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Summary

Residue Number Systems, RNSs, have been considered a potential tool to parallelize
the arithmetic elements breaking the long carry-propagation chain by bounding
the RNS inside smaller modulo channels that work in parallel with each other.
This parallelism is quite profitable for addition and multiplication and has made
possible the usage of RNS in a range of application from embedded and digital
signal processing systems to cryptography [1].

However, some operations are difficult to perform using RNS: its non-positional
representation makes hard to implement the comparison operation, indeed the
existing comparison methods compare the RNS numbers by converting them in
positional numeral system.

The Positional Attribute Non-positional Code, PANC, method is a mathematical
algorithm that allows the comparison in RNS without converting the numbers
under consideration. It associates the RNS number to an index that identifies the
interval in which the number falls and then performs the comparison between the
two indexes associated to both inputs [2].

After a brief introduction to the RNS considering its advantages, disadvantages
and applications in Chapter 1, it is fully described in Chapter 2. The different
comparison methods along with the PANC one are reported in Chapter 3. Chapter
4 aims to portray the implemented architectures in detail, but their results in terms
of simulation in ModelSim and synthesis with Synopsys Design Compiler,
using a 65 nm technology, are both reported in the first part of Chapter 5, while
in the second one those new architectures are compared with the state of the art.
Finally, the future implementations together with the conclusion are in Chapter 6.

For openers, it must be pointed out that RNS is a mathematical non-positional
method based on the Chinese Remainder Theorem, CRT. This last one takes
credit to the reduction of the carry-propagation chain speeding up the arithmetic
comparison- and division- free operations. This reduction is achieved since the RNS
operands are tuples of residues associated to a proper modulus in the moduli set,
and therefore, given that the operations are performed on the tuples’ components
and not on the whole tuple itself, those are going to have a reduced bit-width.
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The addition, multiplication and subtraction operations are carried out only
on residues associated with the same modulus, generating results that could be
negative or higher than the modulus itself. As a consequence, since the residues
are part of the tuple and that they are associated with each modulus, these two
conditions can’t occur, but if this should happen, the resultant residues will be
reconverted. This has led to seek better solutions in the implementation of those
combinatorial elements.

Moreover, it is necessary to convert and reconvert numbers from a positional
numeral system to RNS, for this reason several methods of comparison have been
studied in order to obtain the most convenient in terms of performance.

Even if the reconversion methods have been used also for the comparison opera-
tion in RNS, there are no implemented algorithms that performs the comparison
in the RNS’ domain. The PANC method is one of those algorithms.

However, nowadays this mathematical method has not been implemented yet,
indeed this work aims to create a digital design to transpose this method and
analyse its performances. The considered moduli set is [2n − 1, 2n, 2n + 1] since it
is the most used set in RNS’ datapaths [3], while the n values considered are n = 5
and n = 8, together with n = 3 even if it is not usually adopted for RNS datapaths.
Several solutions have been evaluated in order to implement the digital design,
nevertheless only the most interesting ones have been selected. In particular, these
implemented structures are:

• The Golden model is the architecture that parallelize all the operations, thus
it is very attractive because it is the fastest one. In fact, the latency of
the operation doesn’t depend on the value n or on the moduli set and yet,
those last values affect the area occupied by the structure that exponentially
increases with n.

• The Resource sharing design is the opposite of the previously described golden
model as the resources used are fixed and do not change either as n or the
moduli set vary, but the latency depends on those values giving us a very slow
architecture.

• Finally, the Unfolded resource sharing wants to combine the positive sides
of both previous architectures applying the technique of the unfolding to
the resource sharing design. In this way, the resources are increased by 2k

according to the unfolding level, hence slightly complicating the structure but
proportionally reducing the delay.

Those three designs have been analysed in terms of delay, area occupied and
power consumption considering a 65 nm technology.
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Comparing the performances of these three implementations with the state of
the art of the actual comparators in RNS, it is clear that our comparators are slower
and wider than the existent implementations, although the total power dissipation
is lower than the those last ones by at least one order of magnitude.

This is due not only to the lower operating frequency of our implementations
but also to the management of the different combinatorial elements that are totally
switched-off when not in use. Indeed, even if the increased area affects the power
increase, the strong reduction of the switching activity allows to obtain good results,
offsetting both area and delay drawback.

Finally, this thesis shows how it is possible, starting by this algorithm, to
implement a comparison system not leaving the residue numbering system. As
well as the low-power advantages that allows to apply this comparator in energy-
saving systems so as IoT, the lack of a reconvertion system allows to use the same
comparator in datapath RNS taking advantage of the same components again.
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Chapter 1

Introduction

1.1 Motivation

The Residue Number System is a mathematical method invented in 1959 based on
the Chinese Remainder Theorem, CRT. The CRT has detected some interesting
number theoretic properties and features that can speed up some operations by
reducing the the carry-propagation chain which is the main bottleneck of fast
arithmetic operations [4]. The RNS operands have reduced bit-width with respect
of the binary ones since the operations are performed on the residues associated
to the division of each modulus in a specific moduli set. In this way the actual
bit-width depends on the modulus value which cannot be exceeded so that all
the operations conducted in each modulus channel are independent and carry-free.
From 1961, the RNS features have been used in design digital systems division and
comparison free, finding out a great speed advantage and motivating researchers to
use RNS to improve the speed for digital systems that performs difficult operations.

Since the RNSs lead to increasing performances and reducing hardware cost
[5], those systems are widely applied in digital signal processing, medical imaging
[6] and artificial neural networks [7]. The RNS’ modularity offers advantages for
all the division and comparison free algorithms because of the progresses in the
architectures of addition [8], subtraction and multiplication [9].

However, the operations of division and comparison are still sore points in the
RNSs’ structures. About the comparisons methods, those operations are supported
with converting structures in order to convert the non-positional RNS’ numbers in
positional ones, but nowadays it has not been implemented a digital system that
performs the comparison in RNS without converting the values. Nonetheless there
are algorithms that allows to perform the RNS comparison without converting the
values. One of those algorithm has been exposed in [2], but never implemented
with digital systems.
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Introduction

This work aims to create a possible digital design to compare two RNSs numbers
using the proposed mathematical algorithm and evaluate its performances in terms
of delay, power consumption and occupied area.

1.2 Work flow
To implement the algorithm proposed in [2], it is first important to understand
the RNS operations and generations also referring to open-source tools as seen in
Chapter 2. In this way it becomes easier to figure out the mathematical algorithm
and the necessary elements to perform the comparison with this new method as
reported in 3.2. After the stabilization of the algorithm using Python and the
selection of the moduli set, all the possible structures have been designed on paper
in order to choose the best designs to implement.

Three structures have been selected and described in VHDL: the first and the
second ones are respectively the fastest but widest and the slightest but slowest,
so the third architecture is a trade-off between those two designs applying the
unfolding method to the second design. All the structures have been analysed
in Chapter 4, while in Chapter 5 are reported the related results in ModelSim
together with the synthesized ones with Synopsys Design Compiler and the
comparison between those new implementations with respect of the existing ones,
exploited in 3.1.

The other possible choices and the ideas for future implementations are reported
in Chapter 6, together with the final conclusions.
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Chapter 2

Residue Number System
method

An RNS is characterized by a set of N relatively coprime numbers known as moduli
mi with i = 1,2, ... , N to represent all the numbers in the dynamic range M equal
to the multiplication between all the used moduli mi, as reported in Equation (2.1)
[4].

M =
NÙ

i=1
mi (2.1)

Considering a number X, the non-negative reminders xi associated to the
division X

mi
represent the RNS value as XRNS = [x1, x2, ... , xN ] with the moduli

set [m1, m2, ... , mN ].

If X is an unsigned number, then it is represented in the range [0, M), while if it
is a signed number it falls in the range [0, M

2 ) if X is positive, or in [M
2 , M) if it is

negative [1]. To better understand their representation, we may refer to Figure 2.1.

3



Residue Number System method

Figure 2.1: Representation of the signed RNS numbers in range M .

It is evident that all the residues are non-negative and cannot exceed the
associated modulus value, but rather if those two conditions do not occur those
values must be reconverted, as exploited in detail in 2.2.

The RNS is a non positional numeral system in which there is not a weight asso-
ciated with any digit, however its tuple representations as XRNS = [x1, x2, ... , xN ]
allows to perform each operations in parallel across smaller modulus channels.

Indeed, in Figure 2.2 is reported an overview of an RNS based application: at
first the positional values are converted in RNS with a Forward Converter, then in
a RNS Processing Unit the residues associated to each modulus are menaged and
finally are reconverted thanks to the Reverse Conversion [4].
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Residue Number System method

Figure 2.2: Overview of an RNS based application.

In this work the traditional 3-moduli set [2n − 1, 2n, 2n + 1] is used since it is
the most common one in RNS datapaths [3], even if it is not the best one in terms
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Residue Number System method

of dynamic range: this is the reason together with its reduced parallelism that has
led to investigate on larger and different moduli set [1].

2.1 Conversion and Reconversion
The Residue Numeral System is based on the Chinese Reminder Theorem, CRT,
a method whose theory ensures us the RNS application. Thanks to the CRT it
is possible to say that if the moduli set has been chosen appropriately, then each
number in the considered dynamic range will have a unique representation in RNS
so that it can be converted and reconverted [10]. The CRT reconversion is also used
as a method to implement the comparison by compare the numbers in a positional
numeral system after the proper reconversion.

Indeed, the CRT methods states that considering a moduli set [m1, m2, ... , mN ]
of positive pairwise relatively prime integers, any number X in the M range can
be written in RNS as reported in Equation (2.2):

XRNS = [|X|m1 , |X|m2 , ..., |X|mN
] = [x1, x2, ... , xN ] (2.2)

where |X|mi
is the mathematical representation of the reminder of X

mi
.

Any RNS number can be reconverted thanks to the CRT as in Equation (2.3):

X =
------

NØ
i=1

Mi ×
---ki × xi

---
mi

------
M

(2.3)

where Mi = M
mi

and ki =
---M−1

i

---
mi

which represents the multiplicative inverse of---Mi

---
mi

so that
---Mi × M−1

i

---
mi

= 1 [4].
As it is possible to see, the CRT method requires a binary inner product

operation and a large modulo M operation that makes the VLSI realization slow
and complex. Therefore, other reconversion’s methods may be used to improve VLSI
reconversion’s realization such as the Mixed Radix Conversion, MRC, algorithm.

The MRC method is sequential and cannot be parallelized, so that it is not
suitable for high-speed design [11]. The reconversion takes place through Equation
(2.4).

X =
nØ

i=1
viai (2.4)

where n > 1, vi = ri−1
j=1 mj for 2 ≤ i ≤ n considering v1 = 1 while ai = |Yi|mi

,
by imposing Y1 = X and Yi = (Yi−1 − ai−1)|m−1

i−1|mi
[11].

6



Residue Number System method

The combination of CRT and MRC methods generates another reconversion
technique [11] reported in Equation (2.5).

X =
n−2Ø
j=1

αj+1

j+1Ù
i=1

mi

 + α1m1 + α0 (2.5)

where γi = M |M−1
i |mi

/m1mi, αj+1 =
---ê qj+2

i=1 γixi/
rj+1

i=2 mi

ë---
mj+2

.
The modified CRT algorithm reduces the modulo base of mi leading to an

efficient and independent of the moduli sets’ size converter design for small-sized
moduli set [11]. It uses the Equation (2.6).

X = x1 + m1

------
nØ

i=1
wix

′
i

------
mn...m2

(2.6)

where n > 1, w1 = (M1|M−1
1 |m1 −1
m1

, wi = Mi

m1
, x′

1 = x1 and x′
i = |M−1

i |mi
xi

considering i ∈ [2, n].
In order to get a faster reconversion, other techniques and algorithms are

investigated. One of the faster is reported in [12] which is based on the CRT scheme,
while partial methods such as the partial CRT or partial MRC are preferred for
the better performances [3].

2.2 Operations in RNS
The operations carried successfully with RNS are addition, subtraction and mul-
tiplication. Those operations are performed on each residue in a modular way.
To better understand their formulation, considering two numbers X and Y and
the moduli set [m1, m2, ... , mN ] of positive pairwise relatively prime integers,
the operations of addition, subtraction and multiplication on the two RNS values
XRNS = [x1, x2, ... , xN ] and YRNS = [y1, y2, ... , yN ] are reported respectively in
Equations (2.7), (2.8) and (2.9).

XRNS + YRNS = [|x1 + y1|m1 , |x2 + y2|m2 , ..., |xN + yN |mN
] (2.7)

XRNS − YRNS = [|x1 − y1|m1 , |x2 − y2|m2 , ..., |xN − yN |mN
] (2.8)

XRNS × YRNS = [|x1 × y1|m1 , |x2 × y2|m2 , ..., |xN × yN |mN
] (2.9)

An example is reported in Figure 2.3 in which two values of X and Y are
converted with the moduli set [3,4,5] as in Equation (2.2), then the three operations

7



Residue Number System method

of addition, subtraction and multiplication are applied and finally those two values
are reconverted as in Equation (2.3).

As it is possible to see, the RNS operations’ results are always positive reminders
that do not exceed the associated modulus value.

Those consideration help us to understand the algorithms used in open source
software solutions: if the result of a modular addition or multiplication is higher
than the modulus, then the reminder associated to the modulus is recomputed;
instead, if the result of a modular subtraction is negative, then the reminder
associated to the modulus is recomputed by adding the modulus value itself.

The algorithms of addition, subtraction and multiplication are reported respec-
tively in Algorithm 1, 2 and 3

Algorithm 1 Addition in RNS
for i=1:1:length(moduli_vector) do

add(i)=a(i)+b(i);
if add(i)>moduli_vector(i) then

add(i)%=moduli_vector(i);
end if

end for
return add

Algorithm 2 Subtraction in RNS
for i=1:1:length(moduli_vector) do

sub(i)=a(i)-b(i);
if sub(i)<0 then

sub(i)+=moduli_vector(i);
end if

end for
return sub

Algorithm 3 Multiplication in RNS
for i=1:1:length(moduli_vector) do

mult(i)=a(i)*b(i);
if mult(i)>moduli_vector(i) then

mult(i)%=moduli_vector(i);
end if

end for
return mult

8



Residue Number System method

Figure 2.3: Operations of addition subtraction and multiplication considering the
moduli set [3,4,5] and the input values X = 8 and Y = 7.
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Chapter 3

Comparison with Residue
Number System

3.1 Current comparison methods
Nowadays to implement the comparison in Residue Number System different so-
lutions are proposed. The most used and exploited methods are the following
[3].

1. Conversion-Based Schemes: This first method is the easiest one that solves the
problem at the source comparing the two values in a positional system after
their reconversion. However, the drawback is choosing the best reconversion
system to get the best performances.

2. Subtraction-Based Methods: This method is about checking the sign of the
difference between the two operands to understand their relation. The sign
check operation is not easy to implement in RNS, so the RNS subtraction
result can be both reconverted in binary or its sign is recognized using the
proper techniques.

3. Parity Checking Schemes: Studying the comparison results, it is possible to
see that if all the modulus are odd the comparison is a result of the operands’
parity and their difference. This method avoids the conversion but needs
some specifications in the moduli set that are not so used since the modulus
mi = 2n is one of the most efficient arithmetic channel.

4. Diagonal Mapping: Since the numbers in the dynamic range of a k moduli
RNS can be arranged in a k−dimension space, it is possible to group all the
RNS numbers in diagonal lines if k = 2, diagonal surfaces if k = 3 and so on.
The diagonals are associated to integers so that it is possible to compare the
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Comparison with Residue Number System

numbers associated to each diagonal to evaluate the comparison result, if the
inputs are on the same diagonal the comparison is performed between the two
residues.

The method exploited in this work is similar to the Diagonal mapping one: as in
this latter method, every number is associated to indexes that are compared. The
diagonal evaluation uses the Equation (3.1) [13].

D(x) =
-----

nØ
i=1

kixi

-----
SQ

(3.1)

where SQ = qn
i=1 Mi, ki =

--- − 1
mi

---
SQ

and xi represents the residue associated to
the modulus mi [13].

The diagonal mapping has been investigated to speed up the most difficult and
costly operation which is the modulo-SQ addition. In addition, there are also
different methods that modifies the diagonal function evaluation that represents
the RNS numbers [14].

The parity checking method examines the parities of both the operands and
their difference and then effectuates the final decision using a simple algorithm.
However, the parity detection method is quite complex to implement and requires
that all the moduli are odd.

The conversion-based scheme is widespread and encourages to research improved
conversion methods: in [15] the comparison is achieved after converting the RNS
values in MRC digits, [16] and [3] split the range in subranges via partitioning
functions achieved thanks to a partial CRT reconversion, [11] uses Equation (2.5)
to reconvert the inputs and then compare them in binary.

The conversion method is also needed for the subtraction-based schemes since
after the RNS-subtraction the result can be fully [17] or partially [18] reconverted
to check its sign ([19], [20]).

3.2 PANC method
The method exploited in this work is the Positional Attribute of Non-positional
Code, also known as PANC. The numbers represented in RNS cannot be directly
compared due to the non-positional representation, however the PANC method
aims to carry out the comparison without converting the numbers and therefore
using the Residue Number System representation.

The PANC method is not based on the comparison between the two RNS values
in question, but it associates them to a specific range in order to compare those
two latter numbers.

11



Comparison with Residue Number System

Even if this method does not resort to any conversion of the numbers, it features
some disadvantages such as the computational complexity of forming PANC and the
difficulty of directly use the method during the implementation of data comparing
operations.

The aim of this work is to create architectures that can perform the mathematical
method which uses the PANC, as done in [2], for quickly and accurately comparing
two numbers in RNS.

The procedure to perform the comparison with the mathematical method which
uses the PANC is reported in this section to better understand the architectural
choices.

Before the description it is necessary to define some operands:

1. mn is the highest modulus considered in the moduli set.

2. Nmi
is the product between all the moduli except the highest one.

3. KNARNS
mn

and KNBRNS
mn

represent the zeroing constants of the two operands
ARNS and BRNS.

4. The vectors K
(nA)
Nmn

and K
(nA)
Nmn

contain all the difference values respectively of
ZARNS

i and ZBRNS
i .

5. an and bn are the residues associated to the last modulus mi.

6. nA and nB represent the range associated respectively ARNS and BRNS and
they are the positional attribute of the non-positional code.

The inputs ARNS and BRNS should be in the range (0, M ] with M = rn
i=1 mi,

the aim of the exposed mathematical method is identify and compare the two
values nA and nB by dividing the whole range M in Nmi

intervals of mn magnitude
as represented in Figure (3.1).

Figure 3.1: Whole range M divided in Nmi
intervals of mn magnitude.

The accuracy by which the comparison is evaluated depends on the size of the
Nmi

intervals as Wmi
= 1

mi
. Since mi is the largest modulus, the accuracy Wmi

is
the lowest possible. However the number of intervals Nmi

is also the lowest and
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this is a huge benefit given that, as will be described in the algorithm, on this value
depends the number of operations used to obtain the vectors K

(nA)
Nmi

and K
(nA)
Nmi

whose magnitude is, as a matter of fact, Nmi
.

In order to obtain an higher accuracy, it is checked the relationship between the
residues associated to the highest modulus: an and bn. If the two numbers under
observation ARNS and BRNS fall in the same interval j = nA = nB, indeed, then
the values an and bn are going to establish exactly the magnitude of each operands
leading to the result of the comparison.

The algorithm can be described in six steps, taking into account that both the
numbers under observation A and B are already in their RNS form, respectively
ARNS and BRNS:

1. The evaluation of Nmi
;

2. The formation of zeroing constants KNARNS
mn

and KNBRNS
mn

;

3. The evaluation of Amn and Bmn , computed as in Equation (3.3). Those latter
values are multiples of modulo mn of RNS;

4. The definition of each single component ZARNS
i and ZBRNS

i in order to create
the vectors K

(nA)
Nmn

and K
(nA)
Nmn

, computed as in (3.4);

5. The formation of the quantitative values nA and nB for which Z(A)
nA

= 0 and
Z(B)

nB
= 0;

6. The comparison’s implementation for ARNS and BRNS as reported in (3.5).

As already said, the Nmi
is the product of all the moduli except the last one.

Since this value is not generally used when operating in RNS, we must evaluate
this as in Equation (3.2):

Nmi
=

n−1Ù
i=1

mi (3.2)

where n is the maximum modulus’ index.

Each zeroing constant represents the RNS value of the number in the range
[0, mn) that has the same input’s mn-th residue [21]. To better understand its
significance, knowing that any value X in RNS can be written as

XRNS = (x1||x2||...||xi−1||xi||xi+1||...||xn)
its related zeroing constant KN (XRNS)

mn
, which is associated to the mn modulus,

is going to have all different residues with respect of the ones of the input XRNS

except the n-th one:
KN (XRNS)

mn
= (x′

1||x′
2||...||x′

i−1||x′
i||x′

i+1||...||xn)
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If a number is multiple of a modulus, then its associated residue is going to be 0.
This latter consideration let us understand that Amn and Bmn , defined as multiples
of the modulus mn, can be extrapolated as the difference between the inputs and
their proper zeroing constant as reported in Equation (3.3).

Ami
= ARNS − KN (A)

mn
=

= (a1||a2||...||ai−1||ai||ai+1||...||an)−(a′
1||a′

2||...||a′
i−1||a′

i||a′
i+1||...||an) =

= (a(1)
1 ||a(1)

2 ||...||a(1)
i−1||a

(1)
i ||a(1)

i+1||...||0)
Bmi

= BRNS − KN (B)
mn

=
= (b1||b2||...||bi−1||bi||bi+1||...||bn)−(b′

1||b′
2||...||b′

i−1||b′
i||b′

i+1||...||bn) =
= (b(1)

1 ||b(1)
2 ||...||b(1)

i−1||b
(1)
i ||b(1)

i+1||...||0)

(3.3)

During this third step, both the inputs ARNS and BRNS have been reported
in one of the Nmi

intervals, even if to get their exact position it is necessary to
execute the next operation: the computation of each single ZARNS

i and ZBRNS
i to

form the vectors K
(nA)
Nmn

and K
(nA)
Nmn

.
Both ZARNS

i and ZBRNS
i are evaluated by subtracting respectively from Ami

and Bmi
all the multiples of mn in the whole range [0, M), evaluated as the

multiplication between mn and all the numbers in the interval [0, Nmi
). Their

computation is reported in Equation (3.4).



Ami
− 0 · mn = Z

(ARNS)
0 ,

Ami
− 1 · mn = Z

(ARNS)
1 ,

Ami
− 2 · mn = Z

(ARNS)
2 ,

...

Ami
− (N − 2) · mn = Z

(ARNS)
N−2 ,

Ami
− (N − 1) · mn = Z

(ARNS)
N−1 ;



Bmi
− 0 · mn = Z

(BRNS)
0 ,

Bmi
− 1 · mn = Z

(BRNS)
1 ,

Bmi
− 2 · mn = Z

(BRNS)
2 ,

...

Bmi
− (N − 2) · mn = Z

(BRNS)
N−2 ,

Bmi
− (N − 1) · mn = Z

(BRNS)
N−1 ;

(3.4)

The result of the Equation (3.4) is a binary sequence of ones and only one zero.
This only one zero is representing the exact interval position of the considered
input:

Ami
− nA · mn = 0 → Ami

= nA · mn

Bmi
− nB · mn = 0 → Bmi

= nB · mn

Now that the exact interval positions of both the intervals are known, the
algorithm can be finally implemented as in Equation (3.5):
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ARNS = BRNS, if [(nA = nB) and (an = bn)]
ARNS > BRNS, if (nA > nB) or [(nA = nB) and (an > bn)]
ARNS < BRNS, if (nA < nB) or [(nA = nB) and (an < bn)]

(3.5)

In Equation (3.5), according to the accuracy’s considerations, also the residues
associated to the last modulus an and bn are taken into account.
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Chapter 4

Design to implement the
PANC method comparison

In this chapter are reported all the architectural choices made in order to create
a valuable PANC comparator. Once the proper moduli set has been chosen, the
best architectural designs in terms of delay, area and power consumption have
been selected. The next three models are described in the paragraphs 4.1, 4.2 and
4.3, while the results associated to each design are discussed in the next chapter,
section 5.1.

The chosen moduli set is [2n − 1, 2n, 2n + 1], since it is the most popular one
in Residue Number System’s datapaths [22]. The n values most commonly used
are n = 5 and n = 8: all the considered designs operate with both the two moduli
set [31, 32, 33] and [255, 256, 257]. Another moduli set for which tests are done
is the one with n = 3, [7, 8, 9], since its simplicity makes it easier to build and
useful to find out the system’s problems.

With the moduli set proposed, the comparator has to work with values repre-
sented on 3n + 1 bits ((n) + (n) + (n + 1)) and for each modulus mi considered
the maximum number represented is mi − 1 [17]. Therefore, for n = 5 the num-
bers are represented with 16 bits and the maximum RNS number representable
is [30, 31, 32] equal to 32735 in decimal, while with n = 8, 25 bits are needed
to operate on all the numbers within 0 and 16776959, whose value in RNS is
[254, 255, 256].

To be aligned with the others architectures found, the number’s representation
for each design is composed by the first n + 1 most significant bits associated to
the modulus 2n + 1, then the last 2n bits are related respectively to the moduli 2n

and 2n − 1.

The first proposed solution in the paragraph 4.1 is the Golden Model in which we
assume that all the operations are performed in parallel with the highest resources
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Design to implement the PANC method comparison

possible. This architectural design is expecting to be the faster but also the wider.
The second architectural design in paragraph 4.2 is the opposite of the Golden

Model because the resources used are reduced to the minimum and shared: indeed,
it is the Resource sharing one. Since this latter design is the reverse of the first
one, we anticipate the smaller but slower performances because all the operations
are done sequentially. Furthermore, as it is possible to see from the algorithm’s
description in 3.2, all the steps are sequential except the comparison between the
residues associated to the larger modulus mn. Besides, it is possible to divide all
the sequential steps depending on the values of mn and Nmi

: the zeroing constants
evaluation rely on mn, while all the next operations, the generation of the vectors
K

(nA)
Nmn

and K
(nA)
Nmn

and the indexes identification nA and nB, depend on Nmi
. Only

the determination of KNARNS
mn

and KNBRNS
mn

is not depending on any of those
values. To clearly illustrate the values of mn and Nmi

for the different n considered,
it is possible to refer to Table 4.1.

n Nmi
mn

3 56 9
5 992 33
8 65280 257

Table 4.1

From those consideration, the Golden Model is expected to take the same clock
cycles to perform the algorithm regardless of the n considered, however to get the
performance’s parallelization, the number of architectural elements is depending
on both the values mn and Nmn , and, therefore, on n.

Conversely, the resource sharing model is expected to be formed by the same
number of logical elements independently on n and to take about Nmi

clock cycles,
since the zeroing constant evaluation is performed thanks to a decoder.

Both those two solutions are not ideal: the first one will occupy a lot of area,
the second one will be too slow. To reach a trade off between those two solutions it
has been applied the unfolding technique to the resource sharing design as reported
in the section 4.3. Considering the Nmi

’s magnitude, only the algorithmic steps
related to Nmi

have been unfolded.
In order to evaluate the best unfolding level, in Figure 4.1 is shown a graph in

which are reported the clock cycles taken for each unfolding level 2k with increasing
k. The clock cycles are computed as 2 + Nmi

2k since we surely need 2 clock cycles
to generate the zeroing constants KNARNS

mn
and KNBRNS

mn
and the multiples Amn

and Bmn , but we are replicating each unit that accomplishes the algorithm’ steps
depending on Nmn as 2k.
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Figure 4.1: Graphical representation of the decreasing clock cycles for increasing
unfolding level computed as 2k.

The most interesting cases are the ones with k = 2,3,4: considering k = 2 the
clock cycles are reduced by almost 4 times, but in the n = 8 case the computation
should still need more than 104 cycles (16322 more specifically), also the results for
n = 5 are not optimal, while for n = 3 the reduction is significant; this is why we
moved to the next unfolding level k = 3 for both n = 5 and n = 8, we have not
considered the case for n = 3 since we calculated that clock cycles’ gain would have
been lower with respect of the structure’s complexity. Those considerations also
apply for k = 16 in the n = 5 case, which is where we stopped also in case n = 8
to be in line with the results.

In Figure 4.2, 4.3 and 4.4 are reported in detail the decreasing clock cycles for
increasing unfolding level 2k respectively for n = 3, n = 5 and n = 8 in order to
better understand their behavior.
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Figure 4.2: Graphical representation of the decreasing clock cycles for increasing
unfolding level computed as 2k considering n = 3.

Figure 4.3: Graphical representation of the decreasing clock cycles for increasing
unfolding level computed as 2k considering n = 5.
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Figure 4.4: Graphical representation of the decreasing clock cycles for increasing
unfolding level computed as 2k considering n = 8.

In section 4.3 those designs are reported, analyzed and commented and those
consideration are better exploited.

4.1 Golden Model
The first structure analyzed is the Golden Model. As already anticipated, this
architecture is the fastest and largest, but it is also the simplest that can be
imagined and the starting point for the definition of other designs.

At first it is described in details the Datapath associated to this design, then it
is explained how its Control Unit works.

4.1.1 Datapath
The Golden Model’s design is a direct implementation of the algorithm, this is
why in its description it is divided in three different parts that will be described in
detail in this section.

The first part includes the definition of the zeroing constants and evaluates the
result of the comparison between an and bn. Both those two instructions can be
performed by simply using the inputs’ n + 1 most significant bits since the latter
instruction can be easily performed by a simpler n + 1 bits comparator, while
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the zeroing constants KNARNS
mn

and KNBRNS
mn

are evaluated using two decoders
with n + 1 input bits and 3n + 1 output bits. Each decoder associates the mn’s
residue to its number in RNS as reported in the truth table in Table 4.2 referred
to the simplest case of n = 3 where each output has been lined with its associated
modulus.

INPUT m9 m8 m7
0000 0000 000 000
0001 0001 001 001
0010 0010 010 010
0011 0011 011 011
0100 0100 100 100
0101 0101 101 101
0110 0110 110 110
0111 0111 111 000
1000 1000 000 001

Table 4.2

To clarify the functioning of the first part in Figure 4.5 is reported its RTL
scheme for n = 3. The decoder’s EN input signal is generated by the control unit
and used to make the decoder working only when necessary, so during this first
clock cycle.
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Figure 4.5: The first part’s RTL structure for n = 3 in which the inputs A and
B’s n + 1 bits are used to both generate the proper zeroing constant with the
decoders and the result of the comparison between its mn-th residue.

This first part’s outputs are KNARNS
mn

and KNBRNS
mn

, the two zeroing constants
on 3n + 1 bits, and the outcome of the comparison represented as 3 single bit
signals representing the possible outcome of the operation: an > bn, an < bn and
an = bn. All the results are written in their proper registers, ready to be used in
the following steps.

The second part gives as results the inputs’ mn multiples Amn and Bmn and each
single component ZARNS

i and ZBRNS
i , both computed as in Equation (3.3) and (3.4)

respectively. Those two RNS operations are both modular and are respectively a
subtraction and a multiplication for a constant value. It is, indeed, performed
the subtraction between the inputs and their proper zeroing constants, computed
in the previous part and stored in their proper registers, and the multiplication of
all the numbers in the range [0, Nmi

) by the constant mn value in RNS equal to
[2, 1, 0].

The subtraction cannot give any negative residue result since the negative
numbers in RNS are identified considering the dynamic range [5]. In order to avoid
the negative numbers, the subtractor has been built following the Algorithm 2 as
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reported in all the open-source software solutions.
Each modular subtractor is formed by 4 elements:

1. Sign extension by which is added ‘0’ at the start of the residue knowing
that all the values are for sure positive;

2. Subtractor to perform the subtraction between signed numbers;

3. Sign detection to detect the most significant bit and add the modulus value
in case the MSB is equal to ‘1’, so the number is negative, otherwise the
number is given to the last element without any change;

4. To keep the number on its proper bitwidth, the last component eliminates the
most significant bit, that is for sure ‘0’, and it is named as redundant.

With the chosen moduli set it is necessary to add only one bit to the residues
associated to both the highest and lowest moduli. The 2n modulus is written on
n + 1 bits, so its signed subtraction must be performed on n + 2 bits and this is
the reason why the sign extention component adds two zeroes “00” and the last
component truncates the two most significant bits.

In Figure 4.6 is reported the modular subtractor structure for n = 3 where each
component is marked with respect of the associated modulus ([7, 8, 9]).

Figure 4.6: Modular subtractor in case n = 3: each component is considered with
respect of the associated modulus ([7, 8, 9]).
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As it is possible to see from the algorithm, each number in the interval [0, Nmi
)

must be multiplied by the constant mn value in RNS form. Also, all those inputs
must be available all at the same moment, that is why they are all stored in their
proper 3n + 1 bits registers. Considering our moduli set, this RNS constant is equal
to [2, 1, 0]. It is not worth to use a proper RNS multiplier, but, looking at the
numbers, it is possible to set all the 3n + 1 bits as follows:

• The most significant n + 1 bits are forced to 0;

• The following n bits are equal to the input ones;

• The least n bits are multiplied by 2. Observing the software’ solutions Open-
Source, if after the multiplication the resultant residue is higher than the
modulus’ value, the result’s residue must be ri-evaluated, as reported in the
Algorithm 3. Although, it is possible to see that each multiplication result
is its circular shifted value, making possible to only use a circular shift to
perform the multiplication.

This is the reason why the multiplier has been named as Fake-multiplier. Its
structure considering the design with n = 3 is reported in Figure 4.7.

Figure 4.7: Multiplier used in the designs for n = 3: the first n + 1 bits are forced
to 0, the following n bits are given as output while the least n bits are modified by
the circular shift.

To accomplish this second algorithmic part are necessary 2 subtractors, Nmi

circular shifts and Nmi
+ 2 registers of 3n + 1-bits to memorize the results and

parallelize the operation. Also it is necessary to remember the needs of Nmi
registers

to get the multiplication inputs.

The third part completes the comparison. The operations managed in this
part are the evaluation of the vectors K

(nA)
Nmn

and K
(nA)
Nmn

, computed as in (3.4), the
formation of the quantitative values nA and nB for which Z(A)

nA
= 0 and Z(B)

nB
= 0

and finally the comparison between ARNS and BRNS as reported in (3.5). The
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algorithmic formation of the vectors K
(nA)
Nmn

and K
(nA)
Nmn

is implemented by subtracting
from the mn’s multiples, Amn and Bmn , the results of the previous multiplication
and by inserting a ′1′ whenever the subtraction gives a result different from 0,
otherwise is put a ′0′. Those two vectors can be created by using only subtractors
and an equality comparator, but there has been made a slightly modification by
inserting a ‘1’ if the subtraction result gives a 0 and ‘0’ otherwise. In this way has
been exploited an encoder to achieve the indexes nA and nB’s detection. In Table
4.3, is reported the encoder’s truth table considering n = 3 (even if is not reported
in its enterety).

INPUT OUT Decimal
value

0000000000000000000000000000000000000000000000000000000 000000 0
0000000000000000000000000000000000000000000000000000001 000001 1
0000000000000000000000000000000000000000000000000000010 000010 2
0000000000000000000000000000000000000000000000000000100 000011 3
0000000000000000000000000000000000000000000000000001000 000100 4
0000000000000000000000000000000000000000000000000010000 000101 5
0000000000000000000000000000000000000000000000000100000 000110 6
0000000000000000000000000000000000000000000000001000000 000111 7

... ... ...
0000000000000000000010000000000000000000000000000000000 100011 35
0000000000000000000100000000000000000000000000000000000 100100 36
0000000000000000001000000000000000000000000000000000000 100101 37

... ... ...
0010000000000000000000000000000000000000000000000000000 110101 53
0100000000000000000000000000000000000000000000000000000 110110 54
1000000000000000000000000000000000000000000000000000000 110111 55

Table 4.3

Now that both the indexes are ready to be compared, a comparator on
log2(Nmi

) bits decides which is the relationship between the indexes nA and nB.
This third part uses 2 · Nmi

subtractors and equality comparator, 2 encoders
Nmi

− to − log2(Nmi
) and one comparator on log2(Nmi

) bits. At the end of this
path the results, the 3 bits that identifies respectively nA > nB, nA < nB and
nA = nB, are stored in 3 final registers of 1 bit.

Since the last step is the selection of the result, it is used a multiplexer 2 −to− 1
which takes as inputs the 3 bits associated to the last residue and indexes comparison,
but the selection signal is due to the control unit and depends on the nA = nB

result. This operation needs to delay the output of one clock cycle thanks to 3
register of 1 bit in which the 3 output signals that decides if A > B, A < B or
A = B are stored.
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In Table 4.4 are reported all the units used in this datapath, considering the
modular operators.

Algorithm
part

Number of
elements Element Number of

Bits
First
part

2 Decoder n + 1 − to − 3n + 1
1 Comparator n + 1

Second
part

2 Subtractor 3n + 1
Nmi

Fake-multiplier 3n + 1

Third
part

2 · Nmi
Subtractor 3n + 1

2 · Nmi
Zero check 3n + 1

2 Encoder Nmi
− to − log2(Nmi

)
1 Comparator log2(Nmi

)
1 Multiplexer 2 − to − 1 3

Total
registers

4 + 2 · Nmi
Register 3n + 1

9 Register 1

Table 4.4

Since the components are too wide, it was not possible to generate the Golden
model with n = 8.

4.1.2 Control Unit
The control unit is formed by 8 states:

1. RESET if the general reset is asserted;

2. IDLE when the inputs are awaited;

3. OP_1 to enable the registers and the operations related to the first part
(enabling the two decoders and the KNARNS

mn
and KNBRNS

mn
registers and the

output of the comparison between an and bn ones). The system gets in this
state if all the inputs are ready to be processed;

4. OP_2 to enable the registers related to the second part (the Amn and Bmn

ones and the multiplication results). The system gets in this state if nothing
in the previous step has changed;

5. OP_3 to enable the registers related to the third part (the registers of the
comparison between the indexes nA and nB). The system gets in this state if
nothing in the previous step has changed;
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6. ab to correctly select the outputs related to the first comparison. The system
gets in this state if the last comparison is over and if the signal related to
nA = nB is asserted;

7. n to correctly select the outputs related to the last comparison. The system
gets in this state if the last comparison is over and if the signal related to
nA = nB is negated;

8. Result the output is available and are enabled the 3 registers related to the
result (the ones associated to the relationship between the inputs). The system
gets to this state when one of the last output signals is asserted and thanks to
a proper signal announces the end of operation.

The control unit scheme is reported in Figure 4.8.

Figure 4.8: Golden Model’s Finite State Machine.

In Table 4.5 are reported both the signals in input and output and is described
their function and their computation.
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Signal Input/Output Significance

rst Input
The general Reset

is asserted: the system is
resetted

ready Input The inputs signal are
ready to be analyzed.

nanb_ready Input

When the both indexes
have been analyzed and

their relation has
been evaluated,

this signal is asserted

done Input The operation is ended:
the result has been computed

sel Input

This signal is asserted
only if the two indexes
nA and nB are equal
and allows to step in

one of the states
ab or n.

enable_1 Output The registers related to
the first part are enabled.

enable_2 Output The registers related to
the second part are enabled.

enable_3 Output The registers related to
the third part are enabled.

sel_dp Output

It is the multiplexer’ selection
signal deciding if the

output depends on the
indexes’ comparison or the

last residue.

enable_last Output

It enables the last registers
associated to the result
and it is asserted only
in the Result’ state.

Table 4.5
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4.2 Resource sharing
The Resource sharing design is expected to be the smallest and slowest. In this
chapter its architecture is described and analyzed. This paragraph is divided as
the Golden model one, but the main components are not described since they are
the same used in the previous design and so they have been already explained.

4.2.1 Datapath

The first part is related to the generation of the zeroing constants and the comparison
between the two residues associated to the greatest modulus.

Since the usage of decoders is helping us in the zeroing constants’ evaluation,
this first part is unchanged with respect of the Golden Model design. Its RTL
structure is the same reported in Figure 4.5 and to achieve those first results are
needed only two decoders of n+1 −to− 3n+1 bits and a n+1 bits comparator
to evaluate the relation between the inputs’ mn-th residues. Also, two registers on
3n + 1 bits and three single bit registers are needed.

The second part is designated to compute the multiples Amn and Bmn and
the first result of the multiplication by the RNS constant [0, 1, 2]. Reusing the
resources implies that one multiplication at time is performed, so only the very
first one is performed in this cycle obtaining that only two subtractors and
one circular shift are used together with another component that generates all
the values included in the interval [0, Nmi

). This latter component is a modular
counter because it is formed by 3 counters that works on n + 1, n and n bits
respectively simultaneously to generate the 3n + 1 output. Observing the sequence
of the RNS numbers, indeed, it is possible to write each number by always adding
1 and ensuring that each counter reaches its associated maximum value which is
mi −1. This feature is obtained by generating an internal reset to ensure that when
the counter gets to mi − 1 it is restarted. In Table 4.6 are reported the maximum
values reached by each modulus for all the n considered in order to make clear that
the internal reset is applied only to the 2n − 1 and 2n + 1 moduli, since the 2n one
has its internal reset generated by its overflow.

2n − 1 2n 2n + 1
n = 3 6 110 7 111 8 1000
n = 5 30 11110 31 11111 32 100000
n = 8 254 11111110 255 11111111 256 100000000

Table 4.6
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In Figure 4.9 is reported the structure of this counter component in case n = 3
in order to clarify its RTL architecture.

Figure 4.9: Total counter’s structure for n = 3. When the control signal startcount
is asserted, the counters start computing all the following values adding always +1.
The counters counter_3_bitsto6 and counter_4_bits have an internal reset when
they reach the maximum value respectively of 6 and 8.

To evaluate the multiples Amn and Bmn , as in Equation (3.3), the two subtractors
must have as inputs both the A and B values and the zeroing constants previously
computed: both their two inputs are selected thanks to two multiplexers 2 −to− 1
of 3n + 1 bits whose selecting signal is given from the control unit.

In Figure 4.10 is reported the architecture of the first and second part (even
if the comparator on n + 1 bits is not present) for n = 3. It is possible to
see, considering the multiplexers mux_1, mux_2, mux_3 and mux_4, that their
function is switching between the second and the third part: initially the subtraction
is performed between the zeroing constants KNARNS

mn
and KNBRNS

mn
and the inputs

A and B, then between the multiples Amn and Bmn and the multiplication output
(O_Mult). This is also better underlined in Figure 4.11, while the generation of
the multiplication output (O_Mult) is reported in Figure 4.12.
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Figure 4.10: Resource sharing’s first and second part with the two decoders used
to generate the zeroing constants, the registers allocated for the zeroing constants
and the multiples, the four multiplexers to select the subtractors inputs and the
counters together with the fake-multiplier and the multiplication’s output register.
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Figure 4.11: The multiplexers and their inputs together with the subtractor used
in the Resource sharing’s design.

Figure 4.12: The connection between the counter and the fake-multiplier in the
Resource sharing’s design.

It is possible to highlight that for this architecture the second part is only the
preliminary step before the slowest part begins: the third part. The second part’ s
required resources are shared with the third one thanks to the two multiplexers (as
underlined in Figure 4.10) since in this third part the inputs of the two subtractors
are properly switched taking as new inputs the multiplies Amn and Bmn and the
result of the multiplication correctly stored in a register at each clock cycle.

As for the Golden Model, thanks to the third part the indexes nA and nB

are evaluated. This is why everytime the subtractors give us a result, they are
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checked with an equality comparison: if their value is 0, then the index has
been identified. To generate the indexes, however it is not possible to use an
encoder since we generate a result at each clock cycle. This is the reason why
during this latter part another counter starts working: it counts all the numbers
in the interval [0, Nmi

), so it is on log2(Nmi
) bits, and is synchronized with the

multiplication results (ready only after the second part) to take trace of the interval
under consideration. The comparison between the two indexes is performed only
when all the values in the range [0, Nmn) have been analyzed thanks to a signal
generated by the binary counter when it ends the counting, called rst_55, making
this phase the slowest.

The resources added to perform this step are only two equality comparison for
each output and the 2 log2(Nmi

)-bits registers to store the nA and nB values and
finally their proper comparator whose outcomes are stored in 3 1-bit registers and
eventually selected with another multiplexers driven by a control unit signal, as for
the Golden Model.

Since the selection of the multiplexer is given by the control unit, we need to
delay the computation by storing the resultant signal A > B, A < B and A = B
in their proper registers.

In Figure 4.13 and 4.14 are reported those last steps: the generation of the
indexes and the selection of the result respectively.
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Figure 4.13: The indexes nA and nB generation in the third part: the subtraction
results are checked thanks to an equality comparator and enables the indexes register
if their outcome is asserted. To generate the indexes, it is used a binary counter.
After the indexes memorization, those values are compared in a comparator.
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Figure 4.14: The last part of the Resource sharing design: the compara-
tor related to the first part and the registers associated to its outcomes in
the upper part, the control unit and the generation of the control signals
nanb_ready = nA_greater_nB OR nA_lower_nB OR nA_equal_nB and
the done = A_greater_B OR A_lower_B OR A_equal_B signal, finally the
multiplexer that select the final output which is stored in the registers.

In the Table 4.7 are reported all the used elements, considering the difference
between the counter used to generate the multiplication signals and the binary
counter to generate the indexes. Moreover, in this case it is not useful to divide
the resources in various algorithmic parts because they are reused, but we must
keep in mind that both subtractors and “fake-multipliers” are modular.
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Circuital
part

Number of
elements Element Number of

Bits

Combinatorial

1 Counter with
proper reset 3n + 1

1 Comparator n + 1
2 Decoders n + 1 − to − 3n + 1
2 Subtractors 3n + 1
1 Fake-multiplier 3n + 1
2 Equality check 3n + 1
1 Binary Counter log2(Nmi

)
4 Multiplexers 2 − to − 1 3n + 1
1 Multiplexer 2 − to − 1 3

Sequential
5 Register 3n + 1
2 Register log2(Nmi

)
9 Register 1

Table 4.7

4.2.2 Control Unit
The control unit associated to the Resource sharing design is composed almost in
the same way of the Golden Model. Its states are 8:

1. RESET if the general reset is asserted;

2. IDLE when the inputs are awaited;

3. OP_MN to enable the computation of the zeroing constants and the com-
parison between the residues an and bn;

4. OP_SUB to properly select the inputs of the two subtractors to compute
the multiples Amn and Bmn ;

5. OP_SUB_MULT to compute the multiplication results and properly set
the subtractor inputs;

6. ab to correctly select the outputs related to the first comparison. The system
gets to this state if the last comparison is over and if the signal related to
nA = nB is asserted;

7. n to correctly select the outputs related to the last comparison. The system
gets in this state if the last comparison is over and if the signal related to
nA = nB is negated;
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8. RESULT when the output is computed and the operation is over. The system
evolves in this state if one of the last output signals is asserted and thanks to
the proper signal announces the end of operation.

The control unit scheme is reported in Figure 4.15.

Figure 4.15: Resource sharing’s Finite State Machine.

Finally, in Table 4.8 are reported the signals in input while in Table 4.9 the
output ones and is described their function and their computation.

Signal Significance
rst The general Reset is asserted: the system is resetted.

ready The inputs signals are ready to be analyzed.

rst_55 This signal is asserted only if the binary counter
reaches the Nmi

value.

nanb_ready
When both the indexes have been analyzed and

their relation has been evaluated,
this signal is asserted.

sel
This signal is asserted only if the two indexes

nA and nB are equal and allows to
step in one of the states ab or n.

done The operation is ended: the result has been computed

Table 4.8
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Signal Significance

c1, c3
Those two signals are selecting in both the two

multiplexers the input values A and B when asserted,
the result of the multiplication when negated.

c2, c4
Those two signals are selecting in both the two multiplexers

the inputs’ zeroing contants if asserted, the inputs’
multiples when negated.

enablemi
This signal enables the registers associated to the second

step’s results (the multiples and the
first multiplication result).

enablemult
This signal enables the register associated to the third

step’s results (the multiplication ones) and starts
counting the counter associated to the multiplication.

enableab
This signal enables the registers associated to the first step’s

results (the zeroing constants’ registers and the
first comparison’s results).

enable_last This signal enables the last registers, the ones associated
to the result memorization.

enable_dec This signal enables the decoders
that decide the KNARNS

mn
and KNBRNS

mn
values.

enablecount

This signal has been introduced since the generation of the
indexes nA and nB is delayed with respect

of the counting of the values to be multiplied in RNS.
Indeed, this signal starts counting the binary counter.

sel_dp
It is the last multiplexer’ selection signal deciding if the

output depends on the indexes’ comparison
or the last residue’s one.

Table 4.9

4.3 Unfolding of the resource sharing
The most worrying aspect of the Resource sharing design is the required time to
end the operation. In fact, it is equal to about Nmi

clock cycles (as also described
in Figure 4.1), where the different Nmi

values are reported in table 4.1. As it is
possible to see, the more the n value is increased, also Nmi

rises but exponentially
getting that the operation execution takes too long. This is why it has been
implemented the Unfolding of Resource sharing design in which the last operation’s
execution that takes about Nmi

clock cycles is split between more units working in
parallel. The unfolding technique, indeed, is used to provide a parallel versions of
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the system and allows to achieve delay improvements even at the cost of a larger
area. As reported in Equation (3.2), to get an higher performance’s improvement
and to get a lower control’s complexity, the added levels are equal to 2k with
increasing k, so that the expected time reduction is equal to 2k.

As the previous sections, this architecture is described in the same way with
the same divisions.

4.3.1 Datapath
To ensure continuity with the previous designs, the division in three parts has been
kept. That is why the division in three parts is still used although the operations
done are differently parted.

Again, the first part, by which the zeroing constants are computed and the two
residues an and bn are compared, is kept unchanged with respect of the resource
sharing design. This means that both the two decoders of n+1 − to− 3n+1 bits
and the comparator of n + 1 bits are again used. Also, this first part needs two
registers to store the KNARNS

mn
and KNBRNS

mn
values and the three 1-bit registers

for the comparison’s results.

The second and third parts are modified. During the second one the multiples
Amn and Bmn are computed exactly as in the resource sharing design and, thanks
to the unfolding technique, are also evaluated the first 2k results multiplied by
the RNS constant [2, 1, 0]. This is the first main difference with respect of
the Resource sharing design. To accomplish this latter operation is necessary to
consider all the values included in the interval [0,2k) and add to each of them
2k. This adding operation is iterated until is reached the Nmi

value, so the best
solution is using counters properly started with the internal value. Following the
Resource sharing design, all the counters’ outputs should be given to the so-called
“fake-multiplier” in order to evaluate the multiplication’s results. However observing
the “fake-multiplier”’s outputs it is possible to identify a sequential trend that
could be recreated by modifying the adding constant. To better understand this
process, in Table 4.10 is reported the sequential trend considering the unfolding
level 22 = 4, in which the starting numbers in the range [0,4) are already multiplied
by the RNS constant [2, 1, 0].

[0, 0, 0] [2, 1 0] [4, 2, 0] [6, 3, 0]
[8, 4, 0] [10, 5 ; 0] [12, 6, 0] [14, 7, 0]
[16, 8, 0] [18, 9, 0] [20, 10, 0] [22, 11, 0]

...

Table 4.10
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The counters are, indeed, initialized to the first numbers included in the range
[0,2k) and the added value is 2k in RNS form. In the represented case the first
numbers in RNS form are in the range is [0,4) and the adding number is 4. Because
of the multiplicative value in RNS [0, 1, 2], the adding value becomes [0, 4, 8].

As reported in the open source software solutions, also in the addition case the
residue should be recomputed if its result is higher than the associated modulus as
reported in Algorithm 1.

This latter consideration is the reason why the counters must be modified: the
residues’ counters associated to the 2n modulus do not need any variation since
anytime the result exceed the modulus the most significant bit associated to the
overflow is truncated; however the counter associated to the 2n −1 modulus, instead,
must be properly set: it cannot count its latter value, but must stop the count
before. This goal is achieved by studying the sequential trend and observing that
when reached a certain threshold number the adding value is not equal to 2 · 2k, as
happened for all the previous values, but 2 · 2k + 1.

This is why, considering the case n = 3 and k = 2, the represented sequence
becomes the one reported in Table 4.11.

[0, 0, 0] [2, 1 0] [4, 2, 0] [6, 3, 0]
[1, 4, 0] [3, 5 ; 0] [5, 6, 0] [0, 7, 0]
[2, 0, 0] [4, 1, 0] [6, 2, 0] [1, 3, 0]

...

Table 4.11

As it is possible to see, the adding value is [0, 4 1] for all the counters used. In
addition, this is considered the limiting value for the n = 3 case since for the k = 3
case the sequential trend gets harder to replicate.

In the case with n = 5 and k = 2, instead the first counted values are reported
in Table 4.12.

[0, 0, 0] [2, 1 0] [4, 2, 0] [6, 3, 0]
[8, 4, 0] [10, 5 ; 0] [12, 6, 0] [14, 7, 0]
[16, 8, 0] [18, 9, ] [20, 10, 0] [22, 11, 0]
[20, 12, 0] [26, 13 0] [28, 14, 0] [30, 15, 0]
[1, 16, 0] [3, 17 ; 0] [5, 18, 0] [7, 19, 0]

...

Table 4.12

The adding value is always [8, 4, 0], except that the counter associated to the
modulus 2n −1 counts 2k +1 = 9 when the counting value reaches a certain number
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threshold that in this case is equal to 12

This second part needs only 2k counters properly initialized and built with
2 · 2k subtractors to create the multiples Amn and Bmn , as in Equation (3.3). As
experienced in the resource sharing architecture, this second part also needs two
multiplexers for each input in order to select the proper subtractors inputs in this
phase: the two inputs and the zeroing constants previously computed. Another
difference with respect of the resource sharing design is the registers allocated in
this part which are 2 + 2k of 3n + 1 bits in order to store not only the multiples
value but also the multiplication’s results outputs.

In the third part, indeed, those 2 + 2k latter results are the new subtraction’s
inputs, this is why are needed 2 · 2k subtractors to evaluate the difference between
both the multiples Amn and Bmn and the 2k multiplication’s results. The actual
subtractors used are 2k by taking advantage of the multiplexers to switch between
the inputs as exploited in the resource sharing design.

In addition, the subtractions’ results are check in order to find the indexes value
thanks to 2k equality comparison for each output. As performed in the previous
design, when the subtractions’ result is equal to zero, then is generated an asserted
signal that enables the proper index’ register. However, in the Unfolding case 2k

signals are generated by the associated equality check. So the equality comparison’
s outputs are given to an encoder 2k − to − k in order to select the proper index
to store in the log2(Nmi

) bits register by using a multiplexer 2k − to − 1. As in
the resource sharing design, the indexes are generated thanks to 2k binary counters
on log2(Nmi

) bits initialized with all the values included in [0,2k) and that adds
the binary 2k value. Those elements start counting in this third phase to ensure
the indexes fairness, just as happened in the previous design.

The third part shares two subtractors with the second part and the counters,
but it also needs 2k − 1 more subtractors and 2k equality comparators both for
each input together with the 2k external binary counter on log2(Nmi

) bits, the two
encoders 2k − to − k and two multiplexers 2k − to − 1 of 3n + 1 to generate
the indexes nA and nB. The register used are the 2k ones shared with the second
phase to store the counters’ outputs and the two indexes registers on log2(Nmi

)
bits. Finally the indexes are compared in a log2(Nmi

) comparator and its results
are given to the last multiplexer 2 − to − 1 whose selection signal depends on the
control unit. The result’s storage needs to be delayed thanks to another register
that stores the comparison results, as seen for both the previous comparisons.

In Figure 4.16 is reported the whole Unfolded resource sharing design considering
n = 3, while in Figure 4.17 we have focused on the counters used to generate the
RNS values and the binary ones unfolded.
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Figure 4.16: Unfolded Resource sharing design for n = 3.

Figure 4.17: Unfolded Resource sharing design for n = 3: the counter generates
all the multiplied results that are stored in their proper registers, then they are
subtracted from the multiplies values and this latter output is detected from the
equality comparator. All the outcomes of the 4 equality comparator are stored
used from the encoder to select the 4 binary counters’ output to be stored in the
index’ register. Finally those indexes values are compared.

In Table 4.13 are summarized all the elements used.
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Circuital
part

Number of
elements Element Number of

Bits

Combinatorial

2k Counter that generates the
values already multiplied 3n + 1

2 Decoder n + 1 − to − 3n + 1
2 Comparator n + 1

2 · 2k Subtractors 3n + 1
2 · 2k Equality check 3n + 1

2k Binary Counter log2(Nmi
)

4 Multiplexers 2 − to − 1 3n + 1
2 Encoders 2k − to − k
2 Multiplexers 2k − to − 1 log2(Nmi

)
1 Multiplexer 2 − to − 1 3

Sequential
4 + 2k Register 3n + 1

2 Register log2(Nmi
)

9 Register 1

Table 4.13

4.3.2 Control Unit
The Unfolding Resource sharing’s control unit is exactly the same of the Resource
sharing one. We can refer to section 4.2.2 without reporting or explaining in here
how it works.

The states and control signals are the same and are generated in the same way.
The only difference is the rst_55 signal which is generated when all the counters
used to generate the multiplication’s results have finished the count. This choice
depends especially on the need to verify the multiplication’s results’ fairness since
this signal is asserted only when all the counters reaches the final result thanks to
an AND gate.
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Chapter 5

Results

All the designs’ results are discussed in this chapter: in 5.1 all the designs’ perfor-
mances with different n and k are reported, then those results are commented and
compared with the existing architectures’ performances in 5.2.

5.1 Results

The aim of this section is describing all the architectures and commenting their
performances in terms of delay, area and power consumption.

All the designs structures have been described in VHDL and simulated in Mod-
elSim, while the synthesis are performed with Synopsys Design Compiler using
the technology library “uk65lscllmvbbr_090c125_wc” considering the standard cell
BUFM14R.

5.1.1 Golden model n=3

The first design analyzed is the Golden model for n = 3. It is the fastest design as
expected and reported in its simulation in Figure 5.1.
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Figure 5.1: Golden model design simulation for n = 3 with inputs A = 12 and
B = 23: the result is A < B.

Even if this design is the fastest and needs only 5 clock cycles to end the
computation, its structure is the widest one. Its performances are reported in Table
5.1.

Golden model design’s results for n = 3
fMAX 120.9 MHz

Total Area 27149.7 µm2

Total Power 458.4 µW

Table 5.1

Thanks to this analysis, this system will give the result after 41.35 ns.

5.1.2 Resource sharing n=3
The Resource sharing design with n = 3 is expected to take at least 56 clock cycles.
In Figure 5.2 is demonstrated that to conclude the operation are required 61 clock
cycles.

Figure 5.2: Resource sharing design simulation for n = 3 with inputs A = 503
and B = 502: the result is A > B.

However, its performances are improved with respect of the Golden model design
as confirmed in Table 5.2.
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Resource sharing design’s results for n = 3
fMAX 221.7 MHz

Total Area 2447.3 µm2

Total Power 125.4 µW

Table 5.2

As expected, the area reduction with respect of the Golden Model is reduced
of 90.9%, the power consumption decreases as 72.6% and finally the maximum
frequency is increased of about 45.5%. Even if the performances are improved, the
result is ready only after 275.11 ns.

5.1.3 Unfolded resource sharing n=3 with k=2
The only Unfolding level applied for n = 3 is the one with k = 2 since increasing the
unfolding level would have meant an higher algorithmic complexity. The counter
associated to the 2n − 1 modulus, instead, must be properly set: it cannot count
its latter value, but must stop the count before. This goal is achieved by studying
the sequential trend and observing that when reached a certain threshold number
the adding value is not equal to 2 · 2k, as happened for all the previous values, but
2 · 2k + 1.

In this first case 2k = 4, so the number to be added in RNS is [8, 4, 0]: the
counter associated to the modulus 8 adds everytime +4, however the one associated
to 7 should add +1, the residue value of 8 with respect to 7. This is why the
counter associated to the modulus 7 is always counting +1 but is resetted to 0
after counting the value 6.

In this case the clock cycles expected are almost 14, while the actual ones are
18 as highlighted in Figure 5.3.

Figure 5.3: Unfolded resource sharing n = 3 with k = 2 design simulation with
inputs A = 2 and B = 3: the result is A < B.

Even if the needed clock cycles are reduced of about 70% with respect of the
Resource sharing one, its performances got worst with respect of the Resource
sharing design as reported in Table 5.3
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Unfolded Resource sharing design’s results for n = 3 with k = 2
fMAX 165.1 MHz

Total Area 5045.1 µm2

Total Power 151.7 µW

Table 5.3

The occupied area is increased of about 51.5% with respect of the Resource
sharing model, but still reduced with respect to the Golden model (81.4%). Also
its power consumption gets 17.3% worse with respect of the Resource sharing
design, but 66.9% better than the Golden model. Its maximum frequency is instead
reduced with respect of the Resource sharing architecture of 25.5%, while it is
26.8% increased with respect of the Golden model design.

In this case the result is ready only after 109.08 ns, which is improved of 60.3%
with respect of the Resource sharing model.

5.1.4 Golden model n=5
In Figure 5.4 is reported the ModelSim simulation of the Golden Model design.

Figure 5.4: Golden model design for n = 5 with inputs A = 2569 and B = 35:
the result is A > B.

In Table 5.4 are reported the Golden model with n = 5’s performances.

Golden model design’s results for n = 5
fMAX 83.6 MHz

Total Area 717799.3 µm2

Total Power 8377.0 µW

Table 5.4

The result is generated from this architecture after 71.7 ns
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5.1.5 Resource sharing n=5

The case of the Resource Sharing design for n = 5 is expected to need almost 992
clock cycles to end the computation. In Figure 5.5 is reported that it needs instead
998 clock cycles.

Figure 5.5: Resource sharing’s Finite State Machine.

As expected, it takes more clock cycles with respect of the n = 3 case, since the
Nmi

value is greater. Its performances are reported in Table 5.5.

Resource sharing design’s results for n = 5
fMAX 189.7 MHz

Total Area 3866.4 µm2

Total Power 165.1 µW

Table 5.5

As expected it is 98% slower than the golden model design, however it requires
the 99.5% less area and dissipates 98% less power. Also the resource sharing’s
maximum frequency is 56% higher than the Golden model’s one.

In this case the result is obtained only after 5.26 µs.

5.1.6 Unfolded resource sharing n=5 with k=2

The first Unfolding case considered is the one with k = 2, which means that the
adding value is [8, 4, 0]. This value is fully representable in the n = 5 case, except
that there is a limiting value in the representation associated to the modulus 31.
Indeed, when the counted value is higher than 12, the adding value becomes 9
rather than 8. In Figure 5.6 is reported that 252 clock cycles are needed to evaluate
the result.
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Figure 5.6: Unfolded resource sharing n = 5 with k = 2 design simulation with
inputs A = 378 and B = 4779: the result is A < B.

As reported in Table 5.6, this architecture occupies an area which is 54% higher
than the Resource sharing design, dissipates the 25.5% more, but its maximum
frequency is 20.9% lower. However, it requires an area 98.8% lower and dissipates
97% less power than the Golden model design, while its maximum frequency is
44.3% higher than the Golden model design.

Unfolded resource sharing design’s results for n = 5 with k = 2
fMAX 150.1 MHz

Total Area 8406.3 µm2

Total Power 221.7 µW

Table 5.6

Finally this architecture needs 1.68 µs to generate an output, 68% lower than
the Resource sharing design but 95.7% higher than the Golden model architecture.

5.1.7 Unfolded resource sharing n=5 with k=3
When the unfolding level gets equal to 23 = 8, the counter’s adding RNS value
becomes [16, 8, 0]. This implies that the counter associated to the modulus 32
has to sum always 8, the modulus 31’s counter has to sum 16 to all the values
lower than 15, and 17 to all the higher ones. In Figure 5.7 is reported the Unfolded
resource sharing’ simulation in ModelSim in which the clock cycles needed to get
the output are equal to 128, in line to the expectation.

From the results in Table 5.7, it is possible to see that the higher unfolding level
has brought an higher area of 38% with respect of the Unfolding with k = 2, and
71.4% with respect of the Resource sharing design, but the area is reduced of 98%
with respect of the Golden model architecture. The power consumption is also
higher with respect of both the previous designs (20% with respect of the unfolding
level k = 2 and 40.5% with respect of the resource sharing design) and 96% lower
than the Golden model design. The maximum frequency is instead reduced of
16.3% with respect of the unfolding with k = 2 and of 33.8% with respect of the
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Figure 5.7: Unfolded resource sharing n = 5 with k = 3 design simulation with
inputs A = 378 and B = 4779: the result is A < B.

resource sharing one, but it is increased of 44.3% with respect of the Golden model
design.

Unfolded resource sharing design’s results for n = 5 with k = 3
fMAX 125.6 MHz

Total Area 13537.8 µm2

Total Power 277.7 µW

Table 5.7

To get the result are needed 1.02 µs which is a better result with respect of
both the other designs (39.3% with respect of the unfolding level k = 2 and 80%
with respect of the resource sharing design). However it takes 91.8% more than
the Golden model to generate the result.

5.1.8 Unfolded resource sharing n=5 with k=4

This Unfolding level is the limiting one for the n = 5 design. Indeed, for k = 5 the
counters are going to be more complicated to build. As happened in the design
for n = 3 with unfolding level k = 2, considering k = 4, the adding RNS value
becomes [32, 16, 0], so that the counter associated to the modulus 32 has not to be
modified, the modulus 31’s counter has to count +1, which is equal to the residue
of 32 with respect to the value 31. Naturally, this latter counter cannot count the
last two values, so it is resetted when it reaches the 30 value.

In this case, reported in Figure 5.8 the required clock cycles are 66, in line with
the expected result.

In Table 5.8 are reported the Unfolded resource sharing for n = 5 and k = 4
performances.
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Figure 5.8: Unfolded resource sharing n = 5 with k = 4 design simulation with
inputs A = 2549 and B = 567: the result is A > B.

Unfolded resource sharing design’s results for n = 5 with k = 4
fMAX 117.5 MHz

Total Area 26598.2 µm2

Total Power 430.3 µW

Table 5.8

This design is for sure the widest in terms of area since it requires 85%, 68% and
49% more than respectively the resource sharing design and both the unfolded ones
for k = 2 and k = 3. In terms of power it also dissipates more than the previous
architectures (61.6% than the resource sharing, 48.5% than the unfolded with k = 2
and 35.5% than the k = 3 unfolded). Its maximum frequency is instead reduced
than the previous designs respectively of 38% than the resource sharing, 21.7%
than the unfolded with k = 2, and 6.5% than the unfolded with k = 3. However,
the area and power consumption are still lower than the Golden model respectively
of 93% and 94.8%, while the maximum frequency is 28.8%.

To generate the result it requires 561.6 ns, which is highly reduced with respect
of all the previous architectures (89.3% than the resource sharing, 66.6% than
the unfolding with k = 2 and 44.9% for the unfolding with k = 3). This design
requires also 87% more time to generate the output with respect of the Golden
Model design.

5.1.9 Resource sharing n=8

In Figure 5.9 is reported the simulation result for the Resource sharing design
with n = 8. To generate the output it requires 65286 clock cycles, in line with the
expected results.
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Figure 5.9: Resource sharing design for n = 8 and inputs A = 2457 and
B = 489321: the result is A < B.

In Table 5.9 are reported the performances associated to this design.

Resource sharing design’s results for n = 8
fMAX 165.8 MHz

Total Area 5817.6 µm2

Total Power 211.9 µW

Table 5.9

The required time to generate the result is 393.67 µs.

5.1.10 Unfolded resource sharing n=8 with k=2
The first Unfolded level considered is 2k = 4 and the adding number in RNS is
[8, 4, 0] which is fully representable with this moduli set. The limiting value
applied to the modulus 255’s counter is 247: 8 is the adding number for all the
values lower than this threshold, while 9 is the one for the higher values. In Figure
5.10 is reported the simulation in ModelSim associated to this design. It takes
16325 clock cycles to generate the results.

Figure 5.10: Unfolded resource sharing n = 8 with k = 2 design simulation with
inputs A = 2457 and B = 489321: the result is A < B.

In Table 5.10 are reported the performances associated to the Unfolded resource
sharing design with n = 8 and k = 2. As expected, this design occupies more area
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and dissipates more power with respect to the resource sharing design (54% and
32% respectively), but its maximum frequency is decreased of about 29%.

Unfolded resource sharing design’s results n = 8 with k = 2
fMAX 138.7 MHz

Total Area 12670.9 µm2

Total Power 311.7 µW

Table 5.10

It takes 117.7 µs to generate the output, which is an improvement of the 70%
with respect of the resource sharing design.

5.1.11 Unfolded resource sharing n=8 with k=3

The design with unfolding level equal to 23 = 8 needs the counters to add the RNS
number [16, 8, 0]. In this case the threshold number associated to the modulus
255’s counter is 240: the counter adds 16 when the counting number is under the
threshold, but it adds 17 when the counting number is higher than 240. In Figure
5.11 it is possible to observe that to generate the output are needed 8164 clock
cycles.

Figure 5.11: Unfolded resource sharing n = 8 with k = 3 design simulation with
inputs A = 24 and B = 75032: the result is A < B.

In Table 5.11 are reported the performances of the Unfolding resource sharing
design with n = 8 and k = 3. As expected it dissipates 50.5% more power with
respect of the resource sharing design and the 27% more than the Unfolded level
with k = 2. It also requires the 74% more area with respect of the resource sharing
design and 43.4% more than the Unfolding level with k = 2. Although, it has a
maximum frequency reduced of 26.9% with respect of the resource sharing design
and of the 12.7% with respect of the unfolding level k = 2.
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Unfolded resource sharing design’s results n = 8 with k = 3
fMAX 121.1 MHz

Total Area 22387.7 µm2

Total Power 428.1 µW

Table 5.11

It needs 67.43 µs to generate the output, improving the required time of 82.9%
and 42.7% respectively for the resource sharing and the unfolding level k = 2.

5.1.12 Unfolded resource sharing n=8 with k=4
The Unfolded resource sharing with k = 4 uses counters that adds the RNS number
equal to [32, 16, 0]. Since the moduli set used is the n = 8 one, it is possible to
fully represent and add those numbers, even if the modulus 255’s counter has a
limiting threshold of 224 so that it is added 32 to all the counted numbers lower
than this value, but when the counted values are higher it is added 33. In Figure
5.12 it is reported that this comparator needs 4084 clock cycles to generate the
result.

Figure 5.12: Unfolded resource sharing n = 8 with k = 4 design simulation with
inputs A = 24 and B = 75032: the result is A < B.

In Table 5.12 are reported the design’s performances.

Unfolded resource sharing design’s results n = 8 with k = 4
fMAX 112.5 MHz

Total Area 45565.2 µm2

Total Power 676.1 µW

Table 5.12

As expected, its area and power consumption are higher than all the previous
analyzed designs: 87.2% more area and 68.7% more power dissipated with respect
of the resource sharing design, 72% more area and 53.9% more power dissipated
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with respect of the unfolding with k = 2 design and finally 50.8% more area and
36.6% more power dissipated with respect of the unfolding with k = 3 design. Its
maximum frequency is reduced of 32.2% with respect of the resource sharing design,
18.9% with respect of the unfolding with k = 2 design and 7.1% with respect of
the unfolding with k = 3 design.

However this is the design that takes less time to generate the result: 36.3 µs,
reduced of 90.7% with respect of the resource sharing design, 69.1% with respect
of the unfolding with k = 2 design and 46.2% with respect of the unfolding with
k = 3 design.

5.2 Comparison with existing methods
The designs’ results have been compared with respect of the actual comparison
circuits in RNS with moduli set [2n − 1, 2n, 2n + 1]. The analysis has been
performed with some selected articles that reports all the results in terms of area,
delay and power consumption of the proper VLSI designs synthesized. Moreover,
the proposed architectures results have been adapted in order to correctly handle
the comparison.

The chosen parameters also depends on the results reported in the selected
articles. Considering [20], the comparison has been conducted on the parameter
Area × Time, evaluated as the product between the total area and the time period,
and the total power consumption.

Besides, even if the proposed designs are synthesised on a 65 nm technology,
not all the actual comparators are synthesised using the same technology. This is
the reason why the values of delay and area are reconverted using respectively the
Equations (5.1) and (5.2), while the total power consumption is normalized with
respect of the technology as in Equation (5.3).

DELAYT ARGET = DELAY

SIZEF EAT URE

× SIZET ARGET (5.1)

AREAT ARGET = AREA

SIZE2
F EAT URE

× SIZE2
T ARGET (5.2)

POWERNORMALIZED = POWERT OT

V 2
DDT ARGET

× SIZET ARGET

SIZEF EAT URE × V 2
DDF EAT URE

(5.3)

After fixing the SIZET ARGET = 65 nm parameter, the SIZEF EAT URE depends
on the used technology: for each considered comparator’s implementation the
sythesised technology is reported in the last column of both Table 5.14 (for n = 8
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designs) and Table 5.15 (for n = 5 designs). To normalize the total power con-
sumption the VDD general values considered, which also depends on the synthesised
technology, are reported in Table 5.13.

SIZE [nm] VDD [V ]
65 1.1
90 1.3
130 1.5
180 1.8

Table 5.13

The VLSI designs compared with the proposed ones in Table 5.14 (considering
n = 8) are described in the following selected articles:

• [20]: This VLSI architecture performs the comparison in RNS using an
algorithm that evaluates the result of the subtraction between all the residues
and reconvert this latter result with the Mixed Radix approach. The design’
synthesis has been done using a 65 nm technology, however the only synthesised
results reported are the A × T product and the total dissipated power.

• [3]: This VLSI implementation is one of the comparison technique most
similiar to the PANC method. Indeed, this technique is based on partitioning
the range in subranges and then evaluate the comparison between every
subrange associated to the two lowest moduli in the moduli set. Its drawback
is associated on the representation of different partitioning functions that
can be aided thanks to the usage of the CRT. To achieve the conversion
with the CRT, it is necessary to speed up the addition operation, so this
paper presents the results of the performances of the comparator both using
a Regular Parallel Prefix, RPP , or a Totally Parallel Prefix, TPP , modular
adders. Summarizing, this algorithm uses the partial conversion in CRT to
evaluate the subranges associated to each modulus. This architecture has
been synthesised in a 130 nm technology and both delay and area are reported
together with the power consumption syntheses’ results. Even if after the
conversion in a 65 nm technology the area results are similar to the ones of
the proposed designs, the two article’s architectures, RPP and TPP achieve
a much lower delay with respect of our designs that is translated in a lower
A × T product. However the power consumption is much higher as reported
in Table 5.14.

• [17]: This VLSI architecture is the simplest since the evaluation of the compar-
ison result is achieved by subtracting the two operands and then converting
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the result to binary using the CRT reconversion method. This design is syn-
thesized in 90 nm, but the associated results in terms of power consumption
are not reported.

• [11]: This comparison method is based on the conversion of the two numbers
to be compared using a combination of the CRT and MRC conversion methods
and then it requires a binary comparison of the two values. The referring
article provides FPGA performance measures that cannot be fairly compared
with our results. Luckily, in [3] its ASIC realization has been synthesised
in 130 nm. Even if this architecture uses uses a TPP , Total Parallel Prefix,
adder structure that speed up the conversion, the power dissipated is still
higher with respect of our solutions.

• [18]: This VLSI architecture is subtraction-based: after the subtraction the
result is partially reconverted thanks to the CRT technique. This VLSI
architecture has been synthesized in 90 nm in [17], so the power consumption
results are not reported.

The comparison results reported in Table 5.14 are associated to the implemen-
tations with n = 8. Only the method in [17] and [18] have been implemented for
n = 5, whose results are reported in Table 5.15.

57



Results

n = 8

Architecture Comparison
method

A × T
[µm2 · µs]

Normalized
total power

consumption
[mW ]

Techn.

Resource sharing PANC 35 0.212 65 nm
Unfolding k = 2 PANC 91 0.312 65 nm
Unfolding k = 3 PANC 184 0.428 65 nm
Unfolding k = 4 PANC 405 0.676 65 nm

[20]

Subtracting
and analyzing
the signs then

converting
in MR

≈ 0.3 ≈ 15 65 nm

[3]RP P Partitioning via
CRT conversion

5 3.8 130 nm
[3]T P P 6.2 4.8 130 nm

[11]
CRT and

MRC
conversion

6 5.3 130 nm

[17]

Subtracting
and

converting
via CRT

≈ 2.3 N.A. 90 nm

[18]

Subtracting
and partially
converting
via CRT

≈ 3.3 N.A. 90 nm

Table 5.14
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n = 5

Architecture Comparison
method

A × T
[µm2 · µs]

Normalized
total power

consumption
[mW ]

Techn.

Golden model PANC 8.5 × 103 8.3 65 nm
Resource sharing PANC 20 0.165 65 nm
Unfolding k = 2 PANC 56 0.222 65 nm
Unfolding k = 3 PANC 107 0.277 65 nm
Unfolding k = 4 PANC 226 0.430 65 nm

[17]

Subtracting
and

converting
via CRT

≈ 1.2 N.A. 90 nm

[18]

Subtracting
and partially
converting
via CRT

≈ 2.4 N.A. 90 nm

Table 5.15

To better understand those results, in Tables 5.16 and 5.17 are reported the
starting values, the converted with the formulas in Equation (5.1) and (5.2) of both
the results respectively of delay and area. In this analysis [20] is not considered
since the separate results of area and delay are not reported.

Arch. T
[ns]

Conv
T [ns]

f
[MHz]

Conv
f [MHz]

Area
[µm2]

Conv
Area [µm2]

Resource Sharing 6.03 165.8 5817.6
Unfolded k=2 7.2 138.7 12670.9
Unfolded k=3 8.26 121.1 22387.7
Unfolded k=4 8.89 112.5 45565.2

[3]RP P 1.43 0.715 699 1398 27761 6940.25
[3]T P P 1.42 0.71 704 1408 35157 8789.25

[11] 1.44 0.720 694 1388 33486 8371.5
[17] 1.48 1.07 675 935 4200 2190.7
[18] 1.6 1.2 625 865 5500 2868.8

Table 5.16
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Arch. T
[ns]

Conv
T [ns]

f
[MHz]

Conv
f [MHz]

Area
[µm2]

Conv
Area
[µm2]

Golden Model 11.96 83.6 717799.3
Resource Sharing 6.03 165.8 5817.6

Unfolded k=2 7.2 138.7 12670.9
Unfolded k=3 8.26 121.1 22387.7
Unfolded k=4 8.89 112.5 45565.2

[17] 1.25 0.9 800 1111 2500 1304
[18] 1.55 1.1 645 909 4000 2086

Table 5.17

From both the Tables 5.16 and 5.17, it is possible to understand that the
proposed designs have a larger area and an higher period with respect of the RNS
comparison’s state of the art. This translates in an A × T product greater of two
order of magnitude, which is a main drawback of our designs.

However, considering the power consumption its highest contribute is the dy-
namic power evaluated as in Equation (5.4).

Pdyn = αCfV 2
DD (5.4)

where αC represents the effective commuting capacity evaluated as the product
of the capacitance C and the switching activity α, f is the frequency and VDD is
the supply voltage.

From this latter consideration it is possible to see that the low power consumption
results, exploited in both Tables 5.14 and 5.15, are related not only to the operational
frequency lower of one order of magnitude with respect of the RNS comparison’s
state of the art, but mostly to the reduced switching activity.

In the Resource sharing and Unfolding designs are indeed used counters that are
switched-on only when necessary in the total computation, optimizing specifically
the switching activity parameter.
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Chapter 6

Conclusion and future
implementations

All the RNS comparators created following the PANC method present a normalized
power consumption lower than the the other implementations. As expected, the
normalized power increases with n and with the unfolding level k, but reaches its
highest value considering the Golden model implementation because of the large
quantity of elements used.

However, the A × T values of our architecture are much higher than the ones
associated to the other implementations. In the possible future implementations
this drawback can be solved by speeding up the period either applying pipeline levels
both internal or external to the combinatorial devices to speed up the computation
or implementing the combinatorial elements, responsible for the slow clock cycle,
with existing faster ones exploited in RNS.

To obtain instead an higher throughput, it is possible to increase the unfolding
level k, conscious that the area will increase as well.

However, another option to be better exploited should be slightly modify the
algorithm by avoiding the indexes generation and their comparison, but using their
identification as flags so that the first one to be point out indicates that its input
is the lower; if both those flags are in the same moment asserted, then the output
of the comparison between the residues associated to the highest modulus is used.
This structure should be particularly efficient for the resource sharing and the
unfolded resource sharing structures, but should be better exploited for the golden
model one.

In conclusion, this implementation is significantly advantageous in RNS datapath
since all the structures can be reutilized. As exploited before, its performances can
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be still improved in different ways, however its power results allow this architecture
to be used in low-power applications, such as IoT.
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