in amplitude, the material melts and stays in a temperature range falling between the
complete melting and the crystallization so that, if it is cooled in a relatively slow time,
the material becomes crystalline showing a low resistance (LRS) [Fig. 2.5].

After years of engineering about these devices because of their problems about require-
ments like high set current as well as low switching set time, the philosophy became to
minimize the part of material that has to be melted in order to block the current and reach
the HRS. This made of the so-called mushroom cell the most common design used, even if
thanks to innovative fabrication processes as Krypton fluoride (KrF) laser deep-ultraviolet
lithography many structures have been exploited, examples are the pillar cell or the bridge
cell [14] that allow to reach lower write currents.

In the case of the mushroom cell, the contact between the phase change material and
the bottom electrode is minimized thanks to the fact that this electrode (also called heater)
is the smallest part in the design of the cell. After an finite-element analysis of the thermal
distribution, it is noticed that the hottest part is close to the heater in a region where the
temperature Ths is:

Ths = PinRth + Troom

where Pin is the input power, Troom is the room temperature and Rth is the average thermal
resistance defined on different geometries[48]. This influences the design of the cell since,
for equivalent Pin, a higher Rth means a more efficient cell.

Moreover, if also the Thomson effect is considered, the thermal balance can be viewed
as:

∇ · (κ∇T) + J · (σ−1J)− T
∂S

∂T
J · ∇T − qloss

where κ is the thermal conductivity, σ is electrical conductivity of the PC material, qloss
is the heat transported away from the PC material and S is the Seebeck coefficient. Since
the Seebeck coefficient S is positive with a negative temperature dependence in most PC
materials, when J is in the direction of the temperature gradient -from top electrode to the
heater- the Thomson coefficient will be negative, generating and additional heating flux
which move the hot-spot away from the heater and expand the amorphous region.

18

2.3 OxRAM technology

Figure 2.5: Set and reset operations for a mushroom cell. Image from [48]

2.3. OxRAM technology
In the last years oxide based memristors have been exploited in the realization of Resis-
tive Random Access Memory (ReRAM) cells called Oxide RAM (OxRAM) in which the
capacitor of Dynamic RAM (DRAM) is substituted by an oxide-based memristor. Thus,
the cell is done by a memristor combined with a MOS which allows to read the value of
the conductance; such a cell is called 1 Transistor 1 Resistance (1T1R) [Fig. 2.6]. In the
following, the ReRAM technology using oxide-based memristor will be described.

Figure 2.6: a) DRAM cell with the capacitor; b) OxRAM cell with the memristor instead of the
capacitor

Such cells can be used both for classic memory application, in which an abrupt switching
behavior is required for storing binary information, and for neuromorphic computing in

19

2 Memristive Technologies

which an analog switching behavior is needed.
Both VC and EC devices are used for this kind of purpose[53], in chapter 4, the VC

technology based on HfO2[8] is simulated and implemented.
The HfO2 device technology allows to easy integrate the memristor in the back end of

line of a 3D cell in which a memristor is connected to a top transistor and one to a bottom
transistor that implements FDSOI MOS 65 nm design rule allowing to drastically reduce
the cell size (∼ 1.5×).

Moreover, the memristor can be written and read by the same transistor that controls
the set and reset operations [Fig. 2.6b] through the control of the compliance current[10].
Indeed, if two voltages Vw for writing and Vr for reading are defined with Vr < Vw, it is
possible to define three operations referring to Fig. 2.6b:

• read operation: VG is ON, Vr is applied to T and S is grounded;

• write 0: VG is ON, Vw is applied to T and S is grounded so that the memristor
switches to LRS;

• write 1: VG is ON, Vw is applied to S and T is grounded so that the memristor
switches to HRS;

supposing to work with abrupt switching for binary information storage.
When dealing with neuromorphic computing more conductance levels are required in

order to satisfy the analog computation requests. This implies that the memristor con-
ductive filament must be controlled as precise as possible to guarantee the highest bit
resolution.

Figure 2.7: a) cumulative density functions for 8-bit precision obtained with SBA (left) and LA
(right); b) cumulative density functions for 8-bit precision obtained with SBA (left)
and LA (right) showing the time relaxation after 60 s. Images from [8]

20

2.3 OxRAM technology

The multi-value requirement is accomplished by controlling VG and so the compliance
current flowing in the memristor. In fact, by controlling the intensity and the time of
the current, the conductive filament in the HfO2 layer will grow with different dimensions
determining a higher or lower conductance when setting the memristor giving access to
more than one conductance level. In such a cell, when Vr is applied, the read current
flowing through the memristor is lower allowing to read without modifying the memristor
state. This is what is required by neuromorphic computing.

The precision for setting these different LRS values is still an open challenge, but
some works established procedures that can be used to obtain up to 3-bit precision [Fig.
2.7]. Using different techniques such as SBA (Sigma-Based Allocation)[9] or LA (Linear
Allocation)[8] making advantage of multi programming iterations, it is possible to obtain
cumulative density functions for the conductance in the LRS. Finally, the precision is also
affected by relaxation, i.e. an amount of time after the programming during which the
conductance slightly changes to higher or lower values.

Despite the problems due to conductance programming resolution, 1T1R OxRAM tech-
nology is very promising for neuromorphic computing since it results to be less abrupt in
switching than PCM ReRAM (PCRAM) technology and it has been demonstrated that it
can reach up to 105 cycles before a hard fail appearance.

When looking to the HRS and pristine state of the memristor, it turns out that the
programming of the conductance value follows a log-normal distribution for the probability
density function[31] meaning that by setting two cells in the HRS, two different conductance
values will be obtained. Such a log-normal distribution is often present as characterized
by:

• the mean µ of the log-normal itself;

• the std σ of the underlying Gaussian distribution.

Typical values are µ = 108Ωand σ = 0.4, in chapter 4 higher values for µ, supposing the
characterization to be valid also for the pristine state, are used.

21

3. Spiking Neural Networks

Spiking neural networks (SNN) are part of the so-called neuromorphic computing in
which the structure and the behavior of the brain are modeled into electronic circuits in
order to perform non-linear computation tasks.

3.1. Spiking neural network principles
Neuromorphic computing aim is to emulate brain behavior to perform computation and
so SNNs’ is; but, in order to do it, models of the brain are required and in this section the
state-of-the-art is presented for each part of the brain used in such a paradigm.

3.1.1. Information encoding
As suggested by the name, the information inside SNNs is encoded through spikes, i.e.
electrical pulses sharp in time which travel through the network for doing computation.
This system of encoding is very bio-plausible since in the brain itself the information is
encoded through spikes; the difference is that in SNNs the spikes are moving electrons
instead of ions bringing a larger velocity in information traveling.

The method used to encode an analog signal into spikes remains an open challenge,
but a lot of work have been done in the last years giving rise to different encoding systems.
Depending on the task that has to be solved, i.e. what is the input signal, it is possible to
choose the better spike encoding.

Numeric encoding

Numeric encoding makes possible to transform each number into a spike train, i.e. to
perform a proper digitization. In fact, each numeric value in the input signal is normalized
in range [0, 1] and then converted in a spike train of length T which contains xiT ones and
(1− xi)T zeros where xi is the normalized value that has to be encoded[74].

This method allows to encode an input with the desired precision by changing T and can
be applied to different desired input signal such as time-varying or space-varying (images);
unfortunately, it is not possible to use it for real-time analysis.

Bio-inspired encoding

For temporal analog input signal, models that emulate the working principle of human
receptors have been developed.

It is the case of the case of cochlea-mechanism-based conversion[5, 63]. Here three
components are modeled and used for spike conversion:

• basilar membrane;

22

3.1 Spiking neural network principles

• hair cell;

• bushy cell.

The basilar membrane is simulated following the concept that the interaction between
a membrane and a fluid causes spatial frequency dispersion. I.e., the sound arriving to
the membrane causes vibration of the last inside a fluid which can be considered inviscid
and incompressible; such vibration can be expected to be small so that the fluid can
be considered linear. The membrane is furthermore divided into Nch channels that are
susceptible to different frequencies, i.e. vibrate differently with respect to the same input
frequency.

Then, the membrane movement is converted into spikes by the hairy cell that contains
a number of free transmitters equal to q(x, t) which can be released to the synaptic cleft.
This implies that in the synaptic cleft there is a varying number of transmitters c(x, t);
such a number of transmitters have the probability to excite the postsynaptic potential:

Pspike = h · c(x, t)dt

it is also possible to define a refractory period by denying events in a certain range of time.
Moreover, a number equal to NHC of hair cells for each channel of the basilar membrane
is considered.

Finally, the bushy cell is modeled as a LIF neuron. A number of Nch bushy cells is
connected without recurrent connections, in a single layer, to integrate independently all
the NHC cells corresponding to a single channel.

E.g., in [5], Nch = 700 channels of the basilar membrane are considered, each one is
connected to NHC = 40 hairy cells and for each group of NHC hairy cells a single bushy
cell is used to integrate the spike train giving raise a a spike conversion of an audio signal
with 700 channels.

Space-varying signals spike encoding

A lot of work has been done for space-varying input signal -images- spike encoding[33]
because SNN are optimized for time-varying inputs while have the key problem of encoding
when dealing with images.

Examples are the rate coding and the burst coding. In the first, the input pixels are
scaled down by a factor λ and considered as a firing rate which determines a Poisson spike
train, i.e. a spike train in which the spike position in time is randomic and the firing rate
must be respected. In the second one, a burst of spike which contains a number of spikes
and inter-spikes interval proportional to the pixel intensity is sent at one time; this allows
to increase the reliability of synaptic communication between neurons.

Sigma-delta modulator

Spike encoding means digitization of a signal so that, theoretically, every ADC (Analog to
Digital Converter) is an available choice to perform the operation.

The sigma-delta modulator is an ADC able to perform real-time spike conversion with
very low power consumption with respect to other ADC. Moreover, it is a circuit and this
makes it very suitable for chip integration [Fig. 3.1].

23

3 Spiking Neural Networks

Given an input analog signal, the sigma-delta modulator is able to produce two spike
trains corresponding to up and down spikes. The spikes are generated each time that the
signal increase (up spike) or decrease (down spike) more than a given threshold δV with
respect to the previous signal or the reference voltage Vref ; this implies that such a circuit
is clock-less and, thus, more energy efficient. Moreover, the firing rate -spike frequency-
can be adjusted by changing δV , keeping into account that it is possible to choose different
values for δVup and δVdn.

Finally, a refractory period can also be set by changing the value of C3 which increase
or decrease the hold period when the ADC is reset to Vref .

Figure 3.1: Scheme of ADC sigma-delta modulator. Image from [45]

The sigma-delta modulator is a total hardware spike encoder able to perform real-time
conversion, this makes it optimal for circuits that have to analyze temporal signals but
very difficult to adapt to space-varying signals.

Time-to-first-spike coding and phase

In this paradigm, the importance of an information is contained in the time that passes
from a reference signal to an input stimulus[50] and is very suitable for visual stimuli where
it is possible to decide that larger a pixel is, higher the information carried is and earlier
the spike is emitted[33].

In this case, the stimuli from a presynaptic neuron are not collected in time by a
postsynaptic one.

When the input signal is periodic, it is possible to apply a version of the time-to-first-
spike encoding where the phase is evaluated and so the variations between one period and
another are encoded. Indeed, the key point is to encode the information in the phase of a
pulse with respect to the background periodic signal.

3.1.2. Synapse models
Synapses play a crucial role in the brain activity as in NNs functioning. Indeed, they are
considered responsible of learning and weighting of information.

24

3.1 Spiking neural network principles

Among years, a lot of circuits have been presented for emulating synapse dynamics[38]
and, then, have been largely replaced by memristor devices such as OxRAM or PCRAM. In
the following the DPI (Differential-Pair Integrator) circuit for emulating synapse dynamics
will be presented since has been used for the project in chapter 4.

DPI circuit for synapse dynamics

The DPI circuit aim is to mimic the synapse dynamics including the weight of the incoming
signal and the short term integration.

In fact, it acts like a linear filter with the capacity to integrate spike inputs from different
sources -presynaptic neurons- by keeping the exponential dynamics and the compactness.

Figure 3.2: DPI circuit for synapse dynamics. Image from [38]

Most of the transistor in the circuit [Fig. 3.2] operates in sub-threshold regimes, so
that if Ig ≫ Isyn holds by setting Vthr it is possible to write:

τ
dIsyn
dt

+
I2syn
Ig
− Isyn

(
Iw
Iτ

+ 1

)
= 0 (3.1)

which can be simplified as:

τ
dIsyn

dt
= Isyn

(
Iw
Iτ

+ 1

)
so that the change in circuit response increases up to when the condition is no more satisfied
or even reached at the opposite Ig ≪ Isyn; at this point the condition for low-pass filter
behavior is reached:

τ
dIsyn

dt
+ Isyn =

Ig
Iτ

Iin

whose solution is (4.2), where Iout ≡ Isyn. Notice that Ig is a virtual p-type subthreshold
current which is not generated by any p-MOS in the circuit.

Moreover, should be noticed that:

• Csyn in combination with Iτ control the integration time τ ;

25

3 Spiking Neural Networks

• Vw control the weighting of the input signal;

• the output Isyn of the circuit follows the exponential decay typical of an action
potential.

Finally, it is possible to implement NMDA and conductance-based plasticity mecha-
nisms in addition to restoring mechanisms for short-term plasticity, i.e. for resetting Vw[7].

Memristor synapses

In the last years, memristor devices with an analog switching behavior are replacing circuit
for synapse dynamics such as the DPI[10].

Thanks to the resistor nature of memristor, it is easy to implement a ReRAM cell as
a weight by setting a resistance value RM on the memristor and simply converting the
incoming spike as:

Iw =
Vin

RM

where Iw is the weighted input that will feed the neuron.
Moreover, it is not necessary to implement additional circuit for emulating long-term

and short-term plasticity[38] since they are both part of the memristor behavior. Indeed,
the short-term plasticity is part of the memristor volatile nature in which the filament
tends to relax to higher conductances after that a pulse ends in order to minimize the
energy inside the oxide. On the other hand, long-term plasticity is due to phenomena
which makes the memristor such an interesting device: it has memory of the past so that
if the conductance have been set to a certain value even if it could be slightly modified by
short-term effects, it will be centered around a given value.

3.1.3. Neuron models
The CPU of a neural network is the neuron and, thus, its modeling is very important and
determining the performance.

However, a trade-off between bio-plausibility and implementation simplicity must be
analyzed as discussed in the following. Moreover, the neuron has to work with spike trains
as input, hence the models used for ANNs are not always compatible.

All the neuron models presented act not only as integrators in time but also in space,
i.e. the input current is given by the weighted sum of all presynaptic currents as in the
McCulloch-Pitts model[54]:

I(t) =
∑
i

wiui(t)

where wi is the weight associated to the potential ui of presynaptic neuron i and is measured
in S.

Leaky integrate-and-fire model

The most basic neuron model is the leaky integrate-and-fire (LIF) neuron in which an
RC circuit is used to model the membrane. Important features are the driving current
I(t) = IR(t) + IC(t) and the membrane potential u(t).

26

3.1 Spiking neural network principles

From the Ohm’s law and the capacitor current it is easy to compute the driving current
as:

I(t) =
u(t)

R
+ C

du(t)

dt
(3.2)

while the membrane potential is given by the multiplication of (3.2) by R and the mem-
brane time constant τmem = RC, which simply is the integration time of an RC circuit:

τmem
du(t)

dt
= −u(t) +RI(t) (3.3)

In such a model, the spike event of the neuron occurs at time tf when the membrane
potential:

u(tf) ≥ ϑ

and then, immediately after a firing event, the membrane potential is reset to u = urest,
with urest < ϑ.

It is clear that the circuit integrates incoming spikes with a leakage in time due to the
capacitor discharge. Moreover a refractory period during which the dynamics is interrupted
after an output spike event in order to limit the firing frequency.

Non-linear IF models

In the non-linear integrate-and-fire family of models (3.3) is replaced by:

τmem
du(t)

dt
= F (u) +G(u)I (3.4)

where G(u) is a voltage dependent input resistance and F (u)/(u − urest) is a voltage
dependent time constant[50].

To this family belongs the quadratic integrate-and-fire model (QIF) whose equation is:

τmem
du

dt
= a0(u− urest)(u− uc) +RI (3.5)

with the parameters a0 > 0 and uc > urest. The spiking mechanism as for LIF is generated
whenever u ≥ ϑ. The difference with respect to the LIF model is that using this model is
possible to reproduce an action potential.

Adaptive exponential neuron model

The adaptive exponential (AdExp) model equation is (3.4) expressed in terms of currents
with:

F (u) = f(u)− w

G(u) = 1

so that becomes:
C
du

dt
= f(u)− w + I (3.6)

where w is the adaptation term and f(u) is a combination of linear and exponential
functions[40]:

f(u) = −g(u− urest) + g∆ϑ exp

[
u− ϑ

∆ϑ

]
27

3 Spiking Neural Networks

where g = 1/R is the leak conductance and ∆ϑ is the slope factor and determines the
sharpness of the threshold. Again, when a spike event occurs, the potential is reset to
urest.

Finally, the adaptation current w is described by:

τw
dw

dt
= a(u− urest)− w

with a indicating the level of adaption.
An example of application of such a model is the DPI neuron[12] in which a log-domain

low-pass filter neuron is implemented through four circuits:

• a DPI for low-pass filtering;

• a spike event generator and a current-based positive feedback;

• a reset-refractory pulse generator;

• an adaptation low-pass filter implemented through another DPI filter.

Despite the simplicity, such a model predicts with 96% accuracy the spike timing
(±2ms) of much more complex models such as the Hodgkin-Huxley which has more than
100 fitting parameters[40].

Hodgkin-Huxley: the biological model

The most complicated models are the ones strictly connected to biology dynamics; exam-
ples are Hodgkin-Huxley model and their reduction to two dimensions[50]. The complicated
formalism is partially due to the pragmatic nature of the model, i.e. it is a mathematical
set of equations derived as a consequence of experimental data instead of being the origin
of predictions from a mathematical paradigm. This process revert the cause-effect flow
in scientific research and produces the quasi-total absence of mathematical formalism in
disciplines such medicine or biology because of the huge quantity of parameters needed to
fit the model to experimental data.

By the way, the model has been obtained by the study of giant squids axons and rep-
resent the neuron membrane as composed of three ions channel: Sodium (Na+, Potassium
(K+) and Chloride (Cl-) which is indicated as a leaky channel. Since here is a difference
in concentrations of difference ions between inside and outside the membrane, a Nernst
potential is generated and represented by a voltage supply. In addition, two variables con-
ductances are inserted in order to describe the lower -or higher- probability of moving ions
when the concentration is too high -or too low- with a constant leakage conductance [Fig.
3.3a]. Thus, the current can be expressed as:

I(t) = C
du

dt
+
∑
j

Ij(t)

where j indicates different ions channels.
Such a model will not be further investigated since it is never used in spiking neural

network models because of its complexity and the high specificity variables. It is relevant to
notice that the potential of the LIF model is not equal to the action potential of biological
models [Fig. 3.3b], while the one generated by non-linear IF models is similar.

28

3.1 Spiking neural network principles

Figure 3.3: a) Hodgkin-Huxley model circuit representation. Image from [50]; b) comparison
between Hodgkin-Huxley action potential (solid line) and LIF potential (dashed line).
Image from [71]

3.1.4. Learning in SNNs
From deep learning it is possible to learn lessons about learning on NNs that can be
applied to spiking architectures in order to enjoy the benefits deriving from these last
ones[15]. The focus is always to solve the so-called dead neuron problem [Fig.3.4] in which
back-propagation is useless because of the non-differentiability of spikes, indeed looking at
the solution of (3.4) discretized in time it reads:

u(t+∆t) = βu(t) +WwRxin(t) (3.7)

where β is the exponential decay of the membrane potential, ∆t is the time step for time
discretization, Ww is the weight conductance, R is the leak resistance, xin(t) is the input
spike voltage and the reset term has been subscript. Since the spiking output is normally
given by:

S(t) =

{
1 if u(t) > ϑ

0 otherwise
(3.8)

a weight update ∆Ww (which is the base of back-propagation as in (1.9)) corresponds to
a change in the potential of ∆u, but such a change fails to precipitate a further change in
in (3.8):

dS

du

{
→∞ if u = ϑ

= 0 otherwise

which can be expressed in terms of the gradient of loss in the weight space

dL
dWw

∈ {0,∞}

which does not enable learning.
Anyway, learning methods remain an open challenge in the field of deep learning for

ANNs as for SNNs. Each policy described in the following has its field of shining where it
can outperform the others, so that it is possible to adapt the rule to the task that has to
be performed.

29

3 Spiking Neural Networks

Shadow training

When the input signal is not time-varying, as in case of static images, and the inference
efficiency is much more important than training efficiency a good way to go is the training
of an ANN whose parameters are then converted into SNN parameters; e.g., the activation
function of the neurons is converted into either a spike rate or a latency code[15].

The two main disadvantages in such a training method are:

• the conversion of sequential ANNs to SNNs is not that explored;

• the activation function in ANNs is much more precise than the spiking conversion;

that make the trained SNN never reaching the original ANN performance.

Surrogate gradient

When using surrogate gradient (SG) approach[66], the spiking function (3.8) is substi-
tuted with a smoother function [Fig. 3.4] that allows the derivative of the spiking function
to be replaced with a similar one which is differentiable, in other words:

dS

du
← dS̃

du

so that the loss function derivative is now indicating a gradient that can be followed by
deep learning gradient descendent algorithms.

This method allows to train native SNNs using deep learning algorithms without re-
quiring higher computational power or parameters transferring. On the other hand, it is
adding a hyperparameter to the training phase: the choice of the surrogate gradient.

Figure 3.4: Dead neuron problem graphical representation and surrogate gradient solution. Image
from [15]

Learning on memristor devices

When introducing memristor devices inside neuromorphic chips and SNNs, it is manda-
tory to consider the hardware nature of such devices even when simulating or interacting
with them through learning algorithms.

This is why the training of memristor-based SNNs remains an open challenge.

30

3.1 Spiking neural network principles

Considering that a change ∆W corresponds to a change of the conductance in the
device and that the precision in the programming of such conductance cannot reach the
precision of software simulations -32-bit or even more- innovative mixed-precision learning
policies have been proposed[35].

Using these policies, it is possible to use a learning block on the chip to reach also
online learning in which data are available in a sequential order.

The mixed-precision update provides tools for keeping the trace of gradient by storing
its changes and then deciding if it is necessary to update the weight. E.g. suppose that the
gradient is stored for j and that the original conductance Gi(0) -weight- of a memristor
synapse is falling inside the distribution with mean G1, the accumulated gradient is requir-
ing a change of ∆W = ∆G so that the conductance after j epochs should be Gi(0) +∆G,
there are two available options:

• |Gi(0)+∆G−G2| > |Gi(0)+∆G−G1|: the weight is not updated and kept constant
to its original value Gi(0);

• |Gi(0) + ∆G − G2| < |Gi(0) + ∆G − G1|: the weight is updated to Gi(j) which is
sampled from the distribution with mean G2.

3.1.5. SNNs implementations
Spiking neural networks offer a wide range of application through a large set of differ-
ent implementations spacing from the software-based to the on-chip implementation. Of
course, it is evident that they can fully prove their efficiency -especially in terms of power
consumption- when following on-chip approach.

When looking at hardware implementation, it becomes important to consider one of
the biggest issues of the last decades in technology: the von Neumann bottleneck, i.e. the
limited throughput between the CPU and the memory compared to the memory in a von
Neumann architecture. Indeed, von Neumann architecture is obtained when designing a
chip which has different blocks for storing data (memory) and for doing operations on data
(CPU); these two blocks need to communicate because in order to elaborate data it is
mandatory to send them from the memory to the CPU and back to the memory, but if
the communication speed is limited the velocity of operations results limited as well. In
the following, three chips that may be considered as the state-of-art about neuromorphic
chips overcoming von Neumann bottleneck are presented.

Software implementations

Simulating SNNs on software is not a simple task since they show the same hyper-
parameters of ANNs plus others and require the implementation of different differential
equations with respective solutions discretized in time. On the other hands this is very
often a mandatory step, especially for custom chips, and allows to simulate architectures
which can be much more complicated that on-chip respective.

Anyway, there are two main philosophies for doing software-based implementations of
SNNs.

31

3 Spiking Neural Networks

The first one is more classical from deep learning point of view and requires the knowl-
edge of existing Python library also used for ANNs like PyTorch, TensorFlow or Keras
adapting the structure of the simulated NN to the SNN architecture requirements[75].

The second is based on specific libraries such as Brian2[52] which already includes
neuron, synapses and other components models allowing to write a code more similar to
the hardware real behavior.

They both have pros and cons, e.g. the use of specific libraries gives less flexibility when
customizing the network for introducing new components or new methods for training.

DYNAPs chip family

Dynamic Neuromorphic Asynchronous Processors (DYNAPs) is a family of chips de-
signed using non von Neumann architecture for address-event representation (AER) using
asynchronous digital circuits[29]. In such a system, neurons are process units which are
connected in different ways in order to form a hardware implementation of a SNN.

The difference with ASICs used for standard deep learning is that spike events are
substituting the classic clock-based floating point computation and feed directly the pro-
cess units avoiding the von Neumann bottleneck obtaining an asynchronous spike-based
computation.

Both neurons and synapses are implemented through the DPI models of the two com-
ponents[38, 12] while the communication between them is obtained by a two phase routing
scheme. Indeed, the N neurons used for a layer of the network are grouped in N/C clusters
of C neurons each and the fan-out operation -i.e. the communication with the successive
layer- is divided into two stages:

1. neurons use the source-address routing for targeting a subset of intermediate nodes
of dimension F/M with F > M and where F is the fan-out of the first layer neurons;
the number of intermediate nodes in N/C which is N/C ≤ F/M ;

2. the intermediate nodes target a number M ≤ C of neurons in the second layer within
each cluster C; each neuron in the end-point cluster uses a set of tags (one of K tags
for each cluster) and decides if accept or ignore the incoming input.

This two-stage fan-out operation allows to overcome von Neumann bottleneck by distribut-
ing the memory across the different neurons and to minimize the total digital memory by
keeping a higher fan-out M so that the total memory required by each neuron can be
divided into:

• source memory MEMS ;

• target memory MEMT .

Finally, the chip architecture provides the possibility to implement multi-core neuromor-
phic processors in which there are three different asynchronous routers and embedded
SRAM and CAM (Content Addressable Memory) cells distributed across cores and routers.

The chip allows to reach impressive specifications and ultra-low power consumption
per event [Tab. 3.1]. Moreover, thanks to the memory distribution on neuron and synapse
arrays, it is already possible to implement innovative technologies such as ReRAM for
further reducing the energy consumption.

32

3.1 Spiking neural network principles

Specifications
Process technology 0.18 µm 1P6M
Die size 43.79mm2

Voltage supply (core) 1.3V-1.8V
Supply voltage (I/O) 1.8V-3.3V
Number of cores 4

Number of neurons 1 k
Number of synapses 64 k
Total memory 64 k CAM and 4 k SRAM

Energy consumption

Operation
Core voltage supply

1.3V 1.8V
Single spike generation 260 pJ 883 pJ
Encode one spike and append destinations 507 pJ 883 pJ
Broadcast event to same core 2.2 nJ 6.84 nJ
Route event to different core 78 pJ 360 pJ
Extend pulse generated from CAM match 26 pJ 324 pJ

Table 3.1: DYNAPs family chip specifications and power consumption per event from [29]

Loihi

Loihi is a NC chip produced to overcome the von Neumann bottleneck, to use all the
knowledge from neuroscience and to respect all the requirements for efficient running of
SNNs[22]:

• sparse network compression: the fan-out neuron indices are computed basing on
states stored with each synapse state in a sparse manner; this can be done using
three different sparse matrix compression methods;

• core-to-core multicast: any neuron can send spikes to any other neuron in the network
following the SNN architecture;

• variable synaptic formats: the weight resolution can vary from 1 to 9 bits represen-
tations and can be signed or unsigned;

• Population-based hierarchical connectivity: connectivity templates can be defined as
generalized weight sharing mechanisms;

all this taking advantage of asynchronous design thanks to SNNs properties, including
bio-plausibility structures and elements such as dendrites and axons.

Moreover, each core implement spike-time-dependent plasticity (STDP) based learning
engines for changing synapses variables and perform on-chip learning.

Finally, it is the most dense neuromorphic chip implementation [Tab. 3.2] which allows
to implement SNNs using all possible architectures and with ultra-low power consumption.

33

3 Spiking Neural Networks

Specifications
Process technology 14 nm FinFET
Die size 60.00mm2

Voltage supply [0.5, 1.25]V
Number of cores 128

Number of neurons 1024 per core
Synaptic memory 16MB
Total memory 33MB SRAM

Energy consumption

Operation
Voltage supply

0.75V
Synaptic spike 23.6 pJ
Synaptic update 120 pJ
Neuron update (active/inactive) 81 pJ/52 pJ

Table 3.2: Loihi specifications and energy consumption per event from [22]

TrueNorth

TrueNorth is the largest neuromorphic chip and was the most dense up to Loihi coming.
The basic block for such a structure is a core with 256 input lines (called axons), 256 output
neurons and 256-by-256 synaptic connections.

Then, 4096 cores are connected through on-chip connections and each neuron is able
to send signals to any other axon in the chip; such a communication is done in two stages:

1. a single connection travels a long distance between a first and a second core;

2. a second multiple connection connect the first to each axon on the second core.

This allows to the chip to reach high efficiency thanks to the fact that neurons form clusters
that draw their inputs from a similar pool of axons and only spike events sparse in time are
communicated. Of course, off-chip connections are also present in order to communicate
with the external world input signals coded in form of spikes.

The neuron dynamics is discretized through 1ms time step with a global 1 kHz global
clock. The spike advantage in terms of clock on such a chip is represented by fully asyn-
chronous inter-core and event-driven intra-core computation. This makes the active power
proportional to the firing activity. A lot of other benefits such as scalability and flexibility
are guaranteed by this chip[27].

Both online and offline learning are possible with TrueNorth for implementing a large
quantity of different SNNs architectures such as liquid state machines, restricted Boltzmann
machines or convolutional networks.

The chip characteristics [Tab. 3.3] are still very innovative even if the first presentation
of the chip was in 2014.

34

3.2 Spiking neural network time signal analysis

Specifications
Process technology Samsung’s 28 nm
Die size 4.3 cm2

Voltage supply 0.775,V
Number of cores 4096

Number of neurons 1M
Number of synapses 256M
Total memory 6T SRAM

Energy consumption

Operation
Voltage supply

0.775V
Synaptic event 26 pJ

Table 3.3: TrueNorth chip specifications and power consumption per event from [27, 2]

3.2. Spiking neural network time signal analysis
In the previous section, all the instruments for projecting and implementing a SNN were
given. In the following, the state-of-art about SNN architectures used for doing time-
varying signal processes will be explained, knowing that this architectures can be imple-
mented with the previously explained methods or with custom chips.

The main problem regards memory. Indeed, differently from space-varying signals, in
time-varying signals the information is not all available immediately but is distributed in
time so that for real-time computation storing information for a certain amount of time
becomes mandatory. In certain cases, short-period signals, neurons models provide a very
short memory corresponding to the integration time of the circuit, but for longer period
signals a larger memory and more complicated mechanisms for obtaining it are necessary.

The key-point is that SNNs are built for analyzing spike trains which are already time-
varying signals. I.e., in principle, SNNs are always doing real-time computation. The
problem is when are they doing true real-time with respect to analog input signal?

3.2.1. Feed-forward SNN
Feed-forward architectures represent the most simple possible architecture for SNNs, they
are built using one or more layers of neurons which are connected in a way that allows the
spikes to travel following only one direction. They can use both excitatory and inhibitory
synapses for connecting the neurons in the layers.

An example of such a structure has been presented for EMG (electromyography) signal
classification using two layers of AdExp neurons connected with DPI synapses for having
both excitatory and inhibitory connections[46]. The two layers are structured in a way
that:

• the spike conversion is obtained through sigma-delta modulation;

• a first hidden layer of 192 neuron receives a linear combination of fixed-weight ran-
domly generated from four input EMG channels through excitatory and inhibitory

35

3 Spiking Neural Networks

connections; this allows each neuron to receive 16 input spike trains (1 up and 1
dn spike trains for each of the four channels connected twice with excitatory and
inhibitory synapses);

• an output layer of 3 neurons for doing classification; each neuron is connected through
trainable weights to all the neurons in the hidden layer.

The network is implemented on DYNAP chip using off-chip online training for the output
layer weights following the delta rule:

∆wij = α(Tj − yj)xi

where i indicates the ith hidden neuron, j represents the jth output neuron, Ti is the
target, yi is the network output and xi represents the input pattern.

The classification is done by observing what is the neuron spiking with the highest
firing rate among the three and connecting it to a class of gestures.

The network is said to be "a step towards realizing an end-to-end solution, from sensors
to classification, for the real-time processing of EMG signals"[46], so that it is still not doing
real-time classification with respect to incoming analog signal.

Works based on feed-forward SNN on others dataset for time-varying signals like EGG
have also been presented[23].

Balanced SNN

Balanced SNN is a particular architecture of the feed-forward family in which excitatory
and inhibitory synapses are used in a different ways between two layers.

A three layer architecture of balanced SNN has been used for analyzing vibration
patterns of bearing test rings for detecting anomalies[25].

Figure 3.5: Balanced SNN example: in red inhibitory synapses, in blue excitatory synapses. Image
from [25]

In the work, the vibration patterns are converted into spikes through a sigma-delta
ADC with a refractory period and the spike trains are used to feed a SNN made of an
input layer whose dimension N corresponds to the input number of channels; the layer
is connected to a N dimensional hidden layer where each nj neuron receive an excitatory
connection with the respective hj neuron in the input layer and combines it with N − 1

36

3.2 Spiking neural network time signal analysis

inhibitory connections from all other neurons in the input layer [Fig. 3.5]; the weight
between hj and nj is set to be:

wjj = α(N − 1)wij,i̸=j

where α is a scaling parameter; this is done in order to balance the difference between
excitatory and inhibitory synapses.

The hidden layer neurons, finally, send their output to the output neuron through
only excitatory connections. The network has been successfully run on both software
implementations like Brian2 and hardware implementation through DYNAP chip.

3.2.2. Recurrent SNN
Recurrent SNNs (RSNNs) are the equivalent of recurrent network in the ANN paradigm.
The architecture provides the possibility to send information through multiple dimensions
in order to form a short-term memory whose importance is determined by the weight
related to recurrency.

If the most simple form of recurrency is considered, the signal is sent back just to the
neuron itself and the equation (3.7) for a fully connected single neuron becomes:

u(t+∆t) = βu(t) +
∑
i

WiRxin,i(t) + V wRS(t) (3.9)

where S(t) is formally (3.8) but can be substituted with the surrogate gradient function if
used and V is the weight associated to the recurrent signal of the neuron, i.e. the neuron
is sending its weighted output to itself.

Reservoir computing

Reservoir computing (RC) paradigm is derived from recurrent network so that the
principle of keeping memory of the signal through recurrency is maintained.

The basic structure for such an architecture is formed by a reservoir connected to the
input and to a read-out layer [Fig. 3.6a]. The reservoir is, then, formed by a sequence
of randomly and recurrently interconnected virtual nodes -i.e. neurons- to constitute a
network with internal feedback loops. This allows to the reservoir state to be influenced
only by recent past, i.e. to form a short term memory of the input.

Generally, the read-out layer is fully connected to all the nodes in the reservoir and the
weights of such connections are the only trained among the entire architecture.

When the reservoir computing system is using SNNs models it is usually called liquid
state machine (LSM) because it response is similar to a liquid forming ripples in response
to an input. The reservoir in this case is not guarantee to be fully-connected, but the
probability of connection between two neurons is inversely proportional to their respective
distance as in brain.

The reservoir dynamics can be expressed as:

xM (t) = (LMxin)(t) (3.10)

where xM indicates the reservoir state, xin(·) is the input spike train and LM is the filter
used for transforming the input in the reservoir state[13].

37

3 Spiking Neural Networks

Figure 3.6: a) classic RC network with fixed connections; b) RC network with non-linear node
with delayed feedback as reservoir. Images from [18]

Recent trends tend to substitute the classical reservoir with a non-linear node with
delayed feedback[18] where virtual nodes are used to equally divide a delay time τ into N

part, where N is the number of nodes [Fig. 3.6b]. The state of each node is then used to
describe the reservoir state at time t:

xM (t) = x(t− (N − i)θ)

where θ = τ/N . This represents one of the first attempts to use temporal delay as memory
in NNs.

When the input signal is space varying it is possible to treat it as time varying for using
LSM and RC for doing image classification. This is done by using a sequence of pixels as
a train of spikes and using a reservoir entirely realized through memristor synapses with
optoelectronic response[19]. Also on-chip implementations for ECG signals classification
of RSNN reservoir-inspired have been done for real-time analysis[39].

38

4. Single Neuron SNN for Real-Time
Analysis of Temporal Signals

In the last years, the evidence that two neurons are connected though multiple synapses
have been suggested in medical and biological papers even if the reasons behind this char-
acteristic remain unknown[56].

In the presented project, this multi-synapse connections are supposed to be used to
introduce time delays in order to process temporal signals. Indeed, through delays applied
to the incoming signal -by exploiting non-idealities of memristors- it is possible to generate
a short-term memory for storing important signal features.

4.1. Architecture
The SNN is a perceptron-inspired architecture for analysis of time-varying signals made
of 4 dendrites, each dendrite is then connected to 64 synapses, each synapse is finally
associated to a delay [Fig. 4.1].

The first synapse of each dendrite is associated to a 0 s delay, i.e. to a memristor in its
LRS.

Figure 4.1: SNN architecture represented in a code-aware version in order to accomplish both
PyTorch and circuit representations

39

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

Spike encoding

The spike encoding for the input signal is done through a sigma-delta modulator[46, 45],
i.e. a self-timed clock-less ADC which produces for an input signal two train of spikes,
respectively up and down (dn).

These spikes are generated when a change in the input signal is equal or higher than a
fixed δV .

Delays

The delay is obtained from a RC circuit made of a memristor which can be set in HRS or
in LRS and a capacitor whose delay is given by:

Di,j = RM,i,jC

where RM,i,j is the memristor resistance associated to synapse j on dendrite i and C is
the capacitance.

To optimize the area efficiency of the circuit, the capacitance is fixed at 100 fF while the
memristor is used to select different delays. Since the LRS resistance RM of the memristor
is much lower than its HRS resistance, the delay of an ON memristor is considered τ ∼ 0 s.

Since RM for a memristor in HRS is not fully determined but it is a value sampled
from a log-normal distribution[31], the non-ideality of the memristor is used to obtain one
different delay for each synapse on the dendrite; moreover the first delay of each dendrite
i -Di,0- is set to 0 s.

Weights

The weight of each synapse is again a memristor which can be set to HRS to have a zero
weight, i.e. no signal from the synapse, or in LRS knowing that the LRS conductance
Wi,j = 1/RM,i,j is sampled from a Gaussian distribution whose mean can be fully deter-
mined in 8 values[8] obtaining a total of 9 available weight values not fully-determined
but sampled from Gaussian distributions. In such a way, the current entering the DPI -or
directly the neuron- is:

Ii(t) =
∑
j

Wi,jVADC(t−Di,j) (4.1)

The aim of the SNN during the training will be to learn what are the desired delays in
order to keep in memory the features characterizing the input signal.

Synapse

The synapse dynamics is given by a DPI circuit[6] connected at the end of each dendrite
which is receiving the sum of all weighted signals. As will be analyzed in next sections,
the DPI can be avoided if required from the chip design.

40

4.2 Hardware-aware coding

The time-response of the DPIi is modeled as follows:

Iout,i(t) =gDPIIin,i(t)

(
exp

[
− τs
τDPI

]
− 1

)
+

Iout,i(t− τs) exp

[
− τs
τDPI

]
gDPI =

Ig
Iτ

(4.2)

where Ig is a virtual p-MOS sub-threshold current, Iτ is the current controlling the
decay time constant τDPI , τs is the pulse width and Iin,i is the current computed in (4.1).

Neuron

The neuron is a simple LIF neuron described by (3.2) considering the rest potential:

τmem
du
dt

= − (u− urest) +RnIin(t) (4.3)

where τmem is the membrane time constant and can be tuned and Rn is the resistance
associated to the time constant

Rn =
τmem

C

with C = 100 fF; in addition to the membrane time constant, also the threshold ϑ is
tunable. The current entering the neuron Iin(t) is given by:

Iin(t) =
∑
i

Iout,i(t)

where Iout,i is the one from (4.2) or, if the DPI is avoided, the one from (4.1); finally, it is
adapted through a current limiter in order to use reasonable values for ϑ.

Everything is simulated using PyTorch and an hardware-aware coded so that the circuit
parameters are accounted and the full power of deep learning is used.

4.2. Hardware-aware coding
The main objective for the network during the training is to learn the weights in a way
that allows to keep the right delays for storing memory.

The principal idea is that, using different delays, the signal is sent to the neuron
multiple times so that old features can be easily connected in time with the last arrived.
Such a method is used in reservoir computing or in RNN where the memory is kept using
recurrent connections to send the signal back to the neuron itself. Anyway, using dendrites
and delays with multi synapses connection allows to increase scalability while reducing
power consumption.

In order to simulate the network dynamics while using deep learning features, a Python
code is required. Such a code must take into account the hardware features and this is the
reason why it is called hardware-aware code.

The first step is to discretize time in the equations describing the architecture, then the
so-called hyperparameters of SNN should be defined and, finally, scaling issues regarding
currents and voltages amplitude must be considered.

41

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

4.2.1. Time discretization
Instead of using the usual continuous time conception and description, is normal to use
discrete formalism in NN which are solving temporal tasks.

In SNN this requires the definition of a time step ∆t and the redefinition of equations
describing the system.

Spike encoding

The sigma-delta modulator is coded with a loop that given the analog signal -sampled
with frequency fs = 1/∆t- compares the current analog value with the previous one or the
reference -set to the first incoming value- and generates two vectors with the same length
of the input array [Algorithm 4.1].These are the up and dn spike trains that will be used
for feeding the network.

Algorithm 4.1 delta_modulation(x_analog, dv)

Input: analog signal x_analog of shape (t_steps, n_ch_analog) where n_ch_analog is
the number of analog channels; voltage threshold for spike emission dv;

Output: spike train delta_mod of shape (t_steps× n_ch = n_ch_analog ∗ 2)
1: n_ch = n_ch_analog ∗ 2
2: delta_mod =zeros[t_steps][n_ch]

3: for i← 1 to n_ch_analog do
4: prev = x_analog[1][i]

5: for j ← 1 to t_steps do
6: if x_analog[j][i]− prev > dv then
7: delta_mod[j][2 ∗ i− 1, 2 ∗ i] = [1, 0] ▷ up spike generation
8: prev = x_analog[j][i]

9: else if x_analog[j][i]− prev < dv then
10: delta_mod[j][2 ∗ i− 1, 2 ∗ i] = [0, 1] ▷ dn spike generation
11: prev = x_analog[j][i]

12: end if
13: end for
14: end for
15: return delta_mod

Delays

The delays are described by an integer number of spike given by:

Ddiscrete
i,j = int

(
Di,j

∆t

)
where int(·) function takes only the integer part of the division. Such a delay is added at
the beginning of each spike train entering the network though a specific function which
computes the discrete delay and the concatenates the original vector at the bottom of the
delays vector [Algorithm 4.2].

42

4.2 Hardware-aware coding

In order to take into account non-idealities of the ADC, random spikes are added with
a probability of 0.01%, i.e. the probability that a noisy spike happens at time ti in the
interval [0, Ddiscrete

i,j] is 0.01%. Moreover, the length of simulation for each run of the
network in terms of time steps will be given by:

ntot
steps = nanalog

steps +max
i,j

Ddiscrete
i,j

where nanalog
steps corresponds to the length of the two vectors computed in the ADC loop.

Algorithm 4.2 delay(delta_mod, t_s,mu, sigma, c, n_syn, n_ch)

Input: mean of the log-normal mu; std of the underlying Gaussian sigma; capacitance
c; time step t_s; number of dendrites n_ch; number of synapses n_syn; input spike
train delta_mod with shape (t_steps× n_ch)

Output: input spike train with delays x_delayed of shape (t_steps+d_max×n_syn×
n_ch)

1: r =zeros[n_syn][n_ch]

2: r[2 : end][all] = lognormal(mu, sigma, size = n_ch ∗ n_syn− n_ch) ▷ sample from
log-normal

3: tau = r ∗ c
4: t_steps = length(x_data)

5: d_max = (int)(max(tau)/t_s)

6: x_delayed =zeros[t_steps+ d_max][n_syn][n_ch]

7: for i← 1 to n_syn do
8: for j ← 1 to n_ch do
9: d = (int)(tau[i][j]/t_s)

10: x_delayed[all][i][j] = concatenate(zeros[d], x_data[all][j], zeros[d_max− d])

11: end for
12: end for
13: return x_delayed

Weights

The input spike train, after the delay, has to be weighted since it is passing through
conductances of different magnitude.

This operation can be simply performed by a matrix multiplication of the type abc, cd→
abd:

IW = Idelay ·W

where IW will be a matrix (ntot
steps×nch), W is a matrix (nsyn×nch) and Idelay is a matrix

(ntot
steps × nsyn × nch).
Notice that in Algorithm 4.5 the matrix multiplication is performed through a for loop,

while on PyTorch much more efficient tools such as torch.einsum are provided.

43

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

Synapse

The DPI are modeled with the respective equation in discrete time. Starting from the
single pulse response:

Iout(ti + n∆t) = gDPIIin(ti)

 exp

[
∆t

τDPI

]
− 1

exp

[
(n+ 1)∆t

τDPI

]
 (4.4)

which is directly derived from the discretization of (4.2) using τs = ∆t and describes the
DPI output after n time steps.

Using (4.2) discretized in time is possible to simulate the time behavior of the DPI by
considering that Iin,i(tk) is the weighted and delayed current at time tk

Indeed, the python code is a loop over time steps of weighted and delayed input spike
trains [Algorithm 4.3] which is, in fact, a current since weight dimension is expressed in S.

Algorithm 4.3 dpi_convolution(x_weighted, tau_dpi, t_s, g_dpi)

Input: weighted and delayed spike train x_weighted with shape (t_steps + d_max ×
n_ch); DPI time constant tau_dpi; time step t_s; DPI gain from (4.2) g_dpi

Output: DPI output current array dpi_out with shape (t_steps+ d_max× n_ch)

1: decay = exp(−t_s/tau_dpi)

2: dpi_out =zeros[t_steps+ d_max][n_ch]

3: dpi_out[1][all] = x_weighted[1][all] ∗ g_dpi ∗ (1− decay)

4: for i← 2 to t_steps+ d_max do
5: dpi_out[i][all] = x_weighted[i][all]∗g_dpi∗(1−decay)+dpi_out[i−1][all]∗decay
6: end for
7: return dpi_out

Neuron

The neuron, at the end, needs adapted equations too in order to be inserted in the discrete
time system:

u(t+∆t) = βu(t) +Rn

∑
IDPI,i(t)− S(t)

where Rn is defined in (4.3) and the new terms are:

β = exp

[
− ∆t

τmem

]
exponential decay

S(t) = Θ(u(t)− ϑ) neuron output

notice that the neuron output can be either 0V or 1V -indicating the emission or not of
a spike- since Θ(·) is denoting the Heaviside function.

When writing the code associated to the neuron [Algorithm 4.4], the neuron output
function will be modified accordingly to the surrogate gradient technique[66].

44

4.2 Hardware-aware coding

Algorithm 4.4 neuron(x_in, tau_mem, t_s, theta)

Input: neuron input current x_in with shape (t_steps+ d_max× n_ch); neuron time
constant tau_mem; time step t_s; spiking threshold theta

Output: neuron membrane potential u_mem with shape (t_steps+d_max+1); neuron
spiking output out with shape (t_steps+ d_max)

1: β = exp(−t_s/tau_mem)

2: r_n = tau_mem/10−13

3: out = zeros[t_steps+ d_max]

4: i_in = zeros[t_steps+ d_max]

5: for i← 1 to n_ch do
6: i_in[all] = i_in[all] + x_in[all][i]
7: end for
8: u_mem = zeros[t_steps+ d_max+ 1]

9: for i← 1 t0 t_steps+ d_max do
10: out[i] = spikefn(u_mem[i]− theta) ▷ [66]
11: u_mem[i+ 1] = (beta ∗ umem[i] + r_n ∗ i_in[i]) ∗ (1− out)

12: end for
13: return u_mem, out

Neural network

The total network will be coded using an object whose call function is a cascade of the
previous methods for simulating the current flow [Algorithm 4.5].

Algorithm 4.5 network_call(x_in, t_s,mu, sigma, c, n_syn, n_ch, w, tau_dpi, g_dpi,

tau_mem, theta)

Input: delta modulated input array delta_mod of shape (t_steps × n_ch); time step
t_s; mean of the log-normal mu; std of the underlying Gaussian sigma; capacitance
c; number of dendrites n_ch; number of synapses n_syn; weight array w with shape
(n_syn×n_ch); dpi time constant tau_dpi; dpi gain g_dpi; membrane time constant
tau_mem; spiking threshold theta

Output: neuron membrane potential u_mem with shape (t_steps+d_max+1); neuron
spiking output out with shape (t_steps+ d_max)

1: x_delayed = delay(delta_mod, t_s,mu, sigma, c, n_syn, n_ch)

2: t_steps = length(x_delayed[all][0][0])
3: x_weighted = zeros[t_steps][n_ch]

4: for i← 1 to n_ch do
5: for j ← 1 to n_syn do
6: x_weighted[all][i] = x_weighted[all][i] + x_delayed[all][j][i] ∗ w[j][i]
7: end for
8: end for
9: dpi_out = dpi_convolution(x_weighted, tau_dpi, t_s, g_dpi)

10: u_mem, out = neuron(dpi_out, tau_mem, t_s, theta)

11: return u_mem, out

45

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

4.2.2. Network hyperparameters
In the presented architecture, the number of layers and neurons per layer is not a hyper-
parameter since the network is a perceptron-inspired model, but the SNN hyperparam-
eters such as weight initialization, membrane time constant and synapse time constant
-corresponding to the DPI one- have to be defined and set in the right way in order to
obtain a successful training. In the following, hyperparameters concerning the training
phase are not considered and will be analyzed in section 4.3.

Being the network simulated on software, the quantity of parameters that can be con-
sidered hyper is huge, but some are constrained by the hardware requirements:

• neuron spiking threshold ϑ = 1V;

• input spike amplitude Vin,ADC = 100mV;

some other parameters, that should require a strict hardware consideration, can be set
with more freedom since the training is not online as explained in section 4.3; this is the
case of:

• weight initialization, which does not require to take into account low-bit precision;

• spike pulse width for training;

Finally, for bio-inspired parameters, the bio-plausibility is always tried to be respected[60]:

• membrane time constant τmem;

• synapse time constant τsyn = τDPI ;

Moreover, in order to set good values, the fout− fin characteristic, in which the frequency
response of the network to a certain input frequency is represented, should be considered;
but, to consider such a characteristic the dataset should be know in order to adapt the
parameters to the task that should be chosen. As analyzed in section 4.4, the dataset used
for demonstrating the capability of the network to pick the right delay is the MIT-BIH[64].

In the following, the procedure is presented for the first proof of concept presented in
section 4.4, but it has been done for every different train session.

After the creation of an input spike train whose maximum frequency is fdataset = 360Hz
and keep into account that when a spike up occurs a spike dn cannot be present (resulting
in a maximum frequency of fspiking = 180Hz for a single channel), the network with
randomly initialized weights is feed with it.

The hyperparameters that must be studied are:

• wscale used for initialize the weights using a Gaussian distribution with µ = 0 and
σ = wscale/

√
nch;

• membrane time constant τmem;

• DPI time constant τDPI that is used for synapse dynamics.

46

4.2 Hardware-aware coding

It is important to notice that the network allows only positive weights while PyTorch
can deal with both positive and negative weights, so the results of the distribution for
weights initialization will be used after taking the absolute value of each weight. More-
over, since the amplitude of the output current of the DPI decreases as the time constant
increases [Fig. 4.2], a factor of compensation must be included in the gain of the DPI by
setting it to:

gDPI =

exp

[
∆t

τDPI

]
exp

[
∆t

τDPI

]
− 1

which is derived from (4.4) by setting n = 0 and Iin = Iout.

Figure 4.2: DPI single pulse response

The objective is to find a combination of the three parameters presented above that
makes the neuron firing with a frequency comprised in the linear region of the fout − fin
characteristic.

Once that results are obtained [Fig. 4.3], it is possible to see how in the region fin ∈
[100, 130]Hz the quality of the curve is very unrealistic due to a bad spike encoding: it is
difficult to keep a relation between 360Hz in which the input tensor has always a spike
alternating on up or dn channel and frequencies in that range.

A good solution for the hyperparameters has been found to be:

• wscale = 3 · 10−2;

• τmem = 10ms;

• τDPI = 7ms.

This choice allows to run the network in a linear region on its characteristic while keeping
bio-plausibility constraint. On the other hand, basing on the task that has to be solved
and to the firing frequency required to the neuron, it is possible to change the curve of
reference by changing the hyperparameters or by reducing the gain of the DPI as will be
seen in the next section.

47

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

Figure 4.3: a) wscale variation keeping τDPI and τmem constant; b) τmem variation keeping τDPI

and wscale constant; c) τDPI variation keeping wscale and τmem constant; d) mean of
the delay lognormal variation keeping τDPI , wscale and τmem constant;

In this sense, it is important to say that the parameter that can be changed easily is
wscale while letting the DPI gain at 1 at least when configuring the network during first
training sessions. Indeed, the change of other hyperparameters could not only bring to a
hardware unaware use of Python but also to non-bio-plausible configurations which can be
undesired.

4.2.3. Power and energy consumption
Both power and energy consumption are computed when doing inference on all the elements
present in the network.

It is important to know that the consumption is optimized and engineered only in the
signal analysis, i.e. for weights and delays. Moreover is very hard to estimate the power
and energy consumption for training phase since it can be performed in many different
ways.

Starting from the sigma-delta modulator, its power consumption is computed on a
180 nm CMOS technology based circuit[45] adapting the results to the dataset used:

PADC = 55 µW
fdataset
100Hz

while for the power, it is simply computed by multiplying the power by the time of inference
tinf :

EADC = PADCtinf

48

4.2 Hardware-aware coding

this will result to be the most expensive circuit element.

Delays

The delays are supposed to be read at every time step since is not possible to know what
are the non-zero weights a priori. Since they obtained through an RC circuit in which the
resistance is given by a memristor in its HRS, the power in time is computed as:

pDi,j(t) = V i(t) =
Vread(t)− vC(t)

Ri,j
=

Vread(t)− Vread(t)

(
1− exp

[
− t

Ri,jC

])
Ri,j

=

=
Vread(t)

2

Ri,j
exp

[
− t

Ri,jC

]
where i is indicating the dendrite and j the synapse, C = 100 fF, Vread(t) is the input spike
train exiting the sigma delta modulator with the amplitude used for reading delays. Thus,
for computing the energy of each RC circuit:

ED
i,j =

ntot
steps∑
k=0

∫ tk+1

tk

V 2
read(tk)

Ri,j
exp

[
− t

Ri,jC

]
dt

knowing that each integration between tk and tk+1 is equal to the integration in range
[0, τs], the energy and power of each delay are respectively given by:

ED
i,j =

ntot
steps∑
k=0

CV 2
read(tk)

1− e
−

τs
Ri,jC

PD
i,j =

ntot
steps∑
k=0

CV 2
read(tk)

ntot
stepsτs

1− e
−

τs
Ri,jC

the total values are derived by summing over i ∈ [0, 3] and j ∈ [0, 63]. This is a good
approximation which takes into account that the pulse width of a single spike will be ≪ ts
on the chip.

Weights

The weights energy and power consumption corresponds to the dissipation of a resistor
which is read every time that a spike occurs. Of each resistor the conductance Wi,j corre-
sponding to the weight is known and will be used in the following.

The power is computed referring to a AC signal on a resistor:

PW
i,j =

(
V RMS
i,j

)2
Wi,j

where RMS indicates the root mean square of the voltage Vi,j(tk) which is Vread,W (tk), i.e.
the read voltage for weights after the delay. As the delay the total power is given by the
summation over i and j. It is important to notice that the spike pulse width will influence
the power consumption as V RMS

i,j decreases as the pulse width decreases.

49

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

For what concerns the power, time cannot be reduced through the use of root mean
square but must be considered:

EW
i,j = ntot

stepsτs

ntot
steps∑
k=0

V 2
i,j(tk)Wi,j

of course, the total power is given by the sum over i and j. Moreover, the energy indicates
that there are two possible situations in which power is not dissipated through weights at
time tk:

• Vi,j(tk) = 0V, i.e. no spike occurs and the weight is not read;

• Wi,j = 0 so that the weight will be never be read.

It is clear that depending on the training and the number of delays picked through W ̸= 0,
the power consumption will slightly vary.

Neuron

The LIF neuron, finally, is computed basing on a 22 nm CMOS technology based circuit[4]
on which the energy per spike is computed for every spike, knowing that the neuron has
very low chance to overcome 30Hz of firing rate.

Neural network

The total power and energy consumption is computed as:

PTOT = PADC + PLIF +

3∑
i=0

63∑
j=0

(
PD
i,j + PW

i,j

)

ETOT = EADC + ELIF +
3∑

i=0

63∑
j=0

(
ED

i,j + EW
i,j

)
in which only the terms regarding delays and weights are optimized in this work.

4.3. Training method
The training of the network is performed on computer using PyTorch 1.10 through a
dedicated object, it is structured -as in classical deep learning paradigm- in epochs during
which the dataset is showed divided in batches, the loss function is computed between
the LIF neuron output and the label and the back-propagation function is called on the
weights. Hence, the training is supervised since each batch contains both the input spike
train and the label.

Like the network, the training has some hyperparameters that will be discussed in the
following.

The training phases are projected to be done offline with some phases that can be
performed online using a learning block which is able to accumulate the gradient. Thus,
thanks to hardware-aware coding, the initialized network chip with the respective delays

50

4.3 Training method

can be uploaded on a computer and then the weight can be set on the chip considering the
training results. In this way back-propagation and PyTorch built-in functions can be fully
exploited basing on the task to be solved.

The only parameters undergoing to back-propagation and, thus, to training is the
weights vector since the aim is to chose the right delays for recognizing signal features and
this is done by keeping high the corresponding weights.

4.3.1. Training hyperparameters
The training phase is characterized by some hyperparameters which determine the speed
and accuracy of training phases. Such hyperparameters are:

• loss function: a function that maps the difference of the output of the network with
respect to the label;

• optimizer: an algorithm which changes the parameters of the SNN basing on the loss
function result;

• learning rate lr: how fast is the learning of the network, i.e. what is the step of
change after each back-propagation call;

• number of epochs nepochs: how many time the training set is showed to the network
and the back-propagation method is called.

Unfortunately, in deep learning there are not specified criteria for setting these parameters
outside the experience and some general considerations[15].

Being the proof of concept built on binary classification performed on MIT-BIH dataset,
the selected loss function is BCEWithLogitsLoss method belonging to PyTorch torch.nn
class in which the binary cross entropy loss is computed after a sigmoid function is applied
to the input, i.e. to the output of the neuron. Since the possibility to define a threshold
of tolerance for the number of spikes -i.e. a number of spikes which are ignored and
considered as noise related- the network output has to be clamped before computing the
loss [Algorithm 4.8].

On the optimizer side, three different PyTorch algorithm belonging to the torch.optim
class have been exploited: Adam, Adamax and RMSprop. The best trade-off on speed,
accuracy and overfitting was found to be RMSprop.

Finally, there is a relationship between the learning rate and the number of epochs to
be used. Starting from the assumption that the learning rate cannot be too low otherwise
the optimizer gradient descendent algorithm could stuck on a local minimum during the
training, across all the learning routines.

To sum up, training hyperparameters are set to be:

• optimizer: RMSprop;

• loss function: BCEWithLogitsLoss for binary classification;

• learning rate: lr ∈ [10−4, 10−3];

• number of epochs: nepochs < 30;

51

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

4.3.2. Positive weights
The architecture of the network, in order to be more area and power efficient, uses only
positive weights [Fig. 4.1] and this should be considered while training the SNN because
PyTorch do not consider any constraint on the weight while training the network. More-
over, a PyTorch built-in function for keeping the weights positive does not exist so that a
personalized method has been coded for this purpose.

The method is relatively simple [Algorithm 4.6] and it is applied to the network weights
after each batch back-propagation call. It consists of a weight minimum clamping to zero,
i.e. all the negative weights are set to zero when the method is called.

Algorithm 4.6 w_clamping(w)

Input: weight array w of shape (nsyn × nch)

Output: weight array clamped to be < 0

1: for i← 1 to nch do
2: for j ← 1 to nsyn do
3: if w[j][i] < 0 then
4: w[j][i] = 0

5: end if
6: end for
7: end for
8: return w

Of course, PyTorch provides computational efficient tool to solve this request such as
torch.clamp function, but the intent of algorithms is to show the idea behind a function.

4.3.3. Low-bit precision for weights training
Writing memristors with analog switching on I-V characteristics does not allow to select
the conductance in a fully deterministic way with the all possible wanted values. By the
way, methods for sampling the conductance value from a Gaussian-like distribution with
8 available mean values have been presented[8].

In other words, it means that the resolution for the weights values is 3-bit and the value
when a memristor is written in a new state is not fully determined, but sampled from a
Gaussian distribution. Such a behavior cannot be neglected during training and different
techniques can be used for training networks considering it.

For this project a mixed-precision learning[35] approach is chosen. The objective is to
accumulate gradient for a given number of epochs and then update the weights using the
3-bit resolution; since each time a memristor is written a new sample from the Gaussian
must be done, only the weights which move from a distribution to another will be written
and resampled [Algorithm 4.7].

This kind of function is called in two different ways: the first one uses a list of possible
distribution including HRS -µ = 0 and σ = 0-, the second uses a list containing only LRS
mean values.

Every time that the low-bit precision training has to be performed, it must be preceded
by a32-bit precision training -i.e. without any constriction on weight resolution- so that a

52

4.3 Training method

Algorithm 4.7 low_bit(w,w_old, lrs_list, std_list)

Input: weight array after back-propagation w; weight array of previous sampling w_old;
array containing the means for the Gaussian sampling lrslist with length equal to 8;
array containing the std for the Gaussian sampling std_list with length equal to 8;

Output: new weight array with low-bit resolution w

1: mean = array of the closest mean to each weight with the same shape of w
2: old_mean array of the closest mean to each weight in old_w

3: for i← 1 to 8 do
4: n = take the number of elements for which mean ̸= old_mean and mean =

lrs_list[i]

5: new_w = normal(lrs_list[i], std_list[i], size = n) ▷ sample n element from
normal

6: update every w that changed distribution from old_mean to mean = lrs_list[i]

posing it equal to values in new_w

7: all the w values not updated must be posed equal to old_w

8: end for
9: return w

magnitude scale for weights is obtained, then the lists of means and std for the distribution
must be scaled by a quantity equal to

sw =
max(lrs)

max(w)

this will ensure that PyTorch built-in algorithm are able to train the network without
modifying training hyperparameters each time that the distributions for LRS are changed.
The scaling factor sw is then saved for doing hardware-aware inference.

4.3.4. Training loop and inference
The training loop [Algorithm 4.8] is defined implementing all the above methods.

It is important to notice to notice that PyTorch simulates and train the network basing
only on its dynamics, so the networks parameters will be set to:

• neuron spiking threshold ϑd = 1V;

• input spiking amplitude V d
in,ADC = 1V;

• Rd
n = 1Ωfrom (4.3);

• weights arbitrarily scaled by PyTorch;

• tds = 1/fsampling;

where the index d refers to the quantities used for dynamics-only simulations.
This implies that for the inference phase all these factors must be reset to the chip

values. Thus an analysis of currents and voltages for going back to hardware-aware coding
should be done.

53

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

Algorithm 4.8 training_loop(..., w_scale, x_in, labels, n_epochs, tolerance_thr, f)

Input: network_call requirements [Algorithm 4.5]; low_bit requirements [Algorithm 4.7];
w_scale for weight initialization; n_samples spike trains divided into n_batches

batches x_in with shape (n_samples/n_batches × n_batches); n_samples la-
bels labels divided into n_batches batches with shape (n_samples/n_batches ×
n_batches); number of epochs n_epochs; threshold tolerance tolerance_thr for spik-
ing ; frequency for low-bit f

Output: trained weights array w; loss history loss_hist

1: loss_hist = zeros[n_epochs]

2: w = normal(0, w_scale/
√

n_ch, shape = n_syn× n_ch) ▷ initialize random array
3: for i← 1 to n_epochs do
4: loss_local = 0

5: for j ← 1 to n_batches do
6: out = network(x_in[all][j], w, ...) ▷ shape is

(n_samples/n_batches× t_steps+ d_max)

7: sum out spikes on the time step axis
8: out = out− tolerance_thr

9: clamp out minimum to 0
10: loss = BCEWithLogitsLoss(out, labels) ▷ PyTorch built-in function
11: loss_local = loss_local + loss

12: back-propagation of loss on w

13: w = w_clamping(w)

14: end for
15: if i is a multiple of f then
16: w = low_bit(w, ...)

17: end if
18: loss_hist[i] = loss_local/n_batches

19: end for
20: return w, loss_hist

If it is considered that the spiking threshold ϑ remains constant from the dynamics
simulation to the chip scaling, it is clear that a current normalizer should be inserted in
the chip just before the neuron in order to scale linearly the current up to a maximum
value given by

Inorm,MAX =
Id
MAX

RnswVin,ADC
(4.5)

where at the numerator V d
in,ADC and Rd

n have been omitted being equal to a unit value.
Such a current limiter make advantage of an Iout− Iin characteristic which is linear in the
region comprised between 0A and a given values after which the current saturates to a
maximum value Inorm,MAX .

For what concerns the time scaling, it is possible under certain condition as explained
in section 4.4.

54

4.4 Results

4.4. Results
In order to demonstrate that the network is able to learn what are the right delays in order
to recognize features in temporal signals for real-time analysis the MIT-BIH dataset[64]
has been used in different ways.

During years, a lot of works have been presented on this dataset for recognizing and
classifying arrhythmia and heartbeat, unfortunately the entire dataset requires a lot of
medical competences to be used in its standard division[42]. Indeed, the dataset is not
very clear to scientists with non-medical background because the standard notation used
for labeling the dataset is very complicated and leads to different interpretations of labels in
different works. Moreover, problems on the segmentation of the dataset with fixed length
occurs when considering different patients because of singular temporal properties of ECG
records[11]. Finally, being the dataset very unbalanced, it is very hard to train a network
on it, even if this problem can be solved with oversampling algorithm such as SMOTE[26]
it does not lead to results comparable to single patient even on CNN artificial networks[74].

In this work, the dataset will always be used for doing binary classification between
arrhythmia and normal beats which are classified by the LIF neuron as follows:

• no spikes corresponds to normal beat;

• one or more spikes correspond to arrhythmia.

All the non-idealities of memristors are controlled by setting a different seed for random
samplings that must be performed before each different training and simulation.

During the inference phase of all the results presented in the following, the values are
re-scaled to the chip values accordingly to what is explained in section 4.3 except for the
time. Indeed, because of the very low sampling frequency for the digitization of the dataset
-fdataset = 360Hz- due to the relative slow variations of ECG signals, the computational
power required to use a time step comparable with the real one would be too high for a
normal computer, but it has been seen that decreasing the time step up to 1/(10fdataset)

the results are stable. For the sake of completeness, the simulation for both training and
testing phases are done using a time step for time discretization equal to 1/tdataset, which
corresponds to use spikes whose pulse width is equal to ∼ 2.78ms.

4.4.1. Single Patient classification
The first and most complete analysis has been done on patient 208 which is the most
balanced in the dataset and whose labels are divided into arrhythmia and normal beats
accordingly to Tab. 4.1.

Class 0 1

Label ’L’ ’R’ ’N’
’e’ ’j’ ’A’ ’a’ ’J’ ’S’

’V’ ’E’ ’F’ ’/’ ’f’ ’Q’
Samples 1369 1586

Table 4.1: Labels and samples for arrhythmia classification of patient 208

55

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

At first, the dataset is segmented around the R peak of the heartbeats using 125 time
steps before and after ignoring the segments which are incomplete because at the beginning
or at the end of the record and the segment which includes more than one R peak (heart
beat peak); with this approach, the number of samples per classes reduces to 1585 class 0
and 1368 class 1. Then, three different sets are created:

• train set: first 1476 samples;

• test set: last 1477 samples;

• validation set: first 96 and last 128 samples of the test set.

The delta modulation for converting the analog input to spike trains is performed using a
threshold:

δV =
|0.991max(Ach)− 0.009max(Ach)|

10

where ch ∈ [ch1, ch2] is indicating the corresponding electrode and Ach the amplitude of
the record of electrode ch.

The network simulated is composed of 4 channel which receive the delta-modulated
output of electrode 1 and 2 of patient 208, a DPI with τDPI = 10ms and gDPI = 1 and
membrane time constant τmem = 10ms.

The training set is used to train the network for 15 epochs with lr = 10−3 and only
positive weights constraint [Algorithm 4.6] for understanding what is the minimum mean
delay Dµ -i.e. µ of the log-normal- required for obtaining a good accuracy and what is
the effect of device variability, i.e. how changes the accuracy when varying the σ of the
underlying Gaussian for log-normal sampling of Ri,j , even if the reference is considered
σ = 0.4[31].

Figure 4.4: a) accuracy variation with respect to mean delay from sampling changing µ and σ =

0.4; b) mean accuracy over 5 seeds by varying both µ and σ, the dots are indicating
the Dµ required for the network to stabilize its accuracy on all the seeds

Finally, 5 different seeds are used to study the device non-idealities. Results show as
there is a window of mean delay in which the accuracy is ∼ 0.95, this window for σ = 0.4

[Fig. 4.4a] start at a mean delay Dµ = 50ms -i.e. µ = 5 · 1011Ω- and is shifted to lower
µ values when σ increases [Fig. 4.4b]. The random guessing is defined when the accuracy
difference between the training and test accuracy is larger than 0.2 and it is considered
ended when all the networks with different seeds start learning properly.

56

4.4 Results

Analysing the weight values, it is possible to see what are the delays chosen by the
network after the training. For µ = 5 · 1011Ω, the delays picked are at the two extremities
corresponding to a difference in time comprised in the interval D0−D1 ∈ [80, 135]ms; this
choice of delays is common to higher mean delays such as Dµ = 100ms [Fig. 4.5]. On the
other hand, the weights chosen on the dendrites corresponding to the second electrode are
very low and does not show any difference in the delay choice.

Figure 4.5: Weights values for each delay on the dendrites after the training phase without low-bit
resolution; the mean delay used is Dµ = 100ms because for Dµ = 50ms the difference
between D0 and D1 would not be perceptible as stable since the values are at the
extremities of the distributions

Once that is demonstrated that the network can learn correctly reaching an accuracy
> 95% , the low-bit constraint must be applied [Algorithm 4.7] in order to see what are
the effects on the results.

Moreover, to be more hardware-aware, it is investigated what happens if the DPI is
removed from the network architecture since the simulated chip will not include such a
circuit

Taking as reference Dµ = 50ms, a learning routine based on the following sequence is
scheduled:

1. nepochs with 32-bit precision for bit and only positive weights constraint obtaining
Wtrained;

2. scaling of LRS Gaussian parameters by sw = maxLRS/maxWtrained;

3. int(nepochs/2) with 3.17-bit precision, i.e. using 8 µ values for LRS sampling plus
HRS state corresponding to µ = 0 S and σ = 0 [Fig 2.7a], and positive weights
constraints;

57

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

4. nepochs with 3-bit precision, i.e. only LRS values[Fig 2.7a] scaled by sw, and positive
weights constraints.

Then, it has be demonstrated in past works that one electrode is sufficient to perform
classification[42], since the second electrode is not always the same, and that a segmentation
of 180 time steps around the R peak can be considered a sort of optimal fixed length
segmentation[74]. As a consequence, these changes to the architecture have been made:

• segmentation of 180 time step around R peak instead of 250 time steps;

• DPI removal from the architecture;

• D2 and D3 exclusion in order to use only one electrode.

These changes led to a study over 15 seeds to analyze what is the accuracy behavior
when passing to more complex systems to a simpler one with optimizations on signal
processing for training; moreover, the study is also used to find the best learning routine
for the new consideration.

Figure 4.6: Box plots of different accuracy obtained by different architectures with different signal
processing optimizations vs. the learning routine scheduled

Learning routine Mean accuracy Median accuracy
[min, max]

accuracy range
8+4+8 0.9324 0.9594 [0.7698, 0.9729]

Table 4.2: Best learning routine result in terms of accuracy

Basing on the median, mean and [minimum, maximum] range or all the accuracy
results on the 15 seeds [Fig. 4.6], the best model is obtained with a learning routine made
of 8+4+8 [Tab. 4.2]. They show not only that the synapse dynamics is not influencing
the performance of the network and that despite memristors non-idealities the accuracy is
still good, but that when passing to one electrode (which is mandatory for the use of more
than one patient) the signal processing becomes very important; this increase the initial
argument about the susceptibility of the dataset to signal process engineering.

58

4.4 Results

Real-time analysis

The real-time behaviour of the network must be analyzed, before passing to power con-
sumption analysis. This task is executed on the entire record of patient 208 (without
respecting the division in training and test set). Differently from segmented classification
in which one heartbeat per time is passed to the network and classified, non-centered time
windows of different length of the record are passed to the network, then the spike output is
analyzed and if one or more spikes are found in the interval [tpeak−wl/2+mean(Di,j), tpeak+

wl/2+mean(Di,j)] -wl indicates half of the windows used for segmentation-, the heartbeat
occurring at time tpeak is labeled as belonging to class 1, otherwise to class 0 [Fig. 4.7].

Figure 4.7: Example of real-time classification on a window with 650 time steps length

In this way, a model trained on segmented heartbeats is used for doing inference o
non-centered windows of increasing length to test the stability of the network for real-time
classification basing on the mean values of:

Accuracy =
t+ + t−

t+ + t− + f+ + f−

Predictivity =
t+

t+ + f+

Sensitivity =
t+

t+ + f−

Specificity =
t−

t− + f+

obtained on 5 seeds. Here t+ indicates true positives, t− true negatives, f+ false positives
and f− false negatives.

59

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

Figure 4.8: a) accuracy, predictivity, sensitivity and specificity of a model trained on segment
of 180 time step length vs window length; b) accuracy, predictivity, sensitivity and
specificity of a model trained on segment of 250 time step length vs window length

When the network is feed with very short samples which are not centered, accuracy and
sensitivity drops while predictivity and specificity raise a little bit because of insufficient
number of spikes for making the neuron spiking in case of a positive label due to a missing
part of the heartbeat in the input window. Indeed, this will cause less class 1 labels and a
consequent drop of f+ and t+ with a raise of t− and f−.

While the window length increases, the network output stabilize up to results compa-
rable to the segmented classification [Fig. 4.8] when the window length equals the entire
record of 30min. Once again, th processing of the signal used for training the network is
very important.

This result further emphasizes how the SNN is able to learn temporal features of the
signal by using a short-term-like memory generated by the delays, instead of other kinds
of properties of the signal as an ANN could do.

Power and energy consumption

The power and energy consumption is computed on real time inference with the window
length equal to the entire record of patient 208.

60

4.4 Results

Referring to formulas in section 4.2, all the power consumption contributes are com-
puted doing the mean over 5 seeds. The ADC power remains unchanged over the seeds
and it will be the greatest consumption in the network:

PADC = 55 µW
306Hz
100Hz

= 198 µW

For the delays a read voltage VD,read = 0.5V is used and results to be negligible with
respect to other contribution since the resistances for the RC circuits are very high:

PD =
1∑

i=0

63∑
j=0

ntot
steps∑
k=0

CV 2
D,read(tk)

ttot
208

1− e
−

τs
Ri,jC

The weights power is not negligible and reads:

PW =
1∑

i=0

63∑
j=0

(V RMS
i,j)2Wi,j

with the read voltage for weights equal to 0.1V. It is influenced by the pulse width of
the incoming spike -i.e. read voltage- since the RMS value for a sequence of spikes would
decrease by decreasing the pulse width in time; in the above equation the pulse width is kept
constant and equal to the time step of time discretization -which is equal to 1/fdataset ∼
2.78ms- and it results to be bigger than a real pulse width of five order of magnitude. This
means that, in the following, the weight power consumption will be overestimated.

Finally, the LIF neuron power consumption is too low to be considered in the compu-
tation:

PLIF ≪ 1 nW

The mean results over the seeds are summed to obtain the overall power consumption.
Here, for the sake of completeness, the power consumption of signal conversion to spikes is
reported, but the comparison with other works [Tab. 4.3] is done only on the engineered
part, i.e. on weights and delays, since the digitization power is never computed.

The energy consumption is computed referring to the method explained in section
4.2 and taking into consideration the real-time classification of patient 208 on 30min
continuous record.

For the comparison with other works, the quantity that has been taken into account is
the energy per classification -when given- considering the model performing a classification
on the number of labels indicated in Tab. 4.1. Otherwise, it is obtained just by considering
the network as it is performing real time classification and computing:

Ework = Pwork · ttot
208

The perceptron-like SNN is able to outperform state of art works both in terms of
power and energy consumption, despite the computation based on real-time classification
instead of more convenient segment-based classification. Compared to recurrent SNN ar-
chitecture implemented on neuromorphic analog chips, the power consumption is three
order of magnitude lower[39] and the difference increases up to seven order of magnitudes
when looking at CNN[74]. Even when compared to very engineered systems[16], the power
consumption is one order of magnitude lower and very promising.

61

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

When looking at energy consumption, differences seen in power consumption hold, with
the exception of power consumption with non-real-time systems in which the inference time
is significantly decreased.

Work This work [16] [39] [74] SNN [74] CNN
Power 0.53 µW 48.6 µW 516.1 µW 64mW 8.94W
Energy 965.78 µJ 6.64mJ 931.85mJ 116 J 16 kJ

Table 4.3: Energy and power consumption comparison with the state of art

The extension on other patient for such a task is not straight forward since in the
dataset there are some labels which are not used for the standard classification[42] but can
be classified as arrhythmia and makes the neuron spiking. E.g., label ’ !’ is indicating a
ventricular flutter wave and has a very high spike encoding frequency making the network
spiking but -since there is not a standard classification for it- the classification periods
containing ’ !’ labels cannot be evaluated. Anyway, the network is able to learn on patients
with more than 5 arrhythmia labels using the SMOTE algorithm for balancing the training
set; some problems occur with the classification of SVEB arrhythmia [Tab. 4.4] as in other
works using fixed length segmentation for training[11].

To sum up, patient 208 is used for having a proof of concept of the delay-based dendrites
utility for real-time classification, but deeper studies on other patients can be done in the
future.

4.4.2. Multi patient classification
A second proof of concept about the capacity of the network to recognize temporal features
after a proper training can be done on a dataset made of data from more patients inside
the MIT-BIH dataset.

Because of the very complicated labeling system used on ECG signals[68], people which
are non-medical doctor make a lot of fatigue to read it. This fact makes binary classification
very hard to do, because the distinction between normal and abnormal signals should be
done and this could lead to mistakes when the labels given by the source are not clear.

In the following, in order to compensate the unbalanced properties of the dataset and
to have the less signal processing possible, a subsampled dataset is used by dividing the
labels into five main groups -following the labels division of Tab. 4.4- and random sampling
1000 samples for each group except for group F which has in total 802 samples.

The samples are then segmented using 180 or 250 time steps and normalized between
[0, 1]V. It is important to notice that each sample is normalized instead of the entire signal.
This action enables the sigma-delta modulator to have a stabler input signal, otherwise
due to the differences of records between patients, there could be some cases in which the
spike frequency is too high or too low for the network to recognize features.

For the sigma-delta modulation, a fixed value δV = 50mV has been chosen and then
the spike trains are generated.

Finally, three set are built:

• 70% of samples is used for the train set;

62

4.4 Results

Class 0 1
Group N SVEB VEB F Q

Labels ’L’ ’R’ ’N’
’e’ ’j’ ’a’
’A’ ’J’ ’S’

’V’ ’E’ ’F’
’/’ ’f’ ’Q’

’"’ ’ !’ ’ ’ ’|’
’+’ ’x’ ’[’ ’]’

Samples 90333 3024 7235 802 11149

Table 4.4: Labels and samples for binary classification on multi-patient dataset

• 10% of samples is used for the validation set;

• 20% of samples is used for the test set;

The network used to solve this task does not include the DPI, but has 2 dendrites and
τmem = 10ms. For the delays sampling log-normal mean is µ = 1012Ωand underlying
Gaussian σ = 0.4 which correspond to a mean delay on dendrites Dµ = 100ms; this choice
allow to have a longer short term memory thanks to the fact that D0,j = 0 S, i.e. memristor
in LRS.

The training is performed using segmented signals made of 180 time steps and 250 time
steps around the R peak for each sample and searching for an optimized learning routine
with a structure equal to the one presented in the previous section taking into account the
mean, median and [minimum, maximum] range of accuracy, sensitivity and predictivity.
The study of non-idealities has been done over 15 different seeds.

Characteristic Mean Median
[min, max]

range
segmentation= 180 time steps, 8+4+8 epochs

Accuracy 0.9268 0.9396 [0.8500, 0.9479]

Sensitivity 0.9310 0.9372 [0.8128, 0.9830]

Specificity 0.9106 0.9490 [0.5663, 0.9949]

segmentation= 250 time steps, 5+2+5 epochs
Accuracy 0.9301 0.9406 [0.8083, 0.9677]

Sensitivity 0.9362 0.9437 [0.7657, 0.9843]

Specificity 0.9065 0.9490 [0.5867, 1.0]

Table 4.5: Results of the best learning routines for the two different fixed length segmentation
windows used for training on the multi patient dataset

The highest variations due to devices non-idealities are related to specificity which is
the most variable parameter as in other works[11] and the difference with other parameters
is a little bit more evident when the segmentation is 250 time steps; this underlines again
how much the dataset is susceptible to preprocessing changes and optimization which is
not an aim of this work.

Looking at the results [Fig. 4.9], a learning routine for the two segmentation length is
chosen and analyzed in Tab. 4.5.

For this subset of the MIT-BIH dataset has not been possible to do real time inference
because of the random sampling used for constructing it. Instead, a classification per

63

4 Single Neuron SNN for Real-Time Analysis of Temporal Signals

Figure 4.9: a) accuracy, sensitivity and predictivity variation with respect to the learning routine
when using a segmentation of 180 time steps; b) accuracy, sensitivity and predictivity
variation with respect to the learning routine when using a segmentation of 250 time
steps

segment has been used for evaluating the network performance and computing the power
and energy consumption.

This last characteristics allows to estimate power and consumption accordingly to for-
mulas in section 4.2 by keeping into account that:

• V 2
D,read(tk) is the mean over samples for a single seed;

• V RMS
i,j is the mean over samples for a single seed;

• the energy consumption obtained will be an energy per classification.

The read voltages for delays and weights are kept unchanged with respect to the single
patient analysis and thus is 0.5V for the delays and 0.1V for weights.

The sigma-delta modulator consumption remains the same from the previous analysis
and has not been considered as explained in the previous section.

When the energy consumption per classification in other works is not indicated, it was
computed by:

Ec = P · tseg

64

4.4 Results

Work This work [16] [39] [74] SNN [74] CNN
Power 0.47 µW 48.6 µW 516.1 µW 64mW 9.94W

Energy per 80.78 nJ1
2.25 µJ 258.08 µJ 32mJ 4.47 J

classification 88.23 nJ2

1segmentation = 180 time steps
2segmentation = 250 time steps
Table 4.6: Power and energy per classification consumption comparison with the state of art

where Ec indicates the energy per classification and tseg is the segmentation time used for
a single classification, e.g. tseg = 180τs when using a segmentation equal to 180 time steps.
Concerning the current work, two results are given based on two difference segmentation
length. If the segmentation length in other works is not presented, is considered to be
180 time steps.

Compared with the state of art, the SNN is still very well behaving. Indeed, the energy
consumption is showing even better results due to the fact that there is less signal between
one classification and another because of real-time absence with respect to Tab. 4.3. On
the other hand, the energy consumed by the segmentation is not computed because such
a circuit has not been implemented in this work.

The power consumption is s little bit lower than the single patient one meaning either
that the selected weights are lower in conductance or that are sparser with respect to the
selection of delays; another possible explanation could be a sparser input spike train which
would decrease V RMS.

65

5. Conclusions

The state-of-art for what concerns NNs with a main focus on the spiking neuromorphic
implementations for analyzing temporal signals has been presented. Always keeping in
consideration the strict relation that occurs between the real brain and such applications,
the bio-plausibility of these system has been explained with a comparison between the
different and more advanced chips.

Then, a second focus on the developing memristor technologies for implementing ex-
isting models -like synapses- in a different and more efficient way has been reported. The
different materials, behaviors and integration have been analyzed by starting from the
memristor definition and arriving to the OxRAM cell characterization.

The union between these two introductory topics has led to the thesis project that is
focused on the possible explanation for multi-synapse connections observed in the brain
between two neurons by supposing that they can be used to generate a short-term memory
by means of time delays to the input signal. Indeed, it has been demonstrated that
the perceptron-like network is able to keep a short-term memory by means of memristor
generated delays by learning through back-propagation deep learning algorithms what is
the best delay for each dendrite for keeping only relevant features. Such a choice is made
through memristor implemented synapses which are trained following the characterization
proper of this technology. In addition, the importance of memristor characterization in
both LRS and HRS -up to pristine state- has been showed, implicating a growth of the
importance of such devices not only for memory application but also for analog circuits.

Moreover, the implementation of the network through hardware-aware codes allowed to
simulate what would be its behavior during real-time classification of time-varying signals
like ECG. This step showed that results comparable to the state-of-art -in terms of accuracy,
predictivity and sensitivity- can be obtained on single patient classification and on multi
patient classification by random sampling among the entire MIT-BIH dataset.

All these results have been obtained with ultra-low power and energy consumption,
also when compared with highly engineered systems belonging to the state-of-art. Thanks
to the large use of memristor technology, also scalability and integrability reached a very
good level as the decrease of memory element per chip.

5.1. Future works
Such a new architecture could represent a novel way not only to implement short-term,
but also to explain realistic brain behaviors and to make memristor devices interesting
for new fields of application outside the classic synapse and memory implementations.
On the coding side, an on-chip characterization will surely help to understand what is
the reliability of hardware-aware codes and maybe push deep learning libraries such as
PyTorch and TensorFlow to open more to this programming paradigm, maybe starting
from the building of integrated algorithms for memristor simulation and learning.

66

5.1 Future works

The architecture is able to learn and solve nonlinear tasks on MIT-BIH dataset, but it
is just a starting point for developing new and more complicated architectures that can be
applied to different dataset. Indeed, an immediate consequence of this thesis can be the
application of the one neuron network to different kind of signals by changing the mean
delays for the dendrites distributions showing the flexibility of the network.

Then, the development of more complicated multi-layers architectures can show what
are the implication of such a multi-synapse connection between neurons when applied to
inter layer synapses. Furthermore, the development of more complicated structures, or the
application of the multi-synapse connection concept to existing architectures, could show
what is the effective computational power introduced.

In the end, trying to exploit both delays and recurrent connections for having different
levels of short-term memory could give vaster comprehension of memory behavior and
generation in SNNs.

67

References

[1] W. C. Abraham and M. F. Bear. “Metaplasticity: the plasticity of synaptic plasticity”.
In: Trends in Neurosciences 19.4 (1996), pp. 126–130. doi: 10.1016/S0166-2236(96)
80018-X.

[2] A. G. Andreou et al. “Real-time sensory information processing using the TrueNorth
Neurosynaptic System”. In: 2016 IEEE International Symposium on Circuits and
Systems (ISCAS). 2016, pp. 2911–2911. doi: 10.1109/ISCAS.2016.7539214.

[3] A. Parmezan et al. “Evaluation of statistical and machine learning models for time
series prediction: Identifying the state-of-the-art and the best conditions for the use
of each model”. In: Information Sciences (2019). doi: 10.1016/j.ins.2019.01.076.

[4] A. Rubino et al. “Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neu-
romorphic Intelligence”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 68.1 (2021), pp. 45–56. doi: 10.1109/TCSI.2020.3035575.

[5] B. Cramer et al. “The Heidelberg Spiking Data Sets for the Systematic Evaluation of
Spiking Neural Networks”. In: IEEE Transactions on Neural Networks and Learning
Systems (2022), pp. 1–14. doi: 10.1109/tnnls.2020.3044364.

[6] C. Bartolozzi et al. “An ultra low power current-mode filter for neuromorphic systems
and biomedical signal processing”. In: 2006 IEEE Biomedical Circuits and Systems
Conference. 2006, pp. 130–133. doi: 10.1109/BIOCAS.2006.4600325.

[7] E. Chicca et al. “Neuromorphic Electronic Circuits for Building Autonomous Cog-
nitive Systems”. In: Proceedings of the IEEE 102.9 (2014), pp. 1367–1388. doi: 10.
1109/JPROC.2014.2313954.

[8] E. Esmanhotto et al. “High-Density 3D Monolithically Integrated Multiple 1T1R
Multi-Level-Cell for Neural Networks”. In: 2020 IEEE International Electron Devices
Meeting (IEDM). 2020, pp. 36.5.1–36.5.4. doi: 10.1109/IEDM13553.2020.9372019.

[9] E. R. Hsieh et al. “High-Density Multiple Bits-per-Cell 1T4R RRAM Array with
Gradual SET/RESET and its Effectiveness for Deep Learning”. In: 2019 IEEE In-
ternational Electron Devices Meeting (IEDM). 2019, pp. 35.6.1–35.6.4. doi: 10.1109/
IEDM19573.2019.8993514.

[10] E. Vianello et al. “Metal Oxide Resistive Memory (OxRAM) and Phase Change
Memory (PCM) as Artificial Synapses in Spiking Neural Networks”. In: 2018 25th
IEEE International Conference on Electronics, Circuits and Systems (ICECS). 2018,
pp. 561–564. doi: 10.1109/ICECS.2018.8617869.

[11] F. Li et al. “Automated Heartbeat Classification Exploiting Convolutional Neural
Network With Channel-Wise Attention”. In: IEEE Access 7 (2019). doi: 10.1109/
ACCESS.2019.2938617.

68

https://doi.org/10.1016/S0166-2236(96)80018-X
https://doi.org/10.1016/S0166-2236(96)80018-X
https://doi.org/10.1109/ISCAS.2016.7539214
https://doi.org/10.1016/j.ins.2019.01.076
https://doi.org/10.1109/TCSI.2020.3035575
https://doi.org/10.1109/tnnls.2020.3044364
https://doi.org/10.1109/BIOCAS.2006.4600325
https://doi.org/10.1109/JPROC.2014.2313954
https://doi.org/10.1109/JPROC.2014.2313954
https://doi.org/10.1109/IEDM13553.2020.9372019
https://doi.org/10.1109/IEDM19573.2019.8993514
https://doi.org/10.1109/IEDM19573.2019.8993514
https://doi.org/10.1109/ICECS.2018.8617869
https://doi.org/10.1109/ACCESS.2019.2938617
https://doi.org/10.1109/ACCESS.2019.2938617

References

[12] G. Indiveri et al. “Neuromorphic Silicon Neuron Circuits”. In: Frontiers in Neuro-
science 5 (2011). doi: 10.3389/fnins.2011.00073.

[13] G. Tanaka et al. “Recent advances in physical reservoir computing: A review”. In:
Neural Networks 115 (2019), pp. 100–123. doi: 10.1016/j.neunet.2019.03.005.

[14] G. W .Burr et al. “Phase change memory technology”. In: Journal of Vacuum Sci-
ence & Technology B, Nanotechnology and Microelectronics: Materials, Processing,
Measurement, and Phenomena 28.2 (2010), pp. 223–262. doi: 10.1116/1.3301579.

[15] J. K. Eshraghian et al. “Training Spiking Neural Networks Using Lessons From Deep
Learning”. In: arXiv (2021). doi: 10.48550/ARXIV.2109.12894.

[16] J. Liu et al. “4.5 BioAIP: A Reconfigurable Biomedical AI Processor with Adaptive
Learning for Versatile Intelligent Health Monitoring”. In: 2021 IEEE International
Solid- State Circuits Conference (ISSCC). Vol. 64. 2021, pp. 62–64. doi: 10.1109/
ISSCC42613.2021.9365996.

[17] K. Potdar et al. “A comparative study of categorical variable encoding techniques for
neural network classifiers”. In: International journal of computer applications 175.4
(2017), pp. 7–9. doi: 10.5120/ijca2017915495.

[18] L. Appeltant et al. “Information processing using a single dynamical node as complex
system”. In: Nature communications 2.1 (2011), pp. 1–6. doi: 10.1038/ncomms1476.

[19] L. Sun et al. “In-sensor reservoir computing for language learning via two-dimensional
memristors”. In: Science Advances 7.20 (2021). doi: 10.1126/sciadv.abg1455.

[20] M. Baker et al. “State of the art of metal oxide memristor devices”. In: Nanotechnology
Reviews 5.3 (2016), pp. 311–329. doi: doi:10.1515/ntrev-2015-0029.

[21] M. Davies et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip Learn-
ing”. In: IEEE Micro 38.1 (2018), pp. 82–99. doi: 10.1109/MM.2018.112130359.

[22] M. Davies et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip Learn-
ing”. In: IEEE Micro 38.1 (2018), pp. 82–99. doi: 10.1109/MM.2018.112130359.

[23] M. Sharifshazileh et al. “An electronic neuromorphic system for real-time detection of
high frequency oscillations (HFO) in intracranial EEG”. In: Nature communications
12.1 (2021), pp. 1–14. doi: 10.1038/s41467-021-23342-2.

[24] M. Z. Alom et al. “A State-of-the-Art Survey on Deep Learning Theory and Archi-
tectures”. In: Electronics 8.3 (2019). doi: 10.3390/electronics8030292.

[25] N. Dennler et al. “Online detection of vibration anomalies using balanced spiking
neural networks”. In: 2021 IEEE 3rd International Conference on Artificial Intelli-
gence Circuits and Systems (AICAS). IEEE. 2021, pp. 1–4.

[26] N. V. Chawla et al. “SMOTE: Synthetic Minority Over-sampling Technique”. In:
Journal of Artificial Intelligence Research 16 (2002), pp. 321–357. doi: 10.1613/
jair.953.

[27] P. A. Merolla et al. “A million spiking-neuron integrated circuit with a scalable
communication network and interface”. In: Science 345.6197 (2014), pp. 668–673.
doi: 10.1126/science.1254642.

69

https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1116/1.3301579
https://doi.org/10.48550/ARXIV.2109.12894
https://doi.org/10.1109/ISSCC42613.2021.9365996
https://doi.org/10.1109/ISSCC42613.2021.9365996
https://doi.org/10.5120/ijca2017915495
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1126/sciadv.abg1455
https://doi.org/doi:10.1515/ntrev-2015-0029
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1038/s41467-021-23342-2
https://doi.org/10.3390/electronics8030292
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1126/science.1254642

References

[28] S. Amer et al. “A practical hafnium-oxide memristor model suitable for circuit design
and simulation”. In: 2017 IEEE International Symposium on Circuits and Systems
(ISCAS). 2017, pp. 1–4. doi: 10.1109/ISCAS.2017.8050790.

[29] S. Moradi et al. “A Scalable Multicore Architecture With Heterogeneous Memory
Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs)”. In:
IEEE Transactions on Biomedical Circuits and Systems 12.1 (2018), pp. 106–122.
doi: 10.1109/TBCAS.2017.2759700.

[30] S. P. Adhikari et al. “Three Fingerprints of Memristor”. In: IEEE Transactions on
Circuits and Systems I: Regular Papers 60.11 (2013), pp. 3008–3021. doi: 10.1109/
TCSI.2013.2256171.

[31] T. Dalgaty et al. “Hybrid neuromorphic circuits exploiting non-conventional proper-
ties of RRAM for massively parallel local plasticity mechanisms”. In: APL Materials
7.8 (2019). doi: doi.org/10.1063/1.5108663.

[32] T. P Lillicrap et al. “Backpropagation and the brain”. In: Nature Reviews Neuro-
science 21.6 (2020), pp. 335–346. doi: 10.1038/s41583-020-0277-3.

[33] W. Guo et al. “Neural Coding in Spiking Neural Networks: A Comparative Study
for Robust Neuromorphic Systems”. In: Frontiers in Neuroscience 15 (2021). doi:
10.3389/fnins.2021.638474.

[34] W. Rall et al. “Matching dendritic neuron models to experimental data”. In: Phys-
iological Reviews 72.suppl_4 (1992), S159–S186. doi: 10.1152/physrev.1992.72.
suppl_4.S159.

[35] Y. Demirag et al. Online Training of Spiking Recurrent Neural Networks with Phase-
Change Memory Synapses. 2021. doi: 10.48550/ARXIV.2108.01804.

[36] Yibo Li et al. “Review of memristor devices in neuromorphic computing: materials
sciences and device challenges”. In: Journal of Physics D: Applied Physics 51.50
(2018). doi: 10.1088/1361-6463/aade3f.

[37] V. Balasubramanian. “Brain power”. In: Proceedings of the National Academy of
Sciences 118.32 (2021). doi: 10.1073/pnas.2107022118.

[38] C. Bartolozzi and G. Indiveri. “Synaptic Dynamics in Analog VLSI”. In: Neural
Computation 19.10 (2007), pp. 2581–2603. doi: 10.1162/neco.2007.19.10.2581.

[39] F. C. Bauer et al. “Real-Time Ultra-Low Power ECG Anomaly Detection Using an
Event-Driven Neuromorphic Processor”. In: IEEE Transactions on Biomedical Cir-
cuits and Systems 13.6 (2019), pp. 1575–1582. doi: 10.1109/TBCAS.2019.2953001.

[40] R. Brette and W. Gerstner. “Adaptive Exponential Integrate-and-Fire Model as
an Effective Description of Neuronal Activity”. In: Journal of Neurophysiology 94.5
(2005), pp. 3637–3642. doi: 10.1152/jn.00686.2005.

[41] J. Carey. Brain facts: A primer on the brain and nervous system. Society for Neuro-
science, 1990.

[42] P. de Chazal, M. O’Dwyer, and R.B. Reilly. “Automatic classification of heartbeats
using ECG morphology and heartbeat interval features”. In: IEEE Transactions on
Biomedical Engineering 51.7 (2004), pp. 1196–1206. doi: 10.1109/TBME.2004.
827359.

70

https://doi.org/10.1109/ISCAS.2017.8050790
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/TCSI.2013.2256171
https://doi.org/10.1109/TCSI.2013.2256171
https://doi.org/doi.org/10.1063/1.5108663
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.3389/fnins.2021.638474
https://doi.org/10.1152/physrev.1992.72.suppl_4.S159
https://doi.org/10.1152/physrev.1992.72.suppl_4.S159
https://doi.org/10.48550/ARXIV.2108.01804
https://doi.org/10.1088/1361-6463/aade3f
https://doi.org/10.1073/pnas.2107022118
https://doi.org/10.1162/neco.2007.19.10.2581
https://doi.org/10.1109/TBCAS.2019.2953001
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1109/TBME.2004.827359
https://doi.org/10.1109/TBME.2004.827359

References

[43] L. O. Chua. “Memristor-The missing circuit element”. In: IEEE Transactions on
Circuit Theory 18.5 (1971), pp. 507–519. doi: 10.1109/TCT.1971.1083337.

[44] A. Citri and R. C. Malenka. “Synaptic Plasticity: Multiple Forms, Functions, and
Mechanisms”. In: Neuropsychopharmacology 33 (2008), pp. 18–41. doi: 10.1038/sj.
npp.1301559.

[45] F. Corradi and G. Indiveri. “A Neuromorphic Event-Based Neural Recording System
for Smart Brain-Machine-Interfaces”. In: IEEE Transactions on Biomedical Circuits
and Systems 9.5 (2015), pp. 699–709. doi: 10.1109/TBCAS.2015.2479256.

[46] E. Donati and M. Payvand et al. “Discrimination of EMG Signals Using a Neuro-
morphic Implementation of a Spiking Neural Network”. In: IEEE Transactions on
Biomedical Circuits and Systems 13.5 (2019), pp. 795–803. doi: 10.1109/TBCAS.
2019.2925454.

[47] B. Farley and W. Clark. “Simulation of self-organizing systems by digital computer”.
In: Transactions of the IRE Professional Group on Information Theory 4.4 (1954),
pp. 76–84. doi: 10.1109/TIT.1954.1057468.

[48] M. Le Gallo and A. Sebastian. “An overview of phase-change memory device physics”.
In: Journal of Physics D: Applied Physics 53.21 (2020). doi: 10.1088/1361-6463/
ab7794.

[49] W. Gerstner and W. M. Kistler. “Mathematical formulations of Hebbian learning”. In:
Biological Cybernetics 87 (2002), pp. 404–415. doi: 10.1007/s00422-002-0353-y.

[50] W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons, Populations,
Plasticity. Cambridge University Press, 2002. doi: 10.1017/CBO9780511815706.

[51] E. M. Glaser and H. Van Der Loos. “A Semi-Automatic Computer-Microscope for the
Analysis of Neuronal Morphology”. In: IEEE Transactions on Biomedical Engineering
BME-12.1 (1965), pp. 22–31. doi: 10.1109/TBME.1965.4502337.

[52] D. Goodman and R. Brette. “Brian: a simulator for spiking neural networks in
Python”. In: Frontiers in Neuroinformatics 2 (2008). doi: 10.3389/neuro.11.
005.2008.

[53] L. Goux. “OxRAM technology development and performances”. In: Advances in Non-
volatile Memory and Storage Technology (2019), pp. 3–33. doi: 10.1016/b978-0-
08-102584-0.00001-2.

[54] S. Hayman. “The McCulloch-Pitts model”. In: IJCNN’99. International Joint Confer-
ence on Neural Networks. Proceedings (Cat. No.99CH36339). Vol. 6. 1999, pp. 4438–
4439. doi: 10.1109/IJCNN.1999.830886.

[55] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Psychology
Press, 1949. doi: 10.4324/9781410612403.

[56] N. Hiratani and T. Fukai. “Redundancy in synaptic connections enables neurons to
learn optimally”. In: Proceedings of the National Academy of Sciences 115.29 (2018).
doi: 10.1073/pnas.1803274115.

[57] A. L. Hodgkin and A. F. Huxley. “A quantitative description of membrane current
and its application to conduction and excitation in nerve”. In: The Journal of physi-
ology 117.4 (1952), pp. 500–544. doi: 10.1113/jphysiol.1952.sp004764.

71

https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1038/sj.npp.1301559
https://doi.org/10.1038/sj.npp.1301559
https://doi.org/10.1109/TBCAS.2015.2479256
https://doi.org/10.1109/TBCAS.2019.2925454
https://doi.org/10.1109/TBCAS.2019.2925454
https://doi.org/10.1109/TIT.1954.1057468
https://doi.org/10.1088/1361-6463/ab7794
https://doi.org/10.1088/1361-6463/ab7794
https://doi.org/10.1007/s00422-002-0353-y
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1109/TBME.1965.4502337
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1016/b978-0-08-102584-0.00001-2
https://doi.org/10.1016/b978-0-08-102584-0.00001-2
https://doi.org/10.1109/IJCNN.1999.830886
https://doi.org/10.4324/9781410612403
https://doi.org/10.1073/pnas.1803274115
https://doi.org/10.1113/jphysiol.1952.sp004764

References

[58] G. Indiveri and T. K. Horiuchi. “Frontiers in Neuromorphic engineering”. In: Frontiers
in Neuroscience 5 (2011). doi: 10.3389/fnins.2011.00118.

[59] R. A. John and Y Demirağ et al. “Reconfigurable halide perovskite nanocrystal mem-
ristors for neuromorphic computing”. In: Nature Communications 13.1 (2022). doi:
10.1038/s41467-022-29727-1.

[60] F. Jug. “On Competition and Learning in Cortical Structures”. PhD thesis. Zürich:
ETH Zurich, 2012. doi: 10.3929/ethz-a-007140134.

[61] A. Krenker, J. Bešter, and A. Kos. “Introduction to the artificial neural networks”.
In: Artificial Neural Networks: Methodological Advances and Biomedical Applications.
InTech (2011), pp. 1–18.

[62] B. Macukow. “Neural Networks – State of Art, Brief History, Basic Models and Ar-
chitecture”. In: Computer Information Systems and Industrial Management. Springer
International Publishing, 2016, pp. 3–14. isbn: 978-3-319-45378-1.

[63] R. Meddis. “Simulation of mechanical to neural transduction in the auditory recep-
tor”. In: The Journal of the Acoustical Society of America 79.3 (1986), pp. 702–711.
doi: 10.1121/1.393460.

[64] G.B. Moody and R.G.Mark. “The impact of the MIT-BIH Arrhythmia Database”.
In: IEEE Engineering in Medicine and Biology Magazine 20.3 (2001), pp. 45–50. doi:
10.1109/51.932724.

[65] P. M. Nanninga. “A computational neuron model based on Poisson–Nernst–Planck
theory”. In: Proceedings of the 14th Biennial Computational Techniques and Applica-
tions Conference, CTAC-2008. Ed. by Geoffry N. Mercer and A. J. Roberts. Vol. 50.
ANZIAM J. 2008, pp. C46–C59.

[66] E. O. Neftci, H. Mostafa, and F. Zenke. Surrogate Gradient Learning in Spiking
Neural Networks. 2019. doi: 10.48550/ARXIV.1901.09948.

[67] Y. V. Pershin and M. Di Ventra. “Memory effects in complex materials and nanoscale
systems”. In: Advances in Physics 60.2 (2011), pp. 145–227. doi: 10.1080/00018732.
2010.544961.

[68] PhysioBank ECG Annotations. https://archive.physionet.org/physiobank/
annotations.shtml. 2016.

[69] J. Pods, J. Schönke, and P. Bastian. “Electrodiffusion Models of Neurons and Extra-
cellular Space Using the Poisson-Nernst-Planck Equations—Numerical Simulation of
the Intra- and Extracellular Potential for an Axon Model”. In: Biophysical Journal
105.1 (2013), pp. 242–254. doi: doi.org/10.1016/j.bpj.2013.05.041.

[70] F. Rosenblatt. “The perceptron: A probabilistic model for information”. In: Psycho-
logical Review 65.6 (1958), pp. 386–408. doi: 10.1037/h0042519.

[71] L. Sirovich. “Dynamics of neuronal populations: Eigenfunction theory; some solvable
cases”. In: Network (Bristol, England) 14 (June 2003), pp. 249–72. doi: 10.1088/
0954-898X/14/2/305.

[72] Y. E. Wang, G. Wei, and D. Brooks. “Benchmarking tpu, gpu, and cpu platforms for
deep learning”. In: arXiv preprint arXiv:1907.10701 (2019). doi: 10.48550/arXiv.
1907.10701.

72

https://doi.org/10.3389/fnins.2011.00118
https://doi.org/10.1038/s41467-022-29727-1
https://doi.org/10.3929/ethz-a-007140134
https://doi.org/10.1121/1.393460
https://doi.org/10.1109/51.932724
https://doi.org/10.48550/ARXIV.1901.09948
https://doi.org/10.1080/00018732.2010.544961
https://doi.org/10.1080/00018732.2010.544961
https://archive.physionet.org/physiobank/annotations.shtml
https://archive.physionet.org/physiobank/annotations.shtml
https://doi.org/doi.org/10.1016/j.bpj.2013.05.041
https://doi.org/10.1037/h0042519
https://doi.org/10.1088/0954-898X/14/2/305
https://doi.org/10.1088/0954-898X/14/2/305
https://doi.org/10.48550/arXiv.1907.10701
https://doi.org/10.48550/arXiv.1907.10701

References

[73] Z. Yan, J. Zhou, and W. F. Wong. “Energy efficient ECG classification with spiking
neural network”. In: Biomedical Signal Processing and Control 63 (2021). doi: 10.
1016/j.bspc.2020.102170.

[74] Z. Yan, J. Zhou, and W.F. Wong. “Energy efficient ECG classification with spiking
neural network”. In: Biomedical Signal Processing and Control 63 (2021). doi: 10.
1016/j.bspc.2020.102170.

[75] F. Zenke. SpyTorch. Version v0.3. Mar. 2019. doi: 10.5281/zenodo.3724018.

73

https://doi.org/10.1016/j.bspc.2020.102170
https://doi.org/10.1016/j.bspc.2020.102170
https://doi.org/10.1016/j.bspc.2020.102170
https://doi.org/10.1016/j.bspc.2020.102170
https://doi.org/10.5281/zenodo.3724018

	Introduction
	Reasons
	Neuromorphic engineering and brain working principles
	Neuron
	Dendrites and axon
	Synapses

	Neural networks
	Artificial Neural Network
	Spiking Neural Networks

	Memristive Technologies
	Memristor: the missing circuit element
	Types of memristive technologies
	Oxide-based memristors
	Phase change memristors

	OxRAM technology

	Spiking Neural Networks
	Spiking neural network principles
	Information encoding
	Synapse models
	Neuron models
	Learning in SNNs
	SNNs implementations

	Spiking neural network time signal analysis
	Feed-forward SNN
	Recurrent SNN

	Single Neuron SNN for Real-Time Analysis of Temporal Signals
	Architecture
	Hardware-aware coding
	Time discretization
	Network hyperparameters
	Power and energy consumption

	Training method
	Training hyperparameters
	Positive weights
	Low-bit precision for weights training
	Training loop and inference

	Results
	Single Patient classification
	Multi patient classification

	Conclusions
	Future works

	References

