
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Towards a tight and fast interaction of
data and control planes

Supervisors

Prof. Guido MARCHETTO

Prof. Alessio SACCO

Candidate

Daniele SARCINELLA

July, 2022

Acknowledgements

Il primo dei grazie va a mamma Dolores e papà Massimo. Senza il loro supporto,
che non è mai mancato dal primo respiro che ho prodotto nel 1995, non sarei
neanche qui a scrivere queste righe. Non si può descrivere l’amore e l’ammirazione
che provo per voi. Grazie.

Il secondo è per mia sorella Roberta, che mi è da sempre amica e compagna
di giochi. La mia prima insegnante quando avevo ancora 4 anni, a tratti mamma e
a periodi alterni anche coinquilina. Sei la migliore sorella che si possa desiderare.
Grazie.

Il terzo è per gli amici, tutti quelli che in un modo o in un altro mi hanno
portato fin qui. Siete stati la mia benzina, mi avete tirato le orecchie quando
necessario, ci siamo sostenuti a vicenda, ci siamo sempre voluti bene e non siete
mai mancati. Questa cosa non la dimenticherò mai. Grazie.

Il quarto è tale solo per ordine temporale, ma non per importanza. E’ per Chiara,
una persona meravigliosa che ho avuto la fortuna di conoscere negli ultimi sei mesi,
ma che mi sembra di conoscere da sempre. Il tuo sostegno, il tuo sorriso, il tuo
affetto sono state e saranno ancora (mi dispiace per te) la cosa più preziosa per me
e li conserverò per sempre nel mio cuore. Grazie.

L’ultimo lo dedico a tutte le altre persone che mi hanno voluto bene e che nel corso
della mia vita hanno sempre creduto in me: nonne e nonni, zie e zii. Quelli che
ci sono ancora e quelli che non ci sono più, spero di avervi resi orgogliosi di me,
anche da lassù. Vi voglio bene e ve ne vorrò sempre. Grazie.

Daniele

ii

Table of Contents

1 Introduction 1
1.1 Data plane and Control plane . 1

1.1.1 Data plane . 1
1.1.2 Control plane . 2

1.2 Traditional networks and related issues 3
1.3 Newer issues driven by virtualization 4
1.4 Path toward Software Defined Networks 5
1.5 Software Defined Networks . 6

1.5.1 Architecture . 6

2 Background 9
2.1 P4 . 9

2.1.1 Architecture . 10
2.1.2 Differences with OpenFlow 12

2.2 Deep Reinforcement Learning . 13
2.2.1 Reinforcement Learning overview 13
2.2.2 Reinforcement Learning glossary 14
2.2.3 Bellman equation of optimality 15
2.2.4 Tabular Q-Learning . 16
2.2.5 Deep Q-Network . 17

3 System design 21
3.1 Routing problem . 21
3.2 Mathematical Model . 22
3.3 DRL formulation . 23

3.3.1 Key elements of DRL formulation 23
3.3.2 Reward function . 24
3.3.3 Features encoding and neural network 26
3.3.4 Pseudo Algorithm during training 28
3.3.5 Pseudo Algorithm execution time 29

iv

4 Implementation 31
4.1 Architectural overview . 31
4.2 P4 Application . 32

4.2.1 Ingress processing . 33
4.2.2 Egress processing . 36

4.3 ML Controller . 37
4.3.1 Externs implementation . 38
4.3.2 ML Controller architectural overview 38
4.3.3 Concurrent Circular Buffer of addresses 40
4.3.4 PyModule . 41

4.4 DRL Module . 42
4.4.1 OpenAI Baselines . 42
4.4.2 DQN implementation . 43

4.5 Network Environment . 45
4.5.1 Reset function . 46
4.5.2 Step function . 47
4.5.3 Issues of N routers on the same machine 48

5 Related work 50
5.1 Q-Routing . 50

5.1.1 Key Features . 50
5.1.2 Differences with ML Router 51

5.2 Backpressure . 51
5.2.1 Key Features . 51
5.2.2 Differences with ML Router 52

5.3 DQRC . 52
5.3.1 Key Features . 52
5.3.2 Differences with ML Router 53

6 Evaluation 54
6.1 Test scripts . 54
6.2 The Static Router . 56
6.3 ML Router comparison with Static Router 56

6.3.1 Retransmissions . 57
6.3.2 Throughput . 59
6.3.3 Latency . 61

7 Conclusion 63

v

A Hyper-parameters tuning 65
A.1 Hidden layers . 65
A.2 Lambda 1 . 66
A.3 Lambda 2 . 67
A.4 Lambda 3 . 68
A.5 Lambda 4 . 69
A.6 Action History length . 70
A.7 Future Destinations length . 71
A.8 Learning rate . 72
A.9 Total timesteps . 73
A.10 Exploration fraction . 74
A.11 Learning starts . 75
A.12 Buffer size . 76
A.13 Discount factor . 77

B Updates periodicity tuning 78
B.1 Periodicity equal to 1000 . 78
B.2 Periodicity equal to 5000 . 81
B.3 Periodicity equal to 10000 . 83
B.4 Periodicity equal to 20000 . 85
B.5 Periodicity equal to 50000 . 87

List of Figures 90

Bibliography 93

vi

Abstract

With the birth of Software Defined Networking (SDN) a new impulse was given to
networks innovation, making it possible to decouple data plane and control plane.
Several technologies were born with the aim of speeding up the implementation of
new features, exclusive task of hardware manufacturers for years.

One of them is P4, a solution capable of enabling the general-purpose programming
paradigm in the networking world, thus telling the devices what exactly to do with
incoming packets. While this language allows to easily instruct network devices
how to handle packets (data plane), the network rules are decided by an external
process (control plane), which is often centralized.

With this thesis, we propose a new concept of SDN control plane that breaks
the main pillar of having one logical centralized one, providing each P4-enabled
switch with its own decision capabilities. In particular, we consider routing rules
to be decided individually by means of a Reinforcement Learning (RL) model.

This learning technique is a trial and error basing on feedbacks of the environment
to the chosen actions. Each network device has its (limited) view on the topol-
ogy and can adapt the routing strategy to the current network conditions (RL
state) to perform congestion-aware decisions. Since the such an RL state can be
high-dimensional, we apply a Deep Reinforcement Learning approach, based on
the approach of a Neural Network (NN) for the process.

We empower the P4 language to interact with this external program running
on the same device so that changes may be fast and in parallel with all the other
devices of the network.

The results obtained on Mininet emulator validate that when the network congestion
starts growing, our solution helps keep the throughput at a high level.

Chapter 1

Introduction

The way we intend networks has changed greatly during the last 20 years, thanks
to new solutions that have given impulse to their evolution. Before introducing the
significant change to our networking idea, we must clarify some simple concepts.

1.1 Data plane and Control plane
The distinction between data plane and control plane will be very important
during the whole reading of this thesis. Not by chance, they both figure in the title
of this work, so it’s worth explaining what do they actually mean and how they
come to be so important.

1.1.1 Data plane
Data plane is the piece of software that has to switch (or route) packets according
to a given policy, which is not under its control. It’s in charge of manipulating
network packets as fast as possible. Packets handled by data plane usually travel
through the device. It’s meant to perform elementary operations at a high
frequency and thus it needs very few lines of code (LOCs), but a great processing
power.

It’s usually implemented in hardware, not general-purpose CPUs as they are
few programmable and plenty of useless features. They indeed are not designed
for these execution patterns. Dedicated memories such as BCAMs, TCAMs or
dedicated processing units such as ASICs, NPU and FPGA are the most widely
known solutions.

Independently from the physical architecture adopted, the packet is processed

1

Introduction

by the network device and can follow two possible paths:

• fast path: all the packets that need minimal processing will follow this path.
Almost all packets belonging to the data plane will travel through fast path.
It’s optimized for performances, can also be implemented in software with a
highly optimized code.

• slow path: all the packets that generate exceptions in the fast path will
follow the slow path along with packets of the control plane. They may need
a more complex and deep processing and the slow path can accomplish this
task.

Figure 1.1: Slow path and Fast path [1]

A typical example that can make it clearer is the load balancer. To route
packets properly, it must perform a lookup on the session table, which is a table
too huge to be contained into an L3 cache. To reduce overheads due to memory
accesses, it’s a good practice to place common entries in the fast path and all the
others in the slow path, after a proper traffic pattern analysis.

1.1.2 Control plane
Control plane controls the way data plane must behave. For example, it’s in
charge of configuring routing tables that network devices use to guarantee packets
routing.

Packets handled by the control plane usually originate and terminate on a device,

2

Introduction

it’s really unlikely that they’re going to traverse it. It performs much more complex
operations at a low frequency (more LOCs needed, but also less processing power).
It’s always implemented in software with general-purpose CPUs and standard
memories (DRAM).

1.2 Traditional networks and related issues

In the traditional networking model, control and data plane are combined in a
network node. Control plane guides the paths used by the data plane, exchanging
control packets to configure it. Once the policy of the forwarding has been defined,
the only way to change it is via changes to the configuration of the devices. This is
a first limitation network administrators have faced since from the very beginning
of the internet as we know it today [2].

Computer networks are difficult to be managed also because of a variegate hardware
with different roles and from different vendors. The control software run by these
devices is usually proprietary and the configuration interfaces are very different
from one vendor to another one and many times even between different products
from the same vendor.

Last, but not least, this methodology of development of network devices, pro-
tocols and applications as a huge proprietary packet where each component is
strictly dependent one to the others comes to be closed to innovation. It indeed
operates in a totally different way with respect of general-purpose computing, where
each vendor is specialized in only one of these components production, enabling
competitiveness, dynamism and innovation. All these components have clearly
separated interfaces with different players interacting to give the end user
always better products.

Figure 1.2: Network computing vs general-purpose [3]

3

Introduction

1.3 Newer issues driven by virtualization
It’s worth mentioning some new needs in networks administration led by virtual-
ization. Virtualization can be defined as a flexible way to share hardware resources
between different operating systems. It allows administrators to fully exploit the
hardware at their disposal consolidating many application on one single physical
machine and to enable flexibility as they can be migrated from one machine to
another one.

Server virtualization has become really important when dealing with big data
applications and to implement cloud computing infrastructures, but creates some
problem with traditional network architectures. The flexibility coming from the
adoption of virtualization techniques makes the administration of network configu-
rations such as VLANs harder, as the control logic for each switch is co-located
with the switching logic.

Another big change with respect to traditional networks is that traffic is no
longer only "vertical", i.e. server to client with a very specific pattern in which
clients send small requests and servers reply with huge amount of data. Data
centers have started to increase their "horizontal" traffic due to virtual machines
migration and the rise of microservices programming pattern which foresees
smaller applications interacting with each other to provide a service to the external
users. "These server-toserver flows change in location and intensity over time,
demanding a flexible approach to managing network resources." [4]

Figure 1.3: client-server pattern vs cloud pattern

4

Introduction

1.4 Path toward Software Defined Networks

The big challenge for networking researchers was to make networks more pro-
grammable. Enabling programmability on the networks could have boosted
innovation in their management and new applications development.

In an article written by Feamster and others [5], the path that led to the birth of
Software Defined Networks (SDN) is divided into three sub phases. It’s worth
noticing that the problems cited in the previous section (1.2) arose yet at the mid of
the 90s. The internet was taking over and to follow up on the development of their
new protocols, researchers had to submit their ideas to the Internet Engineering
Task Force (IETF) to standardize them. The process was slow and very often
frustrating.

The response of many researchers was to try some innovative idea to make net-
working computing closer to general-purpose computing, trying to follow the
path that led from mainframes to the general-purpose market as we know it today.

Active networking (phase 1) has been the first try made on this side, to envision
a programming interface that exposed resources on individual nodes. In particular,
among the two programming models pursuit at the time, it’s interesting to focus
on programmable switch/router model, that aimed at establishing the code
to be executed by the device out-of-band [6, 7].

The motivations that gave impetus to active networking are very similar to those
that led to SDNs [8, 9]: timescales necessary to deploy new services, more control
needed on management, will to have an experimentation-friendly platform.

The concept of separating control plane and data plane will be one of
the pillars of SDNs and appeared to be necessary even before their birth. In the
early 2000s (phase 2), well known problems from the previous decade became tan-
gible. Reliability, quality of service (QoS) and predictability was something
that IP Networks as they are couldn’t provide in any way.

Further, the backbones of the Internet were growing up in dimensions and became
hard to be managed. The speed of their links grew fast and manifacturers
started implementing data plane in hardware, thus separating it physically from
the control plane (still software based).

These new trends led to innovations like open interfaces between control and
data plane and logically centralized control of the network, thus opening up the

5

Introduction

way to Software Defined Networks (phase 3).

1.5 Software Defined Networks
Software Defined Networks was born with the aim of:

• influencing packets paths on the network, by means of a new strategy
which is different from those previously adopted (such as MPLS)

• decouple hardware, OS and applications in the world of networking, like
in the general-purpose one to give market a new vivacity

The main pillars SDNs base their existance on are three:

• elementar physical devices

• centralized and logically unique control plane

• context-based forwarding

We say logically unique because physically we can implement a controller in
each device to enable robustness, scalability and less computational time,
actually contradicting someway the elementar physical devices pillar. Of course
consistency in the information among all the phyisical control planes must be
assured.

1.5.1 Architecture
The main actor of an SDN Architecture is, of course, the controller. It’s like the
Operating System of the network, it’s in charge of decoupling the applications from
the underlying hardware.

6

Introduction

Figure 1.4: SDN Network

The controller starts from the south bound interface, endowed with protocols
to talk with heterogeneus network devices and ends up in the north bound
interface, which exposes APIs (REST, RESTCONF, NETCONF, ...) to the
management applications that can exploit exposed services. From this interface,
application can declare high-level rules that will be imposed at a lower level on
the physical devices.

In the middle, there’s a service abstraction layer which hides the complexity of
the different protocols on the south bound interface and makes interaction with
them transparent to the actual implementation.

The heterogeneus network devices are meant to be simple packet for-
warding hardware that can be summarized as a lookup table based on the so
called context forwarding. The match can be done on IP addresses (router like),
MAC addresses (switch like) or a combination of several parameters involving L4
headers too.

If none of the table entries matches the packet, it can be sent to the controller
which will perform a runtime decision which is going to be surely expansive
in terms of computational time, especially in the case the controller is physically
unique in the network.

Of course it’s a technology which is not faults-tolerant and thus it’s better to
adopt it in static contexts such as data centers and virtual networks internal
to the server, used to regulate the coexistence of different VMs.

7

Introduction

Nowadays, SDNs lost those pillars they were built on and became a paradigm that
lets network administrators handle in a dynamic and automatic way the control of
a huge number of network devices, by means of third-party applications, high-level
languages and APIs. As mentioned before, also devices often are not "stupid" as
they were meant to be at the beginning due to robustness, scalability and ability
to react autonomously to small-scale events need. As an obvious consequence,
control plane is often only logically unique.

The only real pillar that has resisted over time is the programmability of the
control plane. All started from there, after all.

8

Chapter 2

Background

The two main concepts that must be introduced before getting into the details
of the work made in the context of this thesis are P4 and Deep Reinforce-
ment Learning. The opportunities coming from the adoption of P4 and Deep
Reinforcement Learning techniques are at the very base of the proposed solution.

2.1 P4

P4 stands for Programming Protocol independent Packet Processor. It
was born with the aim of decoupling the networking applications from the under-
lying hardware to enable a general-purpose programming paradigm in the
networking field, i.e., given a packet, tell the fully programmable device (switchs,
NICs, routers, filters, ...) what to do, at a higher level.

The three pillars P4 is based on are:

• Reconfigurability: the controller must be able to redefine the packet parsing
and processing in the field

• Protocol independence: protocols can be inferred by the programmer as
the parsing in under his control

• Target independence: programs are written at such a level of abstraction
that they can be run on different devices, just like in general-purpose pro-
gramming. The compiler will be in charge of translating these instructions at
a lower level, depending on the specific target device [10]

9

Background

Figure 2.1: P4 is a language to configure switches. [10]

2.1.1 Architecture
P4-16 introduces the concept of an architecture, i.e., an API () to program a target
(network device) [11]. The architecture basically defines which blocks compose the
chain the incoming packet will pass through. The programmer can implement its
own logic in each of these blocks, just paying attention to respect the given interface.

Each architecture defines the metadata it supports, including both standard and
intrinsic ones and a list of "externs", i.e., blackbox functions whose interface
is known [11]. They will be very relevant with respect to the solution we have
implemented. They are used mostly to implement complex operations that are
not P4-native as P4 was thought to offer a very simple “instruction-set” to the
programmer.

Finally, it exposes the interface the programmer has to take into account when
coding a networking application that must fit that architecture. Below we can see
an extract from the v1model architecture defined in the p4lang repository [12].

package V1Switch<H, M>(Parser<H, M> p,
VerifyChecksum<H, M> vr,
Ingress<H, M> ig,
Egress<H, M> eg,
ComputeChecksum<H, M> ck,
Deparser<H> dep
);

10

Background

Figure 2.2: The abstract forwarding model. [10]

As we can see, the V1model architecture defines 5 blocks in its chain, with
different capabilities and duties. Leaving aside checksum related operations, let’s
give a glance to the 3 key blocks of each architecture.

The first block in the chain is the parser. It handles first the incoming packet
and uses a state machine to map packets into headers and metadata. "The model
makes no assumptions about the meaning of protocol headers, only that the parsed
representation defines a collection of fields on which matching and actions operate"
[10].

Figure 2.3: How a parser works. [11]

11

Background

The extracted header fields will then be forwarded to the match+action tables.
These tables are divided into ingress and egress, which both can modify the
extracted fields. Plus, the ingress block has to determine the outcoming queue the
packet must be appended to (i.e., it has to choose the out port and so the next hop).

The additional information that can be carried between stages is called metadata,
which is treated identically to packet header fields extracted by the parser. For
example, some metadata are ingress port, egress port, queuing metadata (that we
have used to save queuing time, useful for our solution) and more [10, 13, 11].

Trivially, in a common router implementation, ingress processing will perform
a longest prefix match lookup to select the right entry from the routing table,
adjust extracted headers fields (MAC source, MAC destination of Ethernet header
and Time-To-Live of IP header) and put the packet in the correct queue for egress
processing.

Ingress and egress are also called control blocks and are made up of:

• tables: can match on one or multiple keys in different ways. Match types are
specified in the P4 core library and in the architectures. They’re populated
by the control plane [11]

• actions: "are code fragments that describe how packet header fields and
metadata are manipulated" [13], same meaning of functions in a common
programming language

• control flow: "expresses an imperative program that describes packet-processing
on a target" [13], it’s like C control flow, but deprived of loops

Control flow enables interaction with tables, validation and computation of check-
sums, packet cloning or recirculating and interaction with the control plane.

2.1.2 Differences with OpenFlow
OpenFlow and P4 pursued different paths toward networks programmability. In
particular, OpenFlow was born with the main aim of separating the control plane
from the data plane, offering a common interface to different vendors devices, most
of which implemented with fixed-functions ASIC circuits. OpenFlow adopts the
traditional bottom-up approach: an OpenFlow controller adapts itself to the
switch features, exposed in the feature reply message which comes, eventually, right
after a feature request sent by the controller.

P4 tried instead to revert the typical bottom-up approach adopted when dealing

12

Background

with data plane functions. "Rather than have the switch tell us the limited set of
things it can do, P4 gives us a way to tell the switch what it should do, and how it
should process packets" [14]. The P4 Language Consortium itself explains the
reason of this new approach in its website’s homepage: "Before P4, vendors had
total control over the functionality supported in the network. And since networking
silicon determined much of the possible behavior, silicon vendors controlled the
rollout of new features (e.g., VXLAN), and rollouts took years. P4 turns the
traditional model on its head. Application developers and network engineers can
now use P4 to implement specific behavior in the network, and changes can be made
in minutes instead of years" [15].

According to the Open Networking Foundation, there’s no reason to think that P4
will make OpenFlow obsolete, as there are many fixed-functions switches that
need OpenFlow as P4 can’t be used in that case. They can rather work together
when dealing with hybrid networks which may contain both fully programmable
and fixed-functions switches. In such a scenario, OpenFlow would become just a
possible implementation of a P4 program, so much so that an implementation
of OpenFlow in P4 has been already provided [14, 16].

2.2 Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) is a field of machine learning which combines
the usage of Reinforcement Learning and Deep Learning. For our purposes,
it’s sufficient to say that Deep Learning is a methodology based on the usage
of Artifical Neural Networks with Representation Learning. We’re going to
focus more on what Reinforcement Learning is and how it’s integrated with Deep
Learning techniques considering the chosen algorithm (Deep Q-Network).

2.2.1 Reinforcement Learning overview
"Reinforcement Learning (RL) is a subfield of machine learning which addresses
the problem of automatic learning of optimal decisions over time. This is a gen-
eral and common problem studied in many scientific and engineering fields" [17].

The key idea behind RL is to replicate something like the Pavlovian condi-
tioning so that an agent (its meaning will be explained in a moment) can learn
what to do or not to do in a certain situation [18]. It will just learn from its
experience, thanks to a good reward received for a good behaviour. Just like
dogs learn which one is the best thing to do, given a certain situation (a command,
a gesture from their owners), thanks to a food prize that rewards the desired
behavior.

13

Background

Figure 2.4: RL entities and their communication. [17]

2.2.2 Reinforcement Learning glossary
To understand what’s behind RL functioning, it’s crucial to give some definitions
about its key features.

Agent

It’s in charge of interacting with an environment performing some actions to get a
reward in change. In a videogame the agent could be the character moving across
the map to collect moneys trying to maximize his score.

Action

Mentioned right above, the action is picked from the set of all the possible actions.
Performing an action means to move from a state to another one (moving left,
moving right, jumping, crouching, ...).

State

"Concrete and immediate situation in which the agent finds itself" [19], it stores
information about what’s relevant about the environment surrounding the agent or
about the agent itself (think about health value of a character in a videogame).

Environment

"The environment is everything outside of an agent. In the most general sense, it’s
the rest of the universe" [17]. It interacts with the agent taking actions as inputs
and returning a new state and a reward as output.

14

Background

Reward

Is a feedback given by the environment in response to an action performed in a
given state. "Reward is local, meaning, it reflects the success of the agent’s recent
activity, not all the successes achieved by the agent so far" [17].

Policy

It basically maps a state to the action that is supposed to give the highest reward.
It can be seen as a strategy.

Q-Value

Q-Value function maps a reward to any combination of state and action, under a
certain policy π.

Qπ(s, a) = r (2.1)

2.2.3 Bellman equation of optimality
To talk about Q-Learning, one of the most widely known RL algorithms, we need
to introduce first the concept of Bellman equation of optimality.

Figure 2.5: An abstract environment with N states reachable from the initial
state. [17]

We assume that the agent observes state s0 and, doing a certain move (action),
it will transit to a state s1 with 100% of probability. The value given to a certain
action, starting from this observation would be:

V0(a = ai) = ri + Vi (2.2)
So the best possible action we can choose will be the one that maximizes this

value:

15

Background

V0 = maxa∈1..N(ra + γVa)

Va in the previous equation stands for the value of the next state. It has
been discounted by factor γ to give more importance to the immediate reward
coming from action i.

Figure 2.6: An example of the transition from the state in a stochastic case. [17]

As we can see in the picture right above, it’s very unlikely that an action,
whatever it is, always leads to the same state. It will rather give us different
scenarios with different probabilities and values. We’ll then better refer to V0 as
the maximum expected value of V0(ai) :

V0 = maxa∈1..N E[(ra + γVa)]

2.2.4 Tabular Q-Learning
Q-Learning is an algorithm that has been proposed by Cristopher Watkins in 1989
[20]. It introduced the concept of value of an action. This function is called Q
and couples a state-action tuple to a value:

Q(s, a) = Vs(a) =⇒ Q(s, a) = rs,a + γVs′ (2.3)

So we can say that Vs is equal to the maximum, over all the possible actions,
Q-value for that state. We can so write that:

16

Background

Q(s, a) = rs,a + γVs′ =⇒ Q(s, a) = rs,a + γ maxa′∈A Q(s′, a′)

"Q values are much more convenient in practice, as for the agent it’s much simpler
to make decisions about actions based on Q than based on V. In the case of Q, to
choose the action based on the state, the agent just needs to calculate Q for all
available actions, using the current state and choose the action with the largest
value of Q. To do the same using values of states, the agent needs to know not only
values, but also probabilities for transitions. In practice, we rarely know them in
advance, so the agent needs to estimate transition probabilities for every action and
state pair."[17]

In the Q-Learning algorithm we don’t iterate over all the possible states to
find all of their Q-Values, but we rather use states coming from interaction with
the environment.

Algorithm 1 Tabular Q-Learning algorithm
Q(s, a)← emptyTable
s← initialState
convergence← False
while convergence == False do

a = getAction(policy)
(r, s′) = makeAction(s, a) ▷ r is the reward, s’ the new observed state after

action a
Q(s, a) = (1− α)Q(s, a) + α(r + γ maxa∈A Q(s′, a′)
convergence = checkConvergence()

end while

What we can notice is that, updating Q(s,a) value, we don’t replace it with the
new value as the training may become unstable. We use a "blending" technique to
update it with approximations, that means averaging between old and new values
using learning rate α [17].

It’s demonstrated that this algorithm will meet its convergence condition, as
long as there are finite number of states.

2.2.5 Deep Q-Network
There are many scenarios in which state space is so big that it can’t be considered
finite, thus making the adoption of Q-Learning unreliable. What Volodymyr
Mnih and others [21] presented in 2013 was a variation to Q-Learning algorithm

17

Background

that integrates it with Deep Learning.

The proposed solution foresees the usage of a non-linear representation to map the
state-action tuple into a continuous value, what in machine learning is called a
regression problem, i.e. "the task of approximating a mapping function (f) from
input variables (X) to a continuous output variable (y)." [22]

Exploration vs Exploitation dilemma

In this way, we don’t need to store an almost infinite number of Q-values, but
we can use a Deep Neural Network (in most of cases) to approximate them.
The approximated Q-function can be the source of our moves so that, rather than
picking random actions with low chances of succeeding, we pick the one with the
highest expected outcome. The drawback of such an approach is that the agent
could stuck into local optimum without exploring enough.

To overcome this possible issue, we must alternate exploration (attempting
to discover new features about the world by selecting a sub-optimal action) and
exploitation (using what we already know about the world to get the best results
we know of). [23]

One of the possible methods that we can adopt is known as epsilon-greedy
method. According to the hyperparameter ϵ ∈ [0,1], there’s ϵ probability of
choosing a random action and (1− ϵ) probability of picking the best one found
so far. In particular, the value of epsilon can be annealed over a certain number
of timesteps so that the exploration can assume a variable importance over the
whole duration of the training.

Replay Buffer

Pretending that we’re solving a regression problem, as mentioned before, means
that we should satisfy two main requirements:

1. training data must be independent

2. training data must be identically distributed

The issue is that our samples are neither independent nor identically dis-
tributed. Saving previous experiences into a buffer and sampling random data
from it instead of using last experiences is the solution to this problem and the
buffer is known as replay buffer. It "allows us to train on more-or-less independent
data, but data will still be fresh enough to train on samples generated by our recent
policy." [17]

18

Background

Target Network

Another element that must be introduced before introducing the final form of
DQN alforithm is the concept of Target Network âQ. At each step we update
Q(s,a) using the value of Q(s’,a’) (see Algorithm 1), but they may be very close to
each other and the neural network may found difficult to distinguish between s and s’.

This scenario can cause instabilities in the algorithm so that Q(s,a) updates
will influence Q(s’,a’) and vice-versa. ”To make training more stable, there is a
trick, called target network, when we keep a copy of our network and use it for the
Q(s’, a’) value in the Bellman equation. This network is synchronized with our
main network only periodically, for example, once in N steps (where N is usually
quite a large hyperparameter, such as 1k or 10k training iterations).” [17]

19

Background

Final Algorithm

Algorithm 2 DQN
Q(s, a), âQ(s, a)← random
replayBuf ← empty
ϵ← 1
s← initialState
nsteps← 0
updateFreq ← N
convergence← False
while convergence == False do

a = getAction(ϵ)
(r, s′) = makeAction(s, a)
minibatch = replayBuf.sample()
i← 0
while i /= minibatch.size() do

y ← r + γmaxa′∈A
âQs′,a′

loss← (Qs,a − y)2

update Q(s, a) using SDG algorithm
i← i + 1

end while
if (nsteps % updateFreq) == 0 thenâQ = Q
end if
nsteps← nsteps + 1
Q(s, a) = (1− α)Q(s, a) + α(r + γ maxa∈A Q(s′, a′)
convergence = checkConvergence()

end while

20

Chapter 3

System design

In this chapter we’re going to introduce the problem of routing, the target
network adopted for testing purposes and all the elements related to the proposed
solution. This section won’t contain any implementation detail, as they will be
stressed later in the next chapter.

3.1 Routing problem

The problem of routing belongs to the family of optimization problems, which
aim at minimizing or maximizing a certain function, according to the goal of the
target problem.

To find a clear example, we can go back in 1958, when Richard Bellman wrote in
the abstract of a very famous article: "Given a set of cities, with every two linked
by a road, and the times required to traverse these roads, we wish to determine the
path from one given city to another given city which minimizes the travel time.
The times are not directly proportional to the distances due to varying quality of
roads and varying quantities of traffic" [24].

The most straightforward algorithm that can be used to approach routing problem
would be a shortest path algorithm (e.g, Bellman-Ford [24], Dijkstra [25]). It
picks the route with the lowest weight that brings from starting point A to the end
point B. However this solution doesn’t suit a real scenario like the one cited by
Bellman. "Quantity of traffic" in particular is something that we can’t prevent, but
we must take into account adopting some countermeasures.

21

System design

3.2 Mathematical Model
In the case of interest of this thesis, we don’t have cities and roads. We rather
have a network, which is modeled as a directed graph G(N, E) where N and E
are respectively the set of nodes and the set of edges linking the nodes.

Figure 3.1: Adopted topology

Below we can see the topology adopted for the testing purposes. There are two
layers of P4 Routers called respectively "S" for the "backbone layer" and "L" for
how concerns the "leaf layer".

Each router belonging to the backbone layer is connected with all those that
belong to the leaf layer and vice-versa. Routers belonging to the same layer can’t
communicate with each other directly, but need to cross the layers boundary twice.
Further, leaf nodes are connected directly to an host "H" numbered accordingly to
the numeration of the L router.

The mission here is to deliver packets from one host to another, trying to
minimize the latency and maximize the throughput over the network basing
on some metrics that will be shown in the next section. Packets originating from one
host reach the incoming queue of the leaf node directly connected to it. According
to a FIFO (First In First Out) criterion, packets are then processed by the router
and placed in one of the outgoing queues.

It’s pretty clear that the longer the queues are (both incoming and outgoing),
the longer will take the whole routing process for a specific packet. We will keep

22

System design

this in mind for the design of the DRL solution.

Once out of the outgoing queue, the packet will reach another router on the
network and so on, until it reach an endpoint (i.e., an host) of the network. At
that point, the headers are stripped out and the actual payload of the packet can
be processed by its recipient.

3.3 DRL formulation

As I’ve said in the introduction chapter, the aim of the provided solution is to
break one of the pillars coming from the definition of SDNs: the logically unique
controller. It means that there’s not a "supervisor" external to the network which
has a global view over the network and inject routes consequently (like an Openflow
controller [26]).

The main idea is to treat each router as an agent, trying to accomplish its
mission according to the metrics used in the reward function, in an environment
where other agents are present trying to reach the same goal. This scenario is
known as Multi Agent Reinforcement Learning problem (MARL) [27].

Routers are supposed to learn by trial and error how to route incoming pack-
ets and their decision will affect other agents decision too, in a very dynamic
context where every little detail can change completely the behavior of the agents.

3.3.1 Key elements of DRL formulation

Let’s introduce now the key elements of the solution, according to the glossary
defined in the section 2.2.2.

Agent

The agent is each router in the topology. We have thus 8 agents, each one
of them in charge of interacting with the environment to find the best output
port for the packet that is being processed. The agent is a P4 switch (with
routing functionalities though) that possibly communicates with the environment
(according to the phase, will be explained later) to know the action that must be
done.

23

System design

Action

The action is a discrete number that can range from 1 to N, where N is the
number of ports used by the switch. If the switch is asking the environments
which action it has to perform, it’s actually asking it for the outgoing queue to put
the packet into.

State

The state S of the switch is composed by three main actors:

• Current Destination: the IP address of the current packet’s destination, so
basically the host that is meant to be the recipient for that packet

• Future Destinations: a list of the N ipv4 addresses belonging to the N next
packets that have to be routed right after the packet being processed at that
time

• Action History: a list of the last M actions adopted for the current destina-
tion

3.3.2 Reward function
The reward function is evaluated each time a given action for a certain state
has been performed and its value will be used to update the Q-Value for that
state-action couple. It takes into account two main factor:

• queuing time: the time the packet has spent in the output queue (chosen by
the action)

• distance: of the chosen next hop from the final destination

While it’s quite obvious that we want to minimize the time spent by the packets
into the outgoing queues, distance of the next hop from the final destination is
the only information that the agent knows about the global topology. It’s not
so important in the context of the chosen topology as it’s small, but it may be
necessary for bigger networks.

Distance is a fundamental metric for backbone routers to route packets in the
right direction, for how possible. It isn’t something that falls into a static rout-
ing case, since queuing time has the same importance of distance in the choice made.

And how do leaf nodes understand if they’re routing packets properly or not? We
actually didn’t mention the other two actors of the reward function, which are two
indicators:

24

System design

• Delivered indicator: is set to 1 if the packet has been routed to the final
recipient, to 0 otherwise

• Dropped indicator: is set to 1 if the packet has been routed to an host
which is not the final recipient (dropped), 0 otherwise

Their value is always set to 0 in case of backbone routers, as they’re not directly
connected to any host. The final form of the reward function is then:



R = rw1 + rw2 + rw3 + rw4
rw1 = λ1 · δ1
rw2 = −λ2 · q
rw3 = −λ3 · δ3
rw4 = −λ4 · δ4 · d

⇒ R = λ1 · δ1 − λ2 · q − λ3 · δ3 − λ4 · δ4 · d (3.1)

In the previous equation:

• λ1, λ2, λ3, λ4 are hyper-parameters needed to give each piece of R the right
weight, basing on the quality of the outcome of the training (i.e. tuning [28])

• δ1 is the delivered indicator

• δ3 is the dropped indicator

• δ4 is the backbone indicator. It goes to 1 only when the router is a backbone
one. Distance is indeed useless for leaf nodes as each of the backbone routers
they’re connected to is at the same distance from any destination

• d is the distance like it’s been defined at the beginning of the section

• q is the queuing time

As we can see from the equation, the only positive member is rw1, which is
valid only when the packet has been correctly delivered. It means that λ1 is the
maximum value for R and can only be assumed for a leaf router. The other
members of the equation rw2, rw3, rw4 are all negative and the agent will try to
learn how to make them as close as possible to 0.

In the case we’re dealing with backbone routers indeed, the first component of
R, rw1, is always zero (as backbone routers can’t deliver/drop packets) just like
the third component, rw3. In this scenario the agent will try to minimize the value
of rw2 and rw4 and the maximum value of R will be zero.

25

System design

Trying to summarize what said in the lines above, here there’s a table which
will make it more clear:

leaf router backbone router

rw1
worst case: 0
best case: λ1

always 0

rw2
worst case: −λ2 ·maxqtime
best case: −λ2 ·minqtime

worst case: −λ2 ·maxqtime
best case: −λ2 ·minqtime

rw3
worst case: −λ3
best case: 0 always 0

rw4 always 0 worst case: −λ2 ·maxdistance
best case: −λ2 ·mindistance

3.3.3 Features encoding and neural network
As we have modeled the problem as a MARL problem with DRL techinques, we
expect that we’re using a neural network to approximate Q values for a state-action
couple.

Lists length

First of all, the number of incoming features, i.e. the ones that represent the
state space, has to be determined. We said that the three components of the
state representation are current destination, future destinations and action
history for the current destination.

The length of future destination and action history lists has been object of study
to identify the value that gives the best outcome in terms of mean reward (in
the Appendix A at page 65 you can find data about testing phase). According
to collected data, they’ve been both set to 2 so that we’ll have the two next
destinations to be reached and the last 2 decision taken for that destination.

What’s actually almost not exact in what it’s been said before is that we don’t
really give the neural network only the last 2 decision for the current destination.
We rather provide each time the last two decision about all the possible desti-
nations, otherwise those terms would change radically their meaning and it would
be harder for the neural network to understand it.

Each feature of the state must maintain its meaning in every case, it can’t
represent two different things at different time (now it’s the action history for
destination d1, now for destination d2 and so on).

26

System design

Lists encoding

Both action history’s and future destinations items are categorical features
[29]. It means that if the future destination is H1, then it’s not H2, not H3, not
H4. A good encoding practice for categorical features is the so known One-Hot-
Encoding.

"The one-of-K or one-hot-encoding scheme uses dummy variables to encode cate-
gorical features" [30]. It means that if we have 4 categories an element can belong
to, we will use 4 different boolean indicators (the dummy variables) and only
one of them is set to true.

The actual encoding for those dummy variables is a 0, 1 encoding and, given
that the two lists contain 2 elements each and that the maximum number of out
ports in our topology is 5, while the number of possible destination is 4, we have
all the elements to know the number of features incoming the neural network:

action history features = ah_f = hosts ·maxports · ah_length = 4 · 5 · 2 = 40
future destinations features = fd_f = hosts · fdlength = 4 · 2 = 8
current destination features = cd_f = hosts = 4
features = ah_f + fd_f + cd_f = 40 + 8 + 4 = 52

Neural Network

After different trials, the best structure for the neural network, given the test
results, has been an architecture with 3 hidden layers of respectively 128, 64 and
32 neurons, like in the picture below.

27

System design

Figure 3.2: Neural network architecture

3.3.4 Pseudo Algorithm during training
Now that all the elements of the DRL modeling are known we have all what we
need to introduce the pseudo algorithm used to train the agents.

The idea is that for each incoming packet the P4 code will have to save the
destination address to populate its future destinations lists. Then, once it will
be time for routing it, P4 will always ask the environment the port it has to be
routed to, sending the information we spoke about previously in this section.

The DRL algorithm needs then to know what’s the reward for that given
action performed. While distance and possible deliver/drop actions are something
that it can know by itself, queuing time is something that must be commu-
nicated by the router, again. For the moment, let’s just say that the router
notifies about the queuing time so that the reward can be stored. The actual
implementation will be explained in the next chapter.

This is the procedure that will be repeated N times, where N is the number
of total timesteps stated at the beginning of the training. This is another hyper-
parameter that has been object of tuning and it’s been seen that 20000 timesteps
are perfect for training agents.

28

System design

This means that after having handled 20000 packets, routers are supposed to
have learnt how to route them in each possible scenario they can face in the given
network. Of course the hyper-parameters tuning process is strictly related to the
adopted topology and their optimal values may vary in case we’re going to change
it.

Algorithm 3 Pseudo algorithm (training)
for agent in agents do

futuredst← empty
actionhist← empty
timesteps← 20000
for i in timesteps do

p = readpacket()
futuredsts.add(p.destination)
outport = askport(p.destination, futuredsts, action-

hist[p.destination])
d = readdistance(outport, p.destination)
q = readqtime()
backbone = isBackbone()
delivered = isDelivered()
dropped = isDropped()
reward = makereward(d, q, backbone, delivered, dropped)
actionhist[p.destination].add(outport)

end for
end for

3.3.5 Pseudo Algorithm execution time
Once the training is over we have a model that will let routers do their job just
basing on the state they find themselves into, in terms of current destination, future
destinations and action history.

After the training we must change something in the behaviour we’ve seen in
the lines above. We can’t think of asking the DRL algorithm for the action to do
at each packet received. The resulting overhead would be too high and the
solution couldn’t ever be at least as performant as a traditional routing algorithm.

The resulting tradeoff is to adopt a static routing guided by the DRL al-
gorithm by means of periodical updates. The aim is to let the router go at its
full speed for great part of its execution time. This is another parameter that had

29

System design

to be properly tuned in order to maximize performances and adaptability
coming from the DRL guide too. The best results has been obtained updating the
single route toward a specific destination each 10000 packets directed to that host.

Of course it leads to a sub-optimal policy, the best scenario would be to have
packets routed every time by the DRL algorithm at zero costs. But we know that
it’s not feasible in a real environment, also because each router has its own DRL
underlying logic and very likely its hardware is very simple and not performances
oriented as it’s born to perform quite easy tasks (from the computational point of
view).

Algorithm 4 Pseudo algorithm (execution time)
for agent in agents do

futuredst← empty
actionhist← empty
timesteps← 20000
counters← [0, 0, 0, 0]
while EXECUTING do

p = readpacket()
counters[p.destination]++
futuredsts.add(p.destination)
if counters[p.destination] % 10000 == 0 then

outport = askport(p.destination, futuredsts, action-
hist[p.destination])

d = readdistance(outport, p.destination)
q = readqtime()
backbone = isBackbone()
delivered = isDelivered()
dropped = isDropped()
reward = makereward(d, q, backbone, delivered,

dropped)
actionhist[p.destination].add(outport)
Update route for p.destination

else
Use routing table

end if
end while

end for

30

Chapter 4

Implementation

The implementation of the system has been the most tricky part of the solution.
The target is to build a system capable of making a P4 application and a DRL
algorithm communicate according to our needs to cooperate in making routing
more performant.

4.1 Architectural overview

Figure 4.1: Overview of the ML Router

The architectural model is that each router is composed of three main modules:

• P4 application: logic of the network device

• ML Controller: exposes high-level methods accessible by the P4 application
and data structures needed to communicate with the DRL module

• DRL Module: runs the learning algorithm to route packets

31

Implementation

The most challenging implementation is the communication between these
three modules:

• P4-ML Controller: we’ve exploited the existence of externs to declare
high-level classes capable of acting as a middleware between P4 application
and the DRL module

• ML Controller-DRL: these two modules, written in different languages,
take advantage of sockets abstraction to establish a communication channel
to exchange relevant data on, by means of a clear communication protocol

4.2 P4 Application

The P4 application is the core of the solution, as it represents the logic of the
network device. It says what the device must do with incoming packets, according
to the pipeline described in the Chapter 2 (page 9). It embodies the higher level
logic, since it takes advantage of abstractions whose implementation can be found
in the ML Controller.

Figure 4.2: P4 Pipeline

As mentioned in Chapter 2, P4 exposes some functional blocks that can be
programmed to obtain the desired processing logic. Let’s go into details about
ingress and egress, which are the most relevant ones. Let’s just consider that
parsers enable Ethernet, IP, UDP, TCP and ICMP headers, while we won’t care
about checksums verification and update for the purposes of the research. All the
code listed by now can be found in my ML-Routing repository [31].

32

Implementation

4.2.1 Ingress processing

The set of actions to be performed in the processing of a packet is wrapped into
the apply control block.

apply {
...
pushAddress();
if (update_entry == 1) {

choosePort();
if (fw == 1) {

getNeighbor(outP);
if (fw == 1) {

ipv4_forward_rl(dstMac, outP);
}
if (fw == 0) {

mark_to_drop();
}

}
if (fw == 0) {

mark_to_drop();
}

}
if (update_entry == 0 && hdr.ipv4.isValid()) {

ipv4_lpm.apply();
}

}

Listing 4.1: ML-routing/MLRouter/MLRouter.p4 [31]

Here basically you can find the actual implementation of huge part of the algo-
rithm 4 at page 30. The first action you must pay attention to is pushAddress().

action pushAddress() {
ml_controller.pushAddr (

hdr.ethernet.dstAddr,
hdr.ipv4.dstAddr,
meta.identifier,
meta.valid_bool,
update_entry

);
}

Listing 4.2: ML-routing/MLRouter/MLRouter.p4 [31]

33

Implementation

It’s needed to add the current destination address into the future destina-
tions data structure. This data structure is not under the direct control of the
P4 application, but can be accessed by means of the interface offered by the ML
Controller.

The parameters given to the method exposed by the controller are:
• Ethernet destination address: basically it’s one of the router’s MAC

addresses. We use it to identify the current router since the implementation
has been done running all the devices on the same physical machine. This
means we needed a way to understand which device is running the code. In
an implementation where all the routers are actually different physical devices
this parameter is actually useless.

• IPv4 address: it’s the address that must be pushed in the future destinations
queue

• meta.identifier: it’s a metadata (thus can be propagated through the
whole pipeline, enabling information sharing among different blocks) that will
be set equal to the index of the pushed address into the queue. Will be useful
in the egress block to pop the right entry

• meta.validbool: it’s another metadata that will be set equal to one only
if the address is really valid

• update_entry: it’s a local variable which is set to 1 only if the counter for
the given destination has reached the established update frequency. In that
case a call to the choosePort() action is done, otherwise the static table is
looked up.

Let’s dive into the choosePort() action:
action choosePort() {

ml_controller.getOutputPort (
hdr.ethernet.dstAddr,
meta.identifier,
meta.valid_bool,
outP,
fw,
meta.id

);
}

Listing 4.3: ML-routing/MLRouter/MLRouter.p4 [31]

This is the action responsible for getting an output port for the given packet
asking the interaction with DRL module. Once again the action wraps an API
exposed by the ML Controller. It takes as arguments:

34

Implementation

• Etherned destination address: to identify the current router

• meta.identifier: to know which one of the addresses included in the future
destinations queue is the current address (the same address may be included
very likely more than once)

• meta.valid_bool: only if it’s been set previously to 1 the method actually
does the request

• outP: local variable that will contain the value of the output port to route
the packet on

• fw: local variable that is set to 0 if, for some reason, the request had a bad
response. In that case the packet is dropped

• meta.id: metadata needed to keep track of the identifier of the reward
associated to the choice made (the mechanism behind the action-reward
functioning will be explained later)

The last remarkable action that will be shown is getNeighbor(outP):
action getNeighbor(bit<9> port) {

dstMac = hdr.ethernet.dstAddr;
ml_controller.getNeighborMac(dstMac, port, fw);

}

Listing 4.4: ML-routing/MLRouter/MLRouter.p4 [31]

It wraps the ML Controller getNeighborMac(...) API which needs as
parameters:

• Ethernet destination address: will be used first to read the current
destination address to identify the router and then to write the MAC address
of the interface connected to the given port

• port: port whose MAC of the connected interface must be known

• fw: local variable set to 0 if the destination address couldn’t be resolved

35

Implementation

4.2.2 Egress processing
Let’s take a look at the egress processing and the two relevant operations that
characterize its apply block.
apply {

...
popAddress();
sendReward();

}

Listing 4.5: ML-routing/MLRouter.p4 [31]

The first of the two defined actions is popAddress() and is the dual function of
pushAddress() seen in the ingress processing block. Once the packet is going to
exit the outgoing queue, its address is popped out from the future destinations
queue. Here there is its implementation:
action popAddress () {

ml_controller.popAddr (
hdr.ethernet.srcAddr,
meta.identifier,
meta.valid_bool

);
}

Listing 4.6: ML-routing/MLRouter/MLRouter.p4 [31]

The wrapped API exposed by ML Controller is popAddr(...) and takes three
arguments:

• Ethernet destination address: to identify the current router

• meta.identifier: is the metadata defined in the previous block needed
to pop the right entry in the future destinations queue

• meta.valid_bool: is the metadata that states if the operations must be
done or not, basing on the previous outcomes

The next important action is sendReward(...), another wrapper for a method
of ML Controller, which is needed to communicate to the underlying learning
algorithm the value of the queuing time, i.e. the time spent by the packet in
the outgoing queue. It’s an important parameter to determine the outcome of
the reward for the action chosen by choosePort().

36

Implementation

action sendReward() {
ml_controller.sendReward (

meta.valid_bool,
standard_metadata.deq_timedelta,
meta.id

);
}

Listing 4.7: ML-routing/MLRouter/MLRouter.p4 [31]

As we can notice, it gets three parameters which are:

• meta.valid_bool: used with the same aim of the previous action

• standard_metadata.deq_timedelta: is a metadata proper of the chosen
target (BMV2) and represents the queuing time, time elapsed from when the
packet has entered the outgoing queue to the moment it enters the egress
processing

• meta.id: is the user defined metadata in charge of carrying information
about the correct id for the current reward. The importance of reward ID will
be more clear in the next section

4.3 ML Controller

The target chosen for the development of the current solution is BMV2. It is a
P4 software switch written in C++11, not meant to be production-grade. It’s
rather born for development, debugging and testing purposes [32].

The architecture is simple_switch and it comes in pair with v1model, which
is its counterpart on the compiler side. It’s very similar to the abstract switch
model described in the P4 specification [13] (see image at page 32).

The biggest issue of making a Python script, such as a Reinforcement Learning
algorithm, run and communicate with a P4 program is the simplicity of the last one.
P4 was born to perform simple operations (as data plane operations are meant to
be) in software with a high degree of programmability. They are still simple
operations though and communicating on a socket with a Python application is
not part of them.

37

Implementation

4.3.1 Externs implementation
It’s been exploited the externs feature declared by the P4 Consortium, to add
some functionalities to the simple switch architecture to implement the model
described in the previous chapter. In this way complex operations at any level
can be written in a high-level language such as C++, enabling a full spectre of
possibilities.

For how externs are part of the specification of the language, their implemen-
tation is not trivial, since support for the generation of their JSON lines, at the
very base of P4 programs functioning, is not provided. BMV2 indeed, takes as
input a JSON file generated by the P4 compiler and interprets it.

After some searches, we found a repository by Jeferson Santiago da Silva [33]
which extended BMV2 to enable the generation of JSON code related to the
externs defined by the user. The drawback is we had to adopt a previous
version of the target architecture, with some newer features missing and a lower
computational power.

Some of the lines needed to implement an extern will be shown in the context of
ML Controller in the next subsection, but a complete guide can be found in the
related repository [31].

4.3.2 ML Controller architectural overview
ML Controller is a C++ class implemented extending the ExternType class.
It’s meant to be a unique instance in the device, provided that we’re using
different physical devices for each router. But what happens in reality (in the
context of this research) is that all the routers are emulated onto the same machine.

Let’s think for a moment that we are facing the ideal scenario in which we are
running only one logical instance of simple switch. I said logical because, as we’ve
seen in the P4 program section, we use ML Controller both in ingress processing
and in egress processing.

Instances of an extern, as local variables, can’t "travel" between blocks so the
only way to use ML Controller in both control blocks is to declare it twice. The
obvious implication is that each data structure that must be accessed by the two
control blocks must be implemented as a singleton [34] from the C++ side.

38

Implementation

Figure 4.3: Ideal scenario

The adoption of singleton design pattern implies that the instance for that data
structure will be shared among all the instances of the holding class, which is in
our case ML Controller. But, let’s get back to reality, we are not running just
one logical instance of it on different machines. We are running 16 instances of
ML Controller on the same machine and they should share data structures in pair
(two for each router).

So, keeping in mind that the ideal solution is to have singletons for those data
structures, we are rather using static maps which pair routers with their data
structure representing a certain resource to access. And here there’s the why we
need the MAC address of the current node in each method exposed by the class
to access the right resource.

Figure 4.4: Real scenario: 2 nodes represented on the same machine

39

Implementation

4.3.3 Concurrent Circular Buffer of addresses
This is the first remarkable data structure accessible by means of a static un-
ordered map. Thanks to the MACd of the incoming packet the correct instance
of this queue is picked and the IP address given is added to the structure.

Figure 4.5: Concurrent circular buffer of addresses

It’s implemented like a circular buffer whose methods are protected from
concurrent accesses by means of a mutex that is acquired at the beginning of any
read/write operation.

Each item stored is defined by the class Address. The Address class defines two
properties:

• the IP address of the destination

• a validity bit needed to disable elements rather than popping them out,
when the pop operation is performed. This let us preserve the order of the
entries while guaranteeing a fixed positioning needed to access them from the
ingress and the egress blocks

This class will be demanded of storing the future destinations at the time each
packet is processed. Every time a new packet comes into the MyIngress block of
simple_switch router, a push of its address is called and the buffer (virtual) size
increases. Of course the element will be pushed at the first free spot after the
last valid element. Once it reaches the MyEgress block, it’s popped out.

40

Implementation

4.3.4 PyModule
PyModule is an abstraction layer which offer methods to establish, close and use
the wrapped socket connection.

The main method exposed by the class is getPort(...) which is responsible for
the communication with the DRL module and takes as arguments:

• current destination

• concurrent circular buffer

• last queuing time value

int getPort (uint32_t address, uint32_t qTime, ConcurrentCBuffer& c);

Listing 4.8: ML-routing/bmv2/targets/simple_switch/pymodule.h [31]

While current destination and future destinations are needed to obtain the output
port from the learning algorithm, it’s most interesting the concept of last qtime.
That value represents the queuing time due to the choice made in the previous
request on the socket. The way this mechanism work will be clearer in the next
section, when the environment for the learning algorithm will be presented.

On the same socket the Python module in charge of implementing the learn-
ing algorithm will answer with an integer representing the chosen port to route
the packet on.

Figure 4.6: Different layers of abstractions in the get port request

41

Implementation

4.4 DRL Module
The Deep Reinforcement Learning module is the one responsible for the imple-
mentation of the designed DRL model (see section 3.3 at page 23).

Previously we have seen it as a blackbox which takes an output port request as
input and returns an integer number (i.e., the port) as an output. Now we can
finally see how it’s implemented.

4.4.1 OpenAI Baselines
The core of the DRL module is OpenAI Baselines, "a set of high-quality imple-
mentations of reinforcement learning algorithms" as it’s presented in the associated
GitHub repository [35].

Baselines was born with the aim of providing the community a set of good
implementations for complex algorithms so that apparent RL advances are never
due to bad software or tuning. Giving the community a shared platform that
can be used to develop new solutions makes the results more reliable.

As said in design section, the chosen algorithm is DQN whose implementa-
tion has been released by OpenAI in 2017. Baselines provides an easy interface
to interact with itself. It’s sufficient to set a bunch of parameters to customize
the test, such as the chosen algorithm, the target environment and all the
hyper-parameters that characterize the algorithm.

The first landing point when calling baselines with custom parameters is the
run.py module. In particular let’s give a look at the train function.

def train(args, extra_args):
env_type, env_id = get_env_type(args)
...
learn = get_learn_function(args.alg)
...
env = build_env(args)
...
model = learn(

env=env,
seed=seed,
total_timesteps=total_timesteps,
**alg_kwargs

)

42

Implementation

return model, env

Listing 4.9: baselines/baselines/run.py [35]

What we can notice is that the train function extracts the given parameters to
specialize the algorithm with the right implementations of the declared methods.

The learn function is obtained invoking the get_learn_function with the
given algorithm as a parameter. This means the function will retrieve the learn
implementation from the module relative to the chosen algorithm. The environ-
ment is built basing on the name, but if we want to provide a custom environment
implementation there are some steps to do that we will see in a moment.

4.4.2 DQN implementation
Now we can dive into the implementation of learn that will be called by the
train function when the algorithm is set equal to deepq.

def learn(...):
...
observation_space = env.observation_space
...

for t in range(total_timesteps):
var = int(cli.get("share_place"))
if var == 1:

break
...
Take action and update exploration to the newest value
kwargs = {}
if not param_noise:

update_eps = exploration.value(t)
update_param_noise_threshold = 0.

else:
update_eps = 0.
...

action = act(np.array(obs)[None], update_eps=update_eps, **
kwargs)[0]

env_action = action
reset = False
new_obs, rew, done, _ = env.step(env_action)
Store transition in the replay buffer.
replay_buffer.add(obs, action, rew, new_obs, float(done))
obs = new_obs
episode_rewards[-1] += rew
...

43

Implementation

if t > learning_starts and t % train_freq == 0:
Minimize the error in Bellman’s equation on a batch

sampled from replay buffer.
...

if t > learning_starts and t % target_network_update_freq == 0:
Update target network periodically.
update_target()

...
return act

Listing 4.10: baselines/baselines/deepq/deepq.py [35]

Let’s try to understand a little bit the key actions that we can see in this code.

var = int(cli.get("share_place"))
if var == 1:

break

These lines have been added to coordinate the training of all the routers (agents).
It’s been used Redis [36] to share a variable that’s set by the first agent which
terminates its training so that all the other routers can end as well. The difference
in the timesteps walked by each agent was negligible though.

action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]

Here, the action to be given the environment is extracted according to the given
policy and the value of ϵ which regulates the probability of picking a random
action rather than the best one found so far.

new_obs, rew, done, _ = env.step(env_action)

This is the core of the way the algorithm interacts with the environment. The
algorithm calls a step on the given environment, which returns a set of parameters:

• new_obs: the state after the action has been done

• rew: value of the reward for the action performed

• done: flag that is true if the environment has reached a termination state

44

Implementation

replay_buffer.add(obs, action, rew, new_obs, float(done))

Here you can see the usage of the Replay Buffer, one of the remarkable additions
made to the algorithm to overcome the issue of pretending to be solving a regression
problem (section 2.2.5 at page 18).

update_target()

The last point of interest is to see the usage of the update_target() function.
This practice has been presented previously in section 2.2.5 to decouple Q(s, a)
from Q(s′, a′).

4.5 Network Environment
The network environment, short net_env, is the environment implemented to
interact with the ML Controller.

Figure 4.7: Overview of the interaction of Baselines with the custom environment

We built the environment on top of an OpenAI Gym environment, which
proposes an easy interface to create them [37]. The two main methods that it must
implement (besides init of course) are:

• reset: is called at the beginning of the algorithm to receive the first obser-
vations, i.e. the state the agent will start moving from

45

Implementation

• step: will be called N times, according to the total_timesteps parameter
set when calling baselines

Figure 4.8: Basic functioning of the Net Env

4.5.1 Reset function
The idea is that reset is going to listen on socket, initialized by the __init__
funtcion, for the first time. As soon as the first request for an output port arrives,
it updates the current state with the fields extracted from the request and returns
the observed state, without doing anything more.

def reset (self):
listen on socket
if not self.resetvar:

try:
data = self.conn.recv(512)
if not data:

return
as msg arrives store fields in state, drop reward
pkt = parse_req(data)
self.state.setDsts(pkt.getDsts())

except Exception:
self.conn.close()
self.s.close()

return self.state.makeNPArray()

Listing 4.11: ML-routing/rl/net-env/net_env/envs/net_env.py [31]

46

Implementation

Let’s just clarify a couple of things about variables and the structures they belong
to:

• pkt is an instance of Packet class, which stores future destinations (with
the current one) and last queuing time (in this case it’s meaningless) in two
structured fields, populated by parse_req function

• pkt.getDsts() returns an instance of FutureDestinations class, which
wraps the list of the future destinations and the current one

It’s worth mentioning the last function makeNPArray() since it’s responsible of
the encoding of the state. It performs the One-Hot-Encoding for the future
destinations, the current destination and the action history, returning an array
which can be handled by baselines.

4.5.2 Step function
The step function will take as input the next output port to be sent on the
socket. It basically:

• gets the action from deepq

• sends back the action on the socket

• listen for a new request on the socket

• extracts the queuing time for the action communicated right before and
updates the state with the newer values

• returns the reward evaluated thanks to the queuing time too and the new
state observed

Let’s take a look at the code now:

def step (self, action):
action = action + 1 # because action goes from 0 to N-1, while ports
are counted from 1 to N
info = {}
action contains the # of the port the packet must be forwarded to
ret = action

store action in action history
addAction(self.state.getCurDst(), action)

send action back on socket
sendBack = struct.pack(’I’, ret)

47

Implementation

self.conn.sendall(sendBack)

...
here distance has been evaluated, dropped and delivered indicators
have been set
...

listen on socket
as msg arrives store fields in state(t + 1) and reward(t)

try:
data = self.conn.recv(512)
if not data:

print("no data")
return self.state.makeNPArray(), self.pkt.getReward(), True,

info
self.pkt = parse_req(data)
self.state.setDsts(self.pkt.getDsts())

except Exception as e:
print("Exception occured:", e)
self.conn.close()
self.s.close()

done = False
isBackbone = "s" in self.id
qtime = self.pkt.getReward()
rw1, rw2, rw3, rw4, rw = makeRw2(distance, qtime, dropped, delivered,
isBackbone)
...
return self.state.makeNPArray(), rw, done, info

Listing 4.12: ML-routing/rl/net-env/net_env/envs/net_env.py [31]

4.5.3 Issues of N routers on the same machine
Of course the problems issued for ML Controller’s data structures are also faced in
this case. The code couldn’t be specialized on each machine and there
was the need to identify the router running it since we need it for evaluating
the neighbor in the context of distance from the target node computation and to
set the proper number of output ports.

This means that 8 different environments have been created, each of them
with a different port number (for socket communications) and a different id field
to be set as class property by the __init__() method of net_env.py.

48

Implementation

register(id = "net-v1", entry_point = "net_env.envs:NetEnv", kwargs = {’
nports’ : 4, "id":"s1", "port": 1401})

register(id = "net-v2", entry_point = "net_env.envs:NetEnv", kwargs = {’
nports’ : 4, "id":"s2", "port": 1402})

register(id = "net-v3", entry_point = "net_env.envs:NetEnv", kwargs = {’
nports’ : 4, "id":"s3", "port": 1403})

register(id = "net-v4", entry_point = "net_env.envs:NetEnv", kwargs = {’
nports’ : 4, "id":"s4", "port": 1404})

register(id = "net-v5", entry_point = "net_env.envs:NetEnv", kwargs = {’
nports’ : 5, "id":"l1", "port": 1411})

register(id = "net-v6", entry_point = "net_env.envs:NetEnv", kwargs = {’
nports’ : 5, "id":"l2", "port": 1412})

register(id = "net-v7", entry_point = "net_env.envs:NetEnv", kwargs = {’
nports’ : 5, "id":"l3", "port": 1413})

register(id = "net-v8", entry_point = "net_env.envs:NetEnv", kwargs = {’
nports’ : 5, "id":"l4", "port": 1414})

Listing 4.13: ML-routing/rl/net-env/net_env/__init__.py [31]

A guide to the installation of custom environments can be found in the associated
repository [31].

49

Chapter 5

Related work

This chapter should have been part of the evaluation chapter, in order to compare
the given solution to other similar existing works. The fact we need to reduce
the impact of ML Controller to obtain surely better performances than a static
implementation means the solution is not ready for being compared with them.

We will briefly introduce three algorithms which are proved to be better than
an OSPF implementation, which are

• Q-Routing

• Backpressure

• DQRC

5.1 Q-Routing
Since the official article [38] which explains the algorithm is only available under
payment, we don’t have access to the detailed features of the algorithm. Anyway
we’ve found another document where the key features of the algorithm are presented
[39].

5.1.1 Key Features
Q-Routing is a routing algorithm which works thank to a Reinforcement
Learning module running in each node, implementing a Tabular Q-Learning
algorithm (explained at page 16).

The metric that its reward function is based on is total transmission time,
for how it only uses information which are local into the nodes. The two big
aims of the algorithm are:

50

Related work

• to minimize number of hops

• to avoid congestions

They also tried to implement a neural network to move it from the RL field to
the DRL one, but the results have been ineffective.

5.1.2 Differences with ML Router
As we don’t know anything about the implementation details, what’s sure is that
the learning algorithm adopted is different. Q-Routing uses a tabular implementa-
tion, while we’re exploiting the deep adaptation of the algorithm.

The will of avoiding congestions is in common among the two solutions. We
manage to reduce the queuing time of packets using it as a metric for the reward
functions, but we don’t have information about how Q-Routing does it or how it
tries to minimize the number of hops just basing on local information.

5.2 Backpressure
On Backpressure we definitely have more documentation to get a little bit deeper
into its features.

5.2.1 Key Features
The original Backpressure algorithm was developed by Tassiulas and Ephremides
[40]. The algorithm consists of a selection stage of the max-weight link and a
differential backlog routing stage.

Data is meant to reach the network in precise discrete timeslots. A data
which is directed toward node i will be called commodity i data and will be
stored according to its commodity, so that Qj(i, t) is the amount of commodity i
in node j at time t, i.e. the queue backlog and can be measured in number of
packets, bits to be transferred.

Now, at each timeslot t, the Backpressure controller observes S(t) a func-
tion which represents the state of the network, capturing properties of the
network on slot t and

• selects the optimal commodity for each link

• determines the transmission rate to use, choosing it from a matrix

51

Related work

• determines the amount of chosen commodity to transfer in the timeslot

The optimal commodity is determined basing on the state of queues for each
destination in the current node A and the adjacent node B. The best commodity
for destination X is the commodity that maximizes QA(X, t)−QB(X, t), meaning
that we want to have an high amount of data for that destination in the source
node and a small amount of data for that destination in adjacent node.

Figure 5.1: Example where green commodity is the best one

5.2.2 Differences with ML Router
The algorithm is completely different from the proposed one as it isn’t built on
RL techniques, but takes advantage of congestion gradients. It’s proven that
Backpressure performs better than Q-Routing in every scenario.

5.3 DQRC
This is the design which provides the best performances over all the related
works presented. This is also the algorithm which looks more similar to ML
Router.

5.3.1 Key Features
DQRC [41] is a DRL-based solution which implements a DQN algorithm. It’s
multiagent and each node concurs in building the optimal distributed policy.

52

Related work

Each node, given an incoming packet, collects some information which are

• local: current destination, future destinations and action history

• shared: queue lengths collected from adjacent nodes

These features are encoded to be the input of a neural network of 3-layers (128
neurons each), plus an LSTM layer, to maintain an internal state and aggregate
observations over time.

It’s been demonstrated that DQRC is a better solution than both Q-Routing
and Backpressure.

5.3.2 Differences with ML Router
The protocols are very similar, in the design of the solution the meaningful
differences are:

• the architecture of the neural network

• the presence of shared information in DQRC

• the presence of distances in ML Router

The main goal of ML Router was to improve the efficiency of the algorithm
thanks to the absence of any shared information, replacing them with distances
knowledge. Of course they have to be set fixed a priori, which opens the discussion
about the adaptability to changes. Anyway we know that this is a solution that
suits fixed architectures such as data centers which are meant to be quite fixed
in their structure.

Eliminating the information about minimum length neighbor was an interesting
experiment aiming at evaluating the capability of the different agents to adapt to a
context which is influenced by other agents. It’s like the communication between
agents of DQRC is mediated by the environment, which changes accordingly to
each agent’s decisions.

Another comparison that we could have made is about the implementation
details, but we don’t have information about DQRC implementation and about
the devices it’s been tested on.

53

Chapter 6

Evaluation

In this chapter we’re going to show some plots about the performances given by
the adoption of the designed solution with respect to a static implementation,
i.e. a router which uses static routes.

The testbed foresees:

• links of 100Mbps

• the topology introduced at page 22

6.1 Test scripts
Tests have been performed using the topology shown in Fig. ?? sending data from
H1 to H2 by means of iperf3 commands. iPerf3 is used for active measurements of
the maximum achievable bandwidth on IP networks, supporting tuning of various
parameters related to timing, buffers and protocols (TCP, UDP, SCTP with IPv4
and IPv6). For each test it reports the bandwidth, loss, and other parameters[42].

The two scenarios that have been created are:

• a "no load" scenario: it means that no one is transmitting on the network
but H1 to H2

• a "heavy load" scenario: it means that each host is sending data toward
all the other hosts

No Load scenario

The "no load" scenario is achieved running one single couple of commands in the
network. The first one is the one which starts the server on H2:

54

Evaluation

iperf3 -s -p 5567 -J > outputfile.txt

The used options are:

• -s which means it’s being used as a server

• -p 5567 to listen on port 5567

• -J to enable JSON output format which provides more details needed for
our tests

The other command is the one which enables H1 to send data toward H2:

iperf3 -c 10.6.2.2 -p 5567 -b 100M -t 60

The used options are:

• -c which means it’s being used as a client

• -p 5567 to send on port 5567

• -b 100M that sends the bandwidth to 100Mbps

• -t 60 which means the client will send data for 60 seconds

Heavy Load scenario

In the other scenario, the command given by H1 doesn’t change, while what
changes is:

• each host runs a server instance on three different ports at the same time,
to enable connections from all the other 3 hosts

• each host, but H1, runs a list of iperf3 client commands toward random
destinations (fixed between all the testcases we will introduce later), possibly
sleeping for no more than 3 seconds with a low probability

What we would expect to see is that, in case the network is issuing huge traffic
loads, the ML Router will provide better performances than a static router,
despite the overhead of updating routes basing on baselines and the usage of
extern functions.

55

Evaluation

6.2 The Static Router
The static router is implemented in P4 in a standard manner. It means that it
has a longest prefix match table, which is populated with static optimal routes:

• each host "H" sends packets toward any destination on the upper router, the
only one attached

• the leaf routers sends packets toward any destination on the upper router (L1
to S1, L2 to S2, ...)

• the backbone routers sends packets to the leaf router that connects the
network the packet is directed to (10.6.2.0/24 toward L2, 10.7.3.0/24 toward
L3, ...)

The key factor which will make the DRL solution better or worse than a static
one, will be the updates periodicity, i.e. how many packets must be processed
before asking the ML Controller a new route for that destination.

6.3 ML Router comparison with Static Router
We better will show only how the throughput, latency and retransmissions
values change tuning the periodicity. In appendix B at page 78 you can see
the performances of the two implementation (throughput and latency) compared
second by second, for each frequency of update adopted.

Further frequencies have been tested during the work, lower and higher ones.
They got worse results than the lower peaks found so far and for this reason
those frequencies have not been included neither in this chapter nor in the related
appendix.

56

Evaluation

6.3.1 Retransmissions
Let’s start seeing how the rentransmissions change tuning the periodicity, with
respect to the fixed value given by the static implementation.

No load scenario

Figure 6.1: Retramsissions with no load

As we can see, the "no load scenario" remarkably changes between the two imple-
mentations, as the static router retransmits a huge number of times. The test
has been performed several times to validate this result and it never changes by
more than 100 retransmissions.

Periodicity Retransimissions Difference with static
1000 159 -830
5000 161 -828
10000 325 -664
20000 608 -381
50000 433 -556

57

Evaluation

Heavy load scenario

Figure 6.2: Retramsissions with heavy load

What changes now is that we can find only two values for the periodicity that
gives better results than the static implementation. Both with updates made
each 5000 packets and each 50000 packets, the ML Router produces a lower
value for retransmissions than the fixed value of the static router, equal to 229
retransmissions.

Periodicity Retransimissions Difference with static
1000 263 +34
5000 77 -152
10000 475 +246
20000 627 +398
50000 197 -32

58

Evaluation

6.3.2 Throughput
Let’s see now how the throughput changes tuning the periodicity, with respect to
the fixed value given by the static implementation.

No load scenario

Figure 6.3: Throughput with no load

What happens "in the void" is that for values of periodicity between 10000 and
20000 the throughput of the two implementation is comparable, with the static
one giving better performances, for how the difference is negligible. The static
implementation produces a speed of 95 Mbps, while the ML Router as follows:

Periodicity Mean throughput Difference with static
1000 50 Mbps -45 Mbps
5000 62 Mbps -33 Mbps
10000 94 Mbps -1 Mbps
20000 93 Mbps -2 Mbps
50000 63 Mbps -32 Mbps

59

Evaluation

Heavy load scenario

Figure 6.4: Throughput with heavy load

The interesting part is the "heavy load" scenario. Here there is one single value
for periodicity that lets us overcome the static solution, with a mean throughput
10Mbps higher. While the speed for the static router is fixed at 46 Mbps, here
there are the expanded values for ML Router:

Periodicity Mean throughput Difference with static
1000 21 Mbps -25 Mbps
5000 24 Mbps -22 Mbps
10000 56 Mbps +10 Mbps
20000 40 Mbps -6 Mbps
50000 19 Mbps -27 Mbps

60

Evaluation

6.3.3 Latency
Now it’s the turn of the latency and its changesdue to the periodicity tuning, with
respect to the fixed value given by the static implementation.

No load scenario

Figure 6.5: Latency with no load

Latency in the void is definitely better in the static implementation. It surpasses
the ML Router by almost 50ms in case we tune periodicity to 10000 or 20000.
Static router’s mean latency is equal to 8 ms, while in the ML Router:

Periodicity Mean latency Difference with static
1000 164 ms +156 ms
5000 159 ms +151 ms
10000 57 ms +49 ms
20000 54 ms +46 ms
50000 243 ms +235 ms

61

Evaluation

Heavy load scenario

Figure 6.6: Latency with heavy load

The scenario gets even worse in case the traffic on the network increases, both the
mean round trip time (rtt) values get higher, but the distance between the two
implementations lower peaks increases by other 50 ms almost. The static router
value for mean latency is 89ms, while for the ML Router:

Periodicity Mean latency Difference with static
1000 329 ms +240 ms
5000 284 ms +195 ms
10000 194 ms +105 ms
20000 400 ms +311 ms
50000 443 ms +354 ms

62

Chapter 7

Conclusion

For how we’ve found values of the periodicity which give an higher throughput
and a lower number of retransmissions, we never beat the rtt value of the static
router implementation.

Basically this means that the computation given by the adoption of extern
functions is still heavy with respect to the simple implementation which uses only
a routing table.

It may also be due to the fact that the queuing time is not optimized as much as
needed, since the updates are only periodic. By the way, we can clearly see that
increasing the updates frequency leads to higher latencies, with respect to the
lower peaks seen before.

Of course the overhead of updating the routes is high, since it involves a socket
communication with the DRL module to get the new output port and the in-
jection of the new routes by means of bash scripts called by the ML controller.
It means that a tradeoff between the need of updating often the routes and the need
of reducing the cost of this operations must be reached, but it’s not 100% satisfying.

The fact we can reach higher throughput in conditions of huge traffic pat-
terns in the network, while dealing with high latencies means the algorithm is
working and even if it struggles with some implementation limitations, it’s
capable of finding better routes than optimal static ones.

Another relevant thing to say is that we tested the solution on an emulator
(i.e., Mininet) using BMV2 as a switch implementation which, it has been said
before, is a test and debug oriented implementation of a software switch.

63

Conclusion

While performances of a static router are likely close to the real ones, it would be
important to test the complex software of ML Router on a high performances
router, as it would impact less on the transmission time [43].

The next challenges are to reduce as much as possible the impact of the ML
Controller on the given solution, to implement it on a real device or a production-
grade software switch and to test it on different topologies too, in order to verify
the scalability of the solution, but they won’t be part of this thesis.

64

Appendix A

Hyper-parameters tuning

In this appendix you will find a summary of the test performed to properly tune
the hyper-parameters of the DRL training. All the hyperparameters have been
tested in combination with the others and what we can see below is the mean
value over all the tests performed.

A.1 Hidden layers
Hidden layers represent the architecture of the neural network. Over all the
possible tests performed we can show 4 possibilities taken into consideration.

Figure A.1: Tuning of hidden layers

As we can see, the best performances both on leaf and backbone routers can

65

Hyper-parameters tuning

be obtained with the adoption of a 3-layers architecture with 128, 64 and 32
neurons respectively.

A.2 Lambda 1
λ1 is the hyper-parameter that provides the weight for the delivered indicator.
That means, the higher is λ1, the more reward function will be influenced by that
indicator.

Figure A.2: Tuning of λ1

What we can desume from the plot is that both leaf and backbone routers
perform better with the adoption of λ1 equal to 1. Actually we would expect
that backbone routers are not affected by changes on this value, as the delivered
indicator is always null for them. We can explain this little difference in the value
of reward in the backbone with the randomness during the exploration phase.

66

Hyper-parameters tuning

A.3 Lambda 2
λ2 is the hyper-parameter that guides the weight of queuing time.

Figure A.3: Tuning of λ2

Once again, is not hard to choose among these values, both leaf and backbone
routers perform better with the adoption of λ2 equal to 5.

67

Hyper-parameters tuning

A.4 Lambda 3
λ3 is the hyper-parameter related to dropped indicator.

Figure A.4: Tuning of λ3

This time we can notice that backbone routers are averagely not affected by
changes on this value, while leaf ones have a better mean reward with value of 1.

68

Hyper-parameters tuning

A.5 Lambda 4
λ4 is the hyper-parameter that multiplies distance in the reward function.

Figure A.5: Tuning of λ4

It’s worth noticing that leaf routers don’t change their mean value of reward
during the tuning process. This happens because they don’t use distance to evaluate
the reward value. backbone routers, on the contrary, change their behavior and
give better performances with a λ4 equal to 0.005.

69

Hyper-parameters tuning

A.6 Action History length
Let’s see how reward values changed accordingly to the value given to the size of
the list representing action history.

Figure A.6: Tuning of action history length

While backbone router give best results with a length equal to 5, leaf routers
definitely work better with smaller lists. We give them much more importance
as they’re responsible for delivering packets to their attached destination and the
drop ratio with other values of length would have been too high.

70

Hyper-parameters tuning

A.7 Future Destinations length
Future destinations is the queue that save the next N destinations that the
router has to reach. It’s another hyper-parameter that needs to be tuned.

Figure A.7: Tuning of future destinations length

Exactly like in the previous tuning section (action history length), a bigger list
helps backbone to route packets more efficently, but it’s not sufficient for leaf
routers to learn how to properly deliver and, much more, not drop packets. That’s
why, once again, a length of 2 seems to be the best choice.

71

Hyper-parameters tuning

A.8 Learning rate
Learning rate is the α of the algorithm 2 (page 20). The higher it is, the more
Q-Values will be changed according to the last computation. The lower it is the
smoother updates will be.

Figure A.8: Tuning of learning rate

Again, the behavior is different for routers of different layers. In the backbone,
frequent updates give better performances. Queuing times are going to be very
different and actions in a given state must be changed often. Such a behavior is
source of instability for leaf nodes. They must be able to deliver and not to drop
with a high precision. If a packet is directed to the host directly attached to me I
must deliver it the packet, that won’t change. That’s why performances improve
significantly at a lower order of magnitude. Since backbone routers are going to
decrease even more their performances lowering even more the value of α, 0,001
seems to be a good tradeoff.

72

Hyper-parameters tuning

A.9 Total timesteps
Total timesteps should affect almost in the same way both routers in the back-
bone and in the leaves. Let’s see how the reward changes with lower or higher
number of timesteps.

Figure A.9: Tuning of timesteps

While with lower values the quality of the reward decreases quite a lot (only in
the case of leaves), we can see that starting from 20000 steps we have good values
for both rewards and they’re not going to change with a higher value of timesteps.
20000 steps, thus, look to be the best tradeoff for training steps.

73

Hyper-parameters tuning

A.10 Exploration fraction
Exploration fraction is the percentage of time during the training, over which is
annealed the value of epsilon (page 18).

Figure A.10: Tuning of exploration fraction

Here we can’t have any doubt: the two categories of routers both perform better
with a value of exploration fraction of 0.35. Higher values didn’t add any quality
to the solution.

74

Hyper-parameters tuning

A.11 Learning starts
The value of learning starts says after how many steps the algorithm starts
updating its values, thus using the gained knowledge.

Figure A.11: Tuning of learning starts

Since a value of 20% of the total timesteps assured a high percentage of packets
delivery that seemed to be a good value for the hyper-parameter. The reward in
the backbone is still high too even if sub-optimal.

75

Hyper-parameters tuning

A.12 Buffer size
Replay buffer has been explained at page 18 and its size is another parameter to
be studied in order to properly dimension it.

Figure A.12: Tuning of replay buffer size

The size of 1000 looks the best one over all the trainings. Both decreasing and
increasing its value deteriorate the quality of the reward.

76

Hyper-parameters tuning

A.13 Discount factor
Last, but not least the discount factor γ. Its value gives more or less importance
to the next rewards with respect to the immediate one (see algorithm 1 at page
17).

Figure A.13: Tuning of γ

A value of 0.3 is quite high and guarantees a good tradeoff for both the categories
of routers. A high value of γ is great for the designed environment as the newer state
at each step will always be almost impossible to be predicted as it’s represented by
the new incoming packet, along with other information about router. Its random
component make the adoption of 0.3 fraction value ideal.

77

Appendix B

Updates periodicity tuning

B.1 Periodicity equal to 1000

Figure B.1: Throughput with no load, periodicity = 1000

78

Updates periodicity tuning

Figure B.2: Throughput with heavy load, periodicity = 1000

79

Updates periodicity tuning

Figure B.3: Latency with heavy load, periodicity = 1000

Figure B.4: Latency with heavy load, periodicity = 1000

80

Updates periodicity tuning

B.2 Periodicity equal to 5000

Figure B.5: Throughput with no load, periodicity = 5000

Figure B.6: Throughput with heavy load, periodicity = 5000

81

Updates periodicity tuning

Figure B.7: Latency with heavy load, periodicity = 5000

Figure B.8: Latency with heavy load, periodicity = 5000

82

Updates periodicity tuning

B.3 Periodicity equal to 10000

Figure B.9: Throughput with no load, periodicity = 10000

Figure B.10: Throughput with heavy load, periodicity = 10000

83

Updates periodicity tuning

Figure B.11: Latency with heavy load, periodicity = 10000

Figure B.12: Latency with heavy load, periodicity = 10000

84

Updates periodicity tuning

B.4 Periodicity equal to 20000

Figure B.13: Throughput with no load, periodicity = 20000

Figure B.14: Throughput with heavy load, periodicity = 20000

85

Updates periodicity tuning

Figure B.15: Latency with heavy load, periodicity = 20000

Figure B.16: Latency with heavy load, periodicity = 20000

86

Updates periodicity tuning

B.5 Periodicity equal to 50000

Figure B.17: Throughput with no load, periodicity = 50000

Figure B.18: Throughput with heavy load, periodicity = 50000

87

Updates periodicity tuning

Figure B.19: Latency with heavy load, periodicity = 50000

Figure B.20: Latency with heavy load, periodicity = 50000

88

List of Figures

1.1 Slow path and Fast path [1] . 2
1.2 Network computing vs general-purpose [3] 3
1.3 client-server pattern vs cloud pattern 4
1.4 SDN Network . 7

2.1 P4 is a language to configure switches. [10] 10
2.2 The abstract forwarding model. [10] 11
2.3 How a parser works. [11] . 11
2.4 RL entities and their communication. [17] 14
2.5 An abstract environment with N states reachable from the initial

state. [17] . 15
2.6 An example of the transition from the state in a stochastic case. [17] 16

3.1 Adopted topology . 22
3.2 Neural network architecture . 28

4.1 Overview of the ML Router . 31
4.2 P4 Pipeline . 32
4.3 Ideal scenario . 39
4.4 Real scenario: 2 nodes represented on the same machine 39
4.5 Concurrent circular buffer of addresses 40
4.6 Different layers of abstractions in the get port request 41
4.7 Overview of the interaction of Baselines with the custom environment 45
4.8 Basic functioning of the Net Env 46

5.1 Example where green commodity is the best one 52

6.1 Retramsissions with no load . 57
6.2 Retramsissions with heavy load . 58
6.3 Throughput with no load . 59
6.4 Throughput with heavy load . 60
6.5 Latency with no load . 61

90

List of Figures

6.6 Latency with heavy load . 62

A.1 Tuning of hidden layers . 65
A.2 Tuning of λ1 . 66
A.3 Tuning of λ2 . 67
A.4 Tuning of λ3 . 68
A.5 Tuning of λ4 . 69
A.6 Tuning of action history length . 70
A.7 Tuning of future destinations length 71
A.8 Tuning of learning rate . 72
A.9 Tuning of timesteps . 73
A.10 Tuning of exploration fraction . 74
A.11 Tuning of learning starts . 75
A.12 Tuning of replay buffer size . 76
A.13 Tuning of γ . 77

B.1 Throughput with no load, periodicity = 1000 78
B.2 Throughput with heavy load, periodicity = 1000 79
B.3 Latency with heavy load, periodicity = 1000 80
B.4 Latency with heavy load, periodicity = 1000 80
B.5 Throughput with no load, periodicity = 5000 81
B.6 Throughput with heavy load, periodicity = 5000 81
B.7 Latency with heavy load, periodicity = 5000 82
B.8 Latency with heavy load, periodicity = 5000 82
B.9 Throughput with no load, periodicity = 10000 83
B.10 Throughput with heavy load, periodicity = 10000 83
B.11 Latency with heavy load, periodicity = 10000 84
B.12 Latency with heavy load, periodicity = 10000 84
B.13 Throughput with no load, periodicity = 20000 85
B.14 Throughput with heavy load, periodicity = 20000 85
B.15 Latency with heavy load, periodicity = 20000 86
B.16 Latency with heavy load, periodicity = 20000 86
B.17 Throughput with no load, periodicity = 50000 87
B.18 Throughput with heavy load, periodicity = 50000 87
B.19 Latency with heavy load, periodicity = 50000 88
B.20 Latency with heavy load, periodicity = 50000 88

91

List of Figures

92

Bibliography

[1] Fulvio Risso. «Architecture of network devices». url: https://swnet.
frisso.net/ (cit. on p. 2).

[2] Sakir Sezer, Sandra Scott-Hayward, Pushpinder Kaur Chouhan, Barbara
Fraser, David Lake, Jim Finnegan, Niel Viljoen, Marc Miller, and Navneet
Rao. «Are we ready for SDN? Implementation challenges for software-defined
networks». In: IEEE Communications Magazine 51.7 (2013), pp. 36–43 (cit.
on p. 3).

[3] Fulvio Risso. «SDN Intro». url: https://swnet.frisso.net/ (cit. on
p. 3).

[4] William Stallings. In: The Internet Protocol Journal 16.1 (Mar. 2013) (cit. on
p. 4).

[5] Nick Feamster, Jennifer Rexford, and Ellen Zegura. «The Road to SDN:
An Intellectual History of Programmable Networks Nick Feamster Jennifer
Rexford Ellen Zegura Georgia Tech Princeton University Georgia Tech». In:
ACM SIGCOMM Computer Communication Review 44.2 (Apr. 2014) (cit. on
p. 5).

[6] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. «An Ar-
chitecture for Active Networking». In: High Performance Networking VII:
IFIP TC6 Seventh International Conference on High Performance Networks
(HPN ‘97), 28th April – 2nd May 1997, White Plains, New York, USA. Ed. by
Ahmed Tantawy. Boston, MA: Springer US, 1997, pp. 265–279 (cit. on p. 5).

[7] J. Mark Smith, D., Farber, Carl A. Gunter, Scott Nettles, David C. Feldmeier,
and W. David Sincoskie. «Switchware : Accelerating Network Evolution (
White Paper) MS-CIS-96-38». In: Jan. 1996 (cit. on p. 5).

[8] K.L. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz. «Directions in
active networks». In: IEEE Communications Magazine 36.10 (1998), pp. 72–
78 (cit. on p. 5).

93

https://swnet.frisso.net/
https://swnet.frisso.net/
https://swnet.frisso.net/

BIBLIOGRAPHY

[9] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden. «A Survey of Active Network Research». In:
IEEE Communications Magazine 35 (1997), pp. 80–86 (cit. on p. 5).

[10] Pat Bosshart et al. «P4: Programming Protocol-Independent Packet Proces-
sors». In: ACM SIGCOMM Computer Communication Review 44.3 (July
2014) (cit. on pp. 9–12).

[11] Laurent Vanbever. Advanced Topics in Communication Networks. 2019. url:
https://adv-net.ethz.ch/ (cit. on pp. 10–12).

[12] p4language. v1model.p4. Dec. 2021. url: https://github.com/p4lang/
p4c/blob/main/p4include/v1model.p4 (cit. on p. 10).

[13] The P4 Language Consortium. P4-16 Language Specification. May 2017. url:
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html (cit. on
pp. 12, 37).

[14] Nick McKeown and Jen Rexford. Clarifying the differences between P4 and
OpenFlow. May 2016. url: https://opennetworking.org/news-and-
events/blog/clarifying- the- differences- between- p4- and-
openflow. (cit. on p. 13).

[15] P4 Language Consortium. url: p4.org (cit. on p. 13).
[16] p4language. openflow.p4. July 2016. url: https://github.com/p4lang/

switch/blob/master/p4src/openflow.p4 (cit. on p. 13).
[17] Maxim Lapan. Deep Reinforcement Learning Hands-On. 2nd ed. Jan. 2020

(cit. on pp. 13–19).
[18] Ruben Fiszel. Reinforcement Learning and DQN, learning to play from pixels.

Aug. 2016. url: https://rubenfiszel.github.io/posts/rl4j/2016-
08-24-Reinforcement-Learning-and-DQN.html (cit. on p. 13).

[19] pathmind. A Beginner’s Guide to Deep Reinforcement Learning. url: https:
//wiki.pathmind.com/deep-reinforcement-learning (cit. on p. 14).

[20] Cristopher Watkins. «Learning from delayed rewards». PhD thesis. King’s
college, 1989 (cit. on p. 16).

[21] Mnih Volodymyr, Kavukcuoglu Koray, Silver David, Graves Alex, Antonoglou
Ioannis, Wierstra Daan, and Riedmiller Martin. «Playing Atari with Deep
Reinforcement Learning». In: (2013). url: http://arxiv.org/abs/1312.
5602 (cit. on p. 17).

[22] Jason Brownlee. Dec. 2017. url: https://machinelearningmastery.
com/classification-versus-regression-in-machine-learning
(cit. on p. 18).

[23] Melanie Coggan. Research. McGill University, 2004 (cit. on p. 18).

94

https://adv-net.ethz.ch/
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://opennetworking.org/news-and-events/blog/clarifying-the-differences-between-p4-and-openflow.
https://opennetworking.org/news-and-events/blog/clarifying-the-differences-between-p4-and-openflow.
https://opennetworking.org/news-and-events/blog/clarifying-the-differences-between-p4-and-openflow.
p4.org
https://github.com/p4lang/switch/blob/master/p4src/openflow.p4
https://github.com/p4lang/switch/blob/master/p4src/openflow.p4
https://rubenfiszel.github.io/posts/rl4j/2016-08-24-Reinforcement-Learning-and-DQN.html
https://rubenfiszel.github.io/posts/rl4j/2016-08-24-Reinforcement-Learning-and-DQN.html
https://wiki.pathmind.com/deep-reinforcement-learning
https://wiki.pathmind.com/deep-reinforcement-learning
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning

BIBLIOGRAPHY

[24] Bellman Richard. In: Quart. Appl. Math 16 (1958), pp. 87–90 (cit. on p. 21).
[25] Dijkstra E.W. «A note on two problems in connexion with graphs». In: 1

(1959), pp. 269–271 (cit. on p. 21).
[26] Openflow Switch Specification. v1.5.1. Open Networking Foundation. Mar.

2015 (cit. on p. 23).
[27] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. «Multi-agent Re-

inforcement Learning: An Overview». In: Innovations in Multi-Agent Sys-
tems and Applications - 1. Ed. by Dipti Srinivasan and Lakhmi C. Jain.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 183–221. isbn: 978-
3-642-14435-6. doi: 10.1007/978- 3- 642- 14435- 6_7. url: https:
//doi.org/10.1007/978-3-642-14435-6_7 (cit. on p. 23).

[28] Jordan Jeremy. Nov. 2017. url: https://www.jeremyjordan.me/hyper
parameter-tuning/ (cit. on p. 25).

[29] Nicolas Vandeput. «22 Categorical Features». In: Data Science for Supply
Chain Forecasting. De Gruyter, 2021, pp. 200–208. doi: doi:10.1515/97831
10671124-022. url: https://doi.org/10.1515/9783110671124-022
(cit. on p. 27).

[30] Y. Liu. Python Machine Learning By Example. Packt Publishing, 2017. isbn:
9781783553129. url: https://books.google.it/books?id=0nc5DwAAQ
BAJ (cit. on p. 27).

[31] Daniele Sarcinella. ML Router. Version 1.0.0. July 2022. url: https://
github.com/danisrcnl/ML-routing (cit. on pp. 32–38, 41, 46, 48, 49).

[32] The P4 Language Consortium. bmv2. Version 1.7.0. url: https://github.
com/p4lang/behavioral-model (cit. on p. 37).

[33] Jeferson Santiago da Silva. p4-programs. url: https://github.com/
engjefersonsantiago/p4-programs (cit. on p. 38).

[34] Singleton Design Pattern | Implementation. Nov. 2020. url: https://www.
geeksforgeeks.org/singleton-design-pattern/ (cit. on p. 38).

[35] OpenAI. Baselines. url: https://github.com/openai/baselines (cit.
on pp. 42–44).

[36] Redis. redis-py. Version 4.3.4. url: https://github.com/redis/redis-
py (cit. on p. 44).

[37] Mate Pocs. Dec. 2020. url: https://towardsdatascience.com/beginn
ers-guide-to-custom-environments-in-openai-s-gym-98937167
3952 (cit. on p. 45).

95

https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.1007/978-3-642-14435-6_7
https://www.jeremyjordan.me/hyperparameter-tuning/
https://www.jeremyjordan.me/hyperparameter-tuning/
https://doi.org/doi:10.1515/9783110671124-022
https://doi.org/doi:10.1515/9783110671124-022
https://doi.org/10.1515/9783110671124-022
https://books.google.it/books?id=0nc5DwAAQBAJ
https://books.google.it/books?id=0nc5DwAAQBAJ
https://github.com/danisrcnl/ML-routing
https://github.com/danisrcnl/ML-routing
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/engjefersonsantiago/p4-programs
https://github.com/engjefersonsantiago/p4-programs
https://www.geeksforgeeks.org/singleton-design-pattern/
https://www.geeksforgeeks.org/singleton-design-pattern/
https://github.com/openai/baselines
https://github.com/redis/redis-py
https://github.com/redis/redis-py
https://towardsdatascience.com/beginners-guide-to-custom-environments-in-openai-s-gym-989371673952
https://towardsdatascience.com/beginners-guide-to-custom-environments-in-openai-s-gym-989371673952
https://towardsdatascience.com/beginners-guide-to-custom-environments-in-openai-s-gym-989371673952

BIBLIOGRAPHY

[38] Alexis Bitaillou, Benoît Parrein, and Guillaume Andrieux. «Q-routing: From
the Algorithm to the Routing Protocol». In: Machine Learning for Networking.
Ed. by Selma Boumerdassi, Éric Renault, and Paul Mühlethaler. Cham:
Springer International Publishing, 2020, pp. 58–69 (cit. on p. 50).

[39] Justin Boyan and Michael Littman. «Packet Routing in Dynamically Changing
Networks: A Reinforcement Learning Approach». In: Advances in Neural In-
formation Processing Systems. Ed. by J. Cowan, G. Tesauro, and J. Alspector.
Vol. 6. Morgan-Kaufmann, 1993. url: https://proceedings.neurips.
cc/paper/1993/file/4ea06fbc83cdd0a06020c35d50e1e89a-Paper.
pdf (cit. on p. 50).

[40] L. Tassiulas and A. Ephremides. «Stability properties of constrained queue-
ing systems and scheduling policies for maximum throughput in multihop
radio networks». In: IEEE Transactions on Automatic Control 37.12 (1992),
pp. 1936–1948. doi: 10.1109/9.182479 (cit. on p. 51).

[41] Xinyu You, Xuanjie Li, Yuedong Xu, Hui Feng, and Jin Zhao. «Toward Packet
Routing with Fully-distributed Multi-agent Deep Reinforcement Learning».
In: 2019 International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOPT). 2019, pp. 1–8. doi: 10.23919/
WiOPT47501.2019.9144110 (cit. on p. 52).

[42] iperf. url: https://iperf.fr/ (cit. on p. 54).
[43] The P4 Language Consortium. Nov. 2019. url: https://github.com/

p4lang/behavioral-model/blob/main/docs/performance.md (cit.
on p. 64).

96

https://proceedings.neurips.cc/paper/1993/file/4ea06fbc83cdd0a06020c35d50e1e89a-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/4ea06fbc83cdd0a06020c35d50e1e89a-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/4ea06fbc83cdd0a06020c35d50e1e89a-Paper.pdf
https://doi.org/10.1109/9.182479
https://doi.org/10.23919/WiOPT47501.2019.9144110
https://doi.org/10.23919/WiOPT47501.2019.9144110
https://iperf.fr/
https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md
https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md

	Introduction
	Data plane and Control plane
	Data plane
	Control plane

	Traditional networks and related issues
	Newer issues driven by virtualization
	Path toward Software Defined Networks
	Software Defined Networks
	Architecture

	Background
	P4
	Architecture
	Differences with OpenFlow

	Deep Reinforcement Learning
	Reinforcement Learning overview
	Reinforcement Learning glossary
	Bellman equation of optimality
	Tabular Q-Learning
	Deep Q-Network

	System design
	Routing problem
	Mathematical Model
	DRL formulation
	Key elements of DRL formulation
	Reward function
	Features encoding and neural network
	Pseudo Algorithm during training
	Pseudo Algorithm execution time

	Implementation
	Architectural overview
	P4 Application
	Ingress processing
	Egress processing

	ML Controller
	Externs implementation
	ML Controller architectural overview
	Concurrent Circular Buffer of addresses
	PyModule

	DRL Module
	OpenAI Baselines
	DQN implementation

	Network Environment
	Reset function
	Step function
	Issues of N routers on the same machine

	Related work
	Q-Routing
	Key Features
	Differences with ML Router

	Backpressure
	Key Features
	Differences with ML Router

	DQRC
	Key Features
	Differences with ML Router

	Evaluation
	Test scripts
	The Static Router
	ML Router comparison with Static Router
	Retransmissions
	Throughput
	Latency

	Conclusion
	Hyper-parameters tuning
	Hidden layers
	Lambda 1
	Lambda 2
	Lambda 3
	Lambda 4
	Action History length
	Future Destinations length
	Learning rate
	Total timesteps
	Exploration fraction
	Learning starts
	Buffer size
	Discount factor

	Updates periodicity tuning
	Periodicity equal to 1000
	Periodicity equal to 5000
	Periodicity equal to 10000
	Periodicity equal to 20000
	Periodicity equal to 50000

	List of Figures
	Bibliography

