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Abstract

Many models have been presented in the literature, since 50s,
which describe very well the behavior of nerve fibers, all of them
are based on Hodgkin and Huxley’s work (1952). In this the-
sis a particular attention was given to SENN model (spatially
extended nonlinear node), it was analyzed and then extended fur-
ther to include nonlinear Frankenhaeuser and Huxley equations
in all nodes. The new model obtained is easily implementable,
applicable to different nerve’s structures and works with multiple
classes of external stimuli.

The second part of the thesis focuses on 3D-modelling. A spe-
cial algorithm is used to identify the nerve voxels from a 3D body
model and then approximate the structure topology with the cen-
terline.

To conclude, the model was tested using, as stimulus, a mag-
netic field generated by an external coil to simulate a body expo-
sure to an external magnetic field.
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Chapter 1

Introduction

Electromagnetic dosimetry deals with the determination of dosi-
metric quantities using experimental, analytical or numerical tech-
niques. The latter showed the greatest potential and have led o
the development of various commercial software that flank the
programs developed in research areas. The main purpose is to as-
sess the health risks associated with exposure to electromagnetic
fields and more, these techniques are also used to optimize the
design of magnetic resonance machines.

The goal of this thesis work is to implement a neuro-dynamic
model for numerical simulation based on models already existing
in the literature, with the aim of evaluating the excitation thresh-
old, capable of generating an action potential, in nerve cells in
response to an external stimulus. Exceeding the threshold can
mean, for a person, an involuntary movement or it can generate
sensations of pain or discomfort. To do all this, first of all, re-
search was done to understand the functioning of excitable cells,
all the researches lead back to the extraordinary work of two En-
glish physiological scientists, Huxley and Hodgkin, who thanks to
their work won the nobel prize. In the 1950s they managed to cre-
ate a mathematical model that describes the mechanism of nerve
cells, by experimenting on an axon of a giant squid, their model is
still used today. After which reilly’s neuro-electric model was used
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which, using the equations of Frankenhaeuser and Huxley, defined
a circuit model of a nerve and studied the response to different
types of stimuli.

In this thesis work, reilly’s model was taken and extended to a
more generic case, introducing the equations of F-H in all nodes
of the nervous model, drawing some advantages, including ease
of implementation, but this move also brings with it the disad-
vantage of the increased computational cost. Finally, the neuro
electric model was tested on a simple 3-D geometry case. concen-
tric cylinders were used to simulate parts of a body (as arms or
legs). It was necessary to trace back to the use of image process-
ing algorithms in order to integrate the 1-D neuro electric model
into the discrete 3-D model.
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Chapter 2

Model for Excitation of
Myelinated Nerve

2.1 Nerves "excitable cells"

In this chapter a brief description of the functioning of excitable
cells is given.

Nervous tissue is the main component of the nervous system,
it is composed by Neurons and Neuroglia. Neurons are known as
excitable cells which can receive and transmit impulses. While
Neuroglia assist the propagation of the nerve impulse and provide
nutrients to the neurons.

Figure 2.1: Neuron’s structure
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The central part of neuron is called cell body, which contains
the nucleus, Figure 2.1. Projecting from the cell body we can see
many branches called dendrites which are responsible for receiving
electrochimical stimulations from other neural cells and propagate
them to the cell body. Finally we have the axon which carry the
action potential from the cell toward the next neuron. For many
neurons, the axon account for the majority of the length of the
cell, sometimes extending long distances (> 1m) at which point
we can call them nerve fibers. Many fibers are bounded together
to form a nerve fascicle which in turn are grouped together to
form nerves as shown in Figure:2.2

Figure 2.2: Example of spinal nerve

2.2 ionic current

To understand how a membrane potential occurs we need to
consider the chemicals on either sides of the cell membrane, the
outside of each cell is bathed in a sodium chloride solution made
of positively charged sodium ions and negatively charged chloride
ions. Inside the cell, in contact with the cell membrane are posi-
tively charged potassium ions, negatively charged phosphate ions
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and anionic proteins. The presence of electric charges both inside
and outside the cell, separated from the membrane and with dif-
ferent concentrations, generates a difference in electrical potential.
The electrical balance is altered when ions selectively pass through
the cell membrane to the other side generating a change in mem-
brane potential.

For all excitable cells the concentration of intracellular potas-
sium greatly exceeds extracellular one. On the other hand, we
have a significant concentration of sodium and chloride ions out-
side the cell respect to the inside. Table 2.1 shows an example of
ionic concentrations for nerve axon.

Nerve (squid axon)

Intracellular [mM] Extracellular [mM]
K+ 397 20
Na+ 50 437
Cl− 40 556

Table 2.1: Ionic Concentrations

The membrane is said to be semipermeable, it is a dielectric in-
sulator that permits the passage of some ions through the so-called
ion channels Figure 2.3. The individual channels may be very se-
lective with respect to the ionic species that are allowed to pass.
There are four types of channels through witch ions might pass,
leak channels, that are typically always open, chemically-gated
channel, voltage-gated channel and mechanically-gated channel.
Gated channel must open their gate to allow the passage of ions.

Ions passively diffuse through a channel from higher to lower
concentration they also attracted/repelled by opposite/like charges
from other charged molecules thus the direction of ion’s flow de-
pends on the balance between both electrical and chemical forces
acting on the ion at any given time. A quantitative description of
this phenomena is given by the Nernst Equation.
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Figure 2.3: Cell membrane

2.2.1 The Nernst Equation

The Nernst equation relates the flow of ions to spatial differ-
ences in concentration or in electric potential. In a solution with
a different spacial distribution of particles there will be a net ion
flux down the concentration gradient.
If we consider the the concentration potential energy difference
Wc, that is the work needed to move a mole of S (S represent
a concentration of a generic substance) against the gradient we
can say that this quantity is proportional to the logarithm of the
concentration difference in according to 2.1

Wc = RT(ln[S]i − ln[S]o) (2.1)

Wc = RTln
[S]i
[S]o

(2.2)

Where:
- [S]i and [S]o represent the inside and outside concentration

respectively.
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- R is the gas constant.
- T is the absolute temperature.

If the particles are electrically charged, there will be a difference
in electric potential between regions with different concentrations.
The electrical potential energy that will be obtained is given by
the relation 2.3

We = ZFVm (2.3)

Where:
- Z is the valence of S.
- F is the Faraday constant.
- Vm is the membrane potential.

The total potential energy difference (∆W )is the sum of 2.2
and 2.3. At the equilibrium, when ∆W = 0 we obtain the so-
called Nernst Equation 2.4

Vm =
RT

FZ
ln

[S]o
[S]i

(2.4)

In case of presence of more substances the equation becomes
2.5

Vm =
RT

FZ
ln(

PS1
[S1]o +PS2

[S2]o
PS1

[S1]i +PS2
[S2]i

) (2.5)

Where PSi
is the permeability of the i-th substance.

A numerical example if we suppose the membrane permeable
to potassium ions but to no others and using the values R =

8.3144
J

K.mole
, T = 295.18K, F = 96.5

C

g.mole
, [K+]o = 2.5mM ,

[K+]i = 120mM and Z = +1 (for a monovalent cation):

Vm =
RT

FZ
ln

[K+]o
[K+]i

= −98mV (2.6)
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This value is called the equilibrium potential of potassium we will
refer to it using the symbol Ek.
We can do the same think with the sodium, we get ENa = 55mV .
Combining all ions together and using 2.5 we get the Rest Poten-
tial[7] 1of the membrane:

Vrest =
RT

F
ln(

PK[K]o +PNa[Na]o +PCl[Cl]i
PK[K]i +PNa[Na]i +PCl[Cl]o

) ≈ −70mV

(2.7)

2.3 Membrane equivalent circuit

As we said before the cell membrane is a dielectric insulator
which separates the negative electric charges inside from the pos-
itive ones outside. The thickness of the membrane is very small
compared to the size of the cell, we are talking about tens of
nanometers, considering a membrane potential (≈ 100mV ) the

electric field developed across the membrane is about (≈ 107
V

m
).

One important aspect of the cell membrane is its capacitance, it
can be represented in the equivalent electric circuit by a capaci-
tor. The value of this capacitor, of roughly 2µF/cm2, is extremely
high compared to most materials used in ordinary factory-made
capacitors.

Hodgkin and Huxley (1952) provided the first detailed descrip-
tion of electrical proprieties of the excitable membrane of un-
myelinated nerve cells. This work was extended later by Franken-
haeuser and Huxley (1964) to describe the myelinated nerve mem-
brane. In Fig 2.4 we refer to the HH parallel-Conductance model
[6].

The electrical model consists of membrane capacitance, nonlin-
ear conductances for Na+ and K+ and a linear leakage element.

1the contribution of the chloride current is negligible compared to the other two.
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Figure 2.4: Equivalent Circuit (HH parallel-Conductance model)

The set of HH equations is given by:

im = cm
dVm

dt
+ (iNa + ik + il) (2.8)

Where im is the membrane current, cm is the membrane capac-
ity, Vm is the membrane voltage, and iNa, ik, and il are the ionic
current.

The ionic terms are expressed by[6]:

iNa = gNa(Vm − ENa) (2.9)

iK = gK(Vm − EK) (2.10)

il = gl(Vm − El) (2.11)

Where gNa , gK and gl are the ionic conductances, and ENa ,
EK , and El are the ionic Nernst potentials. gl is a linear conduc-
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tance while gNa and gK are described by two nonlinear functions
of the form:

gNa = gNam
3h (2.12)

gK = gKn
4 (2.13)

where gNa and gK represent the maximum conductance values,
and m, n, and h are so-called activation and deactivation variables
that modulate the maximum conductances.

In this work we refer to the Frankenhaeuser and Huxley model
(FH) [1] that describe better the myelinated nerve membrane.
The difference between tho two models is that in the FH-model
the ionic current is composed by four terms. The fourth one,
ip describes the sodium-potassium pomp current. Therefore, the
membrane current is given by: 2.14

im = cm
dVm

dt
+ (iNa + ik + ip + il) (2.14)

and the the individual ionic currents are expressed by the equa-
tions: 2.15 to 2.18 [1]

iNa = PNahm
2EF

2

RT

[Na]o − [Na]ie
EF/RT

1− eEF/RT
(2.15)

ik = Pkn
2EF

2

RT

[k]o − [k]ie
EF/RT

1− eEF/RT
(2.16)

ip = Ppp
2EF

2

RT

[Na]o − [Na]ie
EF/RT

1− eEF/RT
(2.17)

il = gl(Vm −Vl) (2.18)

Where
E = Vm +Vr (2.19)
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Vr is the resting potential.
The activation and deactivation variables m, n, h and p are

governed by first-order differential equations 3.15 to 3.18:

dm

dt
= αm(1−m)− βmm (2.20)

dh

dt
= αh(1− h)− βhh (2.21)

dn

dt
= αn(1− n)− βnn (2.22)

dp

dt
= αp(1− p)− βpp (2.23)

Where αi represent the i-th channel rate for switching from
a closed to an open state while βi that for switching from an
open to a closed state. The α and β terms depend only on the
transmembrane potential and are expressed by the equations 2.24
to 2.31 [1]:

αm = 0.36(Vm − 22)

[
1− exp

(
22−Vm

3

)]−1

(2.24)

βm = 0.4(13−Vm)

[
1− exp

(
Vm − 13

20

)]−1

(2.25)

αh = 0.1(−10−Vm)

[
1− exp

(
Vm + 10

6

)]−1

(2.26)

βh = 4.5

[
1+ exp

(
45−Vm

10

)]−1

(2.27)
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Constant Value Description
PNa 8 ∗ 10−3cm/s Sodium permeability constant
P k 1.2 ∗ 10−3cm/s Potassium permeability constant
P p 0.54 ∗ 10−3cm/s Nonspecific permeability constant
gl 30.3mS/cm2 Leakage conductance
Vl 0.026mV Leakage equilibrium potential
[Na]o 114.5mM External sodium concentration
[Na]i 13.7mM Internal sodium concentration
[K]o 2.5mM External sodium concentration
[K]i 12mM Internal sodium concentration
F 96.514C/gmol Faraday constant
R 8.3144J/Kmol Gas constant
T 295.18K Absolute temperature
Vr −70mV Resting potential
cm 2µF/cm2 Membrane capacitance per unit area

Table 2.2: Constants for FH equations

αn = 0.02(Vm − 35)

[
1− exp

(
35−Vm

10

)]−1

(2.28)

βn = 0.05(10−Vm)

[
1− exp

(
Vm − 10

10

)]−1

(2.29)

αp = 0.006(Vm − 40)

[
1− exp

(
40−Vm

10

)]−1

(2.30)

βp = 0.09(−25−Vm)

[
1− exp

(
Vm + 25

20

)]−1

(2.31)

Specific constants for the FH equations are given in table 2.2

13



Politecnico di Torino

2.4 Action potential

After seeing the characteristics of the cell membrane of ex-
citable cells, especially the functioning of the ion channels, let’s
see how these interact with each other. The ion channels interact
through their common transmembrane potential and capacitance.
A remarkable result is that such electrically active tissue, by means
of a regenerative process, can generate a transient pulse of electri-
cal changes, an action potential, across the cell membrane. The
phenomenon of the action potential consists in a rapid depolar-
ization of the membrane, i.e. an increase in the transmembrane
potential, followed by a slower recovery of the resting condition.
when an action potential occurs in a specific area of the mem-
brane, the effect of depolarization is also felt in the adjacent areas
and this causes other action potentials to arise which are then
transmitted along the entire membrane.

When a stimulus of any kind occurs there is a change in the
membrane potential, if this variation exceeds a threshold the sodium
channels are activated and this causes a flow of sodium ions to-
wards the inside of the cell. The flow of positive charges causes a
rapid depolarization and the membrane potential increases rapidly
until it reaches values of about 30−40mV this phase is called De-
polarisation.
At 30 mV potassium channels begin to open and sodium channel
gates close, in this phase, called Repolarization, there is a flow of
potassium ions towards the outside of the cell which tries to bring
the potential back to rest conditions. The potassium channels,
however, are slow to close, consequently, the membrane potential
continues to drop until it exceeds the initial value of -70 mV (Rest
conditions) causing an undershoot. In the final phase it is the
task of the sodium potassium pumps to bring the cell back to rest
conditions, this phase is known as recovery period.

14
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Figure 2.5: Action potential
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Chapter 3

Impulse Propagation

In the previous chapters we discussed how an Action Poten-
tial is generated, we gave a mathematical representation of the
excitable cells summaries in F-H equations. now we need to intro-
duce a mathematical model to explain the impulse propagation
from one node to an other.

To describe this phenomena we will refer to the Reilly’s neuro-
electric model "used" in [3] we replicated exactly his experiment
and used his results to have a comparison. After that we will
introduce our model that is an extension of the Reilly’s one with
the modification to include F-H non linear conductances on each
node, we considered all nodes as non linear.

3.1 Mathematical model

In the current paragraph a generic mathematical representation
is given. We can approximate a myelinated nerve with an electrical
circuit as the shown in figure 3.1.

This representation is valid under some assumptions [3] and [2];
an infinitely long fiber is considered with Ranvier nodes that are
regularly spaced, the external medium is uniform and isotropic,
the internodal distance is proportional to the fiber diameter (D).
Both axon diameter (d) and internodal gap (l) are proportional

16
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Figure 3.1: Circuit Model

to the fiber diameter. The myelin sheath is considered as a per-
fect insulator. The circuit parameters can be calculated as the
following: The internodal conductance is given by:

Ga =
πd2

4ρiL
(3.1)

The membrane impedance is composed by the capacitor Cm in
parallel to the conductance Gm that are given by:

Cm = cmπdl (3.2)

and
Gm = gmπdl (3.3)

Applying the KCL to a generic node k we get that the current
at the node is equal to the sum of the incoming axial current,
capacitive current and ionic current. in mathematical terms we
can write:

Cm
dVk

dt
+GmVk = Ga(ϕi,k−1 − 2ϕi,k + ϕi,k+1) (3.4)

17
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Where Vk is given by ϕe − ϕi − Vr, the first two terms are
the external and internal potential respectively, with reference to
a point within the external medium and far from the fiber. Vr

is the rest potential. We suppose that the external potential is
due only to the stimulus current and it is not influenced by the
presence of the fiber.

Rearranging the equation we get the following [5]:

dVk

dt
=

1

Cm
[Ga (Vk−1 − 2Vk +Vk+1 + ϕe,k−1 − 2ϕe,k + ϕe,k+1)−GmVk]

(3.5)
where: (k = −n, ...− 2,−1, 0, 1, 2, ..., n).
3.5 is a set of first order differential equation that describe well

myelinated fibers, initial conditions are considered to be Vk(0) = 0
thanks to the membrane capacitance that shunts the nodes.

The ionic term Im,k = GmVk is the responsible of the non
linearity, as we saw in the previous paragraph Gm = f(t, Vk), it
depends on stimulus level. For sub-threshold stimuli Gm is consid-
ered constant and depending only on fiber diameter, in this case
we have a linear set of differential equations. Generally speaking,
In can be defined as:

Im,k =

{
GmVk

πdl(iNa + ik + ip + il)
(3.6)

Using matrix notation the equation becomes:

[Cm]
d

dt
{V } = −[Ga]({V }+ {ϕe})− [Gm]{V } (3.7)

with: [Cm] is the diagonal capacitance matrix

[Cm] =


C11

m . 0 0
. C ii

m . 0
0 . . .

0 0 . Cnn
m

 (3.8)

18
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[Ga] the internodale conductance matrix is given by the trans-
pose of [A] times [Ga] times [A]. with [A] edge-to-node incidence
matrix.

[Ga] = [A]T


G11

a . 0 0
. Gii

a . 0
0 . . .
0 0 . Gnn

a

 [A] (3.9)

[A] =


−1 1 . .
. −1 1 .

. . −1 1

. . . −1

 (3.10)

[Gm] in case of sub-threshold stimuli is a diagonal matrix.

[Gm] =


G11

m . 0 0
. Gii

m . 0
0 . . .
0 0 . Gnn

m

 (3.11)

Matrix notation is useful for the implementation of a Matlab
code necessary to solving the problem numerically.

3.2 External Voltage Source ϕe

Both Reilly and McNeal represented the nerve fiber, for their
experiments, as shown in figure 3.2. They considered a 20 µm-
diameter fiber indefinitely long, having an internodal distance
about 2mm. They used for the external stimulus a spherical
electrode positioned above a Ranvier node1 and placed at one
internodal distance (20mm) from the fiber.

1The electrode is positioned above the central Ranvier node, considering a symmetrical
problem
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Figure 3.2: Nerve Model

The spatial distribution of the voltage along the axon, in the ex-
ternal medium, is a consequence of the stimulating current. It was
assumed that the current propagates evenly from the electrode,
in according to the hypothesis mentioned above, the potential at
a distance r is given simply by equation 3.12.

ϕe(t, r) =
ρeIx
4πr

(3.12)

Where ρe is the resistivity of the external medium and Ix is the
stimulation current.

In this chapter we analyzed the model response to a rectan-
gular stimulating pulse 3.13. A 100 µs pulse duration was con-
sidered with three different magnitudes; threshold stimuli It, sub-
threshold stimuli 0.8It and supra-threshold stimuli 1.2It [3].

Ix(t) =

{
It; 0 ≤ t ≤100µs

0; 100µs <t
(3.13)

3.3 Spatially Extended Nonlinear Node

Spatially Extended Nonlinear Node (SENN) model is the one
used by Reilly [3] in his studies, this model is basically the Mc-
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Neal’s one [5] with the difference that Reilly considered as non-
linear nodes, in addition to the stimulus node the one near the
electrode, also an x number of adjacent nodes [3], consequently
it was necessary to use Frankenhaeuser and Huxley conductances
model at each non linear node.

the number of non-linear nodes to be used was limited by the
computational power available in those years.

3.3.1 SENN Implementation

To replicate the Reilly’s work a 21-node axon model was con-
sidered and implemented on Matlab using the same parameters
shown in table 2.2 [3] [5], other geometric and electrical parame-
ters are listed in the following table 3.1:

Fiber diameter D 20 µm
Axon diameter d 0.7 ∗D µm

Internodal length L 100 ∗D µm
Nodal gap width l 2.5 µm

Axoplasm resistivity ρi 110 Ω.cm
External medium resistivity ρe 300 Ω.cm

Membrane conductance per unit area gm 30.4 mS/cm2

Membrane capacitance per unit area cm 2.5 µF/cm2

Table 3.1: Input Parameters

The set of differential equations that was implemented for the
non-linear nodes is the following 3.14:

dVk

dt
=

1

Cm
[Ga (Vk−1 − 2Vk +Vk+1 + ϕe,k−1 − 2ϕe,k + ϕe,k+1)

−πdl(iNa(h,m,V) + ik(n,V) + ip(p,V) + il(V))] (3.14)

In addition there are 4 equations for each nonlinear node:

dm

dt
= αm(1−m)− βmm (3.15)

21



Politecnico di Torino

dh

dt
= αh(1− h)− βhh (3.16)

dn

dt
= αn(1− n)− βnn (3.17)

dp

dt
= αp(1− p)− βpp (3.18)

Regarding the initial conditions, the following values were used
[5]:

Vk(0) = 0; ∀k

h(0) = 0.8249;

m(0) = 0.0005;

n(0) = 0.0268;

p(0) = 0.0049;

The threshold current needed for the stimulus was calculated
using bisection method: the set of differential equations mentioned
above was solved iterating different stimulus current values until
the membrane voltage of at least three nodes exceeds 80mV . The
threshold stimulus pulse It calculated, corresponds to the same
one used by Reilly [3] and it is negative 0.68mA.

3.3.2 SENN Model Results

As mentioned before, three different kind of stimuli were ana-
lyzed: a sub-threshold stimulus with a current value about 80% of
the threshold and a supra-threshold stimulus with a current value
that corresponds to 120%.

Referring to the figure 3.2, the nearest node to the electrode
is the eleventh one, it is the one with maximum excitation. In
figure 3.3 we can observe the node response to a sub-threshold
stimulus. As we note, it is simply a passive RC circuit response.
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The stimulus value is not sufficient to generate an action potential,
consequently, the effect on the adjacent nodes is negligible as we
ca see in figure 3.4.

Figure 3.3: Sub-threshold response
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Figure 3.4: Node-13 Sub-threshold response

In the following figures we can see the response to the thresh-
old current. The eleventh node, as we said, is the nearest to the
electrode, consequently, is where the action potential is generated.
As described in the previous chapter, when the membrane poten-
tial reaches 30mV the sodium channel are activated causing an
ions flow towards the inside of the cell, this flow causes a rapid
depolarisation as shown in figure: 3.5. The membrane voltage
increases until exceeding 100mV , after that potassium channels
open bringing back the potential to the initial value.
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Figure 3.5: Node-11 threshold response

The figure 3.6 shows the response of the three adjacent nodes:
twelfth, thirteenth and fourteenth. The same result was obtained
by Reilly [3].

We can notice a little time delay between the three curves due
to the finite propagation velocity, that it’s supposed to be about
60m/s [3] for mammalian fibers. In this work the propagation
velocity is about 40m/s, this difference is a consequence of the
low temperature considered in the Frankenhaeuser and Huxley
equations.
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Figure 3.6: adjacent nodes threshold response

Finely, in figure 3.7 we have the response of the eleventh node
to a supra-threshold stimulus. We notice that the depolarisation
is much rapid compared to the previous case,
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Figure 3.7: Node-11 Supra-threshold response
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Chapter 4

Model Simulation

In the current chapter we modified the SENN model introduc-
ing non-linear Frankenhaeuser and Huxley conductances at each
node of our nerve model, we implemented a compact Matlab code
that solves many classes of nerve structures with different stim-
ulus sources. We solved the same 1D-nerve model as Reilly to
compare the results obtained.
After that we defined a 3D-cylinder model to simulate human
body parts, we focused only on the geometric features considering
uniform electrical proprieties of each tissue. We applied our neu-
roelectric model to a single branched nerve structure contained
within the cylinder.
We studied the case of a discrete voltage distribution given by two
different sources. In one case we considered a voltage distribution
generated by two electrodes, the other case regards a distribution
of electrical field generated by a source external to the body.

4.1 modified SENN

In the previous chapter we defined a mathematical model in
matrix notation 3.7 for the linear case, we can use the same for-
malism for a most general form that works for both linear and
non linear nodes 4.1.
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[
[Cm] 0
0 [Id]

]
d

dt

{
V
ã

}
= −

[
[Ga] 0

0 (αT + β
T
)[Id]

]{
V
ã

}
+

+

[
[Ga] 0
0 [Id]

]{
ϕe

α

}
+ S

{
Im
0

}
(4.1)

Where: [Ga], [Cm] are the NxN matrixes defined in Chapter3
and [Id] is the 4Nx4N identity matrix, with N the total node num-
ber.
αk = [αm αh αn αp]

T and βk = [βm βh βn βp]
T are the arrays con-

taining the switching rates as mentioned previously 2.24 to 2.31.
Im is the membrane current density array and S = πdl.
ã = [m1 h1 n1 p1 · · · mk hk nk pk · · · mn hn nn pn]

T is the array
containing the activation variables defined in Chapter 2.
V and ϕe are the membrane voltage and the external potential
respectively.

The set of non linear differential equations 4.1 has the clas-
sic form: Mẏ = f(t, y), it was implemented on Matlab and
solved using the "ode23t" algorithm. The choice of the algorithm
is based on the fact that the mass matrix "M", in some cases,
can be singular and in these cases the problem becomes "DAE"
Differential-Algebraic Equation instead of Ordinary Differential
Equation. The "ode23t" solves moderately stiff ODEs and DAEs
using a trapezoidal rule. In the next paragraph a brief description
of the code is given.

4.1.1 Code Implementation

The ode23t solver needs as inputs a function handle defined as
ẏ = f(t, y), the time interval of integration [T0 Tfinal], the position
and number of Ranvier’s nodes in addiction to the internodale
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conductance matrix. The ode function returns a colon vector that
corresponds to f(t, y).
function dy=Ffun(t,y,Ga,P,Q,nNod)

%
% OUTPUT
% system of differential equations y' = f(t,y)
% __________________________________________________________________

% INPUTS
% Ga : Internodale conductance matrix
% P : Node coordinates
% Q : Electrodes position
% nNod: Number of nodes
% __________________________________________________________________

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Version 1.0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Created: 2021−04−11
% __________________________________________________________________________

d = evalin('base', 'd'); % d = 0.7*D;
l = evalin('base', 'l'); % l = 2.5e−6;

v=y(1:nNod);
m=y(nNod+1:4:5*nNod−3);
h=y(nNod+2:4:5*nNod−2);
n=y(nNod+3:4:5*nNod−1);
p=y(nNod+4:4:5*nNod);

dy(1:nNod,1)=−Ga*v−Ga*sourcePotential(t,Q,P)−pi*d*l*(iNa(h,m,v)+iK(n,v)+iP(p,v)+iL(v));
dy(nNod+1:4:5*nNod−3)=alpham(v).*(1−m)−betam(v).*m;
dy(nNod+2:4:5*nNod−2)=alphah(v).*(1−h)−betah(v).*h;
dy(nNod+3:4:5*nNod−1)=alphan(v).*(1−n)−betan(v).*n;
dy(nNod+4:4:5*nNod)=alphap(v).*(1−p)−betap(v).*p;

end

The following code is the main one where the "ode" solver is
called. It was decided to structure the code by dividing it into
many functions1 that can be independently modified according to
needs.

clear variables, close all
%%
% initialize variables
Init_var;

% nerve description
load nerve_structure

nNod = size(Pn,1); %nNod: number of Ranvier nodes, Pn: nodes coordinates
nEdg = size(En,1); %nEdg: edges number
jcol = abs(En.'); %
irow = repmat(jcol(1,:),2,1); %

1only two examples have been reported so as not to burden the discussion too much
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s = sign(En.');

% electrode position (Excitation Model)
Define_electrode_pos;

%Matrixes construction
A = sparse(double(irow(1:end−1)),double(jcol(1:end−1)),double(s(1:end−1))); %edge−to−node

incidence matrix
Ga = pi * d ^ 2 ./ (4 * rhoi * Inter_d); %internodale conductance
Ga = A.'*spdiags(Ga,0,nEdg)*A; %internodale conductance matrix
Cm = sparse(1:nNod,1:nNod,Cm_p*ones(1,nNod),nNod,nNod); %Membrane capacitance matrix
Cm_NL = sparse(blkdiag(Cm,eye(4*nNod))); %Mass Matrix

%Initial conditions
x0 = [zeros(1,nNod) repmat([5e−4, 0.8249, 0.0268, 0.0049],1,nNod)]; %Inizial conditions

% ode solution
options = odeset('Mass',Cm_NL,'MassSingular','yes','MStateDependence','none',...
'RelTol',1e−6,'AbsTol',1e−6);
[t,y] = ode23t(@(t,y)Ffun(t,y,Ga,Pn,Q,nNod),tSpan,x0,options);

4.2 Modified SENN application

4.2.1 21-node axon model response

At first, the modified SENN was tested on the same 21-node
axon model as the one used by Reilly to make a comparison. The
same experiments were replicated using exactly the same data.

Three stimulus cases were analyzed: sub-threshold stimulus,
threshold stimulus and a sopra-threshold stimulus, with 80%, 100%
and 120% respectively of the stimulus current It. Regarding the
first two cases, in correspondence with the non-linear nodes, i.e.
the stimulus one plus the adjacent nodes, the response are exactly
equals since the same equations were used. On the other hand,
the difference can be observed in the case of the sub-threshold
response, as shown in figure 4.1, a consequence of the fact that
in one model a simple RC circuit is used, while in the other the
non-linear F-H equations are used.

It can be noted that the response of the linear model is slightly
underestimated, it has a maximum deviation of approximately
5% at node 11, the one with the highest stimulus value due to
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Figure 4.1: Node-11 linear vs nonlinear comparison

its proximity to the electrode. The following figure 4.2 shows the
trend of the membrane voltage of the next 4 adjacent nodes.
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Figure 4.2: Nodes 12 to 15 comparison, lines: nonlinear; circles: linear

4.2.2 3D-body model

In order to model the nerve stimulation in the body induced
by an external magnetic field, it is necessary to have a 3D rep-
resentation of the body in addiction to the spatial distribution
of the magnetic field. The approach used in this thesis work is
that to represent a part of the body, which can be an arm or a
leg, using simple geometries, in particular concentric homogeneous
cylinders each of which represents a biological tissue (bones, mus-
cles, fat and skin) as shown in figure 4.3. The nerves have been
schematized with a structure having a main nerve that branches
in two others obtaining an inverted Y shape as shown in the fig-
ure 4.4. The electrical proprieties of the tissues were considered
constant.
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Figure 4.3: 3D-Cylinder Model

Figure 4.4: 3D-Cylinder Model
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4.2.3 Y-model response

From the 3D voxel model the structure of the nerve was ex-
tracted, after which its center-line, figure 4.5, was identified using
a skeletonization algorithm. The purpose of using the skeleton is
to maintain the topological properties of the structure.

Figure2 4.5 shows, in addition to the exact position of the
nerves, also the position of the spherical electrode needed to inject
the stimulus current.

Figure 4.5: Y Model skeleton

The structure can be treated as a graph having 4 nodes, num-
bered from 0 to 4 and connected to each other by three branches:
(0-1), (1-2) and (1-3). In each branch the Ranvier nodes present
were calculated with the constraint of having an internodal dis-
tance equal to 20 mm, with this condition we get 100 nodes for
the first branch (0-1), 150 and 101 for second (1-2) and third (1-
3) ones respectively, with a total of 351 Ranvier nodes. Two new
matrixes were created: [Pn] containing the position of each node
and the connectivity matrix [En] which defines the connections

2the nerve model is the same as shown in figure 4.4 but from a different view to highlight
the position of the electrode
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between Ranvier nodes.

The [En] is a Nx2 matrix with N the total node number, each
row represents a branch, the first element of the row is starting
node while the second is the arrival one. Thanks to [En] it was pos-
sible to construct the edge-to-node incidence matrix [A] defined in
3.10 and consequently also internodale conductance matrix [Ga]
as 3.9.

Regarding the external potential ϕe it was given by a spher-
ical electrode, the same described in the previous chapter. The
electrode was positioned, as shown in figure 4.5, at node 50 of the
first branch. The distance between the electrode and the nerve is
20 mm, equal to the internodal distance.

After defining all the terms of the mathematical model 4.1 we
solved the set of differential equations using the same Matlab ode
solver the "ode23t", the same adopted for the solution of the 21-
node axon model described previously. We analysed the three
different cases of external stimulus: sub-threshold, threshold and
sopra-threshold stimuli, using the same value of excitation current
as in the cases analyzed above.

The results of the calculations are shown in the following fig-
ures:

The figure 4.6 shows the result of sub-threshold stimulus, as
expected, the trend follows that of an RC circuit, the same result
was obtained by Reilly as we shown in the previous chapter.
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Figure 4.6: Sub-threshold stimulus result

The next figure: 4.7 shows the threshold stimulus, there is no
change between this one and the result obtained by Reilly.
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Figure 4.7: Threshold stimulus result

Also for the sopra-threshold stimuli we can say the same thing,
that because the only difference between two models is that in
this case we have a large number of points.
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Figure 4.8: sopra-threshold stimulus result

Figure 4.9: Adjacent nodes - sopra-threshold stimulus result
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One thing we can notice is that the distant nodes of the elec-
trode do not feel the effect of the generated action potential as we
can notice in figure 4.10

Figure 4.10: distant nodes
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Chapter 5

3D Modeling

In order to simulate PNS (peripheral nerve stimulation) in a 3D
object, that could be a complete real body model, or, in our case,
a simplified representation of body part using simple geometries
(like a cylindrical geometry), it is necessary to follow some steps.
First of all we need to make a consideration: 3D models are usually
found available in the form of a volumetric data-set containing the
object properties with a voxel discretization1. Each voxel, of finite
size, contains the individual properties of the object residing in the
unit of volume represented by that voxel.

As a first step, it is necessary to identify and extrapolate the
voxels that represent the nervous system, or, as in our case, an
equivalent nerve representation, from the entire 3D model. After
that, using image processing algorithms, it is possible to calculate
the center line that emphasizes the geometrical and topological
properties of the nerves shape, to get a 1-D line representation
of the 3-D object. As a last step, we evaluate the neurodynamic
model described in the previous chapter to get the response of the
nerve fiber to a predefined external electric potential.

1[...]"Voxel is an image of a three-dimensional space region limited by given sizes, which
has its own nodal point coordinates in an accepted coordinate system, its own form, its own
state parameter that indicates its belonging to some modeled object, and has properties of
modeled region." [8] (the voxel is the three-dimensional counterpart of the two-dimensional
pixel)
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5.1 Medial Axis

The medial axis (or skeleton) of an object is the locus of points
with the property of being equidistant from its boundary. The
skeleton conserves geometrical and topological properties of the
object shape, such as topology, direction, length and connectivity.
Skeleton, in addiction to the distance of its points to the boundary,
is used to represent object’s shape.
A mathematical definition is given by Anil K.[4]:
" A disk (or ball) B is said to be maximal in a set A if:
- B ⊆ A, and
- If another disc D contains B, then D ⊈ A.

One way of defining the skeleton of a shape A is as the set of
centers of all maximal disks in A."

In literature there are many skeletonization algorithms that
reduce a 3-D object to its skeleton without changing its topol-
ogy. We can find three families of algorithm [9]: distance trans-
form field-based methods, Voronoi diagram-based methods and
thinning-based methods.

5.2 Skeletonization algorithm

For this thesis work we opt for a parallel thinning-based method
that uses GPU processors for the center line extraction. The code
take as input binary 3-D volume and creates a set of curvilinear
segments that represent the skeleton of the 3-D shape. These algo-
rithms are applied in various disciplines such as computer graph-
ics, artificial intelligence, biology and medicine.

Thinning algorithm works basically by removing the external
layer of the object until only one pixel thin center lines are re-
maining, preserving the topology of the object. A voxel ”v” can
be removed from the boundary of the 3-D binary image provided
that it satisfies the following assumptions [9]:
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- ”v” has exactly one 26-connected object component in its 26-
neighborhood,
- ”v” one 6-connected background component, in its 18-neighborhood,
which is 6-connected to p, and
- ”v” has at least one 6-connected background neighbor.
A pair of voxel v1 v2 are called 6-connected if d(v1, v2) = 1, 18-
connected if d(v1, v2) = 2 and 26-connected if d(v1, v2) = 3, where
d(., .) indicates the Manhattan distance2.

For more details on the 3-D thinning algorithms we refer the
reader to [9].

2Manhattan distance between two points is the sum of the absolute differences of their
Cartesian coordinates.

d(P,Q) =

n∑
n=1

|pi − qi|,

where P and Q are vectors
P = (p1, p2, ..., pn) and Q = (q1, q2, ..., qn)
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Chapter 6

Conclusion

In conclusion, the code obtained at the end is composed of
many independent functions that call each other, the functions
can be modified separately to allow you to analyze different types
of stimulus and test the model on various 3-D geometries. The
ease of implementation pays off in terms of computational cost,
especially in the case of analysis of complex geometries with non-
uniform induced electric field distributions, the calculation times
increase greatly

To conclude, these models can be applied in various fields of
research, it can be said that the work presented can be considered
a starting point for developing more performing and efficient al-
gorithms. It is quite easy to be able to test the model developed
on a 3-D human body, the only criticality is the limited availabil-
ity of detailed 3-D models. The next step is to test the model
on a real case of exposure to electromagnetic fields using a real
measurements.
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