

Department of Environment, Land and Infrastructure Engineering

Master of Science in Petroleum Engineering

“MITIGATION OF SPURIOUS CURRENTS IN

MULTIPHASE FLOW SIMULATION AT LOW
CAPILLARY NUMBERS”

Supervisor:

Prof. Dario Viberti

Co-Supervisor:

Dott. Filippo Panini

Candidate:

ABDALLAH KAMEL MOHAMED AHMED ELHAMADY [S289668]

July 2022

ABDALLAH ELHAMADY
S289668

i

Acknowledgment

“And whatever you have of favor - it is from ALLAH” The Qur’an, Surah An-
Nahl, 53 (QS 16: 53)

All praises to ALLAH for all His blessings and for the strength He provided me
throughout the whole journey to reach this point, completing my master's degree.
My greatest appreciation and respect go to Prof. Dario Viberti, first for his
guidance, his encouragement, his knowledge and inspiring me during the whole
master program, and second for giving me the opportunity to do my thesis under
his supervision. Many special thanks go to my co-supervisor Dott. Filippo Panini
for his invaluable insights, continuous support, and patience. Also, I would like to
thank my friends and colleagues for their help and motivation.

Finally, I would like to express my very warm gratitude to my parents and siblings
for their infinite love and support, for whom I spare no effort to make them proud.
Nothing would have ever happened without you.

ABDALLAH ELHAMADY
S289668

ii

Table of contents

Table of contents ... ii

Index of figures .. iii

List of abbreviations .. iv

Nomenclature .. v

Abstract ... vii

Chapter 1: Introduction ... 1

Chapter 2: Literature review ... 3

2.1. Navier-Stokes Equations .. 3

2.1.1. Overview ... 3

2.1.2. Navier-Stokes equations derivation .. 5

2.1.3. Application of NSE in a Poiseuille flow between parallel plates 12

2.1.4. Application of NSE in a Poiseuille flow in a cylinder 14

2.1.5. Dimensionless incompressible NSE ... 16

2.2. Finite volume method .. 18

2.3. Lagrangian and Eulerian .. 21

2.3.1. Overview ... 21

2.3.2. Lagrangian Method (surface tracking method) ... 21

2.3.3. Eulerian Method (volume tracking method) ... 21

2.3.4. NSE in Lagrangian formulation .. 22

2.4. Volume-of-fluid (VOF) method... 24

2.5. Continuum Surface Force (CSF) ... 26

2.6. OpenFOAM ... 28

Chapter 3: Methodology ... 32

Chapter 4: Simulation steps and results .. 36

Chapter 5: Conclusion... 44

Appendix ... 47

ABDALLAH ELHAMADY
S289668

iii

Index of figures

Fig. 1. Stress components on an infinitesimal rectangular (Salih, 2012)

Fig. 2. Shear Stress for Newtonian fluids

Fig. 3. a Poiseuille flow between parallel plates

Fig. 4. a Poiseuille flow in a cylinder

Fig. 5. Meshes and control volumes of two types of FVM. The unknowns are
associated to the black nodes.

Fig. 6. Mesh and dual mesh in vertex-centred FVM (a,b) and cell-centred FVM
(c,d). Control volumes are defined by the grey-coloured areas (Aleksendrić et al.,
2015)

Fig. 7. Volume fractions over a computational domain

Fig. 8. General structure of an OpenFOAM case

Fig. 9. A stationary droplet case study (before relaxation)

Fig. 10. Relaxation of the static droplet

Fig. 11. Assigning the oil droplet (blue) into the continuous water phase (Red)

Fig. 12. Decomposition the computational domain over 4 processors

Fig. 13. Evolution of the VOF index function (α) over a cross section, indicating

the interface sharpening when cAlpha=0

Fig. 14. Evolution of the VOF index function (α) over a cross section, indicating

the interface sharpening when cAlpha=1

Fig. 15. Evolution of the VOF index function (α) over a cross section, indicating

the interface sharpening when cAlpha=2

Fig. 16. Evolution of the maximum magnitude velocity through the computational
domain, for cAlpha=0, 1 and 2

Fig. 17. Evolution of the maximum magnitude velocity through the computational
domain, without (m=0) and with smoothing (m=2)

Fig. 18. Computation of the Laplace pressure over a cross section in case of no
smoothing m=0 (evaluated at cAlpha=1)

Fig. 19. Computation of the Laplace pressure over a cross section in case of
smoothing m=2 (evaluated at cAlpha=1)

ABDALLAH ELHAMADY
S289668

iv

List of abbreviations

CFD Computational Fluid Dynamics

OpenFOAM Open Field Operation And Manipulation

VOF Volume Of Fluid Method

CMI Clay Mathematics Institute

NSE Navier-Stokes Equations

FVM Finite Volume Method

FEM Finite Element Method

FDM Finite Difference Method

CSF Continuum Surface Force

GUI Graphical User Interface

DNS Direct Numerical Simulations

LES Large Eddy Simulations

RANS Reynolds Averaged Navier-Stokes

IC Initial Conditions

BC Boundary Conditions

ABDALLAH ELHAMADY
S289668

v

Nomenclature

t time, s

𝜌 fluid mass density, kg/m3

µ viscosity, Pa.s

�⃗⃗� fluid velocity vector, m/s

�̂� normal unit vector

Ω control volume

∂Ω control surface

Kn Knudsen number, dimensionless

λ mean free path of the fluid particles at the scale of interest, m

∇ gradient differential operator

𝑔 gravitational acceleration, m/s2

⨂ dyadic product

𝑃 hydrostatic pressure, Pa

𝜎 stress tensor [matrix]

𝜎𝑖𝑖 normal stress, Pa

𝜏𝑖𝑗 shear stress, Pa

U characteristic flow velocity scale, m/s

L characteristic flow length scale, m

Re Reynold Number, dimensionless

Q flow rate, m3/s

𝑢𝑚𝑎𝑥 maximum velocity, m/s

𝑢 average velocity, m/s

𝛼 VOF index function, fraction

�̃� smoothed VOF index function, fraction

Nc Capillary Number, dimensionless

𝑢𝑑 Darcy velocity, m/s

κ curvature of the interface

𝐴 area, m2

https://www.britannica.com/science/gradient-mathematics
https://www.britannica.com/science/differential-operator

ABDALLAH ELHAMADY
S289668

vi

𝑆 square side length, m

𝑅 radius, m

𝐟𝐬 force term due to the interfacial tension, N

𝑢𝑟 relative compression velocity, m/s

𝑢𝑤 wetting fluid velocity, m/s

𝑢𝑛𝑤 nonwetting fluid velocity, m/s

𝑛𝑓 normal vector to the cell face

𝐶∝ an adjustable coefficient indicating the level of the interface compression

𝐹 volume flux across the cell face, m3/s

𝑆𝑓 cell surface area, m2

𝛾 surface tension, N/m

𝑝𝑒𝑥𝑎𝑐𝑡 exact solution of Laplace pressure, Pa

𝑝𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 numerical solution of Laplace pressure, Pa

ABDALLAH ELHAMADY
S289668

vii

Abstract

One of the most challenging issues in computational modelling of a multiphase
flow is spurious currents. Spurious currents arise by the errors in the interface
curvature computations between two fluids in the computational domain. Being
predominant in porous media at small capillary numbers, they might cause
numerical instabilities and compromise the quality of the results in terms of fluid
velocity and capillary pressure within the numerical simulation. In this work, as an
attempt to fix this issue, we investigate and implement the solutions proposed in
the literature to develop a set of optimal computational settings that mitigate their
impact. First, we provide numerical simulations for the classical case of a circular
stationary droplet of oil relaxing from an initial square shape surrounded by water
using the open-source finite-volume computational fluid dynamics (CFD) code
OpenFOAM. The investigation is conducted setting the interfacial compression
coefficient (Cα) equal to zero (no interface compression) and higher than zero.
Then, in order to reduce spurious currents, the volume of fluid (VOF) index
function is smoothed by applying the so-called smoother ‘Laplacian filter’ aiming

to decrease the curvature computation errors. It was proved that applying the
Laplacian filter twice smooths sufficiently the index function. Since this filter is not
implemented in the OpenFOAM library, an external code found in the literature is
used and linked to the VOF solver. Furthermore, an error analysis on the accuracy
of the numerical solution of the Laplace pressure for a stationary droplet with
respect to the exact (analytical) solution of the Laplace pressure for a sphere has
been performed. The obtained results show that introducing the interface
compression has led to a sharp (thinner) interface, but increased the magnitude of
spurious currents which has been reduced later by almost one order of magnitude
when the smoother was applied. The error in the Laplace pressure calculations has
also decreased by almost 36%. This work demonstrates the potential and stability
of the proposed computational rules to adequately reduce the magnitude of spurious
currents when simulating multiphase flow phenomena in real porous media.

ABDALLAH ELHAMADY
S289668

1

Chapter 1: Introduction

Due to the relevance and complex nature of multiphase flows in porous media,
numerical simulations, and particularly computational fluid dynamics (CFD), have
rapidly arisen as a promising and powerful tool to understand multiphase flows
(Vachaparambil et al., 2019) in most oil and gas applications, such as natural gas
storage, geological carbon dioxide storage, enhanced oil recovery (EOR) (Raeini et
al., 2012). One of the key parameters of concern in numerical simulations is
modelling the interface between two immiscible fluids. To do so, CFD strategies
can be broadly divided into two categories: Lagrangian and Eulerian
(Vachaparambil et al., 2019). Both have been used with considerable success, each
with its own advantages and disadvantages (Mei, 2001). Lagrangian methods (or
Front-Tracking methods) consider each one of the fluid particles as a discrete
phase, track them and describe the variations in physical quantities (such as density,
velocity, pressure, temperature, stresses, … etc.) as functions of time around each
individual particle along its own path. Therefore, they accurately resolve the
interface shape and apply the interfacial boundary conditions at the exact position
of the interface (Francois, 1998). However, it is a bit complicated to use them for
problems with large interface movements and severe topological changes. On the
other hand, Eulerian methods (or Front-Capturing methods, like volume-of-fluid
(VOF) method and Level-Set (LS) method) are ideally suited to handle such
complex problems (Hoang et al., 2013). Variations in the physical quantities are
described, as a function of time, at fixed points by which different particles pass at
different times. Eulerian methods, in contrast to Lagrangian ones, employ a fixed
grid and the fluid interface is not explicitly tracked but reconstructed from
appropriate field variables (Francois, 1998).

Despite its simplicity, VOF method is considered one of the most robust methods
used in multiphase simulations (Hirt et al., 1979). Simple, because it is based on
the concept of the volume of fluid index function (α) in each cell of the
computational domain, where 0 ≤ α ≤ 1. A value of 0 indicates one phase and a

value of 1 indicates the second phase. Values between 0 and 1 refer to the fluid
interface, where both phases are present. It is such popular that it is implemented
in many CFD packages: both commercial and open-source ones.

A well-known associated problem is spurious currents, which have been recently
an active topic of research (Vachaparambil et al., 2019). Spurious currents lead to
unphysical fluid dynamics which adversely affect the predictive capability of these
simulations and compromise the quality of the obtained results, like fluid velocity
and capillary pressure. Unfortunately, they are predominant in low capillary
number flows which typically characterize the porous media problems of our
interest. They are mainly induced due to the numerical errors in the surface tension
calculations in Front-Capturing methods, such as volume-of-fluid (VOF) method.
At the expense of significant numerical cost, special treatment procedures must be

ABDALLAH ELHAMADY
S289668

2

followed to reduce spurious currents and thus accurately model low capillary
number flows. Two techniques can be used to treat this problem, one is using an
extra different field variable (like a height-function or a level-set function) only for
calculating the interface curvature. This should help accurately calculate the surface
tension. The other is smoothing the VOF index function over the interface region.
This would result in avoiding the sharp steep gradient of the VOF index function
over this thin interface region, and hence improving the surface tension
calculations. Consequently, spurious currents would significantly decrease.

One of the most commonly used methods to model surface tension forces is the
Continuum Surface Force (CSF). CSF, which is implemented in openFOAM,
represents the fluid interface as a transition region and thus alleviates these previous
interface topology constraints without sacrificing accuracy.

This study is organized as follows. We start with a short description for the theories
behind OpenFOAM. Then, we present a well-characterized benchmark (static
droplet) as an attempt to find the optimal computational rules that can be extended

to real porous media.

ABDALLAH ELHAMADY
S289668

3

Chapter 2: Literature review

2.1. Navier-Stokes Equations

2.1.1. Overview

Despite the fact that the motion of fluids has always been of the utmost importance
for human beings, the evolution of mathematical models only emerged after the
industrial revolution at the end of 19th century. The first appropriate description of
the viscous fluid motion had been proposed in “Principia” paper written by Sir Isaac
Newton (1687), presenting the dynamic behavior of fluids under constant viscosity.
Over time, Daniel Bernoulli (1738) and Leonhard Euler (1755) had provided an
equation for the inviscid fluid flow, known as Euler’s equation. These Euler’s

equations, which predate the Navier–Stokes equations by many decades, do not
account for the viscosity effects. Then, Navier-Stokes equations were developed
over several decades. Claude Louis Marie Henri Navier (1827), Augustin Louis
Cauchy (1828), Siméon Denis Poisson (1829), and Adhémar St.Venant (1843) had
all carried out independently their studies on Euler’s equations introducing the

viscous (frictional) force. In 1845, Sir George Gabriel Stokes had derived the
motion equation for a viscous flow by adding Newtonian viscous terms. Finally,
the Navier-Stokes Equations had been brought to their final form which has been
used to provide numerical solutions for fluid flow ever since (White, 1991) (Stokes,
1851).

The Navier–Stokes equations are considered the heart of fluid flow modelling
(Heywood, 2006). When solved for a certain set of boundary conditions, like walls,
inlets and outlets, they can predict both the fluid pressure and velocity for a given
geometry. They can be used to model ocean currents, the weather, water flow in a
pipe, air flow around a plane wing and many other fluids accurately over a wide
range of conditions. Since they provide a rigorous analysis for the physics of many
phenomena of scientific and engineering interest, they can help with the design of
aircraft and cars, the analysis of pollution, the blood flow studies, the power stations
design, ...etc. Moreover, they can be used to model magneto-hydrodynamics if
coupled with Maxwell's equations.

The Navier-Stokes equations mainly govern the motion of fluids and describe how
the velocity, pressure, temperature, and density of a moving fluid are related. They
are just extensions of the Euler Equations, but include the viscosity effects on the
flow. They are a set of coupled partial differential equations (not ordinary ones) and
theoretically could be solved for a given flow problem using calculus methods. For
instance, it is relatively easy to solve these equations for a flow between two
parallel plates or for the flow in a cylinder, as we shall see. But, in practice and due
to their complex nonlinearity, these equations are too difficult to be solved
analytically. The fundamental issues of uniqueness and smoothness of their
physically reasonable solutions in three-dimensional cases actually are relatively

https://en.wikipedia.org/wiki/Model_(abstract)
https://en.wikipedia.org/wiki/Ocean_current
https://en.wikipedia.org/wiki/Airfoil
https://en.wikipedia.org/wiki/Scientific
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Magnetohydrodynamics
https://en.wikipedia.org/wiki/Maxwell%27s_equations
https://en.wikipedia.org/wiki/Magnetohydrodynamics
https://www.grc.nasa.gov/www/k-12/airplane/pressure.html
https://www.grc.nasa.gov/www/k-12/airplane/temptr.html
https://www.grc.nasa.gov/www/k-12/airplane/fluden.html
https://www.grc.nasa.gov/www/k-12/airplane/state.html
https://www.grc.nasa.gov/www/k-12/airplane/eulereqs.html
https://www.grc.nasa.gov/www/k-12/airplane/airsim.html

ABDALLAH ELHAMADY
S289668

4

challenging and still are open problems (Friedlander, 2006). Even, the Clay
Mathematics Institute (CMI) of Cambridge in Massachusetts, U.S. has considered
it as a “Millennium Problem”, one of seven mathematical problems selected by the
institute, and has offered a USD 1-million award for its solution (Mclean, 2012)
(claymath.org).

In the past, engineers used to make further approximations and simplifications to
the equations till they had a set of equations that they could solve. Recently, super
speed computers have been used to solve approximations to the equations using a
set of different techniques like finite difference, finite element, finite volume, and
spectral, referring to Computational Fluid Dynamics (CFD) (grc.nasa.gov/www/k-
12/rocket/nseqs.html).

The Navier-Stokes equations are based on two assumptions. First, the fluid is
a continuum, a continuous substance rather than discrete particles. Second, the
quantities of interest like pressure, temperature, density and flow velocity are
sufficiently smooth or, in other words, weakly differentiable. In such case, the
representative physical length scale of the system is much larger than the mean free
path of the fluid molecules. The ratio of the mean free path of the fluid particles at
the scale of interest, λ, to the representative length scale of the system, L, is referred

as the Knudsen number, Kn = λ/L. As long as Kn < 0.01, the NS equations have
been found valid. For 0.01< Kn <0.1, they may be still used, but require special
boundary conditions. For Kn > 0.1, they become invalid anymore. For instance, at
the ambient pressure of 1 atm, the mean free path of air molecules – is 68
nanometers. The characteristic length of your model should therefore be larger than
6.8 μm so that the NSE can be valid.

Furthermore, the Navier–Stokes equations have been recently used extensively
in video games and computer animation industry in order to model a wide variety
of natural phenomena, such as simulations of small-scale gaseous fluids (fire and
smoke) (Stam, 2003).

https://www.britannica.com/science/Millennium-Problem
https://en.wikipedia.org/wiki/Video_games

ABDALLAH ELHAMADY
S289668

5

Mathematically, the Navier–Stokes equations are expressed based on the principles
of conservation of mass, conservation of momentum and conservation of energy.
Sometimes, they are accompanied by an equation of state relating the pressure,
temperature and density of the gas (McLean, 2012).

Conservation of Mass: Continuity Equation
Conservation of Momentum: Newton’s Second Law
Conservation of Energy: first Law of thermodynamics (referred as Energy
Equation)

There are various ways for deriving these equations. In this work, the classical one
of continuum mechanics will be used. Since we consider an isothermal flow, a
constant-temperature flow, the Navier-Stokes equations are reduced to represent
only the first two conservation laws – the conservation of mass and the conservation
of momentum.

Firstly, let us consider a finite arbitrary volume, called a control volume, over
which these principles can be applied. This control volume is denoted by Ω and its
bounding control surface is ∂Ω. Ω must be a reasonably large finite volume of the

fluid.

2.1.2. Navier-Stokes equations derivation

2.1.2.1. Continuity equation

The mass continuity equation, or simply the continuity equation, states the
preservation of mass. The mass in the control volume cannot neither be created nor
destroyed, i.e. the mass flow difference through the system between inlet and outlet
is zero.

To formulate this definition mathematically, we proceed as follows
𝜕

𝜕𝑡
∫ 𝜌𝑑𝑉

Ω⏟
𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠

𝑖𝑛 𝑡𝑖𝑚𝑒

+ ∮ 𝜌�⃗⃗�

𝜕Ω
�̂�𝑑𝑆⏟

𝐹𝑙𝑜𝑤 𝑜𝑓 𝑚𝑎𝑠𝑠

𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠

 = 0⏟
𝑚𝑎𝑠𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑟𝑒𝑎𝑡𝑒𝑑
𝑜𝑟 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑

 Eq. (1)

https://en.wikipedia.org/wiki/Conservation_of_momentum
https://en.wikipedia.org/wiki/Control_volume

ABDALLAH ELHAMADY
S289668

6

where

 t is time

𝜌 is the fluid mass density

�⃗⃗� is the fluid velocity vector

�̂� is the normal unit vector

Since the boundaries are fixed and do not change in time:
𝜕

𝜕𝑡
∫ 𝜌𝑑𝑉

Ω
= ∫

𝜕

𝜕𝑡
𝜌𝑑𝑉

Ω
 = ∫ 𝜕𝜌

𝜕𝑡
𝑑𝑉

Ω
 Eq. (2)

The surface integral is transcribed into a volume integral using divergence theorem
(Gasuss’ theorem), based on the concept that all the mass that diverges out of the
control volume must inherently pass by the boundary of the control volume at a
certain time:

∮ 𝜌�⃗�

𝜕Ω
�̂�𝑑𝑆 = ∫ 𝛻. (𝜌�⃗⃗�)

Ω
𝑑𝑉 Eq. (3)

where

𝛻 indicates the gradient differential operator

Substituting from Eq. (2) and (3) into Eq. (1):

∫
𝜕𝜌

𝜕𝑡
𝑑𝑉

Ω
+ ∫ 𝛻. (𝜌�⃗⃗�)

Ω
𝑑𝑉 = 0

By integration:
𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌�⃗⃗�) = 0 Eq (4)

For an incompressible fluid, i.e. 𝜌 is constant, Eq (4) becomes

∇. �⃗⃗� = 𝟎 Eq (5)

2.1.2.2. Momentum conservation

The conservation of momentum implies that the momentum in a control volume is
kept constant. According to Newton’s second law, mass times acceleration is equal

to the sum of forces that act on a volume unit.

https://www.britannica.com/science/gradient-mathematics
https://www.britannica.com/science/differential-operator

ABDALLAH ELHAMADY
S289668

7

The total force F acting on the control volume consists of two parts: surface and
volume (body) forces:

∑𝐹 = 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝐹𝑣𝑜𝑙𝑢𝑚𝑒

The surface forces are formally expressed in terms of the stress tensor matrix:

 𝜎 ⏟
𝑆𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟

= (

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

)

Fig. 1. Stress components on an infinitesimal rectangular (Salih, 2012)

There are two contributions to this stress tensor matrix:

- a contribution due to normal forces resulting from pressure gradients (ex.
pressure), referring to the diagonal components of the stress tensor
- a contribution due to shear forces resulting from gradients in the fluid flow
velocity (ex. viscous shear), referring to the non-diagonal components of the stress
tensor.

The volume forces are those forces exerted on the fluid by external fields like
gravity.

ABDALLAH ELHAMADY
S289668

8

This is expressed mathematically as follows

𝜕

𝜕𝑡
∫ 𝜌�⃗⃗� 𝑑𝑉

Ω
+ ∮ 𝜌 (�⃗⃗� ⨂�⃗⃗�

𝜕Ω
). �̂�𝑑𝑆⏟

Nonlinear advection term

 = ∮ 𝝈. �̂�𝑑𝑆

𝜕Ω⏟
 Surface forces

(Normal and Shear)

 + ∫ 𝜌𝑔𝑑𝑉

Ω⏟
 Volume (Body)forces

 Eq. (6)

where

𝑔 is the gravitational acceleration

⨂ represents the dyadic product

The stress tensor matrix is split up into two terms:

 𝜎 ⏟
𝑆𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟

= 𝜎𝐼⏟
𝐼𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑡𝑒𝑟𝑚

+ 𝜎𝐷⏟
𝐷𝑒𝑣𝑖𝑎𝑡𝑜𝑟𝑖𝑐 𝑡𝑒𝑟𝑚

 𝜎 ⏟
𝑆𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟

= −(
𝑃 0 0
0 𝑃 0
0 0 𝑃

) + (

𝑃 + 𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝑃 + 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝑃 + 𝜎𝑧𝑧

)

where 𝑃 is the hydrostatic pressure: 𝑃 = -
1

3
 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)

ABDALLAH ELHAMADY
S289668

9

Considering a Newtonian fluid where the stress tensor is assumed to be linearly
related to the rate-of-strain tensor. For example, in the 1-D case: 𝜏𝑦𝑥= µ

𝜕𝑢𝑥

𝜕𝑦

In the general case:

𝜏𝑖𝑗 = µ (
𝜕𝑢𝑖
𝜕𝑗
+
𝜕𝑢𝑗

𝜕𝑖
)

Fig. 2. Shear Stress for Newtonian fluids

Thus, the stress tensor can be reformulated as follows:

𝜎

= −(
𝑃 0 0
0 𝑃 0
0 0 𝑃

) + { (

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

)

+

(

−
1

3
 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧) 0 0

0 −
1

3
 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧) 0

0 0 −
1

3
 (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧))

}

ABDALLAH ELHAMADY
S289668

10

= −(
𝑃 0 0
0 𝑃 0
0 0 𝑃

) +

{

(

 µ(

2 µ
𝜕𝑢𝑥
𝜕𝑥

 µ(
𝜕𝑢𝑥
𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑥
) µ(

𝜕𝑢𝑥
𝜕𝑧
+
𝜕𝑢𝑧
𝜕𝑥
)

𝜕𝑢𝑦

𝜕𝑥
+
𝜕𝑢𝑥
𝜕𝑦
) 2 µ

𝜕𝑢𝑦

𝜕𝑦
 µ(
𝜕𝑢𝑦

𝜕𝑧
+
𝜕𝑢𝑧
𝜕𝑦
)

 µ(
𝜕𝑢𝑧
𝜕𝑥
+
𝜕𝑢𝑥
𝜕𝑧
) µ(

𝜕𝑢𝑧
𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑧
) 2 µ

𝜕𝑢𝑧
𝜕𝑧)

+

(

−
1

3
 (2 µ

𝜕𝑢𝑥
𝜕𝑥
+ 2 µ

𝜕𝑢𝑦

𝜕𝑦
+ 2 µ

𝜕𝑢𝑧
𝜕𝑧
) 0 0

0 −
1

3
 (2 µ

𝜕𝑢𝑥
𝜕𝑥
+ 2 µ

𝜕𝑢𝑦

𝜕𝑦
+ 2 µ

𝜕𝑢𝑧
𝜕𝑧
) 0

0 0 −
1

3
 (2 µ

𝜕𝑢𝑥
𝜕𝑥
+ 2 µ

𝜕𝑢𝑦

𝜕𝑦
+ 2 µ

𝜕𝑢𝑧
𝜕𝑧
)
)

}

= −(
𝑃 0 0
0 𝑃 0
0 0 𝑃

) + µ

(

2
𝜕𝑢𝑥

𝜕𝑥

𝜕𝑢𝑥

𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑥

𝜕𝑧
+
𝜕𝑢𝑧

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑥
+
𝜕𝑢𝑥

𝜕𝑦
2
𝜕𝑢𝑦

𝜕𝑦

𝜕𝑢𝑦

𝜕𝑧
+
𝜕𝑢𝑧

𝜕𝑦

𝜕𝑢𝑧

𝜕𝑥
+
𝜕𝑢𝑥

𝜕𝑧

𝜕𝑢𝑧

𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑧
2
𝜕𝑢𝑧

𝜕𝑧)

−

2

3
µ

(

𝜕𝑢𝑥

𝜕𝑥
+
𝜕𝑢𝑦

𝜕𝑦
+
𝜕𝑢𝑧

𝜕𝑧
0 0

0
𝜕𝑢𝑥

𝜕𝑥
+
𝜕𝑢𝑦

𝜕𝑦
+
𝜕𝑢𝑧

𝜕𝑧
0

0 0
𝜕𝑢𝑥

𝜕𝑥
+
𝜕𝑢𝑦

𝜕𝑦
+
𝜕𝑢𝑧

𝜕𝑧)

𝜎⏟
𝑆𝑡𝑟𝑒𝑠𝑠 𝑡𝑒𝑛𝑠𝑜𝑟

 = −𝑝I⏟
𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

 + µ(𝛻�⃗⃗� + (𝛻�⃗⃗�)𝑇)⏟
𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

−
2

3
µ(𝛻. �⃗⃗�)𝐈⏟

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠⏟
𝜎𝐷

 Eq. (7)

Knowing that “momentum” is nothing else the product of the mass density and the
flow velocity (𝜌�⃗⃗�), we solve the integration in Eq. (6) as we did before in the
continuity equation. Then, substituting from Eq. (7) gives:

𝜕(𝜌�⃗⃗�)

𝜕𝑡
+ 𝛻. (𝜌�⃗⃗� × �⃗⃗�)= -∇p + µ(𝛻�⃗⃗� + (𝛻�⃗⃗�)𝑇) −

2

3
µ𝛻. ((𝛻. �⃗⃗�)𝐈) + 𝜌𝑔

where I is the 3 × 3-dimensional unit matrix.

ABDALLAH ELHAMADY
S289668

11

While,

 µ(𝛻�⃗⃗� + (𝛻�⃗⃗�)𝑇) = µ𝛻2�⃗⃗� +µ∇(∇.�⃗⃗�)

where 𝛻2 is the Laplacian operator.

Hence,

𝜕(𝜌�⃗⃗�)

𝜕𝑡
+ 𝛻. (𝜌�⃗⃗� ⨂�⃗⃗�)⏟
𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

= −∇p ⏟
𝑆𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑡𝑒𝑟𝑚

 + µ𝛻2�⃗⃗� +
1

3
µ𝛻. ((𝛻. �⃗⃗�))⏟

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑡𝑒𝑟𝑚

+ 𝜌𝑔⏟
𝑽𝒐𝒍𝒖𝒎𝒆 (𝑩𝒐𝒅𝒚)𝒇𝒐𝒓𝒄𝒆

Eq. (8)

Eq. (8) is among of the most generalized forms for the Navier-Stokes equations
written in a vector form.

For an incompressible fluid flow:
𝜌 is constant, and
the divergence of the velocity is equal to zero. So, we can remove the term
1

3
µ𝛻. ((𝛻. �⃗⃗�)) from the viscous force term.

Therefore, Eq. (8) reduces to:

𝜌 [
𝜕 �⃗⃗�

𝜕𝑡
+ �⃗⃗� . 𝛻 �⃗⃗�] = −𝛻𝑝 + µ𝛻2 �⃗⃗� + 𝜌𝑔 Eq. (9)

ABDALLAH ELHAMADY
S289668

12

2.1.3. Application of NSE in a Poiseuille flow between parallel plates

For an incompressible, isothermal and Newtonian fluid flow, Navier-Stokes
equations are stated as:

∇. �⃗⃗� = 0

𝜌 [
𝜕 �⃗⃗�

𝜕𝑡
+ �⃗⃗� . 𝛻 �⃗⃗�] = −𝛻𝑝 + µ𝛻2 �⃗⃗� + 𝜌𝑔

Fig. 3. a Poiseuille flow between parallel plates

Assumptions:

- Incompressible fluid
- Steady-state flow (i.e. 𝜕 �⃗⃗�

𝜕𝑡
 = 0)

- Negligible gravity effects (i.e 𝜌𝑔 ≈ 0)
- Laminar flow (i.e. 𝑢𝑦 = 0)
- Constant cross-section in X (i.e. 𝜕𝒖𝒙

𝜕𝑥
 = 0)

These assumptions lead to:

−
𝜕𝑝

𝜕𝑥
+ µ

𝜕

𝜕𝑦
 (
𝜕𝑢𝑥
𝜕𝑦
) = 0

−
𝜕𝑝

𝜕𝑦
= 0

Boundary conditions are defined as:

𝑢𝑥 = 0 at y =0
𝑢𝑥 = 0 at y =H

Hence,

 𝑢𝑥(y) = 1

2µ
 y (y - H) ∆𝑝

𝐿

ABDALLAH ELHAMADY
S289668

13

Each of rate, maximum velocity and average velocity can be calculated as
follows:

Q = − 𝐻3

12µ
 ∆𝑝
𝐿

𝑢𝑚𝑎𝑥 = − 𝐻2

8µ
 ∆𝑝
𝐿

𝑢 = − 𝐻2

12µ
 ∆𝑝
𝐿

ABDALLAH ELHAMADY
S289668

14

2.1.4. Application of NSE in a Poiseuille flow in a cylinder

For an incompressible, isothermal and Newtonian fluid flow, Navier-Stokes
equations are stated as:

∇. �⃗⃗� = 0

𝜌 [
𝜕 �⃗⃗�

𝜕𝑡
+ �⃗⃗� . 𝛻 �⃗⃗�] = −𝛻𝑝 + µ𝛻2 �⃗⃗� + 𝜌𝑔

 Fig. 4. a Poiseuille flow in a cylinder

Assumptions:

- Incompressible fluid
- Steady-state flow (i.e. 𝜕 �⃗⃗�

𝜕𝑡
 = 0)

- Negligible gravity effects (i.e. 𝜌𝑔 ≈ 0)
- 1-D radial symmetry
- Laminar flow (i.e. 𝑢𝑟 = 0)
- Constant cross-section in X (i.e. 𝜕𝒖𝒙

𝜕𝑥
 = 0)

These assumptions lead to:

−
𝜕𝑝

𝜕𝑥
+ µ

1

𝑟

𝜕

𝜕𝑟
 (𝑟
𝜕𝑢𝑥
𝜕𝑟
) = 0

−
𝜕𝑝

𝜕𝑟
= 0

Boundary conditions are defined as:

𝑢𝑥 = 0 at r =R

Hence,
 𝑢𝑥(r) = 1

4µ
 (𝑟2 - 𝑅2) ∆𝑝

𝐿

ABDALLAH ELHAMADY
S289668

15

Each of rate, maximum velocity and average velocity can be calculated as
follows:

Q = − 𝜋𝑅

4

8µ
 ∆𝑝
𝐿

𝑢𝑚𝑎𝑥 = − 𝑅2

4µ
 ∆𝑝
𝐿

𝑢 = − 𝑅2

8µ
 ∆𝑝
𝐿

ABDALLAH ELHAMADY
S289668

16

2.1.5. Dimensionless incompressible NSE

As a standard procedure, when we deal with differential equations, the first step is
often to redefine them into a dimensionless form. And there are many reasons
behind that. “Small” and “large” are meaningless for dimensional values; because
it is always possible to change the system of units used. Also, nature knows no
units.
Dimensionless Navier-Stokes equations are considered a powerful tool that can be
used to generalize the fluid flow behavior into nearly all systems and domains. They
are even especially suited for mathematical analysis and numerical simulation
which are mainly based on dimensionless equations.

To derive the dimensionless Navier-Stokes equations, the following
quantities/scaling parameters

• U [m/s]– the characteristic flow velocity scale
• L [m]– the characteristic flow length scale

are introduced.

By rescaling the space and time variables, and even the gradient operator, one
obtains:
 �⃗⃗� ∗ =

�⃗⃗�

𝑈
 , 𝑝∗ = 𝑝

1

𝜌𝑈2
 , 𝑔*= 𝑔

𝐿

𝑈2
 ,

𝜕

𝜕𝑡∗
=

𝐿

𝑈

𝜕

𝜕𝑡
 , 𝛻∗ = 𝐿𝛻

Rearranging the above relations and inserting into Eq. (9) to obtain:

 ρ[𝑈
2

𝐿

𝜕�⃗⃗� ∗

𝜕𝑡∗
 + 𝑈 �⃗⃗� ∗. 𝛻

∗

𝐿
 (𝑈 �⃗⃗� ∗)] = - 𝛻

∗

𝐿
 𝑝∗ 𝜌𝑈2 + µ 𝛻

∗2

𝐿2
𝑈 �⃗⃗� ∗ + ρ 𝑔∗ 𝑈

2

𝐿

Dividing both sides by 𝜌 𝑈

2

𝐿
 yields:

𝜕�⃗⃗� ∗

𝜕𝑡∗
 + �⃗⃗� ∗. 𝛻∗�⃗⃗� ∗⏟
𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

 = −𝛻∗ 𝑝∗⏟
𝑆𝑡𝑎𝑡𝑖𝑐
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑡𝑒𝑟𝑚

 +
µ

𝜌𝑈𝐿

⏞

1

𝑅𝑒

 𝛻∗2 �⃗⃗� ∗
⏟
𝑉𝑖𝑠𝑐𝑜𝑢𝑠
𝑡𝑒𝑟𝑚

+ 𝑔∗⏟
𝐵𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 𝑡𝑒𝑟𝑚

 Eq. (10)

Now, it is clear that Re is the only parameter of the problem and describes the
contribution of viscosity:

- Low Re flows are dominated by viscosity and remain laminar
- In high Re flows, viscosity effects are limited to very narrow regions
along walls (boundary layers), or along boundaries of different flow streams
(shear layers). Such flows are always highly turbulent.

ABDALLAH ELHAMADY
S289668

17

Therefore, we can easily identify the relative importance of each part of the
equation. When there is no exact solution -and this is often the case-, we can neglect
the terms which are significantly small in comparison with the others, therefore
leading to appropriate solutions for complex problems.

ABDALLAH ELHAMADY
S289668

18

2.2. Finite volume method

The finite volume method (FVM) is a discretization technique used for the
numerical simulation of partial differential equations of various types (for instance,
elliptic, hyperbolic or parabolic) (Eymard et al., 2019). Generally, it is well-suited
for those PDE arising from physical conservation laws (typically, the Navier-
Stokes equations and the turbulence equations) (Chen, 2009). It had been firstly
introduced into the field of computational fluid dynamics (CFD) in the beginning
of the 1970s “McDonald 1971, MacCormack and Paullay 1972” (Kolditz, 2002).
FVM solvers are among the most popular ones in CFD, being implemented in
numerous commercial software packages like Phoenics, ANSYS Fluent,
SOLIDWORKSFloWorks and Flow-3D, and non-commercial packages like
OpenFOAM (Rapp, 2017).

In the finite volume method, the domain of interest is first discretized into a number
of equally spaced nodes surrounded by non-overlapping finite volumes (control
volumes) (Neill et al., 2018). Next, unlike the finite element method and the finite
difference method, the conservation laws are applied to each individual control
volume in an integral form (Reynolds transport theorem) rather than in a partial
differential form. That should lead in the end to enough linear algebraic equations
which can be solved numerically to compute the unknown physical parameters at
each node.

In general, we distinguish between the two approaches adopted for the
discretization of the computational domain into finite volumes (control volumes):
cell-centered approach and cell-vertex approach (Kolditz, 2002). In the cell-
centered approach, the control volumes coincide with the mesh cells. While in the
cell-vertex approach, each node of the mesh is the center of a control volume,
whose boundaries are assigned by connecting the centroids of each cell and the
midpoints of each cell edge as depicted in figures (5), (6) for a two-dimensional
case.

Fig. 5. Meshes and control volumes of two types of FVM. The unknowns are
associated to the black nodes (Chen, 2009).

ABDALLAH ELHAMADY
S289668

19

Fig. 6. Mesh and dual mesh in vertex-centred FVM (a,b) and cell-centred FVM
(c,d). Control volumes are defined by the grey-coloured areas (Aleksendrić et al.,

2015)

The finite volume method is a bit different from (but sometimes related to) the finite
element method which or the finite difference method (Eymard et al., 2019). In
contrast to FEM which is based on the discretization of the weak formulation and
FDM which is based on the classic formulation, FVM is based on the discretization
of the balance equation.

Since the FVM is based on the discretization of the balance equation directly in
space, an obvious virtue of it is the conservation of quantities, such as mass,
momentum and energy, on a discretized (local) level, i.e. the flux entering a given
cell is identical to that leaving the adjacent one over the entire computational
domain. In other words, that is to say one cell’s loss is always another cell’s gain.

This feature makes it is extensively used in several fundamental engineering fields
in general and quite attractive when modelling problems where the flux is of great
importance, such as fluid mechanics, mass transfer, heat transfer, semi-conductor
device simulation and oil recovery simulations. Experience has proved that
conservative schemes are generally more accurate and stable than non-conservative
ones, particularly for strong gradients (large derivatives) inside a certain domain
(Kolditz, 2002).

ABDALLAH ELHAMADY
S289668

20

As flexible as the FEM, the finite volume method can handle any type of mesh;
structured and unstructured, (Aleksendrić et al., 2015) leading to robust schemes.
Structured meshes are often comprised of orthogonal quadrilaterals (2D) or
hexahedrons (3D) that follow a uniform pattern. Unstructured meshes do not follow
a uniform pattern, but are arbitrary combinations of triangles, quadrilaterals (2D),
and tetrahedrons, hexahedrons or pyramids (3D). These unstructured meshes take
full advantage of modeling complex and irregular geometry configurations. The
FVM, therefore, is more flexible and adequate than the finite difference method
where the latter is mainly defined based on structured grids, simple domains and
homogeneous geometries. That is why, from the numerical point of view, the FVM
is a generalization of the FDM in terms of geometry and topology because simple
and uniform finite volume schemes can be reduced to finite difference ones
(Kolditz, 2002).

Roughly speaking, given a number of discretization points defined by a mesh, the
finite difference method is based on assigning one discrete unknown and writing
one equation per each discretization point. Then, the derivatives of that unknown
are replaced by finite differences using Taylor expansion (Eymard et al., 2019).
However, it becomes difficult to use the finite difference method in case the
coefficients involved in the equation suffer discontinuity (e.g., in case of a
heterogeneous medium). With the finite volume method, such discontinuity of the
coefficients will not be a problem provided the mesh is chosen in a way that these
discontinuities occur on the boundaries of the control volumes (Eymard et al.,
2019).

From an industrial perspective, the finite volume method has been found a cheap
and robust technique for the discretization of conservation laws (Eymard et al.,
2019). It is cheap thanks to its advantage in terms of memory storage requirement
and solution speed providing short and reliable computational coding for complex
problems, such as high Reynold number turbulent flows and source-term
dominated flows (e.g. combustion) (Patankar, 1980). However, in some cases, it
becomes difficult to design schemes with a certain given precision. Indeed, the
finite element method can be much more precise than the finite volume method
when using higher order polynomials, but it requires an appropriate functional
framework which is not always available in industrial problems. Other more precise
methods include, for instance, spectral methods or particle methods but these
methods can be more expensive and less robust than the finite volume method. By
robust, we mean a scheme that works well even for relatively difficult equations,
e.g. nonlinear systems of hyperbolic equations, and can easily be extended to more
physical and realistic contexts than the classical academic problems) (Eymard et
al., 2019).

ABDALLAH ELHAMADY
S289668

21

2.3. Lagrangian and Eulerian

2.3.1. Overview

Describing the fluid motion has always been an active research topic in the field of
CFD numerical simulations. To do so, one needs to know the variations of physical
quantities such as, density, velocity, pressure, temperature, stresses, etc., as
functions of time, everywhere within a certain spatial region. Generally, there are
two ways to describe the fluid motion in CFD simulations, the Lagrangian and the
Eulerian method. In fluid dynamics, both have been used with considerable success,
each with its own advantages and disadvantages (Mei, 2001).

2.3.2. Lagrangian Method (surface tracking method)

It considers particles as a discrete phase, tracks all of them and describes the
variations around each individual one along its own trajectory (Mei, 2001). In
Lagrangian methods, the grid can be configured to fit the shape of the interface,
and thus adapted continually to it. The two main advantages of Lagrangian methods
are: (i) explicitly tracking the interface, (ii) applying interfacial boundary
conditions at the exact position of the interface. However, the main disadvantage
with Lagrangian methods is the lack of the numerical accuracy due to that irregular
grid (Francois, 1998).

2.3.3. Eulerian Method (volume tracking method)

In Eulerian methods, variations in physical quantities are described at fixed points
as a function of time, i.e. different particles pass the same point at different times
(Mei, 2001). The fluid particle is treated as a continuum where its conservation
equations are developed on a control volume basis and in a similar form as that for
the fluid phase itself. In contrast to Lagrangian methods, a fixed grid is employed,
and the fluid interface is not explicitly tracked but reconstructed from appropriate
field variables, such as the volume fluid fraction. That is why further procedures
are needed to deduce the interface position from the volume fluid fraction. Also,
these interfacial boundary conditions will have to be manipulated to be shown in
the governing transport equation (Francois, 1998). The main advantage of Eulerian
methods is the ability to accurately calculate the field variables due to their fixed
grid. However, their two major disadvantages are: (i) the position of the interface
is not handled with a high precision (ii) the possible smearing of the discontinuous
surfaces; due to the manipulation of the interfacial boundary conditions (Francois,
1998).

ABDALLAH ELHAMADY
S289668

22

For multiphase flows, it is necessary in Eulerian methods to compute the flow of
fluid through the whole mesh which results in averaging the flow properties, such
as density, viscosity, ... etc. This “averaging process” leads to smoothing of all

variations in flow quantities, especially smearing surfaces of discontinuity such as
free surfaces. Thus, some special treatment is required to overcome this loss in
resolution within the interface, recognize the discontinuity and avoid averaging
(Hirt et al., 1979).

If we know the position of each particle as a function of time, we can transform the
conservation laws from a Lagrangian system into an Eulerian system through
Taylor expansion, as follows:

𝑓(𝑡 + ∆𝑡, 𝑥0 + �⃗⃗� ∆𝑡) ≈ 𝑓 (𝑡, 𝑥0) +
𝜕𝑓

𝜕𝑡
∆𝑡 + ∑

𝜕𝑓

𝜕𝑥𝑖

3
𝑖=1 𝑢𝑖 ∆𝑡

𝑓(𝑡 + ∆𝑡, 𝑥0 + �⃗⃗� ∆𝑡) − 𝑓(𝑡, 𝑥0)

∆𝑡
 ≈
𝜕𝑓

𝜕𝑡
+ ∑

𝜕𝑓

𝜕𝑥𝑖
𝑢𝑖

3

𝑖=1

𝐷𝑓

𝐷𝑡
=
𝜕𝑓

𝜕𝑡
+ 𝛻𝑓. �⃗⃗� = (

𝜕

𝜕𝑡
+ �⃗⃗� . 𝛻) 𝑓

⏟
𝑫 ()
𝑫𝒕

𝐷 ()

𝐷𝑡⏟
𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒
(𝑜𝑟 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒)

=
𝜕 ()

𝜕𝑡⏟
𝐿𝑜𝑐𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

(𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒)

⏞
𝑈𝑛𝑠𝑡𝑒𝑎𝑑𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

 + �⃗⃗� ⏟
𝐻𝑜𝑤 𝑞𝑢𝑖𝑐𝑘𝑙𝑦
𝑓𝑙𝑢𝑖𝑑 𝑐ℎ𝑎𝑛𝑔𝑒𝑠
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

. 𝛻 ()⏟
𝑅𝑎𝑡𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ

𝑝𝑟𝑜𝑝𝑝𝑒𝑟𝑡𝑦 𝑐ℎ𝑎𝑛𝑔𝑒𝑠
𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

⏞
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

2.3.4. NSE in Lagrangian formulation

2.3.4.1. Continuity equation
𝜕𝜌

𝜕𝑡
+ 𝛻. (𝜌�⃗⃗�) = 0⏟
𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛

𝛻.(𝜌�⃗⃗�)= 𝜌𝛻.�⃗⃗� +�⃗⃗� .𝛻𝜌
⇒

𝐷𝜌

𝐷𝑡
 + ρ∇. �⃗� = 0⏟
𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛

ABDALLAH ELHAMADY
S289668

23

2.3.4.2. Momentum equation

𝜕(𝜌�⃗⃗�)

𝜕𝑡
+ �⃗⃗� . 𝜵(𝝆�⃗⃗�) = −∇p + µ𝛻2�⃗⃗� +

1

3
µ𝛻. ((𝛻. �⃗⃗�)) + 𝜌𝑔

⏟
𝐸𝑢𝑙𝑒𝑟𝑖𝑎𝑛

𝐷 ()

𝐷𝑡
=
𝜕 ()

𝜕𝑡
+ �⃗⃗� .𝛻 ()

⇒

𝐷 ((𝜌�⃗⃗�)

𝐷𝑡
= −∇p + µ𝛻2�⃗⃗� +

1

3
µ𝛻. ((𝛻. �⃗⃗�)) + 𝜌𝑔 ⏟

𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛

Navier-Stokes equations in Largangian formulation become:

𝐷𝜌

𝐷𝑡
 + ρ∇. �⃗⃗� = 0 Eq. (11)

𝐷 (𝜌�⃗⃗�)

𝐷𝑡
= −∇p + µ𝛻2�⃗⃗� +

1

3
µ𝛻. ((𝛻. �⃗⃗�)) + 𝜌𝑔 Eq. (12)

Finally, choosing which type of methods to use highly depends on the objective
and characteristics of the problem under examination (Zhang et al., 2007). For
example, if the interface details are unlikely to have an impact on the flow features,
Eulerian methods are more attractive. On the other hand, if the discontinuity nature
across the interface is to be simulated with a high precision, Lagrangian methods
could be preferable (Francois, 1998). Moreover, there are also combined Eulerian-
Lagrangian methods yielding solutions with combined characteristics of both
Eulerian and Lagrangian methods.

ABDALLAH ELHAMADY
S289668

24

2.4. Volume-of-fluid (VOF) method

A free surface is defined as a surface on which discontinuities arise in one or more
variables (Hirt et al., 1979). In CFD, therefore, the free surface is the interface
separating between two immiscible fluids. A simple yet powerful method which is
applicable to both two- and three-dimensional computations, is the volume of fluid
method (VOF), first introduced by Nichols and Hirt in 1981. Due to its robustness
and ease of implementation and parallelization together with its ability to conserve
mass and to produce reasonably sharp interfaces (Hoang et al., 2013), VOF is very
popular in multiphase simulations and has been implemented in both commercial
(ANSYS Fluent and Flow-3D) and open-source (OpenFOAM) CFD packages. It is
based on the concept of the fractional volume of fluid (α) in each cell of the

computational domain, where α is a continuous function with 0 ≤ α ≤ 1. A volume

fraction value of 1 indicates that the cell is completely filled with phase A and a
volume fraction of 0, indicates that the cell is completely filled with phase B. The
values between 0 and 1 represent the interface between the two fluids.

 Fig. 7. Volume of fluid approach (Haider, 2013)

Classified as an Eulerian method, the VOF method has naturally shown its strength
to deal with highly non-linear problems characterized by large interface movement
and topological changes (Hoang et al., 2013). It has been proved to be more flexible
and efficient than the other methods for dealing with complicated interfaces (Hirt
et al., 1979). It is also considered computationally friendly with minimum storage
requirements, because it introduces only one additional storage variable in each
mesh cell to define the interface.

ABDALLAH ELHAMADY
S289668

25

This makes it consistent with the storage requirements for all other dependent
variables, such as pressure, temperature, density ... etc., since it is customary to use
only one numerical value for each dependent property defining the fluid state in
each grid cell. That is why its conservative use of storage is highly advantageous
from the economic point of view, especially when applied to three-dimensional
computations (Hirt et al., 1979).

By definition, it is necessary for the VOF method in multiphase flows to compute
the flow of fluid through the whole mesh, and this requires averaging the flow
properties. Thus, the density and viscosity are averaged as follows, respectively
(Hirt et al. 1979):

𝜌 = α 𝜌1 + (1 −𝛼) 𝜌2 Eq. (13)

µ = α µ1 + (1 − 𝛼) µ2 Eq. (14)

1,2 denote the two immiscible phases

This “averaging process”, however, is one of the biggest drawbacks of the VOF

method, like all other Eulerian methods. That is because it leads to smoothing all
variations in the fluid flow quantities, and, particularly, a smearing of surfaces of
discontinuity such as free surfaces. Consequently, interfaces lose their definition,
and the volume fractional variable loses its supposed discontinuous nature. One
method proposed to avoid averaging across the free surface and thus overcome this
loss in resolution and recover its shape, is advecting the volume fluid fraction with
the local fluid flow velocity (Hirt et al. 1979).

The governing equation for α, referred as the volume fraction equation or the

transport equation is:
𝜕𝛼

𝜕𝑡
 + 𝛻. (𝛼 �⃗⃗�) = 0 Eq. (15)

Another disadvantage of the VOF method is the presence of non-physical spurious
currents. The reason behind them is that the curvature interface is not handled with
high precision, originating from the fact that the interface is not explicitly tracked
or defined but reconstructed based on the fractional volume of the fluid (Hoang et
al. 2013). Only in 1992, a technique, referred to as the Continuum Surface Force
(CSF) model, has been developed to impose the surface tension effects in a more
efficient manner. The smaller the error in surface tension calculations, the less
significant spurious currents are induced.

ABDALLAH ELHAMADY
S289668

26

2.5. Continuum Surface Force (CSF)

Although they possess an elastic skin, liquid surfaces are in a state of tension due
to the uneven molecular forces of attraction exerting on the fluid molecules at or
near the surface (Brackbill et al., 1992). Both surface tension and contact angle
arise from these interaction forces between the particles of these two different
immiscible fluids (Raeini et al., 2012). These abrupt changes in molecular forces
taking place through an interface when fluid properties change discontinuously, can
easily show how much the surface tension is an inherent characteristic of material
interfaces. Surface tension results in a localized, microscopic "surface force"
exerting itself on fluid elements at interfaces in both directions: normal and
tangential. Fluid interfacial motion induced by surface tension plays a fundamental
role in many natural and industrial phenomena such as: capillarity studies,
hydrodynamic stability, low-gravity fluid flow, cavitation, surfactant behavior and
droplet dynamics in clouds and in fuel sprays utilized in internal combustion
engines. Typically, numerical models are involved in the analysis of such processes
as a means to understand the resulting nonlinear fluid flows (Brackbill et al., 1992).

Modelling multiphase flows in porous media concerns forces acting at different

scales: viscous, capillary and wall adhesion. At the pore scale, which is of our
interest here, the capillary forces are more significant than the viscous ones in most

transport problems. For example, capillary numbers in oil and gas reservoirs are
typically in the range Nc = µ.ud/σ = 10 -10 to 10 -5 ; where µ is viscosity, 𝑢𝑑 is the
Darcy velocity and σ is the interfacial tension. Consequently, any small errors in

the computation of the surface tension, if not handled carefully, will lead to errors
in the numerical calculations of the capillary forces and will introduce instabilities
in the numerical simulation up to a point where it has no predictive capability
(Raeini et al., 2012). Moreover, these errors in the surface tension computation will
cause Front-Capturing methods (such as Volume-of-Fluid and Level-Set method)
to induce non-physical spurious currents at the interface (Inguva et al., 2020).

However, previous methods have suffered from difficulties in modeling interfaces
with complex topologies. A method, Continuum Surface Force, has been developed
where interfaces between fluids of different properties are represented as transition
regions of finite thickness. A force density is defined at each point in that transition
region, which is proportional to the curvature of the surface at each point.

ABDALLAH ELHAMADY
S289668

27

𝐟𝐬 = 2 𝜎 𝜅 ∇𝛼 Eq. (16)

where

𝐟𝐬 is the force term generated due to the interfacial tension
𝜎 is the interfacial tension
𝜅 is the interfacial curvature:

𝜅 =

1

2
 ∇ . �̂� =

1

2
 ∇ .

𝑛

|𝑛|
 =

1

2
 ∇ . (

∇𝛼

|∇𝛼|
) Eq. (17)

It is normalized to recover the conventional description of surface tension on an
interface when the ratio of local transition region thickness to local radius of
curvature approaches zero (Brackbill et al., 1992).

The Continuum Surface Force (CSF) is the most commonly used surface tension
force model. It is implemented in many CFD packages, such as: OpenFOAM,
Fluent and StarCCM+ (Vachaparambil et al. 2019). It alleviates these previous
interface topology constraints without sacrificing accuracy, simplifies the
calculation of surface tension, enables accurate modeling of two- and three-
dimensional fluid flows driven by surface forces, eliminates the need for interface
reconstruction, and does not impose any modeling restrictions on the complexity,
number or dynamic evolution of the fluid interfaces. One more of its characteristics
is being perfectly suited for Eulerian interfaces which are not generally aligned with
the computational grid. In addition, the CSF model has been found successfully
applicable to a large number of fluid phenomena influenced by the interfacial
surface tension with similar mathematical structure and many new and physically
interesting problems, such as modelling incompressible fluid flow in low-gravity
environments, droplet dynamics and capillarity. Even, it has been validated on both
static and dynamic interfaces (Brackbill et al., 1992).

In fact, the explicit time step constraint is often more restrictive than other
constraints. The continuum formulation, however, does not increase the severity of
this constraint but may enable us to formulate implicit equations. This implicit
formulation which removes that constraint would decrease the cost of surface
tension calculations by enormous factors. Unfortunately, the nonlinearity and
complexity of surface tension equations still make it a challenging problem. So
clearly, there can be improvements in the numerical implementation of the method
even though it has been verified that reformulating a discontinuous interface
problem as a continuum problem has demonstrably improved describing surface
tension phenomena (Brackbill et al., 1992).

ABDALLAH ELHAMADY
S289668

28

2.6. OpenFOAM

OpenFOAM is a three-dimensional CFD tool and a multiphasic simulation platform
mainly devoted to fluid flow and based on a finite-volume code (Soulaine, 2018).
It was primarily developed by Imperial Collage London in 1989. In 1996, its first
version was lunched. Since 2004, it has been released under GPL license owned by
OpenCFD Ltd. It is a freely available open-source package whose toolbox is written
by C++ (object-oriented programming) and can be easily downloaded at
www.openfoam.org. "OpenFOAM" stands for "Open Field Operation And
Manipulation". It is used over a wide variety of engineering and science areas by
both commercial and academic organisations. In contrast to the other commercial
tools like Fluent and StarCCM+ which require users to abide by the frameworks of
the software, OpenFOAM has the greatest flexibility due to the availability to

access and modify its source code (Inguva et al., 2020). It provides friendly syntax
for partial differential equations solving. Its parallel computation is implemented at
the lowest level. It is characterized by a cross-platform installation, i.e. working on
both Windows and Linux. It has a huge solver database covering the breadth and
depth of CFD.

OpenFOAM consists of more than 200 programs and is not only one executable.
Its utilities are subdivided into three categories:

1- Pre-processing
- Meshing (blockMesh, snappyHexMesh, foamHexMesh, …)
- Mesh conversion generated by a third-part meshing tool (Ansys,
ideas, CFX, Gambit, Salomé, Gmsh, Gambit, …)

2- Solvers
a. incompressible flow solvers
b. compressible flow solvers
c. multiphase flow solvers (VOF, Euler-Euler, …)
d. Particle-tracking solvers
e. Buoyancy-driven flow solvers
f. Solid mechanics solvers
g. Solvers for combustion problems
h. Solvers for heat transfer problems
i. Molecular dynamic solvers
j. Electro-magnetic solvers
k. Turbulence approach solvers like DNS, LES and RANS…
l. Direct Simulation Monte Carlo solvers

In addition to these standard built-in solvers, OpenFOAM’s syntax easily lends

itself to create custom solvers and boundary fields.

ABDALLAH ELHAMADY
S289668

29

3- Post-processing

a. Distribution to visualize the modelling process with ParaView (or the
more famous paraFoam)

b. Exporting to other post-treatment softwares; such as Fluent,

EnSight, Fieldview, Tecplot, Mayavi …

c. postprocess command for 1-D or 2-D sampling (exporting to
gnuplot, Grace/xmgr et jPlot)

PROS

- Completely-free (unlimited license)
- Regularly updated every 6 months
- An extra tool for code-to-code benchmarks
- Availability of several out-of-the-box solvers and their tutorials
- Simplicity to program partial differential equations
- An important and highly reactive community (summer schools, online forum,

conference)
- Providing a direct access to the source code (it is not a black-box)

CONS

- Need time and effort to learn.
- Lack of literature documentation
- Too many forks
- No presence for an official GUI
- Need to deal with the Unix command lines and C++ programming

ABDALLAH ELHAMADY
S289668

30

General structure of an OpenFOAM case

 Fig. 8. General structure of an OpenFOAM case

Firstly, according to the solver or application we would like to use, we will need
different files in each subdirectory.

0:

- contains initial conditions (IC) and boundary conditions (BC).

constant:

- contains all the physical properties with constant values (e.g., turbulence
modeling properties, advanced physics, thermodynamic properties,
transport properties … etc.

- The sub-directory polyMesh includes all the information regarding the grid.

system:

- contains the simulation setup settings, run-time control and solver numerics
(e.g., choice of the linear solver, of the time step, of the discretization
schemes, the output files … etc).

ABDALLAH ELHAMADY
S289668

31

time_directories:

- one folder per each time step. In each folder, there are as many files as the
computed fields (U, p, T, k, Omega, Yi, …)

ABDALLAH ELHAMADY
S289668

32

Chapter 3: Methodology

In this work, using OpenFOAM v8, we simulate the relaxation of a 2D, stationary,
square oil droplet immersed in a continuous water phase to its final circular shape,
in the absence of the gravity effect. The densities of water and oil are 1000 kg/m3
and 500 kg/m3 respectively, the viscosities of water and oil are 0.001 Pa.s and
0.0025 Pa.s respectively and the surface tension between both fluids is 0.0236 N/m.
The diameter of the relaxed droplet is set to 2R = 338.52 µm, which reasonably
represents the typical dimension of a segmented flow in a microfluidic system. The
computational domain size is (600 × 600) µm2, corresponding to 100 ×100 cells.
(Therefore, the grid cell size is ∆𝑥=∆𝑦 = 6 µm)

Fig. 9. A stationary droplet case study (before relaxation)

ABDALLAH ELHAMADY
S289668

33

𝐴𝑠𝑞𝑢𝑎𝑟𝑒 = 𝐴𝑐𝑖𝑟𝑐𝑙𝑒

𝑆2 = 𝜋𝑅2

𝑅 =
𝑆

√𝜋
=
300

√𝜋
= 169.26 µm

 Fig. 10. Relaxation of the static droplet

ABDALLAH ELHAMADY
S289668

34

In OpenFOAM, a single set of Navier–Stokes equations is discretized on the basis
of a finite-volume approach and solved simultaneously with the transport equation
for the VOF index function, α. Considering Newtonian, incompressible, and

immiscible two fluids (water and oil), the governing equations can be formulated
as:

∇. �⃗⃗� = 𝟎

𝜌 [
𝜕 �⃗⃗�

𝜕𝑡
+ �⃗⃗� . 𝛻 �⃗⃗�] = −𝛻𝑝 + µ𝛻2 �⃗⃗� + 𝜌𝑔 + 𝐟𝐬

𝜕𝛼

𝜕𝑡
+ ∇. (𝛼𝑢) = 0

Weighted by the VOF index function (α), the density and viscosity are averaged

over the two phases as follows, respectively:

𝜌 = α 𝜌1 + (1 − 𝛼) 𝜌2
µ = α µ1 + (1 − 𝛼) µ2

Subscripts 1 and 2 denote water and oil phases, respectively.

𝐟𝐬 is the force term generated due to the interfacial tension, modeled as a volumetric
force applying the Continuum Surface Force (CSF) method:

𝐟𝐬 = 2 𝜎 𝜅 ∇𝛼

where 𝜎 is the interfacial tension, and 𝜅 is the interfacial curvature:

𝜅 =

1

2
 ∇ . �̂� =

1

2
 ∇ .

𝑛

|𝑛|
 =

1

2
 ∇ . (

∇𝛼

|∇𝛼|
)

In order to obtain a sharp fluid interface, an artificial compression velocity term
∇. [𝑢𝑟𝛼(1 − 𝛼)] is introduced in the VOF index function, to become:
𝜕𝛼

𝜕𝑡
+ ∇. (𝛼�⃗⃗�) + ∇. [𝑢𝑟𝛼(1 − 𝛼)] = 0

where 𝑢𝑟 is the relative compression velocity, defined as the velocity of the phase
1 (the wetting fluid) minus the velocity of the phase 0 (the non-wetting fluid); 𝑢𝑟 =
 𝑢𝑤 − 𝑢𝑛𝑤, and evaluated as follows:

𝑢𝑟 = 𝑛𝑓min [𝐶∝
|𝐹|

|𝑆𝑓|
,   max(

|𝐹|

|𝑆𝑓|
)  ]  

ABDALLAH ELHAMADY
S289668

35

where

𝑛𝑓 is the normal vector to the cell face

𝐶∝ is an adjustable coefficient to control the level of compression, called
“cAlpha” in OpenFOAM within the range 0 < cAlpha < 2

𝐹 is the volume flux across the cell face

𝑆𝑓 is the cell surface area

The term 𝛼(1 − 𝛼) guarantees that this equation is only active in the interface area
where 0 < α < 1

Thus, we can evaluate the influence of the interface sharpening coefficient (𝐶∝)
when cAlpha = 0, 1 and 2

To reduce the magnitude of spurious currents arising from the numerical errors in
the surface tension calculations due to using the VOF method, the VOF index
function is smoothed by twice applying the ‘Laplacian filter’ proposed by Lafaurie

et al., 1994. Since this smoother is not implemented in the OpenFOAM library, an
external code found in literature is used and linked to the VOF solver. The
smoothed index function �̃� is given by:

�̃�𝑝=
∑ 𝛼𝑓𝑆𝑓
𝑛
𝑓=1

∑ 𝑆𝑓
𝑛
𝑓=1

where the subscript P refers to the cell index and f refers to the face index. The
interpolated value of 𝛼𝑓 at the face centre is computed using linear interpolation.

ABDALLAH ELHAMADY
S289668

36

Chapter 4: Simulation steps and results

1- Using the blockMesh utility, a default multi-hexahedral block mesh
generator of OpenFOAM, and according to the dictionary file named
blockMeshDict located in the system directory, our computational
domain is discretized over a two-dimensional mesh. Because the number of
mesh cells in z-direction is one, and also in the boundary section, the surface
along the z-direction (frontAndBack) is defined as empty. The
generated hex block is defined by eight vertices, in a sequential order,
considering a given mesh density (i.e. number of cells) and a uniform mesh
stretching in each direction. Edges are set to be straight by default.

2- Assigning the oil droplet in its initial square shape to the domain by defining
the box region in the setFieldsDict dictionary, also located in the
system directory, and then using the setFields utility.

Fig. 11. Simulation domain used. Assigning the oil droplet (blue) into the
continuous water phase (Red)

ABDALLAH ELHAMADY
S289668

37

3- In order to minimize the inter-processors communication and the processor
workload and subsequently reasonably decrease the computational time
and the numerical cost, we decompose our domain into 4 sub-domains (refer
to the number of available processors among which our case will be
distributed) using the decomposePar utility which reads the file
dictionary decomposeParDict, also located in the system directory.
We used scotch as a decomposition method in our case, which requires
no geometric input from the user and attempts to minimize the number of
processor boundaries.

Fig. 12. Decomposition the computational domain over 4 processors

4- After decomposition, we run the standard VOF solver available within
OpenFoam, interFoam, in parallel using the public domain openMPI
implementation of the standard message passing interface (MPI).

5- For post-processing purposes, we reconstruct the mesh and field data to
recreate the complete domain and fields by executing reconstructPar
without any additional options where the sets of time directories stored in
each processor directory are merged into a single set of time directories
being saved in the main case directory.

6- We run paraFoam to visualize our simulation results

7- We extract the centroids coordinates at the latest time (𝑡 = 0.1), for the
three cases typing the following command:

postProcess -func writeCellCentres -latestTime

ABDALLAH ELHAMADY
S289668

38

8- We plot the distribution of alpha.water over a cross-section at the half

coordinates of the computational domain at time t=0.05 for cAlpha = 0, and
at time t=0.1 when cAlpha = 1 and 2

Fig. 13. Evolution of the VOF index function (α) over a cross section,

indicating the interface sharpening when cAlpha=0

ABDALLAH ELHAMADY
S289668

39

Fig. 14. Evolution of the VOF index function (α) over a cross section,

indicating the interface sharpening when cAlpha=1

Fig. 15. Evolution of the VOF index function (α) over a cross section,

indicating the interface sharpening when cAlpha=2

9- We compute the magnitude of the velocity at every single cell by typing
the command:

postProcess -func “mag(U)”

This generates a file named mag(U) in each saved time step directory.

10- In order to obtain the maximum magnitude velocity at each time step, we
can type:

postProcess -func “cellMax(mag(U))”

Results are stored in a file named volFieldValue, located in the postProcessing
directory.

ABDALLAH ELHAMADY
S289668

40

11- We plot the maximum magnitude velocity vs. time, for the three cases.

Fig. 16. Evolution of the maximum magnitude velocity through the

computational domain, for cAlpha=0, 1 and 2

Results: From the figures shown above, it is evident that due to
compressing the interface by increasing cAlpha from 0 to 1, the
corresponding thickness of the interface decreases approximately from 7
grid cells to 4 grid cells. Further increasing cAlpha from 1 to 2 not
considerably decreases the interface thickness. On the other side, the
magnitude of spurious currents significantly increases as cAlpha
increases. Therefore, we decide to use cAlpha = 1 for all the remaining
simulations which gives a sharp fluid interface, but at the same time keeps
spurious currents relatively small.

12- Compiling the smoother code in OpenFOAM:

- kva_interfaceProperties library is the library that includes the smoothing
application of interest.

- Starting with Compiling kva_interfaceProperties library, whose the whole

code documentation is available at https://github.com/floquation/OF-
kva_interfaceProperties and linking it to OpenFOAM v8.

- Then, compiling a user defined version of interFoam, linked to

kva_interfaceProperties library, called myInterFoam_smoothing.

https://github.com/floquation/OF-kva_interfaceProperties
https://github.com/floquation/OF-kva_interfaceProperties

ABDALLAH ELHAMADY
S289668

41

- Renaming the recompiled solver (myInterFoam_smoothing) to distinguish
between it and the original one, and thus avoid modifying the existing
interFoam solver.

13- The steps from (1) to (8) are repeated for running a new case where
application in the controlDict dictionary file (located in the
system directory) is modified from interFoam (the original VOF
solver) to myInterFoam_smoothing (the recompiled solver).

14- We plot, on the same graph, the maximum magnitude velocity vs. time for
both cases:

a. no smoothing (cAlpha=1 and m=0) and
b. smoothing (cAlpha=1, m=2)

 Fig. 17. Evolution of the maximum magnitude velocity through the
computational domain, without (m=0) and with smoothing (m=2)

Results: The graph above evidently shows that the magnitude of spurious currents
has been decreased by almost one order of magnitude when applying that Laplacian
filter twice (m=2)

ABDALLAH ELHAMADY
S289668

42

15- Calculating the exact (analytical) solution of the Laplace pressure through
the following formula:

Results: 𝑝𝑒𝑥𝑎𝑐𝑡 =
𝛾

𝑅
=

23.6×10−3

169.26×10−6
= 139.43 Pa

16- We plot the Laplace pressure magnitude over a cross-section at the half
coordinates of the computational domain at the latest time, 𝑡 = 0.1, for both
cases:

a. no smoothing (cAlpha=1 and m=0) and
b. smoothing (cAlpha=1, m=2)

Fig. 18. Computation of the Laplace pressure over a cross section in case

of no smoothing (cAlpha=1)

Results: The numerical solution of Laplace pressure gives 𝑝𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 128.233 Pa

ABDALLAH ELHAMADY
S289668

43

Fig. 19. Computation of the Laplace pressure over a cross section in case

of smoothing (cAlpha=1)

Results: The numerical solution of Laplace pressure gives 𝑝𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 132.243 Pa

17- We perform an error analysis to evaluate the accuracy of the numerical
solution of the Laplace pressure with respect to the exact (analytical)
solution.

Results: Error in the Laplace pressure calculation in both cases:

a. no smoothing (cAlpha=1 and m=0)

%𝐸(𝑝) =
𝑝𝑒𝑥𝑎𝑐𝑡 − 𝑝𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑝𝑒𝑥𝑎𝑐𝑡
=
139.43 − 128.233

139.43
= 8.0377%

b. smoothing (cAlpha=1, m=2)

%𝐸(𝑝) =
𝑝𝑒𝑥𝑎𝑐𝑡 − 𝑝𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑝𝑒𝑥𝑎𝑐𝑡
=
139.43 − 132.243

139.43
= 5.1546%

The error in the Laplace pressure calculations has decreased by:

=
8.0377−5.1546

8.0377
= 35.8697% ≈ 36%

ABDALLAH ELHAMADY
S289668

44

Chapter 5: Conclusion

Errors in computing the surface tension are mainly induced because of the abrupt
change of the VOF index function over the thin interface region between two fluids.
These errors lead to non-physical spurious currents with velocities which can be
even larger than the actual ones throughout the flow domain. Although several
attempts have been made to understand and solve this problem, it is still a main
obstacle in the numerical modelling of multiphase flow in porous media. In this

work, we have presented a review of the VOF standard solver in OpenFOAM,
interFoam, forming one rigorous benchmark: static droplet. We have shown that
introducing the interface compression up to the level 𝐶𝛼 =1 provides balance
between the interface sharpening and the spurious currents magnitude and thus
leads to a sharp (thinner) interface and quite high spurious currents. In order to
reduce spurious currents, we have smoothed the VOF index function twice using
“Laplacian filter”, which is not implemented in OpenFOAM library, but we

recompiled it from an external code. We have found out that applying the smoother
has decreased spurious currents by almost one order of magnitude.

The obtained numerical solution of the Laplace pressure for the static droplet in
case of no smoothing was 128.233 Pa, while in case of smoothing, it was 132.243
Pa. Therefore, when we performed an error analysis with respect to the exact
(analytical) solution of the Laplace pressure for a sphere (139.43 Pa), it was proved
that the error in the Laplace pressure calculations has decreased by almost 36%.

ABDALLAH ELHAMADY
S289668

45

References

[1] White, Frank (1991), Viscous Fluid Flow. 3rd Edition. McGraw-Hill
Mechanical Engineering. ISBN-10: 0072402318.

[2] Stokes, George (1851). “On the Effect of the Internal Friction of

Fluids on the Motion of Pendulums”. Transactions of the Cambridge

Philosophical Society. 9: 8–106.

[3] J.G. Heywood, Viscous Incompressible Fluids: Mathematical
Theory, in Encyclopedia of Mathematical Physics, 2006

[4] McLean, Doug (2012). "Continuum Fluid Mechanics and the
Navier-Stokes Equations".

[5] Stam, Jos (2003), Real-Time Fluid Dynamics for Games

[6] Kolditz, O. (2002). Finite Volume Method. In: Computational
Methods in Environmental Fluid Mechanics. Springer, Berlin,
Heidelberg.

[7] Bastian E. Rapp, in Microfluidics: Modelling, Mechanics and
Mathematics, 2017

[8] Simon P. Neill, M. Reza Hashemi, in Fundamentals of Ocean
Renewable Energy, 2018

[9] Dragan Aleksendrić, Pierpaolo Carlone, in Soft Computing in the
Design and Manufacturing of Composite Materials, 2015

[10] Robert Eymard, Thierry Gallouët, Raphaèle Herbin. Finite Volume
Methods. J. L. Lions; Philippe Ciarlet. Solution of Equation in n (Part
3), Techniques of Scientific Computing (Part 3), 7, Elsevier, pp.713-
1020, 2000, Handbook of Numerical Analysis, 9780444503503.
10.1016/S1570-8659(00)07005-8 . hal-02100732v2

[11] Patankar, Suhas V. (1980). Numerical Heat Transfer and Fluid
FLow. Hemisphere Publishing Corporation. ISBN 978-0891165224.

[12] Z. Zhang, Q. Chen, Comparison of the Eulerian and Lagrangian
methods for predicting particle transport in enclosed spaces, 2007

[13] Duong A. Hoang, Volkert van Steijn, Luis M. Portela, Michiel T.
Kreutzer, Chris R. Kleijn, Benchmark numerical simulations of

https://www.sciencedirect.com/referencework/9780125126663/encyclopedia-of-mathematical-physics
https://www.google.com/books/edition/Understanding_Aerodynamics/UE3sxu28R0wC?hl=en&gbpv=1&pg=PA13
https://www.google.com/books/edition/Understanding_Aerodynamics/UE3sxu28R0wC?hl=en&gbpv=1&pg=PA13
https://web.archive.org/web/20200805215025/https:/pdfs.semanticscholar.org/847f/819a4ea14bd789aca8bc88e85e906cfc657c.pdf
https://www.sciencedirect.com/book/9781455731411/microfluidics-modeling-mechanics-and-mathematics
https://www.sciencedirect.com/book/9781455731411/microfluidics-modeling-mechanics-and-mathematics
https://www.sciencedirect.com/book/9780128104484/fundamentals-of-ocean-renewable-energy
https://www.sciencedirect.com/book/9780128104484/fundamentals-of-ocean-renewable-energy
https://www.sciencedirect.com/book/9781782421795/soft-computing-in-the-design-and-manufacturing-of-composite-materials
https://www.sciencedirect.com/book/9781782421795/soft-computing-in-the-design-and-manufacturing-of-composite-materials
https://en.wikipedia.org/wiki/Suhas_Patankar
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0891165224

ABDALLAH ELHAMADY
S289668

46

segmented two-phase flows in microchannels using the Volume of Fluid
method, 2013

[14] Brackbill JU, Kothe DB, Zemach C. A continuum method for
modeling surface tension. J Comput Phys 1992;100:335–54

[15] Ali Q. Raeini, Martin J. Blunt, Branko Bijeljic, Modelling two-
phase flow in porous media at the pore scale using the volume-of-fluid

method. 2012

[16] Venkatesh Inguva, Andreas Schulz and Eugeny Y. Kenig, On
methods to reduce spurious currents within VOF solver frameworks.
Part 1: a review of the static bubble/droplet, 2020

[17] Kurian J. Vachaparambil and Kristian Etienne Einarsrud,
Comparison of Surface Tension Models for the Volume of Fluid
Method, 2019

[18] S. Friedlander, Stability of Flows, Encyclopedia of Mathematical
Physics, 2006

[19] Francois, Marianne, "A Study of the Volume of Fluid Method for
Moving Boundary Problems", master thesis, Embry-Riddle
Aeronautical University, Daytona Beach, Florida, 1998

[20] J. Haider, “Numerical Modelling of Evaporation and Condensation

Phenomena”, Masters dissertation, Universität Stuttgart, 2013.

[21] Long Chen, Lectures of class “MATH 226A: Computational

PDEs”, 2009, University of California, Irvine (UCI).

[22] C.C. Mei, Notes on Advanced Environmental Fluid Mechanics,
2001

[23] C. W. Hirt and B. D. Nichols, Volume of Fluid (VOF) Method for
the Dynamics of Free Boundaries, Los Alamos Scientific Laboratory,
Los Alamos, New Mexico 87545 Received November 1, 1979

[24] Cyprien Soulaine, 4th Cargèse summer school on flow and
transport in porous and fractured media: Introduction to open-source
computational fluid dynamics using OpenFOAM® technology, 2018

[25] https://www.grc.nasa.gov/www/k-12/rocket/nseqs.html

[26] https://www.claymath.org

https://www.sciencedirect.com/referencework/9780125126663/encyclopedia-of-mathematical-physics
https://www.sciencedirect.com/referencework/9780125126663/encyclopedia-of-mathematical-physics
https://www.grc.nasa.gov/www/k-12/rocket/nseqs.html
https://www.claymath.org/

ABDALLAH ELHAMADY
S289668

47

Appendix

Stationary droplet test

1. Directory: 0

1.1. Dictionary: alpha.water

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object alpha.water;

}

// *//

dimensions [0 0 0 0 0 0 0];

internalField uniform 1;

boundaryField

{

 wall

 {

 type constantAlphaContactAngle;

 theta0 90;

 limit gradient;

 value uniform 1;

 }

 frontAndBack

 {

 type empty;

 }

}

// *//

ABDALLAH ELHAMADY
S289668

48

1.2. Dictionary: P_rgh

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p_rgh;

}

// *//

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

 wall

 {

 Type fixedFluxPressure;

 }

 frontAndBack

 {

 Type empty;

 }

}

// *//

ABDALLAH ELHAMADY
S289668

49

1.3. Dictionary: U

FoamFile

{

 version 2.0;

 format ascii;

 class volVectorField;

 object U;

}

// *//

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 wall

 {

 Type noSlip;

 }

 frontAndBack

 {

 Type empty;

 }

}

// *//

ABDALLAH ELHAMADY
S289668

50

2. Directory: constant

2.1. Dictionary: g
FoamFile

{

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

}

// *//

dimensions [0 1 -2 0 0 0 0];

value (0 0 0);

// *//

ABDALLAH ELHAMADY
S289668

51

2.2. Dictionary: transportProperties
FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

}

// *//

phases (water oil);

water

{

 transportModel Newtonian;

 nu nu [0 2 -1 0 0 0 0] 1e-06;

 rho rho [1 -3 0 0 0 0 0] 1000;

}

oil

{

 transportModel Newtonian;

 nu nu [0 2 -1 0 0 0 0] 5e-06;

 rho rho [1 -3 0 0 0 0 0] 500;

}

sigma 0.0236;

// For smoothing, the following lines are added:

curvatureModel vofsmooth; // normal;

vofsmoothCoeffs

{

 numSmoothingIterations 2; // default: 2

}

ABDALLAH ELHAMADY
S289668

52

2.3. Dictionary: turbulenceProperties
FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object turbulenceProperties;

}

// *

* * * //

simulationType laminar;

// *//

ABDALLAH ELHAMADY
S289668

53

3. Directory: system

3.1. Dictionary: blockMeshDict
FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

}

// *//

convertToMeters 1e-6;

vertices

(

 (0 0 0)

 (600 0 0)

 (600 600 0)

 (0 600 0)

 (0 0 0.01)

 (600 0 0.01)

 (600 600 0.01)

 (0 600 0.01)

);

blocks

(

 hex (0 1 2 3 4 5 6 7) (100 100 1) simpleGrading (1

1 1)

);

edges

(

);

boundary

(

 wall

 {

 type wall;

 faces

 (

 (3 7 6 2)

ABDALLAH ELHAMADY
S289668

54

 (0 4 5 1)

 (3 7 4 0)

 (2 6 5 1)

);

 }

 frontAndBack

 {

 type empty;

 faces

 (

 (0 1 2 3)

 (4 5 6 7)

);

 }

);

mergePatchPairs

(

);

ABDALLAH ELHAMADY
S289668

55

3.2. Dictionary: controlDict
FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

}

// *//

application interFoam; //myInterFoam_smoothing

startFrom latestTime;

startTime 0;

stopAt endTime;//writeNow;//

endTime 0.1;

deltaT 1e-7;

writeControl adjustableRunTime;

writeInterval 2e-4;

purgeWrite 0;

writeFormat ascii;

writePrecision 8;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 0.3;

ABDALLAH ELHAMADY
S289668

56

maxAlphaCo 0.3;

maxDeltaT 9e-7;

// *//

ABDALLAH ELHAMADY
S289668

57

3.3. Dictionary: decomposeParDict

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object decomposeParDict;

}

// *//

numberOfSubdomains 4;

method scotch;

// *//

ABDALLAH ELHAMADY
S289668

58

3.4. Dictionary: fvSchemes
FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

}

// *//

ddtSchemes

{

 default Euler;

}

gradSchemes

{

 default pointCellsLeastSquares;

 grad(U) Gauss linear;

}

divSchemes

{

 div(rhoPhi,U) Gauss linearUpwind grad(U);

 div(phi,alpha) Gauss vanLeer;

 div(phirb,alpha) Gauss interfaceCompression;

 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

 default Gauss linear corrected;

}

interpolationSchemes

{

 default linear;

}

snGradSchemes

{

 default corrected;

ABDALLAH ELHAMADY
S289668

59

3.5. Dictionary: fvSolution
FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

}

// *//

solvers

{

 "alpha.water.*"

 {

 nAlphaCorr 1;

 nAlphaSubCycles 2;

 cAlpha 0; //1; 2;

 MULESCorr yes;

 nLimiterIter 5;

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-8;

 relTol 0;

 }

 "pcorr.*"

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-10;

 relTol 0;

 }

 p_rgh

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-07;

 relTol 0.05;

 }

ABDALLAH ELHAMADY
S289668

60

 p_rghFinal

 {

 $p_rgh;

 relTol 0;

 }

 U

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-06;

 relTol 0;

 }

}

PIMPLE

{

 momentumPredictor no;

 nOuterCorrectors 1;

 nCorrectors 3;

 nNonOrthogonalCorrectors 0;

 pRefCell 1;

 pRefValue 0;

}

relaxationFactors

{

 equations

 {

 ".*" 1;

 }

}

// *//

ABDALLAH ELHAMADY
S289668

61

3.6. Dictionary: setFieldsDict
FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object setFieldsDict;

}

// *//

defaultFieldValues

(

 volScalarFieldValue alpha.water 1

);

regions

(

 boxToCell

 {

 box (150e-6 150e-6 0) (450e-6 450e-6 0.01);

 fieldValues

 (

 volScalarFieldValue alpha.water 0

);

 }

);

// *//

