
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Synthetic-to-Real Domain Transfer with
Joint Image Translation and

Discriminative Learning for Pedestrian
Re-Identification

Supervisors

Prof. Barbara CAPUTO

Dott. Mirko ZAFFARONI

Candidate

Antonio Dimitris DEFONTE

July 2022

Abstract

Person re-identification is a challenging computer vision task where one wants
to match each probe pedestrian to the corresponding images in the gallery set.
Pose, viewpoint and illumination variations have been well-known issues. Despite
this, recent developments have shown positive results when models are trained
and tested on the same dataset. However, different datasets present unrelatable
characteristics, to the point that they define distinct domains. So far, achieving a
good performance on cross-domain approaches has been proven to be much more
demanding than training standard supervised methods. Recent models that bridge
the gap across domains have drawn significant attention since, from a practical
perspective, annotating new data is error-prone and time-consuming, whereas
having unlabeled images is much less expensive. Moreover, the emerging field of
synthetic pedestrian re-identification is gaining momentum. Instead of employing
real world-data, the environments are computer-generated. On top of easing the
annotation process, this gives more freedom relative to what is available in a
real-world scene. From another perspective, synthetic data also addresses ethical
issues such as recording people without authorization and exploiting those videos
for sensitive applications.
The objective of this work was to generalize from our synthetic dataset GTASyn-
thReid, exclusively built by exploiting the graphic engine of Grand Theft Auto V,
to real-world data. Starting from these motivations, we embraced a generative
approach that performs synth-to-real image translation and jointly learns pedes-
trian feature descriptors. We injected target domain information into a network
trained on the source identities. To the best of our knowledge, we are the first
to adopt the Contrastive Unpaired Translation framework in our task. Instead of
learning via "cycle consistency", it encourages corresponding patches of the input
and output images to be similar, allowing "one-way" translation. We also designed a
feature matching loss for the discriminator to increase performance. We show that,
although current methods obtain scores that are difficult to reach, our pipeline
can achieve results that are comparable to and even better than earlier similar
approaches, both with real and synthetic data. We also show that the similarity
between our dataset and each target increases after the image translation.

i

Acknowledgements

I would like to express my most heartfelt thanks to everybody who supported me
in these recent difficult times.

I will start by expressing my deepest gratitude to Dott. Mirko Zaffaroni who
supported me with his knowledge and insights, guiding me both during this thesis
and the internship.

I want to thank Dott. Manuel Scurti who helped me to find meaningful resources
during my internship.

I am grateful to professor Barbara Caputo and the Links Foundation for making
this project possible and allowing me to work on such exciting and advanced topics.

I express my utmost gratitude to all my friends and colleagues that emotionally
supported and helped me during these years, this experience would have been much
more difficult without them. I am sure you will succeed in everything you put your
mind on. I wish you good luck in your future endeavors.

I finally want to thank my family that financially supported me during my
attendance at Politecnico di Torino.

ii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 Pedestrian re-identification . 1

1.1.1 Standard setting . 2
1.1.2 Cross-domain . 2
1.1.3 Synthetic data . 2

1.2 Contributions and work structure 3
1.2.1 Objective . 3
1.2.2 Contributions . 3
1.2.3 Outline . 4

2 Neural Networks 5
2.1 Some historical remarks . 5

2.1.1 Machine learning . 7
2.1.2 Learning paradigms . 8
2.1.3 Training pipeline . 9

2.2 Neural networks structure . 10
2.2.1 Fully connected neural networks 10
2.2.2 Convolutional neural networks 11
2.2.3 Activation functions . 12
2.2.4 Pooling layer . 14
2.2.5 Dropout layer . 14
2.2.6 Normalization . 14

2.3 Loss functions . 16
2.3.1 Cross-entropy loss . 16
2.3.2 Mean squared error . 16

iv

2.3.3 Contrastive and triplet losses 17
2.3.4 Performance metrics . 18

2.4 Optimization . 18
2.4.1 Backpropagation . 19
2.4.2 Regularization . 19
2.4.3 Stochastic gradient descent 20
2.4.4 Adam optimizer . 21
2.4.5 Transfer learning . 22

2.5 Architectures . 23
2.5.1 Standard architectures . 24
2.5.2 Residual connections . 25
2.5.3 Other architectures . 25

2.6 Generative adversarial neural networks 26
2.6.1 A two-player game . 26
2.6.2 Adversarial training . 28
2.6.3 Beyond binary classification 29

3 Pedestrian Re-Identification 31
3.1 Person Retrieval . 31

3.1.1 Building blocks . 32
3.1.2 Open versus closed world . 33

3.2 Training protocols and evaluation metrics 34
3.2.1 Cumulative matching characteristics 35
3.2.2 Mean average precision . 35

3.3 Benchmark datasets . 36
3.3.1 Market1501 . 36
3.3.2 DukeMTMC . 37
3.3.3 CUHK03 . 38

3.4 From shallow to deep person descriptors 39
3.4.1 Architecture evolution . 39
3.4.2 Image cues . 40
3.4.3 Generative methods . 41

3.5 Other approaches . 44

4 Cross-Domain Transfer 46
4.1 Domain adaptation . 46

4.1.1 Dataset shift . 47
4.1.2 Deep learning techniques . 49
4.1.3 Neural style transfer . 52

4.2 Domain adaptation for person Re-ID 54
4.2.1 Iterative pseudo-labeling techniques 54

v

4.2.2 Generative methods . 55
4.2.3 Other methods . 58

4.3 Synthetic datasets . 60
4.3.1 SyRI . 61
4.3.2 PersonX . 61
4.3.3 RandPerson . 61
4.3.4 UnrealPerson . 63
4.3.5 GTASynthReid . 63

4.4 Synth to real . 65
4.4.1 Approaches . 65

5 Model Architecture and Experiments 68
5.1 Network Architecture . 68

5.1.1 Domain mapping . 69
5.1.2 Relationship preservation . 71
5.1.3 Discriminative learning . 73
5.1.4 Overall objective . 75

5.2 Experiments . 76
5.2.1 Training details . 76
5.2.2 Evaluation details . 77
5.2.3 Ablation studies . 78
5.2.4 Results . 79
5.2.5 Qualitative results . 83

6 Conclusions 86
6.1 About this work . 86
6.2 Future directions . 87

A Re-Ranking 89
A.1 K-reciprocal encoding . 89
A.2 K-reciprocal distance . 90

B Evaluating Generative Adversarial Networks 91
B.1 Inception Score . 91
B.2 Fréchet Inception Distance . 92

Bibliography 93

vi

List of Tables

3.1 Open versus closed world person Re-ID [50] 34
3.2 Datasets features . 39
3.3 Performance on Market . 44
3.4 Performance on Duke . 44
3.5 Performance on CUHK03 . 45

4.1 Performance of source-to-Market 59
4.2 Performance of source-to-Duke . 60
4.3 Synthetic datasets features . 64
4.4 Performance of synth-to-Market . 66
4.5 Performance of synth-to-Duke . 67
4.6 Performance of synth-to-CUHK03 67

5.1 Ablation on Market . 79
5.2 Model evaluation on Market . 79
5.3 Model evaluation on Duke . 80
5.4 Model evaluation on CUHK03 . 80
5.5 Result comparison on Market . 81
5.6 Result comparison on Duke . 82
5.7 Result comparison on CUHK03 . 83
5.8 FID results between GTASynthReid and Market, Duke, CUHK03 . 84

vii

List of Figures

2.1 Artificial intelligence, machine learning, deep learning. 6
2.2 Multilayer perceptron . 11
2.3 Convolution operation . 12
2.4 Activation functions . 13
2.5 Dropout . 15
2.6 Backpropagation . 20
2.7 Convolutional neural networks [31, 32, 34] 24
2.8 Residual block [4] . 25
2.9 Inception module [40] . 26
2.10 Generative models taxonomy [42] 27
2.11 Generator structure [44] . 27
2.12 Generated images from GANs [7, 44, 6] 30

3.1 Person Re-ID pipeline. 32
3.2 Market1501 dataset [1] . 37
3.3 CUHK03 dataset [3] . 38
3.4 BNNeck structure [61] . 40
3.5 PCB structure [62] . 41
3.6 FD-GAN (feature distilling gan) architecture [66] 42
3.7 DG-Net (discriminative and generative network) overview [65] . . . 43

4.1 Example of covariate shift [30] . 48
4.2 Example of concept shift [30] . 48
4.3 Example of prior shift [30] . 49
4.4 Paired versus unpaired translation [47, 7] 53
4.5 Cycle consistency loss [7] . 53
4.6 Overview of DG-Net++ [79] . 57
4.7 CR-GAN (context rendering gan) architecture [87] 58
4.8 SyRI image samples [91] . 61
4.9 PersonX image samples [93] . 62
4.10 RandPerson image samples [95] . 62

viii

4.11 GTASynthReid image samples . 65

5.1 Encoder-Decoder generator structure 69
5.2 Basic unconstrained source-to-target mapping 71
5.3 Relationship preservation via image patch classification 74
5.4 Network for the Re-ID task . 75
5.5 Artifacts on transferred pedestrians 85
5.6 Transferred pedestrians examples 85

ix

Acronyms

ADAM
Adam Optimizer

AI
Artificial Intelligence

BoT
Bag of Tricks

CBIR
Content-Based Image Retrieval

CBN
Camera-based Batch Normalization

CMC
Cumulative Matching Characteristics

CNN
Convolutional Neural Network

CUT
Contrastive Unsupervised Learning

DPM
Deformable Part Model

FID
Fréchet Inception Distance

xi

GAN
Generative Adversarial Network

GPU
Graphics Processing Unit

GTAV
Grand Theft Auto V

IS
Inception Score

JVTC
Joint Visual and Temporal Consistency

MaP
Mean Average Precision

MLP
Multilayer Perceptron

MMD
Maximum Mean Discrepancy

MSE
Mean Squared Error

PCB
Part-based Convolutional Baseline

Re-ID
Re-Identification

RPP
Refined Part Pooling

SGD
Stochastic Gradient Descent

xii

SVM
Support Vector Machines

UDA
Unsupervised Domain Adaptation

xiii

Chapter 1

Introduction

In this thesis, we developed a framework for adapting our synthetic dataset to other
real-world ones in the context of pedestrian re-identification. This work is intended
to complete the internship where I developed the synthetic dataset GTASynthReid
by exploiting only the graphic engine of the video game Grand Theft Auto V. Both
the internship and this thesis were carried out at the Links Foundation in the
Data Science For Industrial & Societal Applications area. The Links Foundation
operates at a national and international level on topics such as industry 4.0, smart
mobility, agritech, space economy, security and intelligence. It is an effort to
promote digital innovation and increase competition by acting as a bridge between
academic research and the workplace. In this introductory chapter we will first
provide a brief overview of the challenges around person re-identification and then
state our objectives and contributions.

1.1 Pedestrian re-identification
This task concerns recognizing pedestrians recorded in different overlapping or non-
overlapping videos where pose, illumination, viewpoint, and environments vary. It
has practical applications in surveillance and security since person re-identification
systems can provide additional intelligence to monitor high-risk areas. Such systems
often include multiple recording cameras monitoring a target pedestrian in different
areas. Typically, for each camera, we first need to extract, frame by frame (when
feasible), the bounding boxes around each pedestrian. Then, given a pedestrian
picture from one camera view, one needs to match it against those extracted from
other viewpoints. For a successful retrieval, it is fundamental to encode good
pedestrian descriptors, which at this point is almost always done with neural
networks.

1

Introduction

1.1.1 Standard setting
In its simplest form, we evaluate person re-identification models on the same dataset
employed for the training and feature extraction. Each dataset has a training
partition used for supervised training with known identities and a test partition
used for the retrieval. It is crucial to notice that these two partitions do not share
the same pedestrian identities. The test partition is further divided into query
and gallery sets. In this sense, after training we will employ the neural network as
a feature extractor to encode each image from the query and gallery sets. Then,
given an encoded probe identity from the query, we will compute some distance
between the probe itself and the images in the gallery, obtaining a ranking with
the most similar pedestrians at its top. One hopes that the images sharing the
probe identity will have a higher rank.

1.1.2 Cross-domain
Albeit interesting, what we just explained is often not practical for real scenarios.
Models have difficulties in generalizing to unseen viewpoints, illumination and other
domain-specific conditions, meaning that one will see a huge drop in performance
when testing a model on a different dataset. On top of this, manually annotat-
ing large quantities of data for each domain is error-prone, time-consuming and
impractical. In this direction, there have been recent advances in cross-domain
person re-identification, usually in the form of unsupervised domain adaptation. To
this end, one needs to employ two datasets: the source and the target. We wish to
achieve a good performance on the target test partition by adapting the labeled
source data to the unlabeled training partition of the target dataset. The target
test identities remain unseen during the training process. In a real-world scenario,
this would translate into having availability of non-annotated images in a specific
target environment, which is much simpler than obtaining labeled data.

In other unsupervised domain adaptation tasks, it is common to adapt from
the source to the target while validating on another dataset. Regarding our task
instead, this procedure is quite uncommon. There are predefined source-to-target
performance evaluation configurations to which one can compare a model. However,
there exist works that approach domain generalization techniques training and
testing on several datasets.

1.1.3 Synthetic data
Software-generated datasets have gained momentum in the computer vision commu-
nity. Recently, virtual worlds are a growing interest also in the sub-field of person
re-identification. This kind of data relieves the burden of manually labeling large
quantities of images, allowing more controllable environments for the researchers’

2

Introduction

needs. Another issue concerns ethics. For real-world datasets, one will have to
record several pedestrians from multiple points of view. This is usually done without
asking for the pedestrians’ consent, despite of existing regulations. Synthetic data
also alleviates this problem. However, we now have to adapt our synthetic dataset
to real environments. Depending on characteristics like the learning paradigm of
choice, the quality of the computer-generated pedestrians and the gap between the
real and synth domains, this can be a more or less arduous task. In this scenario,
besides the standard evaluation of each synth-to-real model for the predefined
target, we also evaluated on the other real datasets, resembling a more general
synth-to-real adaptation.

1.2 Contributions and work structure
There are many ways to address this task. We decided to adopt a generative
approach for image translation that jointly learns discriminative pedestrian descrip-
tors. We will now state this thesis objective and list our contributions. Finally, we
provide an outline for the rest of the manuscript.

1.2.1 Objective
The objective of this thesis was to develop a deep learning framework for pedestrian
re-identification to bridge the gap between our synthetic dataset GTASynthReid and
other real-world datasets. We evaluated our model on Market1501 [1], DukeMTMC-
Reid [2] and CUHK03 [3]. The dataset was developed during the internship by
solely exploiting the graphic engine of Grand Theft Auto V.

1.2.2 Contributions
We embraced a generative approach that jointly translates images from the synth
to the real domains and injects target domain-specific information into a Resnet-
based [4] network trained in a supervised fashion on the source identities. Our
contributions are as follows:

• we extended a Pytorch framework1 [5] for person re-identification so that it
can also accommodate learning via translation from synthetic data;

• to the best of our knowledge, we are the first to employ [6] for pedestrian
re-identification. This contrastive unpaired translation framework avoids the

1The original work can be found at https://github.com/KaiyangZhou/deep-person-reid.

3

https://github.com/KaiyangZhou/deep-person-reid

Introduction

cycle consistency loss [7] and double architecture structure common to many
other methods;

• we designed a similarity loss inspired from [8] that matches features at different
discriminator layers when the discriminator itself is fed with a pair of source
and translated images or a pair of target and translated images (when switching
the perspective from the discriminator’s point of view to the generator’s point
of view);

• we were able to achieve a better performance compared to a Resnet baseline
trained for direct transfer;

• although we could not surpass the current state of the art (given also the
limitations of our dataset), we achieved better results than some earlier real-
to-real adaptation methods with a lighter, one-stage synth-to-real model. We
also measured the distance by means of FID [9] between the real and our
GTASynthReid datasets before and after the translation, observing a lower
value after the translation.

1.2.3 Outline
We structure this thesis into chapters that progressively build and complete the
knowledge required to understand our work. Starting from the deep learning
fundamentals, we will then explain how pedestrian re-identification works, also
across domains. After that, one can understand our implementation details and
results. The remaining chapters are as follows.

2. Neural Networks. In this introductory chapter, we explain the general concepts
of machine and deep learning and show the theoretical foundations of modern
deep learning.

3. Pedestrian Re-Identification. Here we introduce the person re-identification
task, showing existing datasets, methods and metrics for performance evalua-
tion.

4. Cross-Domain Transfer. After a brief introduction to general domain adap-
tation techniques, this chapter completes the previous one by showing the
current state of the art for person re-identification across domains.

5. Model Architecture and Experiments. In this chapter we show the imple-
mentation of our model and the obtained results, comparing it with existing
works.

6. Conclusions. We devote the last chapter for remarks and possible future
directions.

4

Chapter 2

Neural Networks

This chapter introduces the foundations of modern neural networks. Before getting
into the details of pedestrian re-identification (Re-ID), it is essential to study the
components of such architectures in a simplified environment. We will mostly
refer to classification and expand eventually to broader concepts. After a brief
presentation on the origins of artificial intelligence (AI), we describe the modules
of generic fully connected and convolutional neural networks. Having explained
the differences between normalization, pooling and fully connected layers, it is
crucial to understand how to measure the goodness of the current network weights
configuration. To do so, we explain the theory behind some loss functions that
will also be useful in later chapters. Then, we show how the learning process
actually works by means of optimization. After having reviewed all these basic
building blocks, we will introduce and motivate some well-known convolutional
neural networks (CNNs) architectures. To conclude the chapter, we will mention a
different learning paradigm, generative learning. Since this work greatly relies on
generative adversarial neural networks (GANs), we will only focus on those. In the
next two chapters, we will provide more details on how to use such architectures in
the context of person Re-ID.

2.1 Some historical remarks
The ability to develop artificial agents capable of intelligent human behavior has
always fascinated humanity. Pioneers of AI tried to model simplified versions of
our brain to autonomously solve generic tasks without having to write a specific
computer program each time. As of today, biological models are not the main source
of inspiration since the field of AI is deeply being influenced by disciplines such as
linear algebra, probability and statistics, optimization and computer science. We
are still a long way from building artificial general intelligence systems. However,

5

Neural Networks

we can develop autonomous processes for image classification, text translation,
image-to-text and much more. For some tasks, such models can even surpass
human performance. Although it is difficult to provide an exact date for the birth
of AI, many authors and researchers point to the Dartmouth Workshop [10] in 1956.
This conference was organized by distinguished engineers, mathematicians and
psychologists such as John McCarthy, Marvin L. Minsky, Nathaniel Rochester and
Claude E. Shannon. Having said that, the evolution of AI has not been linear. The
initial high expectations had to come to terms with the limited computing power
of those days, which led to criticism and slowed the development of this field (AI
winters). If we consider the subfield of deep learning and neural networks alone, it
only gained momentum starting from the first decade of this century, when better
and cheaper graphics processing units (GPUs) became available.

In the next sections we will explain some key differences between machine and
deep learning, without focusing on artificial general intelligence. With this in
mind, we quote from T. Mitchell [11] for what could be a broad definition of an
autonomous learning process:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E.

Figure 2.1: One of the possible interpretations of the relationships between
artificial intelligence, machine and deep learning. In this context, AI includes even
artificial general intelligence, while machine learning refers to all those techniques
and problems for which it is possible to learn from experience (classification,
regression, unsupervised learning, etc...). Deep learning, instead, is the subset
of techniques that address the same problems of machine learning but with deep
architectures.

6

Neural Networks

2.1.1 Machine learning
There are many definitions of machine and deep learning, often distinct from
statistical learning [12]. For the scope of this thesis, we refer to deep learning as a
subset of machine learning (as in figure 2.1), where, instead of employing shallow
architectures, problems are solved with deep (more than one layer) neural networks.
In the machine learning theory, a classic example is the halfspace problem [12].
Given a set of linearly separable data X (i.e., there exist a separating hyperplane)
with binary labels Y = {−1, +1}, the goal is to find a linear separator such that
each datapoint lies on the correct side (depending on its label). We can express
this with the following homogeneous decision function: sign(⟨w, x⟩), where x ∈X
and w is the normal to the separating hyperplane we seek to find. In 1958, Frank
Rosenblatt developed a simplified model of the biological neuron, the perceptron
algorithm [13]. His procedure, starting from an initial w, will iteratively correct
the elements of w itself so that, for all (xi, yi), where N is the cardinality of the
dataset, we have yi⟨w, xi⟩ > 0. This is equivalent to say that all points lie on the
correct side of the hyperplane parameterized by w. If, for the current configuration
of x, there are datapoints on the wrong side, i.e. yi⟨w, xi⟩ ≤ 0, we update w for
the next iteration to be w + yixi. For instance, suppose that the values of w are
such that they classify as −1 a sample x with y = +1. In this case, the perceptron
algorithm will add to w the sample x. By increasing the value in each entry of
w, we hope that, in the next iteration, this datapoint will be correctly classified.
Algorithm 2.1 shows the entire procedure.

In the previous context, what we have just explained finds one of the (infinite)
existing separating hyperplanes. One might argue whether one particular separator
is better than the others. Suppose that, for a given set of data, we found a
hyperplane far closer to the datapoints of the positive class. If we sample new
data, we might end up with errors, since some examples of the positive class could
cross the separator. In this sense, one could try to find the hyperplane that better
separates the data, i.e., the separator that maximizes the minimum distance (known
as margin) between the points and itself. To do so, we can solve the halfspace
problem with the support vector machine (SVM) algorithm. However, we are still
assuming the linear separability of the data. To relax this assumption, one can
employ the soft-SVM, which allows for mistakes (points of wrong class crossing the
margin). Nonetheless, real-world data (e.g., sensors, DNA sequences, images, etc...)
often lives in high-dimensional convoluted manifolds. In these scenarios, finding a
linear separator in the original space often leads to poor results. One could map
the data into a higher dimensional space, "unfolding" the manifold and finding a
linear separator. Despite this, mapping to a higher dimensional spaces brings all
the problems related to the curse of dimensionality. We can avoid this issue by
using kernels. The only concept we care about in that space is the inner product

7

Neural Networks

between our data. Consequently, instead of mapping to higher dimensions, we
adopt a function that implements the inner product in the high-dimensional space
(kernel trick). We transformed the original problem into a parametric problem
where the weights are inner products of our data (there are some conditions to
satisfy). However, with this new formulation, if the cardinality of our data is huge,
we will still end up in a high-dimensionality scenario. A related concern is the
pre-processing of the data. Machine learning pipelines usually rely on handcrafted
features. This process ranges from simply aggregating different features, to reducing
the dimensionality and extracting relevant data descriptors (e.g: sift [14], surf [15]
for images). This requires a high amount of human supervision and the overall
results could strongly depend on on the chosen descriptor. These are among the
reasons why deep learning methods are so successful since we often have high
availability of data and the feature crafting process is performed automatically. In
the next section, we will expand more on this topic.

Algorithm 2.1 Perceptron algorithm [13] for the binary halfspace problem [12]
when the datapoints are linearly separable.

1: procedure Perceptron(X, Y , w)
2: ▷ x ∈X are the datapoints while y ∈ Y = {−1, +1} the labels
3: ▷ (xi, yi) is a tuple with a datapoint and its label
4: ▷ i ∈ {1, 2, ..., N}, where N is the number of datapoints
5: ▷ w is the vector normal to the hyperplane we seek to find.
6: ▷ Initialization
7: t← 0 ▷ Iteration counter set to 0
8: w(t)← {0, 0, ..., 0} ▷ Normal vector initialization
9: ▷ Execution

10: while w not converged do
11: if (∃ i | yi⟨w(t), x⟩ ≤ 0) then
12: w(t + 1) = w(t) + yixi ▷ Update normal vector
13: end if
14: t← t + 1 ▷ Update iteration counter
15: end while
16: return w(t) ▷ Return correct normal vector
17: end procedure

2.1.2 Learning paradigms
In the previous subsection, we mentioned a binary classification example, the
halfspace problem. In that scenario, the goal was to learn a hyperplane such that
each sample lies on the correct side. To do so, we exploited the labels coupled

8

Neural Networks

with the datapoints. One might ask if there are different learning paradigms. As
explained in [16], depending on the label annotation availability, we might end up
in different learning settings.

• Supervised learning. In this learning paradigm each datapoint is associated to
a label representing its category. We can use the available data and labels to
train a model and then predict the classes of unseen data. This task is known
as classification. An alternative is predictive regression, where, instead of
having labels, one needs to exploit and predict continuous values (e.g., predict
the price).

• Unsupervised learning. In this setting, we do not have the availability of hard-
coded labels. There are different schools of thought on what can be considered
unsupervised learning, with some researchers limiting to clustering methods
while others allowing procedures that employ some level of ground-truth, such
as pseudo labels. However, it does not involve human annotation.

• Self-supervised learning. This kind of learning paradigm makes use of pseudo
labels that are usually generated from data properties. It is often adopted for
pretext tasks alongside the downstream one. Since it does not employ human
annotation, it is considered a subset of unsupervised learning by some authors
[16].

• Semi-supervised learning. Another common scenario is characterized by the
availability of a small labeled subset of data. The majority of the datapoints
are instead unlabeled, bringing to methods that consider multiple approaches.

These are only the learning paradigms that are interesting for our work. In reality,
there exist other ones that we will not consider, such as reinforcement learning and
weakly supervised learning. Regarding unsupervised learning, we already mentioned
that some authors might include more approaches. In chapter 4, we will make use
of the term unsupervised domain adaptation (as in the literature). This refers to
techniques that do not employ target data labels, even if the learning process is
supervised by, for instance, pseudo labels or labeled source data.

2.1.3 Training pipeline
We will now explain how to train a generic model. These steps can be followed in
both machine and deep learning pipelines. Intuitively, one would like to generalize
well to unseen data, achieving a low error measured by some function (see section
2.3). However, if we were to train a model on the whole available dataset, we
could risk to fit too well (i.e., overfit) only on our available data, performing poorly
on unseen samples. For this reason, the original dataset is usually splitted into

9

Neural Networks

training set, on which we train our model, and test set, where we evaluate our model.
Additionally, the training pipelines often require hyperparameters tuning, meaning
that one has to experiment with multiple sets of controllable parameters to find the
best performing model. Consequently, one has to hold out from the training data
a smaller subset of samples, the validation set. To summarize, we will first learn
and tune a model on the training set to measure its performance on the validation
set. Then, we will retrain the model with the best set of hyperparameters on the
training and validation data. Finally, we can measure the performance on the test
set. A better validation procedure divides the training set into k parts, iteratively
training on k− 1 partitions and validating on the remaining one. This compensates
for the overestimation of the test error that a standard training-validation split
might bring to since we would train on fewer observations [17]. Known as k-fold
cross-validation, this process is not always feasible, particularly with deep learning
models. On top of this, as we will mention in chapter 4, in some scenarios is more
challenging to design a validation set, being sometimes a research topic.

2.2 Neural networks structure
One could think of neural networks as function approximators. As explained in
[18], suppose that there exists a function f ∗ that maps the input data to the correct
category, e.g: y = f ∗(x). If we express a neural network model as a function
f parameterized by θ, it will learn the values of its parameters such that the
mapping y = f(x, θ) best approximates the original one. This can be extended
beyond classification. Another interpretation considers all the layers of a neural
network, but the last one, as automatically generated data features. Instead of
manually designing strong feature descriptors, each layer encodes some kind of
information, ranging from more general to task-specific concepts. The last layer
can be thought of as a classifier that works with the learned feature maps. All the
architectures that we will explain are labeled as deep feedforward neural networks,
meaning that the data flows into the layers without cycles in the computational
graph. Architectures that involve loops fall under the realm of recurrent neural
networks (out of the scope of this work).

2.2.1 Fully connected neural networks
Fully connected neural networks are characterized by what is known as fully
connected layer. These networks known also as multilayer percetrons (MLPs)
because of their similarity. The main difference is that now we have at least three
layers: an input, an output and a hidden layer. The number of hidden layers is a
hyperparameter to be optimized. Each layer can have one or more units (neurons).
For each unit, we compute the linear combination (thus the name fully connected)

10

Neural Networks

of the previous layer outputs, similar to what we did in the perceptron model. If o
is the output of the previous layer and w are the weights associated to a neuron, we
have that qM

i=1 wioi will be the output of that neuron. The result of all the layer
units will constitute the layer output. Figure 2.2 provides a visual explanation of
this process. Notice that the number of units in a layer is commonly known as
channel size.

Figure 2.2: On the left-hand side, we have a standard perceptron with a threshold
function (sign function as we described before). On the right-hand side, there is
instead a MLP with a hidden layer made of four neurons. Each neuron has its
set of weights, both for the hidden and output layers (we omitted the activation
functions and weights for clarity). Each unit of the input layer is relative to a
feature of the original data.

2.2.2 Convolutional neural networks
If we were to use fully connected layers with images, we would need to connect each
input pixel to each unit of the first hidden layer. However, this would prevent us
from exploiting an important property of images. Generally speaking, neighboring
pixels can present strong correlations, meaning they could belong to the same
object of interest as a leg, hand, dog or person. To take advantage of these spatial
correlations, we need to introduce the convolution operation. In practice, we
slide the input image with small filters (also known as kernels), summing the
elements-wise product each time we change region (see figure 2.3). The sliding
stride is a hyperparameter that tells us by how many spatial location we should
move after each operation. Typical kernel sizes are 3 × 3, 5 × 5 and 7 × 7, but
one could adopt also rectangular filters (e.g., 1× 3, 3× 1, etc...). If needed, it is
possible to add padding to the image. Each kernel has a depth size equal to the
channel size of the previous layer output. For instance, considering RBG images,
the first convolutional layer will have units of three two-dimensional filters, one for
each input channel. The results of each channel are then summed together. The

11

Neural Networks

number of distinct filters (considering each three-dimensional filter as a single unit)
represents instead the current layer channel size. Architectures that employ this
kind of layer are known as convolutional neural networks (CNNs).

Figure 2.3: Illustration of the convolution operation. We slide the gray kernel
over the input with stride 2, obtaining the yellow result.

2.2.3 Activation functions
Neural networks have high expressive power, being able to make up for the data
nonlinearities. However, simply stacking convolutional or fully connected layers does
not involve any nonlinear operations. For instance, suppose that the first hidden
layer of a neural network has its units parameterized by the matrix W1, while
the second one is parameterized by W2. Given an input x, the raw output after
the second layer is W2(W1x). This is equivalent to W x, where W = W1 ×W2.
By definition, this is a linear operation that does not enable a neural network to
approximate nonlinear functions. If f represents the sigmoid function, we can
rewrite the previous function as a nonlinear one by passing the outputs of each
layer to f , that is f(W2f(W1x)). In the deep learning context, these nonlinearities
are called activation functions. Below we briefly describe some of the existing ones.

• Sigmoid. The sigmoid function has the characteristic "S-shaped" curve. It
bounds its input to the range (0, 1) and it can be defined as σ(x) = 1

1+e−x .
However, this function has two main problems. Because of its flat regions, it
will "kill" the gradients during the backpropagation (see section 2.4) when the
input is far from zero. Another issue is that the output will not be centered
at zero. This translates into having a gradient always positive or negative,
depending on the input sign. Updating the gradients in the same direction
will generally require more steps, leading to inefficient optimization.

• Tanh. This activation function will bound the output of a neuron to the range
(-1, 1). As its name suggests, it is computed as the tanh of its input. It solves

12

Neural Networks

the zero-centering problem, but the vanishing gradient issue is still present as
for the sigmoid function (flat regions).

• ReLU. The rectified linear unit (ReLU) [19] is among the most employed
activation functions in modern neural network architectures. It can be written
as σ(x) = max(0, x). Contrary to the two previous nonlinearities, it does
not upper bound its input, preventing saturation and dead gradients in the
positive part. However, when x < 0, we still have the vanishing gradient
problem (although there are techniques that help to avoid this) and the output
is not zero-centered.

• Leaky ReLU. This activation function has all the nice properties of the ReLU
and, on top of this, prevents dead gradients in the negative part. This
nonlinearity can be expressed as σ(x) = max(0.01x, x) or σ(x) = max(αx, x),
where we practically allow a non-zero slope when x < 0. This can be either
predefined or learned as a parameter (α in the second version). By doing so,
there are no flat regions and the output is more centered.

One will notice that the most adopted activation functions belong to the family of
ReLUs, because of the aforesaid properties. For the zero-centering problem, as we
will see later (subsection 2.2.6), there exist additional layers that normalize the
nonlinearity inputs. We provide a visual explanation of the mentioned activations
in figure 2.4.

Figure 2.4: Illustration of the sigmoid, tanh, ReLU and leaky ReLu activation
functions. In the leaky ReLU we multiply by 0.1 to emphasize the slope in the
negative region.

13

Neural Networks

2.2.4 Pooling layer
After the activation layer, one will usually find a pooling operation. This preservers
the channel dimension of the output feature maps while downsampling the spatial
dimensions. The layer applies a predefined operation that will result in some
summary statistics. We can do this by computing the statistic over the spatial
locations inside a sliding window of a certain size and stride. The outcome will
render the feature representation approximately invariant to local (small) input
translations [18]. Suppose that one wants to detect whether an object is present
in the input image. Given that we do not care about its exact location, even if
the object of interest slightly moves, most of the outputs of the pooling layer will
roughly be the same. Among others, average pooling and max pooling are widely
used, with variants such as global average pooling that summarizes all the spatial
locations into one value. Global pooling often replaces fully connected layers in
CNNs, maintaining spatial information and being more meaningful as it relates
feature maps to class categories [20].

2.2.5 Dropout layer
Fully connected layers have a high amounts of learnable parameters that could
expose a model to overfitting risks. This happens in the form of co-adaptation,
meaning that a model correlates the categories to the input samples rather than the
learned features. The result is a poor generalization capability. An option could be
to use fewer parameters, reducing the model capacity. The dropout layer [21] aims
at solving this problem (see figure 2.5 for an illustration). During training, one
has to randomly disconnect (usually with a probability of 0.5) some of the dense
links. The model is now forced to learn from different features and cannot just
memorize to use a specific set of them. During test time instead, we reactivate the
connections using all the available features.

2.2.6 Normalization
As we showed before, having normalized data is important during training, speeding
up the convergence and avoiding vanishing gradients. One could center the data
as a pre-processing step. Still, this is not enough. After each convolutional or
fully connected layer, the result is not normalized anymore. Work [22] provides a
solution to this issue, batch normalization. They add a layer before (other works
add it after) the nonlinearity, normalizing each batch with its statistics. During
training, for each batch of data B = {x1, x2, ..., xm}, we compute the following

14

Neural Networks

Figure 2.5: Dropout example with dummy network. Inputs are in blue, hidden
layers in gray and output in yellow. On the right hand side, we disconnected the
links of the red units.

statistics:
µB = 1

m

mØ
i=1

xi σB = 1
m

mØ
i=1

(xi − µB)2

x̂i = xi − µBñ
σ2

B + ϵ
∀xi ∈ B

yi = γx̂i + β ∀i ∈ {1, 2, ..., m}

(2.1)

where µB, σB are respectively the batch mean and standard deviation while x̂i is a
datapoint and ϵ is a small constant for numerical stability. In this sense, we are
estimating the mean and variance of each activation [22] (for convolutional layers
we estimate different statistics for each channel). On top of the normalization
operation, they also add the possibility to learn the identity transformation. The
motivation is that normalizing could alter the layer representation or expressive
power. For this purpose, to obtain yi, this method uses two learnable parameters,
γ and β. If γ =

ñ
σ2

B and β = µB, then yi would rematch xi. For the inference
stage instead, one can track during training, for each layer, some kind of moving
average for the mean and variance over the different batches of data. After the
training process, we will have an estimate of the mean and standard deviation
relative to each layer. We can then apply those statistics to the test data, using
the same γ and β learned during training.

Having said that, there exist also other kinds of normalization. An example is
instance normalization [23] that computes statistics for each sample in the batch
(for convolutional layers it estimates different statistics for each channel of each

15

Neural Networks

instance). The procedure is usually repeated also at test time. This normalization
strategy was introduced for image transfer methods (see chapter 4) since the original
authors obtained significant improvements in the image generation. Work [24]
explains how batch normalization preserves discriminative power among samples
while instance normalization separates instance contrast information from the
content.

2.3 Loss functions
Given a parameters configuration of a model, one would like to evaluate how much
is paying because of using that configuration. In simpler terms, we can employ
some functions that generally accept the output of a model (given a batch of data)
and a ground truth. They then compare their arguments and retrieve a real number
representing how well the model is performing. These functions are known as loss
functions and deeply relate with statistical concepts such as maximum likelihood
estimation and information theory.

2.3.1 Cross-entropy loss
When dealing with classification problems, one will generally use the well-known
cross-entropy loss. Supposing that our dataset has C classes, the model of choice
f(x, θ) will output from its classifier (last fully connected layer) the logit vector o
of C raw, non-normalized predictions. The softmax function translates them into
the probability that the input data x will be assigned to a certain class k :

P (ck = 1 | x) = eokqC
j=1 eoj

(2.2)

where each entry of the logits will be mapped to the interval (0, 1). Assuming that
each input data x is associated to a one-hot encoded ground truth vector y, we
can express this loss as:

LClass = Ex∼B
è CØ

i=1
yi log(P (ci | x))

é
(2.3)

where y is zero everywhere but in the kth position of the correct category in which
it is one and P (ci | x) is as in eq. 2.2. Other than averaging over the batch B of
data, there are alternative reduction methods (e.g., just the sum).

2.3.2 Mean squared error
Instead of predicting classes, one might be interested in regression. In such scenarios,
the neural network outputs a single real value that will be compared to the input

16

Neural Networks

data ground-truth. This can be extended to compare also output vectors or feature
maps (as explained in chapters 4 and 5). There are multiple loss functions for this
task, we present the mean squared error (MSE) loss, also known as L2 loss. It can
be written as:

LMSE = Ex∼B
è
(y − f(x, θ))2

é
(2.4)

where, for simplicity, we compare the output of a model f with the real ground-
truth value y associated to the input x. As in the previous loss function, there are
other reduction methods besides averaging over the batch of data B.

2.3.3 Contrastive and triplet losses
In learning paradigms such as one-shot, few-shot learning and image retrieval, deep
metric techniques are quite common. In these settings, one would like to learn a
function that maps semantically similar points from the original data space, to
metrically similar points in the embedding space (likewise for semantically different
points) [25]. This function can be approximated by a neural network which is
guided by loss functions that push together, in the embedding space, samples that
belong to the same category and pull apart otherwise. For instance, siamese [26]
neural networks work with pair of images, often adopting the contrastive loss [27]:

LContr = 1
2Y D2 + 1

2(1− Y)(max(0, m−D))2 (2.5)

where D = ∥f(x1, θ)− f(x2, θ)∥2 is the euclidean distance in the embedding space
of two input samples encoded by the neural network f parameterized by θ. The
binary label Y is one if the inputs are similar, zero otherwise. The margin term
m > 0 is fundamental to avoid trivial solutions. As explained in [27], it practically
defines a radius around the embedding discarding dissimilar pairs contribution
when their distance exceeds that radius.

The triplet loss [28, 25] instead, works with triplets of images as its name
suggests. It has similar applications to those of the contrastive loss and, in the
last years, it has been widely adopted in person Re-ID. The triplets are called
anchor, positive and negative samples. Intuitively, the anchor and the positive
points are similar, while the anchor and negative points are different. There are
several ways to choose the positive and negative samples. Hard mining relies on
searching for the hardest positive and hardest negative to better understand how
to recognize the same object [25]. This can be performed on the whole dataset, but
it is computationally heavy and it could result in sampling too extreme samples
or outliers. For person Re-ID, work [25] proposes an online hard batch sampling.
By taking the hardest positive and negative samples in each batch, we are overall
sampling moderate samples. Supposing that for each batch we randomly sample

17

Neural Networks

C∗ categories out of the total C classes and K images per category, we can write
this loss as:

LT ri =
C∗Ø
i=1

KØ
k=1

è
m + max

p=1,...,K
D(f(xi

k), f(xi
p))− min

j=1,...,P
n=1,...,K

i /=j

D(f(xi
k), f(xj

n))
é

+
(2.6)

where we used f(x) instead of f(x, θ) for brevity and D is the (squared) Euclidean
distance of the embeddings. For each class i, for each anchor image k, the function
takes the positive image with the same class having maximal distance from the
anchor and the negative image over the other classes with the minimum distance
from the anchor. In this way we compare, for each batch, the hardest positives and
negatives relative to each anchor. The margin parameter m is also crucial in this
setting, so as not to end up with trivial solutions. To summarize, this is equivalent
to ask the difference between the negative and positive distances to be greater than
the margin. The margin also prevents overly correcting already accurate triplets
[25].

2.3.4 Performance metrics
As we just explained, the previous losses are functions of the parameters of a
model. This means that we can exploit them to optimize the model itself, guiding
the training process for the parameters updates. Besides them, there are other
functions that are merely performance metrics, often giving different interpretations
of how good a model is performing. One must pay attention on how to select
these metrics. For instance, accuracy might give too optimistic results when a
dataset is imbalanced. In chapter 3 we will explain the two most common metrics
for pedestrian Re-ID. Below, we briefly show how accuracy works, common in
classification. We can write it as:

A = # correct predictions
total predictions (2.7)

where the ratio simply gives the fraction of times our model was right. Generally
speaking, both performance metrics and loss functions are computed over a batch
of data. However, they are usually reduced over a training iteration (e.g., averaged
or summed together), providing a more meaningful result that characterizes the
entire epoch.

2.4 Optimization
Up until now, we saw how a neural network processes its input data. The samples
flow from the first layer to the final one, in what is known as the forward pass.

18

Neural Networks

Given a parameters configuration, this stage creates a feature representation of
our inputs and eventually outputs a prediction. In this section, we will see how
a neural network actually learns, updating its parameters. Starting from the last
layer, we will update, step by step, the weights of each layer up until the first one.
For this reason, this stage is known as backward pass.

2.4.1 Backpropagation
One can see a loss function as an objective function to minimize. In this sense,
L(y, f(x, θ)) is a function of some target y relative to the input x and of the neural
network output given that input. Since the loss is a function of the model parameters,
we can make use of this minimization to update the parameters themselves. This
is done by exploiting the directional derivative vT∇θ(L(y, f(x, θ))) [18] (will will
later see how to couple derivatives with respect to the input data and parameters).
We want to find the best direction in which L decreases. Since the gradient points
uphill, v will be the unit vector that points in the opposite direction of the gradient.
We can translate this into the following iterative updating procedure, known as
gradient descent:

θ′ = θ − ϵ∇θL(y, f(x, θ)) (2.8)

where θ′ is the updated parameter and ϵ is the learning rate, a hyperparameter
that indicates the size of the step. Intuitively, each time we update the parameters,
we take a step in the direction that minimizes the loss L scaled by ϵ.

In a neural network, one would like to compute the gradients with respect to
the parameters of the layers. However, it is not possible to directly solve this. To
address this issue, we have to use the backpropagation algorithm that employs
the chain rule as follows. During the forward pass, we track, for each layer, the
gradients of its output relative to both its input and parameters. Then, in the
backward pass, starting from the last layer (where we compute the loss) and ending
in the first one, for each of them, we compute the derivative of the loss function
with respect to both its inputs and parameters with the chain rule. Simplifying,
if x is the input of a layer and o is its output, ∂L

∂x
can be decomposed into ∂L

∂o
∂o
∂x

.
The term ∂o

∂x
was computed during the forward pass while ∂L

∂o
is equivalent to the

derivative of the loss relative to the input of the next deeper layer. In this way, we
just need to multiply these terms and apply the same reasoning until we reach the
first layer. Figure 2.6 provides a more complete example.

2.4.2 Regularization
As we mentioned before, it is crucial that a model should perform well on the test
data distribution, without overfitting solely to the training one. In this sense, one
can accept to introduce methodologies that might result in a higher training error

19

Neural Networks

Figure 2.6: Backpropagation algorithm for a simple fully connected neural network.
The input sample is x with some target y while the output of the ith layer is oi

and L is a loss function. At each layer we exploit the derivative computed for the
previous one (the immediately deeper layer).

but might reduce the test one. Among others, adding norm penalties of the model
parameters to the loss function is common in this field. We might not include every
single parameter belonging to θθθ in the penalty [18]. We denote w as the vector of
the model parameters that we want to regularize. The L2 norm penalty adds to
the original loss function the term 1

2∥w∥
2
2 (where 1

2 is useful for differentiation) and
can be controlled with the hyperparameter λ. For a generic loss function L, we
would have L̃(y, {(x, θ)) = L(y, f(x, θ)) + λ

2 wT w. Consequently, eq. 2.8 becomes:

w′ = θ − ϵ(λw +∇wL(y, f(x, w))) (2.9)

where we just highlighted the update for the parameters that we want to regularize
(w). This is known also as weight decay, since it has the effect of penalizing
large model weights (parameters), by decaying the weights themselves and thus
constraining the training process.

2.4.3 Stochastic gradient descent
Stochastic gradient descent (SGD) is an optimization algorithm analogous to the
standard gradient descent, with the difference that the gradient is not computed
on the entire dataset, but rather on subsets of it. We already mentioned the
concept of batch of data, meaning a small subset of our samples. Although there are
different terminologies (e.g., minibatch), in this work, we refer to a batch as a small
subset of the training or test set with at least one sample, conventionally having an
amount of data in the powers of 2. During each training iteration, i.e epoch, the
dataset is divided into multiple (non-overlapping) subsets of size m. This is done

20

Neural Networks

for technological limitations (memory in GPUs) but, possibly because of the noise
that comes with small batches, it also brings better generalization capabilities,
regularizing the training [18]. For each of those batches, when the examples are
drawn randomly (i.i.d.), one can show that computing the average gradient over
those m samples will produce an unbiased estimator of the true gradient (at least in
the first epoch) [18]. For a given batch of data, we can write the gradient estimate
as:

ĝ = ∇θθθ

A
1
m

mØ
i=1
L(yi, f(xi, θθθ))

B
(2.10)

where the hat symbol highlights that this is an estimator of the true gradient. We
then update the parameters similarly to eq. 2.8. After we optimized over all the
minibatches, we need to repeat the whole procedure for a certain number of epochs.
To speed-up the convergence, one can couple SGD with momentum. Momentum
introduces the concept of velocity v which is equal to the exponentially decaying
average of previous gradients. As explained in [18], there is a parallelism with the
analogous physical concept. The contribution of previous gradients will force the
optimization process to continue moving in their direction. Their exponential decay
is a hyperparameter. The update rule requires now two steps:

v = αv− ϵ∇θθθ

A
1
m

mØ
i=1
L(yi, f(xi, θθθ))

B
θθθ′ = θθθ + v

(2.11)

where α ∈ [0, 1) is the momentum exponential decay hyperparameter, ϵ is the
learning rate and v the velocity (which is initialized before the learning process).
The current direction is influenced by the previous gradients, whose contribution
depends on how large is α relative to ϵ [18]. A widely used alternative is Neterov
momentum, where we first apply the current velocity and only then compute the
gradient. Work [18] interprets this as adding a correction factor. We provide the
algorithm of Nesterov momentum 2.2 since it summarizes this subsection well.

2.4.4 Adam optimizer
Another popular optimization algorithm is Adam [29]. This method combines the
improvements of other optimization methods that extend the standard family of
SGD algorithms. It scales the learning rate for each model parameter to have a
faster or slower decrease depending on their partial derivative [18]. This learning
rate adaptation depends on the exponentially decayed averages of both the first
and second gradient moments (similar to the concept of momentum). The decay is
controlled by the hyperparameters β1 ∈ [0, 1) and β2 ∈ [0, 1). Additionally, since
the moving averages are initialized to zero vectors (and thus biased towards it),

21

Neural Networks

Algorithm 2.2 Stochastic gradient descent optimizer with Nesterov momentum.
1: procedure SGD(X, Y , w, fθθθ, ϵ, α)
2: ▷ x ∈X are the datapoints while y ∈ Y the labels
3: ▷ (xi, yi) is a tuple with a datapoint and its label
4: ▷ The training dataset X is divided in m batches
5: ▷ fθθθ is a neural network parameterized by θθθ
6: ▷ ϵ is the learning rate
7: ▷ α ∈ [0, 1) is the momentum exponential decay
8: ▷ Initialize v and θθθ
9: ▷ Execution

10: while Not sampled all training batches do
11: Sample batch {(x1, y1), (x2, y2), ..., (xm, ym)}
12: θθθ′ ← θθθ + αv ▷ Apply current velocity before gradient
13: g← 1

m
∇θθθ′

qm
i=1 L(yi, f(xi, θθθ

′)) ▷ Compute gradient estimate
14: v← αv− ϵg ▷ Update velocity
15: θθθ ← θθθ + v ▷ Update parameters
16: end while
17: return θθθ ▷ Return the optimized network parameters
18: end procedure

they counter their bias by correcting the moment estimates [29]. Algorithm 2.3
shows this procedure.

2.4.5 Transfer learning
Different from classical machine learning theory, deep neural networks are nonconvex
functions. Convexity is a necessary condition not to incur in local minima when
using gradient-based methods. However, even without the theoretical guarantees
for learnability, when using larger datasets we can achieve great results. For smaller
datasets, one could use transfer learning techniques [30]. In such a setting, we
would like to exploit the weights learned on a different dataset or even task. For
classification, it is common to use pre-trained neural networks on large datasets
and fine-tuning on a smaller one. During the fine-tuning, we can freeze all the
layers but the last one, considering them just as feature extractors. We can then
extract the features from our samples and train the last layer from scratch for our
task. Depending on the data availability and similarities with the original task, we
can freeze more or fewer layers, considering the pre-training as a sort of parameter
initialization. More advanced options include assigning lower learning rates to
shallower layers (which capture more generic features) and more aggressive learning
rates on deeper layers (more task-specific). All of this is neccessary to adapt the

22

Neural Networks

Algorithm 2.3 Adam optimizer.
1: procedure Adam(X, Y , w, fθθθ, ϵ, β1, β2)
2: ▷ x ∈X are the datapoints while y ∈ Y the labels
3: ▷ (xi, yi) is a tuple with a datapoint and its label
4: ▷ The training dataset X is divided in m batches
5: ▷ fθθθ is a neural network parameterized by θθθ
6: ▷ ϵ is the learning rate
7: ▷ β1, β2 ∈ [0, 1) are the exponential decays for the two moment estimates
8: ▷ Initialization
9: t← 0 ▷ Iteration counter set to 0

10: δ ← 10−8 ▷ Small constant for numerical stability
11: m← 0, v← 0 ▷ Initialize first and second moment estimators
12: ▷ Initialize θθθ
13: ▷ Execution
14: while Not sampled all training batches do
15: Sample batch {(x1, y1), (x2, y2), ..., (xm, ym)}
16: t← t + 1 ▷ Update iteration counter
17: g← 1

m
∇θθθ

qm
i=1 L(yi, f(xi, θθθ)) ▷ Compute gradient estimate

18: m← β1m + (1− β1)g ▷ Compute first moment estimate
19: v← β2v + (1− β2)g⊙ g ▷ Compute second moment estimate
20: m′ ← m

1−βt
1

▷ Correct bias of first moment estimate
21: v′ ← v

1−βt
2

▷ Correct bias of second moment estimate
22: θθθ ← θθθ − ϵ m′

√
v′+δ

▷ Update parameters (element-wise operations)
23: end while
24: return θθθ ▷ Return the optimized network parameters
25: end procedure

network to our new data or task without forgetting what it has learned during the
pre-training.

2.5 Architectures
In this section we briefly show some of the popular CNN architectures. It is
important to understand how to combine the layers we explained to obtain a
powerful function approximator. Through the recent deep learning history, CNNs
sought more complex, deeper models, combining different operations. Building
deeper models can bring overfitting and learnability issues. Until the adoption of
residual connections, neural networks had to limit their number of layers.

23

Neural Networks

2.5.1 Standard architectures
In this category, we find CNNs that stack the layers explained in section 2.2.
The simplest architecture is that of the LeNet5 [31]. It has two blocks made of
convolutional and pooling layers, two fully connected layers and the final classifier.
It employs the sigmoid activation function. A similar structure is that of AlexNet
[32], famous for being the first CNN winner of the ImageNet [33] competition against
shallow methods. It is deeper than LeNet5 (it has 5 blocks of convolutional and
pooling layers) and adopts the ReLU activation. It uses layer normalization (modern
implementations employ batch normalization) and dropout for the fully connected
layers. A more interesting architecture is that of VGG [34]. These are deeper
networks with either 16 or 19 layers that use ReLU nonlinearities, normalization
and smaller 3× 3 filters. Having such filters allows for the same receptive field size
to have deeper networks with fewer parameters and more nonlinearities. This has
set the general trend for deeper networks that employ smaller filters. Figure 2.7
shows the schematics of these networks.

Figure 2.7: Overview of standard CNNs. First row: LeNet5 [31] architecture.
Second row: AlexNet [32] architecture. Third row: VGG16 [34] architecture1.

24

Neural Networks

2.5.2 Residual connections
Work [4] shows how when just stacking layers to build very much deeper networks
brings the degradation problem. This means that, beyond a certain point, adding
layers starts worsening the performance metrics. The reason behind this is not
overfitting (since, in that scenario, we would have a low error on the training data),
but rather it is a symptom of the difficulty to optimize such models. For instance,
suppose that we want to add layers to a less deep network and achieve the same
score. The additional layers should learn the identity mapping. However, this is
harder than it seems and the deeper model ends up with worsening solutions. The
ResNet architecture [4] addresses this issue by introducing residual connections
(see figure 2.8). For each block of convolution and pooling layers, they add the
input to the output, H(x, θθθ) = f(x, θθθ) + x, making it far easier to learn the identity
mapping, i.e. f(x, θθθ) = 0. In a conventional setting, these networks learn what
is called the residual, f(x, θθθ) = H(x, θθθ) − x. The shortcut connections can be
seen as highways where the gradient can flow, mitigating exploding and vanishing
gradients. When more than 50 layers are needed, ResNets employ the bottleneck
structure to reduce the number of parameters.

Figure 2.8: Residual module of ResNet, adapted from [4].

2.5.3 Other architectures
There have been countless research on model architectures, delivering several neural
network arrangements. We have recently seen advances on attention modules and
non-local operators [35, 36, 37], temporal dependency modeling [38, 37] and efficient
neural networks [39]. Another interesting architecture is GoogLeNet, based on

1The VGG16 image is from:
https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams

25

https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams

Neural Networks

the inception module [40, 41]. This family of networks has a network in network
structure [20], stacking multiple modules that can be seen as smaller local neural
networks. These modules have parallel convolutional layers (with also nonlinearities
and pooling layers) that allow different receptive fields. In figure 2.9, we illustrate
the inception module with bottlenecks (reducing the channel size).

Figure 2.9: Inception module of GoogLeNet, adapted from [40].

2.6 Generative adversarial neural networks
Up until now, what we explained falls under the paradigm of discriminative learning.
In a standard classification scenario, what we care about are the predictions, i.e.,
estimating the conditional probability of the labels having observed the data.
However, one might be interested in generating new data. In this case, we would
like to estimate the underlying data distribution or the joint probability distribution.
Explicitly estimating the density would easily allow us to sample new data points.
Unfortunately, this is not always feasible, but there are several paradigms for
generative learning, as shown in figure 2.10. In this work, we will only focus on
generative adversarial neural networks (GANs). In their plain form, we sample
from a simple distribution, generally random noise, and learn the transformation
to the desired outputs (the images). The transformation itself is a neural network
(although there are other approaches) trained so that the outputs are aligned to
the already available (training) data distribution.

2.6.1 A two-player game
First introduced in [43], GANs have gained popularity in several computer vision
fields for their capabilities and expressiveness. In this work we will only refer to
deep convolutional GANs [44], although there exist also other frameworks. To

26

Neural Networks

Figure 2.10: Taxonomy of generative models, adapted from [42].

better understand their inner workings one can think of them as a two-player game.
The two adversaries are commonly known as generator G and discriminator D.
The latter operates like a traditional neural network. Its objective is to predict
whether an image is real or fake, i.e., if it belongs to the available data or if it
was generated. On the other hand, the generator tries to fool the discriminator
by counterfeiting images to be indistinguishable from the real ones. It operates
by sampling (Gaussian) random noise z (latent variable) and outputting an RBG
image (see image 2.11 for an example).

Figure 2.11: Generator structure for deep convolutional GANs [44]. It samples a
100-dimensional (uniform) random vector and then maps it into a 64× 64 pixel
image through several transposed convolution layers.

27

Neural Networks

2.6.2 Adversarial training
Considering a generator G parameterized by θG and a discriminator D parameter-
ized by θD, as noted in [43] we can frame the problem as a min-max game with
value function V (G, D):

min
G

max
D

V (G, D) = Ex∼Pdata

è
log D(x)

é
+ Ez∼Pz

è
log(1−D(G(z)))

é
(2.12)

where each input image x is sampled from the empirical data distribution Pdata

and the latent variable z is sampled from the latent space distribution Pz. The
output of D(x) is the probability (∈ [0,1]) that the input image is real (with
label 1) or fake (with label 0) while the output of G(z) is a generated image
given z. This means that, on average, from the discriminator’s point of view, we
would like to maximize the probability of correctly distinguishing fakes from real
images. From the generator’s point of view instead, we would like to minimize
the discriminator’s probability of predicting as fake the generated images. During
each training iteration, there are two batches of data available, the real training
images, and the generated ones. Since there are two networks, we have to perform
two gradient updates per iteration (discriminator and generator can be optimized
by different algorithms, with different hyperparameters such as learning rate and
weight decay). However, we point out that alternative approaches update the
two networks at different steps. For the discriminator objective in eq. 2.12, the
weighted binary cross-entropy loss [42] allows standard gradient descent:

LD(θG, θD) = −wrEx∼Pdata

è
log D(x)

é
− wfEz∼Pz

è
log(1−D(G(z)))

é
(2.13)

where wr and wf are the weights relative to the discriminator’s ability to correctly
assign the label 1 when fed real images and 0 otherwise. Usually wr = wf = 1

2 .
When minimizing this expression from the discriminator’s point of view, the
generator’s weights remain fixed, and vice versa. For the generator loss instead,
there are more caveats. One could apply gradient ascent (thus maximizing) on
the second term of eq. 2.13 to fool the discriminator, or equivalently minimize the
likelihood as in eq. 2.12. However, as noted in [42, 43], optimizing the expression
log(1 − D(G(z)) from the generator’s perspective would produce weak gradient
signals when the generator is doing a poor job (fake images are easily classified as
so) and a strong gradient signal when the generator is outputting indistinguishable
images. With these remarks, we can flip the target labels and construct a binary
cross-entropy loss [42] for the generator:

LG(θG, θD) = −wrEz∼Pz

è
log D(G(z))

é
(2.14)

where usually wr = 1
2 . This might seem confusing, but all we did was switch to

the generator’s perspective where the discriminator should output 1 (the real label

28

Neural Networks

from this point of view) when it is fed a fake image. We can now apply standard
gradient descent techniques and iterate the whole procedure.

When training a conventional neural network, one is actually solving an optimiza-
tion problem, which hopefully will converge to a local minimum. The adversarial
perspective we just explained, is theoretically framed as a game, whose solution is
a Nash equilibrium. As described in [42], this equilibrium is a local minimum of
LD with respect to θD and a local minimum of LG with respect to θG. If we define
as PG the generator distribution, i.e., the estimated data distribution implicitly
defined by G with respect to the original one (Pdata) when z is sampled from Pz,
such equilibrium occurs when PG = Pdata. The authors of [43] state that, when
using a model of infinite capacity (non-parametric setting), the min-max game
converges to a global optimum when the previous equality holds. Similarly to what
we explained above, they first fix the generator and find the optimal discriminator.
Then, PG is updated to optimize V (G, D∗

G) of eq. 2.12, where D∗
G is the optimal

discriminator given G. They prove that, with this procedure, PG will converge to
Pdata. However, in practice one will employ CNNs and MLPs for the discriminator
and generator, coupled with gradient-based methods for the optimization. Since we
are refusing the initial assumptions (critical points, convexity, capacity), this will
violate the theoretical guarantees [43]. Having said that, these architectures are
pervasive in GANs and have shown, during their evolution, excellent performance.

2.6.3 Beyond binary classification
Since their introduction, GANs gained momentum and popularity, resulting in
advances in both theoretical and applied research. These networks have since been
designed with different losses (e.g., Wasserstein GAN [45]), for several tasks such
as super-resolution [46] and image translation [47, 7, 6]. As a natural extension
of the binary cross-entropy loss, work [42] presents (one-sided) label smoothing.
As reported by the authors, this should counter extreme confident predictions,
encouraging soft probability estimates from the discriminator. Similarly, one could
employ the least-square (mean square error) loss. Work [48] encourages this function
essentially for two reasons. Contrary to the cross-entropy loss, the least-square loss
will continue to push, when optimizing the generator, the fake samples closer to the
decision boundary, even when they already are on the correct side. This is especially
useful for those samples that are correctly classified and lie far away from the
decision boundary. Additionally, by doing so we are increasing the gradient signal
when optimizing the generator, relieving the vanishing gradient problem which
can occur when training with cross-entropy [48]. The generator and discriminator

29

Neural Networks

losses can now be expressed as:

LD(θG, θD) = 1
2Ex∼Pdata

è
(D(x)− 1)2

é
+ 1

2Ez∼Pz

è
(D(G(z)))2

é
(2.15)

LG(θG, θD) = 1
2Ez∼Pz

è
(D(G(z))− 1)2

é
(2.16)

where we used the label 1 for real images (note that in the second equation we
are in the generator’s perspective, we want the discriminator to believe that the
generated images are real) and 0 for the fake ones. As it will be shown in chapter
5, we adopted this loss in our framework. Before moving on the next chapter, we
conclude this one with a series of suggestive images (figure 2.12) generated with
GANs. For GANs evaluation methods, see appendix B.

Figure 2.12: Images generated with GANs. First row: style transfer from photo
to painting [7]. Second row: realistic human faces generated by [49]. Third row:
furniture generation [44]. Fourth row: style transfer from blue to grumpy cat [6].

30

Chapter 3

Pedestrian Re-Identification

In the previous chapter, we reviewed the main building blocks and architectures
of modern neural networks. We can now study how such models were developed
and optimized for the task of pedestrian re-identification (Re-ID). This chapter
will start by stating what we are trying to achieve with this kind of task and how
it is framed by means of classification and image retrieval. We then provide a brief
evolution of techniques that address this problem, ranging from handcrafted image
descriptors to deep convolutional neural networks. In particular, the latter will be
analyzed more deeply, since they represent the state of the art.

This task has gained momentum since it has practical applications in high risk
areas where security is needed. At the same time, it has also raised ethical concerns,
because of its sensitive connotations, leading to important paradigm shifts such as
adopting synthetic datasets. Since the pedestrians do not share the same identity
between training and test set of the same dataset, is often not enough to use
standard baselines, due to the large variations between datasets. This of course
amplifies when one performs cross-domain analysis (as we will explain in the next
chapter).

3.1 Person Retrieval
Person Re-ID aims at identifying a person of interest across different camera
views [50, 51]. It can be thought of as a particular case of content-based image
retrieval (CBIR) where, instead of having several objects, we need to match different
pedestrian identities. As for CBIR, given a query, the retrieval process consists in
running it against a database called gallery and ranking the results by similarity.
The query can be a single image or multiple stacked frames that depict an individual
from a certain camera view. To make the task more interesting, the query is usually
matched against the gallery without considering the frames of that person extracted

31

Pedestrian Re-Identification

from the query camera view. Alternatively, if it is not possible to capture the
same individual at least across two camera views, we can match the query against
a gallery that contains images of the person of interest taken at a different time
instant than that of the query [50]. Matching the correct person can unravel many
challenges since a specific pedestrian is likely to be depicted under many viewpoints,
with different lighting conditions, pose, imperfect bounding boxes and occlusions
across the frames. Occlusions do not happen only with objects, we could have
body parts of other people in the same image. On top of this, there could be other
pedestrians in the background, rendering the whole task even more challenging.
Differently from the general setting of CBIR, datasets for person Re-ID provide a
labelled training set. This means that we can train a model for classification on
that set. The trained model will then be used as a feature extractor on the query
and gallery sets for the retrieval process. Identities for the classification task are
different than those employed during the retrieval. One must be careful enough
not to overfit only on the training set, even if the ambient conditions and other
data characteristics are similar among the different splits.

3.1.1 Building blocks
It is now reasonable to explore the main building blocks of a traditional person
Re-ID system (shown in figure 3.1). We can consider four main components, where
each of them could represent a problem of its own. Some of these modules will be
detailed in later sections. As of right now, we can draft an overview.

Figure 3.1: Standard person Re-ID pipeline. The steps are as follows:
1) raw dataset collection, 2) data annotation, 3) feature extraction, 4) pedestrian
retrieval. The image frames were taken from the PRW dataset [52].

1. The first step concerns the raw video data collection. In a real environment,
we would like to capture the same individual across at least two viewpoints.
Cameras therefore must be placed strategically.

2. After having collected all the necessary raw data, one of the most crucial
aspect is the annotation of each frame. We need to extract the bounding boxes
of each pedestrian and assign them an identity. The first step can be either

32

Pedestrian Re-Identification

done by hand such as in [53] or with object detection techniques as in [1] or
[3]. The second one instead lies in manually matching the so found bounding
boxes of pedestrians with the same identity. This process is time consuming
and error prone. If not done carefully, it could undermine the quality of the
entire dataset.

3. When all the bounding boxes have been generated, it is possible to proceed
with the feature extraction. Even if this started by handcrafting features to
describe the pedestrians, as of today, the state of the art is dominated by
CNNs. In the next section there will be a brief evolution of the techniques
that have been used to tackle this task.

4. The last step is known as pedestrian retrieval. After having extracted the
feature representations of both the query and gallery image, it is finally possible
to match the embedding of the former to that of the latter by some similarity
measure and obtain a ranking.

One might be tempted to create a system which solves all of the aforementioned
problems (end-to-end person Re-ID). In reality, those are treated as different tasks.
For instance, the second step is known as pedestrian detection [54]. To make large
scale datasets possible and reduce annotation time, bounding box generation is
often performed with human detectors such as deformable part models (DPM) [55]
or other object detection pipelines, rather than by hand. The resulting bounding
boxes will not be perfect (some body parts can be cropped-out or the region includes
too much background, adding challenges to the retrieval task) and, therefore, some
supervision is still needed to choose the best ones. As we can see, this pipeline is
not devoid of issues and it is reasonable to consider it as a separate task.
When reading the related literature, one will find that recent works mainly focus
on pedestrian retrieval, including the extraction of strong feature descriptors of
the original images. Consequently, this work will focus on those two last building
blocks and, from now on, unless stated otherwise, pedestrian Re-ID will indicate
only that part of the entire pipeline.

3.1.2 Open versus closed world
As we just saw, there are many approaches to pedestrian Re-ID. Work [50] provides
a practical distinction between closed and open world Re-ID (table 3.1). In an
open-world scenario, one could try to embed different kinds of data, such as depth
maps, consider unmatched queries or include the human detection task (end-to-end
person Re-ID), starting from the raw frames. Other relevant challenges comprehend
noisy annotations (which is not uncommon on a small fraction of the data, even

33

Pedestrian Re-Identification

Closed-world Open-world
Single-modality Data Heterogeneous Data

Bounding Boxes Generation Raw Images/Videos
Sufficient Annotated Data Unavailable/Limited Labels

Correct Annotation Noisy Annotation
Query Exists in Gallery Open-set

Table 3.1: Possible differences between open and closed world person Re-ID. This
table was borrowed from [50].

unintentionally) and unavailable labelled data (crucial aspect when we want to
bridge the gap between different domains).

The most recurring setting of person Re-ID in the literature is finding a model
that works well on a specific dataset, exploiting the already extracted bounding
boxes. Even though this could be thought of as a closed-world scenario, it is
not always a given that the instances where correctly annotated. Additionally,
increasingly more works try to bridge the gap between two or more datasets,
addressing the problem of unavailable labelled data. This is extremely important
in such a practical task, since it would not be ideal to train a different model based
on the location of a security camera, for instance. Thus, one can argue that more
recent works lie somewhere in the middle of these two extrema.

3.2 Training protocols and evaluation metrics
Modern person Re-ID systems adopt some kind of CNNs for the feature learning
process. As we will see in the next section, models range from simple feed-forward
neural networks to generative and complex architectures, which are optimized with
several loss functions. Datasets are usually split into training and test sets with
different identities. One can train a neural network in a supervised fashion on the
training partition of identities. However, since the test set does not share the same
identities, we cannot just treat the inference stage as a classification problem. The
test set is further divided into query and gallery sets. We first feed the trained
network with all the images in the gallery, extracting only a feature vector descriptor
instead of their class probabilities. This can be done by excluding the classifier
layer during inference, hoping that our model will deliver strong descriptors for
unseen identities. Then, for each (probe) image in the query, we extract its feature
vector and rank the gallery images from most to least similar. Euclidean distance
and cosine similarity between the probe and gallery images are often adopted to
generate such ranking. This is also known as single-shot since only one query image

34

Pedestrian Re-Identification

at a time is used. Had we considered multiple queries at the same time, we would
have been in a multi-shot scenario. To increase the performance, one could apply
re-ranking as explained in [56, 57]. In the following subsections, we will explain
and compare the two most adopted metrics to evaluate the ranking result (we only
consider single-shot settings). Unfortunately, we do not often see a validation step
in this pipeline or if it present, there is not a unified approach. A simple way of
performing this would be to allocate a small number of images for each training
pedestrian to the validation set, as in a standard classification pipeline. However,
we argue that this would not be representative of the final query-gallery search task,
also because we would validate on images of seen pedestrians. A more interesting
approach could be to take out an appropriate number of identities from the training
ones and construct a validation set with query and gallery images. Following this
direction, we would validate on unseen identities, evaluating in the same fashion as
in the test phase.

3.2.1 Cumulative matching characteristics
Having run a set of queries against a gallery set of images, one would like to know
how good is such ranking. Specifically, we would prefer to have the gallery images
with the same identity of the probe one at the beginning of the ranking. A simple
way to evaluate how good our model is in this scenario relies on extending the
notion of accuracy. Instead of being interested only in the top-1 accuracy, we could
select a set K of rankings (usually K = {1, 5, 10, 20}) and, for each of k ∈ K,
return the top-k accuracy. For a given query q, define the following step function:

fk(q) =
1 if query identity is in top-k ranking,

0 otherwise
(3.1)

where k ∈ K. The CMC curve is then obtained by averaging the step functions of
each query, at the considered ranks.

3.2.2 Mean average precision
Differently from CMC, the Mean average Precision MaP provides a single value
(the higher, the better) which summarises the quality of the whole ranking. At
least in this field, it is considered more reliable, however, at the same time, it is
harder to obtain high values of MaP, rather than rank-1 accuracy. To determine its
value, we have to compute, for a set of queries, the mean of the average precision
scores for each query1 by integrating its precision-recall curve. In practice, this is

1There are different interpretations of the MaP. We followed the standard integral ap-
proximation which has been extensively employed not only in person Re-ID, but also

35

Pedestrian Re-Identification

replaced by a finite sum. To formalize, the recall can be defined as

recall = TP

TP + FN
= # correct relevant elements

relevant elements (3.2)

where TP are the true positives and FN the false negatives. The precision instead
can be defined as:

precision = TP

TP + FP
= # correct relevant elements

retrieved elements (3.3)

where FP are the false positives (the rest as in eq. 3.2). Thus, for a given query,
the average precision is computed as follows:

AP =
NRIØ
k=1

1
P (k)∆r(k)

2
=
qNRI

k=1

1
P (k)R(k)

2
NRI

(3.4)

where k is the rank (elements retrieved), NRI is the number of relevant elements
in the ranking, P (k) is the precision at rank k, ∆r(k) is the recall change between
rank k and k − 1, while R(k) is 1 if the image at rank k is relevant, zero otherwise.
Both formulations in eq. 3.4 return the same result. To compute the MaP, we can
now average the previous equation over all queries, obtaining:

MaP =
qQ

q=1 AP (q)
Q

(3.5)

where Q is the total number of queries.

3.3 Benchmark datasets
We can now review some of the datasets for pedestrian Re-ID. For each of them,
we provide a brief description of their salient characteristics. Table 3.2 provides a
summary of their main characteristics.

3.3.1 Market1501
First introduced in [1], it includes 1,501 identities depicted in 32,668 bounding
boxes. The dataset was recorded by six (overlapping) cameras, five 1280× 1080 HD

in the more general setting of image retrieval. For more details, one can refer to
the following link: https://en.wikipedia.org/wiki/Evaluation_measures_(information_
retrieval)#Average_precision.

36

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision

Pedestrian Re-Identification

cameras and one 720× 576 SD camera, at a campus supermarket. Each individual
has been captured by at least two camera views for cross-camera search.
Although they also extracted hand-drawn ground truths, the bounding boxes were
generated with the DPM detector [55] as follows. For each candidate detected
bounding box, they compute the intersection over union with the hand-cropped
ground truth. If this ratio is higher than 50%, the detected box is marked as
"good", if the ratio is smaller than 20% the bounding box is marked as "distractor",
otherwise, it is marked as "junk" (i.e., it will not influence process). "Distractors"
also include identities that do not belong in the original 1,501 ones. They can
be viewed as "false alarms" that provide additional challenges to the retrieval
process (see figure 3.2). However, they are not always included in the Re-ID
task. Nonetheless, as was mentioned earlier, having "imperfect" bounding boxes
increases the challenges for the image retrieval, rendering it more representative of
a real-world scenario. They also provide multiple query and gallery images for the
same identity. From now on we will refer to as the Market dataset.

Figure 3.2: Market1501 dataset [1]. First row: three individuals with different
appearance. Second row: three individual with similar clothing. Third row:
examples of "distractors" on the left and "junk" images on the right.

3.3.2 DukeMTMC
This dataset was first introduced in work [58]. It serves many purposes since
the authors extracted both semi-automatically generated bounding boxes and
manually annotated path trajectories. It was recorded by eight 1080p cameras (85
minutes each) at the Duke University campus. They extracted 6,791 trajectories
for 2,834 identities from views that are mostly disjoint, even if some overlappings
are present. There are several occlusions and blind spots and pedestrians share
different appearance.

For person Re-ID, in the literature subsets of the original DukeMTMC such as
DukeMTMC-Reid [2] or DukeMTMC4ReID[59] are more common. In the former,
we can find a total of 36,411 bounding boxes related to 1,812 identities, where 1,404

37

Pedestrian Re-Identification

of them share at least two camera views while the remaining 408 ones that appear
in one camera only can be used as distractors. They split in half the pedestrians for
the training and testing set, for which they query one image for each identity for
each camera against all the remaining gallery. In the latter instead, they consider
1,852 identities with 1,413 of them that appear in two or more cameras and 439
distractor identities which appear in only one camera view. They follow a procedure
similar to that of the Market dataset for the bounding box annotation. Since the
most common version is the DukeMTMC-Reid, from now on we will refer to it
when we mention the Duke dataset.

3.3.3 CUHK03
This dataset [3] contains 14,097 images of 1,467 pedestrians that have been captured
by a total of 6 cameras. Each pedestrian has been recorded by two different camera
views, for an average of 4.8 images per camera. The bounding boxes were detected
both manually and with pedestrian detectors, to increase realism (inaccurate
detections). We will only focus on the version with detected bounding boxes.
Features such as misalignment, occlusions and body part missing are recurrent,
rendering the pedestrian retrieval more difficult. Since the videos were collected
over months, illumination changes depend on multiple factors (such as weather) and
are frequent even in the same camera view. Additionally, cameras have different
settings and form complex cross-view transforms.

Figure 3.3: Image samples from CUHK03 dataset [3].

38

Pedestrian Re-Identification

Dataset Market Duke CUHK03
Bounding boxes 32668 36411 14097

Bounding boxes type Detected Hand-drawn Detected
Total cameras 6 8 6
Total identities 1501 1812 1467

Training identities 750 7022 767
Testing identities 751 7023 700

Table 3.2: Summary of the main datasets characteristics.

3.4 From shallow to deep person descriptors
In this section, we will finally provide the highlights that, over time, made this
ever-growing task as we know it today, starting from the techniques of the early
days and shedding light on the most recent architectures. After doing so, we will
unravel what constitutes the current state of the art. This chapter is focused
only on methodologies limited to training and testing on the same dataset. This
subtask is known as supervised person Re-ID. Cross dataset analysis will be the
main argument of the next chapter. The training procedures extend to many recent
learning paradigms and their performance evaluation is coupled to the benchmark
datasets of choice. It cannot be taken for granted that a model will achieve a
competitive performance on all of those datasets. Tables 3.3, 3.4 and 3.5 show how
the models perform on the aforementioned datasets.

3.4.1 Architecture evolution
Early methods for person Re-ID relied on the manual extraction of pedestrian
descriptors. Most works exploited color features [51], working with the weighted
color histogram in different color spaces such as in [60]. Such strategies are aimed
at differentiating the pixels belonging to the pedestrian from the background ones.
Later works extracted more robust descriptors such as sift [14] or surf [15]. Despite
all the progress in hand-crafted features, currently adopted methods rely on deep
learning techniques. At first, only standard CNNs for classification were employed.
However, over time contrastive methods gained popularity. Siamese [26] neural
networks are helpful for contrastive losses since they work with pairs of images

2The remaining 408 identities over the 702 for training and 702 for testing are used as
distractors.

3See footnote 2.

39

Pedestrian Re-Identification

and have been heavily adopted in this field. Other important losses then appeared.
Work [25] underlines the importance of the triplet loss for mining hard intra-batch
samples. As of today, one will notice a combination of multiple criteria for neural
network training, such as cross-entropy and triplet loss. In the next subsections,
we will present the most recent works, showing the heterogeneity that exists in
these methods.

3.4.2 Image cues
The most common approach that one can find in the literature lies in extracting
visual features from the cropped bounding boxes. Recent works try to minimize
both the identity loss (cross-entropy loss with the training identities) and other
ones such as the triplet loss.

In work [61], the authors provide a Bag of Tricks (BoT) to extend the discrimi-
native capabilities of an Imagenet pre-trained [33] ResNet [4]. Among others, they
propose the "BNNeck" (shown in 3.4), which adds a batch normalization [22] layer
after the global averaging pooling. They argue that, when optimizing simultane-
ously the identity and triplet losses, considering their inconsistent goals, when one
is reduced the other one could keep oscillating or diverge. Normalizing the features
before feeding them to the final classifier will constrain them on a hypersphere
and thus, make it easier for the cross-entropy loss to converge. Depending on the
features employed for the inference ranking (before or after the normalization), one
should consider Euclidean distance or cosine similarity. They also experiment with
random erasing, warmup learning rate and different last stride sizes.

Figure 3.4: BNNeck structure [61]. P and K stand respectively for the number
of identities and number of images per identity in each batch.

Part-based models decompose an image into multiple regions which represent
different body parts. Work [62] proposes the architecture (PCB) shown in figure
3.5. The authors removed all the layers starting from the global average pooling
of the backbone CNN (such as a ResNet) and divided the spatial dimensions of

40

Pedestrian Re-Identification

Figure 3.5: Structure of the standard PCB architecture [62].

the resulting features (with C channels) into s horizontal stripes. For each stripe,
average pooling is performed, rendering p C-dimensional vectors. Before feeding
each of such vectors to a separate identity classifier, they apply 1× 1 convolutional
filters to reduce the channel size. When dividing the spatial dimension into stripes,
we are coercing all the column vectors (see 3.5) to be in the same region. Some of
them might be more similar to the column vectors of other parts. To address this
"within-part" inconsistency, the authors also propose a refined part pooling (RPP)
that relocates by similarity those "outliers".

Other methods try to erase regions of the images forcing the network to learn
discriminative features from different image regions or body parts. For instance,
work [63], instead of removing random regions, drops the features with the largest
activations, pushing the network to encode discriminative features from low in-
formative regions. To overcome noisy results, they also introduce a regularizing
stream and a global stream that operates on the original pictures.

One common issue that characterizes almost all Re-ID datasets is the distribution
gap between the different cameras. To overcome this issue, work [64] theorizes a
new module that can be easily embedded in different kinds of CNN architectures.
They design a camera-based batch normalization layer (CBN) that exploits camera
annotation to "disassemble" the datasets and align different camera distributions.
During training, instead of normalizing with the batch statistics, they normalize
separately the instances belonging to different cameras with their mean and standard
deviation. During testing instead, they collect an unlabeled set of images and
compute the statistics for each testing camera.

3.4.3 Generative methods
As we saw in the previous section, a certain individual could appear under different
illuminations, poses and viewpoints. Up until this moment, the proposed methods
tried to reduce the influence of intra-class variations by minimizing more losses,
dividing the feature maps into multiple regions or more in general modifying existing
backbone CNNs. With GANs instead, to increase the robustness of a model, one

41

Pedestrian Re-Identification

could generate reasonably realistic images which are diverse enough to make up for
unseen variations [65].

In work [66], the authors adopted a siamese [26] neural network, which they
called FD-GAN (pose-guided feature distilling GAN), where each of the two
branches includes an image encoder, an image generator, a pose encoder, an
identity discriminator and a pose discriminator. As it is shown in figure 3.6, upon
receiving two images of the same person, each branch will first extract the visual
features and, subsequently, generate a new image conditioned on its identity and a
target pose (provided as a vector embedding). The generator, together with the
image encoder, would like to fool both the identity and pose discriminators, with
the aim of learning identity-related and pose-unrelated visual features. To better
regularize this process, the extracted feature from the two images are merged into
a verification classifier (which checks if they belong to the same person), while a
novel same-pose loss between the generated images is introduced.

Figure 3.6: Overview of FD-GAN [66]. The target pose is represented by a vector
embedding. We can see the many modules and task that characterize this network.
The verification and same-pose loss have been used to better regularize the whole
process.

A different joint discriminative and generative approach that does not require
additional pose embeddings can be found in DG-Net [65]. They introduce a novel
generative module, made up of an appearance and a structure encoder, a decoder
(the generator) and the discriminator. The two encoders respectively decompose

42

Pedestrian Re-Identification

each pedestrian in what they call the appearance and structure latent space (code).
The former describes id-related cues such as clothing color, texture and style, while
the latter describes the background, hair, pose, viewpoint and body size. Intuitively,
after the latent codes have been extracted from two images, they feed the generator
with the appearance embedding of an image and the structure embedding of the
other one. In this context, the generated image should share, for example, the
same clothing color of the instance associated with the appearance code and the
same pose of that associated with the structure code. To regularize the generator,
we can introduce a self-reconstruction loss by feeding the network with the same
image or two different images of the same person. The discriminator will try to
understand if the images are fake via adversarial loss while the generator is trying
to fool him. On top of this, the authors employ an identity classification task for
both the original and the generated images, forcing the appearance code of different
individuals to stay apart. The identity classification for the generated images is
further guided by a student-teacher model. Lastly, they also simulate the change of
clothing for a given identity, making the network focus on attributes such as body
size, hair or presence of a bag and such.

Figure 3.7: DG-Net structure [65]. First row: (a) generative and discriminative
modules share the appearance encoder. Second row: (b) self-identity objective with
same person, (c) cross-identity objective with two different characters, (d) Re-ID
task involves primary and fine-grained feature learning.

43

Pedestrian Re-Identification

3.5 Other approaches
Up until now, we presented works that almost exclusively learn from images (and
vector embeddings for pose information in one case). However, it is possible to
exploit other kinds of data such as, if provided, segmentation maps and temporal
cues. For instance, in [67] the authors extracted both visual semantic and spatial-
temporal representations. They argue that it is reasonable to introduce temporal
constraints, since when a character has been captured by a certain camera at time
t, it cannot be recorded at time t + ∆t by another camera that is far away from
her/him. To do so, they estimated the spatial-temporal distribution of the camera
network and exploited the frame numbers available in the data annotations. Having
said that, as of today, the majority of approaches focus more on image feature
learning rather than exploiting extra information.

Model Venue Market
MaP R1

PCB[62] EECV18 81.6 93.8
ST[67] AAAI18 95.5 98.1

BOT[61] CVPR19 94.2 95.4
CBN[64] ECCV20 83.6 94.3

Top-DB[63] ICPR20 94.1 95.5
Generative Methods

FD-Gan[66] NeurIPS18 77.7 90.5
DG-Net[65] CVPR19 86.0 94.8

Table 3.3: Performance on Market.

Model Venue Duke
MaP R1

PCB[62] EECV18 69.2 83.3
ST[67] AAAI18 92.7 94.5

BOT[61] CVPR19 89.1 90.3
CBN[64] ECCV20 70.1 84.8

Top-DB[63] ICPR20 88.6 90.9
Generative Methods

FD-Gan[66] NeurIPS18 64.5 80.0
DG-Net[65] CVPR19 74.8 86.6

Table 3.4: Performance on Duke.

44

Pedestrian Re-Identification

Model Venue CUHK03
MaP R1

PCB[62] EECV18 57.5 63.7
Top-DB[63] ICPR20 86.9 85.7

Generative Methods
FD-Gan[66] NeurIPS18 91.3 92.6

Table 3.5: Performance on CUHK03.

45

Chapter 4

Cross-Domain Transfer

As we saw in the last chapter, modern supervised person Re-ID systems achieve
good performances on most benchmark datasets. However, one might think about
how well the previously explained techniques scale in a practical scenario. Before
training a model, we would have to collect data coming from our own cameras,
annotating manually the identities of all the bounding boxes that we extracted. This
job is time-consuming, error-prone and requires a team of more researchers. Along
the standard supervised pipelines, there are emerging fields such as unsupervised,
semi-supervised domain adaptation and domain generalization for pedestrian Re-ID.
Even if supervised methods generalize well to unseen identities (in the test phase),
they are not able to retain the same performance when they see images that do
not share the same visual characteristics (e.g., illumination, viewpoints, weather
conditions, etc...) of the training data. In this sense, each dataset could be thought
of as belonging to a different domain.

This chapter starts with a brief domain adaptation introduction after which
there are portrayed several techniques in the realm of deep learning. To highlight
the complexity of this task, we point out that, at the moment of writing, these
techniques focus mostly on real-to-real datasets. Researchers are trying to bridge
the gap between datasets that have been recorded in different scenarios. To conclude
the chapter, we finally present existing synth-to-real approaches and introduce our
novel synthetic dataset, comparing it to the existing ones.

4.1 Domain adaptation
Suppose that a consulting company has the task to build a reliable pedestrian Re-ID
system ready to be deployed in a ship container terminal. Since this is a high-risk
area, the port administrators would like to monitor who is entering or exiting the
facility. The company does everything by the book, trains a state-of-the-art model

46

Cross-Domain Transfer

on a benchmark dataset and annotates a smaller one using the port cameras. In the
standard supervised training procedure, the identities on which we test, are different
from those seen by the model. It is reasonable to expect that, when evaluated
on the newly collected samples, the model will still achieve a good performance.
Unfortunately, when the company actually tests on the new data, there is a huge
drop in accuracy. The consultants then compare the source and target images,
only to see the following differences. In the source dataset the subjects dressed
casually, the weather was sunny and the scenes were crowded, while, in the target
one, almost all subjects shared the same working outfit, the port was shrouded in
mist and there were night scenes. Those two datasets could belong to two different
domains. What we just described will be framed as direct transfer in the next
sections, but, before explaining how to address this kind of problem, we formalise
common settings of dataset shift.

4.1.1 Dataset shift
In a practical scenario, after we trained a model on the available data sources,
we would like to get truthful prediction when new data arrives. Unfortunately,
the learning and inference environments might change for reasons that range
from sample selection bias, measurement error, imbalanced data to more general
distribution shifts [68]. This can be modeled by means of conditional and joint
probability distributions. Let a domain be the combination of an input feature
space X and the probability distribution defined over this feature space P (x), with
x ∈ X. Usually, even if there are different domains, we want to learn a specific
task, defined as the combination of the output space Y and the discriminative
mapping x→ y, with y ∈ Y . This mapping can be expressed as the conditional
probability of the output variable (generally the label) given the input one, i.e.,
P (y | x). In the source-to-target domain adaptation problem, we would like to
generalize from the source dataset, to a target one, given that they have some kind
of relationship. So far, we have the following:

Source Domain Target Domain
Ds = {Xs, P (xs)} Dt = {X t, P (xt)}

T s = {Y s, P (ys | xs)} T t = {Y t, P (yt | xt)}

where D and T are the domain and task whereas the subscripts s and t respectively
indicate source and target. It is possible to write the joint probability distribution
for a certain domain [30] as P (x, y) = P (y | x)P (x) or P (x, y) = P (x | y)P (y).
Depending on the assumptions we make about the relationship between source and
target, we will end up with different data shift scenarios. We can now present some
of the common data shifts [68, 30] that one might incur in.

47

Cross-Domain Transfer

Covariate shift (figure 4.1) occurs when the probability distribution defined over
the source and target feature space differs between those domains, i.e., P (xs) /=
P (xt). The conditional distributions given the inputs instead, remain equal, i.e.,
P (ys | xs) = P (yt | xt). To summarize, only the marginal distributions over the
feature space change (often called covariates, hence the name) [68], whereas the
posterior probability distribution in the target domain must be the same as in the
original one.

Figure 4.1: Example of covariate shift [30]. Left: the marginal source and target
distributions differ. Middle: the posterior distributions coincide. Right: since the
target and source distributions are shifted, the joint probability distributions also
differ.

When the marginal distributions over the feature space remain the same across the
two domains but the posterior (conditional distribution given the data) changes,
we have what is called concept shift (figure 4.2). Formally, this means that
P (xs) = P (xt), whereas P (ys | xs) /= P (yt | xt).

Figure 4.2: Example of concept shift [30]. Left: the marginal source and target
marginal distributions are equal. Middle: the posteriors differ. Right: as a
consequence, the joint probability distributions also differ.

Lastly, another common dataset shift is characterized by the prior shift (figure
4.3). Considering the joint probability decomposition P (x, y) = P (x | y)P (y), this
data shift refers to the situation where the prior probabilities over the output space

48

Cross-Domain Transfer

differ between domains but the conditional distributions (given the classes) are
equal. That is, P (ys) /= P (yt) and P (xs | ys) = P (xt | yt).

Figure 4.3: Example pf prior shift [30]. Left: the posterior distributions coincide.
Middle: the prior of the classes differ between the two domains. Right: the joint
probability distributions also differ.

When more general domain shifts occur, we might have a combination of the
previous ones. This brings to far more complex scenarios which are difficult to
frame theoretically. For instance, in a source-to-target domain adaptation scenario
for person Re-ID, usually both the input feature space and class distribution change
(since datasets have different identities). Work [69] instead, rethinks the evaluation
ranking of the pedestrians as a classification between pairs of images. The output
space will be Y = {0,1} and we want our model to return 1 when the identities
of the pair are the same, 0 otherwise. We can now ask that the labelling function
between source and target image pairs should be the same. As of today, there are
many approaches to solve this problem.

4.1.2 Deep learning techniques
We will now provide a brief overview of some of the possible deep learning techniques
for domain adaptation. Although the literature is vast and there is not a unique
general direction, one can expect that certain methodologies will work better than
others for certain tasks or that specific approaches could be more relevant in some
deep learning sub-fields rather than others. The most straightforward way to
address this problem is direct transfer. In this scenario we train a neural network
on the source dataset and simply test it on the target one, hoping that our model
can make up for the data shift or that the discrepancy among domains is not an
issue. Having said that, adopting specific domain adaptation techniques is not
guaranteed to increase performance, since the results could depend on the data, task
and models of choice. We will mainly focus on what is called unsupervised domain
adaptation (UDA), where the target domain labels are not available, although the
following methodologies can be extended to other settings.

49

Cross-Domain Transfer

A first relevant technique is that of deep domain-invariant feature learning [70].
In practice, we would like to learn robust domain-invariant feature representations
aligning the source and target, usually through statistic criterion optimization [71],
reconstruction, or adversarial learning [70]. When such feature representation exists,
after the learning process, if the classifier has a good performance on the source
dataset, it should generalize well to the target domain. Regarding the first option,
common statistical criteria consist of minimizing some divergence metrics of the
distributions. For instance, the maximum mean discrepancy (MMD) measures the
difference of the sample mean in a reproducing kernel Hilbert Space [72]. Precisely,
it is a two-sample statistical test having as null hypothesis the equality of the two
feature distribution means. The more they differ, the more likely that the samples
belongs to different distributions. This statistic is often used as a distribution
discrepancy metric [72]. During the learning process, we can minimize its value to
measure the feature alignment (in the next subsection we will provide an example of
how MMD could be employed). Regarding reconstruction losses instead, common
instances are encoder-decoder architectures. As in work [73], a standard CNN (the
encoder) is trained for classification with the source images. At the same time, this
backbone shares a low dimensional vector (latent space) with another CNN (the
decoder) trained to reconstruct the target images from the output feature vector
via some reconstruction losses. The decoder architecture is made up of transposed
convolutions such that it gradually upsamples to higher spatial dimensions. As
the authors explain, the rationale is that a good domain-adaptive representation
(the latent vector in this case) should both allow to correctly classify the source
images and reconstruct the target domain data. For adversarial domain adaptation
instead, one will usually see a two-player game between a domain and label classifier.
These kinds of techniques operate at a feature level, we will later explain generative
adversarial methods for domain adaptation. In work [74], a standard CNN is trained
for classification with the labeled source images. At the same time, the domain
classifier will try to predict the correct domain of both source and target images.
In between the last convolutional layer and the domain classifier, there is a gradient
reversal layer. During the backpropagation, this layer will invert the sign of the
gradient coming from the domain classifier before traversing the feature extractor.
As a consequence, the feature extractor will not merely find discriminative features
for the downstream task, since it will try to "fool" the domain classifier by learning
domain-invariant features. One can imagine this as if the feature extractor and the
domain classifier were adversaries. Hopefully, at the end of the training process,
the domain classifier will not be capable of distinguishing if an image comes from
the source or target domain.

Another set of techniques instead focuses on learning more transferable features
by matching (batch) normalization statistics, thus intervening in the network
architecture [71]. In [72], the authors argue that batch normalization layers embed

50

Cross-Domain Transfer

the style and traits of a particular domain. In this sense, they develop a style loss
that, during training, aligns the batch normalization statistics of images belonging
to two different domains.

In tasks such as person Re-ID, methods that transfer label information with
some sort of class criterion [71] have gained popularity. Among others, pseudo
labeling has proven to be effective in guiding the training process. The pseudo
labels can be either transferred from the trained source model predictions or via
clustering. The latter is common when the source and target do not share the
same classes (for instance in retrieval problems). Because of the risk of noisy labels,
after a certain number of training steps, pseudo labels are typically recomputed by
clustering the newly obtained features, not to stagnate the learning process. In the
next section of this chapter, we will provide some examples of this methodology
applied to person Re-ID.

Differently from the aforementioned techniques, domain mapping [70] typically
works on the image pixels level, rather than the feature level. Notable examples
are GANs and conditional GANs that translate an input image so that it matches
the style of the target domain. Although image translation can be thought of as
more general than domain adaptation (since it is task agnostic), it is possible to
embed other heads into the image mapping architecture to perform specific tasks.
For instance, having translated the source images to match the style of the target
domain, one could use those mapped images to train a CNN for classification
(as done in some person Re-ID works). In this way, we hope to achieve a better
performance when we evaluate the target test set as compared to training the CNN
on the original source images (direct transfer). Since this approach has heavily
influenced our work, in the next subsection we explain some methodologies for
image translation in the general context of neural style transfer.

On a final note, we spend a few words on self-supervision for domain adaptation.
Self-supervised methods are characterized by the assignment of automatically
generated pseudo labels from data attributes [16]. For instance, we could rotate an
image and label it with the rotation angle [75] or divide it into multiple labeled
sections, mess up their order and then solve the jigsaw puzzle [76]. In practice,
we create a new pretext head where, with relevant generated labels, we have to
solve a new task while, for instance, jointly training the downstream classification
network. The main reason is that, by solving these additional tasks, the network
should have a "better understanding" of the objects and their shapes, possibly
leading to domain-invariant features. Self-supervision can be thought of as a kind
of feature representation learning, particularly useful for domain generalization.
In this scenario, there are one or more available source datasets without having a
specific target. Self-supervision has successfully been employed for disentangling
semantic-specific information from domain-specific information.

51

Cross-Domain Transfer

4.1.3 Neural style transfer
An interesting setting is when, given a source image and a target one, we would
like to retain the content of the former while applying the style of the latter.
Neural style transfer can be seen as a disentanglement problem [6], where the
objective is to separate the content from the style. Classic examples are picture
to painting (usually sketches or impressionist artworks), horse to zebra, cat to
dog, etc... Remaining in the realm of deep learning, earlier works [77, 8] exploited
semantic information from CNN architectures such as the VGG [34] (since it was
found to work better in this task than deeper networks) at different layers. For
instance, work [8], along with an image transformation network which, given a
target image y, maps an input image x to an output one ỹ, employs two perceptual
losses. They match both the content and style of the output image with those of
the target one by respectively matching the features maps and the Gram matrix
of the feature maps at different layers of a VGG-16 network. A year later, work
[72] proved that matching those Gram matrices and minimizing the MMD with
the second order-polynomial kernel is equivalent. They also experiment with other
kernel functions.

More recent approaches [47, 7, 6] go under the name of image-to-image translation
and make extensive use of GANs. Work [47] (pix2pix) operates with pairs of images
and exploits conditional GANs to map a scene from the source representation
to the target one (such as semantic label map to RGB and similar). Although
this is a great achievement, in this thesis we are more interested in what is called
unpaired image translation (see figure 4.4). In this setting, paired instances of both
domains are not available, so we need to find a more general mapping to relate
the two domains. Among others, CycleGans [7] provides an intuitive yet effective
framework. Since it was one of the sources of inspiration for our work, we briefly
revisit its formulation.

Given the domains X and Y where the instances are drawn according to the
data distributions P (x) and P (y), the goal is to learn the mappings G : X → Y
and F : Y →X. This can be modeled with a couple of generators (the mapping
functions) and discriminators. Specifically, DX is trained to distinguish between
images coming from the domain X and the translated images F (y). The same
reasoning applies to the other discriminator DY . One might ask why we need such
a complex structure if we want to translate an image from one domain to another.
The authors explain that, among other issues (difficulty to optimize the objective,
mode collapse), with a standard one-way mapping G : X → Y , even if we could
theoretically match the empirical target distribution P (y), it is not guaranteed than
each input x and translated output are meaningfully paired. Given a network with
a large enough capacity, input images can be mapped to any random permutation
of target images [7]. Since we do not have access to paired source and target images,

52

Cross-Domain Transfer

Figure 4.4: Differences between paired and unpaired image translation. First row:
image samples [47] are clearly paired and there is a strong relationship between each
source and target image. Second row: paired image samples [7] are not available.

Figure 4.5: Cycle consistency loss [7]. (a) Mapping generators G : X → Y and
F : Y → X with paired discriminators DY and DX . (b) Forward regularizing
cycle consistency loss x→ G(x)→ F (G(x)) ≈ x. (c) Bacward regularizing cycle
consistency loss y→ F (y)→ G(F (y)) ≈ y. As we can see, after both cycles the
reconstructed image should be close to the original one.

we need to give more structure to the objective and guide the generative process.
They achieve this by means of the so-called cycle consistency loss (see figure 4.5).
In this sense, G and F should be the inverse of each other and bijections, that
is: F (G(x)) ≈ x and G(F (y)) ≈ y. By doing so, we are actually constraining
the possible obtainable mappings of the generative process. This objective can be
expressed as Lcyc = Ex∼P (x)∥F (G(x))− x∥1 + Ey∼P (y)∥G(F (y))− y∥1, where we
minimize the per-pixel L1 loss between the original and reconstructed images. For
the adversarial loss, instead of using the standard binary cross-entropy loss, the
authors employ the L2 loss for both couples of generator-discriminator. Additionally,
to better preserve the color composition of the input image, they regularize the
generators by constraining them to return the identity mapping when real instances
of the target domain are provided as input. This can be expressed as minimizing
the identity loss, i.e., Lidentity(G, F) = Ex∼P (x)∥F (x)− x∥1 + Ey∼P (y)∥G(y)− y∥1.
Although this framework is effective, work [6] argues that the bijective assumption
we make when exploiting the cycle consistency might be too restrictive, since it could

53

Cross-Domain Transfer

be difficult to reconstruct the samples in both directions. On top of this, training
and finding good hyperparameters for a couple of generator-discriminator networks
is arduous and time-demanding. The authors propose a one-way translation from
source to target with a single generator and discriminator, regularizing the training
by comparing patches of the input and output images. Since the overall architecture
is lighter than a CycleGan, it is easier to embed secondary tasks and other network
heads. From the moment that this represents the core foundation of our work, we
will provide more details on the architecture in the next chapter, which will focus
on the implementation and methodology details of this thesis.

4.2 Domain adaptation for person Re-ID
After the brief overview on general domain adaptation techniques, it is now possible
to focus on the sub-field of person Re-ID. The approaches to bridge the gap across
different domains are heterogeneous, with iterative pseudo-labeling and generative
techniques being among the predominant ones. However, they usually share the
same training pipeline. Suppose that we want to generalize from a labeled source
dataset to an unlabeled target one. Since pedestrian Re-ID datasets usually have
different identities in the training and test splits, the standard procedure is to use,
along with the source dataset, the unlabeled training partition of the target dataset
to learn domain-related features. The resulting model is then evaluated on the
new identities of the target testing partition. In this situation, we are assuming
that, in a practical scenario, is far easier to obtain unlabeled data frames instead
of labeled ones. Exploring the literature, one will find that such methods are
commonly known as UDA [78, 79, 80]. Instead, if we do not exploit any labeled
source dataset, learning only from a specific unlabeled "target" dataset, we are in a
setting often defined as fully unsupervised Re-ID [79]. Other approaches include
semi-supervised learning, where a small fraction of labeled target data is allowed,
and domain generalization, where we try to generalize to new unseen domains
exploiting more datasets during training or learning domain-agnostic features. In
this section, we will explore the state of the art concerning the main approaches
for cross-domain (real-to-real) person Re-ID. To see the results of these approaches
on the dataset presented in the previous chapter, refer to tables 4.1 and 4.2.

4.2.1 Iterative pseudo-labeling techniques
Work [81] mines similarities among different persons of the unlabeled target dataset
by comparing global as well as local information. The authors employed a ResNet-
based network that is first trained on a source dataset in a supervised fashion.
The model is then fine-tuned on the target dataset by extracting features from
the whole images. Each image is then divided into two regions that represent the

54

Cross-Domain Transfer

upper and lower body parts. They vectorize the feature maps with average pooling
and extract pseudo labels from each feature vector via clustering so that every
pedestrian is associated with three pseudo labels (for the pedestrian, its lower and
upped body parts). The model is then optimized with triplet losses exploiting the
obtained feature vectors and pseudo labels (which are iteratively recomputed at
each training iteration). As an improvement, they also allow using a restricted
sample of manually labeled target images in a semi-supervised training setting.

In the previous example, the pseudo labels were iteratively refined by re-grouping
the feature vectors and optimizing for such new pseudo labels at each training
iteration. This could be framed as an offline refinery, which, as mentioned in [82],
could still lead to noisy labels. Work [82] addresses this exact issue by providing
more robust labels with additional online refinery. They employed two CNN with
the same architecture (yet different initialization) for collaborative learning. Having
extracted the pseudo labels via clustering for the current learning iteration, they
optimize one network using as soft labels for the cross-entropy loss the predictions
of the other. However, the predictions used as soft labels are averaged temporally
so as not to end up with the same result from both networks and reduce the bias
due to the noisy nature of the hard pseudo labels. For the evaluation, only the
best-performing model is employed. As an improvement of what we have just
explained, work [83] modulates the features of the two collaborative networks to
further reduce their similarities and bias toward the same error propagation. In
each branch, they multiply by a factor a randomly selected block of the feature
embeddings, enhancing the differences among the learned parameters. Additionally,
to find more discriminative and complementary features, they adopt different kinds
of attention mechanisms [35, 36], strategically placing them in the two networks.

One could also try combining more domain adaptation techniques explained in
the previous section. For instance, work [84], on top of exploiting unlabeled image
clustering, performs adversarial domain invariant feature mapping. The employed
CNN tries to fool a domain discriminator to output the same probability (0.5) for
both source and target images. Additionally, they try to mitigate the noisy labels
with global distance optimization. Usually, inter and intra class feature distances are
optimized with contrastive or triplet losses by taking into account only the samples
in each batch. However, they combine this kind of local distance optimization with
a global one by building a memory bank that contains samples outside the current
batch. They found that this strategy enhances the label robustness.

4.2.2 Generative methods
Reviewing the literature, one will find that GANs have been widely adopted to
perform different kinds of image translation between pedestrian domains. The main
objective is to translate the pedestrian to the target domain while maintaining

55

Cross-Domain Transfer

their identity-related cues. This will allow us perform the Re-ID task on the
domain transferred images, in the hope of obtaining better results compared to
a direct transfer. We first present works that exploit the CycleGan framework
and subsequently introduce procedures similar to [65] which was presented in the
previous chapter in a supervised setting.

The authors of [85] aim to transfer the style of the target images to the source
ones while preserving appearance and identity information. Alongside the required
losses for the CycleGan, they introduce a novel one that should preserve the
identities of the pedestrian during the translation process. They compare the
differences between the original and translated images by applying a foreground
mask (therefore focusing on the pedestrians) and minimizing the L2 norm. After
this procedure, the result is a translated dataset that allows performing a standard
supervised pedestrian Re-ID. In [86], the authors apply a similar framework.
However, they also employ a siamese neural network to better preserve identity
information of the source images during the translation. Work [78] modifies the
original identity constraint of the CycleGan to better align the feature distribution
of the same person. However, the authors translate the source dataset only to pre-
train a baseline on top of which they perform iterative pseudo labeling techniques.
Specifically, they propose a novel within model co-training method that provides
additional self-supervision during the clustering procedure. As in other works, the
learning process is based on minimizing the triplet loss of the features coming
from the global average pooling and fully connected layer. However, instead of
extracting the pseudo labels only from the features of the last fully connected
layer, they perform a second clustering from the global average pooling layer, to
obtain another set of pseudo labels. Minimizing the losses coming from different
clusterings should make the predictions more reliable since the overall loss will
make less confident dissimilar predictions.

Inspired from [65], DG-Net++ [79] disentangles identity-related cues (appearance
space) from the unrelated (structure space) ones. It employs a shared appearance
encoder for both source and target images and separate structure encoders that
model the pose, viewpoint, position, etc.... Instead of exploiting this disentangling
game in a supervised setting, they adopt it to better bridge the gap between the
two domains. After generating new images with the appearance of one domain and
the structure of the other, they reconstruct the source pictures via cycle consistency
(see figure 4.6). The training is also guided by cross-entropy losses on the identities
of both domains, using iterative clustering for the unlabeled target images. At the
foundation of their motivations is the fact that such disentanglement helps the
adaptation process since it constraints to focus on identity-related features only.
Simultaneously, adaptation improves features-disentanglement by strengthening
the shared appearance encoder.

56

Cross-Domain Transfer

Figure 4.6: Overview of DG-Net++ [79]. It can be seen that the appearance
encoder (which is also employed during the evaluation) is shared across the two
domains, as well as the image and domain discriminators, whilst the structure
encoders are different. After an image is translated given an appearance and
structure codes, it is reconstructed back to its original form.

Along the same line of what we just explained, work [80] also develops a dis-
entanglement game between identity-related and unrelated features, but with a
core difference. It does not require a source dataset, operating directly with the
unlabeled target. For each image, they estimate the pedestrian pose and generate a
new one via rotation. The generative module is then asked to synthesize two images
starting from the appearance and structure embeddings. While both images will
share the identity of the input, one will also share supposedly the same pose (for
consistency), whereas the other should appear with the rotated one. This process
is enhanced by a contrastive module where the objective is to find, give an anchor
image, positive images with the same identity and negative ones with different
identities. However, since we do not have access to the pedestrian identities, they
extract pseudo labels through clustering.

A different approach is instead that of [87]. Given a source and target images,
they first extract identity and contextual cues through two encoders. A mask is
applied to the target image for filtering out the person. The information coming
from the two pathways is then fused depth-wise and fed into a conditional encoder-
decoder GAN. The generated images should resemble the source identity and the
background clutter of the target. In particular, the generator returns two outputs,
a residual map that accounts for domain discrepancy and a context map which
models context changes (and thus the name context rendering gan). The translated
image is a combination of the two previous embeddings and the source image.
Besides the domain discriminator, they employ cross-camera, inner-camera context

57

Cross-Domain Transfer

variation and source identity discriminators (figure 4.7).

Figure 4.7: CR-GAN [87] (context rendering gan) architecture. The generative
process outputs a residual and a context map (respectively XR and XC) which
are combined with the source image to generate the output. On the right side, the
different discriminators encoders guide the training together with their correspond-
ing losses.

4.2.3 Other methods
As we saw in the previous two subsections, domain adaptive approaches for person
Re-ID rely on a labeled source dataset and a specific unlabeled target one. In the
realm of pseudo labeling techniques, the source is often used only for pre-trainings,
whereas generative methods leverage and exploit more the source data (although
we provided an example where this is not true). On top of this, we often assume
to have a decent amount of unlabeled target images, since most approaches bridge
the gap from a specific source to a specific target. As a consequence, in a practical
scenario, we would need to perform domain adaptation for multiple locations if
they differ enough to drop the performance. Domain generalization techniques try
to counter this issue. For instance, work [5] employs an architecture with several
convolutional streams, each of them having a different receptive field size. This
will constrain the network to look for multiple discriminative regions with different
scales for the same image, capturing more details and potentially reducing the false
matches. The streams are then fused together with an aggregating gate that will
assign more weight on one or more scales. The model is optimized in a supervised
fashion, exploiting the source dataset.

Up until now, all the approaches that we detailed only focused on visual cues, as
the majority of person Re-ID works. However, in the previous chapter, we saw that
one could also exploit different kinds of information. A good example can be found
in [88], where the authors also make use of temporal information. To summarise,
they assume that, because of the relatively small size of each batch of data, images

58

Cross-Domain Transfer

are likely to have distinct identities inside a batch. Therefore, they optimize on
a local level with a classification model that pushes the pedestrians away from
each other. On a global level (considering the whole training data), instead of just
considering only visual features to estimate the pseudo labels, they also rely on the
available video frame numbers for temporal consistency. This temporal consistency
is based on how likely an individual is to be captured by other cameras in a future
time instant, given that he/she is being recorded by a certain camera right now.
They then build temporal-guided clusters [88] for label prediction combining such
temporal consistency and visual similarities.

Model Venue Source Market
MaP R1

SSG[81] ICCV19 Duke 58.3 80.0
SSG++[81] ICCV19 Duke 68.7 86.2

DIM+GLO[84] ACMM20 Duke 65.1 88.3
MMT[82] ICLR20 Duke 76.5 91.2

JVTC+[88] EECV20 Duke 67.2 86.8
OSNet-AIN[77] IEEE-TPAMI21 Duke 30.6 61.0
OSNet-AIN[77] IEEE-TPAMI21 MSMT17 43.3 70.1

AWB[83] IEEE-TIP22 Duke 81.0 93.5
AWB[83] IEEE-TIP22 MSMT17 79.4 92.6

Generative Methods
SPGAN[86] CVPR18 Duke 26.9 58.1
Cyclegan[78] CVPR19 Duke 24.5 52.0
ISSDA[78] CVPR19 Duke 63.1 81.3

CR-GAN[87] IICV19 Duke 33.2 64.5
CR-GAN[87] IICV19 CUHK03 30.4 58.5

CR-GAN+TAUDL[87] IICV19 Duke 54.0 77.7
CR-GAN+TAUDL[87] IICV19 CUHK03 56.0 78.3

DG-Net++[79] EECV20 Duke 61.7 82.1
DG-Net++[79] EECV20 MSMT17 64.6 83.1

GLC[80] CVPR21 None 66.8 87.3
GLC[80] CVPR21 Duke 75.4 90.5

Table 4.1: Table with models performances when trained on a source dataset
and tested on Market. To notice that SSG++ allows a small subset of the
target labels (semi-supervised learning) and that OSNet is target agnostic (domain
generalization).

59

Cross-Domain Transfer

Model Venue Source Duke
MaP R1

SSG[81] ICCV19 Market 53.4 73.0
SSG++[81] ICCV19 Market 60.3 76.0

DIM+GLO[84] ACMM20 Market 58.3 76.2
JVTC+[88] EECV20 Market 66.5 80.4
MMT[82] ICLR20 Market 68.7 81.8

OSNet-AIN[77] IEEE-TPAMI21 Market 30.5 52.4
OSNet-AIN[77] IEEE-TPAMI21 MSMT17 52.7 71.1

AWB[83] IEEE-TIP22 Market 70.9 83.3
AWB[83] IEEE-TIP22 MSMT17 69.6 82.8

Generative Methods
SPGAN[86] CVPR18 Market 26.4 46.9
Cyclegan[78] CVPR19 Market 19.4 35.7
ISSDA[78] CVPR19 Market 54.1 72.8

CR-GAN[87] IICV19 Market 33.3 56.0
CR-GAN[87] IICV19 CUHK03 26.9 46.5

CR-GAN+TAUDL[87] IICV19 Market 48.6 68.9
CR-GAN+TAUDL[87] IICV19 CUHK03 47.7 67.7

DG-Net++[79] EECV20 Market 63.8 78.9
DG-Net++[79] EECV20 MSMT17 58.2 75.2

GLC[80] CVPR21 None 62.8 82.9
GLC[80] CVPR21 Market 67.6 81.9

Table 4.2: Table with models performances when trained on a source dataset and
tested on Duke. To notice that SSG++ allows a small subset of the target labels
(semi-supervised learning) and that OSNet is target agnostic (domain generaliza-
tion).

4.3 Synthetic datasets
Although domain transfer techniques have been dramatically evolving in this
field, there seems to be a new emerging direction. As we pointed out in the
previous chapter, large-scale datasets are challenging to record and annotate [89].
Furthermore, illumination, pose and viewpoint variations are limited by the physical
world and camera availability, lowering the performance of a model across domains.
From an ethical standpoint instead, the acquisition of such datasets in public
environments has raised privacy concerns [90]. To address these issues, recent
works make use of software-generated data, both in direct transfer and domain
adaptation settings. Below we introduce some of the existing synthetic datasets

60

Cross-Domain Transfer

for person Re-ID and compare them to ours. Table 4.3 provides some summary
statistics.

4.3.1 SyRI
In this dataset [91] we can find 100 digital pedestrians with custom body shapes,
clothing and accessories. The authors used Unreal Engine 4 [92] to animate the
characters with gender-dependent walking rigs. For the illumination, they used 140
HDR environmental maps, where each of them can be seen as a sphere surrounding
the pedestrian with certain lighting conditions. Each character has been recorded
with all the HDR maps and two random rotations along the vertical axis, for a
total of 1,680,000 extracted frames.
This dataset (examples in figure 4.8) was built to support the author’s work of
illumination inference. In fact, it appears much different from real-world datasets
since it does not present a multi-camera network, surveillance scenes and pedestrian
occlusions.

Figure 4.8: Image samples from SyRI [91]. They depict the same character in
different HDR maps.

4.3.2 PersonX
This dataset [93] was built with Unity3D [94] and presents 1,266 different characters,
547 females and 719 males. To increase realism, the authors created materials and
textures from mappings obtained by scanning real-world people. The pedestrians’
diversity is assured by different skin colors, ages, body shapes, hairstyles and other
clothing accessories. They present different illumination sources such as spotlight,
area light and sunlight with editable parameters. The virtual cameras present
configurable values for image resolution, focal length and height. Camera views
are tied with 6 different backgrounds, where the characters can be animated in
different directions. Each pedestrian has been recorded from 36 different angles in
each background, for a total of 273,456 image samples (examples in figure 4.9).

4.3.3 RandPerson
The authors of this dataset [95] used the software MakeHuman [96] to generate 8,000
different 3D pedestrians. To differentiate the synthetic identities, they generated

61

Cross-Domain Transfer

Figure 4.9: PersonX[93] dataset. First row (a): pedestrian captured in different
views and backgrounds (1-3 are uniform color backgrounds while 4-6 have scenes).
Second row (b): bounding box samples of different pedestrians with various clothes.

new outfits by creating new UV texture maps. There is an equal gender and skin
color distribution, weights and ages are uniformly distributed in the software ranges
whereas they used a normal distribution for the heights. Each character is further
customized with other accessories such as beards, shoes, necklaces and hairstyles.
To simulate real video surveillance scenes, they created and modified several virtual
environments with Unity3D [94]. Pedestrians are recorded from multiple cameras,
varying illumination, viewpoint distance, resolution and background (see figure
4.10). Additionally, person-to-person occlusions are common such as in real-world
scenarios. There are 19 cameras recording a total of 11 scenes. From the 38
recorded video, they extracted 1,801,816 images.
Among others, the main features of this dataset that better distinguish it from
previous synthetic ones (such as SOMAset [97], SyRI [91] and PersonX [93]) are
the presence of multiple cameras and pedestrians in the same scene. Instead of
just capturing a pedestrian with a single camera from multiple viewpoints, they
created proper virtual Re-ID scenes with more pedestrians and cameras at once.

Figure 4.10: Image sample of the RandPerson dataset [95]. First row: same
character in different scenes. Second row: different characters in the same scene.

62

Cross-Domain Transfer

4.3.4 UnrealPerson
This dataset [89] share some similarities with the previous one, such as using
MakeHuman to generate pedestrians and design virtual person Re-ID scenes.
However, the authors used real-world clothing images to generate cloth textures
to increase realism. Additionally, they also deliberately included pedestrians with
similar characteristics to add "hard samples". Although having a diverse dataset
in terms of accessories, clothes, identities is important, similar pedestrians play
an important role since this could guide Re-ID systems to focus on discriminative
details [89]. Overall, they also claim that the generated surveillance environments
are more realistic than those of previous datasets.
The scenes were simulated with the software Unreal Engine 4 [92], comprising of
3 outdoors and 1 indoor environments. As in the RandPerson dataset, there are
person-to-person occlusions and illumination variations. They extracted 120,000
bounding boxes captured over 34 different cameras, depicting 3,000 digital identities.

4.3.5 GTASynthReid
We will now provide the main characteristics of our dataset and explain how it
was created. Instead of relying on 3D software for building our own scenes and
pedestrian models, we exploited the game engine of Grand Theft Auto V (GTAV)
[98]. This game has increasingly become more popular in the computer vision
community for its photorealism and adaptability to satisfy different scenarios. Over
the years, several user-generated scripts (mods1) have been made available to the
public with the aim of modifying the original game mechanics and transforming it
into a development tool. In the literature, we can see that GTAV has been used
for pedestrian Re-ID [90], path prediction [99], photorealism enhancement [100]
and other tasks related to vehicles (e.g vehicle detection, path prediction, etc...).
The main rationales behind the employment of this game are, besides the realistic-
looking scenes, the capability to program vehicles, pedestrians, weather conditions
and the presence of already made 3D environments and models. Additionally,
it is not that difficult to extract data such as segmentation regions, pedestrian
coordinates and paths, other than images or videos.

In our work, we exploited GTAV to create a synthetic dataset for pedestrian
Re-ID. This was done by modifying some preexisting mods2 developed in [99] for

1The term "mod" in the video games context refers to (user-generated) scripts that modify the
regular game storytelling, functionality and environments.

2In this work we tailored the mods available at https://github.com/fabbrimatteo/JTA-Mods
for our task. We also modified the scripts available at https://github.com/fabbrimatteo/JTA-
Dataset needed to extract the bounding boxes from the video frames. Both software repositories

63

https://github.com/fabbrimatteo/JTA-Mods
https://github.com/fabbrimatteo/JTA-Dataset
https://github.com/fabbrimatteo/JTA-Dataset

Cross-Domain Transfer

pedestrian pose estimation and tracking in urban scenarios. In practice, we first
selected the 538 in-game available characters that were appropriate for this task
(excluding other non-human characters) and identified some interesting security
locations. Then, we programmed the pedestrians to follow a certain path or roam
around an area and we recorded the scenes. Each location can have up to two
cameras (in that case the frame rate is doubled to record one frame for each camera
sequentially) and present crowded environments, where pedestrians can also collide.
The characters were captured in several urban scenarios with a total of 19 different
camera positions (both overlapping and non-overlapping). Each pedestrian has
been recorded by at least 2 camera views with an average of 3.5, up to 5 cameras.
There are scenes both at day-time and night-time, with different kinds of weather
(blizzard, rain, clear). The pedestrians have been recorded with different camera
views, illumination and weather settings (see figure 4.11 for some examples). The
assumption is that each identity maintains the same clothing in all the videos. The
total number of bounding boxes is 94312 and it ranges from 29 to 496 for each
pedestrian. To increase realism, the bounding boxes are not perfect, meaning that
the characters could be cropped as well as occluded by objects or other pedestrians.
Since the scenes are crowded, there are person-to-person interactions, leading to
frames where other pedestrians (or body parts) are present besides the person
of interest. Additionally, since there are characters who wear uniforms or suits,
some of the individuals share similar clothes, even though they represent different
identities. This could be linked also to scenes with low illumination or when the
subjects are far away from the camera. For instance, when images are "pixelated", is
more difficult to differentiate among characters, as in real-world datasets. Although
our dataset might feel more realistic compared to similar ones, for the identities we
were limited to only those allowed by the game.

Dataset #Cameras #Scenes #Bboxes #Identities
SyRI[91] 280 140 1,680,000 100

PersonX[93] 6 1 273,456 1,266
RandPerson[95] 19 11 1,801,816 8,000
UnrealPerson[89] 34 4 120,000 3,000
GTASynthReid 19 5 94,312 538

Table 4.3: Summary of the main synthetic datasets characteristics. Although we
provide the total number of bounding boxes, we notice that it is often undersampled.

were developed in [99].

64

Cross-Domain Transfer

Figure 4.11: Frames from our synthetic dataset. There are 6 pedestrians, each
depicted in 8 different bounding boxes. One can notice different viewpoints,
illumination settings, pose and weather conditions. There are also occlusions and
person-to-person interactions (other pedestrians or body parts).

4.4 Synth to real
In the last section of this chapter, we present different methodologies that have
been implemented to generalize from synthetic to real data. In the context of
person Re-ID, this is a relatively recent field of research that, at the time of writing,
is rapidly evolving. Having presented some of the existing computer-generated
datasets for pedestrian Re-ID, we also provide the results of these novel approaches
on such datasets (see tables 4.4, 4.5 and 4.6).

4.4.1 Approaches
An interesting earlier approach is that of [97]. In this work, the authors created
a novel synthetic dataset, SOMAset, with 25 male and 25 female characters.
The pedestrians present different somatotypes with different body shapes and,
additionally, each of them has been depicted with 8 different sets of clothing. This
is different from the vast majority of person Re-ID datasets, since researchers often
assume that each identity has the same clothing across different scenes. They also
account for ethnicity variations. For the image frames, each pedestrian has been
recorded with 250 poses for each set of clothing. For the Re-ID task, they develop
an Inception-based architecture [41] which is trained on their synthetic dataset. To
account for synth-to-real domain variations, the network is then fine-tuned on the
real target dataset.

Work [91] addresses the synth-to-real domain adaptation in a three-step process.
At first, the authors perform illumination inference exploiting the 140 environmental
maps of the SyRI dataset. In practice, they consider each illumination condition as
a different domain and train a neural network to predict the illumination condition

65

Cross-Domain Transfer

of each synthetic image. Then, they find the closest lighting condition of the
real target dataset by majority voting. The rationale is to achieve the minimum
domain shift by considering only the synthetic lighting setting which is the closest
to the real target data. The chosen synthetic domain is then adopted in the second
step for the domain translation. They employed a cyclegan similarly to what we
explained in the neural style transfer subsection 4.1.3 (without needing the target
training labels). Finally, they fine-tuned CNN with the translated images for the
task of person Re-ID.

Recent works [89, 95] focus more on creating a detailed synthetic dataset rather
than developing ad-hoc models for synth-to-real adaptation. For instance, in [95] the
authors performed multiple experiments by simply employing a backbone ResNet50
[4] for direct transfer. They show that with their RandPerson dataset they achieve
better performance with respect to other synthetic datasets (PersonX, SyrRI,
SomaSet), even surpassing some of the previous real-to-real domain adaptation
techniques. Similarly, the authors of [92] tested their UnrealPerson with various
methods against real datasets. However, instead of just using a ResNet, they
employed more advanced techniques. After doing several experiments with BoT[61]
and CBN [64] for direct transfer, they also employed JVTC [88] for domain
adaptation. Not only do they surpass some recent real-to-real domain adaptation
works, but they also obtain results close to supervised settings.

As we just explained, modern synthetic person Re-ID systems heavily rely on
bigger and more detailed datasets instead of just developing new deep learning
models. In this sense, we indeed created a new dataset exploiting the game engine
of GTAV but we also developed a generative adversarial model. During the learning
process, we tried to increase the realism of the synthetic images by translation while
jointly training a model for the Re-ID task. Apart from training a successful model
for this kind of task, we think that it is also meaningful to investigate synth-to-real
image translation. In the following chapter, we will unveil our architecture and
explain the obtained results.

Model Venue Source Market
MaP R1

SyRI[91] EECV18 SyRI - 65.7
Resnet50[95][4] ACMM20 RandPerson 28.8 55.6

CBN[89][64] CVPR21 UnrealPerson 54.3 79.0
BoT[89][61] CVPR21 UnrealPerson 37.2 64.0

JVTC[89][88] CVPR21 UnrealPerson 80.2 93.0

Table 4.4: Performances of the explained synth-to-real techniques tested on
Market.

66

Cross-Domain Transfer

Model Venue Source Duke
MaP R1

Resnet50[95][4] ACMM20 RandPerson 27.1 47.6
CBN[89][64] CVPR21 UnrealPerson 49.4 69.7
BoT[89][25] CVPR21 UnrealPerson 37.5 58.0

JVTC[89][88] CVPR21 UnrealPerson 75.2 88.3

Table 4.5: Performances of the explained synth-to-real techniques tested on Duke.

Model Venue Source CUHK03
MaP R1

Resnet50[95][4] ACMM20 RandPerson 10.8 13.4

Table 4.6: Performances of the explained synth-to-real techniques tested on
CUHK03.

67

Chapter 5

Model Architecture and
Experiments

In our work, we intended to combine discriminative feature learning with image
translation. The former paradigm is directed towards the Re-ID task, while the
latter should bridge the gap between two or more domains. In this sense, we fused
the translation and feature extraction modules into one stage so that the latter can
benefit from the former. The translation module should make the source images
style more similar to the target one while the feature extractor learns pedestrian
descriptors by exploiting transferred features.

In this chapter, we will finally unveil the architecture of our approach and
describe the obtained results. We first provide a detailed overview of the model,
revisiting the original inspirations. Then, we point out the training pipeline with
the selected hyperparameters and reveal the related technicalities. After that, we
provide our results and compare them to existing techniques.

5.1 Network Architecture
As we mentioned in the previous chapter, we adopted the framework of [6] for the
image translation. To the best of our knowledge, this framework has not yet been
introduced in other pedestrian Re-ID works. The authors propose a contrastive
unpaired translation (CUT) which employs only a single generator and discriminator.
Since it is difficult to reconstruct the image samples in both directions, they give
up on the bijective assumption of CycleGans and instead constrain the generative
process by comparing patches of the input and generated images. Given a pair
of source and target pictures, the aim resides in generating an output with the
same content of the source image (in our case a specific identity) while matching
the general appearance (e.g., style, texture) of the target image. They portray

68

Model Architecture and Experiments

this as a disentanglement problem, separating the domain-invariant content of an
image from its appearance. Precisely, when comparing patches of the input and
its translated output, corresponding patches should relate, preserving the original
relationships. The generator of the translation module has an encoder-decoder
structure (see figure 5.1). Since the encoder learns features responsible for the
translation, we exploit those features as a low-level image-translated descriptor.
This embedding is then fed into a Resnet-like network to perform the Re-ID task.

Figure 5.1: Encoder-Decoder structure of the generator in CUT [6]. The encoder
learns a lower representation (in the gray painted latent code) of the input image,
whilst the decoder learns to build an image starting from that lower representation.
Combined with the discriminator, this structure will generate an output that
matches the target style (Market [1] target dataset in this case) while retaining the
content of the source picture.

5.1.1 Domain mapping
Given our synthetic labeled source dataset X, we want to translate it so that its
images appear like those of a target unlabeled real dataset Y . As noted in [6], we
learn a one-way, synth-to-real mapping exploiting GANs and adversarial training.
However, there are two main differences from what we explained in chapter 2. First
of all, the generator G does not sample from a random noise prior. Instead, it shares
an encoder-decoder structure (see figure 5.1). When it receives a batch of synthetic
images, the generator’s encoder first learns a low dimensional representation of the
images themselves, then, the decoder generates the output images starting from
those feature vectors. To summarize, the authors state that an output image ŷ is
generated as follows: ŷ = G(x) = Gdec(Genc(x)), where x ∈X. In practical terms,
this is done to preserve the semantics and general appearance of the source images
since we want to generate a more realistic version of them. The other important
difference relies in the structure of the discriminator D. Instead of employing a
fully connected layer as the classifier, they used PatchGan [47]. The classifier is
replaced by a convolutional layer with a channel size equal to 1. Each spatial

69

Model Architecture and Experiments

location of the final feature map looks at a certain region in the input image. In
this case, through receptive field arithmetic, one can see that each patch in the
original image is a 70 × 70 region. Thus, instead of classifying an entire image
as real or fake, we classify whether each patch of an image is real or fake. Work
[47] states that this procedure should alleviate from artifacts and promote sharp
(colorful, less blurry) outputs.

Regarding the optimization and losses, this problem can be framed as a min-max
game with value function V (G, D):

min
G

max
D

V (G, D) = Ey∼Y

è
log D(y)

é
+ Ex∼X

è
log(1−D(G(x)))

é
(5.1)

where y and x are images respectively sampled from the real and synthetic datasets.
The main difference with what we explained in chapter 2 is that the generator
is no longer sampling random vectors from the latent space but images from the
synthetic data. In practice, we used the MSE loss because of its advantages, as the
authors suggest:

LD(G, D, X, Y) = Ey∼Y

è
(D(y)− 1)2

é
+ Ex∼X

è
(D(G(x)))2

é
(5.2)

LG(G, D, X) = Ex∼X

è
(D(G(x))− 1)2

é
(5.3)

In the realm of GANs, there has been lots of research on how to improve the
generator’s architecture. Inspired by works [8, 77] where they compare feature
maps at different layers, we instead introduce a feature matching similarity loss for
the discriminator. We argue that, since the discriminator is a simple CNN with
just few layers, it should capture general concepts of the images it sees. From the
discriminator’s perspective, we ask that the resulting feature maps of a certain
layer should be similar when the discriminator itself is fed with a synthetic (source)
and a translated image. Nevertheless, when dealing with adversarial training, one
should think in both players’ perspectives. Thus, when optimizing for the generator,
we also ask that the feature maps for a specific discriminator’s layer should be
similar when the latter is fed a translated and a target image. The similarity is
measured by means of MSE. These two criteria can be written as:

LD
Sim(G, D, X) = Ex∼X

1
L

LØ
l=1

1
Dl(x)−Dl(G(x))

22
(5.4)

LG
Sim(G, D, X, Y) = E(x,y)∼(X,Y)

1
L

LØ
l=1

1
Dl(y)−Dl(G(x))

22
(5.5)

where Dl, with l ∈ 1, 2, ..., L, represents the output feature map of the lth discrimi-
nator’s layer and G(x) is a translated image. For the generator’s similarity loss, we
sample a tuple (x, y) containing samples from both the source and target datasets.
We can now express the overall gan loss as:

70

Model Architecture and Experiments

LGan(G, D, X, Y) = wDLD(G, D, X, Y) + wGLG(G, D, X)+
+ wSDLD

sim(G, D, X) + wSGLG
Sim(G, D, X, Y)

(5.6)

where wD and wG balance the discriminator and generator contribution to the
adversarial loss, whilst wSD and wSG are the weights for the discriminator and
generator similarity losses.

Figure 5.2: Pair of images where the sources (left) are translated to match the
Market dataset style. By using a simple generator-discriminator architecture, the
outputs (right) do not hold any translation or content value. This shows how
important is to better guide and constrain this process.

5.1.2 Relationship preservation
Learning the previous mapping alone is not enough to generate realistic versions
of our synthetic pedestrians. The results will present hallucinations, artifacts, or
will not even resemble human beings (see figure 5.2). The previous mapping is too
generic, especially since we are considering unpaired source and target images. To
alleviate these problems, CUT [6] guides the generative process with additional
constraints. It can be seen as an alternative to the bijective mapping of cycle
consistency. Intuitively, after the translation, one would like the corresponding
regions in the input and translated images only to differ in style. This means that
we want to preserve the input content (a leg should still look like a leg, the same
for arms and faces). They do this by comparing input and output image patches,
directing the optimization process towards more relevant outputs by applying
a noise contrastive estimation framework [101] to the image translation. This
framework has been designed for unsupervised representation learning, aiming at
generating compact latent embeddings from high-dimensional data by encoding
the shared information between different parts of the training data, as explained in
[101]. In our setting, we would like to maximize the mutual information between
the input and output images. Given such an input-output pair, we can think of
both images as a collection of several patches (smaller image regions). Following

71

Model Architecture and Experiments

the notation of [6], in a contrastive learning environment, we have to associate the
query (e.g., an output image patch) with the positive sample (the corresponding
patch of the input image) against all the negative ones (all the other input image
patches). The query, positive and N negatives are mapped respectively to the
K-dimensional feature vectors (with a neural network) v ∈ RK , v+ ∈ RK and
v− ∈ RN×K . Now that we have these ingredients, it is reasonable to construct
some kind of loss that will penalize us when the output and input patches are not
associated. After having normalized to a unit sphere all the feature vectors, we
can compute the dot product to measure the cosine similarity between a pair of
vectorized patches. In the CUT framework, the authors adapted the InfoNCE loss
of [101] to guide the generative process by asking for high similarity when matching
corresponding patches. Intuitively, this can be thought of as a N + 1 classification
problem, where the cross-entropy loss is defined as:

LInfoNCE(v, v+, v−) = − log
 exp(v · v+/τ)

exp(v · v+/τ) +qN
i=1 exp(v · v−

i /τ)

 (5.7)

where v−
i ∈ v− is one of the negatives (not associated with the query) input patches

and the dots products are scaled by the temperature factor τ = 0.07. Minimizing
the previous expression will help constrain the generative process in producing
images that better preserve the input relationships.

We can now understand how to fit together the previous framework with a
GAN. As it was mentioned above, we need to divide the images into patches and
subsequently map them to K-dimensional feature vectors. However, this is already
partly done by the generative module. If we think about it, when an image is fed
to a CNN, each neuron activation of the output feature map of a certain layer looks
at a region in the original image. The deeper we are, the bigger the region we are
looking at will be (receptive field arithmetic). To this extent, CUT exploits the
generator’s encoder Genc to extract embeddings of the image patches (see figure 5.3
for an example). Furthermore, we can select feature maps at different depths and
optimize eq: 5.7 with each set of vector patches, repeating the process for different
patch sizes. Up until now, we have that, for each selected layer l of Genc, there are
Sl spatial locations (width× height of the feature map) looking at as many input
patches represented by C-dimensional features vectors, where C is the channel size
of layer l. Work [6] further processes the feature maps of the L layers of interest
by passing them through a two-layer MLP Hl, with l ∈ {1, 2, ..., L}. It is crucial
to notice that there is not a single MLP, but rather one for each of the selected
layers. These smaller MLPs can be thought of as layer-specialized neural networks
for the contrastive task. When put all together, we have a set of L new feature
maps: {zl}L = {Hl(Gl

enc(x))}L, where Gl
enc(x) is the output feature map of the lth

chosen encoder layer. For a selected layer l of Genc, zs
l ∈ RCl is the feature vector

72

Model Architecture and Experiments

associated to the spatial location s ∈ S = {1, 2, ..., Sl} of the feature map, where
Cl now depends on the architecture of both Gl

enc and Hl. Since the query comes
from the generated images ŷ = G(x), given an output image we repeat the same
procedure: {ẑl}L = {Hl(Gl

enc(G(x)))}L. As shown in [6], this can be expressed by
what they call the PatchNCE loss:

LP atchNCE(G, H, X) = Ex∼X

LØ
l=1

SlØ
s=1

LInfoNCE

1
ẑs

l , zs
l , zS/s

l

2
(5.8)

where H is the set of all the MLPs, ẑs
l is the query coming from the output image,

zs
l is the positive sample of the input image and zS/s

l ∈ R(Sl−1)×Cl are all the input
negatives. The negative patches could be sampled also from the rest of the source
dataset. However, the authors of CUT find out through experiments that internal
(same input image of the positive sample) patches outperform the external ones.
We followed their direction and employed only internal patches. In the CycleGan
[7] framework, the image translation is further constrained by the so-called identity
loss (to read as identity mapping, not intended as the identity of a pedestrian).
As we explained in the previous chapter, this loss should help retain pedestrian
characteristics of the input image, penalizing major changes. Hence, we need to
feed the generator a target image and expect the identity mapping for the result.
In CUT this concept has been revisited, exploiting the PatchNCE loss instead of
the MSE:

LP atchNCE(G, H, Y) = Ey∼Y

LØ
l=1

SlØ
s=1

LInfoNCE

1
ẑs

l , zs
l , zS/s

l

2
(5.9)

where the only difference from eq. 5.7 is that instead of passing images from the
source dataset X, we take them from Y , the target one.

5.1.3 Discriminative learning
A natural way of performing the Re-ID task would be to train a neural network on
the translated dataset, hoping that it will perform better than a direct transfer on
the target data, as in [78, 86]. However, there is an increasing trend of embedding
the discriminative module. As in [79, 80], we argue that feature learning could
benefit from the domain adaptation process. In our context, integrating a network
for classification with the translation module will expose the generator’s domain-
adapted features so that we can influence, over time, the pedestrian Re-ID task.
We call this CNN the ReID network R, trained with cross-entropy loss for standard
classification by feeding it the output feature maps of the source images encoded
by Genc. This can be expressed as:

LReID(Genc, R, X) = −Ex,q∼X

C
PØ

i=1
qi log

A
exp(Ri(Genc(x)))qP

j=1 exp(Rj(Genc(x)))

BD
(5.10)

73

Model Architecture and Experiments

Figure 5.3: Classifying image patches, inspired from [6]. Given a generated image
ŷ, we first need to encode the query region ẑs

l (green). Then, for the source image
x, we have to encode both the positive region, zs

l (green), as well as the negative
ones, zS/s

l (red). It is now possible to compute the cross-entropy loss for this N + 1
classification problem and finally iterate over different queries and Genc layers.

where P is the total number of pedestrians in the source dataset X and qi is the
ith entry of q, the one-hot encoded ground-truth label vector. Notice that, since
the source labels are available, in this case we are sampling a datapoint from X
consisting of a tuple having both an image and its label from which we can construct
the one-hot encoded vector q. The expression Rk(Genc(x)) means that we first
feed the generator’s encoder with an image x. Then, the resulting feature map is
passed through the ReID network which outputs unnormalized scores (logits) for
each of the P classes. The index k represents the kth of those scores. However, as
[61] points out, such loss could make the model overfit to the training identities.
Since the identities of the test set are never seen during training (see chapter 3),
we could encourage the model to be less confident on the training pedestrians and
achieve better generalization capabilities. Work [41] proposes label smoothing as a
solution. In eq. 5.10, each entry of the one-hot label encoded vector q associated
to an image x is defined as follow:

qi =
1 if y = i,

0 if y /= i
(5.11)

where y is the label of the person depicted in x and i ∈ {1, 2, ..., P}. With label
smoothing, we soften the hard predictions decreasing the confidence of the largest
logit and allowing information from the other ones. This regularization mechanism

74

Model Architecture and Experiments

can be adopted in the cross-entropy loss by simply changing eq. 5.11 into:

qi =
(1− ϵ) if y = i,

ϵ/P if y /= i
(5.12)

where P is the total number of identities in the training set and ϵ is a small constant
(0.1). The main rationale behind this model is that we want to exploit translated
features that represent some coarse information from the source images. These
features come from the last layer of Genc and are responsible for the translation.
They do not hold any information about the pedestrians’ identity, but they still
encode some low-level information comparable to the initial layers of an usual
CNN. By feeding those features to the ReID network, we can specialize them to
be representative of the identities while maintaining target-domain information
(see figure 5.4). This is done to prevent learning from the output images and save
in computations. We employ a Resnet50 [4] starting from the second convolutional
block and we add a batch normalization layer after the global average pooling as
in [61].

Figure 5.4: The Resnet-based network R receives the output of the Genc and is
optimized for classification on the training identities. For evaluation, we pass each
target image y into R(Genc(y)). The (transparent) decoder Gdec is not directly
involved in the Re-ID task.

5.1.4 Overall objective
Putting all together, we can finally state the overall objective:

LT otal = LGan(G, D, X, Y) + wRLReID(Genc, R, X)+
+ wYLP atchNCE(G, H, Y) + wXLP atchNCE(G, H, X)

(5.13)

75

Model Architecture and Experiments

where LGan(G, D, X, Y) and its respective weights are defined in eq. 5.6, wX and
wY are the weights for the PatchNCE and identity PatchNCE losses, and wR is the
weight for the classification loss. When evaluating on target dataset test set, we
pass the images through R(Genc) to extract features for the ranking. These features
should hopefully be strong pedestrian descriptors and hold information about the
target data so that they can generalize better than a baseline trained only on the
source dataset. As we explained above, this was done by feeding translated features
to the classification network.

5.2 Experiments
In this section we will first provide all the training and evaluation details, underlying
the challenges that arise when dealing with such kinds of models. Then, we will
present a brief ablation analysis and reveal our results. We expand on this by
providing qualitative results and explaining some of the incompatibilities that we
encountered between discriminative learning and image translation.

5.2.1 Training details
Although CUT [6] is simpler than models such as CycleGans [7], it is still a complex
architecture, even more so when coupled with discriminative feature learning. There
are multiple optimizers, schedulers and losses to integrate together, rendering the
hyperparameter search an arduous task. There has been a lot of trial and error
for finding suitable architectures and hyperparameters, early stopping unsuccessful
runs and repeating three times relevant experiments with different random seeds.
A successful model should be able to balance the generator and discriminator losses
while, at the same time, learning pedestrian descriptors. For the training process,
we exploit our whole labeled source synthetic dataset GTASynthReid and the
unlabeled training partition of a real target dataset. We perform source-to-target
translation jointly with pedestrian classification on the source identities. These
identities are encoded by feature vectors containing target-related information.
We compare the results of our approach to a ResNet50 baseline trained only on
our synthetic dataset for direct transfer. The baseline was trained with ADAM
optimizer and cross-entropy for 60 epochs and a batch size of 32. Its initial learning
rate is equal to 2e−4, while the weight decay is 5e−4. We multiplied the learning
rate by 0.1 after the 20th, 30th and 40th epochs.

For the generator instead, we employed a ResNet-like structure with 9 residual
blocks as in CUT and instance normalization [23]. We also implemented the
same discriminator, PatchGan [47], as explained in subsection 5.1.1. For the
discriminator’s feature matching loss, we compare the features of all the first 4
convolutional blocks. Regarding the feature-specialized networks, as in CUT, each

76

Model Architecture and Experiments

MLP samples at most 256 spatial locations (that are embeddings of the input image
patches). Considering the generator’s encoder only, these spatial locations are
sampled from the first layer (reflective padding), the first and second convolutional
blocks, the first and fifth residual blocks. The last component of this architecture
is the ReID network, trained for classification. Its structure is the same as a
ResNet50, but we remove everything up to the second convolutional block. The
features coming from the last layer of Genc are directly passed through the ReID
net (which is as if we were passing them to the second convolutional layer of a
ResNet50). We tried a different version of this by building a CNN with fewer layers
but more channels per feature map. Through experiments, we noticed that the
ResNet-based ReID network achieved better results on the target datasets, despite
having way fewer parameters.

For the optimizers, we tried SGD, but ADAM performed better as in [6, 7]. We
trained for 60 epochs with a batch size of 8. All the learning rates have initial value
of 2e−4. Those of the MLPs, generator and discriminator are multiplied by 0.1
after the 40th epoch, while that of the ReID net is multiplied by the same factor
after the 30th and 40th epochs. The weight decay relative to the MLPs has been
fixed to 5e−3, while the remaining ones are set to 5e−4. For each target dataset
(Market [1], Duke [2], CUHK03 [3]) we used the available (unlabeled) training
data for the translation. As source data we adopted our GTASynthReid dataset
where, for each pedestrian we sampled at most 20 bouding boxes, using 10,760
images out of the total 94,312 ones. The source and target images are resized to
256× 128. We applied random horizontal flip and random crop transforms to the
training frames. Regarding the loss weights, we fix wD = 0.5, wG = 1, wSD = 0.5,
wSG = 0.5, wR = 0.5, wY = 0 and wX = 0.5. For the identity mapping associated
to LP atchNCE we found better qualitative results on the image translation when
wY = 0.5, although the best person Re-ID results appeared when wY = 0. We will
develop more this point in the results section.

5.2.2 Evaluation details
We follow the standard evaluation protocols [56] of person Re-ID and cross-domain
person Re-ID, similarly to the works presented in the previous chapter. Given
a model trained from our source to a real dataset, we evaluate that model by
extracting feature vectors with R(Genc) and performing the retrieval on the target
test partition. We underline that the identities of the target test set have never been
seen during training. We can think of this as creating a model which adapts from
a synthetic to a specific real setting. To relax this assumption and test a broader
synth-to-real adaptation, we test each model also on the target test pedestrians of
the remaining two datasets. We use CMC and MaP to measure the quality of the
ranking and compare it to the baseline. We applied horizontal feature flipping to

77

Model Architecture and Experiments

the testing images and performed re-ranking [56].
Regarding the validation step, for this task it is often overlooked. In fact, the

works that we analyzed skipped it. The reasons might vary. As we explained in
chapter 3, there is not an unified validation approach for person Re-ID. Considering
the more general domain adaptation field instead, validation is an active topic
of research, being adopted and executed in several manners depending on the
context. In the absence of reference points, we tried to develop our approach for
validation during translation. For each source-to-target experiment, we extracted
200 identities from the training target set and used them as a validation partition.
In this scenario, we would have to tune the hyperparameters search on the validation
data, retraining later the best performing model with all the training data. However,
we find out that this procedure is neither representative of target test error, nor
useful for finding good hyperparameters. Consequently, we dropped this approach
and followed the usual aforementioned pipeline.

5.2.3 Ablation studies
We can now see how each component of the total loss (eq. 5.13) affects the person
Re-ID performance. In table 5.1, Ours stands for our model coupled with the
generator, discriminator, cross-entropy and PatchNCE losses. We then add the
feature matching loss LSim (eq. 5.5, 5.4) and the identity mapping PatchNCE
written as LIdt (5.9) for simplicity. When we append R, it means that we used
re-ranking. It can be seen that, relative to the pedestrian Re-ID, the base model
coupled with the feature matching loss (LSim) performs slightly better both with
and without re-ranking. However, this only refers to the retrieval performance,
without considering the generated image quality. We will further elaborate on this
topic in the next subsections.

From now on, Ours refers to the best performing model loss configuration (as
we just explained it). We compare it to the Resnet50 baseline (direct transfer) on
three real-world datasets: Market [1], Duke [2], CUHK03 [3]. For each of those,
instead of just evaluating the GTASynthReid-to-target adaptation, we also test
the translation implemented on the other two real datasets. We try with and
without re-ranking and repeat each experiment with three different random seeds.
We noticed that the trials without re-ranking perform better on higher ranks of
CMC. However, usually MaP and the first rank of CMC are given more importance.
Thus, we consequently consider those two for the model selection. For Market
(table 5.2) and CUHK03 (table 5.4) we find out the best models to respectively be
GTASynthReid-to-Market and GTASynthReid-to-CHUK03, with re-ranking. For
Duke instead (table 5.3), GTASynthReid-to-Market performed slightly better than
GTASynthReid-to-Duke. We can now compare these results with those of similar
existing approaches.

78

Model Architecture and Experiments

Model Market
MaP R1 R5 R10 R20

Ours 26.5 55.7 73.1 79.4 85.0
OursR 40.9 59.8 71.5 76.6 81.6

Ours+LSim 27.7 56.8 73.7 80.5 85.7
OursR+LSim 42.6 61.2 72.3 77.7 82.2
Ours+LIdt 26.6 55.8 73.2 79.8 85.0

OursR+LIdt 41.3 59.8 71.0 76.0 81.1
Ours+LSim+LIdt 26.3 55.5 72.6 78.9 84.7

OursR+LSim+LIdt 40.8 59.5 70.5 75.5 80.6

Table 5.1: Contribution of the feature matching loss (LSim) and the identity
mapping loss (LIdt) on top of the base model (in this table Ours includes the
generator, discriminator, cross-entropy and PatchNCE losses). We evaluate on
Market with and without re-ranking [56] (written as R). Best results are in bold.

Model Target Market
MaP R1 R5 R10 R20

Baseline - 18.0 38.4 56.4 64.0 71.2
BaselineR - 23.3 39.4 53.2 59.5 65.8

Ours Market 27.7 56.8 73.7 80.5 85.7
OursR Market 42.6 61.2 72.3 77.7 82.2
Ours Duke 26.2 54.8 72.5 79.2 85.0

OursR Duke 40.7 59.5 70.9 75.9 80.7
Ours CUHK03 26.8 55.6 72.9 79.4 85.2

OursR CUHK03 41.6 60.0 71.4 76.3 81.3

Table 5.2: Comparison between the baseline (Resnet50 trained on GTASynthReid
for direct transfer) and the best GTASynthReid-to-target performing models
evaluated on the Market dataset, both with and without re-ranking [56] (written
as R). Best results are in bold.

5.2.4 Results
In this section, we compare our framework to the state of the art. Since we employed
CUT, we compare with other generative real-to-real approaches and general synth-
to-real methods that appeared in top conferences. For a more extensive performance
overview, in the previous three chapters, we showed the results of supervised Re-ID
methods and broader domain adaptive frameworks. As one can see from tables 5.5,
5.6 and 5.7, we addressed works that implement both real-to-real and synth-to-real

79

Model Architecture and Experiments

Model Target Duke
MaP R1 R5 R10 R20

Baseline - 12.7 24.3 39.2 46.0 53.1
BaselineR - 18.9 27.7 39.2 45.4 52.1

Ours Market 20.1 39.2 54.6 61.1 66.8
OursR Market 32.8 44.8 55.9 61.2 66.0
Ours Duke 19.7 38.2 53.6 59.8 66.1

OursR Duke 31.8 43.2 54.0 59.6 65.1
Ours CUHK03 19.3 38.2 53.4 59.6 65.9

OursR CUHK03 31.9 43.6 55.0 60.5 65.6

Table 5.3: Comparison between the baseline (Resnet50 trained on GTASynthReid
for direct transfer) and the best GTASynthReid-to-target performing models
evaluated on the Duke dataset, both with and without re-ranking [56] (written as
R). Best results are in bold.

Model Target CUHK03
MaP R1 R5 R10 R20

Baseline - 5.2 5.3 11.4 15.7 21.2
BaselineR - 6.7 5.6 11.2 15.1 19.5

Ours Market 4.9 4.9 11.3 15.9 21.5
OursR Market 7.6 6.9 11.4 14.8 19.8
Ours Duke 4.8 4.9 11.1 15.6 21.5

OursR Duke 7.2 6.2 11.1 14.4 18.8
Ours CUHK03 5.3 5.4 11.8 16.5 22.9

OursR CUHK03 8.3 7.2 12.2 16.0 21.3

Table 5.4: Comparison between the baseline (Resnet50 trained on GTASynthReid
for direct transfer) and the best GTASynthReid-to-target peforming models evalu-
ated on the CUHK03 dataset, both with and without re-ranking [56] (written as
R). Best results are in bold.

adaptation. Although being able to generalize from a real to another real dataset
might be easier rather than starting from computer-generated data, it is crucial
to see how far works that make use of synthetic data have come, by means of
performance. This allows us to understand whether such a novel method would be
applicable in a real-world scenario. For each real dataset, we show the scores of the
best performing model with re-ranking [56]. For the Market [1] dataset, we compare
with our GTASynthReid-to-Market model (tables 5.5, 5.2). For Duke [2] instead,
we compare again with our GTASynthReid-to-Market model since it performed

80

Model Architecture and Experiments

better than GTASynthReid-to-Duke (tables 5.6, 5.3). Finally, for CUHK03 [3] we
compare with our GTASynthReid-to-CUHK03 model (tables 5.7, 5.4).

Model Venue Source Market
MaP R1

Real data
SPGAN[86] CVPR18 Duke 26.9 58.1
Cyclegan[78] CVPR19 Duke 24.5 52.0
ISSDA[78] CVPR19 Duke 63.1 81.3

CR-GAN[87] IICV19 Duke 33.2 64.5
CR-GAN[87] IICV19 CUHK03 30.4 58.5

CR-GAN+TAUDL[87] IICV19 Duke 54.0 77.7
CR-GAN+TAUDL[87] IICV19 CUHK03 56.0 78.3

DG-Net++[79] EECV20 Duke 61.7 82.1
DG-Net++[79] EECV20 MSMT17 64.6 83.1

GLC[80] CVPR21 None 66.8 87.3
GLC[80] CVPR21 Duke 75.4 90.5

Synthetic data
SyRI[91] EECV18 SyRI - 65.7

Resnet50[95][4] ACMM20 RandPerson 28.8 55.6
CBN[89][64] CVPR21 UnrealPerson 54.3 79.0
BoT[89][61] CVPR21 UnrealPerson 37.2 64.0

JVTC[89][88] CVPR21 UnrealPerson 80.2 93.0
Ours Thesis GTASynthReid 42.6 61.2

BoT [61] Thesis GTASynthReid 44.7 64.6

Table 5.5: We compare our method to generative real-to-real adaptation works
and general synth-to-real approaches, when evaluated on Market. We both show
the scores of our best model and the performance of BoT [61] when trained on
GTASynthReid. Best results are in bold, both for real-to-real and synt-to-synth
works.

As we can see from these tables, our join discriminative and domain transfer method
is able to surpass (at least in one metric) some earlier real-to-real generative
approaches for Market ([86, 78, 87]) and Duke ([86, 78, 87]). In the synth-to-
Market adaptation setting we can surpass [95] and [89] in MaP when it uses BoT
[61]. Regarding the synth-to-Duke setting instead, we can surpass [95] in MaP.
For CUHK03, we reach a comparable MaP to [95]. Although this last dataset
is interesting, we noticed that it is often not employed as a target dataset for
adaptation methods. It seems to be more arduous to achieve a good performance
for this dataset in our scenario. Comparing these newer frameworks, we notice the

81

Model Architecture and Experiments

Model Venue Source Duke
MaP R1

Real data
SPGAN[86] CVPR18 Market 26.4 46.9
Cyclegan[78] CVPR19 Market 19.4 35.7
ISSDA[78] CVPR19 Market 54.1 72.8

CR-GAN[87] IICV19 Market 33.3 56.0
CR-GAN[87] IICV19 CUHK03 26.9 46.5

CR-GAN+TAUDL[87] IICV19 Market 48.6 68.9
CR-GAN+TAUDL[87] IICV19 CUHK03 47.7 67.7

DG-Net++[79] EECV20 Market 63.8 78.9
DG-Net++[79] EECV20 MSMT17 58.2 75.2

GLC[80] CVPR21 None 62.8 82.9
GLC[80] CVPR21 Market 67.6 81.9

Synthetic data
Resnet50[95][4] ACMM20 RandPerson 27.1 47.6

CBN[89][64] CVPR21 UnrealPerson 49.4 69.7
BoT[89][25] CVPR21 UnrealPerson 37.5 58.0

JVTC[89][88] CVPR21 UnrealPerson 75.2 88.3
Ours Thesis GTASynthReid 32.8 44.8

BoT[61] Thesis GTASynthReid 41.9 53.3

Table 5.6: We compare our method to generative real-to-real adaptation works
and general synth-to-real approaches, when evaluated on Duke. We both show
the scores of our best model and the performance of BoT [61] when trained on
GTASynthReid. Best results are in bold, both for real-to-real and synt-to-synth
works.

tendency to work more on the dataset, rather than on the modeling. Works such
as [95, 89] created huge image collections depicting far more identities (respectively
8,000 and 3,000) that we did (only 538). As explained in the previous chapter, they
then employed already existing models, which are lighter than ours and thus can
sample more images during training (we only sample 10,760 images). Furthermore,
when work [89] adopts [88] for unsupervised domain adaptation from its dataset, it
can even beat state of the art [80, 79] real-to-real methods. This is an important
future research direction since operating with computer-generated data could lift
some of the real data burdens and make up for the variations that we would not be
able to record in a real-world scenario. However, we point out that our work was
bounded in using GTAV to generate a synthetic dataset. In this game, we only
found 538 usable pedestrians. We tried adding more of them, but they had poor

82

Model Architecture and Experiments

Model Venue Source CUHK03
MaP R1

Synthetic data
Resnet50[95][4] ACMM20 RandPerson 10.8 13.4

Ours Thesis GTASynthReid 8.3 7.2
BoT[61] Thesis GTASynthReid 9.6 8.5

Table 5.7: We compare our method to generative real-to-real adaptation works
and general synth-to-real approaches, when evaluated on CUHK03. We both show
the scores of our best model and the performance of BoT [61] when trained on
GTASynthReid. Best results are in bold, both for real-to-real and synt-to-synth
works.

body annotations that did not allow us to generate automatic bounding boxes.
Having said that, we tried BoT on our dataset as [89] did on theirs. With re-ranking,
we were able to achieve better performance than with our joint discriminative
domain mapping method. One might ask how a direct transfer method can surpass
a domain adaptive one. We think that this is due to the triplet loss in BoT which
can help in building features that can better recognize whether two characters share
the same identity (pushing together pedestrians with the same identity and pulling
apart those with different ones). Another reason could lie in the incompatibility
between feature learning and domain transfer. We assumed that translating images
from one domain to another could help a CNN to learn transferred discriminant
features. In the next subsection, we will expand more on these nuances.

5.2.5 Qualitative results
The aim of this work lies in adapting our synthetic dataset to real ones, by
translating the computer-generated images. Ideally, we would both have strong
pedestrian descriptors for the target dataset and generated images that look more
realistic. However, as we just said, it is not a given that generating more realistic
images from a human perspective combines well with feature discriminative learning.
Indeed, we noticed that the configuration giving the best retrieval scores does not
occur to return the best images (see figure 5.5). The previous results were obtained
without considering the identity mapping PatchNCE loss (wY = 0). In this scenario,
the output images had some artifacts and unrealistic color backgrounds. However,
when including the identity mapping loss (wY = 0.5) and discarding the feature
matching one (wSD = wSG = 0), their quality seems to improve (from a human
perception point of view). Unfortunately, as we saw in subsection 5.2.3, adding this
term in the total loss decreases the performance of the person Re-ID. Nevertheless,

83

Model Architecture and Experiments

we believe that, for the sole purpose of generating better images, removing the
feature matching loss and adding the identity mapping one overcomes the unrealistic
colors and better guides the image generation [6]. Even if artifacts are still present
(especially for the more difficult CUHK03 dataset), they are less frequent compared
to the other configuration. There are many ways to evaluate this. One could ask a
group of people to recognize whether the generated images are real or fake with
online services such as Amazon Mechanical Turk [7]. Another approach is to use
metrics that compare the features of real and generated images from a deep model.
To this extent, we adopt the Fréchet Inception Distance [9] (FID) which employs the
Inception [41] architecture as its name suggests (the lower the better). Appendix
B provides more details. We first compute this metric between our dataset and
the three other real ones. Then, for each of them, we translate GTASynthReid
and finally compare GTASynthReid-to-Market with Market, GTASynthReid-to-
Duke with Duke and GTASynthReid-to-CUHK03 with CUHK03. We use the
configuration where wY = 0.5 and wSD = wSG = 0 over three different random
seeds. From table 5.8, one can notice how the translation improves the FID relative
to measuring that distance between our original GTASynthReid and the real data.
In particular, for Market and CUHK03, we were able to decrease the FID by
approximately 50%, while for Duke by 60%. We conclude this section by showing
in figure 5.6 the translation of some synthetic pedestrians to the three real domains.

Translation Target FID

GTASynthReid Market 45.14

GTASynthReid-to-Market Market 24.29

GTASynthReid Duke 50.44

GTASynthReid-to-Duke Duke 19.53

GTASynthReid CUHK03 63.23

GTASynthReid-to-CUHK03 CUHK03 31.54

Table 5.8: For each real dataset, we first compute the FID between our GTASyn-
thReid and the real dataset itself. Then we also compute the FID between the
tranlated GTASynthReid-to-real and the real data. We can see that the translation
successfully brings to smaller distances (the smaller the better). Best result in bold
relative to each real dataset.

84

Model Architecture and Experiments

Figure 5.5: The pictures of each column have been translated from our synthetic
dataset to respectively the Market, Duke and CUHK03 targets. Each column has
two rows. In the first one, we used the best performing configuration, while in the
second one we put wY = 0.5 and wSD = wSG = 0. One can notice that the images
in the first row present artefacts, odd colors and unexpected shadows.

Figure 5.6: Transferred pedestrians. For each of them, we show the original
(left) and translated (right) images from our GTASynthReid to Market, Duke and
CUHK03 (first, second and third rows).

85

Chapter 6

Conclusions

Before ending this thesis, we provide some final broad insights about our work
compared to similar ones. Moreover, we also try to envision the direction this field
might take in the future.

6.1 About this work
Starting from our synthetic dataset for pedestrian Re-ID, our objective was to
generalize well across different real domains. There are several ways one could
approach this problem, we chose to investigate generative methods. To the best
of our knowledge, we are the first to apply the generative contrastive framework
for unpaired translation CUT [6] to person Re-ID. Furthermore, we integrated
it with a discriminative module to inject target domain information into the
network we employ for retrieval. Then, we showed that our architecture adapts
better to the target data than a standard Resnet50 [4] baseline trained for direct
transfer. Despite many works evaluating their methods only on the target dataset,
to better uncover generalization capabilities, we also tested our framework on the
remaining real datasets. Specifically, we were able to approximately maintain a
similar performance on Market and Duke, surpassing the GTASynthReid-to-Duke
result when training on Market and CUHK03. While we did not overtake the
most recent generative real-to-real and broad synth-to-real transfer works, except
for [95], we achieved better performances than earlier methods that employed,
for instance, CycleGans. Recent general synth-to-real approaches rely on large
datasets with far more identities, while we were limited by the allowed pedestrians of
GTAV. Generative real-to-real frameworks depend instead on bigger architectures,
having a couple of encoders in the generator and often adopting some kind of cycle
consistency loss [79, 80]. Although CUT is not simple, it is easier to train than
those techniques that encode, beyond appearance, also pose information. It does

86

Conclusions

not require a double network structure and, instead of relying on cycle consistency,
it preserves the input semantics by comparing corresponding input-output patches.
The adoption of this method for person Re-ID is the very heart of our work. Paired
with our similarity loss and joint discriminative learning, this thesis is a simpler
yet effective one-stage generative framework for synth-to-real person Re-ID. We
also point out that, for hardware limitations, we often had to sample less data
than existing works, especially compared to recent synth-to-real models that use
far more pedestrians. On a qualitative level, we show that our procedure generates
images with style more similar to the real target dataset. In this sense, we tried to
generate more realistic images through unpaired translation, which is something
that transcends person Re-ID.

6.2 Future directions
One of the major drawbacks of our dataset is the low number of distinct pedestrians.
For future improvements, one could try to design new characters to embed into the
video game GTAV. Having more identities seems to be the predominant direction
of similar works. This will render the synth-to-real Re-ID problem more arduous
and possibly deliver better results on the target data. Recent generative works
disentangle appearance from other inherent information by rendering the same
pedestrian to match, for instance, different poses across domains. A natural exten-
sion of our work would be to devise a method that performs such disentanglement
without cycle consistency beyond matching the target style. This could lead to
smaller and easier to train models that perform better than methodologies working
via standard translation. However, CUT asks corresponding input-output patches
to be similar, which can be inconsistent with this kind of disentanglement unless
we redefine the concept of patch similarity or design other losses. It is not an easy
task and more research is needed.
On a more general level, while working on this task, we came across several cues
we feel will become increasingly more relevant in this field. First of all, there
has been a paradigm shift in recent years leading to more research focused on
domain transfer solutions for person Re-ID. Training and testing on the same data
has less practical applications, since generalizing to new domains is fundamental
for real-world Re-ID systems. However, collecting data for this task is arduous
and time-consuming. Moreover, real-world datasets have growing ethical concerns
about the lack of informed consent for being recorded. With these motivations,
researchers are creating and adopting synthetic datasets also in this field. The
general trend is to build large-scale datasets, with far more identities than their real
counterparts. As we showed before, when coupled with powerful models, one can
even surpass real-to-real adaptation when using computer-generated pedestrians.

87

Conclusions

We feel that, in the future, relevant research might focus more on building superior
synthetic data rather than just improving existing models to perform better on
benchmark datasets. Software-generated environments could also simplify more
complex scenarios such as changing-clothes person Re-ID, being able to control the
data-generating process. To this end, we think that working with synthetic worlds
will inspire new interesting works and possibly help to address existing challenges.

88

Appendix A

Re-Ranking

The quality of the ranking process is crucial in retrieval applications such as person
Re-ID. In these scenarios, we have, if any, different classes in the training and test
partitions. After the feature extractions, we encode all the query and gallery images
so that, for each probe image in the query, we rank the gallery set by ascending
distance. The resulting ranking can be further improved re-ranking techniques.
These will usually boost the rank accuracy, although they depend on the quality of
the original ranking and, beyond rank-5, we noticed that they could worsen the
results. We will briefly show how re-ranking can be applied to person Re-ID by
following the notation of [56].

A.1 K-reciprocal encoding
Given a gallery set of N images G = {gi | i = 1, 2, ..., N} and a probe pedestrian p,
we can define the distance between the feature embeddings of p and gi as d(p, gi).
The starting ranking, {g1, g2, ..., gN}, is represented by the gallery pedestrians
sorted by ascending distance from the probe. We can now define the top k most
similar samples to p as N(p, k) = {g1, g2, ..., gk}. Then, the k-reciprocal nearest
neighbors of p are:

R(p, k) = {gi | (gi ∈ N(p, k)) ∧ (p ∈ N(gi, k))} . (A.1)

This should return a list where more positive pedestrians are at the top. However,
some of the positives might be excluded (there are less than k results) from the
k-reciprocal nearest neighbors, due to illumination, pose and viewpoint variations
[56]. This issue can be addressed by incrementally expanding R(p, k) with the
1
2k-reciprocal nearest neighbors of each of its elements:

89

Re-Ranking

R∗(p, k)← R(p, k) ∪R(q,
1
2k)

s.t.
---R(p, k) ∩R(q,

1
2k)

--- ≥ 2
3
---R(q,

1
2k)

---, ∀q ∈ R(p, k)
(A.2)

where
---·--- counts the elements in a given set and s.t. denotes a constraint. After this

process, R∗(p, k) could end up with more positive samples than R(p, k).

A.2 K-reciprocal distance
Given the probe p and a gallery image gi, one can see how similar they are by
computing the Jaccard distance of their k-reciprocal nearest neighbors, indicating
their overlapping level. However, computing the intersection over union in this
format is time-consuming and equally weighting all neighbors could lead to a not
discriminative neighbor set [56]. They address the first issues by encoding the
k-reciprocal nearest neighbors of p as a vector, Vp, where each entry is 1 if the
gallery image gi ∈ R∗(p, k), with i = 1, 2, ..., N . To assign more weight to the
neighbors closer to p, we can rewrite each entry of Vp as:

Vp,gi
=
e−d(p,gi) if gi ∈ R∗(p.k)

0 otherwise
(A.3)

where R∗(p.k) is as explained in eq. A.2. We can now express the intersection and
union between the k-reciprocal nearest neighbors of p and each gi as:---R∗(p, k) ∩R∗(gi, k)

--- = ∥min(Vp,Vgi
)∥1---R∗(p, k) ∪R∗(gi, k)

--- = ∥max(Vp,Vgi
)∥1

(A.4)

where ∥·∥ is the L1 norm. Having expressed everything in terms of vector operations,
work [56] efficiently computes the Jaccard distance as follows:

dJ(p, gi) = 1−
qN

j=1 min(Vp,gj
,Vgi,gj

)qN
j=1 max(Vp,gj

,Vgi,gj
)

(A.5)

where Vp,gj
is defined as in eq. A.4. The final distance is computed as the

combination of the original and Jaccard distances:

d∗(p, gi) = (1− λ)dJ(p, gi) + λd(p, gi) (A.6)

where λ ∈ [0,1] increases the resulting distance when gi is far from p.

90

Appendix B

Evaluating Generative
Adversarial Networks

Evaluating the image quality of GANs is a challenging yet interesting task. One
can approach this problem in several ways. For instance, we could ask a group
of people to label some pictures as real or fake to see how good our model is at
generating realistic images. This is usually outsourced on online services such as
Amazon Mechanical Turk, allowing to assign a large number of images to many
workers, averaging the results. Another approach relies on using distance metrics.
However, directly comparing image pixels does not provide representative results.
We have no interest in obtaining generated pictures that look the same as the
original ones on a pixel-by-pixel level. Instead, we care about the capability of
generating fake images that look, on a perceptual level, indistinguishable from the
real ones. To this end, we can exploit neural networks to extract features and work
on those rather than the input images. We will briefly discuss the Inception Score
(IS) [102] and the Fréchet Inception Distance (FID) [9], both of which employ an
Inception network [41], usually pre-trained on ImageNet [33].

B.1 Inception Score
The IS combines two concepts that should manifest when generating new images
[102]. Each output picture should contain meaningful objects, while the resulting
images should collectively be varied enough. To test these two requirements, we
have to feed an Inception network with the generated images and get the predictions.
For the first one, we expect the conditional label distribution for each image to have
a predominant class, i.e., low entropy. For the second one, we ask the marginal
cumulative label distribution over several images depicting different objects to be

91

Evaluating Generative Adversarial Networks

close to the uniform, i.e., high entropy. The IS is the exponential of the Kullback-
Leibler (KL) divergence of these two distributions averaged over the output images:

KL(P (y | x)∥P (y)) = −
Ø

x∈X

P (y | x) log
P (y | x)

P (y)


IS = − exp(KL(Ex∈XP (y | x)∥P (y)))

(B.1)

where P (y | x) is the conditional label distribution and P (y) is the marginal
cumulative label distribution. The more those distributions are dissimilar, the
higher the score. In such a scenario, each image will depict a clear object and, at
the same time, it will differ from the other pictures.

B.2 Fréchet Inception Distance
The main drawback of the IS is the lack of an actual comparison between real and
fake images since real-world samples are not employed [9]. The FID addresses this
by directly comparing the statistics of both sample spaces. For each real and fake
image, we first have to capture meaningful features by extracting the activations
of the last pooling layer of the Inception network. Then, we compute their mean
and covariance for each set of images. Assuming that those activations follow a
multivariate normal distribution [9], their difference is computed by the Fréchet
distance (or Wasserstein-2 distance). Since we are encoding each image with the
Inception network, we can write the FID as:

d2((m, C), (mr, Cr)) = ∥m−mr∥2
2 + Tr(C + Cr − 2(CCw) 1

2) (B.2)

where m, C are the mean and covariance of the generated images while mr, Cr

are the mean and covariance of the real ones. In this case, lower values of FID
are associated with higher output image quality. Work [9] shows that this metric
can capture better similarities and analogies between real and generated images
compared to the Inception score.

92

Bibliography

[1] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and
Qi Tian. «Scalable Person Re-identification: A Benchmark». In: Computer
Vision, IEEE International Conference on. 2015 (cit. on pp. 3, 33, 36, 37,
69, 77, 78, 80).

[2] Zhedong Zheng, Liang Zheng, and Yi Yang. «Unlabeled Samples Generated
by GAN Improve the Person Re-identification Baseline in vitro». In: Pro-
ceedings of the IEEE International Conference on Computer Vision. 2017
(cit. on pp. 3, 37, 77, 78, 80).

[3] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. «DeepReID: Deep
Filter Pairing Neural Network for Person Re-identification». In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition. 2014, pp. 152–159.
doi: 10.1109/CVPR.2014.27 (cit. on pp. 3, 33, 38, 77, 78, 81).

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep Residual
Learning for Image Recognition». In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016, pp. 770–778. doi: 10.1109/
CVPR.2016.90 (cit. on pp. 3, 25, 40, 66, 67, 75, 81–83, 86).

[5] Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, and Tao Xiang. «Learning
Generalisable Omni-Scale Representations for Person Re-Identification». In:
IEEE Transactions on Pattern Analysis and Machine Intelligence (2021),
pp. 1–1. doi: 10.1109/TPAMI.2021.3069237 (cit. on pp. 3, 58).

[6] Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-Yan Zhu. «Con-
trastive Learning for Unpaired Image-to-Image Translation». In: European
Conference on Computer Vision. 2020 (cit. on pp. 3, 29, 30, 52, 53, 68, 69,
71–74, 76, 77, 84, 86).

[7] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. «Unpaired
Image-to-Image Translation using Cycle-Consistent Adversarial Networks».
In: Computer Vision (ICCV), 2017 IEEE International Conference on. 2017
(cit. on pp. 4, 29, 30, 52, 53, 73, 76, 77, 84).

93

https://doi.org/10.1109/CVPR.2014.27
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TPAMI.2021.3069237

BIBLIOGRAPHY

[8] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. «Perceptual Losses for
Real-Time Style Transfer and Super-Resolution». In: CoRR abs/1603.08155
(2016). arXiv: 1603.08155. url: http://arxiv.org/abs/1603.08155
(cit. on pp. 4, 52, 70).

[9] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
Günter Klambauer, and Sepp Hochreiter. «GANs Trained by a Two Time-
Scale Update Rule Converge to a Nash Equilibrium». In: CoRR abs/1706.08500
(2017). arXiv: 1706.08500. url: http://arxiv.org/abs/1706.08500 (cit.
on pp. 4, 84, 91, 92).

[10] John McCarthy, Marvin L. Minsky, Nathaniel Rochester, and Claude E.
Shannon. «A Proposal for the Dartmouth Summer Research Project on
Artificial Intelligence, August 31, 1955». In: AI Magazine 27.4 (Dec. 2006),
p. 12. doi: 10.1609/aimag.v27i4.1904. url: https://ojs.aaai.org/
index.php/aimagazine/article/view/1904 (cit. on p. 6).

[11] Tom M. Mitchell. Machine Learning. New York: McGraw-Hill, 1997. isbn:
978-0-07-042807-2 (cit. on p. 6).

[12] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. USA: Cambridge University Press, 2014. isbn:
1107057132 (cit. on pp. 7, 8).

[13] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65 6 (1958),
pp. 386–408 (cit. on pp. 7, 8).

[14] D.G. Lowe. «Object recognition from local scale-invariant features». In:
Proceedings of the Seventh IEEE International Conference on Computer
Vision. Vol. 2. 1999, 1150–1157 vol.2. doi: 10.1109/ICCV.1999.790410
(cit. on pp. 8, 39).

[15] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. «Speeded-
Up Robust Features (SURF)». In: Computer Vision and Image Understand-
ing 110.3 (2008). Similarity Matching in Computer Vision and Multimedia,
pp. 346–359. issn: 1077-3142. doi: https://doi.org/10.1016/j.cviu.
2007.09.014. url: https://www.sciencedirect.com/science/article/
pii/S1077314207001555 (cit. on pp. 8, 39).

[16] L. Jing and Y. Tian. «Self-Supervised Visual Feature Learning With Deep
Neural Networks: A Survey». In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 43.11 (Nov. 2021), pp. 4037–4058. issn: 1939-3539.
doi: 10.1109/TPAMI.2020.2992393 (cit. on pp. 9, 51).

[17] Gareth M. James, Daniela M. Witten, Trevor J. Hastie, and Robert Tibshi-
rani. «An introduction to statistical learning». In: 2021 (cit. on p. 10).

94

https://arxiv.org/abs/1603.08155
http://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
https://doi.org/10.1609/aimag.v27i4.1904
https://ojs.aaai.org/index.php/aimagazine/article/view/1904
https://ojs.aaai.org/index.php/aimagazine/article/view/1904
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/https://doi.org/10.1016/j.cviu.2007.09.014
https://www.sciencedirect.com/science/article/pii/S1077314207001555
https://www.sciencedirect.com/science/article/pii/S1077314207001555
https://doi.org/10.1109/TPAMI.2020.2992393

BIBLIOGRAPHY

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on pp. 10, 14, 19–21).

[19] Vinod Nair and Geoffrey E. Hinton. «Rectified Linear Units Improve Re-
stricted Boltzmann Machines». In: Proceedings of the 27th International
Conference on International Conference on Machine Learning. ICML’10.
Haifa, Israel: Omnipress, 2010, pp. 807–814. isbn: 9781605589077 (cit. on
p. 13).

[20] Min Lin, Qiang Chen, and Shuicheng Yan. «Network In Network». In: CoRR
abs/1312.4400 (2014) (cit. on pp. 14, 26).

[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. «Dropout: A Simple Way to Prevent Neural Networks
from Overfitting». In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html
(cit. on p. 14).

[22] Sergey Ioffe and Christian Szegedy. «Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift». In: CoRR
abs/1502.03167 (2015). arXiv: 1502.03167. url: http://arxiv.org/abs/
1502.03167 (cit. on pp. 14, 15, 40).

[23] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Normal-
ization: The Missing Ingredient for Fast Stylization. 2017. arXiv: 1607.08022
[cs.CV] (cit. on pp. 15, 76).

[24] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. «Two at Once:
Enhancing Learning and Generalization Capacities via IBN-Net». In: CoRR
abs/1807.09441 (2018). arXiv: 1807.09441. url: http://arxiv.org/abs/
1807.09441 (cit. on p. 16).

[25] Alexander Hermans, Lucas Beyer, and Bastian Leibe. «In Defense of the
Triplet Loss for Person Re-Identification». In: CoRR abs/1703.07737 (2017).
arXiv: 1703.07737. url: http://arxiv.org/abs/1703.07737 (cit. on
pp. 17, 18, 40, 67, 82).

[26] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak
Shah. «Signature Verification using a "Siamese" Time Delay Neural Network».
In: Advances in Neural Information Processing Systems. Ed. by J. Cowan,
G. Tesauro, and J. Alspector. Vol. 6. Morgan-Kaufmann, 1994. url: https:
//proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94
bc9360b9c5d-Paper.pdf (cit. on pp. 17, 39, 42).

[27] R. Hadsell, S. Chopra, and Y. LeCun. «Dimensionality Reduction by Learn-
ing an Invariant Mapping». In: 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06). Vol. 2. 2006,
pp. 1735–1742. doi: 10.1109/CVPR.2006.100 (cit. on p. 17).

95

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1807.09441
http://arxiv.org/abs/1807.09441
http://arxiv.org/abs/1807.09441
https://arxiv.org/abs/1703.07737
http://arxiv.org/abs/1703.07737
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://doi.org/10.1109/CVPR.2006.100

BIBLIOGRAPHY

[28] Florian Schroff, Dmitry Kalenichenko, and James Philbin. «FaceNet: A
unified embedding for face recognition and clustering». In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 815–823. doi: 10.1109/CVPR.2015.7298682 (cit. on p. 17).

[29] Diederik Kingma and Jimmy Ba. «Adam: A Method for Stochastic Opti-
mization». In: International Conference on Learning Representations (Dec.
2014) (cit. on pp. 21, 22).

[30] Wouter M. Kouw. «An introduction to domain adaptation and transfer
learning». In: CoRR abs/1812.11806 (2018). arXiv: 1812.11806. url: http:
//arxiv.org/abs/1812.11806 (cit. on pp. 22, 47–49).

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. «Gradient-based learning
applied to document recognition». In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324. doi: 10.1109/5.726791 (cit. on p. 24).

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «ImageNet Classi-
fication with Deep Convolutional Neural Networks». In: Advances in Neural
Information Processing Systems. Ed. by F. Pereira, C.J. Burges, L. Bot-
tou, and K.Q. Weinberger. Vol. 25. Curran Associates, Inc., 2012. url:
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b7
6c8436e924a68c45b-Paper.pdf (cit. on p. 24).

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
«ImageNet: A large-scale hierarchical image database». In: 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2009, pp. 248–255.
doi: 10.1109/CVPR.2009.5206848 (cit. on pp. 24, 40, 91).

[34] Karen Simonyan and Andrew Zisserman. «Very Deep Convolutional Net-
works for Large-Scale Image Recognition». In: 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.
2015. url: http://arxiv.org/abs/1409.1556 (cit. on pp. 24, 52).

[35] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In-So Kweon. «CBAM:
Convolutional Block Attention Module». In: ECCV. 2018 (cit. on pp. 25,
55).

[36] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. «Non-local
Neural Networks». In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2018, pp. 7794–7803. doi: 10.1109/CVPR.2018.00813
(cit. on pp. 25, 55).

96

https://doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/1812.11806
http://arxiv.org/abs/1812.11806
http://arxiv.org/abs/1812.11806
https://doi.org/10.1109/5.726791
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2018.00813

BIBLIOGRAPHY

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is All you
Need». In: Advances in Neural Information Processing Systems. Ed. by I.
Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Vol. 30. Curran Associates, Inc., 2017. url: https://
proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c
1c4a845aa-Paper.pdf (cit. on p. 25).

[38] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-Term Memory».
In: Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi:
10.1162/neco.1997.9.8.1735. url: https://doi.org/10.1162/neco.
1997.9.8.1735 (cit. on p. 25).

[39] Mingxing Tan and Quoc Le. «EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks». In: Proceedings of the 36th International
Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan
Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
Sept. 2019, pp. 6105–6114. url: https://proceedings.mlr.press/v97/
tan19a.html (cit. on p. 25).

[40] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. «Going Deeper with Convolutions». In: CoRR abs/1409.4842 (2014).
arXiv: 1409.4842. url: http://arxiv.org/abs/1409.4842 (cit. on p. 26).

[41] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and
Zbigniew Wojna. «Rethinking the Inception Architecture for Computer
Vision». In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2016), pp. 2818–2826 (cit. on pp. 26, 65, 74, 84, 91).

[42] Ian J. Goodfellow. «NIPS 2016 Tutorial: Generative Adversarial Networks».
In: CoRR abs/1701.00160 (2017). arXiv: 1701.00160. url: http://arxiv.
org/abs/1701.00160 (cit. on pp. 27–29).

[43] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. «Generative
Adversarial Nets». In: Advances in Neural Information Processing Systems.
Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q.
Weinberger. Vol. 27. Curran Associates, Inc., 2014. url: https://proceed
ings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afcc
f3-Paper.pdf (cit. on pp. 26, 28, 29).

[44] Alec Radford, Luke Metz, and Soumith Chintala. «Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks».
In: CoRR abs/1511.06434 (2016) (cit. on pp. 26, 27, 30).

97

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

BIBLIOGRAPHY

[45] Martin Arjovsky, Soumith Chintala, and Léon Bottou. «Wasserstein Genera-
tive Adversarial Networks». In: Proceedings of the 34th International Confer-
ence on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70.
Proceedings of Machine Learning Research. PMLR, June 2017, pp. 214–223.
url: https://proceedings.mlr.press/v70/arjovsky17a.html (cit. on
p. 29).

[46] Christian Ledig et al. «Photo-Realistic Single Image Super-Resolution Using
a Generative Adversarial Network». In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017, pp. 105–114. doi: 10.1109/
CVPR.2017.19 (cit. on p. 29).

[47] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. «Image-To-
Image Translation With Conditional Adversarial Networks». In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2017 (cit. on pp. 29, 52, 53, 69, 70, 76).

[48] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and
Stephen Paul Smolley. «Least Squares Generative Adversarial Networks».
In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV). Oct. 2017 (cit. on p. 29).

[49] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. «Progressive
Growing of GANs for Improved Quality, Stability, and Variation». In: CoRR
abs/1710.10196 (2017). arXiv: 1710.10196. url: http://arxiv.org/abs/
1710.10196 (cit. on p. 30).

[50] Mang Ye, Jianbing Shen, Gaojie Lin, Tao Xiang, Ling Shao, and Steven
C. H. Hoi. «Deep Learning for Person Re-identification: A Survey and
Outlook». In: CoRR abs/2001.04193 (2020). arXiv: 2001.04193. url: https:
//arxiv.org/abs/2001.04193 (cit. on pp. 31–34).

[51] Liang Zheng, Yi Yang, and Alexander G. Hauptmann. «Person Re-identification:
Past, Present and Future». In: CoRR abs/1610.02984 (2016). arXiv: 1610.
02984. url: http://arxiv.org/abs/1610.02984 (cit. on pp. 31, 39).

[52] Liang Zheng, Hengheng Zhang, Shaoyan Sun, Manmohan Chandraker,
and Qi Tian. «Person Re-identification in the Wild». In: arXiv preprint
arXiv:1604.02531 (2016) (cit. on p. 32).

[53] Abir Das, Anirban Chakraborty, and Amit K Roy-Chowdhury. «Consis-
tent Re-identification in a Camera Network». In: European Conference on
Computer Vision. Vol. 8690. Lecture Notes in Computer Science. Zurich:
Springer, 2014, pp. 330–345 (cit. on p. 33).

98

https://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1109/CVPR.2017.19
https://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1710.10196
https://arxiv.org/abs/2001.04193
https://arxiv.org/abs/2001.04193
https://arxiv.org/abs/2001.04193
https://arxiv.org/abs/1610.02984
https://arxiv.org/abs/1610.02984
http://arxiv.org/abs/1610.02984

BIBLIOGRAPHY

[54] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. «Pedestrian
detection: A benchmark». In: 2009 IEEE Conference on Computer Vision
and Pattern Recognition. 2009, pp. 304–311. doi: 10.1109/CVPR.2009.
5206631 (cit. on p. 33).

[55] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ra-
manan. «Object Detection with Discriminatively Trained Part-Based Mod-
els». In: IEEE Transactions on Pattern Analysis and Machine Intelligence
32.9 (2010), pp. 1627–1645. doi: 10.1109/TPAMI.2009.167 (cit. on pp. 33,
37).

[56] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. «Re-ranking Person
Re-identification with k-reciprocal Encoding». In: (2017) (cit. on pp. 35,
77–80, 89, 90).

[57] Song Bai and Xiang Bai. «Sparse contextual activation for efficient visual
re-ranking». In: IEEE Transactions on Image Processing (2016) (cit. on
p. 35).

[58] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo
Tomasi. «Performance Measures and a Data Set for Multi-Target, Multi-
Camera Tracking». In: European Conference on Computer Vision workshop
on Benchmarking Multi-Target Tracking. 2016 (cit. on p. 37).

[59] Mengran Gou, Srikrishna Karanam, Wenqian Liu, Octavia Camps, and
Richard J. Radke. «DukeMTMC4ReID: A Large-Scale Multi-camera Person
Re-identification Dataset». In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). 2017, pp. 1425–1434. doi:
10.1109/CVPRW.2017.185 (cit. on p. 37).

[60] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani. «Person
re-identification by symmetry-driven accumulation of local features». In:
2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. 2010, pp. 2360–2367. doi: 10.1109/CVPR.2010.5539926 (cit.
on p. 39).

[61] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei Jiang. «Bag of
Tricks and a Strong Baseline for Deep Person Re-Identification». In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). 2019, pp. 1487–1495. doi: 10.1109/CVPRW.2019.00190
(cit. on pp. 40, 44, 66, 74, 75, 81–83).

[62] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin Wang. «Beyond
Part Models: Person Retrieval with Refined Part Pooling (and A Strong
Convolutional Baseline)». In: Proceedings of the European Conference on
Computer Vision (ECCV). Sept. 2018 (cit. on pp. 40, 41, 44, 45).

99

https://doi.org/10.1109/CVPR.2009.5206631
https://doi.org/10.1109/CVPR.2009.5206631
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/CVPRW.2017.185
https://doi.org/10.1109/CVPR.2010.5539926
https://doi.org/10.1109/CVPRW.2019.00190

BIBLIOGRAPHY

[63] Rodolfo Quispe and Helio Pedrini. «Top-DB-Net: Top DropBlock for Ac-
tivation Enhancement in Person Re-Identification». In: 25th International
Conference on Pattern Recognition (2020) (cit. on pp. 41, 44, 45).

[64] Zijie Zhuang, Longhui Wei, Lingxi Xie, Tianyu Zhang, Hengheng Zhang,
Haozhe Wu, Haizhou Ai, and Qi Tian. «Rethinking the Distribution Gap
of Person Re-identification with Camera-Based Batch Normalization». In:
European Conference on Computer Vision. Springer. 2020, pp. 140–157 (cit.
on pp. 41, 44, 66, 67, 81, 82).

[65] Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng, Yi Yang, and
Jan Kautz. «Joint discriminative and generative learning for person re-
identification». In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2019 (cit. on pp. 42–44, 56).

[66] Yixiao Ge, Zhuowan Li, Haiyu Zhao, Guojun Yin, Shuai Yi, Xiaogang
Wang, and hongsheng Li. «FD-GAN: Pose-guided Feature Distilling GAN
for Robust Person Re-identification». In: Advances in Neural Information
Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates, Inc., 2018.
url: https://proceedings.neurips.cc/paper/2018/file/c5ab0bc60a
c7929182aadd08703f1ec6-Paper.pdf (cit. on pp. 42, 44, 45).

[67] Guangcong Wang, Jianhuang Lai, Peigen Huang, and Xiaohua Xie. «Spatial-
Temporal Person Re-identification». In: (2019), pp. 8933–8940 (cit. on p. 44).

[68] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and
Neil D. Lawrence. Dataset Shift in Machine Learning. The MIT Press, 2009.
isbn: 0262170051 (cit. on pp. 47, 48).

[69] Liangchen Song, Cheng Wang, Lefei Zhang, Bo Du, Qian Zhang, Chang
Huang, and Xinggang Wang. «Unsupervised domain adaptive re-identification:
Theory and practice». In: Pattern Recognition 102 (2020), p. 107173. issn:
0031-3203. doi: https://doi.org/10.1016/j.patcog.2019.107173. url:
https://www.sciencedirect.com/science/article/pii/S00313203193
0473X (cit. on p. 49).

[70] Garrett Wilson and Diane J. Cook. «A Survey of Unsupervised Deep Domain
Adaptation». In: ACM Trans. Intell. Syst. Technol. 11.5 (July 2020). issn:
2157-6904. doi: 10.1145/3400066. url: https://doi.org/10.1145/
3400066 (cit. on pp. 50, 51).

[71] Mei Wang and Weihong Deng. «Deep visual domain adaptation: A survey».
In: Neurocomputing 312 (2018), pp. 135–153. issn: 0925-2312. doi: https:
/ / doi . org / 10 . 1016 / j . neucom . 2018 . 05 . 083. url: https : / / www .
sciencedirect.com/science/article/pii/S0925231218306684 (cit. on
pp. 50, 51).

100

https://proceedings.neurips.cc/paper/2018/file/c5ab0bc60ac7929182aadd08703f1ec6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c5ab0bc60ac7929182aadd08703f1ec6-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.patcog.2019.107173
https://www.sciencedirect.com/science/article/pii/S003132031930473X
https://www.sciencedirect.com/science/article/pii/S003132031930473X
https://doi.org/10.1145/3400066
https://doi.org/10.1145/3400066
https://doi.org/10.1145/3400066
https://doi.org/https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/https://doi.org/10.1016/j.neucom.2018.05.083
https://www.sciencedirect.com/science/article/pii/S0925231218306684
https://www.sciencedirect.com/science/article/pii/S0925231218306684

BIBLIOGRAPHY

[72] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. «Demystifying
Neural Style Transfer». In: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17. 2017, pp. 2230–2236.
doi: 10.24963/ijcai.2017/310. url: https://doi.org/10.24963/
ijcai.2017/310 (cit. on pp. 50, 52).

[73] Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, David Balduzzi,
and Wen Li. «Deep Reconstruction-Classification Networks for Unsupervised
Domain Adaptation». In: Computer Vision – ECCV 2016. Ed. by Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling. Cham: Springer International
Publishing, 2016, pp. 597–613 (cit. on p. 50).

[74] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario March, and Victor Lempitsky. «Domain-
Adversarial Training of Neural Networks». In: Journal of Machine Learning
Research 17.59 (2016), pp. 1–35. url: http://jmlr.org/papers/v17/15-
239.html (cit. on p. 50).

[75] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. «Unsupervised Rep-
resentation Learning by Predicting Image Rotations». In: International
Conference on Learning Representations. 2018. url: https://openreview.
net/forum?id=S1v4N2l0- (cit. on p. 51).

[76] Fabio Maria Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo,
and Tatiana Tommasi. «Domain Generalization by Solving Jigsaw Puzzles».
In: CVPR. 2019 (cit. on p. 51).

[77] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. «Image Style
Transfer Using Convolutional Neural Networks». In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 2414–2423.
doi: 10.1109/CVPR.2016.265 (cit. on pp. 52, 59, 60, 70).

[78] Haotian Tang, Yiru Zhao, and Hongtao Lu. «Unsupervised Person Re-
Identification With Iterative Self-Supervised Domain Adaptation». In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). 2019, pp. 1536–1543. doi: 10.1109/CVPRW.2019.00195
(cit. on pp. 54, 56, 59, 60, 73, 81, 82).

[79] Yang Zou, Xiaodong Yang, Zhiding Yu, Bhagavatula Vijayakumar, and
Jan Kautz. «Joint disentangling and adaptation for cross-domain person
re-identification». In: Proceedings of the European Conference on Computer
Vision (ECCV). 2020 (cit. on pp. 54, 56, 57, 59, 60, 73, 81, 82, 86).

101

https://doi.org/10.24963/ijcai.2017/310
https://doi.org/10.24963/ijcai.2017/310
https://doi.org/10.24963/ijcai.2017/310
http://jmlr.org/papers/v17/15-239.html
http://jmlr.org/papers/v17/15-239.html
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=S1v4N2l0-
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.1109/CVPRW.2019.00195

BIBLIOGRAPHY

[80] Hao Chen, Yaohui Wang, Benoit Lagadec, Antitza Dantcheva, and Francois
Bremond. «Joint Generative and Contrastive Learning for Unsupervised
Person Re-Identification». In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). June 2021, pp. 2004–
2013 (cit. on pp. 54, 57, 59, 60, 73, 81, 82, 86).

[81] Yang Fu, Yunchao Wei, Guanshuo Wang, Yuqian Zhou, Honghui Shi, and
Thomas S. Huang. «Self-Similarity Grouping: A Simple Unsupervised Cross
Domain Adaptation Approach for Person Re-Identification». In: The IEEE
International Conference on Computer Vision (ICCV). Oct. 2019 (cit. on
pp. 54, 59, 60).

[82] Yixiao Ge, Dapeng Chen, and Hongsheng Li. «Mutual Mean-Teaching:
Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-
identification». In: International Conference on Learning Representations.
2020. url: https://openreview.net/forum?id=rJlnOhVYPS (cit. on
pp. 55, 59, 60).

[83] Wenhao Wang, Fang Zhao, Shengcai Liao, and Ling Shao. «Attentive Wave-
Block: Complementarity-enhanced Mutual Networks for Unsupervised Do-
main Adaptation in Person Re-identification and Beyond». In: IEEE Trans-
actions on Image Processing (2022) (cit. on pp. 55, 59, 60).

[84] Xiaobin Liu and Shiliang Zhang. «Domain Adaptive Person Re-Identification
via Coupling Optimization». In: Proceedings of the 28th ACM International
Conference on Multimedia. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 547–555. isbn: 9781450379885. url: https://doi.
org/10.1145/3394171.3413904 (cit. on pp. 55, 59, 60).

[85] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. «Person Transfer GAN
to Bridge Domain Gap for Person Re-identification». In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018), pp. 79–88
(cit. on p. 56).

[86] Weijian Deng, Liang Zheng, Qixiang Ye, Guoliang Kang, Yi Yang, and Jian-
bin Jiao. «Image-Image Domain Adaptation with Preserved Self-Similarity
and Domain-Dissimilarity for Person Re-identification». In: CVPR. 2018
(cit. on pp. 56, 59, 60, 73, 81, 82).

[87] Yanbei Chen, Xiatian Zhu, and Shaogang Gong. «Instance-Guided Context
Rendering for Cross-Domain Person Re-Identification». In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV). 2019, pp. 232–242.
doi: 10.1109/ICCV.2019.00032 (cit. on pp. 57–60, 81, 82).

[88] Jianing Li and Shiliang Zhang. «Joint Visual and Temporal Consistency for
Unsupervised Domain Adaptive Person Re-Identification». In: ECCV. 2020
(cit. on pp. 58–60, 66, 67, 81, 82).

102

https://openreview.net/forum?id=rJlnOhVYPS
https://doi.org/10.1145/3394171.3413904
https://doi.org/10.1145/3394171.3413904
https://doi.org/10.1109/ICCV.2019.00032

BIBLIOGRAPHY

[89] Tianyu Zhang, Lingxi Xie, Longhui Wei, Zijie Zhuang, Yongfei Zhang, Bo
Li, and Qi Tian. «UnrealPerson: An Adaptive Pipeline towards Costless
Person Re-identification». In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2021 (cit. on pp. 60, 63, 64, 66, 67, 81–83).

[90] Matteo Fabbri, Guillem Brasó, Gianluca Maugeri, Aljoša Ošep, Riccardo
Gasparini, Orcun Cetintas, Simone Calderara, Laura Leal-Taixé, and Rita
Cucchiara. «MOTSynth: How Can Synthetic Data Help Pedestrian Detection
and Tracking?» In: International Conference on Computer Vision (ICCV).
2021 (cit. on pp. 60, 63).

[91] Sławomir Bąk, Peter Carr, and Jean-François Lalonde. «Domain Adaptation
through Synthesis for Unsupervised Person Re-identification». In: ECCV.
2018 (cit. on pp. 61, 62, 64–66, 81).

[92] Epic Games Incorporated. Unreal Engine. 2021. url: https://www.unreal
engine.com (cit. on pp. 61, 63, 66).

[93] Xiaoxiao Sun and Liang Zheng. «Dissecting Person Re-identification from
the Viewpoint of Viewpoint». In: CVPR. 2019 (cit. on pp. 61, 62, 64).

[94] Unity Technologies. Unity Real-Time Development Platform. 2021. url:
https://unity.com (cit. on pp. 61, 62).

[95] Yanan Wang, Shengcai Liao, and Ling Shao. «Surpassing Real-World Source
Training Data: Random 3D Characters for Generalizable Person Re-Identification».
In: 28th ACM International Conference on Multimedia (ACMMM). 2020
(cit. on pp. 61, 62, 64, 66, 67, 81–83, 86).

[96] MakeHuman Community. MakeHuman: Open Source Tool for Making 3D
Characters. 2021. url: http://www.makehumancommunity.org (cit. on
p. 61).

[97] Igor Barros Barbosa, Marco Cristani, Barbara Caputo, Aleksander Rogn-
haugen, and Theoharis Theoharis. «Looking beyond appearances: Synthetic
training data for deep CNNs in re-identification». In: Computer Vision
and Image Understanding 167 (2018), pp. 50–62. issn: 1077-3142. doi:
https://doi.org/10.1016/j.cviu.2017.12.002. url: https://www.
sciencedirect.com/science/article/pii/S1077314217302254 (cit. on
pp. 62, 65).

[98] Rockstar North, Rockstar Leeds, and Rockstar Games. Grand Theft Auto V.
2021. url: https://www.rockstargames.com/gta-v (cit. on p. 63).

[99] Matteo Fabbri, Fabio Lanzi, Simone Calderara, Andrea Palazzi, Roberto
Vezzani, and Rita Cucchiara. «Learning to Detect and Track Visible and
Occluded Body Joints in a Virtual World». In: European Conference on
Computer Vision (ECCV). 2018 (cit. on pp. 63, 64).

103

https://www.unrealengine.com
https://www.unrealengine.com
https://unity.com
http://www.makehumancommunity.org
https://doi.org/https://doi.org/10.1016/j.cviu.2017.12.002
https://www.sciencedirect.com/science/article/pii/S1077314217302254
https://www.sciencedirect.com/science/article/pii/S1077314217302254
https://www.rockstargames.com/gta-v

BIBLIOGRAPHY

[100] Stephan R. Richter, Hassan Abu AlHaija, and Vladlen Koltun. «Enhancing
Photorealism Enhancement». In: arXiv:2105.04619 (2021) (cit. on p. 63).

[101] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. «Representation Learning
with Contrastive Predictive Coding». In: CoRR abs/1807.03748 (2018).
arXiv: 1807.03748. url: http://arxiv.org/abs/1807.03748 (cit. on
pp. 71, 72).

[102] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. «Improved Techniques for Training GANs». In: CoRR
abs/1606.03498 (2016). arXiv: 1606.03498. url: http://arxiv.org/abs/
1606.03498 (cit. on p. 91).

104

https://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Pedestrian re-identification
	Standard setting
	Cross-domain
	Synthetic data

	Contributions and work structure
	Objective
	Contributions
	Outline

	Neural Networks
	Some historical remarks
	Machine learning
	Learning paradigms
	Training pipeline

	Neural networks structure
	Fully connected neural networks
	Convolutional neural networks
	Activation functions
	Pooling layer
	Dropout layer
	Normalization

	Loss functions
	Cross-entropy loss
	Mean squared error
	Contrastive and triplet losses
	Performance metrics

	Optimization
	Backpropagation
	Regularization
	Stochastic gradient descent
	Adam optimizer
	Transfer learning

	Architectures
	Standard architectures
	Residual connections
	Other architectures

	Generative adversarial neural networks
	A two-player game
	Adversarial training
	Beyond binary classification

	Pedestrian Re-Identification
	Person Retrieval
	Building blocks
	Open versus closed world

	Training protocols and evaluation metrics
	Cumulative matching characteristics
	Mean average precision

	Benchmark datasets
	Market1501
	DukeMTMC
	CUHK03

	From shallow to deep person descriptors
	Architecture evolution
	Image cues
	Generative methods

	Other approaches

	Cross-Domain Transfer
	Domain adaptation
	Dataset shift
	Deep learning techniques
	Neural style transfer

	Domain adaptation for person Re-ID
	Iterative pseudo-labeling techniques
	Generative methods
	Other methods

	Synthetic datasets
	SyRI
	PersonX
	RandPerson
	UnrealPerson
	GTASynthReid

	Synth to real
	Approaches

	Model Architecture and Experiments
	Network Architecture
	Domain mapping
	Relationship preservation
	Discriminative learning
	Overall objective

	Experiments
	Training details
	Evaluation details
	Ablation studies
	Results
	Qualitative results

	Conclusions
	About this work
	Future directions

	Re-Ranking
	K-reciprocal encoding
	K-reciprocal distance

	Evaluating Generative Adversarial Networks
	Inception Score
	Fréchet Inception Distance

	Bibliography

