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Abstract 
Unmanned Aerial System (UAS) imagery has enabled very high-resolution multispectral image 

acquisition. In this study images acquired by UAS or generally known as drones are our main data, 

which have been used to perform the Structure from Motion (SfM) Approach and produce the 

Digital Elevation Model (DEM) and orthophotos (orthomosaics) of five spectral bands of Red, 

Green, Blue, Red-Edge and Near-Infrared.  

 Detection of wet areas and classification of land cover based on these images using the Machine 

Learning (ML) algorithm named Random Forest (RF) is our main purpose in this project. 

Orthophotos of the SfM process have been used as inputs for a machine learner in different 

scenarios. Starting from Random Forest Classifier, 3 different datasets consisting of RGB only, 

Multispectral only consisting of Red-Edge and Near-Infrared, RGB plus Multispectral for 

classification of the area have been used in three different test areas in two time epochs.  

Therefore, another objective of this study is to investigate the performance of spectral bands 

(number of included bands and related wavelength) in the classification and wet area detection, 

to probe whether RGB (visible) light provides better results for our goal or multispectral data (Red-

Edge and NIR) outperform in this analysis, or whether combining visible and Multispectral data is 

a superior alternative or not. 

 In our case study for the sake of simplicity of comparison between implemented methods of 

classification and strength of datasets and to probe the most effective features in all seasonal 

conditions, only three classes have been analyzed including Vegetation, Water, and Ground.  

Furthermore, in another time epoch in the summertime, in addition to spectral features used in 

the previous epoch, the capability of vegetation indices, elevation, and texture features in the 

classification of land cover and detection of the wet riparian area in the case study are assessed. 

There are many existing methods for the classification of land cover based on UAS images, but 

very high-resolution centimetre-level data are of main importance in this analysis. Outstanding 

results have been produced in both epochs considering three extremely accurate performance 
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analyzers of precision, recall, and F-core which are originally based on True Positive, True Negative, 

False Positive, False Negative concepts.  

Additionally, in this research, the most decisive and effective features based on a selection tool in 

python programming language have been discovered to compromise the accuracy of the 

classification and the number of effectual features and save processing time and power in future 

similar studies.  

 

Keywords: Machine learning, classification, UAS, spectral features, land cover. 
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Chapter 1 

1- Introduction 

According to several reports, consequences of global warming and climate change including 

severe droughts, saltwater intrusion into groundwater, shrinkage of glaciers, in addition to the 

increased water demand due to economic developments, fast urbanization, and population 

increase, have combined to result in an estimated 40% global water shortage by the year 2030. 

Hence, in addition to improvements in the conservation, distribution, and management of water 

resources, ensuring that new sources of fresh water can be readily available is essential in order 

to meet the increasing demand (Clara Skuse, 2021).  

Classification of land cover to detect wet and moist areas is highly important for urban and 

environmental planning (Chaturvedi and de Vries, 2021). Furthermore, one of the crucial pillars of 

climate change is connected to water in different media, from lakes and rivers to soil water 

(Mahboubi, et al., 2022). Hence, detecting water in various environmental media is one of the 

essential steps in facing climate change (Lidberg et al., 2020). Since as climate changes and the 

earth warms up, the drier areas of earth become drier and lose all their wet resources from the 

lake, rivers, and even soil moisture. Since there is no direct and straightforward way to measure 

rainfall and evaporation from the surface, automatic artificial intelligence tools for the detection 

of wet areas enables researchers to detect dried areas, especially in the riparian river area, which 
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is expected to be the moistest areas and assess the effect of climate change (Schneider, et al., 

2010). 

Today, the widespread use of UAS imagery has provided a variety of very high-resolution image 

data sources for machine learning classifiers. There are several reasons that UAS or drones are a 

pleasant choice for scientists nowadays. To name a few, we can mention drones’ appropriateness 

for hazardous and hard-to-reach areas, where it contains risks for human/operator health, and 

they can easily fly over the hazardous area with the drone. The second enormous advantage of 

drones would be their cost-efficiency. Considering that in a short period, there is the possibility of 

several flights and the acquisition of thousands of images, they are an extremely economic choice. 

Furthermore, the possibility of reacquisition of data helps to have high-quality data at the end of 

the acquisition phase. Last but not least, very high-resolution data acquired by drones, which is a 

result of GPS systems enabled on drones, enables researchers to have very accurate results for 

different purposes such as identification of weeds, monitoring crop health, crop damage, crop 

assessment, field soil analysis, Irrigation Monitoring, classification, etc. (Singh, et al., 2022). 

The efficiency and potential of machine learning classifiers have made the classification purpose 

more precise and efficient (Jiang et al., 2021). UAS outperforms traditional approaches for data 

acquisition thanks to their high temporal and spatial resolution (Merlino et al., 2020; Banerjee et 

al., 2020). Considering their low cost, it is possible to have several flights in different epochs 

(Jiménez-Jiménez et al., 2021).  

After data acquisition, to have a 3D map of the area, the Structure from Motion (SfM) approach 

was implemented. SfM lies in the simplified concept of production of a 3-D model or a digital twin 

from a bunch of 2-D images, and in order to produce this model, it looks up for similar features in 

the images and finds the corresponding points in each couple of images. Hence, to have a 

successful 3-D model, there should be overlap in the images in the acquisition phase, the amount 

of overlap can be controlled by the operator in the acquisition phase (Francisco Agüera-Vega, 

2018).  

Classification of the study area is based on a Machine Learning algorithm in this project. Machine 

learning is a sub-category of Artificial Intelligence and it can be referred s predictive modeling.  

Machine learning involves the use of algorithms that receive and analyze some input data/features 

and predict output values based on these algorithms. These algorithms learn from new data and 
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optimize their operations in order to improve performance and accuracy, hence they gradually 

become intelligent.   

The four types of machine learning algorithms are supervised, semi-supervised, unsupervised, and 

reinforcement learning. Our focus will be on the Supervised algorithms, since we are able to 

provide training data for our algorithms, in other words, can teach the machine by some examples. 

Based on some known inputs and outputs for the machine by users, its responsibility is to figure 

out how to reach those outputs based on the given inputs, hence, it intelligently tries to figure out 

the methodology. Operators know the right answers to problems, but algorithms identify patterns 

in data, learn from observations, and predict.  Level of accuracy and performance attained by the 

algorithm by making predictions will be checked by the operator until it reaches a high degree of 

performance.  

There are Three kinds of supervised learning:  

a) Classification: Machine learning programs are used for classification tasks, where they draw 

conclusions from observed values and determine which values are relevant to which class.  

b) Regression: In regression, machine learning programs are required to estimate - and 

understand - how variables are related and what is the pattern in the data (Mahboubi, et al., 

2022). 

c) Forecasting: Based on past and present data, forecasting makes predictions about the future 

and is often used to analyze trends (F.Y., et al., 2017).  

In Unsupervised algorithms, clustering I based on similarities and differences between data 

themselves, so there is no information about classes and their characteristics in the first place.  In 

a semi-supervised, there is some information available about labels, and the relationship between 

data and input data, in this method portion of labeled data is a few in respect to unlabeled data. 

In reinforcement learning, there are methods for each step of the model.  

Our focus will be on the classification task of machine learning considering three available classes 

in the riparian river area. There are several methods for the classification of multispectral UAS data 

(Iglhaut et al., 2019).  

Random Forest (RF) Classifier is based on the decision of several trees, meaning that it uses several 

trees (so a forest) and the concept of sub-sampling to make the prediction more precise and more 

accurate (Rodriguez-Galiano et al., 2012; Lowe and Kulkarni, 2015).  Random forest algorithms are 
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built on decision trees. Decision trees are tree-like structures that provide decision support. There 

are three components to a decision tree: decision nodes, leaf nodes, and the root node. Training 

datasets are divided into branches that are further divided into sub-branches by a decision tree 

algorithm. A leaf node is reached at the end of this sequence, which cannot be divided anymore. 

In a decision tree, nodes show the attributes that can be used to predict outputs, and decision 

nodes provide the linkage with leaves.  

The following steps represent the steps of the Random Forest classifier: 

a) Random forest takes n random records from a data set with k records 

b) A decision tree is constructed for each sample 

c) Decision trees produce output 

d) The final output is decided based on the majority number of votes based on several 

decision trees. 

Random Forest is used for our classification purpose, Figure i shows a schematic diagram of the 

RF structure for a classification purpose for a given dataset (Random Forest Models, 2022). 

 

Figure i. Random Forest Structure  

In the following chapters, after the introduction of sensor characteristics, acquired data, and study 

area, the first Structure from Motion procedure will be illustrated considering all steps and results 

of Orthophotos of different spectral bands, and Digital Elevation Model (DEM) will be presented.  
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Then in the next part, the Machine Learning classifier, RF will be used in different scenarios in two 

different time epochs for three different test areas to detect the wet areas in the Riparian region 

of a river and perform the classification.  Hence, in this study, the performance of the RF classifier 

in classification and wet area detection, based on three different combinations of spectral bands 

will be assessed, and then, the classifier’s improvement after adding some extra features including 

spectral indices, elevation, and texture features for the second time epoch will be analyzed, and 

the most effectual features for classification of land cover and detection of wet soil and waterbed 

will be discovered.  

Table 1 shows different spectral indexes. The most useful features are selected using the “Select 

from Model” function in the scikit-learn package. 

Table 1. Vegetation indexes and corresponding references 

 

Index 
Abbrev

iation 
Formula Author and Year 

Normalized Difference 

Vegetation Index 
NDVI 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

(Abderrazak et al., 

1996) 

Normalized Difference 

Water Index 
NDWI 

𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 (Ceccato et al., 2002) 

Normalized Difference Red-

Edge 
NDRE 

𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 (Clarke et al., 2001) 

Anthocyanin Reflectance 

Index 
ARI 

1

𝐺𝑟𝑒𝑒𝑛
−

1

𝑅𝐸
 (Miura et al., 2008) 

Enhanced Vegetation Index 

2 
EVI2 2.4 ∗

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 1
 (Miura et al., 2008) 

Soil Adjusted Vegetation 

Index 
SAVI 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
∗ (1 + 𝐿) (Ahamed et al., 2011) 

Structure Insensitive 

Pigment Index 
SIPI 𝑆𝐼𝑃𝐼 =

𝑁𝐼𝑅 − 𝐵𝑙𝑢𝑒

𝑁𝐼𝑅 − 𝑅𝑒𝑑
 (Xue & Su, 2017) 
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NDVI: the most basic way to assess if vegetation is healthy or not. Negative values of NDVI show 

there is probably water instead of vegetation. Low values of NDVI show the presence of less or no 

vegetation, a high value shows the presence of dense vegetation. 

NDWI: the most basic index to evaluate the water/moisture content of vegetation. 

NDRE: another index for measuring the health of vegetation based on multispectral data, in other 

words, it measures the amount of chlorophyll in the plants. 

ARI: Weakening vegetation contains higher concentrations of anthocyanins, so this index is one 

measure of stressed vegetation. Increases in ARI1 indicate canopy changes in foliage via new 

growth or death. It uses reflectance measurements in the visible spectrum to take advantage of 

the absorption signatures of stress-related pigments. 

EVI2: it has improved sensitivity in high biomass regions and a reduction in atmosphere influences. 

SAVI: it attempts to minimize soil brightness influences using a soil-brightness correction factor. 

SIPI: it maximizes sensitivity to the bulk carotenoids to chlorophyll ratio while minimizing the 

impact of the variable canopy structure. Larger SIPI values represent more stress. 

Most of the processings in this project are performed by two tools: 

a) QGIS software: QGIS stands for Quantum Geographic Information Systems. This publicly 

available and free software is mainly used for mapping and related geospatial tasks. As a 

license is not needed, any type of user can make use of QGIS. There is no limitation on the 

tools that can be utilized, and numerous plug-ins can be easily installed to execute different 

complex processes. This geospatial software has very good data processing times compared 

to other technologies of the same kind such as some of the ESRI Desktop tools. QGIS was 

mainly used for vector data preprocessing steps such as digitization and for raster visualization 

of RF predictions (QGIS, 2022). 

b)  Python Programming language: a very popular computer programming language that is being 

used in different disciplines. It has an object-oriented approach that facilitates coding in a 

logical and clear way. It can be applied in a wide range of small- and large-scale projects, 
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allowing to conduct data analysis, software development, and complex data visualization. 

Python is an open-source and freely available service that supports a wide variety of modules 

and libraries that assist users in different fields. Libraries and geopackages are user-friendly 

and easy to import and execute. The machine learning model and random forest classifier that 

was used for class prediction were based on python language (Python Programming Language, 

2022). 

As for limitations of this project is consideration of only three classes of water, vegetation, and 

ground, but since our purpose is focused on the methodology development itself and best features 

detection, we have continued with these three classes, and then, in future work, the selected 

features can be used to perform the classification for a larger number of classes, for example, 

different types of vegetation, grass, large trees, bushes, etc.  

Another limitation of this study is focusing on only five multispectral bands. In a more developed 

work, hyperspectral data with more spectral features can be considered (Maimaitijiang, et al., 

2020).  

Therefore, what is examined in this thesis is to answer the following questions: 

✓ Whether UAV data can perform the classification of the riparian area and detect wet 

areas? 

✓ Whether visible bands of the UAV data are able to perform classification of the riparian 

area and detect wet areas? 

✓  Whether adding other multispectral bands to visible bands improves the classification? 

✓ Whether adding other features of elevation/ vegetation indices/ texture improves the 

classification? 

✓ Which features play the most decisive role in the classification? 

The overall overview of investigations carried out in this thesis is presented in Figure j:  
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Figure j. General procedure and steps 
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Chapter 2 

2- State of the Art 

For data acquisition, UAVs outperform traditional approaches. The high temporal and spatial 

resolution of the UAV systems is impressive (Merlino et al., 2020; Banerjee et al., 2020). 

Considering their low cost, it is possible to have several flights in different epochs (Jiménez-

Jiménez et al., 2021) and investigate the area for different purposes for example their evolution. 

After data acquisition to have a 3D map of the area, the Structure from Motion (SfM) approach 

will be implemented, which can be considered as a combination of computer vision and image 

analysis (Iglhaut, et al., 2019). In traditional softcopy photogrammetric methods, the 3-D location 

and pose of the camera (s), or the 3-D location of ground control points, must be known in order 

to facilitate the triangulation and reconstruction of a scene, on the other hand, a highly redundant 

bundle adjustment based on matching features in multiple overlapping, offset images is used by 

the SfM method to solve camera pose and scene geometry simultaneously and automatically 

(Westoby, et al., 2012). 

Classification of a riparian area of the river has high importance for decision-makers. Land-use 

planning for water-quality security can benefit from an understanding of the connections between 

land use, landscape patterns, and riverine water quality (Zhang, et al., 2022). In (Zhang, et al., 

2022) 67 water samples were collected and analyzed in northwest China's Jing River Watershed 

(JRW) from 2016-2017. The Canadian Water Quality Index (CWQI) was calculated using remote 
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sensing images from Sentinel-2. In a riparian buffer zone, Random Forest classification was used 

to describe current LULC patterns and compute landscape metrics. By collecting geospatial data 

continuously over large areas, remote sensing technology makes it possible to understand riparian 

shape, function, and change over time (Rusnák, et al., 2022). A review of studies published from 

1991 to 2021 that used remote sensing techniques to map and understand riparian habitats and 

their ecological functions is provided in (Rusnák, et al., 2022). The 257 articles reviewed fell into 

six major categories (physical channel properties; morphology and vegetation or field surveys; 

canopy detection; use of vegetation and water indices; riparian vegetation; and fauna habitat 

assessment). In most studies, aerial RGB imagery was used for river reaches up to 100 km in length, 

and Landsat satellite imagery for river reaches of 100 to 1000 km in length. Based on (Rusnák, et 

al., 2022), over the past decade, unmanned aerial vehicles (UAVs) have been widely used for low-

cost monitoring and mapping of riverine and riparian environments. A major challenge remains 

the transfer of RS data to managers and stakeholders for systematic monitoring in order to ensure 

the successful management of riparian zones. 

As a result of climate change, flash floods are expected to intensify and become more frequent in 

the Mediterranean region. This will also have an impact on the adjacent riparian vegetation 

(Koutalakis, et al., 2020). In this study, UAV images were used to capture and record flood debris 

events and fluvial-geomorphological changes along the Kallifytos torrent in northern Greece. By 

using UAV images validated using field data and a visual protocol, a novel approach was developed 

for detecting changes in riparian vegetation and assessing conditions. Following major floods, the 

orthomosaics clearly showed changes in the torrent bed and debris flow events. UAV images are 

highly useful for capturing, recording, and monitoring fluvio-geomorphological events and riparian 

vegetation (Koutalakis, et al., 2020).   

 There are several methods for the classification of multispectral UAV data such as support vector 

machine (SVM), neural networks, maximum likelihood, and Random Forest (RF). Random Forest 

Classifier is based on several decision trees, in which for classification purposes, each tree decides 

a class, and at the end, the class with a maximum number of votes is selected as a class for the 

input (Maimaitijiang, et al., 2020), hence the analysis is based on the decision of several trees, and 

it results in a highly accurate and precise classification (Rodriguez-Galiano et al., 2012). Neural 
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networks on the other hand produce more accurate and satisfying results in the presence of a 

large number of images for their training purpose (Lowe & Kulkarni, 2015; Osco, et al., 2021)  

Classification based on the UAV data can be performed for different contexts. For instance, Using 

UAV imagery, (Gevaert, et al., 2017) gets high classification accuracy in challenging classification 

problems for the analysis of informal settlements based on integrating 2D radiometric and textural 

features, 2.5D topographic features, and 3D geometric features. The aim is to identify salient 

features for specific objects in heterogeneous urban environments by comparing UAV datasets 

from informal settlements in two different countries. 

Classification based on machine learning algorithms can be either feature-based or object-based. 

An example of an object-based approach is presented in (Franklin & Ahmed, 2018), As a result of 

segmenting images, the resulting objects were visually confirmed to correspond to the sampled 

tree crowns. An independent validation sample of 23 tree crowns produced results of 

approximately 78% accuracy based on machine-learning classification using the Random Forest 

algorithm and finally, the most distinct species were birch and aspen; maples were confused with 

each other and with immature trees and shrubs under the understory. 

 

Scientific studies also utilize RF for a variety of topics, for instance, (Zhang, et al., 2022) uses two 

machine learning methods of Multilayer Perceptron (MLP) and Random Forest (RF) for the 

prediction of coal self-ignition tendency (Zhang, et al., 2022), and (Nasir, et al., 2022) uses Machine 

learning algorithm for Water quality classification (Nasir, et al., 2022). (Al-Awar, et al, 2022) utilizes 

four machine learning algorithms of support vector machine (SVM), random forest (RF), regression 

tree (CART), and backpropagation network (BPN) to select the most robust one for classification 

of the crop maps (Al-Awar, et al, 2022).  

 

Focusing on agricultural purposes, in (Shen, et al., 2022)  study, UAV multispectral and UAV data 

are used to perform a crop yield prediction estimation based on a long short-term memory neural 

network and random forest (LSTM-RF) tool, and finally LSTM-RF model obtained better prediction 

results compared to the LSTM. 
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With the same token, (Alabi, et al., 2022)did soybean yield estimation. Based on the multispectral 

images of UAV from five variety trials during the 2020 growing season in Nigeria. UAV-based 

spectral bands, canopy height, vegetation indices, and texture features have been utilized to 

estimate crop grain yield using five machine learning (ML) regression models, including Cubist, 

Extreme Gradient Boosting (XGBoost), Stochastic Gradient Boosting (GBM), Support vector 

machine (SVM), and Random Forest (RF).  

 

In a similar study, (Impollonia, et al., 2022) considers multispectral images of UAV in Italy and the 

UK in 2021 and 2022 to analyze the possibility of high-throughput phenotyping (HTP) of novel 

Miscanthus hybrids to estimate the yield prediction, to do this, they use Random Forest using VIs 

time series and predicted yield using peak descriptor derived from VIs time series.  

In order to perform change detection on macro landforms, (Tavakol, et al., 2022) performs a 

classification. The methodology performed is based on two approaches, first, a supervised 

classification based on Random Forest, the three major classes of soil microforms, vegetation, and 

galls were identified and classified into five classes, then a deep learning neural network is used 

to classify area into 5 classes (Tavakol, et al., 2022).   

(Nikolakopoulos, et al., 2022) propose a method to acquire UAV data over landslide areas with 

various characteristics. In this study, ortophotos and digital surface model is produced based on 

the SfM method, as is ours in this research.  

 

An analysis of multispectral UAV images to classify burn severity is presented in (Shin, et al., 2019) 

study. In the analysis of burn area severity, determining the burned surface area is challenging 

since it appears unburned in aircraft or satellite images. They processed a mosaic reflectance 

image from a RedEdge multispectral UAV image after a forest fire. As training and validation 

samples, hundreds of samples were collected for each burn severity class. In order to classify the 

data, maximum likelihood methodology (MLH), spectral angle mapper (SAM), and thresholding of 

the normalized difference vegetation index (NDVI) were employed. Even though unburned pine 

and unburned deciduous trees exhibited some confusion, the classifiers also showed high accuracy 

for identifying burned surfaces.  
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The study performed by (Feng, Liu, & Gong, 2015) includes analyzing how classification accuracy 

changes with texture window size in urban vegetated areas using a hybrid method using Random 

Forest and texture analysis. To add ancillary data to RGB images, six less-correlated second-order 

texture measures were calculated at nine different window sizes. The spectral-textural feature 

space was classified using a Random Forest classifier consisting of 200 decision trees. According 

to the results, Random Forest outperformed traditional Maximum Likelihood classifiers and 

matched object-based image analysis in urban vegetation classification, and incorporating texture 

features improved classification accuracy significantly (Feng, Liu, & Gong, 2015). 

 

A ranking-based approach is proposed by (Ramos, et al., 2020) to further potentialize the RF 

method for predicting maize yields. In this approach, the correlation coefficient between 

individual vegetation indices (VIs) is used as a method of estimation. VIs were ranked using RF 

against a baseline method to measure the improvement in Pearson's correlation coefficient. As a 

result, the RF model only included the most relevant VIs. Using multispectral imagery from UAVs 

(unmanned aerial vehicles), 33 VIs were extracted. The ranking-based analysis found that NDVI, 

NDRE, and GNDVI combined were the top three factors in predicting maize yields. Moreover, their 

approach outperformed previous machine learning methods, such as support vector machines 

and artificial neural networks (Ramos, et al., 2020). 

 

(Zeybek, 2021) talks about the importance of classification in a general context. A two-dimensional 

cadastral map or a topographic map can be produced using three-dimensional (3D) point clouds 

in the form of UAV-based images. It is necessary to classify point clouds since they are subjected 

to various analyses for the purpose of extracting further information from direct point clouds. The 

high density of point clouds makes it challenging and time-consuming to process data and gather 

information. As a result, the classification process enables the acquisition of valuable information 

in an optimal manner. Random forest machine learning algorithms are applied to radiometric 

features (Red band, Green band, Blue band) as well as geometric features (curvature, 

omnivariance, flatness, linearity, surface variance, anisotropy, normalized terrain surface). 

Additionally, the proposed methodology is tested against UAV-based point clouds to obtain 

accuracy and performance using the random forest method (Zeybek, 2021). 
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In (Zan, et al., 2020), a method for automatic detection of maize tassels by random forest (RF) and 

VGG16 was developed based on time series RGB images from unmanned aerial vehicles (UAVs) 

with maize at the flowering stage. To determine potential tassel regions, the RF first segmented 

UAV images into tassel and non-tassel regions; then, morphological methods were employed and 

they randomly selected 50 plots from UAV images to demonstrate the performance of the 

proposed method (Zan, et al., 2020). 

 

Some studies perform a similar methodology with a different kind of input dataset. In (Ayala-

Izurieta, et al., 2017), a spectral vegetation index (SVI) and ancillary geographic data were used to 

map vegetation based on random forest and to analyze variables that help differentiate vegetation 

cover, and (3) to evaluate the reliability of the vegetation cover classification in hard-to-reach 

Ecuadorian mountain regions. Satellite images from Landsat 7 ETM+, a Random Field Coefficient 

algorithm, and stratified sampling were used. As with the traditional and often used normalized 

difference vegetation index (NDVI) in other settings, the altitude, and the two-band enhanced 

vegetation index (EVI2) give more information on vegetation cover than the traditional and usually 

used two-band enhanced vegetation index (EVI2) (Ayala-Izurieta, et al., 2017). 

 

With the help of UAV imagery, (Marin, et al., 2021) propose a method of detecting Coffee leaf rust 

(CLR) severity. Farmers can improve disease management procedures and reduce losses 

associated with CLR by identifying the symptoms, severity, and spatial distributions of the disease. 

So for this purpose vegetation indices alongside machine learning algorithms have been used 

(Marin, et al., 2021). 

 

The most essential objective of my study is to investigate the performance of datasets (number of 

considered features) in the classification and if adding other features, including elevation 

(Normalized Digital Surface Model (nDSM)), spectral (thermal data and vegetation indexes), and 

texture features can be of benefits for classification. There are several studies to investigate the 

classification capability based on an RF classifier (Jiang, et al., 2021; Rodriguez-Galiano, et al., 

2012), but focusing on the goal of wet area detection considering different combinations of very 

high-resolution multispectral bands (centimeter-level data) and adding other features, including 
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elevation, spectral (thermal data and vegetation indexes), and texture in two different epochs 

highlights the innovation of this research. 

 

Data were acquired using a commercial solution drone DJI Phantom 4. The drone contains an RGB 

sensor and separate blue, green, red, RE, and NIR sensors. During the data collection, some GCPs 

have been surveyed to assess the accuracy of the georeferencing of the embedded GNSS dual-

frequency sensor.  

The study area was mapped using the DJI Phantom 4 drone. Besides the RGB camera, the sensor 

contains blue, green, red, red-edge, and near-infrared multispectral cameras. Among the sensor's 

unique features are its integrated sunlight sensor. Positioned on the body's upper part, the sensor 

detects the sun's irradiation, optimizing the quality of the collected data. In addition, RTK 

positioning accuracy without internet connection is enhanced by connecting P4 Multispectral to 

D-RTK 2 high precision GNSS mobile station, or NTRIP protocol (for RTCM data transfer over the 

internet) via a 4G dongle or WiFi hotspot. By using DJI's TimeSync system, it is possible to capture 

accurate, real-time positioning data by capturing images from six cameras.  

The TimeSync system continuously updates the attitude of the flight controller, the RGB and NB 

cameras, and the RTK module, keeping the positioning data accurate at the center of the CMOS 

sensor and providing accurate metadata for each image. Calibration of all cameras includes 

measuring radial and tangential lens distortions.  

To adapt the post-production software to the needs of each user, distortion parameters are 

acquired and saved in the metadata. According to DJI, this new platform comes with the same 

powerful features as its Phantom 4 series drones, such as a flight time of 27 minutes and a 

transmission distance of seven kilometers. Figure 1 shows the sensors and multispectral bands 

utilized for data acquisition including the DJI phantom4 drone for multispectral data acquisition in 

both April and July epochs and Thermal XT2 camera in the July epoch.  Table 2 shows the technical 

characteriscitcs of phantom4 drone.  
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Table 2. Technical characteristics of the DJI phantom4 sensor 

 

Figure 1. Up left: DJI phantom4 camera, up right: 6 spectral bands of phantom4 drone, bottom: Thermal camera XT2 
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Chapter 3 

3- Methodology 

3-1- Theoretical Background 

3-1-1- Structure from Motion 

The two most important methodologies used in this study are Structure from Motion (SfM) and 

Classification based on the Random Forest classifier. SfM technique works on the fact that several 

images are acquired from different angles from the object or in our case the area and overlapped 

photogrammetry produces 3D structures (Iglhaut, et al., 2019). After data acquisition in order to 

have a 3D mapping of the area besides producing a Digital Elevation model and orthomosaic of 

the area, an approach is implemented in the Metashape software, which can be considered as a 

combination of computer vision and image analysis. SfM technique works on the fact that several 

images are acquired from different angles (both nadiral and oblique) from the object or in our case 

the area and overlapped photogrammetry produce 3D structures. The concept behind this 

technique is called SIFT or Scale-Invariant Feature Transform (Francisco Agüera-Vega, 2018). Data 

acquired by high-resolution UAV systems follow a chaotic behavior meaning that there is high 

rotational and angular variation during acquisition time and high distortions. So, the post-

processing technique for producing 3D models and DEM should be strong for this purpose. that is 
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the reason for using the introduced SIFT method for UAV imagery data processing since it has a 

steady behavior in presence of translation and rotation of the UAV images. On-board GNSS 

receivers of the UAVs allow for location data acquisition in the collection phase and in order to 

increase the positioning accuracy Ground Control Points can be manually collected during the 

campaign, in this way the result is a high accuracy DEM and Orthomosaic (Darren Turner *, 2012). 

The flowchart in Figure 2 represents the main steps included in the SfM (Iglhaut et al., 2019). 

 

 

Figure 2. Structure from Motion procedure 

 

3-1-2- Machine Learning Classification 

So-called Intelligent Systems are frequently employed for the task of supervised classification. 

Artificial Intelligence has been used to develop a large number of techniques (Logic-based 

techniques, Perceptron-based techniques) as well as Statistics (Bayesian Networks, Instance-

based techniques). Using predictor features, supervised learning builds a concise model of the 

distribution of class labels. As a result of the classifier, class labels are assigned to instances that 
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have known predictor features but unknown class labels (Kotsiantis, Zaharakis, & Pintelas, 2006). 

Remotely sensed imagery can be effectively and efficiently classified using machine learning. 

Handling data with high dimensionality and complex characteristics are two of the strengths of 

machine learning (Maxwell, Warner, & Fang, 2018). 

Random Forest Classifier as can be understood from its name is based on several decision trees in 

which for classification purposes, each tree decides a class and at the end, the class with the 

maximum number of votes is selected as a class for the input, hence the analysis is based on the 

decision of several trees, and it results in a highly accurate and precise classification (Barrett Lowe, 

2015). Each tree in the random forest spits out a class prediction and the class with the most votes 

becomes our model’s prediction. The fundamental concept behind random forest is a simple but 

powerful one, the wisdom of crowds: A large number of relatively uncorrelated models (trees) 

operating as a committee will outperform any of the individual constituent models. In other words, 

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-

samples of the dataset and uses averaging to improve the predictive accuracy and control over-

fitting in this project (Ronald Kemker C. S., 2018).  

In the April epoch, orthophotos of  5 multispectral bands have been used as input features for the 

RF classifier. Furthermore in the summer epoch, besides 5 considered spectral channels, Elevation 

data of Normalized Digital Surface Model, Spectral data including Thermal data and Vegetation 

Indexes including NDVI, NDWI, NDRE, ARI, EVI2, SAVI, SIPI, and Texture features including Angular 

Second Moment, Contrast, Correlation, Variance, Inverse Difference Moment, Sum Average, Sum 

Variance, Sum Entropy, Entropy, Difference Variance, Difference Entropy, Information Measures 

of Correlation, Maximal Correlation Coefficient as described in (ROBERT M. HARALICK, 1973) have 

been added with the purpose of improving the classification result. Considering all features and 

bands into account generally 27 attributes for each pixel are available in the dataset.  

In the summer epoch, the best-selected dataset from the previous epoch beside extra features 

including nDSM, thermal and vegetation indexes, and texture features, are added to improve the 

classification (Haralick et al., 1973) and to find out about the most effective features in the 
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classification of the area using RF. Considering all features and bands, 27 attributes for each pixel 

are available in this dataset.  

3-1-3- Performance Assessment 

Validation- Evaluation of classification goodness- Python: in this level, the prepared validation data 

will be as input for the python program and classification goodness will be examined through 

evaluation tools. For this purpose, first, some concepts for accuracy assessment should be 

explained. 

Performance Assessment: Before introducing performance analyzers, four basic concepts of 

machine learning techniques for classification should be established. True Positive, True Negative, 

False Positive, False Negative. 

True Positive (TP): positive outcomes that the model predicted correctly. 

True Negative (TN): negative outcomes that the model predicted correctly. 

False Positive (FP): positive outcomes that the model predicted incorrectly. This is also known as 

Type I error. 

False Negative (FN): negative outcomes that the model predicted incorrectly. This is also known 

as Type II error. 

Classification Accuracy: Classification accuracy or simply accuracy is the ratio of the number of 

correct predictions to the total number of input samples and it usually works well when the 

number of samples in classes is mostly symmetrical, otherwise when the dataset includes 

misbalanced classes accuracy may give us the false sense of achieving high accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Precision: The number of correct positive results divided by the number of positive results 

predicted by the classifier. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Recall: It is the number of correct positive results divided by the number of all actual samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score: The F1 Score is the weighted average or Harmonic Mean between precision and recall. 

The range for F1 Score is [0, 1] and it represents how precise the classifier is (how many instances 

it classifies correctly), as well as how robust it is (it does not miss a significant number of instances). 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

 

Confusion Matrix: A Confusion matrix is an N x N matrix used for evaluating the performance of a 

classification model, where N is the number of target classes. The matrix compares the actual 

target values with those predicted by the machine learning model. This gives us a holistic view of 

how well our classification model is performing and what kinds of errors it is making. Classification 

accuracy can hide the detail needed to diagnose the performance of the model. But details can be 

detected by using a confusion matrix and generally the confusion matrix shows the ways in which 

the classification model is confused when it makes predictions. 

Validation in python: The input file in this stage is the prepared validation data and the idea is that 

based on the Random Forest Classifier, the predicted label of points will be compared to the 

known label of the point, and this procedure will get repeated for all points in the validation data 

and finally an accuracy score based on the probability of correct predictions will be computed. 

Crucial libraries from Scikitlearn package for this stage includes ‘confusion_matrix’, 

‘plot_confusion_matrix’, ‘precision_recall_fscore_support’ and ‘precision_recall_curve. 

Nine different scenarios considering three datasets for three test areas in the winter epoch have 

been analyzed. In the following, the best-selected dataset from the winter epoch with the addition 

of some other features consisting of Elevation (Normalized Digital Surface Model), Spectral 

(Thermal data and Vegetation Indexes of Normalized Difference Vegetation Index, Normalized 

difference water index, Normalized Difference Red-Edge, Anthocyanin Reflectance Index, 

Enhanced vegetation index, Soil-adjusted vegetation index, Structure Insensitive Pigment Index) 

and Texture (Angular Second Moment, Contrast, Correlation, Variance, Inverse Difference 
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Moment, Sum, Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, Difference 

Entropy, Information Measures of Correlation, Maximal Correlation Coefficient) have been taken 

into account to analyze the performance of the classifier on the summer epoch of the acquired 

area. 

3-2- Data Acquisition and study areas 

UAV Data acquired in this area are provided in two epochs: one during April in winter and the 

other one during July in summer. For this study, data has been acquired in the Salbertrand town 

in northwest Italy in two different epochs of April and July. Salbertrand, as is shown in Error! 

Reference source not found. is a municipality in the province of Torino with an elevation of 1039 

meters and studied riparian area located in the Salbertrand.   Since the data is acquired on the 

river and the surrounding area, the focus of this study will be on the riparian area and wet area 

detection in the riverbed and riparian areas.  

 

 

Figure 3. Study area, Salbertrand town, Salbertrand river 
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3-3- Processing Steps 

The main idea of the present study contains the following steps: 

a) produce orthophotos and DEM based on the Structure from Motion approach from raw 

UAV multispectral data which has been acquired in the Salbertrand area in Piedmont, Italy 

in two different epochs of April and July.  

b) The concentration of this study is on the riparian area of the river; hence the final goal is 

to assess the strength of Artificial Intelligence methods in the identification of wet areas 

besides detection of all other classes and to analyze the performance of Artificial 

intelligence techniques, specifically talking Machine Learning technique named Random 

Forest (RF) for classification purpose. 

c) Then a feature selection method will be used in the second method to discover the most 

effective and decisive features for the classification. 

3-3-1-Structure from Motion (SfM)  

3-3-1-1- Adding photos: 

In this step, there are two options to import photos into software. Either by adding a folder in 

which all photos are included or by selecting all photos and adding them. If the selected folder 

only includes needed photos, adding a folder is a better option. It is worth mentioning that photos 

will be imported to the already selected chunk in the project. In the project for the sake of 

simplicity, each band of the multispectral camera including Red, Green, Blue, Red-Edge, Near 

Infrared, and RGB are imported in separate chunks. Once the photos have been added to the 

project, the software will call them camera which implies camera location or camera position.  

3-3-1-2- Quality control of photos 

In order to be sure that there are not any blurry or defective photos in our dataset quality control 

of photographs is necessary. For this purpose, the “Estimate Image Quality” option has been 

performed on photographs. Quality values range between 0 to 1. And on average values below 

0.5 should be considered blurry and unqualified to be used in the 3D modeling process. As an 
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example, image quality values related to the Red band are presented in Figure 4. Quality values of 

all other bands similar to the red band were quite high. 

 

Figure 4. Quality Control for images- Red band 

3-3-1-3- Interior orientation of the camera 

In this step, camera calibration parameters should be adjusted internal parameters such as focal 

length, camera type, and pixel size will be set using imported photos in the software based on the 

bundle block adjustment method (Figure 5).  

 

Figure 5. Camera interior calibration 
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3-3-1-4- Settings 

Some settings should be checked in the software before starting the modeling process. For 

instance, in the “Metashape Preferences tool” two options of “load camera location accuracy from 

XMP metadata” and “Load GPS/INS offset from XMP metadata” should be activated, in this way, 

all data recorded in the metadata during acquisition will be added to the project to increase initial 

accuracy of the project.  

3-3-1-5- Align photos 

The next step in the workflow is aligning photos. The result of this step is initial camera locations 

and sparse point cloud or named tie points. Alignment in the Metashape is based on Scale Invariant 

Feature Transform (SIFT) algorithm. Scale Invariant Feature Transform (SIFT) is an image descriptor 

for image-based matching developed by (Lowe D. G., 2004). As a descriptor, this can be used for 

a variety of tasks in computer vision, including point matching between different views of a 3-D 

scene and view-based object recognition. The SIFT descriptor is invariant to translations, rotations, 

and scaling transformations in the image domain as well as moderate perspective transformations 

and illumination variations. Under real-world conditions, the SIFT has proven to be very useful for 

robust image matching (Darren Turner *, 2012).  

It is worth mentioning that the initial alignment of the photos was based on the GNSS positioning 

of the cameras. Accuracy has been set to the “high” in this step meaning that photos are used in 

their original size. By decreasing the accuracy level photos will be downscaled by a factor.  

Results of this step are provided in the following table for each band separately and they represent 

tie points of each band and initial camera positions by blue rectangles on them. There is the 

possibility that not all of the photos of each chunk get aligned successfully because of the low 

resolution of some photos or low overlap between some images.  

Tie points resulting from aligning process for all chunks (bands) are presented in Error! Reference 

source not found., Error! Reference source not found., Error! Reference source not found., Error! 

Reference source not found., Error! Reference source not found..  
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Figure 11 shows the hypothetical position of the cameras during the acquisition phase on the tie 

points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Tie points of blue band and technical characteristics 

 

Figure 7. Tie points of green band and technical characteristics 

 

Figure 8. Tie points of red band and technical characteristics 
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Figure 11. Camera Positions on RGB Tie Points 

 

3-3-1-6- Georeferencing 

On-board GNSS receiver of the UAVs allow for location data acquisition in the collection phase and 

in order to increase the positioning accuracy Ground Control Points can be manually collected 

 

 

Figure 9. Tie points of Red-Edge band and technical characteristics 

 

Figure 10. Tie points of NIR band and technical characteristics 
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during the campaign, in this way the result is a high accuracy digital terrain model and orthomosaic 

of the study area based on the SfM procedure (Turner et al., 2012). 

During the data collection phase, some Ground Control Points have been surveyed. Adding these 

points to the project and optimizing alignment based on these GCPs can result in increasing the 

accuracy of modeling. In order to integrate ground control points into a project, a text file of points 

including ‘Name of the marker’, ‘Easting’, ‘Northing’ and ‘Altitude’ of points should be imported 

into the project. Coordinate system related to points should be set correctly during import process 

which in our case is projected into Universal Transverse Mercator (UTM), Zone 32 North. The 

targets used in this project are photogrammetric, meaning that they are selected on the existing 

stable objects on the ground to provide multi-temporal analysis for the future. For points, only 

position data are acquired, and orientation data (Yaw, Pitch, Roll) are not provided. 

Once the GCPs have been imported into the project, the setting related to the reference system 

in the project should be checked, at this moment there are three coordinate systems that should 

be set correctly: 

 1) coordinate system of the project and outputs: since objective is to acquire all results in the 

metric system so the coordinate system should be projected to UTM,32N.   

2)Camera reference related to acquired images: which is the reference system during the 

acquisition time  

3) Marker reference system related to surveyed Ground Points. 

Since all cameras, markers, and also the project is georeferenced in the same reference system, 

markers will be detected on the tie points as soon as they are imported into the project, but to fix 

the exact location of markers and avoid some inaccuracies, markers should be placed on images 

again manually, for this purpose ‘Filter photos by marker’ is performed, which separates images 

related to each marker and allows user to place markers in each image in the exact location. After 

detection of the marker in 2 or 3 images and updating the project, the marker will be modified in 

the rest of the images and its location became even more accurate. Thus, the marker placing 

process will become easier and easier. Figure 12 shows the location of GCPs on the tie points of 
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the area. Generally, 27 markers were surveyed for this case study and as beforementioned ground 

control points in this case study are photogrammetric meaning they are signs on existing objects 

or detectable corners of objects. Hence, some markers in some images were not detectable with 

good accuracy, and in the end number of projected images for some markers was not enough, 

hence in order to make consistency this kind of marker has been removed from the project.  

 

Figure 12. GCPs on the Tie points- RGB 

 

To provide some examples some of the photogrammetric targets on the RGB, NIR, Red-Edge, and 

Blue cameras are presented in Figure 13.  

 

Figure 13. . right: F6 marker on the RGB image, left: two markers on the NIR image 
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3-3-1-7- Optimal Alignment 

After detecting GCP on the images for all chunks the whole project should be updated and 

georeferenced based on very accurate Ground Control Points. Then optimal alignment function 

should be performed to improve initial alignment and generate a camera calibration based on GCP 

which takes GCP into account for the alignment process. Of all GCPs, some of them should be 

selected as checkpoints to check alignment accuracy. The number of checkpoints should be in a 

reasonable proportion with respect to the total number of ground control points, in a way that 

assessment of the accuracy of the model based on checkpoints gives us a reasonable overview. In 

the following table, the number of checkpoints and control points for each band is presented in 

Table 3.  

 

Table 3. Number of Check and control points in all bands 

Band Num of Control points Num of Checkpoints 

Red 17 4 

Green 17 4 

Blue 17 4 

Red-Edge 16 4 

NIR 15 4 

RGB 18 4 

   

3-3-1-8- Building Dense Point Cloud 

This step uses generated sparse cloud in the previous step and camera locations and produces a 

dense cloud in Figure 14. Quality setting in this step determines down sampling factor for photos, 

for instance, if ‘High’ quality gets selected down-sampling factor will be 4. This is also the case for 

our project. ‘Depth Filtering’ setting is related to the behavior of software with outliers and depth 

calculation. For our project, the default parameter has been kept.  
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The ability to produce dense clouds from lower density data (tie points) is one of the great 

advantages of the UAV drones in comparison to other acquisition platforms for instance LIDAR 

system. Since with a low price we can achieve high-density pint cloud and high accuracy (Tao, Lei, 

& Mooney, 2011). The produced dense cloud in this step will be used to produce mesh for the 

area.  

 

Figure 14. Dense Cloud of RGB bands 

3-3-1-9- Build Mesh 

This step generates a polygonal model based on a dense cloud. One of the important setting 

parameters required for this step is related to ‘Surface Type’. Usually, surface type can be set in 2 

ways. ‘Arbitrary’ type can be used for any kind of object such as oblique or complex. ‘Height Field’ 

type is appropriate to model a surface orthogonal to the reference system, hence when the main 

objective is to produce DEM, this type can be suitable. It is worth mentioning that this step is based 

on the interpolation of points to generate Mesh (Figure 15). Where a point cloud saves the location 

for millions of points, a mesh converts those points into triangles (Bassier, Vergauwen, & Poux, 

2020).  
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Figure 15. Solid Model of RGB bands 

 

3-3-1-10- Build Texture 

To have a representation of color and texture, a color overlay of the point cloud is needed. All 

parameters have been set to default values. Figure 16 and Figure 17 and Figure 18 show the 3-D 

model of the area, as it can be seen from different views of the 3-D model, the studied area 

consists of vegetation, road, ground, riverbed, and some rocks, stocks (very low buildings or 

storages) and some taller buildings at the very edge of the area. In the next stages, only some 

portions of the area will be clipped to be used in the Machine Learning processing. 

 

Figure 16. Textured Model of RGB bands 
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Figure 17. Different views of the 3D model 

 

 

Figure 18. Different views of the 3D model  

 

3-3-1-11- Building Digital Elevation Model 
 

Since Ground Control Points are provided for the project, generation of DEM product is possible, 

in this step coordinate system of DEM should be the same as the coordinate system of GCP. 

Although during the export process of DEM, the coordinate system can be modified. Both dense 

Cloud and Mesh can be used as source data in this step. Using Dense Cloud, provide more accurate 

results since it is actual data, while the mesh is based on interpolation. DEM is produced for the 
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RGB band and it will be used as a source for the next step which is orthomosaic production. The 

resolution of the DEM is 7.97 cm/pixel and the point density is 150 points/m2. 

3-3-1-12- Building Orthomosaic 
 

Building orthomosaic was not possible if the texture had not been added to the project. Both DEM 

and Mesh can be a source for producing orthomosaic.  

In our case, the Digital Elevation Model of RGB bands is the reference for producing orthomosaic 

of all other bands including Red filter, Green filter, Blue filter, Red-Edge, and NIR bands. The reason 

for doing this is to avoid any difference between bands from a spatial point of view and bring 

orthophotos of all bands perfectly to each other.  In this step, pixel size should be set for 

orthomosaic. Recommended value based on ground sampling resolution is suitable although 

increasing this value may result in a lower file size. At the end of this process for each band in the 

reference pane, a list of Ground control points, checkpoints and their East Error, North Error, 

Altitude Error, and overall error in meter and pixel units are provided. 

 Table 5, Table 6, Table 7, Table 8, and Table 9, Table 9 represent accuracy errors for check and 

control points in three directions for red, green, blue, Red-Edge, and NIR respectively.  

 

Table 4. Accuracy errors of Red Band for control and checkpoints 
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Table 5. Accuracy errors of green Band for control and checkpoints 

 

Table 6. Accuracy errors of the blue band for control and checkpoints 

 

Table 8 shows the accuracy errors of the control and checkpoints in three directions and the average value 

in both meter and pixel units for the blue band, the representation for each marker is available as well, 

which can show us which markers have better accuracy in comparison to others. Table 9 shows these 

results for the Red-Edge band.  As it can be seen from the results of all bands, errors are in the order of mm 

or cm level, which shows a very high level of accuracy for remotely-sensed data.  
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Table 7. Accuracy errors of Red-Edge band for control and checkpoints 

 

Table 10 represents the results of 3-D model accuracy for the Near-Infrared band. 

 

Table 8. Accuracy errors of NIR band for control and checkpoints 

 



Chapter 3                                                                                                                                                  Methodology 

37 
 

Table 9. Accuracy errors of RGB for control and checkpoints 

 

 

In Table 10, results of georeferencing accuracy for checkpoints in all bands of R, G, B, RE, NIR, and 

RGB camera are presented for the April epoch, which is considered a measure of 3D model 

accuracy. 

As it is evident from the table, all errors are in mm or cm level and represent a high level of 

accuracy, especially considering that data are remote sensing data and there is the possibility of 

having several flights in the area with this level of accuracy. Hence, such accurate data can be very 

interesting for the machine learning classifier, which will be explored in the next chapters.   

The main outputs of Structure from Motion, besides the 3-D model, would be the orthomosaic of 

the area in five spectral channels and the Digital Elevation Model. Produced orthomosaics will be 

used in the next step to perform machine learning. Figure 19 shows the Digital Elevation Model of 

the Salbertrand area, and Figure 20, Figure 21, and Figure 22 are the produced orthomosaics of 

the Salbertrand area in each multispectral band.  
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Table 10. Check points Errors of all bands 

Band East Error (m) North Error (m) Alt.Error (m) Total Error (m) 

Red 0.003 0.006 0.046 0.047 

Green 0.008 0.01 0.054 0.056 

Blue 0.02 0.008 0.042 0.048 

Red-Edge 0.01 0.004 0.039 0.041 

NIR 0.01 0.012 0.047 0.05 

RGB 0.012 0.011 0.017 0.023 

 

 

Figure 19. DEM- RGB band 

 

In the following figures, orthophotos of all bands have been shown. 
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Figure 20. Orthophoto-left:  Blue Band, right: green band 

 

 

 

 

 

 

 

. Orthophoto- NIR Band 

 

 

 

 

 

 

 

 

Figure 21. Orthophoto-left:  red Band, right: Red-Edge band 

Figure 22. Orthomosaic- left: NIR Band, right: RGB band 
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3-3-2- Machine Learning- Random Forest- April Epoch 
 

UAV Data acquired in this area are provided in two epochs: one during April in winter and the 

other one during July in summer. The processing phase started with the Winter epoch. In order to 

choose the optimized dataset accuracy measures of precision, Recall and F-score value have been 

taken into account, and the optimized dataset for the classification purpose of the April epoch has 

been used to perform classification of the Summer epoch, although in the summer epoch also 

some Elevation (Normalized Digital Surface Model), Spectral (Thermal data and Vegetation 

Indexes) and Texture features (Angular Second Moment, Contrast, Correlation, Variance, Inverse 

Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, 

Difference Entropy, Information Measures of Correlation, Maximal Correlation Coefficient as 

described in (ROBERT M. HARALICK, 1973)) have been added to discover the most effective features in 

the classification of the area using Random Forest Classifier and to explore whether the 

classification quality improves or not.  

Classification of the Salbertrand area in April has been performed using three different datasets:  

a) combination of RGB and Multispectral datasets  

b) Only RGB datasets  

c) Only Multispectral Dataset including Red-Edge and Near-Infrared bands.  

Nine different scenarios considering three datasets for three test areas in the winter epoch have 

been analyzed. In the following, the best-selected dataset from the winter epoch with the addition 

of some other features consisting of Elevation (Normalized Digital Surface Model), Spectral 

(Thermal data and Vegetation Indexes of Normalized Difference Vegetation Index, Normalized 

difference water index, Normalized Difference Red-Edge, Anthocyanin Reflectance Index, 

Enhanced vegetation index, Soil-adjusted vegetation index, Structure Insensitive Pigment Index) 

and Texture (Angular Second Moment, Contrast, Correlation, Variance, Inverse Difference 

Moment, Sum, Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, Difference 

Entropy, Information Measures of Correlation, Maximal Correlation Coefficient) have been taken 

into account to analyze the performance of the classifier on the summer epoch of the acquired 
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area. Moreover, the feature selection approach has been utilized in python to detect the most 

important features and explore a compromise between accuracy and the number of utilized 

features.   Our purpose is to see how datasets perform separately and how they perform when 

they are used together.  

In order to perform an accurate classification 4 different portions of the study area have been 

clipped, one for training and three others for testing and validation. For different input datasets, 

these portions will remain constant spatially in order to perform an analytical comparison at the 

end, although for each dataset the radiometric values will be different. The following steps should 

be performed for all datasets to have a final classified map and an evaluation of the accuracy of 

the results and the same procedure will be repeated for two other test areas to produce a 

generalized result and conclusion for the performance of Random Forest classifier and machine 

learning technique.  

a) Data preparation for Training dataset- QGIS 

b) Cross validation- Python 

c) Data preparation for Testing dataset- QGIS 

d) Classification of Unseen testing dataset- Python 

e) Data preparation for Validation dataset- QGIS 

f) Validation- Evaluation of classification goodness- Python 

3-3-2-1- First Test Area 

3-3-2-1-1- RGB+ Red-Edge+ Near Infrared dataset 

As previously mentioned, data acquired by phantom4 drone include 5 bands, of which three are 

associated with red, green, and blue filters and 2 of them are Red-Edge and Near-Infrared bands. 

Hence by combining orthophotos of these 5 bands together, an orthophoto consisting of 5 

radiometric values for each pixel, will be obtained. It is worth mentioning that the final orthophoto 

resulting from the Structure from Motion approach had a pixel size of 4 cm, but for the sake of 

processing time, the combined orthophoto resampled with the pixel size of 6 cm. 



Chapter 3                                                                                                                                                  Methodology 

42 
 

Data preparation for Training dataset – QGIS: Mainly machine learning approach for our purpose 

has been performed in Python and based on Random Forest Classifier, so training, testing, and 

validation data should be prepared and exported in the appropriate format using QGIS, open-

source software to be used later in python. The following steps should be performed to get training 

data ready.  

1. Build Virtual Raster from Red, Green, Blue, Red-Edge, and NIR bands: as soon as the 

combined raster has been produced in the software, it should be exported in the Geotiff 

format, otherwise, since it is a virtual raster it will not be saved in the long-term memory 

and will be lost after closing software. Figure 23 shows a false-color representation of the 

area, with NIR in the Red channel, red in the blue channel, and green and green channel.  

 

 

Figure 23. Composite raster of RGB, Red-Edge & NIR bands 

 

2. Resample with 6 cm resolution: this step can be implemented by getting a ‘save as’ from 

the raster and the resolution value should have been changed during the save as process.  

3. Translate (Convert Format) from 16 bit to 8 bit: using the “-scale 0 65535” command in the 

console, pixel values change from 16 bit to 8 bit (Figure 24 and Figure 25). Value of 65535 is the 

maximum value in the 16bit scale, so this value may be different for other data, and it should be 

checked in the ‘properties’ of the raster. As a result of this step, all pixel values should become a 
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value between 0 and 255.  hence in order to check if the translation has been performed correctly 

“identify” tool can be used. 

 

 

Figure 24. identify value in 16 bit for one pixel 

 

 

Figure 25. identify value after converting the format to 8 bit 
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4. Clip raster by training mask and save as training raster: the objective of this step is to clip 

raster of the whole area with the training perimeter, the final raster will be called training raster 

(Figure 26) and will be used in the rest of the procedure. The coordinate system should be set 

here, and it is the same coordinate system of ground control points: WGS, UTM 32N. 

5.  

 

Figure 26. Training raster 

 

5. Create polygons of 3 classes, each in an individual layer: for this purpose, three new layers 

should be created, one for each class, then each of the layers should be started for editing, and 

polygons will be drawn manually in each layer. 

It is noteworthy that in drawing polygons only areas should be selected that we are confidently 

sure about their label since we are in the training stage and any wrong selection in the labels, will 

affect the final result of training and may end in inaccurate classification. It is also crucial to keep 

in mind that the number of points in 3 classes should be at least in the same order of magnitude 
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to have a balanced dataset, the more similar the number of points, the more accurate will be the 

results. Figure 27 shows the training polygons for the training area, in which yellow polygon 

represents the ground class, green ones are the vegetation areas and blue areas are the wet or 

water class. The more the number of polygons for each class, the more tried and accurate will be 

the classifier, but a very large and unreasonable number of training polygons may cause an 

overfitting problem.  

 

 

Figure 27. training polygons for 3 classes: Green (Vegetation), Yellow (Ground), Blue (Water) 

 

6. Clip training raster with polygons and produce raster of each class: if the training raster 

gets clipped with 3 vector files (one for polygons of each class) the final result will be 3 new raster 

files: Vegetation raster, Water raster (Figure 28), Ground Raster. 

7. Convert raster pixel2points: this step should be repeated for three rasters of Vegetation, 

Ground, and Water, the result of this step is the vector file of 3 layers. 
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Figure 28. Water training raster 

 

8. Remove zero values from 3 layers by detecting them on the attribute table (selecting 

features with value>1 and exporting the selected features): this step is necessary in order to 

remove non-data pixels and decrease the number of pixels significantly.  

9. Point sampling tool: to assign R, G, B, RE, and NIR values for 3 layers of Ground, Vegetation, 

and Water, therefore point sampling tool gets radiometric values of different bands from the 

raster and assigns them to points.  

10.        Open the attribute table of 3 classes and add the class field (class label) to 3 layers: for the 

sake of simplicity the name 33 has been assigned for ground and class names for water and 

vegetation are 11(Figure 29)  and 22 respectively.  

  

 

Figure 29. Assigning label ‘11’  for water class 
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11. Merge 3 vector layers of 3 classes: 3 vector files of ground, vegetation, and water should 

be selected as input data. Furthermore, the coordinate system should be set in the UTM, 32N as 

has been set in all other steps.  

12. Export merged vector as comma-separated values (CSV) file: in this step, only the fields 

that we want to be present in the text file should be checked, which are as followings: R, G, B, RE, 

NIR, Class. Besides geometry type should be set to point, the coordinate system should be 

selected, and the final directory of exported file can be determined here. The result of this step is 

the final result of the preparation of training data, and it is a text file that will be imported for 

machine learning in python. 

Cross-Validation- Python: Cross-validation has been performed in Python. Input data for cross-

validation is the text file resulting from the previous step including points with R, G, B, RE, NIR, and 

Class (label) fields (Figure 30). 

 

 

Figure 30. Reading training data into the python script 

predefined packages and libraries necessary for this step are as Figure 31: 

 

Figure 31. packages and libraries used in the training phase 

 

• Numpy is for processing N-dimensional array objects, Linear Algebra, Fourier Transformation, 

etc. 
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• Scipy is for Mathematics and Engineering processing. 

• Scikitlearn is for predictive data analysis including classification, Regression, Clustering, 

dimensionality reduction, and preprocessing of data.  

• Coo-matrix can transform a sparse matrix into the coordinate format.  

• Preprocessing is for transforming input data such as text files to be used in Machine Learning. 

• StandardScaler standardizes features by removing mean and scaling to unit variance.  

• Cross-val-score evaluates score by cross-validation. 

• Model selection: for comparing, validating, choosing parameters and models or generally 

parameter tuning which specifically includes GridSearchCV, train_test_split, and 

cross_val_score.  

• train_test_split is for splitting data into training and testing data with a specified percentage 

by the user which in our case is 20% for testing and 80% for training data (Figure 32).  

• GridSearchCV is for searching over estimated parameters to find optimized and best cross-

validation parameters. If cross-validation is based on the K-fold approach the observation set 

will be divided into K groups or folds of approximately the same size, first fold will be the 

validation set and the method will be fit on the remaining (K-1) folds. In our case number of 

folds is 4.   

 

 

Figure 32. Splitting training dataset for cross-validation purpose 

 

RandomForestClassifier is the used classifier for the Machine Learning approach here. The 

random forest has a large number of parameters that should be set for our purpose. For 

instance, ‘number of estimators’ or number of trees which has been set to values of 10-25 or 

50. ‘Criterion’ can be ‘Gini’ or ‘Entropy’ and it represents the quality of split. ‘Minimum samples 

split’ is the minimum number of features required to split the internal node. ‘Minimum 
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samples leaf’ is the minimum number of samples required to be a leaf node. ‘Maximum 

features’ present the maximum number of features to consider when looking for the best split 

and it can be ’auto’ or ‘log2’ for our purpose. It is the responsibility of the Cross-validation 

process to select the optimized values for these parameters among the possible values 

assigned by the user (Figure 33 and Figure 34). 

 

 

Figure 33. Script of cross-validation step for best parameters determination for 4 folds 

 

Figure 34. possible values for each parameter 

 

The cross-validation result for this dataset is as in Table 11. 

Data preparation for Testing dataset- QGIS, the steps are as follows: 

• Importing orthophoto of the area (combined raster of all 5 bands) into QGIS 

• Translating 16-bit raster into 8-bit raster 

• Importing testing polygon perimeter  

• Clip raster by testing mask layer to produce test raster (Figure 35). 
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Table 11. Cross-Validation result for RGB + Red-Edge + NIR dataset 

N-Estimators 50 

Criterion Entropy 

Max-features Auto 

Min-samples-leaf 4 

Min-samples-split 5 

Random state None 

Accuracy on training 98% 

 

Table 12 shows the accuracy of the training dataset for 4 sets of cross-validation: 

 

Table 12. Accuracy on training dataset for 4 folds and optimum parameters 

Accuracy on training dataset with different 

CV = 4 folds 
[0.984 0.984 0.983 0.984] 

Mean accuracy of the training dataset 0.98 

Standard deviation reached in the training 

dataset 
0.0002 

Precision in CV = 4 folds [0.984 0.983 0.983 0.983] 

Recall in CV = 4 folds [0.984 0.983 0.983 0.984] 

F1 Score in CV = 4 folds [0.984 0.984 0.983 0.983] 
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Figure 35. Test raster, 1st test area 

 

• Raster pixel2points 

• Clip vector by testing mask layer 

• Point sampling tool 

• Add X/Y fields to the layer. 

• Export final vector into CSV file. 

Most of the procedure of preparation of the testing dataset is similar to the training phase, except 

for the fact that labels or classes are not determined in the testing dataset, furthermore, 

coordinates should be added in this stage to the layer (step 8) because final classified orthophoto 

will be represented in the software visually, hence it should be spatially correct. The result of this 

step is a text file including R, G, B, RE, NIR, and X, Y values of all points of the testing area. 

Classification of Unseen testing dataset- Python: Some packages and libraries are added in this 

step to perform the classification of the testing dataset (Figure 36). LabelEncoder is for encoding 

target labels with a value between 0 to (Number of classes-1). In this phase presence of some 

libraries is crucial in order to analyze the accuracy of testing data such as accuracy_score. 

Classification-report and libraries related to the confusion matrix will be used in the validation 

stage.  
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Figure 36. packages and libraries necessary for the prediction and evaluation phase 

 

One crucial stage here that cannot be ignored is to use the ‘Head’ function which works based on 

the number of points in each class of training data (Figure 37). The purpose of this function is to 

make a balance among number of points of 3 land cover classes, so if there is the confidence that 

the classes are more or less balanced regarding number of points head function can be ignored, 

otherwise, the head function must be set based on a minimum number of points, in this way the 

program uses only ‘head’ number of points for all classes and automatically brings balance to the 

training phase.  

 

Figure 37. Head function for bringing balance to the unbalanced training dataset 

 

The procedure is to first train the classifier for 3 classes using the training dataset, and after setting 

the optimized hyperparameters for the random forest classifier resulting from the Cross-

Validation stage, the prediction of class or label for testing data will be implemented (Figure 38).  

 

Figure 38. Reading training dataset into the script 
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Figure 39 shows the steps of hyper parameters setting for RF classifier, then fits a model on the 

training data and predicts accuracy on training data. 

 

 

Figure 39. setting hyper-parameters for RF classifier, fitting a model on the training data, and predicting accuracy on training data 

 

Figure 40 reads an unseen dataset and performs the classification on it for each point, and 

exports it to the set directory.  

 

 

Figure 40. Reading unseen testing dataset into the script, prediction of labels for each point, exporting it to the determined directory 

 

The output of this step is a text file consisting of coordinates and a class of points, accordingly, in 

order to have a visualization of the predicted map, the text file should be presented in the QGIS. 

The steps for preparing results and representing them in software are as follows: 

1. Import CSV file into the software. 

2. Export text file as point shapefile 

3. Rasterize point shapefile based on a class field. 

4. change the visualization to pseudo color. 

5. assign appropriate colors for 3 classes of ground, water, and vegetation. 

Data preparation for Validation dataset- QGIS: The validation step is decisive to see whether the 

results of classification are acceptable for us or not. In this stage, preparation should be 

implemented on the testing raster considering that classes of some points or areas are well-known 

to us and the goal is to see if these areas are classified correctly during the classification of unseen 

datasets or not. The steps of data preparation here are similar to training data preparation, the 
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only difference is the input data, which is testing raster here. Figure 41 shows the validation 

polygons. Thus, the steps are in such a way: 

1. Importing testing raster into software 

2. Drawing polygons for each class in 3 different layers 

 

  

Figure 41. Validation polygons for 3 classes: Green (Vegetation), Yellow (Ground), Blue (Water) 

 

3. Clip test raster by polygons: The result will be three rasters for each class. 

4. Converting raster pixel2 points: the result will be 3 vector layers. 

5. Removing zero values from attribute table of 3 layers 

6. Point sampling tool: to add radiometric R, G, B, RE, and NIR values into layers. 

7. Adding Coordinates of X/Y features into layers 

8. Adding class or label field in the attribute table of each layer 

9. Merging 3 vector layers 

10. Extracting merged file into CSV format file: final output to be used in the next validation 

step in python.  

 



Chapter 3                                                                                                                                                  Methodology 

55 
 

3-3-3- Machine Learning- RF- July Epoch 
In order to have an analysis regarding the performance of the Random Forest classifier in the 

summertime epoch in the same study area, orthomosaics of the area in the July season have been 

taken into account. Based on the results from previously analyzed scenarios in the winter epoch, 

all of the channels together had a better performance, hence in the summer data analysis, only 

this dataset in only one test area has been considered. Furthermore in the summer epoch, besides 

5 considered spectral channels, Elevation data of Normalized Digital Surface Model, Spectral data 

including Thermal data and Vegetation Indexes including NDVI, NDWI, NDRE, ARI, EVI2, SAVI, SIPI, 

and Texture features including Angular Second Moment, Contrast, Correlation, Variance, Inverse 

Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, 

Difference Entropy, Information Measures of Correlation, Maximal Correlation Coefficient as 

described in (ROBERT M. HARALICK, 1973) have been added with the purpose of improving the 

classification result. Considering all features and bands into account generally 27 attributes for 

each pixel are available in the dataset.  

In the summer epoch, the best-selected dataset from the previous epoch beside extra features 

including nDSM, thermal and vegetation indexes, and texture features, are added to improve the 

classification (Haralick et al., 1973) and to find out about the most effective features in the 

classification of the area using RF. Considering all features and bands, 27 attributes for each pixel 

are available in this dataset.  

3-3-3-1- Feature Selection 
Using the “Select from Model” function in the scikit-learn package of python the most useful 

features have been selected considering the highest accuracy. 

The used 27 features in this epoch are:  

a) Spectral features: Red, Green, Blue, RE, NIR, and thermal. 

b) Vegetation Indexes: NDVI, NDWI, NDRE, ARI, EVI2, SAVI, SIPI 

c) Texture features: Angular Second Moment, Contrast, Correlation, Variance, Inverse 

Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Difference 

Variance, Difference Entropy, Information Measures of Correlation, Maximal Correlation 

Coefficient. 
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Chapter 4 

4- Results and Discussion 

4-1- Random Forest - April Epoch - First test area 

4-1-1- RGB + Red-Edge + NIR 

 

Figure 42. Prediction (Segmented) map of testing based on RGB + Red-Edge + NIR dataset 
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Figure 42 shows the classified map of the Salbertrand testing area based on all spectral bands of 

Red, Green, Blue, Red-Edge, and NIR, based on the Random Forest classifier. In the classified map, 

the water area is presented in blue, the vegetation in green, and the ground in yellow colors. As it 

is evident riverbed is detected almost accurately, as is the vegetated area, but to have an accurate 

measure of classification goodness, Table 13 represents the confusion matrix of the classified map. 

In the confusion matrix, diagonal numbers represent the correct classified pixels, which dedicates 

to the majority number of pixels in a good classification.  Non-diagonal values represent 

misclassification between three classes, As it is obvious from the table, most of the 

misclassification is between vegetation and water class. Also, there are high values of 

misclassification between vegetation and ground. It is worth mentioning that values are not pixels, 

for the sake of simplicity they are presented in square meter units.  

 

Table 13. Confusion Matrix for 1st test area- RGB+RE+NIR dataset 

 

Table 14. Accuracy parameters for 1st test area- RGB+RE+NIR dataset 

Table 14 presents other accuracy measures of precision, recall, and F-score. Precision shows how 

many of the classified pixels are correct. And recall shows how many correct pixels are classified 

correctly, and F-score is the weighted average of these two values. Similar to the results of the 

confusion matrix, lower values of precision, recall and f-score is between water and vegetation 

couple, as well as vegetation and ground couple. But, taking all misclassifications into account, 

results still are promising and present an f-score of an average of 86%.  
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 Precision Recall F-score AUC 

Water 0.99 0.82 0.90 0.99 

Vegetation 0.69 0.99 0.82 0.99 

Ground 0.98 0.76 0.86 0.98 

Average 0.87 0.86 0.86 0.99 

 

The precision-recall curve is another measure of model performance and represents the 

classifier’s ability to distinguish between classes. Based on Table 14, high values of precision have 

been acquired, so in this case, the class has a high ability to distinguish between classes for a 

random dataset. Figure 43 shows the curve for three classes and almost all the classes, it tends to 

be close to 1 for both precision and recall measures.  In other words, this curve is an easier and 

faster visual way of analyzing the results in comparison to numerical results presented in the 

precision, recall, and f-score table.  

 

Figure 43. The precision-Recall curve for 3 classes- for 1st test area- RGB+RE+NIR dataset 
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4-1-2- RGB dataset  

The cross-validation result for this dataset are as follows in Table 15, this result is based on the 

cross-validation library in the scikit-learn package in python, and shows the optimized values of 

random forest parameters. Optimization is based on the accuracy of training data.  

 

Table 15. Cross-Validation result for RGB dataset 

N-Estimators 50 

Criterion Gini 

Max-features Auto 

Min-samples-leaf 10 

Min-samples-split 10 

Random state None 

Accuracy on training 90 % 

 

Classification of Unseen testing dataset- Python is in Figure 44 . As it is obvious, the river bed is 

partly detected in the classified map, and there seem to be lots of misclassification between 

vegetation and ground.  

 

Figure 44. Predicted (Segmented) image of the 1st Test area based on RGB dataset 
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Evaluation of classification goodness based on the confusion matrix for this dataset is presented 

in Table 16. High values are related to the diagonal ones, as expected, but there are also very high 

values in misclassification between water and vegetation, and also between vegetation and 

ground, very low values of recall for water and ground, and low precision of vegetation is proof 

for this misclassification in Table 17. All three classes have low values of f-score and the average f-

score value for all classes is 72%, which represents high problems in classification for this dataset.  

 

Table 16. Confusion matrix of 1st test area- RGB dataset 

 

 

Table 17. Accuracy parameters of 1st test area- RGB dataset 

 Precision Recall F-score AUC 

Water 0.88 0.58 0.70 0.85 

Vegetation 0.55 0.92 0.69 0.88 

Ground 0.96 0.70 0.81 0.98 

Average 0.80 0.72 0.72 0.85 
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Figure 45 shows the precision-recall curve for the results of this dataset, and as it is evident, curves 

tend to decrease immediately from 1, especially for water and vegetation. Ground class decreases 

a bit slower with respect to two other classes and it has better results of F-score based on Table 

17.  The easiest way to interpret this curve is to analyze its curviness, the more it is tending to run 

away from 1 value on both axes, the less the precision, recall values, and the less accurate is the 

classification.  

 

 

Figure 45. Precision-Recall curve of 1st test area- RGB dataset 

 

4-1-3- Red-Edge + NIR dataset  
Table 18 shows the results of Cross-validation for the Red-Edge + NIR dataset. Based on these 

results, 25 trees are used in a random forest and there is randomness in the selection of 

features.  

Figure 46 shows the classification of the unseen testing area based on the multispectral dataset. 

As it can be seen riverbed and wet areas are correctly detected with a high level of accuracy. There 

seem to be some misclassifications between vegetation and ground classes.  
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Table 18. Cross-Validation Result for Red-Edge + NIR dataset 

N-Estimators 25 

Criterion gini 

Max-features Auto 

Min-samples-leaf 10 

Min-samples-split 5 

Random state 42 

 

 

Figure 46. Predicted (classified) map of 1st test area- based on Red-Edge + NIR dataset 

 

Evaluation of classification goodness in Python is based on the confusion matrix in Table 19,  based 

on which misclassified pixels between vegetation and ground are present. This problem can also 

be derived from low precision in vegetation class and low recall in ground class in Table 20. As a 

result, the f-score of vegetation and ground is both low, compared to the water class. Because 

based on the results, all the pixels in the water class are water and almost all of the water pixels 

are detected and classified in the correct class.  
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Figure 47 is the area under curve representation. As it can be seen from the curve, the water class 

very high value of almost 1 and it tends to stay at 1 until the very end of it. Vegetation and ground, 

on the other hand, have problems in their precision-recall curve, and precision and recall values 

tend to decrease immediately for vegetation and ground respectively. Therefore, this dataset 

seems to perform very well for only wet area detection (water class), but considering the results 

of the other two classes, it fails to perform very well. 

 

Table 19. Confusion Matrix of 1st test area based on Red-Edge + NIR dataset 

 

 

Table 20. Accuracy parameters of 1st test area based on Red-Edge + NIR dataset 

 Precision Recall F-score AUC 

Water 0.99 0.99 0.99 0.99 

Vegetation 0.80 0.96 0.87 0.97 

Ground 0.93 0.70 0.80 0.95 
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Figure 47. Precision-Recall curve of 1st test area based on Red-Edge + NIR dataset 

 

 

Figure 48. Results of 1st test area using 3 different datasets 

 

Based on Figure 48, the results of all three datasets for 1st test area are presented.  In the RGB 

dataset precision and recall and consequently, f-score values are low for all classes. In the 
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multispectral dataset (RE+NIR) low recall has resulted for ground meaning that when it is ground, 

it has not been predicted as ground correctly, besides precision is low for vegetation meaning that 

most of the time that it is predicted as vegetation it is no vegetation.  

Using the combined dataset (RGB+RE+NIR) the same pattern has remained, so low precision for 

vegetation class and low recall for ground class. However, with a slight improvement of 5% 

multispectral data alone performed better with respect to mixed data and about 20% better with 

respect to RGB data alone regarding the average f-score value of all classes.  

Confusion of the vegetation and ground for the classifier can be a result of brownish and not 

completely green vegetation in the area during the winter season. Besides, the presence of 

shadows during the acquisition phase in April time has caused the main problems for the classifier 

to distinguish between ground and vegetation.  

4-2- Random Forest- April Epoch- Second Test Area  

4-2-1- RGB dataset 
 

The left image in Figure 49 shows the second test area selected to test the random forest classifier. 

This test area is another part of the Salbertrand area and the reason for using the second test area 

is to produce some generalized results regarding the performance of datasets. The right image in 

Figure 49 is the classified map of the area based on the RGB dataset. As it is shown, there seems 

to be a lot of misclassifications between all couples of classes.  

 

Figure 49. Left: 2nd test area. Right: classified map of 2nd test area 
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Figure 50. Validation polygons on the 2nd test area, Green (Vegetation), Blue (Water), Yellow (Ground) 

 

In Figure 50, validation polygons on the testing area are presented, with the assumption that 

classes of the validation polygons are determined for us. This step is for assessing the classification 

goodness.  

A numerical assessment of the results is in Table 21. Based on the results, there are high values of 

misclassification between vegetation\water, ground\water, vegetation\ground couples.  

 

 

 

Table 21. Confusion matrix of 2nd test area- RGB dataset 
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Table 22.  Accuracy parameters of 2nd test area- RGB 

 

Table 22 shows the accuracy measures of the second test area based on the RGB dataset. As it can 

be seen, there are low values of precision, recall, and consequently f-score for almost all the 

classes and the best-achieved result is 80%.   Figure 51 shows the precision-recall curve for this 

dataset and their immediate decrease from 1 reference value in the water class as well as the 

other two classes, which proves the presence of high misclassification between all the classes. 

  
 

 

 

 

 

 

 

 

 

 

 

 Precision Recall F-score AUC 

Water 0.92 0.72 0.81 0.95 

Vegetation 0.72 0.92 0.81 0.94 

Ground 0.74 0.76 0.75 0.92 

Average 0.79 0.80 0.79 0.94 

Figure 51. Precision-recall curves for 3 classes 
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4-2-2- Red-Edge + NIR dataset 
 

 

Figure 52. Left: 2nd Testing area- RE + NIR dataset. Right: segmented map of 2nd testing area based on RE + NIR dataset 

 

Figure 52 shows the results of the classification of the second test area based on only multispectral 

data alongside with testing area itself is shown. The testing area in this figure (left) is a false-color 

representation with Red-Edge in the Red channel and NIR in the Green channel.  

In the classified map, as it is evident visually, waterbed and wet areas are detected with almost 

good accuracy, but in the next figures also numerical measures are considered.  

 

 

 

 

 

 

 

 

 

 

 

Table 23. Confusion matrix of 2nd Testing area- RE + NIR dataset 
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In table 23, the confusion matrix for the second test area for this dataset is reported. There seems 

to be no problem for water class, water pixels are mostly in water class, and the number of 

vegetation and ground pixels inside water class is not that much, but misclassification between 

ground and vegetation is still present in this testing area. The precision-recall curve in Figure 53 

shows very high values of almost 1 for the water class. But for the other two classes, there is an 

immediate decrease in the AUC curve, which is proof of the classification problem. In Table 24, 

numerical results of precision, recall, and f-score for 3 classes prove our interpretation. Since there 

are low precision and recall values for vegetation and ground classes. But water class has higher 

precision and recall estimations.  

 

 

Figure 53.  Precision-recall curves for 3 classes 
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Table 24. Accuracy parameters of 2nd Testing area- RE + NIR dataset 

 Precision Recall F-score AUC 

Water 0.99 0.99 0.99 0.99 

Vegetation 0.87 0.70 0.78 0.95 

Ground 0.75 0.88 0.81 0.94 

Average 0.89 0.88 0.88 0.98 

 

4-2-3- RGB+ Red-Edge+ NIR dataset 
 

 

Figure 54. Left. 2nd testing area, RGB+ RE+ NIR dataset. Right: Segmented map of the 2nd testing area 

 

Figure 54 shows the false-color representation of the testing area and the classified map of the 

area. As it is evident, most of the pixels seem to be classified correctly. Waterbed and moist areas 

are detected accurately and there is not that much noise between vegetation and ground classes.  
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Table 25. Confusion Matrix of 2nd testing area, RGB+ RE+ NIR dataset 

 

 

  

 

 

 

 

 

 

 

 

 

 

With the same token and same interpretations, the confusion matrix in Figure 55, Table 25, and 

Table 26 shows that precision, recall, and F-score values of all classes are high in this dataset, 

meaning that most of the classified pixels are in the right class and most of the pixels of each class 

Figure 55. Precision- Recall curves 
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are detected. The precision-recall curve tends to stay 1 until the very end of it and the average F-

score for all classes is about 97%.  

 
Table 26. Accuracy Parameters of 2nd testing area, RGB+ RE+ NIR dataset 

 Precision Recall F-score AUC 

Water 0.99 0.98 0.98 0.99 

Vegetation 0.95 0.99 0.97 0.99 

Ground 0.97 0.94 0.95 0.98 

Average 0.97 0.97 0.97 0.99 

 

 

Figure 56. Results of 2nd test area using 3 different datasets 

 

Figure 56 shows the results of all three datasets for the second test area. As expected RGB dataset 

could not provide accurate results for any of the classes. Using a multispectral dataset (RE+NIR) 

good results have been achieved for the water class mostly because of not so shallow depth of 
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water and clear boundaries between water and other areas. Although lower precision and lower 

recall values have been produced for both vegetation and ground classes, meaning that most of 

the points that are classified as vegetation or ground are not actually vegetation and ground 

respectively and most of the actual vegetation and ground points have not been predicted 

correctly, it is obvious that these parameters are correlated to each other and the level of 

confusion for the classifier is very high between vegetation and ground classes. And as mentioned 

before the most logical explanation for this issue is the radiance values in the winter which do not 

have a sharp difference between ground and vegetation in winter. However, this problem has 

been mostly resolved by using all available bands together including RGB and RE, and NIR. 

Therefore, with the combined dataset (RGB+RE+NIR), precision, recall, and consequently f-score 

values and considerably high for all classes.  

4-3- Random Forest- April Epoch- Third Test Area  

4-3-1- RGB dataset 

Figure 57, the left map shows the true color representation of the third test area, and the right 

map shows the classified map of the third test area based on the RGB dataset.  Figure 58 shows 

the validation polygons of the three classes which have been used to perform the evaluation of 

goodness for the classified map. 

  

 

Figure 57. Left: 3rd testing area-RGB dataset. Right: segmented map of the 3rd testing area based on RGB dataset 
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Figure 58. Validation Polygons on the 3rd testing area. Green (Vegetation), blue (Water), Yellow (Ground) 

 

Table 27. Confusion Matrix of the 3rd testing area- based on RGB dataset 
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Based on the results reported in Table 28, Table 28, and Figure 59, there is misclassification 

between all of the classes. A large number of pixels are classified incorrectly, especially between 

the water\vegetation couple, and ground\vegetation couple of classes. The average F-score value 

produced for the water class is 58%, for vegetation class is 72% and for ground, class is 73%, and 

the overall average F-score for all classes is 68% which represents a very low value of precision 

and recall. The precision-recall curve has better results for the ground class compared to the two 

other classes, and the worst condition is related to the water class. Like the results of two previous 

test areas, the results of this test area proves that the RGB dataset cannot perform well neither 

for wet area detection nor for classification of two other classes. 

Table 28. Accuracy parameters of the 3rd testing area- based on RGB dataset 

 Precision Recall F-score AUC 

Water 0.83 0.44 0.58 0.89 

Vegetation 0.57 0.97 0.72 0.93 

Ground 0.98 0.59 0.73 0.99 

Average 0.78 0.69 0.68 0.87 

Figure 59. Precision-Recall curves 
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4-3-2- Red-Edge + NIR dataset 

 

 

Figure 60. Left: 3rd testing area- Red-Edge + NIR dataset. Right: classified map of the 3rd testing area based on Red-Edge + NIR 
dataset 

 

Figure 60, the left map shows a false-color representation of the third test area (Red-edge in the 

Red channel, and NIR in the green channel), and the right map shows the classified map of this 

area based on the Red-Edge and NIR dataset, in which blue represents water class, the yellow area 

is related to ground class and green classified areas are the vegetation class.  

Based on the classified map, the water class seems to have very accurate results. The classifier was 

able to predict the water pixel even in the most challenging parts of the area (wet areas among 

the vegetation). For vegetation and ground, on the other hand, there seem to be some noises and 

misclassifications. Table 29, shows a high number of correctly classified water pixels, but a high 

number of falsely classified pixels for vegetation and ground.  

Hence, as well as two other test areas, also in this test area, wet area and waterbed can be easily 

and accurately detected by Red-Edge and NIR dataset, but they have serious problems I 

classification of two other classes, it is worth mentioning that all accuracy measures of precision-

recall numerical values, their curve and confusion matrix prove each other’s results, which can be 

interpreted as their correct performance.  
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Table 29. Confusion Matrix of 3rd testing area- Red-Edge + NIR dataset 

Figure 61. Precision-recall curve 
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Based on the precision-recall curve in Figure 61, the water class achieves an exact value of 1 in 

both axes, but vegetation and ground classes suffer from a large amount of misclassification. Low 

precision and recall in these two classes in Table 30 is proof of this interpretation. 

 
Table 30. Accuracy Parameters of the 3rd testing area based on Red-Edge + NIR dataset 

 Precision Recall F-score AUC 

Water 0.99 0.99 0.99 0.99 

Vegetation 0.66 0.67 0.67 0.84 

Ground 0.64 0.64 0.64 0.83 

Average 0.75 0.75 0.75 0.91 

 

4-3-3- RGB+ Red-Edge+ NIR dataset 

 

 

Figure 62. Left: 3rd testing area- RGB+ RE+ NIR dataset. Right: Segmented map of 3rd testing area based on RGB+ RE+ NIR 
dataset 

 

The last set of analysis for the April epoch is depicted in this section. In Figure 62, the right map 

shows the false representation of the area. And the right map shows the classified map of the area 
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based on a dataset of all bands together. Table 31 depicts some problems in the classification 

results mostly in the water\vegetation and vegetation\ground couple. Figure 63 represents the 

precision-recall curve for three classes, in which again water class seems to perform better than 

the two other classes. 

 

 

 

 

 

 

 

 

 

 

Table 32, shows the numerical results of the classification, low precision for vegetation, and low 

recall for ground class, showing the classification problem between these two classes of vegetation 

and ground. This misclassification can be accounted for by the presence of shadow in the area 

during the acquisition phase and the composition of brownish vegetation with the ground surface 

in this epoch. The average f-score values achieved for water, vegetation, and ground are 89%, 

83%, and 84% respectively.  

Figure 64 shows the results of the third test area based on all three datasets. Like the other two 

test areas, the RGB dataset performs weakly in classification. In the multispectral dataset (RE+NIR) 

precision and recall are low for both vegetation and ground classes meaning that there is some 

misclassification between actual and predicted points, especially between vegetation and ground 

pixels. 

Table 31. Confusion Matrix of the 3rd testing area- RGB+ RE+ NIR dataset 
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Figure 63. Precision-Recall curves 

 
Table 32. Accuracy Parameters of the 3rd testing area based on RGB+ RE+ NIR dataset 

 Precision Recall F-score AUC 

Water 0.99 0.81 0.89 0.99 

Vegetation 0.72 0.99 0.83 0.98 

Ground 0.99 0.73 0.84 0.98 

Average 0.89 0.85 0.85 0.97 

 

Results for the water class are promising. Using a combined dataset (RGB+RE+NIR), for water class, 

high precision values have been generated representing that most of the pixels that are classified 

as water are water, and also low recall value (not so low) meaning that a portion of the pixels that 

are actually water has not been predicted as water correctly.  
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Figure 64. Results of 3rd test area using 3 different datasets 

 

To sum up, for the water class, most of the points in the water class are water but still, there are 

a few points of water points in other classes as wrongly classified points. 

Vegetation class resulted in low precision and high recall values meaning that points that are 

vegetation have been classified mostly correctly as vegetation but there are some other points in 

the vegetation class that belong to other classes and predicted incorrectly as vegetation which can 

be related to water points and explain lower recall value for water class. For ground class, high 

precision and low recall values have been observed showing that most of the points that are 

predicted as the ground are ground but there are some missing points from the ground which is 

present in other classes incorrectly, and it can be realized here that these missing points are most 

probably present in the vegetation class because of resulting low precision value for vegetation 

class. Generally, based on the average f-score value, the combined dataset (RGB+RE+NIR) 

performs better with respect to the other two datasets, but the results are still suffering from the 

grassy and brownish texture of the area during the winter season and even some shadow presence 

in the area. Table 33, shows all of the results for all classes for three test areas considering three 

datasets altogether, so it contains 9 scenarios. 
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Based on the results of Table 33, it can be recognized that generally RGB dataset cannot produce 

accurate results for classification purposes using a Random Forest classifier but adding data from 

other spectral bands to RGB dataset can improve classification results considerably.  

Regarding 3 analyzed test areas, water class almost got detected in multispectral and combined 

datasets in all cases, but misclassification between ground and vegetation classes are still present 

even in the multispectral dataset for 1st and 3rd test area, although for 2nd test area such a problem 

was not an issue and RGB+RE+NIR dataset using Random Forest classifier did a good job for 

 

 

classification. Following our aim of identifying wet areas effectively and as quickly as possible, It 

can be emphasized that the multispectral RE and NIR bands associated with RF are able to do so 

with an excellent degree of accuracy (in all 3 areas analyzed), with some errors mainly related to 

shadows due to the lack of light during the acquisition phase. 

Table 33. Results of all test areas for all available dataset 
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It is worth mentioning that multispectral data alone (Red-Edge and NIR) produce promising results 

for water class, so they can perform very well for wet area detection, but if detection of two other 

classes is also of importance for us, the combined dataset is preferable. 

The composition of RGB bands with the multispectral ones tends to improve the classification also 

of the emerged areas with the consequence of a worsening of the wet areas’ detection (especially 

in the 1st and 3rd sections). In general, the classified areas into Vegetation and Ground present 

classification problems, linked to the constitution of the riverbed and the non-evergreen 

vegetation present in the investigated area during the winter season. Such evidence could be 

severely limited in evergreen wooden areas or in summer, as will be exploited in the next stage.  

4-4- Random Forest- July epoch 

As discussed in the previous section, since our focus is to detect wet areas as well as the other two 

classes, the combined dataset of RGB+RedEdge+NIR have been selected as the best dataset for 

classification purpose. In addition, in this epoch, other features of elevation, spectral indices, and 

texture features have been added as the RF inputs.  

The used 27 features in this epoch are:  

a) Spectral features: Red, Green, Blue, RE, NIR, and thermal. 

b) Vegetation Indexes: NDVI, NDWI, NDRE, ARI, EVI2, SAVI, SIPI 

c) Texture features: Angular Second Moment, Contrast, Correlation, Variance, Inverse 

Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy, Difference 

Variance, Difference Entropy, Information Measures of Correlation, Maximal Correlation 

Coefficient. (ROBERT M. HARALICK, 1973) 

Hence, in this section, the results of the classification of one of the test areas in the July epoch 

with all 27 features are presented. Table 34 shows the results of precision, recall, and f-score for 

this step. As presented in chpater3, a selection process based on “Select from model” tool has 

been performed in this epoch to find a compromise between accuracy and number of features, 

and to detect the most important features for the classification purpose. Figure 65 shows the 

percentage of importance for each feature. As shown in this figure, spectral indices including 
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NDWI, EVI2, NDVI, SAVI, NDRE, and ARI are among the most effective features for classification, 

and from spectral bands, thermal and NIR and RE are the most important ones, and this is another 

proof for the fact that RGB dataset alone could not achieve to the acceptable classification 

accuracies, even in summer epoch.  

Then, based on a median threshold, only 14 features are used to implement the classification and 

reclassify the area based on selected features, which can be considered the most important 

features. The result of performance analyzers with all features and with only the important ones 

are presented in Table 34. It is worth mentioning that Based on these results, it can be interpreted 

that with importance analysis, we can produce even better results with a lower number of features 

because sometimes less important features even tend to decrease the accuracy score and 

removing them from classification, not only improves the classification results but also decrease 

the processing time and required power for the classifier.  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 65. Importance of all features in percentage 
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Table 34. Results of performance analysis with all features vs only selected features. 

 

In Figure 66, the top image shows the analyzed testing area in the summer epoch in RGB 

representation. The bottom image shows the result of classification for this area based on all the 

27 features. The predicted map of the area based on only 14 features is not reported here, since 

it has a similar map as Figure 66, as are their precision, recall, and F-score values.  

 

Figure 66. Classification of unseen dataset in summer epoch 

 Precision (%) Recall (%) F-score (%) 

27 features 91.6 91.5 91.3 

14 features 93.2 92.6 92.7 
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Chapter 5 

5- Conclusions and Suggestions 

Riparian river areas are of high importance for landscape and environmental planning. The river 

area and its surrounding landscape are highly effective in the judgments of decision-makers for 

climate change measures. Taking all these considerations into account, the classification of the 

riparian area of the Salbertrand river with emphasis on wet area detection is performed in this 

project.  

Starting from Raw UAV multispectral images, the orthophotos of the area based on the Structure 

from Motion approach are produced with a high level of accuracy at the centimeter level. The 

produced orthophotos were then used as inputs of the machine learning classifier named Random 

Forest.  

Following our aim of identifying wet areas effectively and as soon as possible, along with the 

classification of two other classes of vegetation and ground, it can be emphasized that the 

multispectral radiometric features associated with the Random Forest classifier were able to do 

so with an excellent degree of accuracy, either in the cold season in April time epoch or the 

summertime in July time epoch.  

There were some errors in all the scenarios mainly related to shadows due to the lack of light 

during the acquisition phase and constitution of the riverbed and the non-evergreen vegetation 

present in the investigated area in the April epoch. 
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In the July time epoch,  the composition of radiometric features with additional features, including 

elevation feature of the Normalized Digital Elevation Model (nDSM), thermal data acquired by a 

thermal camera, vegetation indexes of NDVI, NDWI, NDRE, ARI, EVI2, SAVI, SIPI, and textures 

features of Angular Second Moment, Contrast, Correlation, Variance, Inverse Difference Moment, 

Sum Average, Sum Variance, Sum Entropy, Entropy, Difference Variance, Difference Entropy, 

Information Measures of Correlation, Maximal Correlation Coefficient, tends to improve the 

classification results even more in respect to previous time epoch.  

Meanwhile, a compromise between the number of features and classification accuracy results in 

a more realistic conclusion about selected features. Based on the performed importance analysis, 

spectral indices including NDWI, EVI2, NDVI, SAVI, NDRE, and ARI are among the most effective 

features for classification, and from spectral bands, thermal and NIR and Red-Edge are the most 

important ones. By recognizing the most effective features, researchers can focus on the most 

important ones in their studies, to decrease the processing time and required power alongside 

achieving high accuracy for the classification.  

In future works, other machine learning methods, such as Support Vector Machine (SVM) and 

deep learning methods based on Convolutional Neural Networks (CNNs), can be taken into 

consideration to have a comprehensive analysis of the performance of different methods beside 

different datasets for wet area detection.  

In order to perform the classification with CNNs, one way is to take a model and train the model 

by our multispectral dataset of Salbertrand, but the problem with this action is overfitting. Another 

way would be to find a pretrained network with an available weighting matrix and test it with our 

Salbertrand dataset. But the problem with this method is that the given network should be trained 

on exactly similar data as ours considering the number of bands, wavelength, and all radiometric 

characteristics.  The third possible way is to find a set of datasets (images) and train the network 

with that unknown dataset and then use the Salbertrand data as testing data for the network 

(Ronald Kemker C. S., 2017), but similar to the previous method, also in this case we should have 

exactly same characteristics of the dataset as ours because the model will be trained on it and 

different characteristics of data may result is problematic results (Bin Pan, 2019). Because of lack 
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of processing power and time, CNNs have not been performed in this research work, but 

considering the performed vast literature review on it, it can be the focus of our future work. 
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