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Abstract 

              When we deal with rotating machinery, in order to 

monitor the characteristic and quality of the rotating parts, 

common method is to sample the accelerometer signals using 

discrete time axis with constant time interval. However, in 

most of the cases, rotational speed of the machine is 

nonstationary. Therefore, the characteristic frequencies of 

interest (speed of the shafts, gears and bearings) are not 

constant. So, signals sampled evenly in time cannot be used 

directly for condition monitoring.   

              In order to deal with these problems we need 

algorithms that are robust to changes in rotational speed. In 

this regard, Order Tracking and Synchronous Average are well-

established algorithms. 

              Main idea of the Order Tracking is to find the 

specific sampling coordinates that result in signals sampled 

at constant angular increments, no more at constant time 

increments. OT also allows further averaging (Synchronous 

Average) to easily separate deterministic, periodic component 

and  non-deterministic one.  This separation for example 

allows for bearing characteristic signals to be distinguished 

from the gear contribution, fostering diagnostics.  

              In this paper, a Novel Frequency Domain algorithm is 

proposed and its performance is compared with Benchmark 

algorithms as well.                     
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1. Introduction  
 

1.1 What is Rotating Machinery diagnostics 

 

Being the crucial part of the Rotating Machinery, failure of the 

bearings is one of the main reason of the machine downtime and even 

breakdown. Therefore, early prediction of these failures can prevent 

from major damages to rotating machinery and also reduce the price of 

repair. The idea is to average the periods to separate the periodic 

part of the signal from non-periodic one (noise). To monitor the 

condition of the Rotating Machinery, various techniques are proposed 

nowadays and Order Tracking and Synchronous Average are well-

established ones among them.  

 

 

1.2 Spectrum and how to use it for diagnostics 

 

On the other hand, signals (periodic and also aperiodic) can be 

represented in the frequency domain and it represents the how their 

power or energy is spread to different frequencies. This allocation of 

power to frequency axis is called the spectrum of the signal. Spectral 

representation of the signal can be discrete or continuous depending 

on if the signal is periodic or aperiodic. Because, power of the 

periodic signal is concentrated at frequencies multiples of a so-

called fundamental frequency, directly related to the period of the 

signal. However, aperiodic signal represents the spectrum that is 

continuous function of frequency. As vibration signals consist of 

deterministic part that comes from gears and non-deterministic part 

that may come from bearing damages (or from random noise) in the 

Rotating Machinery, their spectrum can illustrate the multiples of 

fundamental frequency along with other valuable information about 

possible bearing damages and anomalies in the system. Therefore, 

Spectrum representation in the frequency domain can give more 

information that is interesting for Condition Monitoring than the 

time-based representation. 
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1.3 Problems when speed is not constant 

 

When the working conditions are not stationary and the rotational 

speed varies in time, the period of each rotation differs. It means, 

as long as the sampling frequency is constant, number of samples for 

periods are not constant. Therefore, phase of the sampled points does 

not match with the phase of points sampled in other cycles. 

 

Figure 1. Sweep signal 

 

In figure 1, Sweep signal is tested with sampling frequency fs=10Hz 

for 20s. Frequency content of the signal varies from 0.1 Hz to 0.8 Hz 

in this time.  

 

 

 

From the figure 1, it is visible that number of samples for each 

period is different and also they are situated in different phase 

angles. 

This leads to couple of problems.  

First, performing the Spectrogram analysis on the overall length of 

the signal gives the useless spectra (figure 2). 
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Figure 2. Spectrogram of sweep signal 

  

Figure 3. FFT of the Sweep signal 

 

Second, it is not possible to get one average signal from the cycles 

that contain different number of samples and at various phase 

positions.  
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2. Frequency Domain 
 

2.1 How to compute Fourier Transform 

 

To draw frequency domain representation of the signal, knowledge about 

Fourier series and Fourier Transform is needed. Fourier says that 

“Every signal can be represented as a sum of harmonic signals”. 

𝑥(𝑡) = 𝑎0 + ∑(𝑎𝑘 cos(kΩ₀t) + 𝑏𝑘 sin(kΩ₀t))                                               (1)

∞

𝑘=1

 

Where Ω₀ is the fundamental frequency and k Ω₀= Ωk k
th harmonic 

𝑎0 = mean value =
1

𝑇
∫ 𝑥(𝑡)𝑑𝑡

𝑡1+𝑇

𝑇
 

𝑎𝑘 =  
2

𝑇
∫ 𝑥(𝑡) ∗

𝑇

0
cos(kΩ₀t) 𝑑𝑡  

𝑏𝑘 =  
2

𝑇
∫ 𝑥(𝑡) ∗

𝑇

0

sin(kΩ₀t) 𝑑𝑡 

 

𝑥(𝑡) = 𝑎0 + ∑(𝑎𝑘 cos(kΩ₀t) + 𝑏𝑘 sin(kΩ₀t))

∞

𝑘=1

= 𝑎0 + ∑ 𝑐𝑘(sin(kΩ₀t + φ))                       (2)

∞

𝑘=1

 

 

Where ck is the Amplitude of the k
th harmonic and φk is the phase 

 

 

 Ck        C1          

                                              SPECTRAL LINES      

ꔷ𝑎0                 C2                   C4                                         

 

 

                            C3                           k Ω₀= Ωk 

0            1            2              3              4                                   K        

                       Figure 4. Spectral lines. 
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The ensemble of the spectral lines for all the frequencies forms the 

SPECTRUM. It can be easily proved that the spectral lines for opposite 

sign of k are conjugate of each other that means their module is equal 

and so they are symmetric with respect to origin. Therefore, negative 

values of k are not usually plotted in the spectrum representation to 

show meaningful frequency axis. 

What if a signal is aperiodic? In this case, signal is assumed to be 

periodic with period T   ∞. 

  

X(Ω) =  ∫ 𝑥(𝑡)𝑒−𝑖Ω𝑡𝑑𝑡
∞

−∞

= 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑥(𝑡) = 𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑜𝑓 𝑥(𝑡)              (3) 

 

𝑥(𝑡) =
1

2𝜋
 ∫ X(Ω)𝑒𝑖Ω𝑡𝑑Ω

∞

−∞

= 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚                                                (4) 

 

 

2.2 FT for discrete signals 

 

When digital acquisition is performed, acquired signal is a discrete 

signal instead of continuous signal. In this case: 

X(k) =
1

2𝑁
  ∑ 𝑥𝑛 ∗ 𝑒−𝑖𝑘2𝜋𝑛/𝑁

𝑁−1

𝑛=1

                                                                     (5) 

It is called Discrete Fourier Transform (DFT) 

How does acquisition parameters effect the Fourier Transform?  

Parameters of data acquisition are ∆t and fs. k in the formula is 

frequency index that means Ωk=Ω0k.  

Frequency resolution:       ∆Ω =  Ωk+1- Ωk= Ω0 

∆Ω =
2𝜋

𝑇
= 2𝜋∆𝑓                            (6)                                                       

∆𝑓 =
1

𝑇
=

1

𝑁∆𝑡
=

𝑓𝑠

𝑁
                            (7) 
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Here it is visible that when Fourier Transform of discrete signal is 

calculated, samples are assumed to be acquired at N constant angle 

increments of the revolution and frequency content of the transform 

ranges from –fs/2 to fs/2.  

In matlab Discrete Fourier Transform is performed by fft function, 

which stands for Fast Fourier Transform. 

X=fft(x);                             (8) 

Dividing frequency axis into evenly spaced N (number of samples in 

acquisition) intervals sometimes may cause some problems. For 

instance, simple sine wave with 0.47 Hz frequency is tested with 

fs=10Hz sampling rate.  

 

The result is shown in figure 5. It is visible that pick in the 

frequency axis is not exactly at 0.47 Hz. It is because of the spacing 

of the frequency axis by fft. New approach that is motivated by this 

problem is presented later in this paper. 

 

Figure 5. FFT of the test signal 
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2.3 Zero padding 

 

Problem mentioned in chapter 2.2 can be solved by using fft(y,N) 

function of the Matlab which is used to in order to increase the 

number of samples to take a Fourier Transform so as to reach a better 

frequency axis resolution. As indicated in eq.7 as much the number of 

samples used in Fourier Transform means as smaller the frequency steps 

are. In this case, if higher N than the actual length of the signal is 

used, matlab takes the signal samples and adds zeros at the end until 

N number is reached. That is way this technique is called as ZERO 

PADDING. Here it is shown that by using N 5 times the length of the 

signal resolution of the frequency axis refined a lot so the new peak 

appears at f=0.47 Hz (fig 6).  

Attention should be paid to correctly represent the frequency axis and 

to the amplitude of the spectrum.  

First, when matlab calculates the FFT of the signal it uses length of 

the signal to divide the frequency axis in this way: 

[0:fs/N:fs-fs/N]                            (9) 

 Not from –fs/2 to fs/2 as wrongly calculated above. 

 

Second, after taking FFT, always need to be divided to the length of 

the signal before zero padding in order to get correct amplitude of 

the spectrum equal to the amplitude of the raw signal, not to the 

complete length of the signal with zeros. 
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Figure 6. FFT with zero padding 

It is also visible that there are some sidelobes in the spectrum. It 

is because of added zeros to the signal which are not really there.  

As added values are all zeros, they do not give extra information 

about the spectrum, but only uses more point to better interpolate the 

signal before (figure 7). It is clearly visible in the figure where 

two representations are combined. This affect will be explained later 

in the chapter 5.2. 

  

 

Figure 7. Comparison between with and without zero padding 
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3. Order Tracking 
 

In vibration analysis of rotating machinery, frequency axis that 

represent the orders of the running speed rather than the absolute 

frequencies is often preferred which is called Order Tracking (OT) 

method. OT is very powerful and most commonly used method for 

condition monitoring of rotating machines, because it can easily 

identify vibrations related to rotational speed such as shaft defects 

and bearing wear. In order to use this method, the signal must be 

acquired at constant increments of shaft rotation. (Fyfe, K. R., & 

Munck, E. (1996). Analysis of computed order tracking) 

 

3.1 Conventional Order Tracking 

 

Conventional OT uses special analogue instrumentation to directly 

acquire a data at proportional rate to shaft frequency. Usually it 

consist of a ratio synthesiser and an anti-aliasing tracking filter. 

It may also include a frequency counter to monitor the shaft speed. 

The ratio synthesiser generates a signal proportional to the shaft 

speed of the machine. This output is used to control the sampling rate 

and the cut-off frequency of the analogue tracking filter, a low-pass 

filter with an adjustable cut-off frequency. Once data acquisition 

process performed at constant ∆θ   is finished, a Fast Fourier 

Transform (FFT) is calculated resulting in an order spectrum. 

Its usage is reduced because of the associated cost and complexity of 

the components. Conventional Order Tracking is also prone to errors 

when working condition is nonstationary. 

 

Figure 8. Equipment used for Conventional Order Tracking 
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3.2 Computed Order Tracking 

 

Computed Order Tracking (COT) method that is digital alternative of 

the conventional one is introduced because of its some advantages over 

the former one. Main advantage of the Computed Order Tracking is that 

does not require the samples to be sampled at constant increments of 

the shaft rotation angle, but it uses samples taken at constant ∆t time 

and keyphasor pulses to define desired sampling points at constant ∆θ.  

That is reason why it is called Computed Order Tracking (COT) because 

it uses numerical calculation to extract speed-normalised data from 

the vibration signal that has been obtained through traditional data 

acquisition. 

Keyphasor signal works like trigger and gives desired number pulses 

per revolution. Once the conventional data acquisition is done, it is 

resampled by software that uses tacho (keyphaser) signal to generate 

vibration amplitudes at constant ∆θ    angle increments.  

Let’s take as an example the sweep cosine signal represented in  

figure 1. It has been sampled at constant time increments and by the 

software it should be resampled at constant increments of shaft angle. 

To this regard, we have to find new time vector at which resampled 

data should be acquired depending on the keyphasor pulses. Two 

estimations are made during resampling procedure. The first one is 

while the calculation of sample time and putting it correctly on the 

time (independent) axis. It should be very precise, because it defines 

the quality of the interpolation, without precise calculation of 

resampling points, even with good interpolation technique, accuracy 

will not get better. The second one is involved in the resamples on 

the amplitude (dependent) axis which is again interpolation process. 

 

Figure 9. Equipment used for Computed Order Tracking 
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In order to calculate the resampling times, shaft speed is assumed to 

change at a constant rate. Therefore, rotational angle θ   can be 

defined as equation time. 

                          Θ (t) =b0+b1t+b2t2              (10)                                          

The unknown coefficients b0, b1, and b2 are defined by fitting three 

consecutive keyphasor pulse times (t1, t2and t3), which occur at known 

shaft angles because the number of triggers per revolution is known. 

For example, if we have keyphasor pulse once per 2*pi angle (one 

trigger on the shaft) it means these times (t1, t2 and t3) belongs to: 

Θ (t1) =0 

Θ (t2) =2π 

                                                                      

Θ (t3) =4π                           (11) 

Times t1, t2, and t3 are known from the keyphaser pulse times. If 

these times are not known, for instance if there are multiple triggers 

per revolution and exact zero crossing times are not available, it is 

possible to identify these zero crossing times by interpolating two 

sample points that are one before crossing  the time axis and the 

other one is after. If the sampling frequency is high enough, which 

means there enough samples per revolution, linear interpolation method 

may be enough.  Linear interpolation is proven to work well with at 

least eight samples per cycle. With lower values promlems during 

interpolation may arise and a different fitting may be needed. Note 

that relative times are preferred to reduce the error during the 

calculation. 
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Once we have zero crossing times, by substituting them into equation 

(1) 

                                                  

                            (12) 

These equations are solved for the unknown coefficients and then with 

these known coefficients equation (10) can be solved for generic time 

that belongs to constant ∆θ    angle increments of interest. It 

results: 

                               (13)  
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By this solution time related to any phase angle can be found.

   

 

Figure 10. COT resampling 
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In figure 10, the signal is represented after resampling with K=22 

data per revolution. It should be noted that the resampled data (red 

points) placed at the same increments of each wave regardless of where 

the traditional time-based samples were acquired. In order to find the 

amplitude values of resampling times raw signal is used to interpolate 

at intermediate points by interp1 function in matlab.  

 

Once the resampling process is done, resampled data then Fourier 

Transformed by FFT to obtain order domain representation of the signal 

(figure 11).  

 

 

Figure 11. Single-sided spectrum of OT signal 
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Now the spectrogram of the signal is centred at around one (figure 

12), meaning that regardless of what speed change, the peak is at 

order 1 which is equal to shaft speed. 

 

 

Figure 12. Spectrogram of signal after COT 

It should be noted that accuracy of the interpolation method is as 

important as the accuracy of resampling times. Because interpolation 

method directly effects the amplitude of the resampled data, so the 

accuracy of the representation. 
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4. Fourier Interpolation 

4.1 Implementation of Fourier Interpolation 

 

As already mentioned in chapter 2, there are two estimations in COT 

process which are firstly to find exact positions of the resampling 

and the secondly to estimate the correct value corresponding to those 

positions. In addition, the zero crossing times are found by 

interpolating the tacho signal at certain areas. In order to check if 

it is possible reduce these estimations and get more precise 

evaluation of values that belongs to constant shaft angle increments, 

new approach of resampling is also tested which is called Fourier 

Interpolation.  

To use this method, again, signal must be cut into revolutions. 

Therefore, tacho signal is still needed and keyphasor timing is still 

there. After finding the zero crossing times and signal is cut into 

cycles, every cycle then re-interpolated using the raw signal and 

interpft function of the matlab.   

As an example, the sweep signal from chapter 1.3 is tasted with N=35 

sampling points.  
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In figure 13 result of the Fourier interpolation is shown with red 

colour. It is noticeable that result is very smooth and interpolation 

much better compared to raw signal, which is linearly interpolated and 

represented with blue colour.  

In the early stage, superiority of the Fourier interpolation is not 

much visible. It is because at first angular speed of the signal was 

not high enough to see the problems regarding to interpolation. But 

later on, as speed get high enough, some errors are visible when there 

are not enough sampling points per revolution and advantage of Fourier 

interpolation is clearly visible. 

  

      

 

Figure 13. Interpolation comparison  
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4.2 Problem of Fourier Interpolation 

 

y = interpft(X,N) interpolates the Fourier transform of the function 

values in X to produce N equally spaced points. So, we can sample each 

revolution with the same number of samples. As long as we have exactly 

the same number of samples per cycle, it can be continued with TSA to 

get better estimation of the true values of corresponding shaft 

increments. However, from the figure, it is possible to see there are 

still some problems that should be solved first. From the figure, one 

can tell that for each cycle, starting point is the first raw sample 

of the signal. When we cut raw data into revolutions, we do not 

usually have first samples at the same shaft angle. Therefore, it is 

not possible to average the periods to obtain better result, even if 

we have exactly the same number of samples per cycle. To solve the 

problem further improvement of the approach is test by moving the 

phase of the resampled points. We tried to move the phase of every 

first sample of the cycles to zero crossing point. 

 

To this regard, once we cut the raw data into cycles, for each cycle 

post processing has been done to change the phase of the samples 

included in the cycle. In this process samples are first Fourier 

transformed  

            Y=fft(y);                               (14) 

f=[0:length(y)-1]*fs/length(y);                    (15) 

 

Then every point of the Fourier transform is phase shifted to the 

value that is equal to the difference between the angles at keyphasor 

zero crossing time and at the first sampling time of the cycle. 

Y’=Y.*exp( -(-1)^0.5*dt.*(f*2*pi));              (16) 

 

dt=t(1)-kptempiw2(i);                     (17) 

   

Where i is the index of the cycle. Pay attention not to denote complex 

number by i, system confuses it with cycle index and big problems in 

the result arise. 

 

Then, by inverse transform it is possible to take phase shifted 

values.  

 

y’=ifft(Y’);                          (18) 

 

 

 

https://localhost:31515/static/help/matlab/ref/interpft.html?searchHighlight=interpft&searchResultIndex=1#bvkce36-y
https://localhost:31515/static/help/matlab/ref/interpft.html?searchHighlight=interpft&searchResultIndex=1#bvkce36-X
https://localhost:31515/static/help/matlab/ref/interpft.html?searchHighlight=interpft&searchResultIndex=1#bvkce36-n
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Finally, obtained y’ signal is used to implement the Fourier 

Interpolation instead of raw signal. 

 

The result is shown in figure 14. It is visible that samples in each 

cycle is moved back towards zero point. However, it is also clearly 

visible that they are not perfectly started from keyphasor zero 

crossing time.  

 

 

Figure 14. Fourier interpolation result after phase shift 

 

5. Time Synchronous Average 

5.1 Definition and implementation of TSA 

 

Once the COT process is finished, as we have the resampled signal at 

constant increments of the shaft angle, it is easy to move on further 

improving the resampled data by dividing it into cycles and then 

averaging them resampled increment of shaft angle. It is used to 

distinguish the deterministic, periodic part of the signal from a non-

deterministic noise. Because signals are considered to be the sum of 

periodic component and non-periodic noises. However, non-periodic part 

of the signal has a mean value, which is equal to zero. Therefore, by 
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averaging the values of the signal at the same angular increments 

leads to remove all non-deterministic part of the signal.   

y(t) =
1

𝑁
∑ 𝑦(𝑡 + 𝑛𝑇)

𝑁−1

𝑛=0

                                                                        (19)              

This formula illustrates the main idea of the Time Synchronous 

Averaging (TSA). Where T is the main shaft period, N is the number of 

periods in the whole signal that shows the number of revolutions 

during the acquisition time.  

Once we obtain the periodic part of the signal by TSA, by subtracting 

the deterministic part from the raw signal, we can easily determine 

the non-periodic (residual) part of the signal. 

   

 

This matlab function is built to calculate the Time Synchronous 

Average of the given y signal which is resampled at K number of points 

per revolution. Those K resampling points should be at the same shaft 

angle increments to be able to average them so they should belong to 

Order Tracking process. Here is a simple test is shown to illustrate 

the working principle and quality of the TSA. 

 

In order to do this sine signal with small noise is generated and 

sampled at constant time interval. Because of the speed of the signal 
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is constant, phase angles of the samples corresponding to each period 

is the same and TSA is applicable. 

 

 

Figure 15. Before TSA 
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Figure 16. After TSA. 

Here it is visible the effect of the TSA. Red line belongs to signal 

after the TSA, which is periodic part of the signal.  
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5.2 Comb filter effect of the TSA 

 

As the samples of the raw signal separated by the exact period are 

averaged, any periodic component synchronous with the shaft speed, 

remains unchanged and any other becomes attenuated and converge 

asymptotically towards zero. 

The frequency response of equation 19 can be computed via the z-

transform as 

𝑌(𝑧) =
1

𝑁
∑(1 + 𝑧−𝑟𝑀)𝑋(𝑧)

𝑁−1

𝑟=1

 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

1

𝑁

1 − 𝑧−𝑀𝑁

1 − 𝑧−𝑀
                                                                (20) 

Where M is the number of samples per period and N the number of 

sections averaged. 

 

The frequency response then being  

|𝐻 (
𝑓

𝑓𝑝
) |= 𝐻(𝑧)꘡𝑧=exp(−𝑗𝜔∆𝑡) =

1

𝑁

sin(𝜋𝑁𝑓/𝑓𝑝)

sin(𝜋𝑓/𝑓𝑝)
                                        (21) 

With fp=1/(M∆𝑡) the frequency of the extracted periodic component. 

 

Figure 17. FRF of the SA 
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It visible in the figure 17 that SA has “comb” like effect in the 

frequency domain. Main lobes are centered at the integer multiples of 

the shaft speed fp. Therefore, this method is ideal for extracting the 

fundamental and as well as all harmonics of the signal while reducing 

the non-synchronous frequency components. Increasing N, the number of 

sections averaged, results in narrower main lobes (improved filtering 

of the periodic data) and increasing the secondary lobes. (S. Braun. 

The synchronous (time domain) average revisited) 

 

5.3 Effect of the number of periods used to synchronise 

 

During the TSA procedure, influence of the speed variation is lost as 

number of samples per cycle in the resampled signal is fixed. That is 

why, in the frequency domain, Fourier Transform of the TSA represents 

the order spectrum of the given signal. Zero padding as mentioned in 

chapter 2, can sharpen the spectrum by increasing the number of points 

to interpolate in the frequency axis. However, it may not always 

result to converge to true values of the orders.  

 

 

Figure 18. 

Figure 18 represents the order spectrum of the signal acquired from a 

civil aircraft that will be briefly described in section 7.2.  
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Blue line belongs to spectrum of the signal after TSA without zero 

padding meaning that the length of frequency axis is equal to the 

length of the signal. Red one is with zero padding, increasing the 

length in frequency domain 5 times of the original signal and green 

dashed line shows the spectrum with the same length as red one but 

instead of increasing it by zero padding, 5 cycles are used to TSA.  

 

Figure 19. 

 

In figure 19, it is possible to see that they are all equal where the 

blue one is calculated. Once the length is elongated by zero padding, 

it only uses those internal points to better interpolate the values of 

orders. On the other hand, increasing the number of cycles to 

synchronous averaging considers real data to calculate the spectrum at 

those internal points. In this way, if needed, desired frequency 

resolution can be achieved with meaningful data.  

However, in the case of fast speed variations, problem may arise of 

too many cycles are chosen to TSA. This compromise between number of 

cycles and error will be discussed in chapter 6.2. 
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6. Synchronous Average in Frequency Domain 
 

 

Synchronous Averaging the periods of the signal in time domain gives 

an idea of what if it is possible to represent revolutions of the 

signal in the same frequency axis and then synchronously average them 

to obtain the frequency domain of the signal. Would it give a better 

result from traditional approach (Resampling+TSA+FFT)? 

Having the same frequency axis means that the frequency range of the 

representation should be the same and the spacing of the frequencies 

should also be equal for all the periods. First part of the 

requirements are met by acquiring the raw signal at constant time 

intervals, so that the constant sampling rate bounds the range of the 

frequency axis. Because, when the signal Fourier transformed to obtain 

frequency representation, FFT sets the range of the result to        

[0: ∆f:fs-df], where ∆f equal to fs/N. But, the second requirement is 
not always met, because the number of samples per revolution changes 

by changing the rotational speed of the shaft. Therefore, from the 

equation 3, step of the frequency axis ∆𝑓 is not the same for all 
periods. 

6.1 Introduction of DFT 

  

With the motivation to solve the problems stated in chapter 2.2, new 

approach is built to test the representation of the signal in 

frequency domain. A Novel Frequency Domain algorithm is used to build 

this approach.  

Process: 

In order to implement this approach, only raw data acquired by 

traditional time based method is used in this approach. Keyphaser 

signal is used only to cut the signal into revolutions and then raw 

samples included in each every revolution is sent to new fuction 

called my_fft to calculate the Fourier Transform of the period. The 

idea is to plot the spectrum of the sampled signal by defining its 

discrete Fourier Transform as 

FTX (Ω) =∑ 𝑋(𝑡
𝑁

𝑗=1 j) exp(-iΩtj)                      (24)                                                           

Unlikely to fft, this more general approach takes into account the 

timing of the samples. In traditional fft, sampled are always assumed 

to be evenly spaced and also the frequency axis is sampled with 

constant increments. Frequency axis is also independent here to sample 

how we want, because every single sample frequency is independent from 

others. Therefore, it is possible to choose the frequency axis 

directly. 
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For instance, solution to the problem mentioned in chapter 2 can be 

seen in figure 20. Red spectrum is obtain by new approach and blue one 

is the result of traditional fft. In this example, length of the 

acquired data was 51 samples. Therefore, frequency range of interest 

[0:fs] was divided into 50 intervals by traditional fft. However, red 

one is obtained by dividing the frequency axis into 80 intervals 

thanks to new degree of freedom to choose the frequency. So, the 

problem related to ∆𝑓 spacing of the Discrete Fourier Transform is 
solved.  

 

 

Figure 20. Comparison between fft and Dft 
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As this approach gives new degree of freedom to choose the frequency 

axis independently from the signal itself, the idea of using 

Synchronous Average in Frequency Domain arises. Because, if we can 

calculate Discrete Fourier Transform in this way, then we can choose 

one frequency vector of our interest and find DFT for every revolution 

of the shaft in this range and then by synchronously averaging them it 

is possible to monitor the condition of the shaft. 

6.2 Root Mean Square Error 

 

 In order to check the quality of the approach as well as the effect of 
variables like sampling rate, speed variation, number of samples per 

cycle in resampled data and number of cycles used to synchronous 

averaging, Root Mean Square Error (RMS-E) is introduced into 

procedure. The RMS (Root Mean Square) value of the signal is the 

normalized second statistical moment of the signal, meaning that the 

square root of the arithmetic mean of the squared values of the 

signal: 

𝑅𝑀𝑆 = √
∑ [𝑥(𝑖)]2𝑁

𝑖=1

𝑁
                                                                            ( 22 ) 

 

RMS-E is the RMS value of the difference vector of the signal with 

respect to reference one. 

 

𝑅𝑀𝑆 − 𝐸 =
𝑅𝑀𝑆(det − estimated)

𝑅𝑀𝑆(𝑑𝑒𝑡)
                                                          (23) 
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RMS-E 
% test of COT 

fs=10000;  %Hz or sps  

T=20;    %s 

t=[0:1/fs:T]; 

yn = 0.1*randn(size(tt)); 

s=[1:0.2:3]; 

%% Zero crossing time 

for ii=1:length(s) 

yp=chirp(tt,10,T,10*s(ii)); 

y= yn+yp; 

% plot(tt,y,'b*-'),xlabel('t[s]'),ylabel('y(t)'), title('Sweep') 

kptempiw2= keyphasorDEF(yp,tt,0); 

% Traditional Approach (Resampling+TSA+FFT) 

K=150; 

phi = 2*pi; 

tneww2= resampleDEF(kptempiw2,phi,K);  

sgn_per = interp1(tt,yp,tneww2,'spline'); 

% TSA 

nn=1; 

[Sh_per]= TSA(sgn_per,K,nn); 

% FFT 

% NFFT=2^nextpow2(length(Sh_per)); 

NFFT=length(Sh_per); 

XPper=fft(Sh_per,NFFT)/length(Sh_per); 

SGNP=2*abs(XPper(1:NFFT/2)); 

% 

sgn_new = interp1(tt,y,tneww2,'spline'); 

[Sh_new]= TSA(sgn_new,K,nn); 

% FFT 

% NFFT=2^nextpow2(length(Sh_per)); 

Xper=fft(Sh_new,NFFT)/length(Sh_new); 

SGN=2*abs(Xper(1:NFFT/2)); 

f_SGNper=[0:NFFT-1]*K/NFFT; 

% Normalized approach 

l = length(kptempiw2)-1; 

A_DFT = zeros(1,NFFT/2); 

n2=floor(nn/2); 

% tic 

for j=1:l/nn 

    i=nn*(j-1)+1;     

    dt= kptempiw2(i+1+n2)-kptempiw2(i+n2); 

    y11=y(tt>=kptempiw2(i) & tt<kptempiw2(i+nn)); 

    t1=(tt(tt>=kptempiw2(i) & tt<kptempiw2(i+nn))-kptempiw2(i))/dt; 

    m(j)=length(y11); 

   [Fc, FT]= my_FFT2(y11,t1',K,NFFT); 

    A_DFT = A_DFT+FT(1:NFFT/2)/length(t1);         

end 

A_DFT = 2*abs(A_DFT/j); 

%RMS error of FFT 

Df=SGNP-SGN; 

Ef=Df*Df'/(SGNP*SGNP'); 

ef(ii)=100*sqrt(Ef); 

% RMS error of DFT 

Dd=SGNP-A_DFT; 

Ed=Dd*Dd'/(SGNP*SGNP'); 

ed(ii)=100*sqrt(Ed); 

end 

figure; 

plot(s,ef,'b'); 

hold on 

plot(s,ed,'r'); 
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Effect of Sampling Rate 

 

 

Figure 21. RMS-E at different sampling rates. Solid lines are traditional 

approach and dashed lines are Synchronous Averaging in frequency domain 

 

From figure 21, it is possible to see different behaviour from two 

approaches. 

Firstly, traditional approach shows no effect on sampling rate with 

almost the same trend as fs increases (minor differences are due to 

the added random noise). However, error in new approach gets lower by 

increasing the sampling rate.  

Secondly, as slope increasing, trend in traditional approach is 

decreasing meaning that higher speed variation reduces the error in 

FFT after TSA procedure while proposed method shows about constant 

error with respect to slope.  

Nevertheless, it is noteworthy that all errors are less than 1%, even 

less than 0.5% in the case of Synchronous averaging in frequency 

domain. 
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Effect of Number of samples in Resampling 

 

 

Figure 22. RMS-E at different K (number of samples per cycle used to 

resample). Solid lines are traditional approach and dashed lines are 

Synchronous Averaging in frequency domain 

 

Also in figure 22, decreasing trend of traditional approach is 

noticeable. Like the sampling rate, K (number of samples per cycle 

used to resample) does not have much influence on the traditional 

method. 

On the other hand, increasing the K increased the error in the new 

approach. It is believed to be because the synchronizing in frequency 

domain is performed to plot equivalent spectrum of traditional 

approach and in traditional approach, K decides until which order the 

spectrum is built. That is why at higher orders, new approach may show 

higher error. Other than that, K does not have any direct influence on 

Synchronous Averaging in frequency domain. So, if degree of freedom 

coming with approach is used to limit the frequency range and by 

increasing the sampling rate very low error can be achieved.  

Also in this case error is less than 1% in traditional approach and 

less than 0.5% in new approach. 
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Effect of Number of cycles used to Synchronous Averaging 

 

 

Figure 23. RMS-E at different n (number of cycles used to SA) 

 

In this case, both methods (solid lines belongs to traditional 

approach and dashed ones are SA of DFT) show the same behaviour by 

increasing with n. It is because in traditional approach speed is 

assumed to be constant within a cycle and if many cycles are used for 

each synchronization, speed variation within a calculation may be too 

much and it leads to a higher errors.it is also the case for SA of 

DFT. 

This shows some limits to increase number of cycles to SA. Up to 3 

cycles, both methods show acceptable errors (less than 1% in new 

approach and about 1.5% in traditional approach). However, if it is 

increased more, error becomes very high. 
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7. Discrete Fourier Transform 
 

7.1 Implementation on real data 

 

In order to check further the performance of this approach, it is 

tested on couple of real cases.  

7.1.1 PHM 

Acquisition system 

 Channel 1 is the input side Accelerometer 

 Channel 2 is the output side Accelerometer 

 Channel 3 is the Tachometer Signal: 10 pulse per revolution 

Sample Rate: 66,666.67 Samples per Second (200 KHz/3). Data were 

collected at 30 Hz shaft speed. 

 

Provided data has been obtained for several conditions of gears and 

bearings. Tests in the following is done with case one and two where 

there is a chipped tooth on the gear of the input shaft. Therefore, in 

the frequency domain representation,  

 

In order to check the performance of the approach, both ways are built 

to compare side-by-side.  

First, traditional method is built. Procedure includes obtaining 

keyphasor signal by zero crossing method and then followed by 

resampling technique so as to resample the signal in constant shaft 

angle increments, then performing TSA and finally FFT to obtain order 

domain representation.  

Then, equivalent My_FFT approach is built. It can be applied in two 

ways, simply in frequency domain or in order domain. In order to get 

the frequency domain representation, first of all, the length of the 

frequency axis and the spacing ∆𝑓 should be chosen before the process. 
Because, it should be constant for all the periods. Then, raw data is 
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cut into revolutions and sent to my_fft function to process the FT of 

the signal by new approach. my_fft function uses four inputs as shown.                

 

Figure 24. PHM09 schematics of the apparatus. 

 

Figure 25. Detailed gearbox picture 

 

Inputs for my_fft are: 

1st: raw samples of the revolutions to be processed 

2nd: times at which those samples are acquires 

3rd: frequency range of interest 

4th: N number that decides the ∆𝑓 steps 



 
 

38 
 

Outputs of the my_fft function are [Fc] that is the frequency range of 

on which the test is performed and [FT] that is the Discrete Fourier 

Transform of given raw samples.  

Once [FT] is calculated for each period, they are then averaged to 

find truly periodic part of the Spectrum and to reduce the random part 

related to the random noise or bearings. So, the Synchronous Averaging 

in Frequency Domain is performed. 
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In order to obtain order domain representation by this approach, 

signal first needs to normalised. To this regard, length of the period 

dt is defined by the interval between two consecutive keyphasor times. 

Then, sampling times are normalised by dividing by dt. Therefore, each 

period is set to one. So the speed normalised representation is 

obtained 

 

There are to some factor that play main role in the quality of the 

representation. For instance, number of cycles used per each DFT 

calculation. It means that, signal is not separated into single cycles 

but multiple cycle are used for each calculation. When the number of 

cycles per iteration is increased, result is obtained in better 

resolution. However, as it is mentioned in chapter 6.2, as we increase 

the number of cycles per SA, error also increases. Therefore, only 

some iterations (1, 2, 3 cycles per SA) are represented and compared 

in the following figures in order to be in acceptable range 

 

Figure 26. One cycle is used to average. 

Figure 26 represents the spectrum of acquired data with Traditional 

approach (blue line) and SA of DFTs (red line) with only one cycle is 

used to average. It is visible that traditional fft after TSA method 

and SA after DFT method show almost identical results in order domain 

with coarse steps. It is because only one cycle length is used. 

f=[0:N-1]*fs/N=[0:df:fs-df]       where df=fs/N 
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if we consider 1 period at a time to Fourier Transform then N is equal 

to number of samples per cycle which means: 

fs=N/T=N*f’ 

where f’=1/T is shaft speed. Then: 

df=fs/N=f’  

It shows that frequency resolution represents orders of the shaft 

speed. Moreover, in most of the cases, it is what is needed from 

Rotating Machinery Diagnostics. Because if there is a fault at gear 

tooth, the peak appears at Gear-Mesh frequency which is equal to 

fm=z*f’ (z is number of teeth of the gear). It appears at gear teeth 

number in order domain. It is also visible in figure 27, where the 

step plot of previous case is represented in order to better see the 

frequency resolution. Spur 2 (chipped tooth) case was chosen to apply 

the algorithm and noticeable peak appeared at Gear-Mesh frequency.  

 

 

Figure 27. Stem plot with gear Mesh. 

In the next figures spectrum where 2 and 3 cycles per SA used is 

represented. It is easy to notice that peaks are much sharper thanks 

to increased number of periods lead to use smaller steps in order 

spectrum and calculate internal points as well. 
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Figure 28. 2 cycles are used to average. 

 

 

 

Figure 29. 3 cycles are used to average. 
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Figure 30. Waterfall plot of periods 

 

It is also interesting to see Waterfall plot of the signal where the 

spectrum of each period is represented. Figure 26 spectrum plot is 

generated by averaging spectrums of each periods. Therefore, the 

procedure is called Synchronous Averaging in Frequency domain. 
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7.1.2 Safran Contest 

 

In the second case, formula is tested on the data that is provided in 

the Safran contest organized during the International Conference 

Surveillance 8, October 20-21,2015, at the Roanne Institute of 

Thechnology, France. Vibration data is acquired from a civil aircraft 

that is in a transient operating mode. Figure 22 shows a general 

overview of the engine with the damaged bearings and sensors 

locations. Also for this case, the procedure is the same with one 

applied to PHM contest. 

 

 

 

Figure 31. General overview of the engine and the accessory gearbox. 
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Figure 32. Kinematics of the gearbox 

 

 

Figure 33. One cycle is used 
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Figure 34. Stem plot  

 

Figure 35. Two cycles are used 
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In figure 35, clear advantage of using more than one cycle in the 

synchronizing process is shown. In figure 34 peaks are not so evident, 

but as soon as it is increased to two cycles some peaks are sharply 

rose. It is also noteworthy that even the speed is changing in this 

example, peaks are all aligned in order domain making the condition 

monitoring easy (figure 36).  

 

 

 

 

 

Figure 36. Waterfall plot of the orders 
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8. Conclusion 
 

In this work, equivalent procedure of Traditional Condition Monitoring 

is built by using the Novel Frequency Domain Algorithm and tested for 

quality, arguments for and against the procedure is discussed. 

Traditional approach (COT+TSA+FFT) of Rotating Machinery Condition 

Monitoring is believed to be one of the most efficient techniques to 

extract the deterministic part of the gearbox signal, the one related 

to gears, from non-deterministic one coming from noise and bearings in 

time domain.  

Proposed algorithm is based on Synchronous Averaging in frequency 

domain. Clear advantages at high sampling rates as well as degree of 

freedom to choose the frequency axis of the procedure shown in the 

tests makes it interesting to investigate further. 

However, there are some downsides of this method too. The most 

important one is the computation time. As traditional method uses Fast 

Fourier Transform, its computation time is much faster than the one 

proposed in this work, which uses Discrete Fourier Transform. 

Based on the requirements and working conditions, one can be 

recommended over the other one. 
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