
Department of Mechanical and Aerospace Engineering (DIMEAS)

MSc in Aerospace Engineering - Space Orientation

Master Thesis

Development of a mission analysis and
trajectory optimization software via ESA

GODOT

Supervisor: Author:

Prof. Lorenzo Casalino Andrea Musacchio

Co-supervisor:

Ing. Francesco Castellini

Academic Year

2021-2022

Alla famiglia che ho lasciato a Portocannone,

A quella che ho trovato a Torino

”Verso l’infinito... e oltre!” - Buzz Lightyear

Abstract

This thesis’ objective is to describe the development process, in collaboration with the start-up

AerisGate, of a set of python applications for mission analysis and trajectory optimization by

explaining the theory behind these applications and showing the results of tests conducted.

The applications are based on GODOT (General Orbit Determination and Optimisation

Toolkit), a European Space Agency flight dynamics software for orbit determination and anal-

ysis, that allows to model the universe and perform spacecraft’s trajectory propagation. By

combining this tool with the optimization library PyGMO, the developed applications aim to be

as generic as possible, in order to analyse many types of missions. The two main optimization

algorithms applied are SLSQP (Sequential Least Squares Programming) and IPOPT (Interior

Point OPTimizer). These are non-linear optimization Local algorithms, thus they aim to find

the local minima of the function studied. This mean that an initial guess must be given to the

algorithms and it has to be in the space of the solutions, otherwise these algorithms won’t con-

verge. To perform the preliminary analysis required to obtain a good initial guess, the Lambert’s

problem has been solved to obtain a mission’s porkchop plots.

To show the capabilities of the applications three test missions have been analysed and

successfully optimized: a Mars orbit insertion departing from Earth via B-plane targeting; a

free-return trajectory from Earth to Moon; an in-plane station-keeping manoeuvres analysis for

Sun-Synchronous orbits via the implementation of a bisection algorithm.

i

Contents

Introduction . 1

1 Theoretical background and

Python packages 2

1.1 ESA GODOT flight dynamics software . 3

1.1.1 Universe class . 4

1.1.2 Trajectory class . 8

1.1.3 Problem class . 11

1.1.4 Propagator class . 13

1.2 PyGMO Parallel Global Multiobjective Optimizer 15

1.2.1 SLSQP . 16

1.2.2 IPOPT . 18

1.2.3 COBYLA . 22

1.3 Other tools . 24

2 Trajectory optimization application 26

2.1 Interplanetary trajectory with

orbit circularization . 27

2.1.1 Lambert’s problem and porkchop plots 28

2.1.2 Earth departure and B-plane targeting 33

ii

2.1.3 Mars orbit capturing . 39

2.1.4 Final optimization . 43

2.2 Moon free-return trajectory . 49

3 In-Plane Station keeping application 53

3.1 In-plane manoeuvre optimization . 53

3.2 Sun-Synchronous Orbits . 58

3.3 SS-O Test analysis . 61

3.4 Comparison with Aeolus

In-Plane station-keeping . 68

4 Conclusions and future works 71

Bibliography 73

iii

List of Figures

1.1 GODOT logo . 3

1.2 Pygmo/pagmo logo . 15

2.1 Representation of the Lambert’s problem with the position state r1 and r2 and

chord c . 29

2.2 Porkchop plots . 32

2.3 B-plane visualization . 34

2.4 Earth to B-plane, propagation of the first guess 36

2.5 Earth to B-plane, propagation of the optimized trajectory 38

2.6 Hyperbolic trajectory to circularization, propagation of the first guess 41

2.7 Hyperbolic trajectory to circularization, propagation of optimized trajectory . . 43

2.8 Optimized trajectory of the Earth to Mars mission 46

2.9 Optimized trajectory, departure from Earth . 47

2.10 Optimized trajectory, Mars arrival and circularization 48

2.11 Free return trajectory from Earth to Moon in ICRF reference frame 49

2.12 Free return trajectory from Earth to Moon in Moon centered reference frame . . 50

2.13 Monte Carlo analysis of the free return trajectory 52

3.1 Ground-track deviation with control bands . 55

3.2 Representation of the iterations of the bisection algorithm 58

iv

3.3 Comparison between a SS-O (a) and the same orbit 30 days apart (b) 59

3.4 Inclination vs. Altitude for SSOs . 60

3.5 Revolutions and Days vs. Altitude for SS-Os 61

3.6 Optimization process — 4 Days propagation and sma ∼= 6700 km 65

3.7 Optimization process — 14 Days propagation and sma ∼= 6800 km 66

3.8 Optimization process — 60 Days propagation and sma ∼= 7000 km 67

3.9 1D16R orbit with four station-keeping manoeuvres 68

3.10 Comparison between the Aeolus paper and the app’s outputs 70

v

List of Tables

2.1 Final value for the Earth to Mars mission . 45

3.1 Semi-major axis and inclinations of the SS-Os used for the app validation . . . 61

3.2 ∆V required to perform the In-plane station-keeping 64

3.3 Aeolus spacecraft parameters relevant to the orbit control analysis 68

List of Algorithms

1 Bisection method for evaluating ∆V . 57

2 Bisection method for evaluating SS-O inclination 63

vi

Introduction

The Space industry is a sector in constant growth and evolution. The global space economy rose

to 447 billion dollars in 2020, an increase of 55% from 2010 according to The Space Report

2021 Q2, demonstrating the high interest it is receiving.

In this context the idea of the New Space economy take place, where this industry evolves

from centralized and exclusive to globalized and private. NewSpace ventures arise, founding

startups working in a wide range of space fields, from rockets to satellites constellations, aiming

to reinvent the traditional space industry.

Among these participants of the new (space) gold era AerisGate, a Germany-based startup

company founded by three ESA-ESOC employees, made room for itself. This thesis born as

a collaboration between the candidate and AerisGate to develop a Python-based tool of space

mission analysis. By implementing the ESA GODOT software, this works aims to create a set

of apps able to analyze virtually any orbit and, in combination with the optimization PyGMO

library, optimize spacecrafts’ trajectories.

The thesis presents the fundamental theory on which the libraries and apps are based and

exposes the tools’ functionalities with a set of test cases.

1

Chapter 1

Theoretical background and

Python packages

As one of the businesses of AerisGate is to offer consulting services in the Space Flight Dynam-

ics field for other companies or universities, it may be extremely valuable to have a software

robust enough to perform analysis, like spacecraft’s trajectory propagation as well as orbit vi-

sualization and data plotting, on a generic mission. If the software is also able to optimize such

trajectory, we are in front of a convenient tool to speed up the analysis work.

The aim of this thesis is to develop such tool by coding applications in Python programming

language. These applications are primarily based on two libraries developed by ESA: GODOT

and PyGMO/pagmo. The following sections will describe these two main libraries, both show-

ing some of the theory behind as well as how the software is built. Other Python libraries used

during the development of the applications will be cited briefly.

2

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

1.1 ESA GODOT flight dynamics software

Figure 1.1: GODOT logo

GODOT (General Orbit Determination and Optimisation Toolkit) [1] is a flight dynamics soft-

ware developed by ESA/ESOC for orbits analysis and optimization. It is coded in C++ and has

a Python interface. The apps in this thesis will use version 0.7.0, but the software is still in

development so improved versions of the library are being developed. The software’s formu-

lations of light time, relativistic effects and dynamical models are based on the orbit determi-

nation technical report Moyer 1971 [2]. The report describes the mathematical models of the

Double-Precision Orbit Determination Program (DPODP), which allows the calculations of the

required parameters to describe a spacecraft trajectory for lunar and planetary missions based

3

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

on the spacecraft’s data retrievable from Earth.

As GODOT is made of many sub-libraries, it is worth to focus on the functionalities of the

sub-libraries employed in this project.

The main tools are the Universe class, the Trajectory class and the Problem class, created

from a configuration file with .json or .yml extension, and the Propagator.

1.1.1 Universe class

The Universe class allows the user to setup the environment of the simulation and it is con-

structed via various plugins. There is again a vast choice of plugins but, for the sake of brevity,

only the one used during this project will be described.

Spacetime system

The first one is the definition of the relativistic system. It is possible to choose between the

barycentric (BCRF) or geocentric (GCRF) celestial reference system, both created from

the International Astronomical Union (IAU) [3] to analyze orbits respectively far or near

Earth. It is possible to convert between these reference systems via the SOFA system [4].

As GODOT can handle various coordinate time scale, based on the choice of reference

frame the propagator will use Barycentric Dynamical Time (TDB) or the Terrestrial Time

(TT) [5].

Ephemeris

For the determination of planets or asteroids state and physical data the ephemeris plugin

is implemented. It takes as inputs kernel files, which are astronomy data built using the

information system SPICE, built by the Navigation and Ancillary Information Facility

under NASA directions [6]. For this project, the two kernels used are the DE432 for the

ephemeris, which is an update of DE430[7], and gm-DE431 to assign mass parameters to

planets.

4

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

Frames

The frames plugin allows to analyze state vectors with different axes and define single

points in space [8]. The default axes are the Inertial Celestial Reference Frame[9] and the

Earth Mean eCliptic frame, while the only predefined point is the Solar System Barycen-

tre. There can be user-defined reference axes or points, or built-in ones, as the IAU

reference frames [10].

Bodies and Gravity

The bodies plugin allows to choose which bodies will influence the mission and is a

baseline for the gravity plugin, which allows to analyze the gravitational acceleration, by

choosing the right Center of Integration based on the satellite’s position in respect to the

sphere of influence of a body.

Atmosphere

The atmosphere plugin allows the modelling of air drag. It is explain in more details in

Section 3.1

Dynamics

The dynamics plugin is extremely useful as it is possible to create various dynamic models

to use during a trajectory propagation, especially for analysis purpose. For example it is

possible to create a reference orbit by disabling Solar Radiation Pressure and air drag or

the effect of a planet’s spherical harmonics.

There are other useful plugin that has not been used during this thesis, but can be found in

GODOT’s Wiki page.

Below an example of a Universe file:

UNIVERSE class

spacet ime :

5

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

system : BCRS

ephemeris :
- name: de432

f i l e s :
- . . / de432 . j p l

- name: gm431
f i l e s :

- . . / gm de431 . tpc

frames :
- name: ephem1

type : Ephem
c o n f i g :

source : de432
- name: ITRF

type : A x e s O r i e n t
c o n f i g :

model: IERS2000
n u t a t i o n : . . / n u t a t i o n 2 0 0 0 A . i p f
erp : ’’

- name: Mars
type : A x e s O r i e n t
c o n f i g :

model: MarsIAU2009

c o n s t a n t s :
ephemeris :

- source : gm431

bo d ie s :
- name: E a r t h

p o i n t : E a r t h
g r a v i t y :

- EarthGrav
gm: Ea r thGrav

- name: Sun
p o i n t : Sun

- name: Moon
p o i n t : Moon

g r a v i t y :
- name: s o l a r S y s t e m

bo d ie s :
- Earth

6

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

- Moon
- Sun

dynamics:
- name: s o l a r S y s t e m G r a v i t y

type : S y s t e m G r a v i t y
c o n f i g :

model: s o l a r S y s t e m

- name: s r p
type : SimpleSRP
c o n f i g :

mass: GeoSat mass
area : G e o S a t s r p a r e a
cr : G e o S a t s r p c r
o c c u l t e r s :

- Earth
- Moon

- name: s o l a r S y s t e m
type : Combined
c o n f i g :

- so larSys temGrav i ty
- srp

s p a c e c r a f t :
- name: GeoSat

mass: 1200 kg
srp :

area : 10 mˆ2
cr : 1 . 7

t h r u s t e r s :
- name: main

t h r u s t : 100 N
i s p : 320 s

spher ica lHarmonics :
- name: Ea r thGrav

type : F i l e
c o n f i g :

p o i n t : E a r t h
degree : 16
order : 16
axes : ITRF
f i l e : . . / e i g e n 0 5 c 8 0 s h a . t a b

7

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

1.1.2 Trajectory class

The Trajectory class is the other main modelling tool of GODOT. It allows the description of

orbital trajectories via four different elements:

Control

Control points allow the user to choose a state vector and an epoch. These are the initial

states for the propagator computation and are the main elements from the mission anal-

ysis standpoint. These points allows the user to set spacecraft’s states as targets for the

propagation and optimization of a trajectory.

Manoeuvre

Used to apply accelerations to the spacecraft. Three data are required to describe an

impulsive manoeuvre in terms of the direction vector and the magnitude, in ∆V m/s, of

the engine burn. The reference frame of the resulting vector is also required. In case of

finite manoeuvres, the magnitude of the burn is replaced by the time of burn of constant

intensity, as the throttle is not implemented in GODOT. The spacecraft can be modelled

with multiple propulsion systems that can be implemented during the manoeuvre analysis.

Match

These elements are needed when there is more than one control point to get a continuous

trajectory. These are especially useful during the optimization of a trajectory, as the aim of

these elements is to match the state of a spacecraft in a given epoch between two control

points when a forward and backward propagation are happening simultaneously. This

allows to break up the trajectory in segments and perform a multiple shooting method to

solve the optimization problem [11].

Point

Can be used to have a reference during the mission analysis or to apply a discontinuity in

8

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

the states. It is also used to define the start or end point of a propagation if there are no

match, control or manoeuvre points in the desired epoch.

An example of a Trajectory class is the following:

TRAJECTORY class

t i m e l i n e :

- type : c o n t r o l
name: l a u n c h
epoch : 0 TDB
s t a t e :

- name: G e o S a t c e n t e r
body: E a r t h
axes : ICRF
dynamics: s o l a r S y s t e m
va lue :

rpe : 6678 km
rap: 80000 km
i n c : 18 deg
ran: 0 deg
aop: 0 deg
tan : 0 deg

- name: GeoSat mass
va lue : 1000 kg

- name: GeoSat dv
va lue : 0 m/ s

- type : manoeuvre
name: man1
model: f i n i t e
input : GeoSat
t h r u s t e r : main
c o n f i g :

s t a r t :
body: E a r t h
tan : 180 deg

end:
dv: 1100 m/ s

d i r e c t i o n :
body: E a r t h
axes : TCN
ras : 0 deg

9

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

dec : 0 deg

- type : match
name: match1
input : GeoSat
p o i n t :

epoch : 1 . 0 TDB
body: E a r t h
vars : e q u i

- type : manoeuvre
name: man2
model: f i n i t e
input : GeoSat
t h r u s t e r : main
c o n f i g :

s t a r t :
body: E a r t h
axes : ICRF
t l o : 0 deg

end:
dv: 600 m/ s

d i r e c t i o n :
body: E a r t h
axes : TCN
ras : 180 deg
dec : 0 deg

- type : c o n t r o l
name: a r r i v a l
epoch : 2 TDB
s t a t e :

- name: G e o S a t c e n t e r
body: E a r t h
axes : ICRF
dynamics: s o l a r S y s t e m
va lue :

s l r : 42165 .0 km
ecx : 0
ecy : 0
inx : 0
iny : 0
t l o : 180 deg

- name: GeoSat mass
va lue : 600 kg

10

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

- name: GeoSat dv
va lue : 1500 m/ s

1.1.3 Problem class

The problem class is the bridge between GODOT and PyGMO. It allows the user to optimize a

trajectory by declaring a number of parameters and an optimization’s objective.

The parameters are divided in three linked categories:

Free

The free parameters are every trajectory element that can be modified during the opti-

mization process. An example are the magnitudes of the components of a manoeuvre’s

velocity vector, or the time of a burn, as well as Keplerian orbits’ data that are not con-

strained by the mission.

Bounds

The bounds set the lower and upper limits of the free parameters. This allows to choose

a confined space of solutions. Moreover, if the optimization process is based on global

algorithms, later explained in Section 1.2, bounds are mandatory for every free parameter,

in order to give the algorithm a confined space in which choose a random number.

Scales

The scales are scaling factor applied to the parameters, so that all the parameters are nor-

malized. The scales are useful when working with variables that have a great difference

in order of magnitude, to help the local optimization algorithms in finding the proper

descent direction.

The objective is the value that will be optimized. It is required to express if the aim is to

11

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

maximise or minimise it and in which point of the trajectory we are interested. For the majority

of the mission the aim is to maximise the mass, or minimise the ∆V , of the satellite at the end

of a trajectory, which means saving fuel and thus reducing the mission’s costs. The output of a

problem optimization is the optimized trajectory file.

An example of a Problem file can be found below:

PROBLEM class

parameters :

f r e e :
- m a n 1 s t a r t t a n
- man1 ras
- man1 dec
- man1 end dv

- m a n 2 s t a r t t l o
- man2 ras
- man2 dec
- man2 end dv

- a rr i v a l G eo S a t m as s
- a r r i v a l G e o S a t d v

bounds:
m a n 1 s t a r t t a n : [0 deg , 360 deg]
man1 ras:[−15 deg , 45 deg]
man1 dec:[−20 deg , 10 deg]
man1 end dv: [0 m/ s , 5000 m/ s]

m a n 2 s t a r t t l o : [0 deg , 40 deg]
man2 ras: [150 deg , 210 deg]
man2 dec:[−5 deg , 5 deg]
man2 end dv: [0 m/ s , 1000 m/ s]

a rr i v a l G eo S at m as s : [0 kg , 1000 kg]
a r r i v a l G e o S a t d v : [0 m/ s , 2000 m/ s]

s c a l e s :
m a n 1 s t a r t t a n : 1 deg
man1 ras: 1 deg
man1 dec: 1 deg
man1 end dv: 1000 m/ s

12

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

m a n 2 s t a r t t l o : 1 deg
man2 ras: 1 deg
man2 dec: 1 deg
man2 end dv: 100 m/ s

a rr i v a l G eo S at m as s : 100 kg
a r r i v a l G e o S a t d v : 100 m/ s

o b j e c t i v e :
type : maximise
va lue : GeoSat mass
p o i n t : a r r i v a l

1.1.4 Propagator class

The propagator class is responsible to evaluate the state vector of the spacecraft in a given time

range, considering the environment modelled with the Universe class and the states and ma-

noeuvres from the Trajectory class. There are two available integration algorithm in GODOT:

Runge-Kutta and Adams, although for the app proposed in the thesis only Runge-Kutta has

been used.

1.1.4.1 Seventh-order Runge-Kutta formula

The Runge-Kutta method is an iterative algorithm used to approximately solve systems of dif-

ferential equations by using discretization to calculate the solutions in small stepsize. There

are many variants of the method. In GODOT the Runge–Kutta–Verner method of seventh-order

(RK78) [12, 13] with a 7-th order interpolating polynomial [14] is implemented. It is an explicit

method, which means that the solution of the step n+1 is obtained via the solution of the step n.

To shorten the explanation, we will consider for this analysis only one differential equation, but

the formulas can be used for systems of differential equations.

To begin the computation, we need an initial condition (1.1) and the differential equa-

tion (1.2):

13

Chapter 1. Theoretical background and
Python packages 1.1. ESA GODOT flight dynamics software

y(t0) = y0 (1.1)

y′ = f(t, y) (1.2)

where y is a vector function of time t that we want to approximate and y′, its derivative, is a

function of y and t. We then can write the Runge-Kutta formula:

f0 = f(t0, y0)

fk = f(t0 + αkh, y0 + h
k−1X
λ=0

βkλfλ) (k = 1, 2, ..., 12)
(1.3)

and

y = y0 + h
10X
k=0

ckfk +O(h8)

ŷ = y0 + h
12X
k=0

ĉkfk +O(h9)

(1.4)

where h is the integration stepsize. The other coefficients αk, βkλ, ck, ĉk have to be determined

so that equations in (1.4) represent respectively a seventh- and an eight-order Runge-Kutta

formula. It is possible to evaluate these therms as they have to satisfy certain equations of

conditions listed in [15]. For further reading the technical report [12], as well as [13], describe

in great detail the solution of the equations of condition for these coefficients.

By having two different order formulas in equations (1.4) it is possible to perform a step-size

control [16], thus not requiring a fixed step-size, as the difference y− ŷ provides an approxima-

tion of the leading eight-order truncation error of the seventh-order Runge-Kutta formula. After

defining ∆toll = tollabs + tollrel∗ | y |, which allows the user to control the tolerance based

on the analysis, the control can be implemented: if the error is higher than ∆toll we can halve

the step size and redo the step, if it is smaller than (1
2
)8∆toll we can double the step size, thus

14

Chapter 1. Theoretical background and
Python packages 1.2. PyGMO Parallel Global Multiobjective Optimizer

gaining on computational time.

1.2 PyGMO Parallel Global Multiobjective Optimizer

Figure 1.2: Pygmo/pagmo logo

Pagmo [17] is an optimization library written in C++ programming language, transpose in

Python language as PyGMO. It implements a vast array of optimization algorithms, both local

and global.

Global optimization algorithms [18] aim to find the global solution of a function, usually

by means different than analytical methods. The global algorithms use a set of, often random,

initial guesses, called population, and function to evaluate the goodness of the population, called

fitness. The fittest guesses, or individuals, of the population get selected and from them, in

a fashion dependent by the algorithm, by mixing or mutating a new population i generated.

The generation of a new population is called evolution. The evident underlying theme is the

parallelism with the evolutionary theory of natural selection by Charles Darwin [19]. This

jargon is used throughout PyGMO also for local algorithms.

Local optimization algorithms find the optimal solution in a specific region of the search

space, thus finding the local minima or maxima of a function given a single initial guess of the

15

Chapter 1. Theoretical background and
Python packages 1.2. PyGMO Parallel Global Multiobjective Optimizer

solution.

The applications developed for this thesis use the local optimization algorithms present

in PyGMO, in particular SLSQP and IPOPT. For each optimization both are applied and the

solution that better maximise/minimise our objective is picked. A brief presentation of both

algorithms is presented in the following sections. Also the COBYLA algorithm is presented, as

it has been analyzed during the evaluation of algorithms in PyGMO, but ultimately discarded

due to poor performances.

1.2.1 SLSQP

The Sequential Least-Squares Quadratic Programming (SLSQP) [20, 21] algorithm is part of

the Non-Linear optimization algorithms of PyGMO [22]. Sequential Quadratic Programming

is an optimization method based on the generation of steps by solving quadratic subproblems.

In order to shortly explain the algorithm, the procedure from [23] will be presented.

We shall start by stating the problem. A problem is made up of an objective function f(x),

of which we want to find the minimum value, and, in case of constrained problems, of equality

and inequality constraints (1.5)

min f(x)

h(x) = 0

g(x) ≤ 0

(1.5)

where x may be a vector of many variables, so h(x) and g(x) can be systems, and by nonlinear

problems we mean that any of these equations may be nonlinear.

It is beneficial to reformulate the problem via a Lagrangian function, which combines the

equations in (1.5) into one, using the Lagrangian multipliers λ and µ for equality and inequality

constraints respectively:

16

Chapter 1. Theoretical background and
Python packages 1.2. PyGMO Parallel Global Multiobjective Optimizer

L(x, λ, µ) = f(x) +
X
i

λihi(x) +
X
i

µigi(x) (1.6)

The local minimum of the function can be found by searching the values so that the gradient

is zero. It is possible to present the resultant equation via the Karush-Kuhn-Tucker (KKT)

Conditions:

∇L =


dL
dx

dL
dλ

dL
dµ

 =


∇f + λ∇h+ µ∇g∗

h

g∗

 = 0 (1.7)

The third condition, g∗, represent the inequality constraints that are active, as the ones not

near the optimal solution are not relevant; µ is zero for inactive constraints, as the Lagrange

multipliers describe the change in the objective function with respect to a change in a constraint.

To effectively tackle nonlinar functions, the Newton’s method is implemented to improve

the guess value. The idea is to take into consideration the rate of change of the function and

how the function is accelerating at the guess. The improvement steps are then the following:

xk+1 = xk −
∇f

∇2f
(1.8)

We can now take advantage of the Lagrange formulation to rewrite the iteration:


xk+1

λk+1

µk+1

 =


xk

λk

µk

−∇2L−1
k ∇Lk (1.9)

where ∇Lk is the label KKT conditions in (1.7), while ∇2Lk can be written as:

17

Chapter 1. Theoretical background and
Python packages 1.2. PyGMO Parallel Global Multiobjective Optimizer

∇2Lk =


∇2

xxLk ∇h ∇g

∇h 0 0

∇g 0 0

 (1.10)

This way in theory there are no nonlinear equations to solve. In practice the divergence may

not be an invertible matrix, thus the improvement direction of the Newton’s Method is found by

solving with quadratic algorithms a quadratic minimization sub-problem:

p =
∇L

∇2L
=

(∇L)p

(∇2L)p
(1.11)

where p is the increment. By noticing the resemblance with a two-term Taylor Series, it is

possible to obtain a minimization sub-problem by decomposing the equations within this system

and cutting the second order term in half to match Taylor Series concepts. Although this sub-

problem is quadratic, is easier to solve than our initial problem, as it has only one variable:

min(p) fk(x) +∇fT
k p+

1

2
pt∇2

xxLkp

∇hkp+ hk = 0

∇gkp+ gk = 0

(1.12)

1.2.2 IPOPT

The Interior Point OPTimizer (IPOPT) solver is a software package for large-scale nonlinear op-

timization. In particular, it uses a primal-dual interior-point algorithm with a filter line-search

method. The paper of the software’s authors [24] fully describe the method that will be ex-

plained below. For coherence, some variables will be renamed to comply with the notation used

in Section 1.2.1.

18

Chapter 1. Theoretical background and
Python packages 1.2. PyGMO Parallel Global Multiobjective Optimizer

As before, we can state the problem’s formulation:

min f(x)

h(x) = 0

xL ≤ x ≤ xU

(1.13)

Differently from the problem in (1.5), here we have the lower and upper bounds of the

variables: xL, xU . Although the inequality constraints aren’t directly in the equation, these can

be added by introducing slack variables.

Interior points methods are also referred as barrier methods, as the method can be general-

ized using barrier functions, that are continuous functions whose values increase to infinity as

the point approaches the boundary of the feasible region. The algorithm evaluates the solutions

for a sequence of barrier problems:

min ϕβ(x) := f(x)− β
nX

i=1

ln(x(i))

h(x) = 0

(1.14)

where β is a barrier parameter converging to zero. We can reforulate the equation in (1.14) as

applying a homotopy method to the primal-dual equations:

∇f(x) +∇h(x)λ− z = 0

h(x) = 0

diag(x)diag(z)e− βe = 0

(1.15)

again with β driven to zero. Here z is the Lagrangian multiplier for the bounds constraints and

e is a vector of all ones. If we consider in equation (1.15) β = 0 and x, z ≥ 0 we remain again

with the KKT conditions for the original problem. The optimality error can be defined as:

19

Chapter 1. Theoretical background and
Python packages 1.2. PyGMO Parallel Global Multiobjective Optimizer

Eβ(x, λ, z) := max{∥∇f(x) +∇h(x)λ− z∥∞
sd

, ∥h(x)∥∞,
∥diag(x)diag(z)e− βe∥∞

sc
}

(1.16)

where sd, sc ≥ 1 are scaling parameters. We consider as the optimality error of the original

problem E0(x, λ, z) for β = 0. The algorithm ends if a solution (x̃∗, λ̃∗, z̃∗) satisfy:

E0(x̃∗, λ̃∗, z̃∗) ≤ ϵtol (1.17)

where ϵtol is a user defined tolerance.

The definition of sd, sc and the optimization for a faster local convergence are explained in

the before referenced paper [24].

To solve the barrier problem in (1.14) for a fixed value of βj it is again used a Newton’s

method, this time damped, to the equations (1.15). We can write:


∇2

xxLk ∇h(xk) −I

∇h(xk)
T 0 0

∇diag(zk) 0 diag(xk)



dxk

dλk

dzk

 = −


∇f(xk) +∇h(xk)λk − zk

h(xk)

diag(xk)diag(zk)e− βje

 (1.18)

where Lk is the Lagrangian function

L(xk, λk, zk) = f(xk) + h(xk)
Tλ− zk (1.19)

and (dxk, d
λ
k , d

z
k) are the search directions.

The method first evaluate the smaller symmetric linear system

20

Chapter 1. Theoretical background and
Python packages 1.2. PyGMO Parallel Global Multiobjective Optimizer

∇2
xx + diag(xk)

−1diag(zk) ∇h(xk)

∇h(xk)
T 0

dxk
dλk

 = −

∇ϕβj
(xk) +∇h(xk)λk

h(xk)

 (1.20)

and then evaluates the last search vector

dzk = βjdiag(xk)
−1e− zk − diag(xk)

−1diag(zk)d
x
k (1.21)

The equation (1.20) is modified to ensure that the matrix in the top-left is positive definite

and that diag(xk) is full rank:

∇2
xx + diag(xk)

−1diag(zk) + δwI ∇h(xk)

∇h(xk)
T δcI

dxk
dλk

 = −

∇ϕβj
(xk) +∇h(xk)λk

h(xk)

 (1.22)

where δw, δc ≥ 0 are scalars.

Once the search directions are computed from (1.21) and (1.22), in order to obtain the next

iterate we need to evaluate the step-size αk, α
z
k ∈ (0, 1]:

xk+1 := xk + αk + dxk

λk+1 := λk + αk + dλk

zk+1 := zk + αz
k + dzk

(1.23)

The different stepsize in the z variable is used as it is more efficient. This property is valid

for any iterate, as in case of an optimal solution of the barrier problem (1.14) both x and z are

positive. The stepsize αk is obtained via a backtracking line-search filter method procedure [25]

that explore a sequence of trial stepsize

21

Chapter 1. Theoretical background and
Python packages 1.2. PyGMO Parallel Global Multiobjective Optimizer

αk,l = 2−lαmax
k (l = 0, 1, 2, ...) (1.24)

to ensure global convergence.

A complete implementation of the method is presented in the Algorithm A (Line-search

Filter Barrier Method) of the paper [24].

1.2.3 COBYLA

Constrained optimization by linear approximation (COBYLA) [26] is another optimization

method useful to solve constrained problems. Its advantage is the ability to perform the op-

timization of an objective function without knowing the function’s derivative or, for a multi-

variable function, its gradient. The main disadvantage lies behind its slowness with respect to

the other presented algorithms that use the gradient of the objective function. During test runs

it has been found that the time required for an optimization with COBYLA is almost twice as

much compared to the time spent for the same analysis with IPOPT or SLSQP. As GODOT au-

tomatically evaluate the gradient of the objective function, the advantage of COBYLA become

irrelevant, so it has not been used. The main concepts of this algorithm are presented anyway

as it may be useful for future works.

To sum up the algorithm, it approximate the constrained optimization problem with linear

programming problems at each iteration. The linear programming problem is solved and a

candidate for the optimal solution is obtained. This candidate is then evaluated with the real

objective and constraints functions, generating a new point in the optimization space. Then

a new iteration can be performed with the new data, so that there is an improvement in the

approximating linear programming problem. The stepsize is reduced when no improvement

is achieved. Once the stepsize is smaller than a defined value, the algorithm ends. Below the

iteration process is described.

22

Chapter 1. Theoretical background and
Python packages 1.2. PyGMO Parallel Global Multiobjective Optimizer

As always, the problem is presented

min f(x)

g(x) ≥ 0
(1.25)

where x can be a vector and g(x) can be a system, and we state that x ∈ Rn. Then we borrow

the idea of using the vertices x(j) : j = 0, 1, ..., n of a nondegenerate simplex in Rn from the

simplex method presented in [27] to find the next vector of variables. We also approximate the

problem with the linear programming problem

min f̂(x)

ĝ(x) ≥ 0
(1.26)

where f̂ and ĝ represent linear functions that interpolate f(x) and g(x) at the vertices of the

simplex. We can now solve the linear programming problem, which is simple computationally

speaking. The vertex x(l) of the simplex, so that f(x(l)) ≥ f(x(j) : j = 0, 1, ...n; j ̸= l, is the

one at which the objective function is worst. This vertex is replaced by the solution found xnew

of the linear problem at each iteration.

Some considerations have been made to improve the algorithm. A trust region bound is

set, in which the variables can change, as it solve the fact that the linear problem (1.26) may

have no finite solution. Moreover, the trust region radius is reduced when no improvement

to the objective function is detected, until it reaches a value set by the user and the algorithm

end. Another clever idea is to promote the improvement of the shape of the simplex during the

iterations, rather than blindly improving the solution, with the aid of the merit function

Φ(x) = f(x) + µ[max{−g(x)}]+, x ∈ Rn (1.27)

that is used to compare the goodness of two vectors of variables. In this equation µ is automati-

23

Chapter 1. Theoretical background and
Python packages 1.3. Other tools

cally adjusted during the iterations, while the + subscript implies that what is inside the square

brackets is replaced by zero if the value is negative, so in this case we are left with Φ(x) = f(x)

when x is feasible. A vector of solution xa is better than another xb when Φ(xa) ≤ Φ(xb).

1.3 Other tools

Here for completeness a list of the other python libraries and apps used is presented.

Python libraries:

Matplotlib

Matplotlib [28] is a 2D graphics package used for Python for application development,

interactive scripting, and image generation. All the plots generated by the candidate of

this thesis derive from matplotlib code.

Numpy

Numpy [29] is a package for scientific computing, especially for array managing and

matrix calculations.

Scipy

Scipy [30] is a package of algorithms for scientific computing. It has been used for data

interpolation.

Yaml and Json

Are two human readable data-representation languages used for inputting the universe,

trajectory and problem data in GODOT.

There are also some tools used based on the NAIF SPICE kernels explained in Section 1.1.1:

brief

Is an utility program to get a data summary of an SPK file.

24

Chapter 1. Theoretical background and
Python packages 1.3. Other tools

mkspk

Another utilty program, this time used to create SPK file from the data obtained from

GODOT trajectory propagation.

Cosmographia

Is a 3D visualization tool to visualize trajectories using SPICE data as input. It is possible

to program a Python script to perform videos of the trajectories in a chosen reference

frame.

25

Chapter 2

Trajectory optimization application

In the field of mission analysis, orbit optimization is crucial to minimise the required ∆V for a

trajectory, as it defines heavily a satellite’s design. So the tool presented in this section has been

developed to easily perform trajectory analysis and ∆V optimization for a generic mission.

The application takes as inputs a Universe, Trajectory and Problem files as well as a con-

figuration file, all in .json or .yaml format. The configuration file allows the user to choose

between the algorithms cited in Section 1.2 and set a custom tolerance for each constraint of

the problem. It also allows to set a dispersion of the initial state vector, with some degree of

randomness, which is useful to represent the uncertainty of a real case scenario and to perform

a Monte Carlo analysis of the mission, later explained in Section 2.2. The outputs trajectories

can then be analyzed and plotted combining GODOT and Matplotlib libraries.

To evaluate the tool’s effectiveness, two test are presented: an interplanetary trajectory from

Earth to Mars and a Lunar free-return trajectory.

26

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

2.1 Interplanetary trajectory with

orbit circularization

An analysis of an interplanetary mission has been conducted to test the capability of the opti-

mization app. The proposed mission is a Mars orbit insertion from an orbit around Earth via a

B-plane targeting.

In order to optimize the trajectory, it is mandatory to first define the desired final orbit, as

well as the constraints and some spacecraft’s data. The departure data are chosen so that we

don’t have to worry about the launch phase from Earth’s surface, while the arrival orbit can be

considered as a starting point for any Mars’ observation mission.

Desired arrival Keplerian orbit data:

Semy-mayor axis : 8 000 km

Eccentricity : 0

Inclination : 0 deg

Arrival time : January 2021

The constraints are the initial orbit data of the satellite around Earth:

Semy-mayor axis : 6678 km

Eccentricity : 0

Right ascension angle : 0 deg

Argument of periapsis : 115

For what concerns the satellite, the initial data are the following:

27

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

Mass : 30 000 kg

Specific impulse : 320 s

As stated in Section 1.2, local optimization algorithms are used, which means an initial

guess must be given. The guess has to be reasonable, as otherwise the risk of getting out of the

space of the solution, thus having the algorithm to not converge, arise. To find a decent initial

guess, the steps have been the following:

1. Plot a porkchop plot by solving the Lambert’s problem

2. Analyze a departure from Earth to obtain a Mars B-plane targeting

3. Optimize the B-plane targeting to match the Mars orbit circularization

4. Optimize the whole orbit

These steps will be described in the next sections.

2.1.1 Lambert’s problem and porkchop plots

The Lambert’s problem [31] is a boundary-value problem that allows to determine an orbit from

two position vectors and an elapsed time. It is a boundary-value problem as only some of the

states are known at different amount of time. In this case we know the initial and final position

of the spacecraft, r1 and r2 in Figure 2.1 at two set times, but we don’t know for example the

velocity in these two times.

The Lambert’s theorem states that the time of flight t required to get from r1 to r2 with a

Keplerian orbit is a function of the sum r1 + r2, of the length of the chord c that connect these

two point, and of the orbit’s semi-major axis. It is based on the formulation of the two body

problem when one of the mass is infinitesimal:

28

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

Figure 2.1: Representation of the Lambert’s problem with the position state r1 and r2 and chord c

29

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

v = r̈ = −µ
r

r3
(2.1)

where µ is the gravitational parameter, v and r are the position and velocity vector respectively,

while r is the position’s magnitude.

For any two body orbit we have:

r = Fr0 +Gv0

v = Ḟr0 + Ġv0

(2.2)

where r0,v0 are position and velocity vectors at time t0 and r,v are the vectors at time t.

The coefficients F,G are functions of ∆t = t − t0 called Lagrange functions, while Ḟ , Ġ

are the time derivatives so that

FĠ− ḞG = 1 (2.3)

The solutions to the Lambert’s problem, vectors v and v0 , can be used to plot the so called

porkchop plots, which summarizes the required ∆V for an interplanetary trajectory having as

inputs the departure time from the starting planet to the arrival time to the target planet, as well

as the position of the planets.

In order to solve the problem, the algorithms exposed in [32] have been implemented in

Python. The outputs are plotted in Figure 2.2. In the two figure the x and y axes represent the

departure dates, between 01/05/2020 and 01/08/2020, and the arrival dates, between 01/12/2020

and 01/02/2021 respectively.

In Figure (a) the cyan lines represent constant travel times, every trajectory along these lines

have the same travel time from Earth to Mars. The magenta lines represent the outgoing C3

from Earth, where C3 is the square of the excess velocity above the escape velocity from Earth,

while the blue lines represent how much excess velocity the spacecraft has at Mars arrival.

In Figure (b), the cyan lines represent again the time of flight, while the blue-to-yellow

30

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

gradient lines represent contours of equal total ∆V for Earth to Mars trajectories.

There is a defined gap in the plots. It separates trajectories that have a change in true

anomaly of less than 180 degrees, on the right, to the ones with a change of more than 180

degrees on the left, respectively called ”Type I” and ”Type II” Mars transfer trajectories.

The red dotted line represent our initial guess. As we want our spacecraft to arrive at Jan-

uary 2021, from Figure(b) we can see that the best departure time for minimum ∆V is around

07/2020.

To sum up, our initial guesses are:

Departure date : 20/07/2020

Required ∆V : 7 km/s

31

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

(a) C3 and Vinf plot

(b) ∆V plot

Figure 2.2: Porkchop plots
32

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

2.1.2 Earth departure and B-plane targeting

The first part of the trajectory analyzed is a Mars B-plane targeting from an orbit around Earth.

The B-plane is a plane orthogonal to the plane of an hyperbolic trajectory and the initial hyper-

bolic excess velocity vector. We will use the notation presented in Figure 2.3. We will call the

reference system on which the B-plane is defined MarsLocal. This frame consist of: x along

position vector (radial) from Sun to Mars; y that completes right-hand-side system (pointing

positive along the tangential direction) and z along orbital momentum vector

We aim to get an orbit around Mars with an inc = 0 deg and a sma = 8000 km. This

means that we are going to target the B-plane so that θ = 0 deg and B > 8000 km, where B

is the vector of the intersection between the incoming asymptote and the B-plane. In particular,

the last equation is required as the periapsis of the hyperbolic trajectory will be smaller than B.

As a guess we are going to use B = 11750 km. From the porkchop plot in Figure 2.2(a) we

see that the excess velocity is V∞ ∼= 3km/s, and this value will be used as initial guess for

the velocity of the incoming trajectory.

For the Earth departure the constraints have already been presented at the end of Section 2.1,

while the initial guess for the departure has been explained on Section 2.1.1.

Two impulsive manoeuvres will be implemented, one to enter the escape trajectory from

Earth to Mars and one to correct the trajectory during the cruise phase.

The frame used to define the first manoeuvre is the TCN orbital frame direction, where T is

in the direction of the velocity vector (tangential), C is in the direction of the orbital momentum

vector (pos x vel) while N completes the TCN system (T x C). We will define the manoeuvre

with ∆V , right ascension ras and declination dec. We will use as guess value ∆V = 3650m/s,

again based on Figure 2.2(a). The guess values of ras, dec are chosen after propagating the

trajectory with different burn directions until a reasonable guess has been found. The point in

the orbit around Earth in which the burn happens will be found by the optimization algorithm

using the true anomaly angle of the orbit as free parameter.

33

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

(a) Side view

(b) Front view

Figure 2.3: B-plane visualization [33]

34

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

The second manoeuvre will be expressed using the ICRF frame and as values the three

component of the velocity vector dvx, dvy, dvz.

The guess values are summarized here:

Earth orbit:

• sma: 6678 km

• ecc: 0

• inc: 18 deg

• ran: 0 deg

• aop: 115 deg

• tan: 112 deg

Earth escape manoeuvre:

• departure time: 2020-07-20T00:10:00 TDB

• dv: 3650 m/s

• ras: -12 deg

• dec: 3 deg

Cruise control manoeuvre:

• 2020-10-12T00:00:00 TDB

• dvx: 0 m/s

• dvy: 0 m/s

35

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

• dvz: 0 m/s

Mars B-plane targeting:

• Arrival date: 2021-01-20T09:31:00.000 TDB

• Vin : 3 km/s

• B ∗ T : 11750 km

• B ∗R : 0 km

In Figure 2.4 we can see that, beside the discontinuity due to the missing match, the guess

is decent.

Figure 2.4: Earth to B-plane, propagation of the first guess

36

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

After optimizing via the SLSQP algorithm, the solution found is the following:

Earth orbit:

• sma: 6678 km

• ecc: 0

• inc: -6.864 deg

• ran: 0 deg

• aop: 115 deg

• tan: 132.663 deg

Earth escape manoeuvre:

• departure time: 2020-04-23T00:52:33.219 TDB

• dv: 4885.732 m/s

• ras: -9.10 deg

• dec: -0.07 deg

Cruise control manoeuvre:

• 2020-10-12T00:00:00 TDB

• dvx: 63.583 m/s

• dvy: 120.522 m/s

• dvz: -277.802 m/s

Mars B-plane targeting:

37

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

• Arrival date: 2020-12-31T03:26:26.829 TDB

• Vin : 3 km/s

• B ∗ T : 11750 km

• B ∗R : 0 km

Figure 2.5: Earth to B-plane, propagation of the optimized trajectory

The final values for the mass of the spacecraft and the ∆V are the following:

• SC mass: 5729.925 kg

38

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

• SC ∆V : 5195.155 m/s

These evaluation will be the guess values for the trajectory of the whole mission that will be

optimized.

2.1.3 Mars orbit capturing

The second part of the mission is the orbit circularization around Mars. It starts from hyperbolic

trajectory to Mars then, once the periapsis is reached, a burn to circularize the orbit is performed

to obtain the desired final orbit.

As starting data for the hyperbolic trajectory we will use the B-plane targeting data obtained

by the previous optimization. We set B ∗ T length as the only value that can change for this

part of the trajectory, and it will vary so that the hyperbolic tragectory’s periapsis is equal to the

objective final orbit’s semi-major axis of 8000 km.

The manoeuvre is defined again with a TCN frame, this time with Mars as central body. The

burn will happen when the periapsis is reached.

The final orbit parameter, apart from the semi-mayor axis sma = 8000km and eccentricity

ecc = 0, are free. The data are written in the MarsLocal frame.

The guess values are then summarized here:

Mars B-plane targeting:

• Arrival date: 2020-12-31T03:26:26.829 TDB

• Vin : 3 km/s

• B ∗ T : 11750 km

• B ∗R : 0 km

Circularization burn:

39

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

• burn time: at periapsis

• dv: 2000 m/s

• ras: 180 deg

• dec: 0 deg

Mars orbit:

• Final date: 2021-01-02T03:26:26.829 TDB

• sma: 8000 km

• ecc: 0

• inc: 0 deg

• ran: 0 deg

• aop: 115 deg

• tan: 140 deg

In Figure 2.6 the propagation of the initial guess is shown. It is worth noticing how the

circularized trajectory for the burn and the final one are fairly similar, factor that will enhance

the probability of the optimization algorithm’s convergence.

40

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

Figure 2.6: Hyperbolic trajectory to circularization, propagation of the first guess

After the optimization, we get the following outputs:

Mars B-plane targeting:

• Arrival date: 2020-12-31T03:26:26.829 TDB

• Vin : 3 km/s

• B ∗ T : 11736 km

• B ∗R : 0 km

Circularization burn:

41

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

• burn time: at periapsis

• dv: 2125.495 m/s

• ras: 180 deg

• dec: 0 deg

Mars orbit:

• Final date: 2020-12-31T19:50:37.865 TDB

• sma: 8000 km

• ecc: 0

• inc: 0 deg

• ran: 0 deg

• aop: 84.559 deg

• tan: 116.873 deg

In Figure 2.7 we can see the final output, which has no discontinuities.

42

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

Figure 2.7: Hyperbolic trajectory to circularization, propagation of optimized trajectory

The final values for the mass of the spacecraft and the ∆V at the end are the following:

• SC mass: 2910.688 kg

• SC ∆V : 2125.494 m/s (only for this part of the mission)

The final required ∆V is then ∆V = 5195.155m/s+ 2125.494m/s = 7320.649m/s.

2.1.4 Final optimization

There are two reason to perform a final optimization. The first is that there is a discontinuity

between the trajectories as the value of B ∗ T for the B-plane targeting differs between the two

43

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

parts of the trajectory, thus a reevaluation needs to be performed. Secondly, now that we have an

idea of the values of all the variables, we can perform an optimization with the whole mission

in mind, which will increase the margin of optimization.

The guess values of the optimization are the outputs of the two previous ones. In Table 2.1

there are the final value of the orbit.

The final values for the spacecraft’s mass and ∆V are the following:

• SC mass: 3960.005 kg

• SC ∆V : 6354.558 m/s

As we can see, there is a great saving in mass and ∆V , thus fuel, demonstrating the useful-

ness of this last step. It is important to note that the idea of a multiple stage rocket to launch the

satellite haven’t been analyzed in this test, as the tool mainly aims to analyze the ∆V required

for the mission.

The plots of the trajectory are presented in Figure 2.8, 2.9, 2.10

44

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

Earth orbiting
sma 6678 km
ecc 0
inc 2.74901603632635 deg
ran 0 deg
aop 118.464 deg
tan 136.127 deg

Earth escape manoeuvre
epoch 2020-06-02T11:17:43.079 TDB

dv 4111.355
ras -0.035 deg
dec -3.019 deg

Cruise control manoeuvre
epoch 2020-09-10T19:16:43.518 TDB
dvx 35.474
dvy 48.192
dvz 424.460

Mars B-plane targeting
epoch 2021-01-20T04:53:11.949 TDB
Vin 2.517 km/s
bt 13062.115 km
br 0 km

Circularization burn
epoch 2021-01-20T08:19:46.785 TDB

dv 1814.545
ras 180 deg
dec 0.029 deg

Mars orbit
epoch 2021-01-20T19:50:38.395 TDB
sma 8000 km
ecc 0
inc 0
ran 0
aop 81.327 deg
tan 113.642 deg

Table 2.1: Final value for the Earth to Mars mission

45

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

Figure 2.8: Optimized trajectory of the Earth to Mars mission

46

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

Figure 2.9: Optimized trajectory, departure from Earth

47

Chapter 2. Trajectory optimization application
2.1. Interplanetary trajectory with

orbit circularization

Figure 2.10: Optimized trajectory, Mars arrival and circularization

48

Chapter 2. Trajectory optimization application 2.2. Moon free-return trajectory

2.2 Moon free-return trajectory

Figure 2.11: Free return trajectory from Earth to Moon in ICRF reference frame

49

Chapter 2. Trajectory optimization application 2.2. Moon free-return trajectory

Figure 2.12: Free return trajectory from Earth to Moon in Moon centered reference frame

To further evaluate the software’s capabilities, another mission has been evaluated. This time

a free-return trajectory from Earth to Moon and back has been designed. For free-return we

intend a trajectory on which a spacecraft departing from a body, in this case Earth, due to the

gravity of a second body, Moon in this example, return to the first body with no propulsion

applied.

In this test the values of the trajectory won’t be exposed due to Non-Disclosure Agreement,

but it is worth mentioning to demonstrate the capability of the software furthermore.

The trajectory is shown in Figure 2.11 in Earth centered ICRF, where the sudden turn of the

50

Chapter 2. Trajectory optimization application 2.2. Moon free-return trajectory

satellite at the mission’s start is due to the Moon’s gravity. The relative position between the

satellite and the Moon is better illustrated in Figure 2.12, where the trajectory is presented in

a Moon centered coordinate system. Here it is possible to observe how the both the Moon’s

gravity and the Earth’s one drift the satellite and allow a free-return trajectory.

We also present the application’s capability to perform a a Monte Carlo analysis, as shown

in Figure 2.13. A Monte Carlo analysis consist in having different starting points, usually due

to various uncertainties, and perform an analysis to have as many test cases as possible for when

the real mission will be conducted. In this case, the uncertainty simulated is the position of the

satellite after the release from a rocket.

In Figure 2.13 five orbits are presented, all with a different initial starting point. Although

the perturbation, all the optimizations performed on the trajectories converged, demonstrating

the robustness of the software.

51

Chapter 2. Trajectory optimization application 2.2. Moon free-return trajectory

Figure 2.13: Monte Carlo analysis of the free return trajectory. The bottom right figure is a closeup to
show the implementation of different starting points

52

Chapter 3

In-Plane Station keeping application

In planet observation missions, the satellite’s ground track is chosen during the mission analysis,

as it will define the observable terrain based on the Field of View of the satellite’s payloads. It

is then crucial during the mission to keep the real ground track as similar as possible to the ideal

one to fulfill the payloads’ requirements. To do so orbit correction manoeuvres, that take the

name of station keeping manoeuvres are performed.

An application has been developed to define the required manoeuvres to perform an in-

plane station keeping. In-plane manoeuvres are engine burns along the orbit’s velocity vector

that allow to control the semi-major axis of the orbit, to adjust in turn the time and position of

the satellite’s equator crossing. These are used to compensate the decay in semi-major axis due

to air friction, thus are more frequent the lower is the satellite’s altitude.

3.1 In-plane manoeuvre optimization

The developed application takes inspiration from the orbit control strategy of the Aeolus satellite

[34]. The core idea is to evaluate the ground track deviation between the real and ideal trajectory

at the equator crossings and perform In-plane manoeuvres to prevent the difference to be outside

53

Chapter 3. In-Plane Station keeping application 3.1. In-plane manoeuvre optimization

a control-band, that for the Aeolus case is ±25km.

The data required to analyze the station-keeping manoeuvres are the longitudes of the ideal

and real trajectory at the equator passes. While the ideal trajectory is defined by the mission, the

real trajectory can be analyzed by propagating the satellite’s trajectory via the GODOT library.

To do so, especially when working with LEO orbits, an accurate atmosphere model has to be

used. The one used by the GODOT library is the NRLMSISE-00 empirical model [35]. In the

application the solar and geomagnetic activity data required to work with the model are made by

the software package SOLMAG [36]. This software is used for long term activity predictions,

thus the results of the following analysis will have to be validated using short to medium term

predictions, like the outputs of the PDFLAP software presented in [36], in a time period near

the station-keeping manoeuvre date.

Once the longitudes have been calculated, it is possible to interpolate the ground track devi-

ation at the equator passes to obtain a plot like the one in Figure 3.1. As expected, the ground-

track deviation increases with time and gets closer to the East limit, as with the decrease in

semi-major axis there is a decrease in orbital period.

54

Chapter 3. In-Plane Station keeping application 3.1. In-plane manoeuvre optimization

Figure 3.1: Ground-track deviation with control bands

Once the surpass of the control-bands has been detected, the analysis for the ∆V required to

perform the In-plane station-keeping manoeuvre will be performed. As the Aeolus paper [34]

suggests, the optimization target is smaller than the West limit to prevent its violation due to

uncertainty of the solar activity or of performance errors. This consideration is demonstrated in

Section 3.4, as Figure 3.10 (a) shows how, performance errors or the difference in solar activity

heavily affect the evolution of the Ground-track deviation.

The optimization is performed by a bisection algorithm [37] by considering the ground-track

distance as a function of ∆V and time

gt = f(∆V, t)

Let opt be the value in km of the optimization target. Then two margins, opt+ > opt and

opt− < opt around opt are created to have a less strict objective. The aim is to to find the ∆V

55

Chapter 3. In-Plane Station keeping application 3.1. In-plane manoeuvre optimization

so that the ground-track function gets close enough to opt.

In this case for a chosen ∆V the zero is found when gt > opt− for every t in a defined time

interval and there is at least one t so that gt < opt+, which means that the trajectory entered in

the opt margin without getting too close to the West limit.

The bisection algorithm requires a lower and upper limit of the variable and the value of

the variable so that the function is zero shall be inside these limits. The initial lower limit is

∆V = 0, while for the upper limit the twice of a ∆Vfirst−guess chosen by the user is used. The

guess interval is then

[0,∆Vfirst−guess ∗ 2]

To ensure the presence of a zero inside the interval, as the intermediate-value theorem for con-

tinuous functions suggests, the app checks if there is at least one t in the defined time interval

so that

gt > opt−

If this is not the case, another ∆Vfirst−guess is added to the upper limit and the loop goes until

a sufficiently high ∆Vfirst−guess is found. From here the typical bisection method is applied,

where the function is evaluated for every t using as ∆V the value in the middle of the interval. If

the resultant function never crosses the opt+ value, the new lower value of the interval become

the ∆V before obtained, while the upper value remains the same; if the function crosses the

opt− value, the upper value is replaced.

By iterating this algorithm a value of ∆V is eventually obtained so that the condition for the

zero is fulfilled or the difference between the two limits of the interval of ∆V is smaller than a

tolerance toll chosen by the user.

To sum up, the pseudo-code of the algorithm is presented in Algorithm 1.

56

Chapter 3. In-Plane Station keeping application 3.1. In-plane manoeuvre optimization

Algorithm 1: Bisection method for evaluating ∆V

Data: opt+, opt−, ∆Vfirst−guess, toll, t0 and tf

Result: Evaluate the ∆V for an In-plane station-keeping manoeuvre

timeInterval = [t0, tf];

lower∆V = 0;

upper∆V = ∆Vfirst−guess ∗ 2;

while gt > opt− for every t in timeInterval if ∆V = upper∆V do

upper∆V = upper∆V +∆Vfirst−guess;

while Solution not found do

∆V = (lower∆V + upper∆V)/2 orbit propagation with ∆V as input;

a flag is used to determine if the function passes over opt;

Flag = ”not passed over opt”;

foreach t in timeInterval do

if gt = f(∆V, t) < opt+ then

if gt = f(∆V, t) > opt− then

Solution found;

else

Flag = ”passed over opt”;

break out the for statement;

if Flag = ”not passed over opt” then

lower∆V = ∆V ;

if Flag = ”passed over opt” then

upper∆V = ∆V ;

if upper∆V − lower∆V < toll then

Solution found due to max toll reached;

57

Chapter 3. In-Plane Station keeping application 3.2. Sun-Synchronous Orbits

An example output of this iteration can be seen in Figure 3.2.

Figure 3.2: Representation of the iterations of the bisection algorithm

To validate the tool test analyses have been conducted regarding the so-called Sun-Synchronous

Orbits .

3.2 Sun-Synchronous Orbits

A Sun-Synchronous orbit (abbreviated as SS-O later in this paper) is a near polar orbit around

Earth with the property of maintaining a constant angle between the orbit’s plane and the vector

from the orbit’s centre to the Sun, as we can see in Figure 3.3.

58

Chapter 3. In-Plane Station keeping application 3.2. Sun-Synchronous Orbits

(a) SS-O (b) Same orbit 30 days later

Figure 3.3: Comparison between a SS-O (a) and the same orbit 30 days apart (b)

The SS-O works as such because, based on the defined altitude, the orbit’s inclination is

chosen so its precession rate, due to the J2 effect, is the same as the Earth’s Mean Motion.

This means that the orbital altitude and inclination for SS-Os are uniquely paired, as shown in

Figure 3.4. The relation is presented:

Ω̇ = −3

2
J2(

ae
p
)2n ∗ cos(i) (3.1)

where p = a(1 − e2) is the semi-latus rectum, n =
p
µ/a3 is the mean motion, i is the

inclination, a is the semi-mayor axis, ae is Earth’s equatorial radius, Ω̇ is the precession rate

that in this case is equal to the Earth’s mean orbital rate. It is possible to notice how the only

two free parameters are the orbit’s inclination and semi-mayor axis.

This property allows to have a ground track with the same sun lighting for the whole mis-

sion’s duration, a desirable feature for analysing terrain areas in different periods of time. There

are also advantages from a thermal analysis standpoint, due to a constant thermal environment

and an orbit ”dark side” useful to cool down the satellite [38].

Of particular interest are orbits with repeated ground tracks, which are orbits that retrace

59

Chapter 3. In-Plane Station keeping application 3.2. Sun-Synchronous Orbits

Figure 3.4: Inclination vs. Altitude for SSOs

themselves after an integer amount of revolutions and day.

As there is a correlation between the height of an orbit and its period

T = 2π

s
a3

µ
(3.2)

it is possible to evaluate the orbit’s altitude based on the desired amount of revolutions and days.

By considering as desirable orbits with altitudes in the range between 250 and 1680 km, a plot

like the one in Figure 3.5 can be deduced. Not all the orbits are presented in the plot to avoid a

crowded image.

60

Chapter 3. In-Plane Station keeping application 3.3. SS-O Test analysis

Figure 3.5: Revolutions and Days vs. Altitude for SS-Os. The values near the dots are the number of
cycles

3.3 SS-O Test analysis

To evaluate the capability of the software tests have been conducted using a variety of SS-Os

with different amount of revolutions and days. Table 3.1 shows the initial values of the orbits.

1D16R 2D31R 3D44R 5D74R 7D111R 9D139R
sma 6652.56 km 6794.86 km 7049.86 km 7007.46 km 6692.45 km 6811.14 km
inc 94.83 deg 95.27 deg 96.11 deg 95.96 deg 94.95 deg 95.32 deg

Table 3.1: Semi-major axis and inclinations of the SS-Os used for the app validation (D: number of
days, R: number of revolutions)

It is important to address why the inclination is different than the one from the Figure 3.4.

The analysis in [38] to obtain the relation between inclination and altitude start from an ide-

alization of the Earth’s movement around the Sun, simplifying the motion by considering it

61

Chapter 3. In-Plane Station keeping application 3.3. SS-O Test analysis

circular and considering the satellite influenced only by the J2 perturbation.

To reduce the approximation, thus increasing the accuracy, the inclination required to obtain

a repeating ground-track has been again evaluated, empirically this time. In the simulation

the Earth’s orbit is no more considered circular, while the idealization of considering only the

spherical harmonics up to J2 still holds, as the other perturbations only slightly affects the

change in inclination and is easier to compare these results with the theoretical ones. The

requirement to obtain a repeating ground-track is that the distance between two consecutive

ascending nodes at the equator crossing is equal to a valued named ”fundamental interval”.

This value is:

∆L = 360◦ ∗D/R

so it is a function of D, number of days, and R, number of revolutions. The inclination required

to archive this requirement has been computed using another bisection algorithm, which aims

to find the right inc so that

∆Lreal = ∆Lideal

where ∆Lideal depends on the mission requirements.

The lower limit required by the algorithm is set as lowerinc = 90deg, as a SS-O requires

an inclination higher than 90deg, while the upper limit is chosen by the user. A first check is

performed control if ∆Lreal ≥ ∆Lideal, as this ensure that the upper inclination is higher than

the required one. If the check fails, the inclination of the upper limit is increased by 10deg and

the check is again performed until it is satisfied.

Then the usual iteration of a bisection algorithm is performed, where the candidate inc is

evaluated as

inc = (lowerinc + upperinc)/2

If ∆Lreal ≥ ∆Lideal, then the upper limit is replaced by inc, otherwise is the lower limit to be

replaced.

62

Chapter 3. In-Plane Station keeping application 3.3. SS-O Test analysis

If ∆Lreal = ∆Lideal the algorithm found the solution. The algorithm end also if the differ-

ence between the limits, or the difference between ∆Lreal and ∆Lideal is lower than two user

defined tolerances.

The pseudo-code is shown in Algorithm 2.

Algorithm 2: Bisection method for evaluating SS-O inclination

Data: ∆L, firstGuess, deltaToll, incToll
Result: Evaluate the inc to have a repeating ground-track
lowerinc = 90◦;
upperinc = firstGuess;
Evaluate real distance between the first two ascending nodes at equator crossing =
∆Lreal;

while ∆Lreal < ∆L do
upperinc = upperinc + 10◦;
Propagate orbit; Evaluate new ∆Lreal

while Solution not found do
inc = (lowerinc + upperinc)/2;
Propagate orbit;
Evaluate new ∆Lreal

if ∆Lreal > ∆L then
upperinc = inc;

if ∆Lreal < ∆L then
lowerinc = inc;

if |upperinc − lowerinc| < incToll then
Solution found due to incToll reached;

if |∆Lreal −∆L| < deltaToll then
Solution found due to deltaToll reached;

For a generic cubesat with 20 kg mass, drag area of 0.08 m2 and Cd=2.2, the values of

∆V required for the stationkeeping manoeuvres, considering control bands of ±5km and with

opt = −3km , obtained via the Algorithm 1, are summarized in Table 3.2. The optimization

process can be seen in Figure 3.6,3.7,3.8. These Figures have different propagation times for a

63

Chapter 3. In-Plane Station keeping application 3.3. SS-O Test analysis

better visualization, as the frequency to which the control-bands are violated heavily depends

on the orbit’s height, thus the different air drag experienced by the satellite.

1D16R 2D31R 3D44R 5D74R 7D111R 9D139R
sma 6652.56 km 6794.86 km 7049.86 km 7007.46 km 6692.45 km 6811.14 km
∆V 1.470 m/s 0.311 m/s 0.046 m/s 0.052 m/s 0.897 m/s 0.2701 m/s

Table 3.2: ∆V required to perform the In-plane station-keeping. It is possible to note the inverse pro-
portionality between the semi-mayor axis and the required ∆V

The app is robust and can optimize the orbits independently from number of days and rev-

olutions. It can also optimize multiple manoeuvres to keep the satellite from violating the

control-band, as shown in Figure 3.9

64

Chapter 3. In-Plane Station keeping application 3.3. SS-O Test analysis

(a) 1 Day 16 Revolutions

(b) 7 Days 111 Revolutions

Figure 3.6: Optimization process — 4 Days propagation and sma ∼= 6700 km

65

Chapter 3. In-Plane Station keeping application 3.3. SS-O Test analysis

(a) 2 Days 31 Revolutions

(b) 9 Days 139 Revolutions

Figure 3.7: Optimization process — 14 Days propagation and sma ∼= 6800 km

66

Chapter 3. In-Plane Station keeping application 3.3. SS-O Test analysis

(a) 3 Days 44 Revolutions

(b) 5 Days 74 Revolutions

Figure 3.8: Optimization process — 60 Days propagation and sma ∼= 7000 km

67

Chapter 3. In-Plane Station keeping application
3.4. Comparison with Aeolus

In-Plane station-keeping

Figure 3.9: 1D16R orbit with four station-keeping manoeuvres

3.4 Comparison with Aeolus

In-Plane station-keeping

To further validate the application, a comparison with between the data in [34] of the Aeolus

mission and the application’s output can be conducted. In Table 3.3 the data of the Aeolus

spacecraft at the start of the orbit control phase are presented.

Dry mass Propellant mass Equivalent drag area Cd SRP area SRP coefficient
1079 kg 262 kg 6,163 m2 1.5 24.25 m2 1.3

Table 3.3: Aeolus spacecraft parameters relevant to the orbit control analysis

These value have been given as input in the app. The other required input are the orbit’s

68

Chapter 3. In-Plane Station keeping application
3.4. Comparison with Aeolus

In-Plane station-keeping

inclination and semi-mayor axis, that for Aeolus are around 97 deg and 320 km respectively.

These data correspond with a 6D95R SS-0, which as been used as input for the app.

From Figure 3.10 we can confirm the similarity between the two analyses. The nominal

activity curve in the Aeolus results show a similar trend respect to the output of the application,

although there is a difference in the rate of increment of the Ground-track deviation which

implies that different values of solar radiation pressure, thus air density and drag, have been

used in the two analyses.

It is possible to further validate the results by comparing the ∆V required for the orbit

control from the Aeolus paper, which is between 1.240m/s and 2.780m/s respectively for low

and medium solar activity, with the one obtained as output from the app, equal to 1.408m/s,

denoting the same order of magnitude of the solutions.

69

Chapter 3. In-Plane Station keeping application
3.4. Comparison with Aeolus

In-Plane station-keeping

(a) Aeolus groud-track deviation analysis from the paper

(b) Evaluation from the app with Aeolus data

Figure 3.10: Comparison between the Aeolus paper and the app’s outputs 70

Chapter 4

Conclusions and future works

The present work showed the potentiality of GODOT software, especially in combination with

optimization tools like PyGMO for the optimization of the ∆V required for a mission. The

applications developed are capable to analyze a decent range of missions, reducing the work

due to the user.

Three use cases have been presented to test the developed applications.

An interplanetary mission to Mars and a Moon free-return mission have been implemented,

analyzed and optimized with the trajectory optimization app. Throughout the thesis the prelim-

inary analysis for these type of missions have been explained, as the solution to the Lambert’s

problem, to obtain an initial guess of a trajectory. Then, the successful optimized trajectories

outputted by the application have been presented, showing also the possibility to perform a

Monte Carlo analysis.

An application to study the required In-plane station-keeping manoeuvres has been also

developed, using Sun-Synchronous orbits as test cases. This application combines the possibil-

ity to propagate multiple trajectories with different manoeuvres via GODOT with a bisection

algorithm, in order to find the manoeuvre with the best ∆V that fulfil the station-keeping re-

71

Chapter 4. Conclusions and future works

quirements.

A limitation of the applications derives from the type of manoeuvres allowed. Both the applica-

tions can analyze missions considering only instant or finite manoeuvres with constant thrust.

This prevent the applications to study or optimize manoeuvres working on the engine’s throttle,

as it is not implemented in the version of GODOT used. Since during the majority of a mission

a satellites have more or less constant thrust, the level of detail of the analyses is not much

reduced.

Nonetheless, these tools remains valuable instruments to have a closer idea, compared to

only a theoretical analysis, of the required ∆V and in turn allows a better sizing of the space-

craft’s engines and fuel tanks. Moreover, the ability to present the trajectories with 3D anima-

tions via Cosmographia makes the trajectories way more human-readable.

Further studies shall be conducted on the In-plane station-keeping manoeuvre optimization app.

Firstly, the manoeuvres shall be optimized directly by combining PyGMO and GODOT

rather than the empirical bisection algorithm, to minimise the ∆V required furthermore. To add

on that, different In-plane station-keeping strategies may be studied. For example, a multiple-

manoeuvres strategy once the east limit is reached can be implemented, which will allow to

choose the arrival time at the west limit.

Moreover, an addendum at the current code can be developed to expand the functionality,

like a control of the inclination and LTAN, thus perform out-of-plane manoeuvres.

Finally, to further validate the application, an extensive campaign of comparisons between

the application’s outputs and already performed missions, like Aeolus, shall be conducted.

72

Bibliography

[1] European Space Agency, “Godot documentation,” 2021. https://godot.io.esa.

int/docs/0.7.0/index.html.

[2] T. D. Moyer, “Mathematical formulation of the double precision orbit determination pro-

gram (DPODP),” tech. rep., Jet Propulsion Laboratory, 1971.

[3] International Astronomical Union, “IAU 2000 resolution,” 2000. https://www.iau.

org/static/resolutions/IAU2000_French.pdf.

[4] C. Hohenkerk, “Sofa and the algorithms for transformations between time scales and be-

tween reference systems,” in Proceedings of the Journées, pp. 21–24, 2011.

[5] J. Meeus, “Astronomical algorithms,” Richmond, 1991.

[6] C. H. Acton Jr, “Ancillary data services of NASA’s navigation and ancillary information

facility,” Planetary and Space Science, vol. 44, no. 1, pp. 65–70, 1996.

[7] W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park, and P. Kuchynka, “The plane-

tary and lunar ephemerides de430 and de431,” Interplanetary Network Progress Report,

vol. 196, no. 1, pp. 42–196, 2014.

[8] H. Curtis, Orbital mechanics for engineering students. Butterworth-Heinemann, 2013.

73

https://godot.io.esa.int/docs/0.7.0/index.html
https://godot.io.esa.int/docs/0.7.0/index.html
https://www.iau.org/static/resolutions/IAU2000_French.pdf
https://www.iau.org/static/resolutions/IAU2000_French.pdf

Bibliography Bibliography

[9] E. Fomalont, “The international celestial reference system,” The Science of Calibration,

vol. 503, p. 177, 2016.

[10] B. A. Archinal, M. F. A’Hearn, E. Bowell, A. Conrad, G. J. Consolmagno, R. Courtin,

T. Fukushima, D. Hestroffer, J. L. Hilton, G. A. Krasinsky, et al., “Report of the IAU

working group on cartographic coordinates and rotational elements: 2009,” Celestial Me-

chanics and Dynamical Astronomy, vol. 109, no. 2, pp. 101–135, 2011.

[11] M. P. Kelly, “Transcription methods for trajectory optimization: a beginners tutorial,”

arXiv preprint arXiv:1707.00284, 2017.

[12] E. Fehlberg, “Classical fifth-, sixth-, seventh-, and eighth-order runge-kutta formulas with

stepsize control,” tech. rep., National Aeronautics and Space Administration, 1968.

[13] J. H. Verner, “Numerically optimal runge–kutta pairs with interpolants,” Numerical Algo-

rithms, vol. 53, no. 2, pp. 383–396, 2010.

[14] W. H. Enright, K. R. Jackson, S. P. Nørsett, and P. G. Thomsen, “Interpolants for runge-

kutta formulas,” ACM Transactions on Mathematical Software (TOMS), vol. 12, no. 3,

pp. 193–218, 1986.

[15] J. C. Butcher, “Coefficients for the study of runge-kutta integration processes,” Journal of

the Australian Mathematical Society, vol. 3, no. 2, pp. 185–201, 1963.

[16] E. Fehlberg, “New high-order runge-kutta formulas with step size control for systems

of first-and second-order differential equations,” ZAMM-Journal of Applied Mathematics

and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 44, no. S1 S1,

pp. T17–T29, 1964.

[17] F. Biscani and D. Izzo, “A parallel global multiobjective framework for optimization:

pagmo,” Journal of Open Source Software, vol. 5, no. 53, p. 2338, 2020.

74

Bibliography Bibliography

[18] T. Weise, “Global optimization algorithms-theory and application,” Self-Published

Thomas Weise, vol. 361, 2009.

[19] C. Darwin, On the Origin of Species by Means of Natural Selection, or Preservation of

Favoured Races in the Struggle for Life. Murray, London, 1859.

[20] D. Kraft, “A software package for sequential quadratic programming,” Forschungsbericht-

Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988.

[21] D. Kraft, “Algorithm 733: Tomp–fortran modules for optimal control calculations,” ACM

Transactions on Mathematical Software (TOMS), vol. 20, no. 3, pp. 262–281, 1994.

[22] S. G. Johnson, “The nlopt nonlinear-optimization package.” http://github.com/

stevengj/nlopt.

[23] B. Goodman, F. You, D. Yue, et al., “Northwestern university process optimization open

textbook.” Chapter Sequential quadratic programming.

[24] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106,

no. 1, pp. 25–57, 2006.

[25] A. Wächter and L. T. Biegler, “Line search filter methods for nonlinear programming:

Motivation and global convergence,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 1–

31, 2005.

[26] M. J. Powell, “A direct search optimization method that models the objective and con-

straint functions by linear interpolation,” in Advances in optimization and numerical anal-

ysis, pp. 51–67, Springer, 1994.

[27] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The computer

journal, vol. 7, no. 4, pp. 308–313, 1965.

75

http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt

Bibliography Bibliography

[28] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engi-

neering, vol. 9, no. 3, pp. 90–95, 2007.

[29] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna-

peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van

Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,

K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array

programming with NumPy,” Nature, vol. 585, pp. 357–362, Sept. 2020.

[30] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,

K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,

İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen-

riksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van

Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[31] D. Izzo, “Revisiting Lambert’s problem,” Celestial Mechanics and Dynamical Astronomy,

vol. 121, no. 1, pp. 1–15, 2015.

[32] M. Sharaf, A. Saad, and M. Nouh, “Lambert universal variable algorithm,” Arabian Jour-

nal for Science and Engineering, vol. 28, no. 1, pp. 87–98, 2003.

[33] AGI, “B-plane targeting.” https://help.agi.com/stk/11.0.1/Content/

gator/eq-bplane.html.

[34] M. M. Serrano, F. Petrucciani, C. Dietze, and G. Ziegler, “Aeolus orbit control strategy:

Analysis and final implementation,” in AIAC18: 18th Australian International Aerospace

Congress (2019): HUMS-11th Defence Science and Technology (DST) International Con-

ference on Health and Usage Monitoring (HUMS 2019): ISSFD-27th International Sym-

76

https://help.agi.com/stk/11.0.1/Content/gator/eq-bplane.html
https://help.agi.com/stk/11.0.1/Content/gator/eq-bplane.html

Bibliography Bibliography

posium on Space Flight Dynamics (ISSFD), pp. 1532–1549, Engineers Australia, Royal

Aeronautical Society. Melbourne, 2019.

[35] J. Picone, A. Hedin, D. P. Drob, and A. Aikin, “Nrlmsise-00 empirical model of the atmo-

sphere: Statistical comparisons and scientific issues,” Journal of Geophysical Research:

Space Physics, vol. 107, no. A12, pp. SIA–15, 2002.

[36] R. Mugellesi-Dow, D. Kerridge, T. Clark, and A. Thomson, “Solmag: an operational

system for prediction of solar and geomagnetic indices.,” Space Debris, pp. 373–376,

1993.

[37] S. D. Conte and C. deBoor, Elementary Numerical Analysis: An Algorithmic Approach.

McGraw-Hill, New York, 1972.

[38] R. J. Boain, “A-B-Cs of sun-synchronous orbit mission design,” in 14th AAS/AIAA Space

Flight Mechanics Conference, Pasadena, CA : Jet Propulsion Laboratory, National Aero-

nautics and Space Administration, 02 2004.

77

	Introduction
	Theoretical background and Python packages
	ESA GODOT flight dynamics software
	Universe class
	Trajectory class
	Problem class
	Propagator class

	PyGMO Parallel Global Multiobjective Optimizer
	SLSQP
	IPOPT
	COBYLA

	Other tools

	Trajectory optimization application
	Interplanetary trajectory with orbit circularization
	Lambert's problem and porkchop plots
	Earth departure and B-plane targeting
	Mars orbit capturing
	Final optimization

	Moon free-return trajectory

	In-Plane Station keeping application
	In-plane manoeuvre optimization
	Sun-Synchronous Orbits
	SS-O Test analysis
	Comparison with Aeolus In-Plane station-keeping

	Conclusions and future works
	Bibliography

