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The term “Energy”, when 

associated with energy communities, has a 

double meaning: on the one hand it refers 

to clean energy, that is, to the renewable 

sources scattered throughout nature 

which enable us to light and heat our 

homes; on the other hand, it refers to the 

energy of people who voluntarily decide to 

come together to make a difference, to 

cooperate. 
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Abstract 
 

The transition towards a new sustainable development paradigm and the 

promotion of carbon neutrality by 2050 envisages the enforcement of several energy-

saving measures in the buildings sector, which accounts for more than a third of total 

energy consumption. The distributed nature of renewable energy resources is the key 

to promote local energy production in buildings. Unfortunately, most of the 

renewable energy sources, employed in the residential field, are powered by solar or 

wind energy, marked by a non-programmable nature. This could lead to mismatches 

between energy production and consumption, undermining the stability of power 

grids. In order to overcome these problems, a new model is increasingly being 

developed based on Energy Communities (ECs). These take the form of a group of 

electric and thermal utilities which share the same power generation systems and are 

able to consume a good deal of self-produced energy. Coordinated management of 

buildings belonging to an EC is one of the key requirements for making an interaction 

with the power grid effective and impactful. This can be achieved through the 

deployment, at different scales, of Internet of Thing-based technologies, which enable 

long-term monitoring data. The subsequent development of a data-driven Virtual 

Simulation Environment (VSE) allows us to understand the role played by different 

integrated energy technologies at different scales, from individual buildings to entire 

aggregates. The results achievable through this model are helpful in identifying the 

best combination of energy systems to meet multiple objectives which include 

environmental, energy and economic ones through the assessment of Key 

Performance Indicators. 

This work set out to make an existing VSE, enforced on a district scale, more 

flexible and suitable for simulating real-world contexts. In detail the current research 
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suggests the training and the validation of Artificial Neural Networks applied on a 

building scale, with the aim of simulating the thermal dynamics of multiple units 

belonging to different ECs. The performances of these data-driven supervised 

learning models are then compared whit those of grey-box models developed by 

other researchers from data coming through the same measurement program. Given 

the regulatory development drivers based on economic enhancements and 

consequent reductions in the cost of purchasing electricity from the grid, we then 

deployed models capable of describing the operation of a Micro Combined Heat and 

Power (μ-CHP) system and reconstructing the energy demand for charging electric 

vehicles. Three different scenarios were thus investigated, with the aim of meeting 

the energy needs of members and optimally managing energy flows with respect to 

the power grid. The results emerging from these analyses show advantages when 

energy production takes place on site through a centralized μ-CHP plant, sized to meet 

the entire EC’s requirements. Due the increasingly ambitious decarbonization goals, 

electric vehicle offer a set of important advantages in terms of sustainable mobility. 

However, emissions related to power generation to recharge these units should not 

be overlooked. Meeting their electricity demand through a μ-CHP system results in 

lower costs than relying only on the power grid, especially in high-cost periods. In 

addition to this, that strategy could result in a reduction of grid dependency and of 

greenhouse gas emissions where biofuels are available at affordable costs. 
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1 Introduction 
 

This chapter traces the historical evolution of relevant regulatory frameworks 

and the strategies adopted at national and international levels in the field of energy 

and climate change. As part of the latest strategies issued by the European Union, ECs 

are explored in detail, addressing the pertinent legal structures and the role of 

digitalization, with a focus on Italy. Thus, a state-of-the-art analysis regarding VSEs 

and an in-depth look at methods for comparing the performance of different ECs and 

buildings will be conducted. 

1.1 The history and regulatory framework of Energy 

Communities 

Over the past two decades, the evolutionary dynamics related to the national 

and international energy system have been strongly influenced by anthropogenic 

climate change. This phenomenon is largely driven by atmospheric emissions of 

climate-altering such as carbon dioxide CO2, nitrogen monoxide N2O, methane CH4, 

hydrofluorocarbons that comes from human activities. Scientists claim that human 

activity has resulted in a 47% increase in the amount of carbon dioxide in the 

atmosphere compared to levels observed in 1750 [1], mainly due to energy 

generation. To address this phenomenon, the programmatic pathway developed at 

the European level involves driving the energy transition through the reduction of 

greenhouse gas emissions released into the atmosphere, the use of renewable energy 

to meet final consumption and the promotion of tools to improve energy efficiency. 

These key aspects have been the cornerstone for the organization of several meetings 

at the international level, which have included the enforcement of regulatory 

frameworks at different stages. Since ‘70s, researchers have been aware about the 
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impact of anthropogenic emissions, but it was only in 1997 when governments 

decided to sign the Kyoto Protocol. It was an international agreement that came into 

effectiveness in 2005 and imposed an obligation to reduce greenhouse gas emissions 

between 2008 and 2012 by no less than 5% from the level recorded in 1990 [2]. 

 

 

 

 

 

 

 

 

 

Figure 1.1: The stages of approach towards sustainable development. 

In the following years, the targets set by the international community were 

continuously raised. During COP151 in 2009, the Copenhagen Agreement was signed 

to support limiting global average temperature rise to less than 2 °C. In 2015, during 

COP21 in Paris, member states signed an agreement to keep the global average 

temperature increase to well to less than 2 °C and, if possible, within 1.5 °C. To achieve 

the goal of carbon neutrality by 2050, each member state must also develop a 

Nationally Determined Contribution [3], which is an action plan describing the actions 

it intends to take to reduce emissions and climate impacts, updated every five years. 

 
1 COP stands for Conference Of Parties. This term refers to the annual meeting of the member 
countries that signed the Framework Convention on Climate Change on 9th May 1992, an 
international agreement on the environment which subsequently entered into force on 21st 

March 1994. 
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At COP26 in Glasgow, one of the most relevant provisions was to limit temperature 

increase to an overall level of less than 1.5 °C compared to pre-industrial era. In Figure 

1.1, the timeline of the main international meetings is reported. 

The European Union is playing a leading role in global efforts to prevent or 

minimize the negative effects of these phenomena, by encouraging and supporting the 

national initiatives of member states, as the first international organization to 

formally commit to achieve carbon neutrality by 2050. The Clean Energy for all 

Europeans Package [4] was launched at the community level in November 2016. It 

consists of a set of policies that incorporates eight legislative acts, which include key 

actions to be taken between 2021 and 2030. This plan requires all member states to 

commit by 2030 to cutting emissions by 40% or more (compared to the level recorded 

in 1990), to increase and promote renewable energy production by at least 32% of 

total final consumption and to improve energy efficiency in final consumption by no 

less than 32.5%. More recently, the European Union set out an even more ambitious 

strategy to achieve emission reduction targets, proposing a new action plan to cut 

them by 55% before 2030. The Clean Energy for all Europeans Package encompasses 

several European Directives, including the Renewable Energy Directive II (Directive 

2018/2001/EU RED II) [5] and the Electricity Internal Market Directive (Directive 

2019/944/EU IEM) [6], on which the organizational structure of ECs is based. 

Specifically, the first one introduces definitions of Collective Self-Consumption (CSC) 

and Renewable Energy Community (REC), while the latter defines the Citizens’ Energy 

Communities (CEC). Articles 2 and 21 of the RED II [5] describe a CSC scheme, whose 

members are at least two consumers who produce renewable energy to meet their 

consumption needs and who are part of the same building. Shared renewable energy 

can be produced by facilities owned or operated by third parties who are not 

considered self-consumers of renewable energy. Articles 2 and 22 of the same 

Directive define the REC as “A legal entity which, following applicable national law, 

participates voluntarily, is autonomous and controlled by shareholders or members 

located in the proximity of renewable energy projects. Shareholders can be natural 

persons, local authorities or Small and Medium-sized Enterprises. Renewable energy 

communities have the power to take part in all relevant electricity markets” [5]. This 

scheme aims at bringing environmental, economic and social benefits to the 

community through the production and sharing of renewable energy. One or more 

private companies may belong to the REC, as long as this does not represent a major 
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commercial or professional activity. The IEM Directive [6], in Articles 2 and 16, 

analyses the CEC with reference to “A legal entity that takes part voluntarily and is 

controlled by natural persons, local authorities, members or partners of small 

businesses. It can cooperate in the generation, also from renewable sources, in 

distribution, consumption, storage, supply of energy and energy efficiency services”. 

It also considers the CEC as a solution which has the potential to support technological 

developments, such as Smart Grids and integrated demand management. The main 

difference between the two proposed schemes is that the REC is based on the 

integration of an ever-increasing renewable energy sources to produce electricity and 

heat, as well as the use of biofuels. On the other hand, the CEC only considers 

electricity and addresses issues related to power distribution grid. In addition to this, 

the use of renewable energy is not mandatory, but the main goal is to develop equal 

and non-competitive conditions as market players. There are no geographical 

limitations for CECs, so users do not need to be close to the energy project for 

participating as members. Conversely, RECs are based on precise territorial proximity 

requirements. Both types of ECs require legal entities to act as coordinators and 

effective control from specific actors. 

RECs are one of the most sustainable forms of renewable energy development, 

as they allow for a reduction in land use since the plants are installed on spaces 

already used for other purposes. Consumers involved in groups and communities can 

be made more aware of their consumption, resulting in cost control and activation of 

energy efficiency measures. Therefore, social value is an essential feature assumed by 

ECs, as they can create shared value where they are deployed, empowering citizens 

and local communities to perform as effective actors in the energy system, while 

promoting the development of skills, technologies and professionalism. Finally, they 

fit in as an important tool to eradicate energy poverty by including those users that 

are the most vulnerable. Thanks to these benefits, some EC-related projects are 

developing at an increasing rate, also through the evolution of the regulatory 

framework that provides for the delivery of economic subsidies. Around 3500 ECs are 

already operational in European countries, mainly concentrated in North-western 

Europe [7]. Most of the ECs are developed in Germany, followed by Denmark while 

Italy has a lower advancement of these entities than even other less developed 

countries from an energy point of view. 
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 Germany Denmark Netherlands UK Sweden France 
Belgium 
Poland 
Spain 

Italy 

No. 
ECs 

1750 700 500 431 200 70 34 20 

Table 1.1: Number of active ECs in some European countries. 

In our country, the Integrated National Energy and Climate Plan [8] set up the 

lines of action, which promote energy security and energy market development to 

lead the transition. Its introduction into the Italian regulatory framework took place 

in conjunction with the partial transposition of the RED II through Ministerial Decree 

12/2019 Milleproroghe. Pursuant to Article 42bis of the aforementioned Ministerial 

Decree, an experimental framework has been launched regarding CSC and RECs, 

legally recognized as of 2020 [9]. This Ministerial Decree, converted by Law No. 

8/2020 of 28th February 2020, provided that members of ECs may also be simple 

consumers, i.e., not owning a production plant, as long as the point of withdrawal from 

the power grid belongs to the same secondary cabin and the energy is produced by a 

plant of a maximum capacity of 200 kW. In the face of this partial transposition in 

Italy, ARERA2 has issued Resolution 4th August 2020 318/2020/R/eel and Ministerial 

Decree 16th September 2020. Two different draft laws have been proposed in order 

to address two issues. The first one concerns a regulatory procedure which identifies 

the different actors and their relationship and indicates the practices that encourage 

self-consumption. The second one refers to an act of ministerial competence, which 

addresses the issue of incentives in detail. The regulatory model introduced by the 

Authority takes the form of a virtual energy sharing. It consists of an hourly balance 

between the energy which is fed into the grid by community renewable energy source 

and the energy which is withdrawn from the power grid by the members within the 

same community. The lower of the two quantities, hour by hour, stands for shared 

energy among the members. This model favours the self-consumption without 

infrastructural interventions, as no new metering equipment is to be installed and the 

use of the public power grid is envisaged – as a consequence, the development of a 

private power grid for electricity exchange is not contemplated –. There are two types 

of remuneration provided to members belonging to the CSC scheme or REC on the 

share of energy produced and shared. The first concerns a refreshment linked to the 

 
2 ARERA is the Italian Regulatory Authority for Energy, Networks and Environment. 
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decommitment of the power grid portion affected by this scheme – provided for by 

the Authority – calculated in relation to the variable share of power grid charges. 

Another one concerns an incentive issued by the Energy Services Manager3, deriving 

from the Ministerial Decree of 16th September 2020. Through the entry into force of 

Legislative Decree No. 199 of 15th December 2021 [10], the RED II has been fully 

transposed. The novelties introduced by this action included the increase in the 

maximum power for individual plant which can be incentivized, the electrical 

perimeter from the secondary cabin to the primary cabin and the incentivization of 

CSC within 30% of the existing power of the total related to plants held by the EC or 

in its availability. 

Several projects related to both CSC and RECs are active in many Italian cities, 

while CECs have not been established. Currently, applications concern different 

contexts: residential and pertaining to Small and Medium-sized Enterprises. Figure 

1.2 and Figure 1.3 depict the distribution of ECs in relation to type and energy source 

used for local energy production.  

 

 

 

 

 

 

There are twelve RECs built at national level, while CSC schemes have been realized 

by four organizations. The predominantly used energy sources are related to solar 

 
3 GSE is the Italian Energy Services Manager. 

Figure 1.2: Distribution of the types 
of ECs in the national territory. 

Figure 1.3: Distribution of energy 
resources of ECs in the national territory. 
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and hydropower, but in some cases other sources such as biomass4 or biogas5 are 

facilitated. As a matter of fact, the first ECs in Italy were born before the enactment of 

the RED II, mainly in the North of the country. In 2018, the approval of a law by the 

Piedmont Region played a fundamental role as it was the first legislative project 

regarding ECs [11]. 

Following the damage caused by COVID-19, several countries, including those 

belonging to the European Union, have announced extraordinary measures to 

support their economies. For this reason, a significant portion of their own funds will 

be dedicated to energy transition. This included, at the national level, the design of the 

Italian National Recovery and Resilience Plan. Under Mission 2 of this programme, 

“Green Revolution and Ecological Transition”, the development of small-scale 

distributed systems and the promotion of ECs is planned, for a total investment of 2.2 

Mld€ within Component 2 “Renewable energy, hydrogen, network and sustainable 

mobility” [12]. This action could expand the experimental activities on ECs already 

started with the RED II and are anticipated to develop projects in areas where the 

greatest territorial and social impact are expected. The plan also provides support for 

smaller towns – with fewer than 5000 inhabitants – which are often at risk of 

depopulation. 

Regulatory frameworks at European and national level require the 

introduction of a variety of measures to meet market needs in line with the evolution 

of renewable and more sustainable alternatives to fossil fuels which could put power 

grids into trouble. The maintenance of the instantaneous balance between supply and 

demand is ensured through generation managed mainly by thermal power plants. The 

increasing mix of generation from intermittent renewable energy sources and the 

gradually clear expansion in peak load due to a continuous intensification of 

electrification in buildings require a complete reorganization of the energy 

infrastructure. There are two main problems, related to ECs, which are addressed by 

our study. The first one concerns the need for energy flexibility of buildings, to ensure 

that the power grid act adequately under conditions of sudden changes in demand, 

taking into account the necessary balances requirements and resilience. The second 

 
4 Alpine Energy Community of Tirano, district heating of Dobbiaco-San Candido, Azienda 
Agricola Valier, Società agricola Fattoria Lucciano, Società Agricola podere Vallescura. 
5 Pinerolese Energy Community, Green energy community GECO, Cooperativa Agricola 
Speranza. 
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one involves the difficulty of developing district-scale environments that can 

reproduce real-world contexts. To address the first issue, the individual building has 

the potential to become an active system that can meet the requirement for energy 

flexibility, defined as “the ability to manage its demand and generation according to 

local climate conditions, user needs and power grid requirements (penalty signal) 

without jeopardizing technical and comfort constraints” [13].  

Peak Clipping and Energy 

Efficiency: It consist in 

lowering the peak of 

demand or total demand.           

Figure 1.4: Peak clipping and energy efficiency scheme [14]. 

Valley Filling: It consist in 

increasing the load in 

period when there are no 

peaks in demand.  

Figure 1.5: Valley filling scheme [14]. 

Load shifting: It consist of a 

shift of the load from a peak 

period to a downstream 

period.  

Figure 1.6: Load shifting scheme [14]. 

Table 1.2: Strategies to achieve energy flexibility. 

The energy flexibility of the building enables Demand Side Management 

(DSM) and load control strategies and is an alternative to Supply Side Management. 

According to this management scheme, high operating costs due to supply-side 

resource management can be reduced. In addition to this, power purchase costs can 

be moderated as fewer energy reserves are used to balance peak situations. 

Specifically, DSM consists of a set of actions which affect users consumption of 

primary energy and includes various activities that can be introduced to modify 

energy demand over time [15] and exhibit flexibility, such as those described in the 

Table 1.2. Often, energy flexibility in buildings can be managed by decoupling energy 
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production from consumption through storage systems. There are several ways to 

strengthen this property, but the most interesting are the following ones: 

 

• Flexible loads: they include all schedulable utilities, whose loads can be 

shifted over time according to Demand Response (DR) policies. Controllable 

equipment in a building includes Heating, Ventilation and Air Conditioning 

(HVAC) systems or household appliances. 

• Hot Thermal Energy Storage (HTES) and Cold Thermal Energy Storage 

(CTES): these are set up as storage technologies which typically contain hot 

water and chilled water, respectively. They are capable of storing and 

releasing energy, weighing more or less flexibility on the power grid 

depending on their size [16]. 

• Building envelope: the thermal capacity of the envelope components 

provides additional opportunities for thermal storage. Opaque envelope is 

increasingly using materials which exploit the principle of phase change 

accumulation6, while this technology for transparent envelopes is still under 

development. 

• Battery Energy Storage Systems (BESSs): they are set up as storage systems 

capable of electrical energy buffering. When connected to a local power 

generation system, they can be leveraged to increase self-consumption by 

charging when production exceeds consumption. Alternatively, they can be 

charged when power grid electricity prices are low and discharged during 

peak periods. Electric vehicles (EVs) can also be configured as systems for 

storing electricity which can be shared by community members when needed. 

• Power generation systems and energy carriers: Two types of power 

generation systems may be involved, namely renewable sources or CHP 

generation systems. 

 

Regardless of how energy flexibility is defined, it can be expected that it will 

not become a constant value over time since it is based on interactions with the 

building’s interior and exterior environment [17]. The management of a district of 

buildings, each able to exercise its energy flexibility, determines greater advantages 

 
6 Phase change materials (PCM) are materials with high storage capacity and exploit the latent 
part of the phase change. 
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towards the network than a single building, whose impact is certainly low. However, 

it is necessary for them to be served by the same aggregator, as otherwise there could 

be negative impacts in terms of power grid stability, such as the phenomenon of only 

shifting the peak of demand, without reducing it [18]. 

In recent decades, with the development of building-integrated monitoring 

infrastructures, Information and Communication Technologies are emerging as an 

opportunity to improve the management of various energy systems. Advanced 

control strategies are being developed in this context and involve complex decision-

making processes which operate the energy systems according to a given set of 

decision variables. In this way, multi-objective functions can be met, such as 

maintaining comfort conditions during periods of occupancy while minimizing 

energy consumption and maximizing self-consumption. It is also possible to foresee 

external events such as changes in energy prices or changes in weather and climate 

conditions. The complexity involved in the energy management of a group of 

buildings requires considerable effort in order to develop an advanced control 

activity such as the one just described. Appropriate strategies for controlling the 

energy systems of multiple buildings are being tested, but their practical application 

in the field calls for the development of an environment at the district level, which has 

important cost consequences. To solve this additional problem, the design and 

validation of a VSE allows these issues to be overcome, ensuring time management of 

different influencing factors such as the effect of employment, as long as this 

archetype is provided with a character of flexibility and adaptation to variable 

contexts. A VSE can consist of models, which are usually classified in the following 

way according to their structure [19]: 

 

• Calibrated or “white box” simulation method; 

• Empirical or “black box” method; 

• “Grey box” method. 

 

White-box models – also known as engineering or physical models – are based on a 

detailed description of the system and require more knowledge of its structure. They 

basically consist of applying the conservation equations of mass, energy and 

momentum, the solutions to which can be obtained with extremely detailed input 

information. For this reason, modelling is time consuming and requires high 
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computational power, so they are not suitable for analysing the operation of the 

system in real time. In addition to this, these models are unable to their own to 

account for social or environmental factors since they are entirely based on physical 

equations. As a matter of fact, modules based on data-driven models are often 

included to evaluate these factors. However, they are able to describe system 

behaviour without measurement data. Over time, they have been increasingly 

implemented in various simulation software such as TRNSYS, EnergyPlus, Modelica, 

IDA and Dest. 

Black-box models take the form of data-driven ones and are based on measured time 

series data. They do not rely on complete physical knowledge of the system and do 

not require detailed input parameters. Moreover, they are computationally light and 

are able to incorporate socioeconomic and environmental factors. In addition to this, 

their accuracy makes them suitable for real-time monitoring because the deployment 

is carried out at a low computational cost. On the other hand, the need for a wide 

availability of historical data and the need for high-quality data to learn the 

relationships that bind the functional parameters of one or more systems are major 

disadvantages. As a matter of fact, missed data, outliers or inconsistencies can lead to 

the development of an unclassified model. Some black-box models lack 

interpretability because the relationships between input and output are so grafted, 

complex and non-linear that it is really difficult to interpret them physically.  

Grey-box models respect the significance of the physical phenomenon under study 

because they involve the use of algebraic equations. For this reason, they are easier to 

interpret than black-box ones. A common disadvantage with black-box models is their 

difficulty in generalization and scalability. These models are also more 

computationally efficient than white-box ones because parameters are identified 

through a process drive by measured data. 

For analysing complex building dynamics, black-box and grey-box models are 

preferable because they allow for fewer input parameters than white-box ones, 

although they are often less accurate. 

1.2 State of the art 

ECs have attracted considerable interest in recent years, both at the 

regulatory and research levels. As a matter of fact, these can provide significant 
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benefits from an energy point of view, as shown by the study proposed by Ceglia et al. 

[20]. They quantified the difference in energy flows to and from the power grid that 

occurs in the case of ECs compared to individual buildings. The EC examined involved 

two office buildings located in Naples. Each was equipped with a photovoltaic (PV) 

system and EV charging stations. The results that emerged from their analysis showed 

significant energy sharing, which was substituted to electricity grid supply. Due to the 

non-programmable character of renewable energy sources, storage systems are 

playing an increasingly important role in residential settings. Bartolini et al. [21] 

analysed the operation of storage units in combination with PV systems. Through two 

scenarios, they identified ways to manage CSC, reducing grid dependence. Further 

analysis involved the use of a controllable cogeneration plant to better manage energy 

flows.  

Development of VSEs, both at individual building level and at the district level, 

has been a widespread topic in the literature. H. Sen et al. [22] have evolved a Nearly 

Zero Energy Community virtual environment in Modelica. The proposed framework 

overcomes the difficulties of modeling the interactions between different 

heterogeneous energy systems in this building type through an integration of 

interdependencies. In the VSE, three types of buildings (residentials, retail buildings 

and offices) were considered, each equipped with a PV system for a total peak power 

of 60 kW. Auxiliary batteries are available in each building, as well as water-to-air 

Heat Pumps (HPs). Domestic Hot Water (DHW) demand is met by a water tank in 

which the HP coil is immersed. All these energy systems were shaped using a hybrid 

model, based on both calibrated simulation and empirical approach. Their interaction 

with the power grid was looked at later. Results obtained from the application of the 

model to a community located in Florida showed a good ability to reconstruct net 

energy demand, but a poor capacity to predict PV production. At the district level, an 

interesting framework is CityLearn [23] based on OpenAI Gym Environment, a 

standardized interface used for simulations aimed at control. This VSE is used for 

comparison of DLR algorithms applied in DR tasks. It contains many models of energy 

systems such as DHW production ones, HPs, Electric Heaters (EHs), Gas Boilers (GB) 

and solar systems. In contrast, the heat load is pre-calculated. The same standardized 

interface has been used by Z. Wang et al. [24] to develop a VSE called “AlphaBuilding 

ResCommunity”, exploitable for training and validation of control algorithms applied 

to Thermostatically Controlled Load. The authors apply a grey-box 1R1C model to 
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simulate the variation of indoor air temperature of buildings belonging to aggregate. 

Considering the difficulty of tuning algorithms at the level of individual buildings in a 

neighbourhood setting and the complexity of simulating energy systems based on 

physical approach, this study focuses on the considerable effort to scale algorithms 

on different systems than the one used for their validation. AlphaBuilding 

ResCommunity tries to overcome these issues as it is built on the basis of parameters 

evaluated from measured data for a vastness of buildings with different uses. 

However, one limitation concerns not taking into view the HVAC system, but only its 

on/off status. 

The intermittent nature of small-scale renewable power generation 

technologies increasingly integrated into buildings, albeit with appropriate 

integrated storage systems, can place constraints on flexibility and energy self-

sufficiency. To partially overcome these issues, further adoption of controllable 

distributed generation systems may be effective. For example, cogeneration plants 

generate electricity and heat in the form of hot water, superheated water or steam. At 

the technological level, for small-scale applications, Internal Combustion Engine, 

steam engines, Micro Gas Turbine (MGT), fuel cells and Stirling Engine [25] stand out. 

The application of such type of distributed generation systems at the residential level 

has become increasingly important in recent years, as both thermal and electrical 

loads can be met using a single system. In the case of excess generation, energy flows 

can be exchanged with the District Heating Network (DHN) and with the power grid, 

respectively. M. Pirouti et al. [26] in their study described the potential of residential-

scale distributed CHP systems to produce heat and electricity, following the 

considerable primary energy savings achievable. Instead A. Olympios et al. [27] 

argued that cogeneration technologies and HP systems play a key role in achieving 

expected decarbonisation targets. In their analysis, they compared three different 

design scales involving cogeneration systems serving a district of the Isle of Dogs in 

London. The economic analysis and the study of the amount of climate-changing 

emissions allowed them to identify the optimal configuration. In [28] a strategy 

involving a group of buildings is introduced, based on the possibility of increasing self-

sufficiency from a thermal point of view by integrating micro-cogeneration plants. 

The types of building suitable for the installation of these plant systems and the 

optimal management strategies for these, to have an impact at the district level, were 

examined. Instead, an application case was presented by G. Prinsloo et al. [29], who 
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designed a smart microgrid capable of managing the production of thermal and 

electrical carriers for members belonging to a rural village in South Africa through an 

integrated CHP system. Feedback related to heat and electricity utilization paradigms 

made this solution effective. On the other hand, some studies have been carried out 

to highlight the drawbacks related to the adoption of such systems. For example R. 

Rodríguez et al. [30] analysed the amount of investment costs depending on the 

chosen technology and looked at fundamental research to reduce these costs and 

achieve grid parity. Considerable efforts are being made in this direction. As a matter 

of fact, H. Ren et al. [31] have proposed models to reduce the energy costs of a μ-CHP 

installed at residential level, taking into account optimal sizing of storage systems and 

integration of back-up boilers. 

Increased electricity generation within ECs satisfied much of the power grid 

requirements, while also bringing benefits to consumers. Electrification of transport 

is one of the key strategies for smart cities, required due to the urgency of developing 

decarbonization actions. In addition to this, EVs are progressively seen as systems 

which offer flexibility, because the intrinsic energy storage can be effectively 

harnessed in specific situations, avoiding withdrawal from the power grid. Proper 

planning of EV charging strategies must be provided for, so as to avoid impacts rather 

than benefits on the power grid. Numerous research works have been established on 

this topic, for example J. Wang et al. [32] developed four EV charging scenarios in 

order to shift the load from peak hours to off-peak hours. Through the simulation of 

such scenarios by integrating numerous vehicles, the authors demonstrated that a 

flexible charging strategy – involves through DR ones – can be useful in order to 

mitigate the characteristic valleys of the load profile during the night hours. This 

strategy also significantly reduces system operating costs. A. Foley et al. [33] analysed 

two charging scenarios by assessing a peak profile and an off-peak profile for more 

than 200000 EVs in the territory of Ireland. Off-peak charging is significantly more 

beneficial than peak ones, leading to a 10% increase in renewable energy used in 

transport and a significant reduction in CO2 emissions. C. K. Ekman [34] has built a 

model from historical data concerning the combining of energy sector of wind energy 

and charge of about 500000 EVs in Denmark, to apply several strategies in order to 

assess the impact of charging on energy availability. The author showed that charging 

vehicles at night results in a reduction of excess wind energy sold to the power grid 

without causing changes in installed capacity or energy purchased from the power 
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grid. EVs bring significant benefits, such as reduced emissions related primarily to the 

use of renewable, non-fossil energy carriers. However, a large-scale development of 

these systems could burn the power grid. W. Schill and C. Gerbaulet [35] have 

proposed a study on the impacts that the ever-increasing deployment of EVs may lead 

to on the Germany’s energy system. The development of a model which optimize 

energy flows and vehicle charging schedules allows for load profiles with less effects. 

Integrating constraints related to minimum load, related costs or the amount of 

generation from the plants allows realistic estimates of optimal charging patterns. 

A VSE can be based on an inverse modelling approach, due to the wide 

availability of monitoring data. Data-driven methods, which can assess building 

energy consumption, include grey-box models and black-box ones. The former of 

these maintain the physical significance of the studied object and require the 

measured data to determine representative parameters. The latter of these, on the 

other hand, require both input and output data to determine the parameters of the 

relationship between them. K. Arendt et al. [36] conducted an analysis comparing 

white-box, grey-box and black-box models developed to simulate the indoor air 

temperature of a university building. They showed that the black-box models exhibit 

better performance than the other two in the case of long forecasts, provided that 

adequate monitoring data are available. In addition to this, it was found that grey-box 

models are able to predict indoor air temperature for short time horizons with high 

accuracy. S. Royer et al. [37] proposed a black-box model to simulate the thermal 

dynamics of a building located in southern France. The validated model showed a 

scalable nature. As a matter of fact, it revealed excellent prediction capabilities of 

indoor air temperature for the same building placed in three different American cities. 

The same model, applied on another type of building with another heating system 

placed in the same French city as the starting one, showed good accuracy. 

Artificial Neural Networks (ANNs) are among the most widely used black-box 

models for forecasting the energy consumption of an individual building or a cluster. 

Pinto et al. [38] developed a new energy management strategy applied to a cluster of 

four commercial buildings, each equipped with a HP, TES and EH. Developing of a 

model of each building using EnergyPlus allowed them to train Long Short-Term 

Memory (LSTM) neural networks, which are capable of learning long-term 

dependencies and predicting the change in indoor air temperature. This model was 

then coupled with a VSE for control-related purposes. Gokhale et al. [39] proposed a 
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Physics-informed neural networks approach to simulate the thermal dynamics of 

building and integrate control actions which can reduce energy costs and keep indoor 

air temperature within acceptable limits. This model requires the introduction of 

prior knowledge of neural network structure, with the aim of avoiding problems of 

generalization. The authors show that training this type of model requires less data 

than other architectures and their application has exhibited excellent performance 

for long predictions. Various types of ANN can be used to simulate or predict building 

behaviour and, in this regard, the literature is showing increasing interest. For 

example, Di Natale et al. [40], in their paper “Physically Consistent Neural Networks 

for building thermal modelling: theory and analysis”, presented a new physics-based 

neural network architecture which requires only past operational data as inputs to 

provide the thermal dynamics of individual buildings. 

From the emerging results in literature, a systematic analysis of individual 

buildings and aggregate data is shown to be essential. In the past, the availability of 

energy consumption information for individual buildings – from utility bills or meter 

readings – has made it possible to fully understand the relationships between the 

amount of energy efficiency and the characteristics related to the building component. 

Recently, the integration of measurement systems at different scales has enabled 

increasingly detailed data suitable for benchmarking analysis. In this view, the 

comparative analysis of the energy operation of buildings in the EC is relevant 

because it can act as a mechanism to compare the performance of several similar 

systems. This can lead to informing stakeholders of any deviations from baseline 

performance target and, where appropriate, motivating and supporting them to carry 

out improvement and optimization activities. Generally, it is usual to distinguish three 

types of benchmarking activities applied in the energy context: 

 

• Internal benchmarking: This process involves evaluating the expected 

energy consumption of the system against influencing factors and using it as 

a reference to characterize performance and/or energy efficiency. The 

baseline value can be identified in relation to historical or expected 

performance of the same system. 

• External benchmarking: This process involves classifying one or more 

systems from an energy perspective, against the historical or current average 
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performance of its peers7, so that any need for intervention can be 

characterized. 

• Engineering Model-Based benchmarking: This process involves the 

construction of an archetype, a system appropriately modelled and designed 

through dynamic thermo-energetic simulation codes. This modelled system 

acts as a baseline against which to report the energy performance of the 

analysed system. 

 

Adequate comparative analysis can be achieved through the application of 

combined energy performance indicators, also referred to as Key Performance 

Indicators (KPIs). These ones can be applied at different levels of aggregation, from a 

single device level to a single building level and then extended to a group of buildings. 

Several ways have been developed for this purpose, some of which are briefly 

described below. A. Cielo et al. [41], for example, proposed a method of sizing a solar 

PV system equipped with a storage system, based on an optimization process 

obtained through two key independent performance indices in the field of self-

sufficiency and self-consumption. By varying the size of the solar PV system and the 

electrochemical storage system, the optimal one could be identified. Á. Corredera et 

al. [42] developed an automated system which, from continuously recorded 

information, can automatically calculate performance indicators. Internal 

benchmarking analysis allows reporting any anomalies in thermal energy delivery by 

a HP and/or a biomass boiler. The system is suitable for buildings and also includes 

the ability to manage on-site renewable energy production, energy consumption and 

occupant comfort control. This can lead to significant annual savings. Other studies 

[43] have suggested the exploitation of key factors for the design phase of a microgrid. 

These have included environmental, technical and occupant satisfaction-related 

performance indicators. External benchmarking has highlighted the importance of 

exploiting locally produced renewable energy, the ability to deal with emergency 

situations and the opportunity to reduce transmission losses through the power grid, 

as well as emissions. Another type of approach at the level of building groups was 

adopted by J.L. Hernández et al. [44] under which an indicator-based sustainability 

protocol has been designed. This also includes assessments of energy efficiency, 

 
7 When applied in the field of buildings, this activity consists in identifying certain properties 
such as the same intended use, the same dimensions, the same operating conditions. 
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economic, social and environmental impacts. In particular, sustainability plays an 

important role along with the design of Smart Cities and energy efficiency and the 

proposed sustainability protocol make it possible to overcome the complexities and 

costs associated with environmental assessment standards – such as Leadership in 

Energy and Environmental Design –. With a view to an ever-greater interaction of the 

building with the power grid, KPIs representing the energy flexibility of building 

systems have recently become widespread. Their proper application allows an 

optimization of the energy flexibility related to the building, also enabling a 

minimization of energy costs, according to Clauß et al. [16]. 

1.3 Contribution of this work 

This thesis work is part of a project related to the development of a simulation 

platform for ECs. The existing VSE used has the main purpose of improving energy 

management on a district scale. In its initial configuration, this archetype provided 

that a well-defined fraction of buildings would be equipped with a PV system and 

attached BESSs to partially meet the electricity needs of the community. Temperature 

control of the individual buildings, all of which were assumed to be single thermal 

zones, was given to air-to-air HPs that in some cases could manage the charge of TES, 

if any. DHW production, on the other hand, was through separate generating systems, 

which could be an EH or a GB depending on the building under consideration. One of 

the main contributions involved the development of alternative models to grey-box 

ones, through the design and the validation of black-box models suitable to predict 

the change in indoor air temperature of building which might belong to an EC. This 

makes it possible to consider their thermal dynamics on a district scale with high 

accuracy and acceptable computational effort. So, in the first part of this study we will 

show the steps required for the development of LSTM neural network models and the 

results, in performance terms, obtained. Subsequently, the research aims to assess the 

different technological solutions available to ECs to meet the needs of their members 

and to manage the energy flows. To be more specific, a model is developed to simulate 

the operation of a micro-cogeneration plant, a system based on the combined 

production of thermal energy and electricity. On the other hand, the growing interest 

in reducing climate-changing emissions has led to a proliferation of new systems, 

including EVs, also capable of providing services to the power grid. Hence, a model is 

proposed which could reconstruct the electric power demand from any EVs belonging 
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to the members of the community. Three potentially realistic energy scenarios were 

therefore investigated. All of them are based on the same reference configuration of 

the VSE, corresponding to the initial set-up before the integration of the modules we 

developed. However, these scenarios differ in the type of energy systems involved. A 

first scenario provides for the integration of a MGT plant to cope with increased 

thermal and electrical loads of community members. A second scenario analyses in 

economic, environmental and especially energy terms the impacts brought about by 

the introduction of consumer units such as EVs as the percentage of owner-users 

changes. Therefore, this scenario will include more analyses. Finally, the last scenario 

incorporates the previously sized micro-cogeneration plant in the basic configuration 

of the VSE and takes on the presence of EVs as energy demand systems among 

community members. The data obtained from the different simulated scenarios were 

aggregated, historicized and used to evaluate some useful parameters for 

benchmarking activity. So we have compared the aforementioned KPIs with those 

related to the different community members. The advantage of the methodology 

proposed in this study is that it can be easily adapted to look at different ECs as long 

as measured or simulated data related to building specifications are available. The 

major contributions of this work can be summarized as follows: 

 

• Training and validation of LSTM neural networks to predict the indoor air 

temperature of individual buildings. 

• Development of first-order models for a DHN supplied by a MGT and to 

simulate the occurrence of EVs in the EC. 

• Development of different energy scenarios for ECs which are based on 

current trends and performance analysis considering KPIs for individual and 

aggregated buildings. 

 

In detail, the thesis consists of six parts: chapter 2 analyses data analytics-

based algorithms such as ANN. An in-depth study of the structure of an LSTM neural 

network architecture and an assessment of the mathematical model which describes 

it is carried out. In addition to this, the same section describes the mathematical 

models related to the operational state of the micro-cogeneration plant and to the 

demand for electricity to recharge EVs owned by community members. Attention is 

also given to Rules-Based Control (RBC) policies, appropriately chosen to burden the 
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power grid as flexibly as possible. Chapter 3 describes the structure of the VSE used 

in this research and the assumptions on which it is formulated. Next, it focuses on an 

analysis of the parameters to be provided as input to initialize the simulations, a 

description of the thermal and electrical demand models and the various energy 

systems and a presentation of the control strategies adopted. In addition to this, the 

different energy scenarios investigated will be mentioned. Chapter 4 is devoted to our 

case study, while chapter 5 deals with the presentation of the results obtained under 

the different scenarios, an evaluation of them and other critical insights. Finally, 

chapter 6 focuses on conclusions describing potential future developments and 

possible improvements. 
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2 Methodology 
 

This chapter will be devoted to Artificial Neural Networks (ANNs) and the 

theoretical background on which the Long Short-Term Memory (LSTM) network 

architecture is built. Then, an analysis of the hyperparameters and the main error 

metrics used to obtain detailed training information of an ANN will be carried out. 

Next, the focus will be on describing models related to energy systems. To be more 

specific power generation technologies supplied by renewable energy sources, such 

as solar PV or wind power, are marked by a random character. In addition to this, 

stochastic behavioural patterns of occupants, variations in the price of energy 

purchased on the power grid and intrinsic constraints on power distribution systems 

make complex the problem of determining appropriate strategies to meet multi-

objective functions. To partially overcome these issues, further integration of 

controllable generation and consumption systems may be effective. In this direction, 

we will introduce a model of a micro-cogeneration system serving the entire EC and 

a model of electricity consumption for charging EVs. The parameters and assumptions 

underlying the formulation of such models will be also analysed in detail. 

2.1 Fundamentals of Artificial Neural Networks 

ANNs are advanced machine learning algorithms, known for predictive 

analytics. They are qualifying as computational models based on mathematical 

entities – also called artificial neurons – which are made up by several layers of cells 

interconnected with each other. Within machine learning, ANNs are ranked as data-

driven models based upon supervised learning techniques, where input and output 

are known from a set of data. The key aim in the training phase is to find the value of 

those parameters which provide the relationship between input and output data. 
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Such connection can then be used with input data, where the boundary conditions are 

similar to those of the training phase, in order to predict output values. ANNs are 

broken down into two broad categories: 

 

• Feed-forward [45]: it is a structure within which neural connections are not 

based on loops, so information is moved only in the direction from input to 

output. 

• Recurrent Neural Network (RNN) [46]: it is a structure within which 

connections between neurons may or may not be directed. Being loop-based, 

the advantage of the RNN architecture is the ability to leverage a memory 

layer which provides time information to an input layer. This makes RNNs 

highly enforced to predictive modelling of data sequences. 

 

LSTM neural networks belong to the category of RNNs. They are configured as 

networks with infinite impulse response, in which there are states of storage – also 

called gated states – able of containing data derived from feedback trials. LSTM neural 

networks are architectures first introduced by S. Hochreiter and J. Schmidhuber [47] 

in 1997, primarily developed to remove long-term dependency problems. As a matter 

of fact, these models are based on two sequential phases: training and testing. During 

the training phase, the network learns the relationship that binds inputs and outputs. 

When this phase is over, the model has learned from the inputs to estimate the 

outputs. Therefore, during the testing phase, its accuracy at predicting the output is 

proven. Usually the first phase of training takes place through the gradient descent 

method, which consists in determining the local minimum of the error function in an 

N-dimensional space. However, in traditional schemes, the error gradient disappears 

as it propagates over time. This does not contribute to a good learning phase. The 

parameters in the first layers of the network are subject to a small gradient update 

and the effect of this phenomenon is that longer sequences are ruled by short-term 

memory. A LSTM neural network is organized in concatenated layers, each of which 

consists of four levels that interact with each other according to a certain logic, unlike 

traditional neural networks which involves only one level per layer. The main 

component of a LSTM neural network layer is the cell state which is represented in 

Figure 2.1 by the horizontal line placed in the upper portion of the diagram. 
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This runs within the entire module, can have linear interactions with other 

components and has the function of moving data vectors – containing information – 

from the previous layer to the next one. Is regarded as the level that is given the task 

of keeping long-term memory and detecting long-term relationships. It is possible to 

provide or subtract information to the cell state through structures called gates. A 

gate is a means of moving information and consists of a sigmoid layer and a pointwise 

multiplication operator. The function built into a gate layer can vary between zero 

and one and is used to determine the fraction of information to be retained when 

crossing the gate. A value of zero means that no information will be transferred 

through the gate, while a value of one reveal that all information will be moved. 

Conventionally, a LSTM neural network consists of three gates, which are designed to 

control and protect the cell state. Gates can therefore be seen as different neural 

networks which learn what is important information to keep or forget during training. 

All gates stick to the hidden state, which is a state that is accountable for preserving 

short-term memory. 

The mathematical model provides a step, within each LSTM layer, which is 

able to choose which information is relevant and which is negligible to the cell state. 

The forget gate layer makes this judgment. More in detail, it analyses the vector 

obtained from the combination of the previous hidden state information ht−1 and the 

information of the new current input xt. At the output of the sigmoid function, a worth 

anywhere between zero and one is given for each number contained in the cell state 

Ct−1. A value of zero means to delete that information, while a value of one indicates 
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Figure 2.1: Structure of a layer belonging to an LSTM neural network for time series 
forecasting. 
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that the information must be fully retained. This process is expressed by the following 

equation [47], [48]: 

ft =  σg(Wfxt + Ufht−1 + bf)           (2.1)  

in which ft ∈ (0, 1)h is the activation vector of the forget state, σg represents the 

sigmoid function, W ∈ Rh × d accounts a matrix of recurring weights, U ∈ Rh × d 

provides a matrix of weights to be supplied in input and b ∈ Rh is a vector of bias 

parameters. Finally, xt ∈ Rd and ht ∈ (−1, 1)h are respectively an input vector to the 

LSTM layer and an hidden layer vector, even said LSTM output vector8.  

The second step involves to identifying the information to be stored within 

the cell state. This process is based on two phases: the first one is that the input gate 

layer – which is a sigmoid layer – defines the data to be updated. Next, a tanh layer 

calculates a vector of new data Ct which should be added to the cell state. The results 

of both of these procedures are combined and provided to the cell state. The two 

phases are described in the following equations: 

it =  σg(Wixt + Uiht−1 + bi)            (2.2) 

C̃t = σc(Wcxt + Ucht−1 + bc)           (2.3) 

in which it ∈ (0, 1)h is the activation vector of the input gate, C̃t ∈ (−1, 1)h marks an 

activation vector of the input state, while σc is the hyperbolic tangent function. 

The cell state Ct−1 is then upgraded to a new cell state Ct. To do this, multiply 

the cell state Ct−1 for the output of the forget gate layer ft and add the product of the 

sigmoid output it with the new cell state Ct, as we can see from the Equation 2.4. 

Ct = ft ∙ Ct−1 + it ∙  C̃t            (2.4)  

where Ct ∈ Rh is a vector, as well as Ct−1. The outcome depends on the cell state but 

does not match Ct. In particular, to determine the output, an additional sigmoid layer 

must be used in order to find out which information within the cell state must be 

given. Therefore, the cell state data is subjected to a tanh operation, so as to get results 

 
8 The ℎ and 𝑑 superscripts stand for the number of input features and the number of hidden 
layers, respectively. 
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in the range of -1 to 1, and the outcome achieved is multiplied by the output of the 

sigmoid layer mentioned above. All this is defined by the equations below. 

ot = σg(Woxt + Uoht−1 + bo)           (2.5)  

ht = ot ∙ σh(Ct)            (2.6)  

where ot ∈ (0, 1)h is the activation vector of the output gate and σh can be a 

hyperbolic function or a linear function of the cell Ct. The hidden state allows us to 

obtain the expected result since information from previous inputs is available within 

it and is used for forecasting activities. 

2.1.1 Hyperparameters and error metrics 

The design of an optimal LSTM model requires a careful selection of 

hyperparameters. Among the most important ones, which need to be considered for 

an LSTM-based model, are: 

 

• Batch size: part of the training dataset which contains a specific number of 

records. 

• Epochs: number of times the neural network completely examines the 

training dataset. Since learning is based on an iterative process, it is necessary 

to provide the neural network several times with the training dataset to 

update the weights of all neurons. 

• Learning rate: rate at which a neural network must leave out past 

information acquired and replace it with others. The higher this 

hyperparameter, the more the network could change its mind quickly. 

• Number of hidden layers: levels of neurons to be inserted between the input 

layer and the output layer. As the number of hidden layers increases, the 

computational cost grows. 

• Number of hidden units: neurons belonging to each hidden layer. It is 

advisable to set a number of neurons between those of the input layer and 

those of the output layer.  
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LSTM neural networks can be used for both regressive9 and classification10 

problems. If we focus on the regressive ones, the supervised model is built by splitting 

the dataset into three parts: training set, validation set and testing set. The highest 

fraction of the data available is used for the training phase, while small portions of 

datasets are used for the validation and testing process. During the training phase, the 

model tries to find the minimum of a cost function. This is usually based on Mean 

Square Error (MSE), expressed as follows: 

MSE =
1

N
 ∑ |yi −  ŷi|

2N
i=1            (2.7) 

where yi is real value while ŷi is the predicted value. The MSE is a statistical indicator 

very sensitive to any outliers in the dataset11. One of the goals of the LSTM neural 

networks is to adjust the weights of each layer so as to minimize the MSE.  

Once the training is completed, the testing dataset is used to evaluate the 

performance of the model. Specifically, input data from the testing dataset are 

provided to the neural network, which will estimate one or more output values. These 

are then compared with the actual output values, from which the MSE and also other 

error metrics, can be determined: 

 

• Mean Absolute Error (MAE): it is the average value of the difference 

between the predicted output and the actual output 

MAE =
1

N
 ∑ |yi −  ŷi|

N
i=1            (2.8)  

An advantage of this metric is that it is not much affected by the presence of 

outliers. A disadvantage is related to the fact that it retains the same unit of 

measurement as the variable to be predicted. This is not very suitable when a 

comparison between different models needs to be made. 

• Mean Absolute Percentage Error (MAPE): it is the average of the sum of all 

relative errors 

 
9 Regressive problems predict numerical output. 
10 Classification problems model the belonging of one or more records to a specific class, so 
they predict a categorical output. 
11 For this reason, before the Knowledge discovery phase, a data pre-processing and data-
segmentation phase is developed. 
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MAPE =
1

N
 ∑

|yi− ŷi|

yI

N
i=1            (2.9)  

The advantage of this error metric is that it is a percentage value, useful for 

developing model comparisons. A drawback is related to its mathematical 

formulation, as if the actual output is zero the MAPE goes to infinity12. 

• Root Mean Square Error (RMSE): it is the square root of MSE 

RMSE =  √
1

N
 ∑ |yi −  ŷi|

2N
i=1        (2.10)  

• Coefficient of Variation of RMSE (CV-RMSE): it is determined by dividing 

the RMSE with the mean of the variable to be predicted 

CV − RMSE =
RMSE

y̅
        (2.11) 

The advantage of this metric is that it is a dimensionless value. 

 

It is important to avoid the overfitting phenomenon, with respect to which the 

model shows excellent performance in training, but bad performance in testing. 

Finally, one of the limitations of these and other ANNs concerns the difficulty of 

understanding whether training has actually effective [49].  

2.2 Micro-cogeneration system 

Buildings demand for electricity and thermal energy is generally met through 

separate generation and supply. In most RECs, electricity is generated by PV or wind 

systems arranged on site, while thermal energy comes from boilers or systems which 

use electricity directly at the end user. Electricity generation from PV systems peaks 

during the daylight hours of the day is often higher than user demand, but it requires 

a power grid offtake during the rest of the day. To address these issues, an alternative 

model to that traditionally used involves μ-CHP plants, highly controllable units able 

to combine electricity production with thermal energy production, starting from the 

conversion of the same primary energy source. Combined production allows 

significant fuel conversion efficiency, resulting in lower fuel supply costs and 

greenhouse gas emissions compared to separate production. Typically, a μ-CHP plant 

 
12 This is a frequent condition when applied to energy systems. 
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has a maximum generation capacity of less than 200 kWe, so it is a small power plant 

which may or may not be connected to the power distribution grid. In these 

applications, the thermal energy produced is often higher than the electrical energy 

and this aspect plays a role of particular importance since a large part of the buildings 

consumption is attributable to domestic heating, carried out through DHNs or to 

domestic cooling through absorption systems. μ-CHP systems are averagely deployed 

at the residential level due to significant daily load fluctuation, costs required to 

expand the DHNs and difficulties in obtaining authorizations. Despite this, one among 

the innovative μ-CHP technologies used for domestic purposes is the MGT. A MGT is 

a small power unit with a compressor, a turbine and an alternator set on the same 

shaft. Combustion air enters a radial compressor operating at a very high speed, after 

passing through a filter, so as to increase its pressure and temperature. Subsequently, 

in a combustion chamber the air is mixed with the fuel and combustion occurs. The 

flue gases resulting from this process pass through a centripetal turbine, inside which 

the gases expand. The mechanical work is then converted into electrical energy by 

means of a generator mounted on the turbine shaft, without the need for deceleration 

components. The work cycle is almost always regenerative, which is, the heat 

recovery involves the high-temperature flue gas leaving the turbine, that is used to 

preheat the air entering the combustion chamber through an air-to-air heat recovery 

unit and then to exchange heat with the water supplying the thermal utilities by 

passing through an additional heat exchanger. The advantage of these plant systems 

over other systems of similar size lies in the limitation of noise and vibrations and 

also in the absence of an auxiliary heat-disposal system. To this, they do not require 

excessive maintenance and have a high service life. The disadvantage of these systems 

lies mainly in the costs. 

At the regulatory level, European Directive 2004/8/EC [50] implemented 

through Legislative Decree 8 February 2007, No. 20 defines that a μ-CHP system can 

be considered high efficiency if the Primary Energy Saving index takes a positive 

value. This factor is driven by the ratio of the combined production of a μ-CHP plant 

versus separate production through standard technologies. In addition to this, it is 

also necessary to meet the minimum threshold for overall efficiency of the 

cogeneration (equal to 75% for the MGT). In this regard, it is the Energy Services 

Manager which recognizes compliance with the technical conditions of high-

efficiency cogeneration, the benefits of which are many. These include priority 
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dispatch of the electricity produced, tax breaks regarding the excise duty of the 

methane gas used, right to obtain energy efficiency certificates, right to access to the 

mechanism of Exchange on the Spot of electricity produced and exemption from 

payment of general system charges.  

The integration of a MGT, able to meet the electrical and thermal demand of 

users belonging to the EC considering its interaction with renewable energy systems, 

electrical and thermal storage could be useful to increase self-sufficiency and 

independence from the electricity grid. The simulation parameters used to derive the 

μ-CHP model in the VSE are as follows: 

 

• Electricity price for CHP: valorisation of electricity fed into the power grid 

for dedicated Energy Services Manager withdrawal or for sale to the market 

in 
$

kWh
. 

• Gas price for CHP: price of natural gas used as a primary energy source by 

CHP in 
$

kWh
. 

 

Instead, the parameters of the energy system defined in input are: 

 

• Electrical efficiency 𝛈𝐞𝐥,𝐂𝐇𝐏: electrical efficiency of the MGT, determined in 

relation to the outdoor temperature. 

• Thermal efficiency 𝛈𝐭𝐡,𝐂𝐇𝐏: thermal efficiency of the MGT, determined in 

relation to the outdoor temperature. 

• Global efficiency 𝛈𝐠,𝐂𝐇𝐏: global efficiency of the MGT, determined in relation 

to the outdoor temperature. 

• Heat exchange efficiency: efficiency associated with the heat exchanger 

which separates the DHN with the user. 

• Distribution efficiency: efficiency associated with heat dissipations 

occurring in the distribution network. 

• Maximum thermal power: maximum heat exchangeable power for each 

building. 
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The sizing of a MGT to serve the entire EC comes from the analysis of the 

electrical load profile of the aggregate of buildings belonging to the same community. 

This is determined through the following equation: 

Ef,CHP
nominal =

𝛼∙Eel
peak

ηel,CHP
nominal         (2.12) 

where 𝛼 is a dimensionless coefficient chosen based on the duration curve of the 

electrical load, Ef,CHP
nominal represents the energy supplied by the fuel, Eel

peak
 represents 

the electrical absorption under peak conditions and finally ηel,CHP
nominal represents the 

electrical efficiency, under nominal operating conditions, of the μ-CHP. The 

mathematical model is shown below: 

Eel,CHP = Ef,CHP ∙ ηel,CHP        (2.13) 

Eth,CHP = Ef,CHP ∙ ηth,CHP                      (2.14) 

in which Eel,CHP and Eth,CHP represent the electrical and thermal energy respectively 

produced by the plant and dependent on the energy supplied by the fuel Ef,CHP. ηel,CHP 

and ηth,CHP represent the electrical efficiency and thermal efficiency of the system, 

respectively. These two parameters are closely linked to each other, since through the 

application of the first law of thermodynamics it is possible to determine an overall 

efficiency of the cogeneration plant ηg,CHP (also called Utilization Index): 

ηg,CHP =
Eel,CHP+Eth,CHP

Ef,CHP
         (2.15) 

In initializing the input parameters, however, it must be considered that the 

electrical and thermal conversion efficiencies of a MGT are not held constant, but 

depend on the outdoor temperature. As a matter of fact, its increase results in a 

reduction of both the electrical power and the electrical efficiency of the system, 

because of the change in air density. To take account of this phenomenon, the 

variation in electrical efficiency with temperature was considered according to the 

relationship provided by Y. Hwang in his study [51], the trend of which is shown in 

Figure 2.2. While the electrical efficiency decreases with increasing temperature, the 

thermal efficiency rises. It was also assumed that the power grid losses linked to the 

electric carrier are zero, since centralized power generation from large thermal 

power plants and subsequent transmission and distribution is absent. On the other 
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hand, the thermal energy delivered to the utility differs from the thermal energy 

produced by the micro-cogeneration plant, since a distribution efficiency due to 

thermal dissipation which may occur during transport must be considered. 

 

Figure 2.2: Trend of the electrical efficiency of 
the MGT as the outdoor temperature changes. 

A heat exchange efficiency related to the heat exchangers integrated in each 

building and interfaced with the DHN must also be taken into account. In more detail, 

most small DHN models applied to ECs involve considering the layout, but in this one 

the goal is precisely to descend from this characteristic. So it is planned to implement 

a heat exchanger model for each building and then through efficiency parameters it is 

possible to identify the amount of thermal energy reaching the end user. 

2.2.1 Baseline control strategies  

In this work, we assumed a MGT connected to the electrical distribution grid 

to decrease the net electricity demand of the EC and thus serve a DHN to which all 

buildings are connected. This energy system operates only during the heating period, 

otherwise much of the thermal energy produced would be completely dissipated. An 

analysis of the optimal synergies between the power grid and the EC identified the 

time periods with respect to which it is convenient to use this facility, in order to meet 

the demand compared to the purchase from the power grid. More in depth, the study 

of D. Li et al. [52] was taken as a reference because it incorporates a control algorithm 

which identifies a morning (from 6:30 to 9:00) and afternoon (from 16:30 to 22:00) 

system turn-on as optimal. In addition to this, its operation during the night period is 
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not assumed since the electricity demand of the utilities is low and it is cheaper to 

draw from the power grid, by virtue of the reduced purchase price. In this way, the 

annual operating hours considered are therefore 1332 and the MGT turns on and 

keeps the load constant when the production of energy from the PV system is not 

sufficient to meet the load of the community. Moreover, an additional assumption 

considered is that the μ-CHP system does not modulate its output power, but it works 

under nominal conditions during the entire ignition period. Specifically, the thermal 

energy produced by the system is made available to the various buildings through a 

DHN, which totally or partially replaces the action of the HP and TES, and in the case 

of excess is dispersed into the environment. Electricity, on the other hand, is fed into 

the power grid, so that buildings belonging to the EC can purchase it, paying for the 

amount consumed on their bill. However, the advantage of this mechanism is related 

to the fact that at the regulatory level there is an enhancement of shared energy, which 

is the share of energy produced and consumed on site. 

2.3 Electric vehicles 

EVs are gaining more and more interest because of their low emissions 

advantageous for achieving the goal of decarbonisation in the transport sector as well. 

Charging an EV can be done in three different modes: conductive charging, which 

involves the use of a cable, a plug and a connector, inductive charging, which is done 

through a magnetic field that allows the transfer of energy between a fixed 

underground winding and a winding allocated inside the vehicle, or battery swap, 

which consists of a change of battery in special stations. Conductive charging is the 

one conventionally used and can be either slow or fast. Typically, slow charging 

involves a power grid connection through a connector and can be in alternating or 

single-phase or three-phase current. Based on the battery capacity of the vehicles, 

such recharging can take more than 6-8 hours. Fast charging is the one that is being 

developed more and more and takes from 15 to 30 minutes. Since the energy which 

is stored in the battery is in DC, it is needed to have a battery charger to do the 

conversion work from the AC coming from the power grid. Conductive charging is 

done through special charging stations, which often have an impact on the electrical 

power engaged by the user. Given the ever-increasing penetration of such 

technologies to achieve emission reductions in transportation, an adequate 

knowledge of the electricity demand profile related to vehicle charging can be useful 
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to better manage any simultaneous loads. For this reason, it is critical to set simulation 

parameters required to reproduce the electrical absorption profile of these 

consumption units: 

 

• 𝛍𝐬 gaussian distribution: mean of the gaussian distribution related to the 

charging start time. 

• 𝛔𝐬 gaussian distribution: standard deviation of the gaussian distribution 

related to the charging start times. 

• 𝛍𝐒𝐨𝐂 gaussian distribution: mean of the gaussian distribution related to the 

State of Charge (SoC) at the instant of arrival. 

• 𝛔𝐒𝐨𝐂 gaussian distribution: standard deviation of the gaussian distribution 

related to the SoC at the instant of arrival. 

 

The power committed for EVs charging depends on a series of information, 

which must be provided as inputs in terms of energy system parameters: 

 

• EVs capacity 𝐂𝐞𝐯𝐁𝐄𝐒𝐒
: BESS capacity of the single EV. 

• Number of EVs: fraction of EVs compared to the total number of buildings 

belonging to the EC. 

• EV charging efficiency 𝛈𝐄𝐕𝐜𝐡𝐚𝐫𝐠𝐞
: battery charging efficiency of the EV. 

• EV Depth of Discharge DoD: EV BESS discharge depth. 

• EV BESS Round-trip efficiency 𝛈𝐫𝐭𝐞𝐁𝐄𝐒𝐒
: round-trip efficiency for EV BESS. 

• EV BESS max charge/discharge power: maximum charging/discharge 

power of the BESS of the EV. 

• EV BESS converter efficiency 𝛈𝐁𝐄𝐒𝐒: efficiency of the AC/DC converter 

connected to the BESS of the EV. 

 

The model used to evaluate electric consumption profiles for charging 

vehicles was set by D. Zou et al. [53]. A moment of charging begins concentrated in 

the late afternoon, after users return from work, and described by a Gaussian 

distribution defined at times according to the following expressions: 

fs(x) =
1

√2π
exp (−

(x+24−μs)2

2σs
2 )  0 ≤ x ≤  μs − 12                    (2.16) 
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fs(x) =
1

√2π
exp (−

(x−μs)2

2σs
2 )                 μs − 12 ≤ x ≤  24                (2.17) 

where x represents the charging start time, while μs and σs are the mean and standard 

deviation, respectively. It was also assumed that the time for EVs to stay at the 

charging station is about 14 hours (i.e. all night), so the end of charging assumes a 

Gaussian distribution which has this deviation from the start time of charging. 

 

Figure 2.3: Gaussian distributions of the arrival instant (in blue) and 
the departure instant (in red). 

The SoC of EVs at the instant of arrival and start of charging is also determined 

from a Gaussian distribution, according to the following equation: 

fSoC(x) =
1

σSoC√2π
exp [−

(x−μSoC)2

2σSoC
2 ]                       (2.18) 

here x represents the remaining charge, while μSoC and σSoC are the mean and 

standard deviation of the distribution, respectively.  

 

Figure 2.4: Gaussian distribution of the SoC of the EV at arrival instant. 

Energy consumption related to charging EVs belonging to community 

members is determined as follows: 
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∆SoC= 1 − fSoC         (2.19) 

Eel,EV = ∆SoC ∙
CevBESS

ηEVcharge

        (2.20) 

From the EVs charging profile and battery capacity, the electric load of each building 

can be redefined with respect to the base configuration, according to the following 

expression: 

Eelectricity consumptionbuilding
= Eel,HVAC + Eel,DHW + Eel,appliances + Eel,EV  

(2.21) 

2.3.1 Baseline control strategies 

The EV model was completed by implementing an appropriate RBC strategy. 

Specifically, a gradual recharging is planned throughout the time the EV is at the 

charging station, with the aim of reaching a maximum SoC at the instant the vehicle 

leaves the charging station. 
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3 Virtual Simulation 

Environment 
 

This chapter reviews the structure of the VSE, the modules which is composed 

by and the parameters required to initialize a simulation. Next, we will focus on the 

mathematical models used both to define the thermal load, the electrical load and the 

gas load in residential buildings.  

3.1 Description of the Virtual Simulation 

Environment 

Recently, various advanced control strategies are applied to building energy 

systems with the aim of coordinating them optimally. Several research activities are 

taking place in this field and require the construction of standardized simulation 

environments, so as to train controllers according to different approaches and to 

compare different algorithms.  

 

 

 

 

 

Initiate the 
environment 

using 

RECsim() 
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environment 
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env.reset() 

Select and 
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Figure 3.1: Structure of the VSE. 
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The VSE used for this study is fully implemented in Python and it employs 

OpenAI Gym, a usable interface for comparing various control algorithms. The 

structure of the VSE is as follows: initialization is performed by invoking a RECsim() 

Python class and providing input parameters. At the beginning of a new episode, the 

env.reset() function is called and then the controller deploys the control actions in the 

environment through the function env.step(). The virtual environment performs a 

simulation by providing a tuple consisting of the s state, the r reward, the d end-of-

episode information and a set of comments i which the environment wishes to 

provide to the controller through the env.obs() function. Based on this data, the 

controller performs new control actions for the next step and it provides them to the 

simulation environment.  

Several parameters must be defined at the beginning of each simulation, 

which have been grouped into three categories: simulation parameters, building 

parameters and energy system parameters. Specifically, the simulation parameters 

used to derive the model are the following ones: 

 

• Sample size: number of buildings to be simulated. 

• Step size: time step size in minutes. 

• Simulation horizon: tuple which holds the start and the end dates of the 

simulation time interval. 

• Location: pvlib item which concern the location. 

• Weather data: CSV file with five climate variables inside. These relate to 

global horizontal radiation, direct normal irradiation, direct horizontal 

irradiation, wind speed and outdoor air temperature. 

• HVAC mode: operational status of the HVAC system which can be “heating” 

or “cooling”. 

• Model noise μ: standard deviation of model noise, due to a variety factors not 

explicitly modelled such as occupant behaviour or related to model 

approximations. 

• Measurement error: standard deviation of the measurement error defined 

in °C, linked to the possible poor accuracy of the measuring sensor. 

• Cost weight: JSON file which concern the weights for each reward term. 

• Pricing scheme: JSON file which concern different Time of Use tariff 

configuration. 
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• Gas price: purchase price of natural gas. 

• GWPcoal: amount in kg of CO2 emitted per unit of electricity produced from 

coal. 

• GWPnatural gas: amount in kg of CO2 emitted per unit of electricity produced 

from natural gas. 

• GWPpetroleum: amount in kg of CO2 emitted per unit of electricity produced 

from petroleum. 

 

To characterize the thermal loads of each building, it is necessary to initialize specific 

parameters, connoted as building parameters and described in detail below: 

 

• Thermal time constant τ: tuple containing mean and standard deviation of 

the thermal time constant. 

• Equivalent heat gain temperature THG,eq: tuple which contains mean and 

standard deviation of the equivalent heat gain temperature, that includes 

solar heat gains and internal heat gains. It is configured as a variable 

dependent on the time step. 

• R/C ratio: ratio of thermal resistance R to thermal capacity C. 

• Heat gain ratio HGratio: ratio between internal heat gain and solar heat gain. 

This variable is included to divide the two types of heat gains and depends on 

the thermophysical characteristics of the opaque and transparent envelope, 

the transparent opaque ratio and varies depending on the building. 

• Internal heat gain method: method which can be “DOE” or “ECOBEE”, within 

which the occupation, plug load and lighting schedules are specified. 

• Floor area: tuple which holds the average value and standard deviation of 

floor area of the buildings. 

• Temperature set-point Tsp: tuple which holds the average value and 

standard deviation of the internal set-point temperature  

• Temperature range Trange: tuple which holds the average value and standard 

deviation of the acceptable indoor air temperature range from the set-point 

temperature. The lower level of acceptability is Tsp −
Trange

2
, while the upper 

level of acceptability is defined ad Tsp +
Trange

2
. 
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In order to simulate energy system, appropriate relevant parameters must be defined 

to characterize their operation: 

 

• Supply heating 𝐓𝐬𝐮𝐩𝐩𝐥𝐲 𝐡𝐞𝐚𝐭𝐢𝐧𝐠  and cooling temperature 𝐓𝐬𝐮𝐩𝐩𝐥𝐲 𝐜𝐨𝐨𝐥𝐢𝐧𝐠: tuple 

which holds the average value and standard deviation of the heating and 

cooling temperature for thermal generation plants. 

• Design heating 𝐓𝐝𝐞𝐬𝐢𝐠𝐧 𝐡𝐞𝐚𝐭𝐢𝐧𝐠  and cooling temperature 𝐓𝐝𝐞𝐬𝐢𝐠𝐧 𝐜𝐨𝐨𝐥𝐢𝐧𝐠 : 

design outdoor air temperatures during the heating season and the cooling 

period, respectively. 

• PV penetration: percentage of buildings belonging to the EC provided with 

PV system. 

• PV module: PV module technical specifications taken from the SANDIA 

database. 

• Inverter: inverter technical specifications taken from the SAPM database. 

• Depth of Discharge DoD: Depth of Discharge of BESS. 

• BESS round-trip efficiency ηrte, BESS: round-trip efficiency of BESS. 

• BESS max charge/discharge power: maximum charging/discharging power 

of the BESS. It is expressed as a function of the capacity of the BESS and when 

a value of 1 indicates that the BESS is loaded/unloaded in an hour. 

• BESS converter efficiency ηBESS: efficiency of the DC/DC drive connected to 

the BESS. 

• HTES/CTES penetration: percentage of buildings belonging to the EC 

provided with HTES/CTES. 

• Hot/Cold water storage sizing factor: coefficient for sizing HTES/CTES as a 

function of HVAC heat/cool capacity. 

• HTES/CTES round-trip efficiency ηrte,TESS: round-trip efficiency of 

HTES/CTES. 

• HTES/CTES loss coefficient: parameter between 0 and 1 which defines 

HTES/CTES losses. 

• Gas fired/electrical heater ratio: ratio between the number of buildings 

with GB and the number of buildings with EH. 

• Gas fired boiler efficiency ηgas: GB efficiency. 

• Electric water heater efficiency ηel: EH efficiency. 
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• Daily DHW demand: tuple which holds shape and magnitude of the 

distribution of average annual demand of DHW in litres per building. 

• DHW volume per draw: tuple which holds the average value and standard 

deviation of the volume of DHW taken at each event expressed in litres/min.  

• Appliances consumption: tuple which holds the average value and standard 

deviation of the household appliances daily consumption. 

3.2 Building energy demand 

This work uses the Ecobee Donate Your Data (DYD) dataset [54] from the 

Ecobee DYD program. The experimental campaign was promoted by the home 

automation company Ecobee, which manufactures several technologies, including 

smart thermostats [55]. Various users can take part in the program by sharing data 

anonymously through smart thermostats installed at their buildings, in order to 

support research activities for a sustainable future. The monitoring campaign, which 

is still active today, includes information from more than 100000 buildings located 

mainly in North America. 

           

 

 

 

 

 

 

From the dataset containing the time series of some parameters for each 

building taking part in the DYD program, Z. Wang et al. [24] constructed a reduced-

model 1R1C (or grey-box) of the thermal properties of each building. In detail, their 

analysis is applied to each building made it possible to evaluate the constant of 

thermal time τi and an equivalent temperature related to the internal and solar heat 

gains THG,eq,i, from which were defined, for the i-th building, the thermal resistance Ri 
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Figure 3.2: Number of buildings by location belonging to the DYD Ecobee dataset. 
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and the thermal capacity Ci. Therefore, frequency distributions of these two 

parameters are constructed for buildings belonging to the same state, from which the 

mean and standard deviation are derived. These data are used to describe the thermal 

dynamics of buildings in a simplified way. On the other hand, the electrical load of 

each building can be determined from three components using the following 

mathematical expression: 

Eelectricity consumption,building = Eel,HVAC + Eel,DHW + Eel,appliances         (3.1) 

where Eel,HVAC represents the electrical consumption of the HP or HVAC system and 

is configured as a thermal sensitive electrical load, while Eel,DHW and Eel,appliances 

refer to the electrical energy consumption for DHW production by EH and household 

appliances, respectively, and both are set up as non-thermal sensitive electrical load.  

3.2.1 Building thermal demand 

For each building – taken as a single thermal zone – the indoor air temperature 

Tin describes thermal comfort conditions. It is a reference point for allowing the 

thermal mass of the building, to be used as a flexible lever for managing integrated 

plant systems. The following equation represents the thermal model: 

Tin,t+1 = e− 
∆t
τ ∙ Tin,t + (1 − e−

∆t
τ ) (Tout + HGint + HGsol + R ∙ μ + R ∙ Eth,load) +  ϵ 

(3.2) 

where HGint and HGsol are the equivalent temperatures associated with internal heat 

gains and solar heat gains, respectively. R is the thermal resistance determined by the 

thermal time constant τ and the parameter RCratio: 

R = √τ ∙ RCratio            (3.3) 

Therefore, the thermal capacity of buildings is worth: 

C =
RCratio

R
            (3.4) 

The HGint is established through the input building parameters as follow: 

HGint = THG,eq ∙ HGratio ∙ HGint,sched          (3.5) 
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where HGint,sched represents an hourly schedule which includes occupancy, lighting 

and other miscellaneous loads. 

 

Figure 3.3: Internal heat gain schedule for a typical day. 

On the other hand, HGsol is expressed as: 

HGsol = THG,eq ∙ (1 − HGratio) ∙ HGsol,sched          (3.6) 

where HGsol,sched is the schedule set by the United States Department of Energy for 

the reference building. 

 

Figure 3.4: Solar heat gain schedule for a typical day. 

So, the heat load of the building in winter ca be established as follows: 

Teq heating = Tsp − Tdesign heating           (3.7) 

Qheating =
Teq heating

R
           (3.8) 
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Whereas the cooling load of the building in the summer state is calculated through the 

following equations: 

Teq cooling = Tsp − Tdesign cooling − HGint − HGsol         (3.9) 

Qcooling =
Teq cooling

R
         (3.10) 

3.2.2 Energy demand for the production of Domestic Hot Water 

Domestic Hot Water (DHW) demand accounts for a significant part of energy 

consumption in residential buildings. It is not uniform during the day, as it depends 

on user habits, the season, the climate in which the building is located and occupancy. 

A number of studies in the literature show how knowledge of DHW consumption 

profiles can help develop appropriate control strategies to promote energy saving. 

The statistical model, called DHWcalc, proposed by U. Jordan et al. [56] allows the 

generation of consumption profiles through probability functions. Specifically, the 

mathematical formulation of the model is as follows: 

p(t) =  pday(t) ·  pweekday(t) ·  pseason (t)       (3.11) 

where pday(t), pweekday(t) and pseason (t) represent the daily consumption profile 

described by a Gaussian distribution, the consumption profile on weekdays and 

weekends and the seasonal variation of consumption in a year, respectively. From 

research of E. Fuentes et al. [57] and R. Hendron et al. [58], a typical daily profile and 

the relationship between weekends and working days are derived.  

 

Figure 3.5: Typical daily weekday and weekend profile. 
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A 20% increase in consumption is considered at the weekend. To this, the DHWcalc 

model represents annual seasonal fluctuations through a sine function. The thermal 

demand for DHW at a given instant can be determined using the following equation: 

EDHW(t) = p(t)  ∙ ρ ·  cp ·  V ·  (Tmains – TDHW)       (3.12) 

where V represents the amount of DHW per event, provided as input as an energy 

system parameter. Tmains and TDHW are the temperature of water coming from the 

aqueduct and the flow temperature of DHW, respectively. 

 

Figure 3.6: Trend of the annual seasonal variation. 

In this analysis, these parameters are fixed and assumed constant because the effects 

of seasonal changes are already included in the probability function. 

3.2.3 Energy demand for household appliances 

An electrical consumption model of household electrical appliances was 

implemented in the VSE, which is equivalent to one third of a building’s total electrical 

energy demand [59] due to increasingly significant efficiency improvements. The 

main household appliances which contribute to energy demand in residential areas 

are televisions, refrigerators, freezers, washing machines, dryers, dishwashers. While 

specific consumption patterns are available depending on the type of appliance 

dictated by relevant regulations [60], a single daily consumption profile was assumed 

for all buildings analysed proposed by the study of Pratt et al.’s [58]. The daily 

consumption associated with household appliances was determined by Monte Carlo 

estimation of the area subtended by the daily profile and then distributed over the 

day. This estimation provides a scattering of results with respect to the same overall 
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average load, so the actual estimated area varies every day for all buildings, which 

means that the building will not have the same average load every day. 

 

Figure 3.7: Total combined residential equipment schedule for a typical day. 

In order to optimally estimate the electrical load, the household appliances 

consumption is an input data, provided among the energy system parameters. 

3.3 Modeling of the energy systems 

One of the objectives of the study is to investigate the potential impact of 

different energy generation and storage systems installed in variable context, mainly 

characterized by different climatic zones and environmental parameters. The VSE 

involved the introduction of models related to different distributed energy 

conversion, storage and generation technologies able to meet the needs of each 

building.  

3.3.1 Thermal energy production: HVAC 

To achieve a realistic and adequate analysis, it is important to build a model 

of the energy system which provides temperature control within individual buildings. 

To this end, the integration of an air-to-air vapor compression HP system was 

planned: it can be powered electrically by a PV system – if available – or by the power 

grid. In order to obtain the electrical absorption data, this system was sized according 

to the maximum winter heat load and the minimum summer cooling load so that it 

would meet heating and cooling needs, respectively, even under the most severe 

conditions. The operating parameters depend on the external temperature 

conditions, so the constructed model took into account the strong variability of the 
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system’s operating modes as a function of these changes during the simulation period. 

More specifically, Coefficient Of Performance (COP) and Energy Efficiency Ratio (EER) 

represent the efficiency of converting electrical energy into thermal energy and are 

defined as a function of the difference between the temperature of the external 

environment Tamb and the heat transfer fluid temperature to the condenser 

Tsupply heating and evaporator Tsupply cooling respectively, through the report proposed 

by J. Vivian et al. [61]: 

COP =  6.81 –  0.121 (Tsupply heating − Tamb)  +  0.00063 (Tsupply heating − Tamb)
2

 

(3.13) 

EER =  6.81 –  0.121 (Tamb − Tsupply cooling)  +  0.00063 (Tamb − Tsupply cooling)
2

 

(3.14) 

Graphs depicting the COP and the EER trends are shown in Figure 3.8 and Figure 3.9, 

as the outdoor air temperature changes.  

 

 

 

 

 

 

 
 
The final electricity consumption of the air-to-air HP is determined in winter and 

summer trim according the following equations: 

Eel,HVAC =
Qh

COP
         (3.15) 

Eel,HVAC =
Qc

EER
         (3.16) 

The HP in winter trim can supply thermal energy Qh to the building and charge the 

thermal storage, which can be seen as a flywheel capable of avoiding continuous 

Figure 3.8: COP heat pump 
trend with condenser 

temperature equal to 45 °C. 

Figure 3.9: EER heat pump 
trend with evaporator 

temperature equal to 7 °C. 
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switching, on and off, of the system. Likewise, in summer mode the HP provides 

cooling energy Qc to the building and is able to charge the cold storage. The higher 

the value of these performance parameters, the lower the power consumption to 

provide these services. 

3.3.2 Domestic Hot Water production 

HPs can provide advantageous solutions when combined with other power 

generation systems. In some cases, the air-to-air HP alone may not be able to cope 

with building load due to the outdoor temperatures, so there may be significant 

advantages when supplemented with a traditional GB or EH. Depending on the 

configuration chosen, it is possible that the two plant systems will produce in parallel 

by distributing the heat load or there may be specific priority rules concerning their 

operation. In the VSE, the HP was assumed to meet the heat load due to air 

conditioning, while a GB or an EH, depending on the technology installed in the 

specific building, meets the demand for DHW. Both are assumed to be non-flexible 

loads, so generation corresponds to consumption in each simulation episode. For a 

building served by an EH, the electricity consumption can be mathematically 

determined by applying the following equation: 

Eel,DHW =
ρ · cp · V · (Tmains – TDHW)

ηel 
        (3.17) 

In the case of DHW production by GB, the gas load is described by a different 

conversion efficiency: 

Egas,DHW =
ρ · cp · V · (Tmains – TDHW)

ηgas 
                      (3.18) 

For a consistent assessment of the electrical load and the gas load, the ratio of the 

number of buildings with GB and the number of buildings with EH was included 

among the energy system parameters. 

3.3.3 Distributed Energy Resources 

The electricity needs of community members can be met by integrating locally 

available power generation systems, such as distributed PV systems. Of particular 

importance is the association of this plant system with a HP, as it can result in an 
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increased share of self-consumption and savings in utility bills, by virtue of covering 

part or all of the HP’s electricity needs. The model of PV system was built through a 

Python library called “pvlib”. For good integration with the electrical load, the model 

exploits typical operating parameters, usually provided in the manufacturer’s data 

sheet. In detail, information is required for such a module, which concerns the 

characteristics of the PV module, the attributes of the inverter and an indication of the 

percentage of buildings equipped with a PV system. 

3.3.4 Energy Storage Systems 

Renewable energy production facilities generally feature non-programmable 

generation, so integrating them with Energy Storage Systems (ESS) – like electric 

batteries or sensible heat storage – allows for maximum utilization of on-site 

generation potential and maximizes flexibility, self-consumption and self-sufficiency. 

Electrical storage technologies can be of different types, each with different discharge 

times, capacities and power ratings. The operation of a storage system can be 

described using the SoC model, according to which EESS defines the amount of energy 

exchanged between the storage and the electricity/thermal user and ∆EESS is the 

change in the amount of energy available in the storage: 

∆EESS = EESS ∙  ηcharge     when     EESS > 0                     (3.19) 

∆EESS =
EESS

ηdischarge
               when     EESS < 0                      (3.20) 

where ηcharge is the charge efficiency and ηdischarge is the discharge efficiency. A 

storage system typically has technical safety constraints, defined by the amount of 

energy exchanged and the SoC, which are required to preserve their long-term 

operation. Especially during the charging and discharging phases, the following 

conditions must be observed, which are fundamental to ensure that these phases are 

not too quick: 

EESS,min < EESS < EESS,max        (3.21) 

It is also important to observe the SoC limits defined by the manufacturer to keep the 

battery in good condition over time: 
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SoCmin < SoC < SoCmax                      (3.22) 

A BESS is a widespread technology capable of storing electrical energy over a shorter 

or longer period of time and available in different sizes. This system is not expected 

to exchange electricity with the power grid, but must be charged exclusively by the 

PV arrays or on-site generation facilities: 

|EBESS| < |EPV| − |Eel,load|   if   EBESS > 0       (3.23) 

The BESS cannot feed electricity into the power grid, but its discharge is expected only 

if the PV system or on-site generation system cannot meet the building’s electricity 

needs: 

|EBESS| < |Eel,load|   if   EBESS < 0        (3.24) 

In the BESS model it is necessary to incorporate, among the input parameters, the 

Depth of Discharge, the Round-Trip Efficiency, the ratio of Maximum 

charge/discharge power and also an efficiency of the DC/DC converter connected to 

the BESS. 

Thermal Energy Storage (TES) has increasingly attracted interest, given the 

large integration of renewable source systems in recent years, as it allows for indirect 

storage of electrical energy through the use of HPs. The thermal energy produced by 

these technologies can be stored and then be harnessed again for the production, 

through heat engines, of electricity. Applications involving low-temperature sensitive 

thermal storage systems are well established by virtue of the almost complete 

electrification of air conditioning systems. CTES are also increasingly being integrated 

into more applications and used for summer air conditioning. For this study, it is 

assumed that HTES and CTES can only be charged by the HP: 

|ETES| < |EHP| − |Eth,load|   if   ETES > 0       (3.25) 

And they can be discharged only when the HP cannot directly meet the building’s heat 

load: 

|ETES| < |Eth,load|   if   ETES < 0        (3.26) 

In this way, these systems allow the electrical load to be manages, since they can 

determine its peak variation, thereby improving the building’s flexibility with respect 
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to the power grid. Regarding the input parameters, the model requires the percentage 

of buildings which have a HTES/CTES, a coefficient for sizing HTES/CTES as a function 

of HVAC thermal capacity, the Round-Trip Efficiency of HTES/CTES and finally a 

parameter between 0 and 1 which defines the losses of these system. 

3.4 Control strategies 

In order to reduce CO2 emissions mainly related to building heating, an 

optimal solution is therefore to replace traditional thermal energy production 

systems (e.g. boilers) with HPs. This makes it possible to switch from thermal 

consumption to electrical consumption, which can be met by renewable energy 

sources. To optimally manage energy production and utilization, a MAS-based 

framework integrating three different independent controllers was developed. These 

operate according to RBC strategies, designed to exploit the flexibility of the building 

while reducing energy costs. The indoor air temperature is controlled by imposing its 

value within an acceptable range determined by the comfort conditions of the 

occupants. For this reason, in the winter set-up the heat load is met by an air-to-air 

HP or by a HTES, when the indoor air temperature falls below the lower limit of the 

acceptable range. Therefore, it increases until it reaches the upper limit of the 

acceptability range. A similar strategy is implemented in summer set-up, based on 

reversing the mode of operation of the HP. TES is managed according to a peak 

shifting strategy, as a matter of fact, under low price and zero SoC conditions, the HP 

provides full storage charging. However, when the electricity price is high – that is, 

during peak periods – the system is charged only when there is a thermal load in the 

building and the SoC is greater than zero. As far as the BESS is concerned, a control 

strategy widely used in literature was adopted. It is planned to be charged when there 

is a surplus of production from PV compared to the building load, otherwise it is 

discharged. In case the surplus is more than the system charge, then the 

overproduction is fed into the power grid. On the other hand, if the electricity 

produced by PV is not enough to fully charge the system, then the completion of 

charging is done by taking from the power grid. 
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3.5 Key Performance Indicators 

The potential for large-scale energy flexibility, if cost-effective, enables 

supporting stakeholders to provide services to the power grid. This feature is also 

increasingly being analysed because of changes in energy prices. As a matter of fact, 

shifts in demand related to prices, self-production and self-consumption are among 

the most widely used KPIs for quantifying energy flexibility and interaction with the 

power grid. Given the wide variety of buildings, these metrics must be suitable for 

evaluating a large number of technologies by including building-specific influencing 

factors. These indicators can be defined as absolute values (e.g. electrical or thermal 

load, energy generated from renewable sources, electricity prices taken from the 

power grid) or as relative ones (e.g. load-to-average factor), calculated with reference 

to specific scenarios.  

Several authors have proposed formulas suitable for assessing individual 

building KPI, which are subsequently extended to the EC level. KPIs currently applied 

to EC buildings are the Self-Consumption Index (SCI) and the Self-Sufficiency Index 

(SSI). These indicators are useful because they are easily applicable to different 

building stocks and also meet the needs described by the benchmarking analysis. The 

SCI [62] represents the fraction of self-consumed electricity Esh of the total electricity 

produced on site Plocal and is mathematically determined according to the following 

equation: 

SCI =
∑ Esh(tk)8760

k=1

∑ Plocal(tk)  ∆t8760
k=1

        (3.27) 

Building with values of this indicator close to zero purchase most of their electricity 

from the power grid due to the small size of the renewable energy systems placed on 

site (e.g. PV, ESS, CHP). The SSI [62] represents the share of electricity self-

consumption Esh in total electricity consumption Etotal and is calculated using the 

following equation: 

SSI =
∑ Esh(tk)8760

k=1

∑ Etotal(tk)  ∆t8760
k=1

                       (3.28) 

An index value close to one indicates that the entire amount of energy consumed is 

supplied by renewable energy sources located on site and is therefore characterized 

by a high degree of self-sufficiency. An index value close to zero indicates that most of 
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the electricity produced on site is sold to the power grid. Like the SCI, the SSI depends 

on the size of renewable energy systems and the type of systems available. These 

indicators can be used for a variety of purposes. For example, A. Cielo et al. [41] used 

these two indices to build a scale model of an EC consisting of on-site renewable 

energy generation facilities (PV and BESS). Further integration of economic indicators 

allowed them to identify the optimal configuration. G. Pinto et al. [18] also examined 

the SSI to measure the effects of different control strategies in the integration of 

renewable electricity. G. Mutani et al. [63] in their study examined the design stages 

of a REC and then applied these models to the reality of Villar Pellice (Turin). The 

evaluation of these indicators is crucial because a Law of the Piedmont Region 

assumes a minimum level of 70% SCI and the choice of interventions to be undertaken 

must meet this need.  

On the other hand, energy flexibility performance indicators are related to 

time, cost and efficiency. They are widely used because they can be integrated with 

RBC paradigms, with the aim of minimizing operating costs while accounting for 

energy price fluctuations [16]13. According to [16], the Flexibility Factor (FF) is 

mathematically defined as a function of the electrical energy consumed in peak hours 

Eelpeak
 and in off-peak hours Eeloff peak 

: 

FF =
Eeloff−peak 

−Eelpeak

Eeloff−peak 
+Eelpeak

         (3.29) 

Again, different authors use this metric for different purposes. For example, G. Pinto 

et al. [18] used this indicator to quantify the performance of a controller. 

Information about the shape of the load over time takes on a relevant role for 

comparison activity. In this regard, another metric related to building belonging to 

the EC can be evaluated and defined as Peak-to-Average Ratio (PAR): 

PAR =
∑ Epeak,i

∑ Eav,i
 ∙

1

D
         (3.30) 

where Epeak,i represents the peak electrical power on the i-th day, Eav,i represents the 

average power on the i-th day and D is the total number of days. 

 
13 Since it is not easy to combine all these properties into a compact metric, different 
definitions are given in [16], [18], [74]–[76]. 
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To best describe the shape of the load, an additional indicator called Electrical 

Load Factor (ELF) can be determined as follow: 

ELF =
∑ Enet,av

Epeak
         (3.31) 

where Enet,av indicates the average net load. 

Within ECs, the purchase of electricity from the power grid is not excluded. 

While a good share of this comes from renewable energy sources, a small fraction 

comes from non-renewable energy sources. An assessment of CO2 emissions for the 

production of electricity purchased from the power grid is a good indicator which 

allows to compare different ECs. In this regard, it is possible to assess the effect of 

climate-altering substances emitted into the atmosphere, depending on the energy 

carrier used for energy production: 

GHG = GWPcoal ∙ Eelcoal
+ GWPnatural gas ∙ Eelnatural gas

+ GWPpetroleum ∙ Eelpetroleum
 

(3.32) 

where GWPcoal, GWPnatural gas and GWPpetroleum were provided as input simulation 

parameters, while the data of electricity produced and presumably taken from the 

different energy sources are obtained from a database, which provides hourly electric 

grid monitor [64]. 

Performance indicators available in the literature can be distinguished into 

classes according to load shifting capacity, energy performance, flexibility and 

economic aspects. In this study, are not analyse cost indicators, which are usually 

evaluated during the design phase, as done in the study [63] or in the study [18] for 

the comparison of different Deep Reinforcement Learning architectures. As a matter 

of fact, the analysis reported aims to integrate the information collected from the KPI 

submitted and acts both as a mechanism for comparison among different ECs and as 

a basis for their design. 
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4 Case study and 

implementation 
 

This chapter introduces our case study and all the parameters which are 

initialized to perform the simulations. In more detail, the first part will describe the 

structure of the ANN, which were trained from monitoring data of some buildings 

located in North America. Then the modules of the VSE and their configuration will be 

analysed in more detail with reference to this work. The last paragraphs will 

introduce the various, potentially realistic energy scenarios that will be investigated 

in the case study. 

4.1 Design of Long Short-Term Memory neural 

network 

N. Luo and T. Hong [65] extracted a subset of data for buildings located in 

California, Illinois, New York and Texas from the full dataset of the DYD program. 

These data allowed us to construct ANN models for one of the four North American 

states whose data were made available, in order to describe the thermal dynamics of 

buildings. The algorithms thus performed are useful for applying advanced control 

strategies at the district level. California is the location taken into account in our 

analyses, for which monitoring data are available at the individual building level. The 

proposed methodological framework employs LSTM neural network, an archetype 

widely adopted for building control purposes, since it can process entire sequences 

of data. In this study, the development of models of this type of neural network – 

aimed at predicting the change in indoor air temperature of buildings – is proposed. 

The results, with regard to model performance, will therefore be compared with those 
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of the reduced-order models developed by Z. Wang et al. in their study [24], evolved 

from the data inferred by the same monitoring campaign.  

The collected data were organized into 12 CSV files, each of which contains 

one month of data and have a sampling rate of five minutes. The data gathered for 

each building covers a time horizon from 1st January 2017 to 31st December 2017. 

These include: 

 

• DateTime: date and time when the observation was made. 

• Event: conditions which replace the default schedule, such as demand 

response or vacation. 

• Schedule: conditions set by the occupant, such as home or sleep or away. 

• Control temperature: average indoor air temperature measured by sensors 

and based on user-defined comfort programs. 

• Heating set-point temperature: indoor air temperature set-point during the 

heating season. 

• Cooling set-point temperature: indoor air temperature set-point during the 

cooling season. 

• Relative humidity of indoor air. 

• Auxiliary heat: operating time of any heat source other than a HP. 

• Cooling component: operating time of any cooling system. 

• Heating component: operating time of any HP. 

• Fan: operating time of fan. 

• Thermostat temperature: indoor air temperature measured by remote 

thermostats. 

• Thermostat motion: motion detection by remote sensors. 

 

Time series of outdoor air temperature and outdoor relative humidity, taken from the 

nearest weather station to each building, are also available.  

To achieve good performance of LSTM neural network model, adequate input 

parameters must be provided. In more detail, in order to predict the change in indoor 

air temperature during the winter months and the summer ones, the final set of 

features is composed by: 
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• Thermostat temperature. 

• Outdoor air temperature. 

• Occupancy: it is defined as a binary variable, where 0 indicates no occupants, 

while 1 stands for room occupancy detection. 

• Normalized heating power. 

• Normalized cooling power. 

• Cyclic time features: they are referred to the time of day, day of the week and 

day of the year. 

• Solar irradiance. 

 

Other variables, such as the relative humidity of the indoor air or the relative humidity 

of the outdoor air, have a slight effect on the thermal dynamics of the building and for 

that reason were removed. Also the features involving heating set-point temperature 

and cooling set-point temperature were excluded because they take an almost 

constant trend during the respective seasons. Finally, control temperature is not used 

as an input for each LSTM neural network because it is a variable linked to room 

occupancy, which was not established according to a fixed procedure. In this way, all 

developed neural network structures are similar and include an input layer consisting 

of six nodes and an output layer made up of only one node. 

Data analysis requires a preliminary process involving measured data. In 

more detail, these come from the real world and may be characterized by missing 

values, outliers and/or inconsistencies. A data pre-processing phase is shown to be 

essential to convert raw data into higher quality data, useful to make suitable 

supervised learning models. An analysis of the dataset, obtained by merging the data 

from the different CSV files, does not reveal records with outliers, but some 

observations with inconsistencies and missing values are stated. In detail, records 

with a Thermostat Temperature below 20 °F or above 120 °F emerged and were 

replaced with missing values as meaningless. LSTM neural networks are able to 

exploit information contained in rather long time series. Despite this, to avoid 

numerical instability problems and to manage the weights of each module, it is good 

practice to sample the dataset in small time sequences called chunks. To avert 

information leakage, the k-NN14 method is applied to each chunk. This algorithm is 

 
14 The k-NN algorithm is widely applied in the case where there are missing values in the 
dataset. It involves detecting the K nearest samples of data in the dataset through the 
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enforced only in the case where missing values are current for a time horizon of less 

than five hours, while for larger time frames, records are expected to be deleted since 

their reconstruction would not be easy. In the case where a chunk contains enough 

information to be useful for training the neural network, it is retained. Conversely, if 

the time horizon of the data belonging to the sequence is less than that used for 

prediction added to the forecast time step, then it is discarded since it does not 

contain enough information which can be useful for model development. 

To achieve good performance of the neural network during the training phase, 

it is advisable to address the seasonality of indoor air temperature with respect to 

time variables. Two periodicities emerged from the time series related to measured 

air temperature, concerning the time of day and the day of the week. An additional 

periodicity is taken regarding the day of the year, although multiple years of data are 

not available. This assumption makes the model more scalable to different contexts. 

Therefore sine-cosine transformations for time of day, day of the week and day of the 

year are applied on the rearranged data with an hourly sampling rate. These 

transformations take the form shown below: 

xsin = sin (
2πx

max(x)
)            (4.1) 

xcos = cos (
2πx

max(x)
)                                       (4.2) 

where 𝑥𝑠𝑖𝑛 and 𝑥𝑐𝑜𝑠 are the cyclic features of variable 𝑥. Through this application, each 

time observation takes on a continuous distribution. In addition to this, since the 

measurement campaign did not include the collection of energy consumption data – 

which play an important role in explaining the thermal dynamics of the building – 

parameters belonging to the meta data were used. In more detail, the heating and 

cooling power levels available in each building are employed to establish the 

normalized heating power to be provided in winter and the normalized cooling power 

to be subtracted in summer. As a matter of fact, the winter heating load of the building 

can be met by the HVAC system and/or an EH. In the case where the two plant systems 

cannot work simultaneously, then an operation of one of them under nominal 

conditions was assumed. Otherwise, it has been employed that the HVAC system runs 

at nominal operating conditions, while the EH works at 50% over its nominal size 

 
application of a Euclidean distance function. These are then used to predict the value of the 
missing record. 
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during the on-time period. In addition to this, during the cooling season, it was 

assumed that the HVAC system always performs under nominal conditions during the 

running time frames. Finally, the number of remote sensors detecting motion, which 

are derived from the meta data, are also used as useful information to define room 

occupancy schedules. Another key aspect in assessing the thermal dynamics of 

buildings concerns incident solar irradiance, which is absorbed by opaque and 

transparent envelope components and stored as heat, subsequently transferred to the 

indoor air. It is a relevant variable because it provides a contribution to the change in 

sensible heat load. In absence of this information in the available data, California has 

been partitioned into sixteen climate zones, following the segmentation suggested in 

[66]. Next for each building, belonging to the meta data referred to this state, was 

assigned the corresponding climate zone and to each of these was matched a time 

series of solar irradiance given for the same year as the data historicized in the 

dataset. To obtain improved model results, the datasets were also sampled by making 

a distinction between the winter period – which runs from October to March – from 

the summer period – which runs from April to September –. 

Data scaling is a mandatory process for the application of supervised learning 

techniques based on neural network algorithms. Several scaling methods can be 

adopted – including standardization or rescaling on the maximum – but the one 

widely used to deal with energy data is minimum-maximum scaling, expressed by 

Equation 4.3. 

�̅� =
𝑦−min (𝑦)

max(𝑦)−min (𝑦)
            (4.3) 

where �̅� is the scaled variable and 𝑦 is the variable to be scaled. Because algorithms 

such as neural networks do not learn according to the physical meaningfulness of a 

process, but perform comparative analyses between data and rely on grafted, 

complex, nonlinear mathematical relationships, this step is critical. 

Neural networks are supervised learning algorithms in which, with respect to 

the dataset, the input and output variables are known. From our dataset, we 

developed a matrix containing only the input variables X and a vector carrying the 

only output variable y, corresponding to indoor air temperature. So, the new dataset 

containing the matrix X and vector y are then partitioned into two different datasets. 

One of these, containing multiple records, is used for learning the neural network. The 
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second one, on the other hand, is applied for the performance testing phase of the 

model, which is useful to understand how good its training was. The models, 

developed entirely in Python using the Pytorch framework, are trained for a forecast 

horizon of one hour based on a history of the previous twelve hours. The ADAptive 

Moment estimation optimizer, used in place of the classical gradient descent method, 

updates the weights of individual modules in the network with the goal of minimizing 

the MSE. The LSTM neural network model requires the setting of hyperparameters 

before the actual learning phase. The proper selection of these markedly affects the 

performance of the neural network. Since this stage is regarded as an art and it is very 

difficult to establish the optimum because of the complexity of the models, Optuna 

[67], a tool which automates the search for appropriate hyperparameters for the 

neural network, is used in this study. 

 

 

 

 

In the model training and deployment phases, the use of an unlocked window 

of fixed length based on a series-to-supervised approach is planned, as explained in 

Figure 4.1. For this reason, the variable to be predicted will have a time delay of one 

hour relative to the other input features. Thus, LSTM neural network models trained 

in this way will provide an hourly prediction – according to a one step ahead scheme 

– of indoor air temperature based on the previous twelve hours of data, using an open 

loop controller. This means that once the forecast is made, it is not used at the next 

time step as input to the neural network, but only measured or hypothesized real 

variables are expected to be exploited. 

Figure 4.1: Sliding window approach. 

Var 1 

Var 1 

Var 1 

Var 2 

Var 2 
Var 2 

Var 3 

Var 3 
Var 3 

Var i 

Var i 
Var i 

Target 

Target 
Target 

Target 

𝑡 𝑡 𝑡 𝑡 𝑡 − 1 

𝑡 − 𝑛 𝑡 − 𝑛 𝑡 − 𝑛 𝑡 − 𝑛 𝑡 − 𝑛 − 1 

𝑦(𝑡) 𝑥(𝑡 − 𝑛) 𝑥(𝑡 − 2) 𝑥(𝑡 − 1) 

Input Target 

𝑡 

𝑦(𝑡) 

Sliding 
window 

approach 

𝑡 



 
61 

 

4.2 Implementation of the energy scenarios 

The test case selected for this study concerns residential complexes consisting 

of 50 buildings belonging to Texas, California and New York – North American 

locations for which actual monitoring data were made available for buildings 

belonging to them – in order to represent an EC. To this, different technological 

configurations capable of satisfying the energy needs of the three different ECs are 

analysed, identifying the optimal one which may be able to offer services to the 

external power grid. The proposed methodology is therefore based on an analysis in 

heating mode – from 10 January to 10 February – with a time-step simulation of 5 

minutes. The chosen time horizon allows a complete assessment of the energy 

contribution of all systems envisaged at the community level, which would not be easy 

to develop in the summer trim – since one of the energy technologies analysed 

operates only during the heating period –. The chosen simulation time-step allow to 

obtain a remarkable precision of the simulation, but has the disadvantage of being 

computationally expensive. 

The meteorological data were evaluated from Python's pvlib module, which 

provides a Typical Weather Year based on location. It contains information on 

outdoor air temperature, relative humidity, solar irradiance and wind speed. In all 

buildings belonging to the EC, the energy demand for space heating and space cooling 

is determined in such a way as to maintain the indoor air temperature within an 

acceptable range of variation, established from Fanger's comfort theory. In particular, 

the indoor air temperature must be maintained between 21.88 °C and 23.75 °C in 

heating season and between 23.13 °C and 24.32 °C during the cooling season. The 

design outdoor temperature were set to be the same for all simulated locations and 

corresponding to -8.3 °C for the winter regime and 33 °C for the summer regime, while 

the supply heating temperature was assumed to be 45 °C and the supply cooling 

temperature was set at 7 °C. The COP and EER of air-to-air HP systems were not 

assumed constant, but their dependence on outdoor temperature and supply 

temperature was considered.  

DHW demand is met by either a GB or an EH, depending on the building. The 

ratio between buildings equipped with GB and those equipped with EH was set at 0.2. 

As stated by E. Vakkilainen [68], the GB chosen has a reference efficiency of 94%, 

while the EH has been hired with an efficiency of 98%. The daily DHW consumption 
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is 2.3 l with a standard deviation of 44.8 l, while the design volumetric flow rate is 20 

l/event with standard deviation 5 l/event. The production of DHW by EH makes a 

contribution to the electrical load of the building, as well as the consumption by 

household appliances, assumed to be 4.5 kWh with standard deviation of 110 kWh.  

The PV modules considered in the study were taken from the one available in 

the Sandia database, named Canadian Solar CS5P 220M 2009 [69]. Since the 

generation of electricity takes place in Direct Current (DC) from the PV panels and 

this is not exploitable for domestic purposes, it is necessary to integrate a PV inverter 

which performs the function of converting DC to AC. The selected inverter belongs to 

the technologies available in the SAPM database and is named ABB MICRO 0 25 I 

OUTD US 208 208V.C. Considering that not all buildings may have at their disposal PV 

systems, a penetration rate of 75% was assumed and kept fixed for all simulations. 

Information on climate data such as outdoor air temperature, solar irradiance and 

wind speed, made it possible to determine the power produced by the PV system 

throughout the simulation time horizon.  

The technical parameters of BESS used for this research were derived from 

the analysis of a series of technical data sheets on commercial technologies. Among 

them, a typical Depth of Discharge of 60% was taken.  

Parameter Value 

Round-trip efficiency 0.98 

Maximum charging power 1 C 

Maximum discharging power ½ C 

DC/DC converter efficiency 98% 

Discharge depth 60% 

Table 4.1: BESS parameters. 

In addition to this, the system exchanges power with a DC bus by means of a 

DC/DC drive, whose efficiency value is estimated at 98%. The maximum charging and 

discharging power was defined in proportion to the capacity and was set to 1 C and 

½ C, respectively. Other simulation parameters referred to this energy system are 

defined in Table 4.1. HTES and CTES technologies were not provided for all buildings, 

but only for 70% of the simulated total. To model these systems, some parameters 
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described in Table 4.2 were set. A Hot/Cold water storage sizing factor was assumed 

to be 2, while a loss coefficient was set at 98% to account for any heat loss. 

Parameter Value 

Hot/Cold water storage sizing factor 2 

HTES/CTES Round-trip efficiency 0.98 

HTES/CTES loss coefficient 0.98 

Table 4.2: HTES and CTES parameters. 

Finally, additional parameters useful for simulations are defined in Table 4.3. 

These include model noise and measurement error, as well as information related to 

the thermophysical characteristics of buildings.  

Parameter Value 

Model noise 0.002 

Measurement error 0.1 

R/C ratio (0.4, 0.01) 

Heat gain ratio (0.3, 0.01) 

Internal heat gain method DOE 

Table 4.3: Other simulation parameters. 

In order to derive thermal resistance value and heat gains, it is necessary to 

provide as input the parameters of thermal time constant and Equivalent heat gain 

temperature, shown in Table 4.4 for the three North American states taken into 

account in the current case study. 

Parameter Value for  
Texas 

Value for  
California 

Value for  
New York 

τ (19.5, 9.9) h (15.3, 5.8) h (17.3, 9.2) h 

THG,eq (12.4, 7.0) °C (11.4, 5.7) °C (11.4, 6.0) °C 

Table 4.4: Other building parameters. 

The EC can supply electricity to the power grid when there is a surplus of 

production over consumption or it can withdraw from the power grid in deficit 

conditions. The cost of electricity taken withdrawal varies depending on the tariff, 
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which can be monorary, biorary or triorary depending on the building. Since a large 

part of the grid electricity is generated from fossil sources, an appropriate analysis of 

the amount of CO2 equivalent emitted for the share of energy withdrawn is 

appropriate. Specifically, emissions per electric kWh produced are determined in 

terms of CO2 intensity, defining the specific emissions to be 1.01 kg/kWh for coal, 0.41 

kg/kWh for natural gas and 0.97 kg/kWh for oil [70]. The CO2 emissions for each state 

depend not only on energy consumption, but also on when energy is consumed. As a 

matter of fact, to calculate this, electricity production data for a whole year from a 

database [70] were used, which differ by location. Finally, the natural GB feedstock 

cost was assumed to be 0.093 $/kWh15 as required by the Authority for domestic 

customers [71]. 

With respect to local decentralized power generation technology, the use of a 

MGT allows for reduced dependence on the power grid. For the integration of such 

system, the set-up of the VSE requires additional input parameters, including the 

enhancement of the electricity fed into the power grid by this technology, fixed at 

0.054 $/kWh. The chosen MGT has an overall efficiency under ISO conditions at 15 °C 

of 85% and an electrical efficiency of 26%, as described by R. Boukhanouf [72] and Y. 

Hwang [51]. Table 4.5 summarises the parameters related to this technology and its 

integration with a DHN. The sensible effectiveness of the counterflow plate heat 

exchanger placed at the level of each building served by the DHN was set at 80%, as 

defined by Y. Luo et al. [73]. A maximum capacity of each substation equipped with 

heat exchangers serving the individual building was also assumed to be 10 kW.  

Parameter Value 

Electrical efficiency 0.26 

Thermal efficiency 0.57 

Overall efficiency 0.85 

Heat exchange efficiency 0.97 

Table 4.5: MGT parameters. 

 
15 This value was derived from the data referring to domestic users in the north-western area 
(Valle d’Aosta, Piedmont, Liguria) for the period between 1st October 2021 and 31st December 
2021. 
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To ensure a certain energy flexibility, consumption management is 

particularly important within the ECs. The number of EVs is increasing significantly 

and, in the near future, a reduction in the costs associated with their purchase is 

expected, which could lead to their strong expansion. Proper management of the 

electrical absorption linked to their charging is essential to avoid burdening the 

power grid. To simulate the EVs charging network, a battery capacity of 90 kWh was 

set, in accordance with the license plate data of the main vehicles available in the 

market. Other technical parameters used in the simulation have been summarised in 

Table 4.6 and concern charging efficiency and other factors related to EV batteries 

performance. 

Parameter Value 

EV capacity 90 kWh 

EV charging efficiency 0.98 

EV Depth of Discharge 0.98 

EV BESS Round-trip efficiency 0.98 

EV BESS max charge power 1 

EV BESS max discharge power ½  

EV BESS converter efficiency 0.98 

Table 4.6: EV parameters. 

With the objective of evaluating the arrival time and the SoC of the simulated 

EVs, a number of parameters related to the model used must be provided as input. 

These were taken from the study by D. Zou et al. [53] and presented in Table 4.7. 

Parameter Value 

μs normal distribution 17.53 

σs normal distribution 2.96 

μSoC normal distribution 0.3 

σSoC normal distribution 0.1 

Table 4.7: Other EV parameters. 

So far, we have analysed the VSE and presented the data to be provided as 

input to its. In the following, we will instead move towards describing the proposed 

scenarios. 
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4.2.1 First scenario 

The first scenario focuses on the optimal management of energy streams, 

which result from the combination of intermittent renewable energy source systems 

and a micro-cogeneration plant. This is able to meet the needs in periods of energy 

deficit and the cost of purchasing electricity from the power grid high. In more detail, 

PV generation matches the electricity demand of community members during 

daylight hours and, in the case of any deficit, the withdrawal from the power grid is 

expected. In the early morning and late afternoon the MGT is activated, according to 

a properly defined RBC strategy, and helps to balance the electrical load. During the 

night period, on the other hand, it is necessary to withdraw from the local power grid 

since it is not economically viable to use the micro-cogeneration system. The design 

of the MGT was based on an analysis of the electrical and thermal load profiles of the 

entire EC over a time horizon ranging from 1st November to 31st March16. Sometimes, 

the thermal energy produced by this system is able to cover the building’s thermal 

demand. This allows the power supply to the HPs to be cut off during the time frames 

when the MGT is in action and the local power generation to be surplus to the 

electrical load, if we consider HPs peak electrical draw for sizing and operation of the 

system under nominal conditions. On the other hand, one of the objectives of the EC 

is to change self-sufficiency and self-consumption, so as to reduce withdrawal peaks 

from the distribution power grid. For this purpose, the size of the micro-cogeneration 

plant must be determined on the basis of a realistic assessment of electricity and 

thermal energy demand, thus taking into account only a small fraction of absorption 

by HPs, related to thermal storage management. This consideration stems from the 

fact that a share of the buildings heat load is offset through the thermal output of the 

MGT. To be more precise, the heat output is distributed equally to all buildings 

belonging to the EC. For this reason, it may happen that in some cases the HP remains 

off because the building heat load is fully met by the micro-cogeneration system, 

during its operating time horizon. On the other hand, for other buildings it may be the 

case that a turn-on of the HP is required to compensate for the share of heat load not 

satisfied by the MGT. In order to assess the electrical absorption fraction by the HPs, 

in an initial simulation the size of this plant system was set with reference to the peak 

electrical load of the entire EC occurring in the base case. A subsequent sensitivity 

 
16 This time horizon has been assumed as the heating period, the regime in which the μ-CHP 
plant works. 
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analysis of the results obtained identified the fraction of electrical absorption 

attributable to the air-to-air HP systems in buildings, as the size of the micro-

cogeneration system changes. Through this information, a careful evaluation of the 

electrical load duration curves of the EC was carried out – referring limitedly to the 

operating hours of the MGT – and helped us determine the optimal size 

4.2.2 Second scenario 

The second scenario examines the energy, economic and environmental 

impacts involved in the introduction of consumption units such as EVs. The results of 

this scenario include two different analyses, which stand out in relation to the 

percentage of users who own EVs. A first analysis, which is assumed to be more 

realistic, predicts a penetration rate of such consumption units of 50%. A second one, 

which we can take into account as an ideal one, concerns a penetration rate of 100%. 

4.2.3 Third scenario  

Over the past decade, activities to encourage the introduction of EVs have 

intensified to an extreme degree. The increasing development of charging 

infrastructure has led to a great consensus in the adoption of such consumption units. 

The consequences associated with this phenomenon include a significant increase in 

electrical absorption, emission of climate-altering substances for the production of 

the electricity useful for charging and costs. With the aim of overcoming these 

problems, the third scenario proposes a strategy that can complement the micro-

cogeneration plant sized in the first scenario, previously described, to also partially 

meet the demand from EVs. This strategy could be useful to minimize the share of 

energy exported to the power grid and reduce electricity withdrawal when the cost is 

high. The MGT was sized with reference to a percentage of the peak electrical load of 

the distributed HPs and, when turned on, it works under nominal operating 

conditions. Since the EVs arrive at the building charging stations in the late afternoon 

(around 18:00) and leave in the morning (around 8:00), it is possible to supply some 

of the electricity generated locally by the MGT to meet the electrical absorption linked 

to the charging of batteries of the vehicles. A reduction in the withdrawal of electricity 

from the power grid resulting from this strategy, could certainly lead to a reduction 

in purchase costs and a reduction in the CO2 emitted for its generation. On the other 
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hand, the transfer of excess energy produced by the MGT is subject to economic 

valorisation, so it might not seem economically viable to take advantage of the μ-CHP 

plant to meet the additional load related to EVs. Economic, energy and environmental 

analyses were used to assess the potential benefits that could be achieved. 
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5 Results and discussion  
 

This chapter provides the results of the methodologies that have been 

described in the previous chapters. More specifically, the LSTM neural networks 

models were applied to some buildings placed in California. Next, the three different 

scenarios are proposed regarding the various energy technologies which can meet the 

needs of a real EC, achieving the goal of harnessing most of the production from local, 

and sometimes uncontrollable, energy sources to reduce the load on the distribution 

power grid. The results obtained through the analysis of the different scenarios are 

presented for three locations in North America. A series of graphs and tables will 

make it possible to evaluate the various configurations and identify the optimal one 

considering energy, economic and environmental objectives. 

5.1 Hyperparameter tuning and deployment 

Simulations are applied to different buildings, with the aim of validating 

neural network models, which can later be used for control purposes. A cluster of 

buildings located in California were selected for this case study, all of which are 

detached. The dataset was split in summer and winter datasets to better characterize 

the behaviour of the buildings, and then, 70% of the records in the source dataset 

were used for the training phase from the data. The remaining percentage was 

exploited to evaluate the goodness of the models. Before the stage of actual 

supervised learning of LSTM neural networks, suitable hyperparameters had to be 

fixed (see section 2.1.1). Through Optuna [67], the appropriate ones were identified 

for each building examined, requiring the objective function to minimize the RMSE. 

These are shown for two buildings for winter (W) and summer (S) in Table 5.1.  
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Hyperparameter Building 1 W Building 2 W Building 1 S Building 2 S 

Batch size 64 64 64 64 

Lookback 12 12 12 12 

Learning rate 0.0029 0.0027 0.0019 0.0044 

Table 5.1: Hyperparameters of LSTM neural networks. 

The number of hidden layers was set at 2 for all models, as was the number of 

hidden units of 256 and the amount of epochs equivalent to 50. The batch size was 

not set constant for the training phase of all neural networks, although for the 

buildings examined it is the same. As a matter of fact, configurations in which this 

hyperparameter tool a value of 128 were also investigated, but in all cases they did 

not prove adequate with respect the objective function. The results obtained during 

the testing phase of the LSTM neural network models are depicted for the same 

buildings in the Figure 5.1, which show a comparison of the trends of real variable 

and predicted one.  

 

Figure 5.1: Comparison of actual and predicted indoor air temperature. 
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The indoor air temperature ranges between 21 °C and 26 °C during the winter 

testing period for Building 1, while it fluctuates between 20 °C and 27 °C for the 

summer time. A similar behavior occurs in Building 2, where between February and 

March the temperature varies between 19 °C and 24 °C, while during May there is a 

change between 19 °C and 28 °C. The prediction time horizon varies for the two 

buildings in both seasons due to the exclusion of some records from the source 

dataset marked by missing values. Although a strict continuous recurrence is not 

observed in the indoor air temperature variation during the testing days, the 

algorithms are able to realistically predict it in all cases.  

With the aim of evaluating the performance of these models following 

training, three different error metrics were calculated employing the testing dataset: 

RMSE, MAE and R2. As listed in Table 5.2, in all situations the RMSE is less than 0.60 

°C. The low MAE value of less than 0.50 °C also shows that the modeling was able to 

understand the dynamics under study. 

 

Figure 5.2: Correlation between actual and predicted indoor air temperature. 

 



 
72 

 

Parameter Building 1 W Building 2 W Building 1 S Building 2 S 

RMSE 0.32 °C 0.31 °C 0.33 °C 0.60 °C 

MAE 0.25 °C 0.24 °C 0.26 °C 0.50 °C 

R2 0.90 °C 0.85 °C 0.93 °C 0.89 °C 

Table 5.2: Error metrics for LSTM neural networks of the buildings surveyed. 

In addition to this, the high value taken by R2 suggests that the fitted 

regression line is near all the points standing for records, as we can see from Figure 

5.2. The error occurring in all cases is pseudo-normal distribution, as shown by the 

Figure 5.3. This is evidence of the high accuracy of neural networks of predicting 

indoor air temperature.  

 

Figure 5.3: Error distributions between predicted and actual indoor air temperature. 

Slight shifts to the right of the error distributions for data about Building 1 S 

and Building 2 W mean that the models have a tendency to overestimate indoor air 

temperature. On the other hand, the leftward shifts of the same kinds of distributions 

for data regarding other two suggest a slight underestimation of the same variable 

compared to the true value. Other models trained and tested also showed symmetric 

distributions with mean very close to zero. 
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5.1.1 Model comparison  

To evaluate the performance of their model applied to each building in the 

North America measurement dataset, Wang et al. [24] assessed the value of R2 and 

RMSE for each application. To compare these models with neural networks we 

developed for buildings belonging to the state of California, the values of the error 

metrics were sampled. Compared to the total number of buildings in the starting 

datasets, the authors built their model for only a fraction of these. By looking only at 

the buildings for which values of thermal time constant and equivalent temperature 

related to internal and solar heat gains are available, it is possible to extract their 

metrics and compare them with those of our models. To make a consistent 

comparison, we recalculated the error metrics considering both the predictions 

obtained for the winter season and those related to the summer season. All this is 

shown in Figure 5.4. 

 

 

 

 

 

 

 

In all cases, the R2 value of the neural network models is higher than that of 

the grey-box models developed for the same buildings. Conversely, it often happens 

that the RMSE of the grey-box models is higher than that of our models. Generally, it 

is found that the models proposed by Wang et al. [24] in their study has better error 

metrics than ours. This could be due to some factors affecting the thermal dynamics 

of the building which were not taken into account by us. The authors probably 

employed additional information from the measurement campaign, since there are 

Figure 5.4: Model comparison (GB refers to the grey-box models developed by Z. Wang et al. 
[24]. LSTM, on the other hand, refers to the models we implemented). 
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multiple datasets coming from it, and also data referring to longer time horizons. An 

improvement of our ANN models could be useful to obtain similar or higher quality 

results than grey-box models. Our models can understand the wide variability 

between minimum and maximum, but with worse average detail. Nevertheless, our 

average accuracy is lower. It is also true that for only 24 out of 50 buildings under 

analysis we know the error metrics of the models developed by Z. Wang et al. [24]. All 

of these have an RMSE of less than 1 °C. In our case, on the other hand, 28 buildings 

compared to the total investigated have an RMSE lower than the target value. 

However, given the better performance of the models proposed by the other authors, 

this will be used for simulation of the different scenarios.  

5.2 First scenario 

The first scenario describes the procedure of sizing a MGT according to a 

centralized scheme and analyses its integration with renewable energy generation 

systems arranged at the level of each building. All results submitted are derived from 

a comparison with the baseline scenario17, which is taken as a reference. The duration 

curves of load are determined by arranging the electrical powers in descending order 

according to the 1332 annual operating hours of the plant and are shown in Figure 

5.5. Since peak electrical load values occur for only a few hours compared to the total 

operating time of the plant, this would result in a considerable share of electricity fed 

into the power grid in the case of its operation at full cogeneration regime under rated 

operating conditions. Although, the feed-in of energy to the power grid is submitted 

to economic enhancement from the Energy Services Manager, it is more convenient 

to share energy within the community since it is possible to take advantage of greater 

benefits related to the promotion of alternative generation solutions. In addition to 

this, adjusting the system to meet loads lower than the peak value is not cost-effective 

as this results in a significant reduction of expected performance. To overcome all 

these issues, the optimal plant size was determined as a function of electrical output, 

which we conventionally set at three-quarters of the operating hours. For those hours, 

during the heating season, when production is in deficit with respect to the electrical 

 
17 The baseline scenario involves the inclusion of a number of energy conversion technologies 
that can meet the needs of each building, including an air-to-air HP serving the thermal zones 
for controlling their temperature and, depending on the building, an EH or GB are used for the 
production of DHW. In addition, electricity and heat storage technologies are integrated. For a 
set percentage of buildings, PV systems are arranged. 
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load, the withdrawal from the power grid is provided (blue band of Figure 5.5). For 

the remaining time frame, the micro-cogeneration plant is able to meet the electrical 

load of the EC (red band of Figure 5.5) and, in the case of surplus production, the 

transfer to the power grid is envisaged (grey band of Figure 5.5).  

 

 

Figure 5.5: Electrical load duration curve (blue) and electrical generation curve (red) for the 
cluster of buildings belonging to the three different ECs. 

Therefore, this analysis allowed defining the size of the micro-cogeneration 

plant subsequently expressed through a percentage of the electrical load rated sum 

of air-to-air HPs. This, as a matter of fact, is regarded as a benchmark for the whole 

community since represent the highest consumption contribution for each building 

in the basic configuration. Specifically, the size of the MGT was set at 6% of the peak 

electrical load of HPs for Texas, 8% for California and finally for New York the optimal 

size is 31%. The micro-cogeneration plant sized in this way allows an average of 
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12.2% of the heat load of all building to be met for Texas, 15.7% for California and 

15.8% for New York. The supplementary heat load is thus offset by the air-to-air HPs 

arranged at the individual building level. A properly sized μ-CHP system can realize 

potential energy savings and a subsequent decrease in energy withdrawal from the 

power grid. These results are shown in Figure 5.6, through the distribution of the 

change in net electrical load referred to the three different communities. The net 

electrical load, defined as the difference between electricity consumption and local 

generation, ranges from -58 kWh to 240 kWh in the basic configuration for the ECs 

analysed.  

 

Figure 5.6: Density distribution of net electric load difference for the cluster of building 
belonging to the three different ECs. 

Based on these data obtained from the simulations, we can infer a percentage 

reduction in the net electrical load of entire communities – resulting from the 

introduction of the MGT – equal to 23.6% for Texas, 22.2% for California and 27.4% 
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for New York. This strategy makes it possible to reduce electricity withdrawal from 

the power grid by an average of 24%, since the net electrical load is lowered. 

Therefore, together with the energy savings achieved, there is a reduction in the 

purchase cost of electricity, as well as a benefit related to economic enhancement for 

the use of locally arranged technologies and an economic compensation for electricity 

fed into the power grid. Although it is not evident from Figure 5.6, operation under 

nominal conditions of the μ-CHP system during the established time intervals results 

in a peak in the net electrical load distribution that is lower than in the base case, as 

on-site generation increases for the same amount of electric consumption by 

community members. In addition to this, an analysis of the electrical load distribution, 

when the μ-CHP system is operating, shows no peaks at high electric load values. This 

is related to the fact that during the night-time period, when no local generation 

system is serving the buildings and the net load matches with the members electrical 

load, consumption is low. The cost of taking electricity from the power grid for the 

entire EC is reduced in average by 27.5%. However, it is critically important to 

observe the cost increase incurred at the community level to procure the natural gas 

feedstock for the micro-cogeneration plant.  

A lower share of electricity withdrawn corresponds to a lower emission of 

climate-altering substances produced for its generation. Although the MGT is fossil 

fuel consuming, an overall reduction in CO2 emission to the atmosphere is observed. 

Analyses have shown a net reduction ranging from 0.1% to 7.3% depending on the EC 

observed. Regarding the individual units belonging to the ECs, Figure 5.7 shows the 

reduction in electricity purchase costs compared to the CO2 savings resulting from the 

adoption of this plant system. 

 

Figure 5.7: Percentage reduction in electricity costs compared with the reduction of CO2 
emitted for the cluster of building belonging to the three different ECs. 
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A linear relationship is observed between the reduction in electricity cost and the 

corresponding CO2 emission for each building. As to this matter, more detailed data 

are given in Table 5.3, depending on the location.  

Parameter Texas  California New York 

Cost percentage reduction 8.6% 6.6% 11.7% 

CO2 percentage reduction 5.7% 6.0% 11.5% 

Table 5.3: Average percentage cost reduction and CO2 emissions for each building belonging 
to the three ECs. 

Indeed, assuming a virtual sharing scheme, it is as if the individual building is 

not attributed the share of CO2 emitted for energy production from the MGT serving 

the entire EC. In truth, the additional share of climate-altering emissions linked to the 

use of this plant system is actually considered as attributed to the entire community. 

5.3 Second scenario 

The second scenario assesses the impact of consumption units such as EVs in 

terms of electrical absorption, increased emission of greenhouse gases due to surplus 

generation and increased costs of energy purchase. Two different analyses were 

conducted, considering two fractions of users owning these consumption units 

corresponding to 50% and 100% of the members belonging to the EC, respectively. 

All the results obtained were compared with the baseline scenario.  

Electricity consumption by each of the three ECs examined is between 9.9 

kWh and 239 kWh in the base case. The percentage increase in electricity uptake 

ranges between 34% and 142% assuming that half of the members of each 

community have an EV and between 65% and 273% assuming that all community 

members have one. These results are shown in Figure 5.8, which appear the 

distribution of total electrical load for the different communities under analysis. The 

median of the distributions, represented by the vertical bar, takes on an ever-

increasing value as the percentage of EVs in use by community members increases. 

The peak value of the distribution also gradually shifts towards higher electrical loads. 

The increase in electricity drawn from the power grid also leads to a growth in the 

emission of climate-altering substances linked to its generation. 
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Figure 5.8: Density distribution of electrical load for the cluster of buildings belonging to the 
three different ECs. 

Specifically, in the event that 50% of the members of the EC are equipped with 

an EV, the overall emission of climate-altering substances increases by an average of 

115%, whereas if all members own an EV, the increase is worth about 224%. The 

assumption behind these considerations does not take into account the reduction in 

CO2 emitted due to the non-use of fossil fuels by EVs. Figure 5.9 shows the distribution 

of CO2 emissions among buildings belonging to the EC as the percentage of EVs 

changes. Table 5.4 gives the relative increase in CO2 emitted for each location, both in 

the case were 50% of the members belonging to the EC own an EV and in the case 

where all members are equipped with EVs. 
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Figure 5.9: Frequency distribution of CO2 emissions for the cluster of buildings belonging to 
the three different ECs. 

The percentage emission increase values differ by locality based on the energy 

source used for electric generation. To be more specific, in California and New York 

most electricity is generated from natural gas, followed by coal. In the other state, 

however, there is a fraction of generation coming from renewable sources for which 

the emission of climate-altering substances is zero, including hydroelectric and wind 

power.  

Parameter Texas California New York  

CO2 percentage increase – 50% EV 162% 150% 35% 

CO2 percentage increase – 100% EV 317% 289% 67% 

Table 5.4: Percentage increase in CO2 emission. 

Finally, the higher emissions and higher baseline costs related to the EC 

located in New York result in a lower percentage change in these variables than in the 

other ECs. 

5.4 Third scenario 

The third scenario is built on the basis of the combination of the two previously 

described above and aims to evaluate the effect in terms of energy costs and climate-

changing emissions of the use of the micro-cogeneration system also for the fulfilment 

of the electrical load related to EVs.  
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As a matter of fact, we have carried out an appropriate analysis of the 

reduction in the costs of withdrawing electricity from the power grid and the saving 

of CO2 emitted into the atmosphere, which can be achieved by using the micro-

cogeneration system also to meet the load of EVs compared to selling the surplus 

electricity to the power grid and the simultaneous purchase from EVs. Figure 5.10 

shows the results obtained by considering the two different penetration rates of EVs 

within the buildings of the ECs examined. 

 

Figure 5.10: Percentage reduction in electricity costs compared with the reduction of CO2 
emitted for two different penetration rates of EVs by ECs. 

Compared with the case of purchasing the entire share of electricity to meet 

the buildings load from the power grid, the configuration which involves the use of 

the MGT for this purpose as well yields significant economic and environmental 

benefits for each building belonging to the EC, described in percentage terms in the 

Table 5.5. Both the percentage reduction in CO2 emitted and the percentage reduction 

in cost are greater in the case of 50% of EVs. This is justified by lower energy 

withdrawal from the power grid due to lower consumption for the same local 

production. 

Parameter Texas California New York 

Cost percentage decrease - 50% EV 4.2% 3.8% 8.9% 

CO2 percentage decrease - 50% EV 3.3% 3.3% 8.6% 

Cost percentage decrease - 100% EV 1.3% 1.6% 6.6% 

CO2 percentage decrease - 100% EV 1.2% 1.4% 6.2% 

Table 5.5: Reduction of electricity costs and CO2 emitted for two EV scenarios. 
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In addition to this, compared with an average reduction of 14.7% in the case 

of half of user-owned EVs and 10.8% in the case of 100% EVs in the electricity-related 

costs of the entire EC, there is an average reduction of 2.8% in the case of 50% of EVs 

and 2.2% in the case of 100% of EVs in the emissions of climate-changing substances. 

5.5 Key Performance Indicators  

KPIs for assessing the impact of new integrated energy technologies and 

comparing different proposed scenarios include SCI and SSI. In more detail, SCI 

indicates the share of energy generated and consumed directly locally, while SSI 

refers to the demand for energy met by on-site arranged generation systems 

compared to total demand. Figure 5.11 shows a comparison of the value of SCI and 

SSI for the three scenarios analysed, referring to the three ECs and their buildings.  

Compared with the base case, the presence of the micro-cogeneration plant 

significantly affects these two indicators, resulting in an increase since the sharing of 

energy within the EC can increase in conditions of greater generation. In the case 

where EVs are also included as consumption units of the EC, the SCI undergoes a 

further increase compared to the other two scenarios as the sharing of energy 

produced on site is maximized. The percentage increase in SSI in the presence of the 

MGT is 210% on average, while the increase in SCI is 385%. 

  

Figure 5.11: SCI vs SSI for individual buildings (smaller dots) and the entire EC (larger dots) 
with reference to the three different scenarios. 

As regard to individual buildings, we can count the FF. This indicator is related 

to the electrical energy consumed during peak hours and during off-peak hours. 
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Boxplots related to the three scenarios referring to the buildings belonging to the 

community are represented in Figure 5.12. 

 
Figure 5.12: FF of buildings for three different scenarios and for three ECs.  

The lower and upper part of the box represent the first and third quartile, 

respectively, while the middle line refers to the median of the data. On average, a 

reduction in this indicator is observed by moving from the first scenario to the third 

scenario, as there is a reduction in the electrical load Eeloff peak 
. Certainly, the high 

values of the FF are linked to a considerable contribution from the PV system able to 

produce a good share of electricity during peak hours. 

5.6 Discussion 

The results obtained from the LSTM neural network models and the three 

simulated scenarios will be discussed below in order to identify some key points of 

the conducted analyses. 

5.6.1 Critical remarks on the results of Long Short-Term Memory 

networks 

One of the main purposes of the tool employed is to develop LSTM neural 

network models which can predict the indoor air temperature changes of buildings 

located in a North American state. The data deriving from this our investigation can 

be effectively applied within the VSE, to estimate energy consumption rates related 

to indoor air temperature control and apply control strategies which can satisfy 

multi-objective functions. Preliminary analyses conducted on the datasets showed 

that making as input data such as indoor air temperature, outdoor air temperature, 
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occupancy schedule, normalized heat output, cyclic temporal variables and solar 

irradiance can be useful in predicting indoor air temperature with acceptable 

accuracy.  

  

Figure 5.13: Comparison of error metrics related to all analysed 
buildings for winter months. 

With respect to all neural networks tested following training based on data 

from the winter months, for thirty-eight of these the error metrics demonstrated good 

model performance in the testing stage. Figure 5.13 compares the MAE and the RMSE 

error metrics for all buildings examined for the heating season. An average RMSE of 

0.85 °C is observed. As a maximum threshold for our analysis, we assumed acceptable 

only models with this index less than 1 °C. This comparative analysis was also carried 

out for the simulated buildings during the summer season, and the results are shown 

in Figure 5.14. Compared with the winter case, in the summer time frame fewer 

models – equal to twenty-seven – are able to predict the outdoor air temperature with 

high accuracy. In this case, the mean value assumed by RMSE is 1.10 °C, which is 

higher than the winter instance.  

 

Figure 5.14: Comparison of error metrics related to all analysed 
buildings for summer months. 
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This study revealed shortcomings in the measurement campaign from which 

the data used for training LSTM neural networks are derived, linked, for example, to 

the absence of monitoring data related to the operational status of energy systems. 

This greatly constrains the development of good models, since the feature to be 

predicted is strongly influenced by these data. For this reason, in order to obtain 

adequate performances, additional explanatory variables affecting the variation of 

indoor air temperatures, such as normalized power values, were included. The 

limited availability of observations is one of the reasons why neural network training 

was effective for some buildings and not for others. In addition to this, a tendency to 

track temperature evolutions was shown for all our models, but a bad prediction was 

obtained due to the failure to replicate peak or valley values of indoor air 

temperature.  

5.6.2 Critical remarks on the results of the three scenarios  

The development of different energy scenarios has the purpose of describing 

ways to manage energy flows, providing a scalable and adaptable tool in different 

contexts for different activities, including the design phase. The configuration of 

energy systems in the first scenario implies advantages both from an energy point of 

view and from economic and environmental ones, with reference to the withdrawal 

of energy from the power grid. The option of the second scenario is shown to be 

hardly feasible at community level, because of the high shares of electricity to be taken 

from the power grid, to which high purchasing costs and emissions of climate-

changing substances are connected. The current outlook predicts an increasing 

adoption of these consumer units. The electrical absorption peaks which occur on the 

power grid for their charging could lead to a violation of resilience and stability 

requirements, therefore a management of simultaneous loads is advisable. Finally, the 

configuration envisaged in the third scenario acts as a good compromise between the 

shares of electricity sold to the power grid under the first scenario and the need to 

purchase electricity from the power grid under the second scenario. Table 5.6 gives a 

summary of the main energy, economic and environmental parameters analysed, 

referring to the three scenarios. In more detail, we define at the community level the 

net electricity load, the cost of purchasing electricity, the consumption of natural gas 

and its cost and finally the share of CO2 emitted, determined by including both the 
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emissions related to the withdrawal of energy from the power grid and the emissions 

due to the combustion of natural gas in the μ-CHP plant. 

Parameter  Texas California 
New 

York 

Net electrical load [kWh] 

Base case 20 872 28 687 127 508 

First scenario 15 917 22 316 92 628 

Second 

scenario 
105 602 113 500 212 350 

Third scenario 100 684 107 125 177 471 

Electricity cost [$] 

Base case 2 772 3 450 16 922 

First scenario 2 108 2 506 11 641 

Second 

scenario 
12 695 13 898 27 404 

Third scenario 11 965 12 914 22 060 

Consumption of natural gas 

[kWh] 

Base case 828 828 828 

First scenario 15 068 19 218 84 678 

Second 

scenario 
828 828 828 

Third scenario 15 068 19 218 84 678 

Natura gas cost [$] 

Base case 69 69 69 

First scenario 999 1 270 5 544 

Second 

scenario 
69 69 69 

Third scenario 999 1 270 5 544 

CO2 emissions [kg] 

Base case 10 023 11 224 48 918 

First scenario 10 012 10 871 45 346 

Second 

scenario 
41 786 43 655 81 433 

Third scenario 41 531 43 183 77 663 

Table 5.6: Relevant parameters obtained for three ECs. 

In the second and third scenarios, the reduction in CO2 emissions due to the 

adoption of EVs instead of combustion engines is not taken into account. The 
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integration of the micro-cogeneration plant affects the self-sufficiency and power grid 

independence of the EC. As a matter of fact, the data for the first and third scenarios 

attest to a reduction in net electricity, which is also followed by a reduction in 

electricity costs taken from the power grid. The latter result is linked to the fact that, 

although electricity exported to the power grid is subject to pricing related to on-site 

exchange, its purchase from the power grid has a higher cost. From an environmental 

point of view, the micro-cogeneration system uses a fossil fuel so, for the same 

electricity demand, the reduction in emissions from the entire EC could be justified 

by generating the electricity taken from the power grid derived by a good share of 

fossil sources, marked by higher carbon intensity. A more detailed analysis of the 

energy sources used for power generation suggests that the deviation of climate-

changing emissions in all North American states surveyed is justified by an energy 

mix, during the simulation period, in which coal is one of the largest energy supply, 

followed by natural gas and then renewable energy sources. It is also true that the 

simultaneous generation of heat and electricity has an impact in terms of reducing 

emissions compared to separate generation, since the two carriers are produced from 

the same primary energy. Therefore, while there is a reduction in the cost of 

purchasing electricity and in climate-changing emissions, an increase in overall 

energy costs occurred due to the purchase of a high share of natural gas.The first 

scenario and the third scenario demonstrate that a multi-energy approach can result 

in significant advantages in terms of energy flows management. Specifically, the first 

scenario minimizes dependence on the local power grid by leveraging on-site 

generation systems and ensuring a peak-load free profile. In contrast to this, the third 

scenario takes advantage of local generation systems when economically viable, but 

this still results in a high net electrical load. The μ-CHP system, sized in the first 

scenario, is able to meet a very small fraction of the electrical absorption related to 

EVs, as can be seen from Figure 5.15, in which the electrical load duration curves are 

shown considering two different penetration rates of these consumption units among 

the members of the ECs examined.  

In the event that ECs had a well-defined percentage of EVs, it might be useful 

to find the size of the μ-CHP plant by considering their electric consumption. Even in 

the case of increasing the size of the MGT, given an operation under nominal 

conditions, there would be a significant transfer of electricity to the power grid. This 

is linked to the characteristic duration curve which has an elbow point, due to a shift 
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from high electric consumption shares related to vehicles batteries charging to low 

levels related to the base electrical load of the EC. 

 

Figure 5.15: Electric load duration curve for different percentages of EVs (red and green) 
and electric generation (blue) for the cluster of buildings belonging to the three different 

ECs. 

In addition to this, the operating period of the μ-CHP plant is not equal to the 

time horizon of EVs charging. In the face of a possible change in the size of the MGT, 

this phenomenon results in an important share of electricity supply to the power grid. 

In order to maximize energy sharing among members of the EC and take advantage 

of economic enhancement, it might be profitable to combine the operating hours of 

the μ-CHP plant with the charging hours of EVs. Since the arrival instant and the 

departure instant of EVs are not always the same, it is advisable to adopt an 

appropriate advanced control strategy that combines the two time horizons, so as to 
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result in significant benefits in terms of energy flow management. Controlling the 

simultaneity of electrical loads will be a major challenge to allow for the ever-

increasing proliferation of electrical consumer units and avoid infrastructure 

interventions, which could require really large investments.  
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6 Conclusion 
 

The introduction of ECs leads to new possibilities in the area of coordinated 

building energy management. VSEs are useful tools for identifying advanced control 

strategies that can manage the operational status of the variety of energy systems 

operating on a district scale. This thesis work employed an existing VSE and the main 

objective was to enhance its ability to simulate different real-world energy contexts. 

In the starting set-up of the VSE, local power generation occurred only with 

distributed PV systems available in only a fraction of buildings belonging to the EC. 

The disposition of BESSs was configured as a means of providing energy flexibility to 

the power grid. To ensure comfortable conditions inside the buildings, air-to-air HPs 

were set up that in some cases could handle the charging of TES. DHW production, on 

the other hand, was done with separate generation systems. With the aim of obtaining 

accurate prediction of the evolution of air temperature inside buildings and 

considering their thermal dynamics on a district scale, LSTM neural networks were 

formulated. In addition to this, to increase self-sufficiency and self-consumption at the 

local level while minimizing impacts on the power grid, a MGT operation model was 

proposed. This allows optimal management of a building district's energy flows. 

Finally, to take into account their increasing proliferation, a model capable of 

reconstructing energy demand from EVs was introduced. Their inclusion in the VSE 

made it possible to simulate absolutely real contexts. 

The development of neural network models within a VSE has the final goal of 

estimating the energy consumption of a cluster of buildings. The main purpose of 

deploying such models is to compare them with existing grey-box models developed 

for the same buildings, in order to evaluate the performance of both and to identify 

those that most likely describe the thermal energy dynamics of multiple buildings, 
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which can take part of a district. Another goal is to make models which are 

computationally light and scalable to different contexts, suitable for control purposes. 

The LSTM neural networks were trained and validated using time series of 

variables measured in a multiplicity of buildings belonging to the areas of a North 

American state. After a first phase of data pre-processing, which is useful to remove 

inconsistencies and reconstruct missing values, the seasonality of the variable to be 

predicted as a function of time data was addressed. This is required to obtain good 

results from the ANN downstream of the training phase. In addition to this, the 

absence of monitored variables related to the operation of energy systems showed 

itself as a strong constraint of the measurement campaign. As a matter of fact, such 

information greatly affects the variation of indoor air temperature. To overcome this 

problem, a methodology capable of reconstructing time series of values related to 

normalized heating power and normalized cooling power was formulated. An 

additional explanatory variable was embedded in the dataset derived from the 

Ecobee DYD program, which concerns solar irradiance as a function of the climatic 

zone to which the individual building belongs. Finally, since the indoor air 

temperature change from the winter season to the summer one – for example, the set-

point value shifts – an additional sampling of the datasets was shown to be 

substantial, with the aim of splitting the winter months’ time series and the summer 

ones. So, if we want simulate thermal dynamics of buildings belonging to the same 

North America state for an entire year, it is required to use two LSTM neural network 

models, as proven by the case study submitted. Since these algorithms, based on 

supervised learning techniques, develop mathematical comparative analyses, a 

minimum-maximum rescaling was taken as optimal to provide data between 0 and 1 

to the layers. Here, we found that one of the main problems encountered in the model 

development of a LSTM neural network is the choice of hyperparameters, since 

setting them incorrectly could lead to disastrous results. For this reason, a driven 

research of these factors was carried out through the use of Optuna tool [67]. During 

the training phase, the ADAptive Moment estimation optimizer was used in order to 

minimize the MSE. During the deployment phase, neural networks are able to predict 

a forward step from the data on the twelve backward steps embedded within an 

unanchored moving window. In the current state, re-training of the models according 

to a fixed time schedule is not planned, although it might be advisable. Therefore, a 

multiplicity of buildings belonging to California state were selected. For each of these, 
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an LSTM neural network was trained for both the winter and summer months. 

Compared with all the models developed, just under 80% of them showed acceptable 

performances in winter testing, while about 56% are able to predict the change in 

indoor air temperature with high accuracy during summer testing. These rates were 

established downstream of the assessment of RMSE – for which a value far below 1 

°C is taken as reasonable – and of MAE. The results of models found to be acceptable 

were subsequently compared with those derived from the grey-box model proposed 

by Wang et al. [24], through some error metrics. With regard to RMSE, emerging 

evidence from this analysis suggests that a LSTM models takes slightly worse 

performance than the grey-box ones, while the value of R2 exhibits the opposite 

behavior – that is, for our models it is higher than for grey-box ones –. Applying the 

same methodology to similar units with different locations is one of the main 

advantages of the proposed algorithms. 

Next, the focus was on a study of the energy flows affecting an EC. To this, with 

the aim of reducing power grid dependence, an analysis of the operation of multiple 

energy systems available within ECs was carried out, in order to describe the benefits 

and issues to be addressed for their effective integration in real-world settings. Each 

of the ECs – located in Texas, California and New York, respectively – consists of fifty 

buildings and the planned simulation time horizon is from 10th January to 10th 

February, so analyse the heating season in which the μ-CHP system is operating. In 

the base case, an air-to-air HP system controls the air temperature inside the 

buildings, so as to keep it within an acceptable range. TESs are arranged in some 

buildings and have the function of storing heat under specific conditions defined by 

RBC strategies, so as to better manage energy flows. In addition to this, depending on 

the building, an EH or a GB provides for DHW demand. A PV system is able to generate 

electricity that can be directly exploited on site and a BESS stores electricity in case of 

surplus production. Three different scenarios were implemented and compared 

against the base case in order to identify the configuration that can better manage 

energy flows. In the first stage, a centralized μ-CHP system is placed to serve the entire 

EC, so as to mainly meet the electricity deficit which occurs when the PV system is not 

producing and the price of electricity from the power grid is high. The MGT is 

managed according to the most common control strategy available in the literature, 

which is to turn it on only at well-defined time intervals. In a second step, the energy, 

economic and environmental effects of consumption units such as EVs is analysed. At 
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the energy level, it is crucial to assess the electrical consumption of such systems to 

avoid impacts and provide benefits to the power grid, so an instant of start charging 

and an instant of end charging must be identified. These data were determined from 

a model available in the literature. The combination of the different simulated 

scenarios has allowed, through KPIs, to highlight a number of issues related to the 

introduction of EVs, as their charging has a significant impact on the power grid. 

Finally, the third scenario emerges as a potential compromise solution between the 

two seen before. It is clear, however, that the micro-cogeneration system is 

particularly undersized to meet the electrical load of ECs whose members own EVs. 

Nevertheless, increasing the capacity rating of the MGT requires careful preliminary 

economic analysis, because of the high costs of this technology and the significant 

payback time. In the first and third scenarios, community-level economic benefits for 

the purchase of electricity and also reductions in climate-changing emissions are 

observable. The latter results is in compliance with the sustainability principles 

established by the legislative framework. However, there is a significant increase in 

natural gas purchase costs, which results in an increase of overall cost incurred to 

meet the community’s energy needs. ECs are growing realities, but they require 

careful management of energy flows to achieve the goals behind their development. 

In future work, regarding the training and validation of LSTM neural network 

models, a comparison of the models presented in this work with ones obtained by 

simulating a closed-loop controller – that is relies on the predicted values to predict 

future values – could be carried out. In addition to this, since information regarding 

the floor area or age of each building are available, neural network models applied at 

the district level could be developed based on the present structure of the algorithm. 

On the other hand, as far as VSE is concerned, this could be used to manage the 

production and consumption of energy systems in a different way. For example, at 

present, all buildings belonging to the EC are connected to the DHN and are equipped 

with an air-to-air HP which control indoor air temperature. Depending on the needs 

of the individual building belonging to the cluster, a choice could be made to have HP 

technology or to be served only by the DHN. Another development could concern the 

use the μ-CHP plant for DHW production as well. Given the scalable nature of the VSE, 

this could also be used for groups of buildings belonging to other locations, as long as 

monitoring data are available. 
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