
POLITECNICO DI TORINO 
 

Master Degree Course in Computer Engineering  
 

Master Degree Thesis 
 

Design, development and test of a graphical user 

interface for visualizing data quality measurements 

on Italian Open Government Data 

 
Supervisors            Candidates 
prof. Antonio Vetrò           Siqi CAI 

matricola: 273209 
Co-Supervisors            
prof. Marco Torchiano  

 

 

 

 

 

Anno accademico 2021-2022  



Contents 
Abstract ......................................................................................................................................... 5 

1. Introduction to data quality tool....................................................................................... 6 

1.1 Main function .............................................................................................................. 6 

1.2 Industry status ............................................................................................................. 7 

1.3 ISO/IEC 25012:2008 ................................................................................................... 7 

1.4 ISO/IEC 25024:2015 ................................................................................................... 8 

2. Requirement analysis .......................................................................................................... 10 

2.1 User stories ................................................................................................................. 10 

2.1.1 Visitor ............................................................................................................... 10 

2.1.2 User .................................................................................................................. 11 

2.1.3 Administrator ................................................................................................ 12 

2.2 Application design ................................................................................................... 12 

2.2.1 Approve .......................................................................................................... 13 

2.2.2 Manager User ............................................................................................... 13 

2.2.3 Notice .............................................................................................................. 14 

2.2.4 Account Setting ............................................................................................ 14 

2.2.5 Manage Dataset ........................................................................................... 15 

2.2.6 Analysis Setup ............................................................................................... 16 

2.2.7 Saved Result .................................................................................................. 18 

3. Technology stack ................................................................................................................. 19 

3.1. Backend framework, Flask .................................................................................... 20 

3.2. Frontend framework, Vue .................................................................................. 26 

3.3 ORM framework, SQLAlchemy ............................................................................ 28 

3.4 Docker, docker-compose ...................................................................................... 29 

4. Implementation .................................................................................................................... 32 

4.1 Backend API ............................................................................................................... 32 

4.4.1 Login ................................................................................................................ 32 

4.4.2 Logout ............................................................................................................. 32 

4.4.3 Get current logged user information .................................................... 32 

4.4.4 Create a new account ................................................................................. 33 

4.4.5 Update a account ........................................................................................ 33 

4.4.6 Delete a account .......................................................................................... 33 

4.4.7 Get a list of users in pagination............................................................... 34 

4.4.8 Apply for access as User ............................................................................ 34 

4.4.9 Approve the application of Visitor ......................................................... 34 

4.4.10 Get a list of applications in pagination ............................................... 34 

4.4.11 Get a list of notices in pagination ........................................................ 35 



4.4.12 Upload files ................................................................................................. 35 

4.4.13 Batch upload files ...................................................................................... 35 

4.4.14 Download dataset files ............................................................................ 35 

4.4.15 Get a list of files in pagination ............................................................... 36 

4.4.16 Delete dataset files .................................................................................... 36 

4.4.17 Save a analysis setup ................................................................................ 36 

4.4.18 Get the detail of a saved analysis setup ............................................. 37 

4.4.19 Delete a analysis setup ............................................................................ 37 

4.4.20 Get a list of saved analysis setups in pagination ............................. 37 

4.4.21 Do analysis................................................................................................... 37 

4.4.22 Save an analysis result ............................................................................. 38 

4.4.23 Rename a saved analysis result ............................................................ 38 

4.4.24 Get the detail of a saved analysis result ............................................. 39 

4.4.25 Get a list of saved analysis results in pagination ............................. 39 

4.4.26 Delete a saved analysis result ................................................................ 39 

4.4.27 Export a result as a csv file ..................................................................... 39 

4.4.28 Export a setup as a csv file ..................................................................... 40 

4.2 Frontend Router ....................................................................................................... 40 

4.2.1 Guide ............................................................................................................... 40 

4.2.2 Account Setting ............................................................................................ 40 

4.2.3 Analysis Setup ............................................................................................... 40 

4.2.4 Approve .......................................................................................................... 40 

4.2.5 Manage Dataset ........................................................................................... 41 

4.2.6 Manage User ................................................................................................. 41 

4.2.7 Notice .............................................................................................................. 41 

4.2.8 Saved Result .................................................................................................. 41 

4.2.9 Login ................................................................................................................ 41 

4.3 Database ..................................................................................................................... 41 

4.4 Introduction to application ................................................................................... 44 

4.4.1 Login ................................................................................................................ 44 

4.4.2 Notice .............................................................................................................. 44 

4.4.3 Manage User ................................................................................................. 45 

4.4.4 Approve .......................................................................................................... 46 

4.4.5 Account Setting ............................................................................................ 47 

4.4.6 Manage Dataset ........................................................................................... 47 

4.4.7 Analysis Setup ............................................................................................... 48 

4.4.8 Analysis Result .............................................................................................. 49 

4.5 Test case ...................................................................................................................... 50 



4.5.1 What is open data ....................................................................................... 50 

4.5.2 Example of measurements on open data ............................................ 51 

5. Conclusions ........................................................................................................................... 59 

5.1 Conclusion .................................................................................................................. 59 

5.2 Future Implementation ....................................................................................... 59 

List of references ...................................................................................................................... 61 

 

  



Abstract 

Today with the development of the Internet, data is used in more and more places, 

such as training the model and data analysis for businesses and governments to 

improve their services or gain benefits. With more and more data, it is difficult for 

people to monitor the quality and accuracy of all data. Poor quality data can lead 

to some negative results. The aim of the thesis is to design and develop a web-

application to do data quality analysis based on a generalized algorithm provided 

by Davide Vitaletti, and display the analysis results visually for users. The 

application includes back-end and front-end. The back-end is developed based 

on the web framework, Flask and ORM framework, SQLAlchemy. The front-end is 

developed based on the framework, Vue. Vue is an easy to learn and for rapid 

development framework. Based on the different account role, the users have 

different permissions. The main modules of the application include account 

management, file management, analysis setup, analysis result. Its main function is 

to analysis the data on Italian Open Government Data for users to visualize data 

quality measurements including Com-I-1 DevA, Com-I-5, Acc-I-4, Con-I-3, Con-

I-2 DevB and Con-I-4 DevC. Thesis quality measurements are defined in ISO/IEC 

25024:2015. 

  



1.  Introduction to data quality tool 

1.1 Main function 

Data quality [1] is a measure of the state of data based on factors such as accuracy, 

completeness, consistency, reliability, and whether the data is up-to-date. 

Measuring data quality levels can help organizations identify data errors that need 

to be addressed and assess whether the data in their IT systems is fit for their 

intended use. 

 As data processing becomes more complex in relation to business operations, 

and the emphasis on data quality in enterprise systems increases, organizations 

are increasingly using data analytics to help drive business decisions. Data quality 

management is a core component of the overall data management process, and 

data quality improvement efforts are often closely tied to data governance 

programs designed to ensure that data is consistently formatted and used across 

the organization. 

Bad data can have major business consequences for a company. Low-quality 

data is often cited as a source of operational confusion, inaccurate analytics, and 

poorly conceived business strategies. Examples of financial losses that can result 

from data quality issues include: increased fees when products are shipped to the 

wrong customer address, lost sales opportunities due to erroneous or incomplete 

customer records, and fines for improper financial or regulatory compliance 

reporting. 

An oft-cited estimate by IBM calculates the annual cost of data quality 

problems in the U.S. at $3.1 trillion in 2016. In a 2017 article for the MIT Sloan 

Management Review, data quality consultant Thomas Redman estimated that 

correcting data errors and dealing with bad data results in business Problems can 

reduce the company's revenue by 15% to 25% annually on average. 

  



1.2 Industry status 

Nowadays, lots of company have launched their products of data quality tool. For 

example, IBM launched several of products. Each product has specified functions, 

such as InfoSphere is to turn data to trusted information and monitor data quality 

and BigQuality provides a solution with a rich set of data profiling, cleaning ,and 

monitoring capabilities that execute on the data nodes of an Apache Hadoop 

cluster. 

Informatica offers a modular MDM solution that provides a single view of data. 

The product enables users to create an authoritative view of business-critical data 

from disparate, duplicate and conflicting sources. Informatica MDM also features 

AI and machine learning, and includes data quality, data integration, business 

process management, and data security functionality that allows users to easily 

enrich master data records with data from external providers. Informatica’s MDM 

capabilities can be deployed on-prem or in the cloud. 

Infogix offers a suite of integrated data governance capabilities that include 

business glossaries, data cataloging, data lineage, and metadata management. 

The tool also provides customizable dashboards and zero-code workflows that 

adapt as each organizational data capability matures. Reference customers use 

Infogix for data governance and for risk, compliance and data value management. 

The product is also flexible and easy to use, and supports smaller data analysis 

jobs as well. 

1.3 ISO/IEC 25012:2008 

ISO / IEC 25012:2008 defines a general data quality model for data retained in a 

structured format in computer systems. It can be used to establish data quality 

requirements, define data quality measures or plan and perform data quality 

assessments. For example, it can be used to define and evaluate data quality 

requirements during data production, collection and integration, determining 

data quality assurance standards can also be used for data redesign, evaluation 

and improvement. 

To Assess whether the data comply with legal and / or requirements. ISO / 

IEC 25012:2008 divides quality attributes into 15 characteristics, which are 

considered from two perspectives: inherent and system related. Data quality 

characteristics have different importance and priorities for different stakeholders. 

 Regarding the classification of data quality characteristics, this standard 

categorizes them from two points of view [2]:  



⚫ Inherent data quality, referring to the degree to which data quality 

characteristics have intrinsic potential to satisfy implicit data needs.  

⚫ System-dependent data quality, referring to the degree to which data quality 

is achieved and preserved through an information system and is dependent 

on the specific technological context in which the data is used. 

 

Because the technical nature of data repositories varies greatly, it is almost 

impossible to develop common measures to allow comparison between different 

organizations. Therefore, the data quality assessment environment only considers 

the inherent data quality characteristics. By this way, the implementation of 

follow-up measures used in the evaluation can be essentially independent of the 

particularity of the data set and the technology of the information system 

supporting the data repository. Therefore, the process of generating data quality 

metrics is repeatable for any data set in any field, and the results can be compared 

and benchmarked. The inherent data quality characteristics are described in the 

following Table 1. 

 

Characteristic Definition 

Accuracy The degree to which the data has attributes that correctly 

represent the true value of the intended attribute of a 

concept or event in a specific context of use. 

Completeness The degree to which subject data associated with an entity 

has values for all expected attributes and related entity 

instances in a specific context of use. 

Consistency The degree to which data has attributes that are free from 

contradiction and are coherent with other data in a specific 

context of use. 

Credibility The degree to which data has attributes that are regarded 

as true and believable by users in a specific context of use. 

Currentness The degree to which data has attributes that are of the 

right age in a specific context of use. 

Table 1. Inherent data quality characteristics defined in ISO/IEC 25012 [3] 

1.4 ISO/IEC 25024:2015 

On the Other hand, ISO/IEC 25024 – “Measure of data quality” provides 

measurements, including measurement methods and related quality 

measurement elements for the quality characteristics of the data quality model 



described above. [2] A quality measurement is an element that represents a way 

of evaluating certain aspects or particularities of the data contained in a repository.  

To evaluate the quality of a data repository, an organization should identify the 

data quality characteristics and the corresponding data quality properties that 

best fit their stated data quality requirements. Fig. 1 shows a summary of the 

inherent data quality characteristics and the data quality properties defined for 

each of them. 

 

Table 2 shows an example of how each data quality attribute is described in 

ISO/IEC 25024 and the information it provides about how its value is calculated. 

The evaluation team must explain when the low value of the attribute measure 

ment represents a problem in the data respository. 

 

Data quality characteristic Accuracy 

Data quality property Data Accuracy Range 

Measurement description The data accuracy range focuses on checking 

whether the data value is included in the 

required interval. Its value is the ratio of the field 

value in the data file to the records within the 

specified interval. 

Calculation formula X=A/B  

Fig. 1. Inherent data quality characteristics and related data quality properties extracted from 

ISO/IEC 25012 and ISO/IEC 25024, respectively. 



A= number of data items having a value included 

in a specified interval (i.e., range from minimum 

to maximum) B= number of data items for which 

can be defined a required interval of values 

Scale Ratio 

Value range [0, 1.0] 

Table 2. Description for the property “Accuracy Range” (RAN_EXAC) and its measurement [2] 

2.  Requirement analysis 

2.1 User stories 

User story is a tool used in software development to capture the description of 

software functionality from the end user’s perspective. Users describe the type of 

users, what they want to do, and why they want to do it. A short description used 

to identify users and user needs. User story is often recorded in post-it notes and 

project management software. 

 

User stories usually contain three elements: 

1. <Role>: who uses 

2. <Action>: what to finish 

3. <Benefit>: why do it 

Next the user stories will be described from the perspective of different users in 

the three different roles. 

2.1.1 Visitor 

User story (Visitor) Implemented 

Fig 2. Expression of user story 



V1. As a visitor, I want to see an example of analysis ✓ 

V2. As a visitor, I want to see an example of setup file ✓ 

V3. As a visitor, I want to get general information on the system ✓ 

V4. As a visitor, I want to request access as a user ✓ 

Table 3. User stories of visitor 

From the Table 3 above, it is said that a visitor has only limited operation in this 

application. It could only have a view of analysis result and the related files. It also 

could apply the access as a user. 

2.1.2 User 

User story (User) Implemented 

U1. As a user, I want to see a tutorial for using the system ✓ 

U2. As a user, I want to setup the analysis ✓ 

· specify which datasets to analyze ✓ 

· select which quality measures to apply to which datasets ✓ 

U3. As a user, I want to run an analysis with a specified default 

configuration 

✓ 

U4. As a user, I want to view results of the analysis in a dashboard ✓ 

· by default, a graph (e.g., histogram with a bar for each quality 

metric) for each file/dataset is shown 

✓ 

· a switcher will enable to show a measure-based visualization, i.e. a 

graph for each quality metric 

✓ 

U5. As a user, I want to add/remove datasets to/from an existing 

analysis 

✓ 

U6. As a user, I want to browse errors in the analysis ✓ 

U7. As a user, I want to know why an analysis setup is not allowed ✓ 

· example: exceeded limits (and which type), wrong format, etc. ✓ 

U8. As a user, I want to login to the system ✓ 

U9. As a user, I want to download the setup of the analysis ✓ 

U10. As a user, I want to save download the setup of the analysis ✓ 

U12. As a user, I want to delete a saved analysis setup ✓ 

U13. As a user, I want to see an overall plot of the analysis¡¯s results 

as first thing 

✓ 

U14. As a user, I want to browse the results grouped by quality 

measure 

✓ 

U15. As a user, I want to save the results of the analysis ✓ 



U17. As a user, I want to delete a saved analysis result ✓ 

U18. As a user, I want to be notified when changes to my account 

from a system administrator are made 

✓ 

· account is created ✓ 

· account is deleted ✓ 

· analysis results deleted or renamed ✓ 

· analysis setup deleted or renamed ✓ 

Table 4. User stories of user 

From the Table 4 above, we can find a formal user has a lot of operation for 

analysis setup and analysis result, like save, update, delete, upload of download. 

It also could receive the notice in the application when the information of the 

account is changed. 

2.1.3 Administrator 

User story (Administrator) Implemented 

SA1. As a system administrator, I want to create/delete users ✓ 

SA2. As a system administrator, I want to browse and manage saved 

analyses 

✓ 

· manage = rename, delete, download, upload, see much space it 

occupies 

✓ 

· analyses = results and/or configurations ✓ 

SA3. As a system administrator, I want to set up limits for analyses ✓ 

· for all or selected users ✓ 

· in terms of number of datasets to analyze or overall size ✓ 

Table 5. User stories of administrator 

From the Table 5 above, we know the administrator is able to manage all roles of 

members in this application, including visitors, users and other administrators. 

It has the authority to add or change the information of the account and set a 

limitation for occupied space by each account. 

2.2 Application design 

From Fig 3, we can know that the overall function of the application is divided into 

the following modules. 

1. Approve 

2. Manage User 



3. Notice 

4. Account Setting 

5. Manage Dataset 

6. Analysis Setup 

7. Saved Result 

2.2.1 Approve 

As user story said, there are three kinds of roles, Visitor, User and Administrator. 

The operation of Visitor is limited to only Notice, Account Setting and Saved Result. 

If one Visitor want to get access as a User, it must submit a application. Then 

Administrator could see all applications in Approve. It will show all applications 

by page and order by time. The latest application will be displayed in the front. 

For each application, there are tow kinds of status, in process and process 

end. In process means that the application has not been approved. 

Administrator could choose agree or reject to approve it. Process end means 

that the application has been approved by Administrator. When the application 

is agreed, the applicant is granted permission and role of application is changed 

from Visitor to User. The function feature of Manage Dataset is shown in Fig 4. 

2.2.2 Manage User 

As user story said, Administrator could create/delete users. In Manage User, 

Administrator could manage all information of all accounts including the user 

name, password, role and the max space granted for dataset files. In previous 

function, we know a Visitor must submit the application for access as a User. In 

Fig 3. Overall application function menu 

Fig 4. Function of Approve 



Manage User, Administrator also could directly change the role of the account 

to grant it the permission. The function feature of Manage Dataset is shown in Fig 

5. 

2.2.3 Notice 

As user story said, the application user wants to get the notice when changes to 

the account. In Notice, they could see a list of notices by page. When their 

account information is changed or their saved analysis setup and saved analysis 

result are edited, they will receive the notice. The function feature of Manage 

Dataset is shown in Fig 6. 

2.2.4 Account Setting 

In Account Setting, you can have a overall view of your personal information.  

Also as user story said, Visitor could request the access as User. So there is a 

button ‘Request user access’ displayed when the role of current logged in user 

is Visitor. They could click this button to submit application for access as User. 

The function feature of Manage Dataset is shown in Fig 7. 

Fig 5. Function of Manager User 

Fig 6. Function of Notice 



2.2.5 Manage Dataset 

In Manage Dataset, all users could manage their uploaded dataset files, which 

are used for analysis. The maximum space occupied by all dataset files is limited 

by the property, max space, in Account Setting. 

 All user except Visitor could choose to upload single dataset file by file URL 

or batch upload dataset files from a txt file. The txt file format is one file URL per 

line. Uploaded files are saved in a specified path in server. In order to avoid file 

overwriting due to duplication of file names, the names of uploaded files are 

renamed to random GUID. 

 Users also could get an overall view of all files uploaded by themselves 

including the original file name and file URL. They could choose to download 

dataset files or delete them. When they are downloaded, the file name will be 

restored to the original name. The function feature of Manage Dataset is shown 

Fig 7. Function of Account Setting 



in Fig 8. 

2.2.6 Analysis Setup 

The function feature of Analysis Setup is shown in Fig 9. In Analysis Setup, all 

users except Visitor could manage self-created analysis setup and Administrator 

could manage all analysis setup created by all users. First, User could get a view 

of self-created analysis setup by page, including the name of analysis setup, 

creation time and who created it.  

 Users could create a new analysis setup by choose the dataset files, which 

need to be analyzed, and quality measures from Com-I-1 DevA, Com-I-5, Acc-

I-4, Con-I-3, Con-I-2-DevB and Con-I-4-DevC. The definition of thesis quality 

measure is shown from Table 1.1 ~ 1.6. 

 

◼ Com-I-1 DevA 

Id: Com-I-1 DevA 

Dimension: Completeness  

Name: Data set completeness 

Description Measurement function 

Ratio of null values 

within a data file 

Average of X where X = A/B  

A = number of null value in the whole data set  

B = number of data items considered 

Fig 8. Function of Manage Dataset 

Fig 9. Function of Analysis Setup 



Table 1.1. Com-I-1 DevA derivative from ISO/IEC 25024 

◼ Com-I-5 

Id: Com-I-5 

Dimension: Completeness 

Name: Empty records in a data file 

Description Measurement function 

False completeness of 

records within a data 

file 

X = 1-A/B  

A = number of records where all data items are empty 

B = number of records in a data file 

Table 1.2. Com-I-5 derivative from ISO/IEC 25024 

◼ Acc-I-4 

Id: Acc-I-4 

Dimension: Accuracy 

Name: Risk of data set inaccuracy 

Description Measurement function 

Ratio of null values 

within a data file 

X = A/B  

A = number of data values that are outliers B = 

number of data values to be considered in a data set 

Table 1.3. Acc-I-4 DevA derivative from ISO/IEC 25024 

◼ Con-I-3 

Id: Con-I-3 

Dimension: Consistency 

Name: Risk of data inconsistency 

Description Measurement function 

Risk of having 

inconsistency due to 

duplication of data 

value 

X = A/B  

A = Number of data items where exist duplication in 

value  

B = Number of data items considered 

Table 1.4. Con-I-3 derivative from ISO/IEC 25024 

◼ Con-I-2-DevB 

Id: Con-I-2 DevB 

Dimension: Consistency 

Name: Data type consistency 

Description Measurement function 

Average consistency 

of data type of data 

item in the same 

attribute 

Average of X where X = A/B  

A = number of data items that have the correct type 

in the attribute  

B = number of data items considered for a single 



column 

Table 1.5. Con-I-2 DevB derivative from ISO/IEC 25024 

◼ Con-I-4-DevC 

Id: Con-I-4 DevC 

Dimension: Consistency 

Name: Data structure consistency 

Description Measurement function 

Degree to which the 

data structure remains 

coherent over the data 

file 

X = A/B  

A = Number of rows that respect the data structure  

B = Number of rows contained in the data file 

Table 1.6. Con-I-4 DevC derivative from ISO/IEC 25024 

The analysis algorithm is provided by Davida[5]. It is a practical application of the 

algorithm that is used to assess the data quality of the Italian open government 

data sets. In the thesis, the data quality application will transfer the result of this 

algorithm to a readable format, which could be displayed in UI.  

2.2.7 Saved Result 

After users get a output from analysis setup, they could choose to save the 

analysis result. Then the output will be shown in Saved Result. In Saved Result 

There is a difference like in Analysis Setup: Administrator could manage all saved 

analysis results created by all users and User only could manage self-created 

analysis result. First, in Saved Result, users could have an overall view of saved 

analysis results including the result name, who saved it, creation time and actions 

that can be performed. When users want to save their analysis result from 

Analysis Setup, the result must be named. It also could be renamed in Saved 

Result. Every analysis result should be able to be re-viewable as if they were saved 

from Analysis Setup, Users also could export the analysis result as a csv file and 

delete useless or unwanted results.  

The function feature of Saved Result is shown in Fig 10. 

Fig 10. Function of Saved Result 



3.  Technology stack 

With the emergence of new technologies, the rapid development of coding 

standards and improved infrastructure have led to the development of web 

development strategies and strategies. The medium that promotes successful web 

development by combining various parts is called web application architecture. 

Front end and back end are two main sub parts of web application architecture. 

A frontend is a section that a user can see while the backend is an infrastructure 

supporting it [6]. 

The front end of the website is the part that users see and interact with the 

help of the browser. Also known as the client, it covers all content directly from 

the user experience. For example, text, colors, images, navigation menus, icons, 

and so on. HTML, CSS and JavaScript are the basic languages for front-end 

development. In addition, bootstrap, angular framework and JavaScript libraries 

(such as react, Vue, jQuery and CSS extensions) also belong to the front end. 

The back end is the part of the website that is far from the sight of users. The 

back end, also known as server-side code, facilitates data management and 

interaction in an organized manner. Communication between the back end and 

the front end helps to display information on Web pages. For example, when 

filling out a contact form, the web address is entered in the browser. The browser 

sends a request to the server, and the server returns the requested information as 

the front-end code interpreted by the browser and displayed to the user. 

Here I choose the development mode of front-end and back-end separation. 

Because it could cause the following benefits: 

◼ Broad range of technical experts: In a multi-tier development environment 

architecture, complex technologies are responsible for these tasks. Therefore, 

in order to create a complex system, dedicated technical experts are required. 

Dividing front-end and back-end helps to get expert programmers in their 

respective technical fields. Furthermore, removing constraints on technology 

choices, the two choices may impose on each other. This makes the 

development process smoother in such a development environment. This 

data quality application is developed by me alone. I am not good at front-

end development so page design interaction is relatively simple. Those who 

maintain this project in the future can improve it. 

◼ Modularity: Since the components or modules in this type of development 

model are independent, the replacement of modules or any changes are 

smooth. Changes in the backend module of the web application will not affect 



the frontend part and vice versa. Therefore, do not overwrite or interfere with 

the work of others. 

◼ Rapid development: As various teams work on projects in parallel and in full 

alignment, this facilitates rapid and synchronized development of web 

applications, resulting in rapid application deployment.  

◼ API Integration: With the availability of a large number of devices, various 

versions of code (websites, iOS apps, android apps) need to be managed. 

Most of them require the same codebase. An API-based website simplifies 

everything for developers because now the API handles code management. 

Therefore, developers need to deal with less code. 

3.1. Backend framework, Flask 

In this thesis, the backend framework of the data quality application is Flask. 

Before I explain the feature of it, I will explain what is the framework. I would like 

to share one example from stackoverflow[7]. If I told you to cut a piece of paper 

with dimensions 5m by 5m, then surely you would do that. But suppose I ask you 

to cut 1000 pieces of paper of the same dimensions. In this case, you won't do 

the measuring 1000 times; obviously, you would make a frame of 5m by 5m, and 

then with the help of it you would be able to cut 1000 pieces of paper in less time. 

So, what you did was make a framework which would do a specific type of task. 

Instead of performing the same type of task again and again for the same type of 

applications, you create a framework having all those facilities together in one 

nice packet, hence providing the abstraction for your application and more 

importantly many applications. 

 Flask is a backend framework which is for programming in python. There is 

another famous framework, Django. Django is a high-level Python web 

framework that encourages rapid development and clean, pragmatic design. [12] 

Built by experienced developers, it takes care of much of the hassle of web 

development, so you can focus on writing your app without needing to reinvent 

the wheel. It’s free and open source. It is more suitable for developing complex 

projects.  

 Flask is a micro framework offering basic features of web app. This framework 

has no dependencies on external libraries. The framework offers extensions for 

form validation, object-relational mappers, open authentication systems, 

uploading mechanism, and several other tools. Next, the features of Flask will be 

explained [9]: 

 



◼ Routing 

Flask is a back-end framework. It acts like a pure API. The back-end returns just 

JSON data. So it uses the route() decorator to bind a function to a URL. The front-

end could request JSON data by the bonded URL. 

@app.route('/') 

def index(): 

return 'Index Page' 

 

@app.route('/hello') 

def hello():  

return 'Hello, World' 

 

◼ Variable Rules 

The variable sections could be added to a URL by making sections 

<variable_name>. Your function then receives the <variable_name> as a 

keyword argument. Optionally, you can use a converter to specify the type of the 

argument like <converter:variable_name>. 

from markupsafe import escape 

 

@app.route('/user/<username>') 

def show_user_profile(username): 

    # show the user profile for that user 

    return f'User {escape(username)}' 

 

@app.route('/post/<int:post_id>') 

def show_post(post_id): 

    # show the post with the given id, the id is an integer 

    return f'Post {post_id}' 

 

@app.route('/path/<path:subpath>') 

def show_subpath(subpath): 

    # show the subpath after /path/ 

    return f'Subpath {escape(subpath)}' 

Converter types: 

string (default) accepts any text without a slash 

int accepts positive integers 

float accepts positive floating point values 

path like string but also accepts slashes 

uuid accepts UUID strings 

 



◼ HTTP Methods 

Web applications use different HTTP methods when accessing URLs. By default, a 

route only answers to GET requests. We can use the methods argument of the 

route() decorator to handle different HTTP methods. 

from flask import request 

 

@app.route('/login', methods=['GET', 'POST']) 

def login(): 

    if request.method == 'POST': 

        return do_the_login() 

    else: 

        return show_the_login_form() 

If GET is present, Flask automatically adds support for the HEAD method and 

handles HEAD requests according to the HTTP RFC [8]. Likewise, OPTIONS is 

automatically implemented for you. 

 

◼ The Request Object 

The request object will be documented in the API section. Here s a board overview 

of some of the most common operations. First of all we have to import it from the 

flask module: 

from flask import request 

The current request method is available by using the method attribute. To access 

form data (data transmitted in a POST or PUT request), we can use the form 

attribute. Here is a full example of the two attributes mentioned above: 

@app.route('/login', methods=['POST', 'GET']) 

def login(): 

    error = None 

    if request.method == 'POST': 

        if valid_login(request.form['username'], 

                       request.form['password']): 

            return log_the_user_in(request.form['username']) 

        else: 

            error = 'Invalid username/password' 

    # the code below is executed if the request method 

    # was GET or the credentials were invalid 

    return render_template('login.html', error=error) 

What happens if the key does not exist in the form attribute? In that case a special 

KeyError is raised. We can catch it like a standard KeyError but if you don’t do 

that, a HTTP 400 Bad Request error page is shown instead. So, for many situations 

we don’t have to deal with that problem. 



 

◼ File Uploads 

We can handle uploaded files with Flask easily. Just make sure set the 

enctype="multipart/form-data" attribute on the HTML form, otherwise the 

browser will not transmit files at all. 

Uploaded files are stored in memory or at a temporary location on the 

filesystem. We can access those files by looking at the files attribute on the 

request object. Each uploaded file is stored in that dictionary. It behaves just like 

a standard Python file object, but it also has a save() method that allows you to 

store that file on the filesystem of the server. Here is a simple example showing 

how that works: 

from flask import request 

 

@app.route('/upload', methods=['GET', 'POST']) 

def upload_file(): 

    if request.method == 'POST': 

        f = request.files['the_file'] 

        f.save('/var/www/uploads/uploaded_file.txt') 

    ... 

To know how the file was named on the client before it was uploaded to the 

application, we can access the filename attribute. However this value can be 

forged so we can not trust that value. If we want to use the filename of the client 

to store the file on the server, pass it through the secure_filename() function that 

Werkzeug provides for you: 

from werkzeug.utils import secure_filename 

 

@app.route('/upload', methods=['GET', 'POST']) 

def upload_file(): 

    if request.method == 'POST': 

        file = request.files['the_file'] 

        file.save(f"/var/www/uploads/{secure_filename(file.file

name)}") 

    ... 

 

◼ Cookie 

To access cookies we can use the cookies attribute. To set cookies we can use the 

set_cookie method of response objects. The cookies attribute of request objects 

is a dictionary with all the cookies the client transmits. If we want to use sessions, 

do not use the cookies directly but instead use the Sessions in Flask that add some 

security on top of cookies for you. 



Reading cookies: 

from flask import request 

 

@app.route('/') 

def index(): 

    username = request.cookies.get('username') 

    # use cookies.get(key) instead of cookies[key] to not get a 

    # KeyError if the cookie is missing. 

Storing cookies: 

from flask import make_response 

 

@app.route('/') 

def index(): 

    resp = make_response(render_template(...)) 

    resp.set_cookie('username', 'the username') 

    return resp 

Cookies are set on response objects. Since we normally just return strings from 

the view functions, Flask will convert them into response objects. If we explicitly 

want to do that, we can use the make_response() function and then modify it. 

 

◼ About Responses 

The return value from a view function is automatically converted into a response 

object. If the return value is a string it’s converted into a response object with the 

string as response body, a 200 OK status code and a text/html mimetype. If the 

return value is a dict, jsonify() is called to produce a response. The logic that Flask 

applies to converting return values into response objects is as follows: 

1. If a response object of the correct type is returned it’s directly returned from 

the view. 

2. If it’s a string, a response object is created with that data and the default para

meters. 

3. If it’s a dict, a response object is created using jsonify. 

4. If a tuple is returned the items in the tuple can provide extra information. Suc

h tuples have to be in the form (response, status), (response, headers), or (

response, status, headers). The status value will override the status code an

d headers can be a list or dictionary of additional header values. 

5. If none of that works, Flask will assume the return value is a valid WSGI applic

ation and convert that into a response object. 

If we want to get hold of the resulting response object inside the view, we can use 

the make_response() function. 

https://flask.palletsprojects.com/en/2.1.x/api/#flask.make_response


Imagine there is a view like this: 

from flask import render_template 

 

@app.errorhandler(404) 

def not_found(error): 

    return render_template('error.html'), 404 

We just need to wrap the return expression with make_response() and get the 

response object to modify it, then return it: 

from flask import make_response 

 

@app.errorhandler(404) 

def not_found(error): 

    resp = make_response(render_template('error.html'), 404) 

    resp.headers['X-Something'] = 'A value' 

    return resp 

 

◼ APIs with JSON 

A common response format when writing an API is JSON. It’s easy to get started 

writing such an API with Flask. If you return a dict from a view, it will be converted 

to a JSON response. 

@app.route("/me") 

def me_api(): 

    user = get_current_user() 

    return { 

        "username": user.username, 

        "theme": user.theme, 

        "image": url_for("user_image", filename=user.image), 

    } 

◼ Depending on the API design, I may want to create JSON responses for types 

other than dict. In that case, we can use the jsonify() function, which will 

serialize any supported JSON data type. 

from flask import jsonify 

 

@app.route("/users") 

def users_api(): 

users = get_all_users() 

return jsonify([user.to_json() for user in users]) 

 

https://flask.palletsprojects.com/en/2.1.x/api/#flask.make_response


3.2. Frontend framework, Vue 

A front-end framework is essentially a bundle of JavaScript code that someone 

else has written which you can include in your application to help you build it 

faster. At present, the popular front-end frameworks are React, Angular and Vue. 

Here, I chose Vue to develop the data quality application.  

 Vue is a progressive framework designed for the frontend development of 

Fig 12. Model View of Controller Architecture 

Fig 11. Popularity of Web Frameworks 



web applications and websites. It follows the Model–View–View-Model (MVVM) 

architecture and is mainly used for building user interfaces and single-page 

applications [10]. 

Created by Evan You, this lightweight, easy-to-use framework focuses on the 

View or Presentation layer of a web page. That is it takes care of everything that 

a user will see when visiting your website, be it the graphics or the clickable 

elements, or the login page. 

The application (Data Quality Tool) is a relatively lightweight project. And Vue is 

friendly for beginners. Before I learned about Vue, I just known how to a backend 

server. Vue could help me quickly get started developing for a user interface. 

 The downloaded zip with the framework weighs 18 KB. As a feather-weight, 

the framework is not only a fast to download and install the library, it also 

positively impacts your SEO and UX. 

 A Document Object Model (DOM) is something we will probably encounter 

when rendering web pages [13]. A DOM is a representation of HTML pages with 

its styles, elements, and page content as objects. The objects stored as a tree 

structure are generated by a browser when loading a page. Performance is one 

of the key factors that may predetermine framework choice. Actual benchmarks 

are provided on the Vue comparison page. For example, when testing DOM 

Fig 13. Reactive two-way data binding 



components bound with data updated, Vue.js seems to be more performant that 

Angular and React. 

 Another benefit in DOM manipulations is two-way data binding inherited by 

Vue from Angular. Two-way data binding is a connection between model data 

updates and view (UI). Bound components contain data that can be updated from 

time to time. With the help of two-way data binding, it’s easier to update related 

components and track data the updates. 

3.3 ORM framework, SQLAlchemy 

Flask and Vue work for the interaction between the front-end and back-end. We 

still a solution to work for the interaction between the back-end and database. 

Object-Relational Mapping (ORM) is a technique that lets us query and 

manipulate data from a database using an object-oriented paradigm. When 

talking about ORM, most people are referring to a library that implements the 

Object-Relational Mapping technique, hence the phrase "an ORM". 

An ORM library is a completely ordinary library written in the language of 

choice that encapsulates the code needed to manipulate the data, so we don't 

use SQL anymore; we interact directly with an object in the same language we are 

using. 

SQLAlchemy is a popular SQL toolkit and Object Relational Mapper. It is 

written in Python and gives full power and flexibility of SQL to an application 

developer. It is an open source and cross-platform software released under MIT 

license. SQLAlchemy is famous for its object-relational mapper (ORM), using 

which classes can be mapped to the database, thereby allowing the object model 

and database schema to develop in a cleanly decoupled way from the beginning. 

 

Major SQLAlchemy features include:  

◼ An industrial strength ORM, built from the core on the identity map, unit of 

work, and data mapper patterns. These patterns allow transparent persistence 

of objects using a declarative configuration system. Domain models can be 

constructed and manipulated naturally, and changes are synchronized with 

the current transaction automatically. 

◼ A relationally-oriented query system, exposing the full range of SQL's 

capabilities explicitly, including joins, subqueries, correlation, and most 

everything else, in terms of the object model. Writing queries with the ORM 

uses the same techniques of relational composition you use when writing SQL. 

While you can drop into literal SQL at any time, it's virtually never needed. 



◼ A comprehensive and flexible system of eager loading for related collections 

and objects. Collections are cached within a session, and can be loaded on 

individual access, all at once using joins, or by query per collection across the 

full result set. 

◼ A Core SQL construction system and DBAPI interaction layer. The 

SQLAlchemy Core is separate from the ORM and is a full database abstraction 

layer in its own right, and includes an extensible Python-based SQL 

expression language, schema metadata, connection pooling, type coercion, 

and custom types. 

◼ All primary and foreign key constraints are assumed to be composite and 

natural. Surrogate integer primary keys are of course still the norm, but 

SQLAlchemy never assumes or hardcodes to this model. 

◼ Database introspection and generation. Database schemas can be "reflected" 

in one step into Python structures representing database metadata; those 

same structures can then generate CREATE statements right back out - all 

within the Core, independent of the ORM. 

3.4 Docker, docker-compose 

Before Docker containers 

For many years now, enterprise software has typically been deployed either on 

“bare metal” (i.e. installed on an operating system that has complete control over 

the underlying hardware) or in a virtual machine (i.e. installed on an operating 

system that shares the underlying hardware with other “guest” operating systems). 

Naturally, installing on bare metal made the software painfully difficult to move 

Fig 14. Differences between Containers and VMs 



around and difficult to update—two constraints that made it hard for IT to 

respond nimbly to changes in business needs. 

Then virtualization came along. Virtualization platforms (also known as 

“hypervisors”) allowed multiple virtual machines to share a single physical system, 

each virtual machine emulating the behavior of an entire system, complete with 

its own operating system, storage, and I/O, in an isolated fashion [14]. IT could 

now respond more effectively to changes in business requirements, because VMs 

could be cloned, copied, migrated, and spun up or down to meet demand or 

conserve resources. 

Virtual machines also helped cut costs, because more VMs could be 

consolidated onto fewer physical machines. Legacy systems running older 

applications could be turned into VMs and physically decommissioned to save 

even more money. 

But virtual machines still have their share of problems. Virtual machines are 

large (gigabytes), each one containing a full operating system. Only so many 

virtualized apps can be consolidated onto a single system. Provisioning a VM still 

takes a fair amount of time. Finally, the portability of VMs is limited. After a certain 

point, VMs are not able to deliver the kind of speed, agility, and savings that fast-

moving businesses are demanding. 

 

Docker container benefits 

Containers work a little like VMs, but in a far more specific and granular way. They 

isolate a single application and its dependencies—all of the external software 

libraries the app requires to run—both from the underlying operating system and 

from other containers. All of the containerized apps share a single, common 

operating system (either Linux or Windows), but they are compartmentalized from 

one another and from the system at large. 

1. Docker enables more efficient use of system resources: 

Instances of containerized apps use far less memory than virtual machines, they 

start up and stop more quickly, and they can be packed far more densely on their 

host hardware. All of this amounts to less spending on IT. 

The cost savings will vary depending on what apps are in play and how 

resource-intensive they may be, but containers invariably work out as more 

efficient than VMs. It’s also possible to save on costs of software licenses, because 

we need many fewer operating system instances to run the same workloads. 

2. Docker enables faster software delivery cycles: 

Enterprise software must respond quickly to changing conditions. That means 

both easy scaling to meet demand and easy updating to add new features as the 



business requires.  

Docker containers make it easy to put new versions of software, with new 

business features, into production quickly—and to quickly roll back to a previous 

version if you need to. They also make it easier to implement strategies like 

blue/green deployments. 

3. Docker enables application portability:  

Where you run an enterprise application matters—behind the firewall, for the sake 

of keeping things close by and secure; or out in a public cloud, for easy public 

access and high elasticity of resources. Because Docker containers encapsulate 

everything an application needs to run (and only those things), they allow 

applications to be shuttled easily between environments. Any host with the 

Docker runtime installed—be it a developer’s laptop or a public cloud instance—

can run a Docker container. 

 

Docker-compose 

Docker Compose is a tool that was developed to help define and share multi-

container applications. With Compose, we can create a YAML file to define the 

services and with a single command, can spin everything up or tear it all down. 

The big advantage of using Compose is you can define your application stack 

in a file, keep it at the root of your project repo (it’s now version controlled) [15], 

and easily enable someone else to contribute to your project. Someone would 

only need to clone your repo and start the compose app. 

When development of this application (Data Quality Tool), there will be three 

containers, one front-end container, one back-end container and one database 

container. 

  



4.  Implementation 

4.1 Backend API 

There is a lot of APIs for front-end to request data to render page. Here I will 

explain the usage of each interface, including the http type and parameter format. 

4.4.1 Login 

Interface Address: /api/account/login 

Request Type: POST 

Parameter:  

Field Type Explanation 

username string username of the account 

password string password of the account 

In the page of login, after users entered the username and password, this API will 

check if the username and password are correct. If wrong, it will return a response 

of failure. If correct, it will return a response of success. And the user information 

will be set in cookie. The validity period pf the cookie is 24 hours, which means 

users will not have to log in again for 24 hours. 

4.4.2 Logout 

Interface Address: /api/account/logout 

Request Type: GET 

This interface is used for logged users to log out. It will clear the cookie for logged 

users. 

4.4.3 Get current logged user information 

Interface Address: /api/account/getLoginUser 

Request Type: GET 

After logging in, the application needs to get a information of account, including 

user id, username, operations and role by decrypting the cookie 



4.4.4 Create a new account 

Interface Address: /api/account/create 

Request Type: POST 

Parameter:  

Field Type Explanation 

username string username of the account 

password string password of the account 

occupiedSpace float the maximum space occupied by 

files 

otherInfo string other information of the account 

roleId int id for role 

Administrator can create new accounts through this interface. 

4.4.5 Update a account 

Interface Address: /api/account/update 

Request Type: POST 

Parameter:  

Field Type Explanation 

userId int id for the account 

username string username of the account 

password string password of the account 

occupiedSpace float the maximum space occupied by 

files 

otherInfo string other information of the account 

roleId int id for role 

Administrator can update the information of existing accounts through this 

interface. 

4.4.6 Delete a account 

Interface Address: /api/account/delete 

Request Type: POST 

Parameter:  

Field Type Explanation 

userId int id for the account 



Administrator can delete existing accounts through this interface. 

4.4.7 Get a list of users in pagination 

Interface Address: /api/account/getMemberPageList 

Request Type: POST 

Parameter:  

Field Type Explanation 

pageIndex int page number 

pageSize int display quantity per page 

Administrator can get the user paging list through this interface. 

4.4.8 Apply for access as User 

Interface Address: /api/account/apply 

Request Type: POST 

Parameter:  

Field Type Explanation 

reason string reason of apply 

Visitor can submit the application for access as User through this interface. 

4.4.9 Approve the application of Visitor 

Interface Address: /api/account/apply 

Request Type: POST 

Parameter:  

Field Type Explanation 

action string code of approval action 

The parameter, action, could be agree or reject. Agree means the application is 

passed. Reject the application is denied. 

4.4.10 Get a list of applications in pagination 

Interface Address: /api/account/getApplyPageList 

Request Type: POST 

Parameter:  

Field Type Explanation 



pageIndex int page number 

pageSize int display quantity per page 

Administrator can get a paging list of application through this interface. 

4.4.11 Get a list of notices in pagination 

Interface Address: /api/notice/getNoticePageList 

Request Type: POST 

Parameter:  

Field Type Explanation 

pageIndex int page number 

pageSize int display quantity per page 

All users could get a paging list of notices through this interface. 

4.4.12 Upload files 

Interface Address: /api/file/upload 

Request Type: POST 

Parameter:  

Field Type Explanation 

url string url of the file 

Users could upload single dataset file through this interface. 

4.4.13 Batch upload files 

Interface Address: /api/file/batchUpload 

Request Type: POST 

Parameter:  

Field Type Explanation 

file form-data the txt file 

Users could batch upload dataset files through the txt file. 

4.4.14 Download dataset files 

Interface Address: /api/file/download 

Request Type: GET 

Parameter:  



Field Type Explanation 

id int id of file 

Users could download previously uploaded files. 

4.4.15 Get a list of files in pagination 

Interface Address: /api/notice/getFilePageList 

Request Type: POST 

Parameter:  

Field Type Explanation 

pageIndex int page number 

pageSize int display quantity per page 

All users could get a paging list of files through this interface. 

4.4.16 Delete dataset files 

Interface Address: /api/notice/getFilePageList 

Request Type: GET 

Parameter:  

Field Type Explanation 

id int id of file 

All users could delete previously uploaded files through this interface. 

4.4.17 Save a analysis setup 

Interface Address: /api/setup/create 

Request Type: POST 

Parameter:  

Field Type Explanation 

setupId string Id of the analysis setup 

setupName string name of the analysis setup 

fileIdList array a list of file id 

selectAll bool a mark that whether select all files 

measures array a list of measure codes 

User and Administrator could save analysis setups for next use through this 

interface.. 



4.4.18 Get the detail of a saved analysis setup 

Interface Address: /api/setup/getDetail 

Request Type: GET 

Parameter:  

Field Type Explanation 

setupId string Id of the analysis setup 

User and Administrator could get the detail of saved analysis setup through this 

interface. 

4.4.19 Delete a analysis setup 

Interface Address: /api/setup/delete 

Request Type: GET 

Parameter:  

Field Type Explanation 

setupId string Id of the analysis setup 

User and Administrator could delete previously saved analysis setups through 

this interface. 

4.4.20 Get a list of saved analysis setups in pagination 

Interface Address: /api/setup/getSetupPageList 

Request Type: POST 

Parameter:  

Field Type Explanation 

pageIndex int page number 

pageSize int display quantity per page 

User and Administrator could get a paging list of previously saved analysis setups 

through this interface. 

4.4.21 Do analysis 

Interface Address: /api/setup/analysis 

Request Type: POST 

Parameter:  

Field Type Explanation 



selectAll bool a mark that whether select all files 

fileIdList array a list of file id 

measures array a list of selected measures 

After users configured quality measures and datasets, they could get a analysis 

result by this interface. 

4.4.22 Save an analysis result 

Interface Address: /api/result/save 

Request Type: POST 

Parameter:  

Field Type Explanation 

selectAll bool a mark that whether select all files 

fileIdList array a list of file id 

resultByDataset array the result format by dataset 

 fileId int id of the file 

 fileName string the original file name 

 measureList array a list of value for each quality measure 

  measure string key of quality measure 

  value string value of quality measure 

resultByMeasure object the result format by measure 

 measure string key of quality measure 

 datasetList array a list of quality measure value for each file 

  fileId int id of file 

  fileName string The original file name 

  value string Value of quality measure 

After users get the analysis result, they could use this interface to save the analysis 

result. 

4.4.23 Rename a saved analysis result 

Interface Address: /api/result/rename 

Request Type: POST 

Parameter:  

Field Type Explanation 

resultId string the id of saved results 

resultName string the name of saved results 



Users could rename saved analysis results. 

4.4.24 Get the detail of a saved analysis result 

Interface Address: /api/result/getDetail 

Request Type: GET 

Parameter:  

Field Type Explanation 

resultId string the id of saved results 

Users could get the detail of a saved analysis result through this interface.. 

4.4.25 Get a list of saved analysis results in pagination 

Interface Address: /api/result/getAnalysisResultPageList 

Request Type: POST 

Parameter:  

Field Type Explanation 

pageIndex int page number 

pageSize int display quantity per page 

User and Administrator could get a paging list of previously saved analysis results 

through this interface. 

4.4.26 Delete a saved analysis result 

Interface Address: /api/result/delete 

Request Type: GET 

Parameter:  

Field Type Explanation 

resultId string the id of saved results 

User and Administrator could delete saved analysis results through this interface. 

4.4.27 Export a result as a csv file 

Interface Address: /api/result/export 

Request Type: GET 

Parameter:  

Field Type Explanation 



resultId string the id of saved results 

User and Administrator could export analysis results as csv files through this 

interface. 

4.4.28 Export a setup as a csv file 

Interface Address: /api/setup/export 

Request Type: GET 

Parameter:  

Field Type Explanation 

setupId string the id of saved analysis setups 

User and Administrator could export analysis setups as csv files through this 

interface. 

4.2 Frontend Router 

4.2.1 Guide 

Path: /Guide 

This path is pointed to the page of user’s guide. It is said that how to use this 

application from the view of three different roles, Visitor, User and Administrator 

4.2.2 Account Setting 

Path: /AccountSetting 

This path is pointed to the page for users to view their account information and 

submit a application for access as User. 

4.2.3 Analysis Setup 

Path: /AnalysisSetup 

This path is pointed to the page for users to manage their saved analysis setups. 

4.2.4 Approve 

Path: /Approve 

This path is pointed to the page for Administrator to approve the application of 



Visitor. They could choose to agree or reject the application. 

4.2.5 Manage Dataset 

Path: /ManageDataset 

This path is pointed to the page for users to manage their self-uploaded dataset 

files. 

4.2.6 Manage User 

Path: /ManagerUser 

This path is pointed to the page for Administrator to manage all accounts. 

4.2.7 Notice 

Path: /Notice 

4.2.8 Saved Result 

Path: /SaveResult 

This path is pointed to the page for users for manage their self-saved analysis 

results. 

4.2.9 Login 

Path: /login 

This page is pointed to page for all users to login by entering username and 

password. 

4.3 Database 

Table name: base_member_info 

Field Type Explanation 

userId int user id 

username string username 

password string password 

occupiedSpace float maximum space occupied by files 



otherInfo string other relevant information 

roleId int id for role 

roleName string name for role 

enableFlag bool a marker for delete 

 

Table: flow_apply_form 

Field Type Explanation 

applyFormId string id for application 

userId int id for user 

username string account name for user 

reason string reason for application 

statusId int id for status of application 

statusName string name for status of application 

processUserId int id for administrator who approved the 

application 

processUserName string name for administrator who approved the 

application 

action string the action performed on the application, 

agreed or rejected 

createDateTime datetime the date and time when the application 

was created 

enableFlag bool a marker for delete 

 

Table: log_notice 

Field Type Explanation 

id int unique id, auto increment 

userId int id for user who received this notice 

username string name for user who received this notice 

content string the text of notice content 

readFlag bool a flag that whether user has read it 

enableFlag bool a marker for delete 

 

Table: analysis_setup 

Field Type Explanation 

setupId string unique id for analysis setup 

setupName string name for analysis setup 

measures string quality selected, splited by ; 



selectAll bool a flag for whether all dataset files are 

selected 

filelds string id for dataset file selected, splited by ; 

createUserId int id for user who created the analysis setup 

createUserName string name for user who created the analysis 

setup 

createDateTime datetime the date and time when the analysis setup 

was created 

enableFlag bool a marker for delete 

 

Table: analysis_file 

Field Type Explanation 

id int unique id for the file 

fileName string the original file name 

filePath string the relative path of file saving 

fileUrl string download URL for file 

fileSize float the size of file 

createUserId int id for user who uploaded the file 

createUserName string name for user who uploaded the file 

enableFlag bool a marker for delete 

 

Table: analysis_result 

Field Type Explanation 

resultId string unique id for the analysis result 

resultName string name for the analysis result 

resultContent string the content of the result with json format 

createUserId int id for user who saved the analysis result 

createUserName string name for user who saved the analysis 

result 

createDateTime datetime the date and time when the analysis result 

was saved 

enableFlag bool a marker for delete 

 



4.4 Introduction to application 

4.4.1 Login 

This is the login page. Users need to enter the username in the first line and 

password in the second line for login 

4.4.2 Notice 

This is the page for users to be notified when the information of their account is 

changed. Users will be notified in the following cases. 

⚫ The application for access as User is approved. 

⚫ The information in Account Setting is edited. 

⚫ The self-created analysis setup is edited. 

⚫ The self-saved analysis result is edited. 

Fig 14. Page for Login 

Fig 15. Page for Notice 



⚫ The self-uploaded dataset file is edited. 

4.4.3 Manage User 

This module, Manager User, is only accessed by Administrator. Administrator 

could manage all account information here.  

When Administrator want to create a new account, there are five properties, 

which should be set, including username, password, role, other info and max 

space. When Administrator want to remove an account, it just needs click the 

button “delete”, then field of mark for delete will be set false. This account data 

will be filtered out when getting a paging list. Actually, it is not physically from the 

database. It is just deleted in logical in order to restore data if wrong operation. 

Fig 16. Page for Manager User 

Fig 17. Page for Account Detail 



4.4.4 Approve 

Like the last module, this module, Approve, is also only open for Administrator. 

Here they could approve the application of Visitor for access as User. When the 

application has been agreed, the Visitor applicant can get the access as User. It 

also will receive a notice in the module Notice. 

As shown in figure, there are four properties in the paging list, including User, 

Reason, Status and Application Time. There are two kinds of Status, in process 

and process end, which means the process status of the application.  

When users click “view” to see the detail, it will show more properties of the 

application. If it is approved, users can see the processing time and who approved 

the application. 

Fig 18. Page for Approve 

Fig 19. Page for Application Detail 



4.4.5 Account Setting 

This module is relatively simple. As shown in the figure, it show the account 

information. For Visitor, there is one more function, that Visitor could here submit 

the application for access as User. 

4.4.6 Manage Dataset 

This is an important module before data analysis. All dataset files for data analysis 

are managed here. Users could upload single csv file or batch upload files by 

upload a txt file including file URLs. In the paging list, it is shown, file name, file 

URL and file size. In the row Action, users could download files or delete it. All 

uploaded files here can be selected in Analysis Setup. 

Fig 20. Page for Account Setting 

Fig 21. Page for Manager Dataset 



4.4.7 Analysis Setup 

As is shown in Fig 21, in a paging list of analysis setups, we can see the name of 

setup, who created it and when it is created. There are three actions, which can 

be performed, view, export and delete. 

As is shown in Fig 22, we could select files that are uploaded before. And there 

are six quality measurement to select, including Com-I-DevA, Com-I-5, Acc-I-

4, Con-I-3, Con-I-2-DevB and Con-I-4-DevC. Thesis quality measurements are 

explained in Section 2.2.6. The range of each quality measurement is from 0 to 1. 

There are two display modes, By Dataset and By Measure. In By Dataset, each 

table shows the value for different quality measurement on single dataset file. In 

By Measure, each table shows the value for different dataset file on single quality 

Fig 21. Page for Analysis Setup 

Fig 22. Page for Analysis Setup Detail 



measurement. They are shown in Fig 23 and Fig 24. 

4.4.8 Analysis Result 

In the last Module Analysis Setup, when users saved the analysis results, these 

saved analysis results are managed in the module, Analysis Result. 

 As is shown in Fig 25, we can see the name of result, who saved it and when 

it is saved. In the row of Action, there four buttons, rename, view, export and 

delete. Users could rename the saved result, view the detail of result, export the 

result as a csv file and delete it when it is not needed by thesis buttons. 

 When users see the detail of the analysis result, the display mode is the same 

as it in Analysis Setup. But we cannot edited the selected file and quality 

Fig 23. Display mode (By Dataset) 

Fig 24. Display mode (By Measure) 



measurement because it is a saved analysis result. If we want to edit something, 

we need back to Analysis Setup. 

4.5 Test case 

4.5.1 What is open data 

Open data is data that anyone can publicly access, utilize, edit and share for any 

purpose (even commercial purpose). Open data is licensed under an open license. 

Some data should be provided to everyone free of charge to use and 

redistribute according to their wishes, free of copyright, patent or other control 

mechanisms. The goals of the open source data movement are similar to those of 

other open source movements, such as open source software, hardware, open 

content, open norms, open education, open educational resources, open 

government, open knowledge, open access, open science and open network. The 

development of open data movement is accompanied by the rise of intellectual 

property rights. With the rise of the Internet and the world wide web, especially 

with open data government programs, such as data gov、Data. Gov.uk and data 

gov.in. 

One of the most important forms of open data is open government data 

(OGD), which is an open data form created by the ruling government agencies. 

The importance of open government data stems from its becoming a part of 

citizens' daily life, down to the most routine / ordinary tasks that seem to be far 

away from the government. 

Fig 25. Page for Saved Result 



4.5.2 Examples of measurements on open data 

4.5.2.1 Comune Genova 

Now, let’s show a case about analysis in open government data. First, we need 

upload datasets. I uploaded some dataset files from http://dati.comune.genova.it. 

This is government open data from Genova. 

The contents are as follows: 

Comune Genova                                                                                                  

http://dati.comune.genova.it/sites/default/files/SITGEO%20V_PEBA_AMBITI.csv                                              

http://dati.comune.genova.it/sites/default/files/bancadatiterra.csv                                                         

http://dati.comune.genova.it/sites/default/files/Consistenzadettagliosedefissa.csv                                            

http://dati.comune.genova.it/sites/default/files/inquinamentob_2015.csv                                                    

http://dati.comune.genova.it/sites/default/files/STORICO_CARR_ORTOFRUTTA_2016_0.csv                                    

http://dati.comune.genova.it/sites/default/files/TASSO_INATT_ge_al_2018.csv                                               

http://dati.comune.genova.it/sites/default/files/RefePopolareSezioni_0.csv                                                  

http://dati.comune.genova.it/sites/default/files/EE_ComGE_2015_1.csv                                                     

http://dati.comune.genova.it/sites/default/files/INCIDENTI_stradali_genova_1981_2016.csv                                    

http://dati.comune.genova.it/sites/default/files/2006PoliticheCircoscrizione.csv                                              

As is shown in the following figure, we can they are uploaded successfully. Then 

we need to create a analysis setup. I named it Genova because these open data 

are from Genova. I selected all files that were batch uploaded and all quality 

measurements. The final setup is shown in Fig 27. 

Fig 26. Result of file upload 

http://dati.comune.genova.it/


The analysis setup is finished. We just need to click the button, Run. The setup 

data will be sent to the backend sever to do analysis. It will take about several 

minutes, which is depend on the number of files. 

 After I saved the result, I exported the analysis result to a csv file. The result is 

shown in the table. The above is a complete process, that do analysis on open 

data by using the application, Data Quality Tool. 

From the result, we can find that most dataset files have a overall good result. 

First, as is shown is the table, the value of Com-I-DevA is low so we can know that 

almost all files have no null value, except the file in line 3 and 4. On the contrary, 

the value of Com-I-5 is 1, which means there is no empty records in these data 

files. For low value of Acc-I-4, we can find that there are few values to considered 

outlier in the datasets. The situation with Con-I-3 is complex, that almost values 

are range 0 to 1, even some value in line 6 is over 1. From the view of Con-I-3, I 

think there is a relatively high risk of having inconsistency due to duplication of 

data value. The performance of Con-I-2-DevB seems good, that there are only 2 

datasets with a non-zero value, which means low ratio of the data are inconsistent 

with the data type of the column where they are stored. In the final, the values of 

Con-I-4-DevC in almost all files are 1, expect in the line 3, it is 0. Because all 

information about one element should be in one row but it is divided in 2 lines 

instead. Due to this reason, we can know that the standard architecture of CSV is 

not present in this dataset file. 

Fig 27. Setup of Genova 



4.5.2.2 Ministero Lavoro 

In this case, we will test the open government data from Lavoro. We could upload 

them by the batch upload feature. 

The contents are as follows: 

Ministero del Lavoro                                                                                              

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/615c83dc-620f-43c3-bed4-dcf63a33edc6.csv                    

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/925bf200-46ad-4134-8e45-54b928709fac.csv                    

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/024e1be0-75b4-431d-a403-c73882306494.csv                   

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/bc702592-ed0f-4840-93ce-b604e355ffcb.csv                     

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/d591fc58-7307-475b-a614-7deb987bebc4.csv                   

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/198e1639-e65b-4477-8dde-1828d57f44dc.csv                   

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/98082c03-0825-4d5f-b1bb-a0ea7a40c0fa.csv                    

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/3bd911ca-ec88-49cc-bb2e-000e9e9d46d0.csv                   

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/19a98306-534c-4324-95cb-4753cbe6a0e9.csv                   

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/71ed3df3-269f-425a-9c27-1ea89ed6f910.csv                    

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/e5a35ac2-609e-4b5f-b7c9-d23bb3d53d13.csv                   

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/c779769a-b5e1-45a8-bfc3-e5dcc68e7953.csv                    

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/013fc5da-ab3e-4293-ac35-e94700ce7035.csv                    

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/06478148-dd2c-4d1d-a2ac-4503089523bd.csv                   

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/9062a013-8d8c-4f7b-8842-a12611122be7.csv                   

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/d72e9eb1-135c-4596-b58f-176319bc2156.csv                   

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/6e510e62-f173-470b-9f55-d6f32fc85516.csv                     

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/447b3062-eb7e-4465-bd0d-de4abcf7e987.csv                   

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/a279bb78-4b1d-473f-a38e-8f8fe1441dc8.csv                    

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/63acdf28-89f0-49b8-a724-159987cb7186.csv                    

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/5dc97920-5274-4492-8d42-4c09d02f6005.csv                    

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/541ec7f5-3d2f-47b5-a942-bf5efacf3505.csv                      

There is a total of 21 files above. The format of all files is CSV. After setup and 

clicking Run, we can get an analysis result of data quality measurements. In this 

case, we could view the result from another angle. We can see the values of single 

quality measurement for all files. 

 First, let’s take a look at Com-I-DevA. Out of a total of 21 files, there null 

values in 11 files. In these files with null values, the maximum value is 0.333 and 

the minimum value is 0.111. We can find that the number of null values is high in 

the file of the third row. Because in this file, each line ends with “;”, where “;” 

represents delimiter. So, it was considered that each row has a null value and this 

dataset file has only two columns in total. Due to it, the value of Com-I-DevA for 

http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/925bf200-46ad-4134-8e45-54b928709fac.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/024e1be0-75b4-431d-a403-c73882306494.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/bc702592-ed0f-4840-93ce-b604e355ffcb.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/d591fc58-7307-475b-a614-7deb987bebc4.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/198e1639-e65b-4477-8dde-1828d57f44dc.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/98082c03-0825-4d5f-b1bb-a0ea7a40c0fa.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/3bd911ca-ec88-49cc-bb2e-000e9e9d46d0.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/19a98306-534c-4324-95cb-4753cbe6a0e9.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/71ed3df3-269f-425a-9c27-1ea89ed6f910.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/e5a35ac2-609e-4b5f-b7c9-d23bb3d53d13.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/c779769a-b5e1-45a8-bfc3-e5dcc68e7953.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/013fc5da-ab3e-4293-ac35-e94700ce7035.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/06478148-dd2c-4d1d-a2ac-4503089523bd.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/9062a013-8d8c-4f7b-8842-a12611122be7.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/d72e9eb1-135c-4596-b58f-176319bc2156.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/6e510e62-f173-470b-9f55-d6f32fc85516.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/447b3062-eb7e-4465-bd0d-de4abcf7e987.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/a279bb78-4b1d-473f-a38e-8f8fe1441dc8.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/63acdf28-89f0-49b8-a724-159987cb7186.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/5dc97920-5274-4492-8d42-4c09d02f6005.csv
http://dati.lavoro.gov.it/SpodCkanApi/api/3/datastore/dump/541ec7f5-3d2f-47b5-a942-bf5efacf3505.csv


the file in third row is 1/3. 

 From the Fig 29, we have an overall view of the Com-I-5. The values of Com-

I-5 for all file is 1, which means there is no row that are no completely non-null in 

the dataset. It is a positive result. 

 Then let’s see Acc-I-4. Most of datasets have a good result in this metric. 

From the figure 30, we can find the file in the third row has a highest value, 0.167. 

Fig 28. Value of Com-I-DevA 

Fig 29. Value of Com-I-5 



Because one of three rows of data in this file is considered null value, which also 

has a bad performance in Com-I-DevA due to the same reason. 

 Con-I-3 depends on the number of duplication values on the single attribute 

and by grouping 2 column. As is shown in figure 31, we can find there is a high 

percentage of duplication values, even more than 1. Because, for example, in the 

file in last row, there are two attributes, “Rapporte annule” and “Anno”, that have 

Fig 30. Value of Acc-I-4 

Fig 31. Value of Con-I-3 



the same values, 2021 and 2020. For the attribute “Genere”, it also has a lot of 

repeated values, “Maschi”, “Femmine” and “Totale”. These attributes cause a larger 

number of values of duplication. Some boolean attributes are considered 

duplicated. 

 The performance of quality measurement, Con-I-3-DevB, are good as shown 

in figure 32. In average, there are only about 3% of the data, which are inconsistent 

with the value type of the attribute. The values of some files seem high because 

there are a lot of “-” as a symbol of null value, which will be considered a string. 

But in the same attribute, other values are numeric, which are counted as type 

inconsistency. We can also find it in the result of Com-I-DevA. Those files with no 

null value happen to have type inconsistency, which means actually there are null 

values in them but the symbol “-” of null value is considered string, not null. Then 

they seem have no null value by the result of Com-I-DevA. 

 About the quality measurement, Con-I-4-DevC, as it can be seen from the 

figure 33, the performance is generally good. The quality measurement, Con-I-

2-DevB, for all files have a value of 1, which there is no problem on the data 

structure. The number of rows that respect the data structure matches the number 

of rows contained in the data files. 

 

 

 

 

Fig 32. Value of Con-I-2-DevB 



4.5.2.3 Regione Sardegna 

In this case, I will show the quality measurements by each dataset to make 

comments. The content of uploaded files is as follows: 

Regione Sardegna 

http://opendata.sardegnaturismocloud.it/IT/turismo/domanda/ricettivita/movimenti-

turistici/2016/movimenti_macrotipologia_2016.csv  

http://opendata.sardegnaturismocloud.it/IT/turismo/domanda/telefonia/covisite/2015-

2016/covisite_aree_turistiche_vodafone_2015-2016.csv  

http://www.sardegnaterritorio.it/documenti/6_477_20180108092955.csv  

https://www.sardegnaautonomie.it/sites/default/files/opendata/anagrafica_enti_aggregati.csv 

There are four files in total, that are from Sardegna. Then let’s see the first dataset. 

The first file is movimenti_macrotipologia_2016.csv, which has 7 rows. The value 

of Com-I-DevA is 0, which means there is no null value in it. This point can also 

be confirmed by the value of Com-I-5. There is no rows that are not full of null. 

From the metric, Acc-I-4, which is 0.079, we can know there is a small ratio of the 

number of outliers over the dataset. The measurement, Con-I-3, is really high, 

because there are some columns like anno, provincia, and mese, which will cause 

duplication to be unavoidable. The value of Con-I-2-DevB is small, which means 

there is no data, that are inconsistent with the data type of the column where they 

are stored. For Con-I-4-DevC, it has a good result, which means this file has a 

Fig 33. Value of Con-I-4-DevC 



standard csv structure. Similar situation happened in another file,  

covisite_aree_turistiche_vodafone_2015-2016.csv. Compared with the first two 

files, the third file, 6_477_20180108092955.csv, has a lower value of Acc-I-4 and 

Con-I-3. For the last dataset, anagrafica_enti_aggregati.csv, it has a better result 

than other datasets apart from Com-I-DevA, which has a highest value, 0.235. It 

can be considered that there is a ratio of null values over this file. The overall 

analysis is as follows: 

 

 

  

Figure 34. movimenti_macrotipologia_2016.csv Figure 35. covisite_aree_turistiche_vodafone_2015-

2016.csv 

Figure 36. 6_477_20180108092955.csv Figure 37. anagrafica_enti_aggregati.csv 



5.  Conclusions 

5.1 Conclusion 

In my point of view, data quality is a broad concept. But its importance is known 

by government. In beginning of thesis, we have known what is data quality tool 

and those professional and commercial data quality tool on the market, which has 

complex functions. So, the aim of thesis is to design and develop an easy-to-use 

application to analysis on Italian Open Government Data.  

In the chapter 2, we have an understanding for the overall needs and modules 

of application design, which gave us a general view of the application. The 

application is divided into 7 main modules, Approve, Manage User, Notice, 

Account Setting, Manage Dataset, Analysis Setup and Saved Result. 

In the chapter 3, I introduced the technology stacks, that are applied in 

development. I explained the solutions for back-end, front-end, database and 

deployment. Flask is a micro web framework, which provides a full ability for API 

while Vue is a beginner friendly framework. Especially using docker-compose to 

deploy, it makes deployment much easier without worrying about the problems 

of environment. We just need a file docker-compose.yml to manage docker 

containers. 

In the chapter 4, I explained the implementation of the application in detail, 

including back-end APIs, front-end router paths and database structure in 

practice. We were also shown the graphical user interface diagram of the 

application and how to use this data quality by offering test cases. It is important 

that we can define the analysis setup and view the analysis results in two display 

modes, which means we can save and see data quality measurements online and 

don’t need to save the file of data quality measurements. Of course, we can also 

export data quality measurements to a csv files if necessary. From test cases, some 

comments were made for some strange values in order to find the causes, like 

different symbols for expressing null values, which should be considered, in the 

future, to avoid affecting the evaluation of data quality. 

5.2 Future Implementation 

As is said in the section 4.5. When there are a large number of files to analysis, it 

will take a long time. I think the future improve could make the algorithm more 

efficient. For now, there are two display modes, by dataset and by measure, that 



both display quality measurements for single files. But we usually analysis datasets 

from the same region one time. It might be considered that average values for all 

datasets could be displayed and be grouped by quality measurement. This allows 

users to intuitively feel the differences between different regions to make the 

overall evaluation on quality measurements for regions. 

  From dati.gov.it, we can find that csv is the most common data format in 

government data. There are also other big data themes, like environment , 

population and society, which needs to be paid attention on data quality. In 

environment data, there is not only csv but also other data formats, SHP and TIFF. 

It is a challenge to analysis this type of datasets. But I think it is available to make 

the algorithm applicable to population and society data. In population and society 

data, the most common data format is xlsx, which is similar with csv. By some 

technologies, the xlsx files could be converted to csv, which is not difficult to be 

realized. 

 

  



6.  List of references 

[1] Jack Vaughan, Data quality, 

https://www.techtarget.com/searchdatamanagement/definition/data-quality 

[2] F Gualo, M Rodríguez, Verdugo J, et al. Data Quality Certification using 

ISO/IEC 25012: Industrial Experiences[J]. 2021. 

[3] ISO/IEC, ISO/IEC 25012. Software engineering — Software product Quality 

Requirements and Evaluation (SQuaRE) — Data quality model, ISO/IEC, 

International Standard, 2008. 

[4] ISO/IEC, ISO/IEC 25024. Systems and software engineering — Systems and 

software Quality Requirements and Evaluation (SQuaRE) — Measurement of 

data quality, ISO/IEC, International Standard, 2015. 

[5] Davide Vitaletti, Quality analysis of the Italian open government data 

through a generalized algorithm 

[6] https://opensenselabs.com/blog/articles/frontend-backendes/frontend-

backend 

[7] https://stackoverflow.com/questions/2964140/what-is-a-software-

framework 

[8] https://www.ietf.org/rfc/rfc2068.txt 

[9] https://flask.palletsprojects.com/en/2.1.x/quickstart/#apis-with-json 

[10] https://vuejs.org/guide/introduction.html 

[11] Fan W, Geerts F. Foundations of data quality management[J]. Synthesis 

Lectures on Data Management, 2012, 4(5): 1-217. 

[12] Grinberg M. Flask web development: developing web applications with 

python[M]. " O'Reilly Media, Inc.", 2018. 

[13] Song J, Zhang M. Design and Implementation of a Vue. js-Based College 

Teaching System[J]. International Journal of Emerging Technologies in 

Learning, 2019, 14(13). 

[14] Rad B B, Bhatti H J, Ahmadi M. An introduction to docker and analysis of its 

performance[J]. International Journal of Computer Science and Network 

Security (IJCSNS), 2017, 17(3): 228. 

[15] List M. Using docker compose for the simple deployment of an integrated 

drug target screening platform[J]. Journal of Integrative Bioinformatics, 

2017, 14(2). 

https://www.techtarget.com/searchdatamanagement/definition/data-quality
https://opensenselabs.com/blog/articles/frontend-backendes/frontend-backend
https://opensenselabs.com/blog/articles/frontend-backendes/frontend-backend
https://stackoverflow.com/questions/2964140/what-is-a-software-framework
https://stackoverflow.com/questions/2964140/what-is-a-software-framework
https://www.ietf.org/rfc/rfc2068.txt
https://flask.palletsprojects.com/en/2.1.x/quickstart/#apis-with-json
https://vuejs.org/guide/introduction.html

