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Summary

GPGPUs are becoming more essential than ever before, primarily thanks to their
flexibility of use and the exponential growth of parallel algorithms. These GPGPUs
are widely used in object recognition across a variety of applications. One significant
application of image recognition is in fully self-driving cars, which are currently
being developed by a wide range of companies, from automakers such as Tesla to
well-known GPU manufacturers such as NVIDIA.

These embedded systems must be safe and meet the ISO26262 standard, which is
an international model used for electronic systems installed in cars and other road
vehicles for safety purposes. As a result, during the last decade, fault tolerance
study has become a critical element of the development process; nevertheless, while
reliability analysis of CPUs has been extensively studied, tools for testing GPGPUs
has been developed only in the last few years.

To accomplish this, an investigation of GPGPU’s general architecture and mi-
croarchitecture with the aim of determine the GPU’s most critical parts and compo-
nents is provided, along with an examination of a variety of hardware and software
methods for handling radiation effects such as bit-flip. For the purposes of this
thesis, the state-of-the-art NVBitFI, one of the most powerful software injection
tools developed by NVIDIA, was used.

The NVBitFI framework was utilized in this thesis in conjunction with an
NVIDIA Jetson nano board, which is a System-on-Chip which mount a Maxwell’s
microarchitecture GPU. The board was used to conduct fault injection campaign,
running a variety of well-known applications. Furthermore, the tool’s output was
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thoroughly evaluated. The fault injection framework classifieds the results as
masked, when no effect on expected behaviour have been detected, Device Under
Error (DUE), which indicates that the application was unable to complete the task
and crashed, or Silent Data Corruption (SDC), which indicates that the application
achieved results that differed from the reference one.

Through a change to the original framework, it was possible to carry out a fault
injection campaign to determine the relationship between the instruction code,
commonly known as OPCODE and the type of error that this entails, whether it
is a DUE, SDC or masked.

Finally, an application was developed with the purpose to improve reliability
by utilizing a hardening software technique known as Triple Modular Redundancy
(TMR), which improves the device’s reliability at the expense of a slight perfor-
mance degradation. Then, the outcomes of the hardened application have been
compared to those of the non-hardened application to determine whether there are
any improvements in terms of reliability.
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Chapter 1

Introduction

The Graphics Processing Unit (GPU) is a specialized microprocessor that is capable
of optimizing and significantly reducing the processing time for any programs that
use graphics computing. Today, GPUs are found in a wide variety of mainstream
devices, ranging from laptops to mobile phones, and are used in a wide variety of
applications and fields.

1.1 GPGPUs

The exponential growth of the GPU in recent years at the expense of the CPU is ow-
ing to the GPU’s higher parallel computational capacity and memory bandwidth for
parallel algorithms, particularly in all disciplines where image processing is critical.
These benefits have established the so-called General-Purpose GPUs (GPGPUs) as
a viable alternative to the most widely used microprocessor for applications requir-
ing high-performance computing (HPC), particularly embedded systems (eHPC)
[5]. Because embedded high-performance computing applications such as image
processing for object recognition require a high level of data processing and mem-
ory capacity, the GPGPU is increasingly employed and praised.

Nowadays, image processing is an integral part of our lives, from facial recogni-
tion, which is important for identification on our smartphone, to self-driving cars,
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Introduction

which are becoming a reality year after year.

1.2 Reliability of GPGPU

Frequently, the GPGPU’s concentration is on a particular industry, particularly
embedded computing, where safety and dependability are critical. As a result,
we may use a variety of approaches to explore the dependability characteristics of
GPU applications. However, before delving into the details, we must understand
why safety is critical in those fields and how errors and faults can arise in a general
circuit and what causes them.

The notion of reliability is inextricably linked to the concept of availability,
except that availability is defined as the chance that a system or algorithm will be
available and functioning correctly at a certain point in time.

Rather than that, dependability quantifies the chance of a system functioning
successfully at time t. The concepts of reliability and availability can be somewhat
confusing; the primary distinction is that a system that is available at time t may
be unreliable, since a system may operate without failure but may produce a result
that differs from the expected one due to some faults. To summarize, we may state
that a reliable-system is required to be an available-system, but that the inverse is
not necessarily true in general [20].

The final critical idea is safety; it refers to a system’s ability to operate prop-
erly or to cease operating entirely without causing substantial harm to anyone or
anything. This parameter is increasingly critical in all fields where the technology
has the potential to cause harm to people, such as autonomous driving systems.

1.2.1 From fault to failure

Generally, the fault-error-failure chain is the main threat to a system’s reliability.
A fault may be caused by a particle colliding with the chip’s surface or by an
electric current flowing between the transistor contacts. The first case illustrates
a temporary defect, while the second illustrates a perpetual fault in the system.
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1.2 – Reliability of GPGPU

Permanent faults persist in the system until a corrective measure is taken to replace
the faulty component. By contrast, transient faults are those that influence the
system temporarily and may result in an error or be absorbed by the system. A
transient fault cannot directly disturb a system’s regular operation, but if it is
converted to an error, the error generated may lead to system failure under certain
circumstances. When a particle collides with the chip surface, a transient voltage
pulse known as a Single Event Transient (SET) [2] is created at the struck gate’s
output. SET may be propagated via the logic gate until it reaches and is stored
in one of the circuit’s latching components. In this case, the error generated is
referred to as a soft error [16].

Figure 1.1. Fault-Error-Failure chain [35].

A soft error corrupts data without causing a circuit fault,it is created by a
physical particle passing across a device’s critical volume,that has the potential to
split the silicon nucleus into nucleons of varying atomic weights. These nucleons
travel in opposite directions, conserving mass, energy, and momentum, and the
charged nucleons in motion create a wake of charge separation. This separated
charge may recombine or may be caught by an active node in the circuitry [27].

With a better understanding of what is a soft error, we have put together a list
of the most typical soft errors that can occur in a System on Chip (SoC), along
with a brief description.

• Single Event Upset (SEU): Also known as single event error (SEE), this is
an error that occurs when a free ionizing particle strikes a microchip, causing
the internal circuit to change state [6]. For example, it can charge a capacitor
in a memory DRAM, changing its state from 0 to 1, which is referred to as
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bit-flip error. When a particle’s impact alters the state of more than one cell,
this is referred to as a Multiple Cell Upset (MCU) [28].

• Single Event Transient (SET): It is a brief spike in voltage that lasts only
a few nanoseconds, causing a drop in the internal voltage. This is a more
severe form of error than SEU since it can result in a permanent error [28].

• Single Event Functional Interrupt (SEFI): This error causes a system
interrupt due to a single particle strike, momentarily causing the microchip to
misbehave, but does not result in permanent damage [28].

Rather than that, when the faulty device experiences a critical error, we are
dealing with a hard error. To be more specific, a hard error is an issue that is
caused by malfunctioning hardware, especially data transfer and memories. Hard
error are unrecoverable, and the device that has been damaged will need to be
replaced [27]. Common Hard error are:

• Single Event Gate Rupture (SEGR). The formation of a conducting path
caused by a single ionizing particle colliding with the gate oxide of a MOSFET;
this might result in system corruption or complete failure [28].

• Single Event Latch-up (SEL). When a single electrically charged parti-
cle passes across sensitive areas of the device structure, the system enters
an abnormally high current state, causing the device to lose its features and
operations [28].

All of these errors, whether they are hard or soft, can have a fatal impact on the
system, and in order to increase the system’s fault tolerance, a variety of hardening
techniques have been developed. The following section will cover a specific form of
hardening technique that allows the system’s dependability to be enhanced, called
fault injection.
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1.3 – Testing Techniques: Fault Injection

1.3 Testing Techniques: Fault Injection

When designing electronic systems that are installed in safety-critical industries
such as avionics, aircraft, defence, and transports, reliability and availability are
primary concerns [15] These systems are increasingly sensitive to external or in-
ternal failures due to the progressive downsizing of microelectronic components.
Consequently, several studies are focusing on enhancing system reliability by devel-
oping effective procedures and techniques. Fault tolerance is one of the approaches
for improving a system’s reliability. The aim of fault tolerant computation is to
design systems that execute successfully in the presence of faults while maintaining
their functionalities. Fault injection is a technique to estimate the dependability
and the safety of a system under faults. It is classified as a fault tolerance system
dependability certification approach which focuses on the conduction of repeatable
experiments to investigate the behaviour of computer systems in the presence of
faults. This procedure can accelerate the emergence and spread of faults in a device
so that their consequences on the system’s performance can be detected. It’s essen-
tial to establish the fault injection policy, including fault location, injection time,
fault duration, and the system’s input data, while setting up the fault injection
environment. Simulation-based, Emulation-based, and hardware-based approaches
are the three categories of fault-injection techniques [26].

Figure 1.2. Fault Injection overview.
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1.3.1 Simulation-based fault Injection

In simulation-based Fault Injection, commonly known as a fault simulator, is a
software application that models and simulates the target system as well as any
potential hardware faults [37]. The fault simulation is carried out by modifying
the hardware model or software state of the target system, making the system to
behave as if it were experiencing a hardware failure. There are two types of fault
injection: runtime and compile-time [26].

• Run-time injection

In order to activate fault injection during runtime, a mechanism must be in
setup. The following are examples of commonly used triggering mechanisms:

– Time-out. In this method, the injection is triggered when a previously
established timer expires, in particular, the timer generates a system in-
terrupt. The result is that there is no way to forecast what will happen
during the injection, as the injection is time-dependent rather than pro-
voked by a specific event [23].

– Exception/trap. Unlike time-out, the fault is injected in this situation
when an event or specified condition happens. In a software trap, for
example, the fault injection can occur prior to the execution of a predefined
instruction. To accomplish this, an interrupt is triggered prior to the
execution of that instruction, triggering the injection [23].

– Code insertion. This method is quite similar to the Code modification
techniques, except that the original code is not modified, but rather ad-
ditional instructions useful for the injection, are inserted to it [23].

• Compile-time injection

This strategy distinguished itself from the preceding technique on the target.
Compile-time injection simulates the effect of transitory and even permanent
faults by modifying the original assembly code or source code. It is necessary
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to have additional software that can analyse the result of the injection in this
solution, but no further software is required during the application’s execution.

The benefit of simulation-based fault injection techniques is that there is no hazard
of causing damage to the operational system. Additionally, they are more time and
effort efficient than hardware approaches. Furthermore, they improve the system’s
controllability and observability in the event of faults. However, simulation-based
fault injection techniques may suffer from inaccuracies in the fault and system
models [26].

1.3.2 Hardware-based fault injection

Hardware Fault Injection is one of the most precise approaches for determining the
dependability of a system. It makes use of external physical sources to introduce
faults into the system’s hardware via several methods classified into two categories:
tools that inject faults via contact and systems that do not.

• Fault Injection with contact

The injector is in direct physical contact with the target device, causing voltage
or current changes to the target chip from the outside. Pin-level injection, or
hardware fault injection involving direct contact with circuit pins, was the most
frequent technique of hardware fault injection. Altering electrical currents and
voltages at the pins level can be accomplished in two ways:

– Active probes. This approach alters the electrical currents of the pins
by adding current through probes linked to them. Although bridging
faults may be recognized by inserting a probe across two or more pins,
the probe method is typically limited to stuck-at faults. This approach is
extremely delicate, as the additional current flowing through the device
has the potential to damage it [23].

– Socket insertion. A socket is inserted between the target hardware and the
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circuit board. The inserted socket injects stuck-at, open, or more com-
plicated logic errors into the target hardware by pushing the analogue-
signals, that indicate desired logic values, into the pins of the target hard-
ware [23].

• Fault Injection without contact

There is no direct physical contact between the injector and the target device.
Instead, an external source causes spurious currents inside the target semicon-
ductor by introducing physical phenomena such as heavy-ion radiation and
electromagnetic interference. We may classify these technologies into two ma-
jor categories: radio-based fault injection and laser-based fault injection.

– Radiation-based. To begin, we must fully understand what radiation is.
Radiation is a set of energetic particles that interact and exchange en-
ergy with other particles when they collide and interact [13]. The particle
composition of radiation can vary based on its nature, and there are three
primary types: cosmic rays, mesons, and alpha particles. Mesons are cre-
ated when cosmic rays collide with the terrestrial atmosphere; as a result,
they have a lesser energy but can still cause negative repercussions on
irradiated semiconductor circuits. To address this problem, engineers de-
veloped precise vacuum chambers in which they tested electronic devices
with heavy-ion particle beams to determine how they would be affected
and how they might be hardened [4]. This technique is useful for stim-
ulating the emergence of SEU like bit-flip or even changing the states of
adjacent bits, causing MEU [25].

This approaches is popular among engineers because it closely resemble
natural physical processes. However, because you cannot accurately con-
trol the exact moment of heavy-ion emission or electromagnetic field pro-
duction, it is difficult to precisely trigger the time and position of a fault
injection using this mechanism.

– Laser-based. The laser injection approach yields carriers in the silicon
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substrate, which then cluster in the diffusion area of the targeted circuit.
Laser energy absorption produces electron-hole pairs in a similar manner
to SEU (Single Event Upset) effects characterized by high energy particles.
For example, a transitory change in the input or output of one of the
transistors in a flip-flop can cause a change in state.

The Laser Fault Injection (LFI) technique not only enables the validation
of fault-tolerant designs by providing a precisely controlled, nonintrusive,
and non-destructive method of injecting faults in semiconductor circuits,
but it also has the potential to automate the testing of board-level and
system-level fault tolerance designs, including fault-tolerant operating sys-
tems and application software. In addition, a vacuum test chamber, a ra-
dioactive source, or further on-chip fault injection devices are not required
[36].

Hardware fault injection techniques have the benefit of being able to access
regions that are difficult to reach with other methods. They’re also good for
hardware triggering and monitoring that require a lot of time resolution. The
downsides of such strategies include that the injection strategy necessitates
specific hardware and requires access to the target system’s hardware, which
might be difficult or expensive to obtain. Furthermore, these procedures have
a considerable potential of causing serious damage under examination. The
outcomes of hardware fault injection techniques are difficult to observe and
record, reducing the method’s usefulness.

1.3.3 Emulation-based fault-injection

As an alternative to the methods discussed in previous sections, fault-emulation
approaches attempt to combine the speed of hardware-based techniques with the
precision of software-based approaches. As a result, their implementation phases
typically include both software and hardware components. Emulation-based al-
ternatives to fault injection do not require the specialized equipment required for
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physical fault injection, making them more cost effective. Another advantage of
the emulation-based fault injection technique is that the position of the faults is
not constrained [16]. The time it takes to perform software simulations of large-
scale circuits can take years, making the simulation process unfeasible. In addition,
the difficulties and high prices of physical techniques make them unaffordable for
most researchers. To address these issues, one of the most often used solutions
is the emulation-based fault injection strategy, which involves simulating circuit
behaviour using FPGAs in the presence of faults. As a result, the FPGA repli-
cates the intended behaviour of the circuit under certain situations, allowing the
designer to work at a breakneck speed throughout the fault injection process [12].
Based on how they are implemented, emulation-based fault injection techniques are
categorized into the following categories:

• Hardware reconfiguration-based approaches

In these approaches, the design is specified in the first step using an FPGA-
specific Hardware Description Languages (HDL). A bit-file is generated from
the design, which is subsequently downloaded onto the FPGA. The second step
is to choose a benchmark to run on the design to evaluate its performance.
Using the chosen benchmark, a set of input bit-strings is applied to the circuit’s
inputs. These bit-strings contain information about how the design is set up
on the FPGA, and a set of initial inputs for the circuit. After the circuit
has processed all of the input bit-strings, the values will be sent back to the
computer system for proper inspection.

The tangible advantage of employing hardware reconfiguration for fault sim-
ulation is that the faulty bit-string is applied to only a portion of the cir-
cuit, rather than the entire circuit. Among the emulation-based options, the
hardware reconfiguration approach is the quickest. However, it should be em-
phasized that the connection structure between the host computer and the
FPGA has a significant impact on the performance of fault simulation and is
sometimes referred to as the bottleneck in these methods [16].
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• Instrumentation based approaches

In this technique, an additional component, sometimes referred to as a sabo-
teur, is added to the circuit for every fault position. This component is capable
of altering the value of the specified signal in accordance with the fault model
selected by the designer. The sabotage component may be positioned in ei-
ther the combinational or sequential portion of the circuit. Thus, because the
bit-file is only transferred once on the FPGA, this technique is significantly
quicker than hardware reconfiguration technique. However, because the area
overhead increases significantly with this method, it cannot be used on ex-
ceedingly large circuits. Each saboteur component has an enable signal that
is activated during the prescribed fault injection periods. The enabling signal
modulates the value of the signal that flows through the sabotage component.
This change can perform test like bit-flip or even Stuck-at faults [16].

Determining the correct approach for fault injection in electronic systems may make
a significant difference in terms of lowering project costs, shortening the time to
market for a product, and improve the reliability and dependability of a digital
device.
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Chapter 2

State of the art

Now that we have a clear understanding of what Dependability is and why it is
so important for the GPU, as well as what causes an error and how to stimulate
it via fault injection, it’s important to have a general understanding of the GPU’s
architecture and microarchitecture, and then consider the specific structure of the
GPU used for the purpose of this thesis.

2.1 GPU microarchitecture

As described in the last chapter, a GPU in general can perform a large number
of processes in parallel. A GPU’s computing capabilities, rather like a CPU, is
measured in terms of the number of floating-point operations per second (FLOPS)
that it can execute. GPUs can handle operations on the order of GFLOPS, which
is orders of magnitude faster than CPUs. For the purposes of this thesis, we shall
solely evaluate GPUs manufactured by the business NVIDIA. Nvidia has named
his microarchitecture after notable scientists throughout the years, beginning with
Fahrenheit in 1998 and ending with Ampere in 2020. For the sake of this thesis,
we will focus on the Maxwell microarchitecture, which is embedded in the NVIDIA
Jetson nano GPGPU employed in this study.

A GPU’s general structure is made up of several small microprocessors known as
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State of the art

CUDA cores, which stand for Compute Unified Device Architecture. These cores
are limited to specialized activities and cannot calculate the same instructions as
a regular CPU. The CUDA cores are distributed in a block, as shown in the figure
2.1 below, called Streaming Multiprocessor (SM). In addition to CUDA cores, each
SM contains an L1 cache that is accessible from every CUDA core inside the same
SM. A GPU typically contains more than one SM, and the related L1 cache is not
visible to the CUDA cores of the other SMs in the same GPU, and an additional L2
cache is included to permit sharing between distinct SMs. Prior to delving into the
mechanics of memory management, it is crucial to advance a general understanding
of the GPU’s architecture. We will discuss details in greater depth later.

Figure 2.1. General illustration of a GPU’s microarchitecture [39].
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2.2 – GPU architecture

2.2 GPU architecture

Now that we’ve figured out how the GPU’s microarchitecture operates, we need
to figure out how parallel computation is managed and which logic structures are
used:

• Kernel. The Kernel is a dedicated function that is executed in parallel on
the GPU. Each kernel instance is referred to as a Thread [21].

• Thread. A thread is a programming abstraction that represents the kernel’s
execution. Threads are clustered into Thread Blocks to manage data mapping.
Each thread has a unique identifier, which could be determined using special
specified variables, and it is fundamental to index the thread within a thread
block [21].

• Block. A thread block is a form of abstraction in programming that represents
a cluster of threads. Historically, the architecture restricted the amount of
threads in a thread block to a maximum of 1024. Threads within the same
thread block use the same stream processor (SP). Stream Processors (SPs)
are a subgroup of Stream Multiprocessors (SMs). While an SM may handle
multiple thread Blocks concurrently, an SM can process only multiple thread
simultaneously which are in the same block. Threads contained within the
same block can communicate via shared memory. As for a thread, each block
has a unique identifier that can be retrieved by a particular predefined variable,
and it is fundamental to index within a Grid [21].

• Grid. A grid is obtained by combining different thread-blocks. While the
number of threads contained within a block is restricted to 1024, grids are
not constrained by the number of thread-blocks they can include. It is critical
to note, however, that all blocks within the same grid must have the same
dimension [21].

The GPU has a variety of memory types, each with a distinct purpose and level
of accessibility. We have the following memories in order of accessibility:
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• Registers. These are thread-private, which means that thread-specific registers
are not visible to other threads.

• L1/Shared memory. Each SM incorporates a fast memory. It is suitable of
being utilized as an L1 cache or a shared memory. All threads contained within
the same block can share shared memory, and all blocks included within the
same SM can use the cache L1, but cannot share shared memory with other
thread-blocks.

• Read-only memory. Each SM is equipped with an instruction cache, constant
memory, and texture memory. Constant memory is used to store variables that
cannot be compiled into the program. Before invoking the kernel function, the
host must set these constants. We will overlook texture memory because it is
irrelevant to the aim of this thesis [8].

• L2 cache. The L2 cache is shared across all SMs, which means that any thread
in any CUDA block can access it.

• Global memory. Global memory accounts for the vast majority of the GPU’s
memory. On Fermi architecture, for example, global memory might have a
150x slower latency of 600 ns than registers or shared memory. This reduces
GPU performance overall and makes global memory access a significant bot-
tleneck for applications [8].

It’s important to note that GPU design is tightly connected to microarchitecture.
All the threads are operated on a single CUDA core, the thread-blocks are processed
by a single SM, and all the grids are executing on the entire GPU.

To help visualize this hierarchy, figure 2.2 illustrates how abstraction program-
ming is closely related to the GPU hardware and, additionally, the type of memory
accessibility employed.
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Figure 2.2. Thread Block Grid hardware perspective.
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2.3 NVIDIA Jetson nano

We employed the NVIDIA Jetson nano for this thesis, which was originally intro-
duced by NVIDIA in 2019 for development purposes, most specifically AI develop-
ment. NVIDIA released different Jetson nano models over the years. We utilized
the NVIDIA Jetson nano B01. NVIDIA’s updates to the various models over the
years have been concentrated on the peripherals.

Following that, Figure 2.3 depicts the Jetson nano B01 board. As seen in this
image, the board was powered via the [J25] power jack and linked to the host PC
via the micro USB interface during the experiments. Later, we shall discuss the
major steps taken to conduct the studies.

Figure 2.3. The specific structure of NVIDIA Jetson nano B01 [34].
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The Jetson nano, internally, is composed of a variety of components. The core
is the Tegra X1 series SoC, which is produced by NVIDIA and composed of a
Maxwell GPU with a 128-core and a CPU Cortex A57. For internal storage, the
board supports 4GB of LPDDR4 memory and a 16GB eMMC 5.1.

In the following, we will concentrate on the Maxwell microarchitecture used by
the GPU and neglect the Cortex A57 microarchitecture used by the CPU, as it is
superfluous for the experiments considered during these studies.

2.3.1 Maxwell GPU microarchitecture

This architecture, released by NVIDIA in 2014, offered a completely new design for
the SM, reconfigured all unit and crossbar structures, streamlined data flows, and
dramatically improved power management. The SM scheduler design and algo-
rithms were modified to be more intelligent and minimize needless delays, thus
decreasing the energy required for scheduling. It divides the CUDA core into
processing-blocks. Each block contains 32 CUDA cores. Furthermore, the blocks
are organized into Streaming Multiprocessors (SMMs), for this specific microarchi-
tecture. Finally, SMMs are grouped as Graphics Processing Clusters (GPC) [33].
Figure 2.4 shows via blocks the architecture of a single SMM of Maxwell’s microar-
chitecture with 128 cores, like the Jetson nano’s one. As can be seen, the SMM has
different warp schedulers. It is useful to divide the threads into warps. A warp is a
programming abstraction that, per definition, is a group of 32 threads that work in
parallel. The warp scheduler determines which warp should be processed next on
the CUDA cores in a specific SM. Every block has their own registers. For every
block, there are 16.384 registers of 32 bits each, for a total of 65.536. The GPU
shares the same physical RAM as the CPU. The Jetson nano has 128 cores but has
only one SM.
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Figure 2.4. Illustration of Tegra X1 highlighting GPU’s microarchitecture [10] [9].

Having established the architecture and microarchitecture of the NVIDIA Jetson
nano used for the fault injection experiments, we must inquire what types of fault
injection approach are commonly used for GPU testing. We will concentrate on
software-based fault injection in particular, but will also discuss various techniques
such as radiation testing, laser-based fault injection, and others discussed in the
first chapter.
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2.4 Fault injection techniques for GPGPUs

As mentioned in the previous chapter, fault injection is critical for GPGPU because
to the intensive use of modern applications. This, as we all know, results in attempts
to increase the reliability of the graphics processor. Additionally, GPU have a higher
probability of being faulty due to the massive parallel computations performed by
the GPU per second. The parallelism functionality makes it much more difficult to
inject faults and understand what the error chain is, what causes a failure, and why
it occurs. As a result, researchers develop various techniques to introduce faults and
strive to improve GPU reliability. As with any other sort of fault injection, various
types of fault injection-based tests are possible. These include hardware-based
methods such as radiation, simulation-based methods such as code-instrumentation,
and finally, emulation-based methods. We’ll examine how each approach works and
the benefits and drawbacks of each fault injection technique.

2.4.1 Emulation-based fault injection: FlexGripPlus

As is well known, an emulation-based fault-based injection tool is one that makes
use of a model of the target hardware. This model is typically implemented on a
reconfigurable board, such as an FPGA.

The FlexGripPlus is a model based on the FlexGrip tool that was previously
developed. Instrumentation of this model is performed in order to induce faults into
the desired module. Then, using this module, the effect of a fault occurring during
the execution of a specific program may be determined. The outputs can be seen
and examined to determine the dependability of a GPGPU or to detect structural
or application faults. Additionally, these evaluations are used to determine the
most appropriate mitigation technique for a given application at various levels [11].

The FlexGrip is an open-source, VHDL-based soft-GPGPU system that relies
on the NVIDIA G80 microarchitecture. The University of Massachusetts developed
this GPGPU model, which it was developed to be totally consistent with the CUDA
development platform. There are 27 assembly (SASS) instructions that can be
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used with the FlexGrip model. It is made up of the characteristic of a Streaming
Multiprocessor (SM) module [1].

The main difference between this model and the newer one is that it lacks the
cache memory used in commercial devices. Additionally, it misses floating-point
modules and specialized accelerators. These FlexGrip structural restrictions may
have an effect on the implementation of more modern applications.

FlexGripPlus made several enhancements to the model, including architectural
and functional adjustments that increased flexibility while keeping the structure
of the initial model. Additionally, to be fully compatible with a larger number of
SASS instructions, some model changes were required, such as the addition of some
registers and connections.

The model must be imported into a simulation environment, such as ModelSim,
before the fault injection campaign can proceed. The fault injection platform was
written in Python and consists of three major modules:

• Fault Controller.

• Fault Injector.

• Fault Checker and Classifier.

After the fault injection campaign was completed, the tool categorised the faults
as follows:

• Silent Data Corruption (SDC). It occurs when an injected defect impacts only
the final outcome in memory.

• Detected Unrecoverable Error (DUE). It occurs when the application for some
reason end-up with an unexpected crash or hang.

• Timeout. This occurs when the SEU results in a performance loss during the
simulation time.

• Masked. Basically, the injected errors don’t affect the outcome of the applica-
tion.
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After a lot of testing in benchmark applications developed with the aim of being
used with these tools, we can summarize that with FlexGripPlus it is possible to
do fault-injection campaigns targeting different modules and components in the
GPGPU model. It also has the benefits of technological independence, which en-
ables the model to be used at a lower level without regard to the intended gate
library or simulation tool.

Additionally, the model’s compatibility with commercial development tools en-
ables the model to be developed using the same tools as real-world applications,
with some limits. Thus, FlexGripPlus is capable of performing reliability tests on
components that are comparable across generations of GPGPU systems.

Although FlexGripPlus, like other emulation tools, does not fully emulate the
architecture of the most modern GPGPUs, this is the primary reason why it is
critical to have the option of analysing dependability directly on the real hardware.

2.4.2 Hardware-based fault injection: Neutron Irradiation

As we previously established, hardware fault injection, like radiation tests, is pop-
ular among engineers for its reliable results. Although CPU irradiation tests have
been thoroughly investigated in the past, GPUs have recently been considered
for testing because of their significant application in a multitude of sectors. The
primary challenge with executing fault injection with a detailed outcome is that
commercial GPGPUs frequently lack detailed microarchitecture characterization,
unless it is absolutely important for developers, such as the number of registers and
cores and also memory size [24]. As a result, we will examine a 2016 study that was
able to investigate the effect of neutron irradiation on the CUDA cores by utilizing
two different NVIDIA GPU architectures. As previously stated, neutron strikes can
cause GPUs to malfunction in a multitude of ways. A neutron can cause memory
element bit flips as well as transitory over-voltage in logic processing resources or
control circuits. From the perspective of radiation testing, the CUDA cores are
compartmentalized such that a single radiation-induced occurrence in one of them
will corrupt just the thread assigned to it. Threads that are allocated to CUDA
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cores adjacent to the faulty one or those that follow it will be unaffected. Errors
in the L1 cache or shared memory, on the other hand, are likely to affect multiple
threads in the SM. Similarly, errors in the L2 cache, which is shared by all SMs, are
likely to damage several thread blocks. The Fermi-based C2050 and Kepler-based
K20 were used in this research, both of which contain a unified L2 cache and a
GDDR5 main memory module. The C2050 has 14 SMs, each of which contains 32
CUDA cores, meanwhile the K20 has 13 SMs, each of which contains 192 CUDA
cores. The experiments were done in two distinct facilities, each of which provided
a white neutron source with an energy spectrum between 10 and 750 MeV. The
neutron flux with energies greater than 10 MeV was around 1x106( n

cm2s
) in the first

facility and 4x104( n
cm2s

) in the other. Numerous trials were conducted with vari-
ous Benchmarks software, demonstrating that the measured errors were less than
10−2( errors

execution
). Due to the fact that a GPU receives a substantially lower neutron

flux in a realistic environment, it is very implausible that more than one corruption
occurs during a single execution. The studies on the two GPUs were conducted with
the beam focused on a 2-inch-diameter area, which provided uniform irradiation of
the CUDA cores without disrupting neighbouring board power control circuitry or
DRAM chips. This ensures that data in the RAM is not altered, allowing for study
of the GPU core alone. The GPUs were linked to the motherboard with a PCIe
extension, which is a separate power line that allows you to ward off the GPU from
the motherboard itself. The host computer’s function is to start the test by passing
input data pre-determined to the GPU and collecting the calculation results. When
the results are ready, the host makes a comparison between the golden output and
the results computed in that experiment. When a mismatch is identified, the execu-
tion is indicated as having been disrupted by an SDC. All the tests were performed
using the CUDA programming language and executed on the DUT directly. The
tests were carried out by measuring the cross section of the register file cells along
with the L1 and L2 cache cells of both the GPUs, which is a widely used metric to
determine radiation sensitivity [7] for the register file cells and the L1 and L2 cache
cells of both K20 and C2050 boards. The cross section is calculated by dividing
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the number of observed errors by the received neutron fluence (neutron

cm2 ).The av-
erage sensitive area of a single cell is calculated by dividing the cross section of the
memory structure by the number of cells. This is the portion of the cell that will
fail if struck by a neutron. The higher the cross section, the higher the probability
that a neutron will corrupt a bit [19]. As demonstrated in this study, hardware
fault injection using a neutron beam source was utilized to determine the reliability
of the GPU core without affecting other GPU components via irradiation, which
might invalidate the results, and also provide the failure’s probability for register
files, L1, and L2 cache memories. Additionally, the experiments conducted in this
study used a matrix multiplication application with different input size matrices, as
did the experiments conducted in this thesis, although we shall discuss it in greater
detail in the next chapters [24].

2.4.3 Simulation based fault injection Techniques

Researchers have devoted significant effort to simulation-based fault injection tech-
niques for their flexibility and relative cost savings over hardware-based techniques,
without sacrificing the precision of the results that may be achieved. As previously
said, we shall concentrate on software fault injection techniques because they are
inextricably linked to the works of this thesis. Researchers develop several tools
that enable the injection of faults into applications that are executed on specific
hardware. Using a variety of approaches, we will examine the primary ones, which
was developed directly by NVIDIA, as well as tools that did not. We shall analyse
the following tools in chronological order:

• GPU-Qin

GPU-Qin is a fault injection tool capable of injecting faults in real hardware.
It is one of the first instruction-level fault injection tools able do perform fault
injection in a real GPU microarchitecture, such as Fermi. The tool injects
faults at the assembly level. The tool focuses on transient faults affecting a
variety of components, including the ALU and the load-store unit (LSU). The
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researchers consider only the bit-lip model in their tests, although the tool sup-
ports multiple bit-flip model too. As with previous fault injection technologies,
GPU-Qin must meet three distinct criteria. Representativeness, the tool must
efficiently reflect the actual hardware faults that can occur, it must run in a
fair period of time, and it must cause as little run-time interference as possible
with the GPU’s normal operation. Their methodology is built on a tool called
cuda-gdb, which enables them to control GPU-accelerated applications. The
control flow of the tool can be separated into four distinct phases. The first
one organizes threads according to their similarity, then randomly selects one
and profiles it, and last, randomly selects one instruction to instrument from
the previously selected thread.

At the conclusion of the process, the generated results are collected and then
analysed. This tool was used to conduct a range of test benchmarks, allowing
the researcher to explore the end-to-end error resilience of GPGPU [17].

• SASSIFI

One of the most well-known fault injection tools is called SASSIFI, and it was
made by NVIDIA. SASSIFI works at low level, using an assembly instrumen-
tation tool called SASSI to profile the applications and then injecting errors
with the help of the SASSI Fault Injector tool. The tool profiles the applica-
tion first, then selects the error injection sites, and finally injects the errors
into the application while monitoring the results. SASSIFI identifies the infor-
mation needed to determine when and what error to inject for each injection.
It injects one error each application run and keeps track of any hangs, crashes,
or output corruption. The host PC is used for the last phase. SASSIFI may
then introduce bit-flips into the register file and the instruction output to see
how soft faults displayed at the architectural level propagate to the output.
The user must indicate where to inject the fault (for example, destination reg-
ister) and what error model to employ for each injection (bit flip model, as an
example). The tool isn’t restricted to a single microarchitecture and may be
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applied to a wide range of GPUs [22].

The key difference between SASSIFI and GPU-Qin is that the former cannot
capture the exact effect of lower-level faults, whilst the latter is substantially
faster.

In this chapter, we discussed the microarchitecture and architecture of a GPU,
with a particular emphasis on the microarchitecture of the NVIDIA Jetson nano,
named Maxwell. Following that, we discussed the history of fault injection tech-
niques for GPGPUs, focusing on simulation-based fault injection. The following
chapter will continue our examination of simulation-based fault injection tools by
examining the most recent injection tool developed by NVIDIA in 2021. We’ll
look at how the tool was implemented in the Jetson nano and how NVIDIA’s fault
injection tool, NVBitFI, was used to operate on the Jetson nano.
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Chapter 3

Background

3.1 NVBitFI: Fault Injection framework for GPUs

In this chapter, we will concentrate on the state-of-the-art NVBitFI fault injector.
We’ll see how it works, and then we’ll analyse how it’s implemented in the NVIDIA
Jetson nano. In comparison to GPU-Qin and SASSIFI, NVBitFI (short for NVIDIA
Binary Instruction Tool Fault Injector) can execute dynamic code instrumentation
without access to source code. This is possible since the tool instruments the SASS
code directly (binary instrumentation of assembly code).

The NVBit framework is capable of intercepting and instrumenting any dynamic
CUDA kernel call via just-in-time compilation. If the CUDA call must be instru-
mented, a specific function is called to modify the instruction code in a specific
thread, and then the function is executed. Thus, instrumentation incurs mini-
mal time overhead and enables the production of outputs in real time, consistent
with the regular execution of the instrumented application. Since the tool is fully
compatible with all types of architecture, it may be used with a broad variety of var-
ious microarchitectures, such as the Maxwell architecture used on the Jetson nano.
The fault injector tool is based on the dynamic binary instrumentation framework
NVBit, which was developed for NVIDIA GPUs and provides APIs for inspecting
and injecting arbitrary functions into any application prior to kernel start.
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The tool allows for both transient and permanent fault injection to be executed
without impacting time performance. The tool is divided into two components: a
profiler and an injector. Both components are implemented as dynamic libraries
which are attached to the target program. Because each dynamic instruction must
be instrumented, the profiling procedure can take a long time. To overcome this
issue, the profiler can work in two ways: by profiling every dynamic instruction of
every kernel call of the application (exact profiling); or by profiling the instruction
only in the first instance of every kernel, assuming that every thread of that spe-
cific kernel has the same instruction count (approximate profiling). Depending on
the application, the difference in terms of time overhead can be significant. As a
result, the researcher recommends that precise profiling be used only when strictly
necessary.

To inject a transient fault, the tool produces a program profile in order to provide
an eligible list of injection sites. Second, choose one or more injection points. Third,
inject the errors during the application’s runtime by changing the program’s binary,
and last, compare the output of the instrumented application to the output of the
non-instrumented application after the program’s execution concludes (also known
as golden output). During the injection phase of a transient fault, the tool injects
the fault into a single dynamic instruction. Instead, the instruction is corrupted for
all threads in the target kernel for permanent fault injection (only one instruction
per thread). There are numerous models for transient faults. The tool may inject
one-bit or double-bit bit flip faults into a single destination register in a single
kernel, or it can execute a zeroing effect.

As mentioned previously, the program compares the output of the corrupted
application to the expected output during normal operation. NVBitFI assigns a
range of outcomes to the fault injection experiment based on the difference between
the two outputs. We may discuss this in further detail later. Prior to that, we’ll
discuss how the tool was implemented on the Jetson nano and the standard flow
procedures that were required for each experiment. We will pay special attention
to the changes made to the original version on GitHub of NVBitFI in order to
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simplify the flow of the many experiments and make them more suitable with the
experiments themselves [38].

3.2 Environment Configuration

3.2.1 Configuration of the Jetson nano Development Kit

To install the NVBitFI framework, the Jetson nano ecosystem must first be con-
figured according to NVIDIA’s installation guide [18]. According to the documen-
tation, there are two ways to power the board: directly via the micro-USB (which
is used for both power and communication with the host computer), or via the J25
connector powered by a 5V2A power supply.

After configuration was complete, the board was linked via the micro-USB con-
nector to the host PC. The host PC communicated with the board via an SSH
connection. To make the process easier and more accessible, we used the software
MobaXterm, which enables us to connect to the board through SSH using a Linux
terminal, displaying all the directories and files necessary for the transfer on both
sides. The CUDA toolkit 10.2 was already installed during the initial installation.
This allowed us to use all of the CUDA libraries we needed to use the framework
for fault injection, and it also gave us a wide range of typical applications for the
experiments that we performed. Finally, it is necessary to activate the root user
since we will utilize the already installed nvprof software to obtain extensive in-
formation on the time performance of all sorts of CUDA applications. We will now
exclusively use the root user.

3.2.2 Installation of NVBit and NVBitFI

With the environment prepared, we can now install the NVBit framework by follow-
ing the instructions on GitHub [30]. Although we can install the software anywhere,
I prefer to do so in the root directory.
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Following the completion of the installation, we can install the NVBitFI util-
ity by following the installation tutorial available on GitHub. It is essential that
this application is installed in the same directory as the NVbit Framework. The
framework is compatible with both Linux x86-based PCs and ARM-based devices.
Because the Jetson nano is an ARM-based board, we shall follow the previous
instruction [32].

3.2.3 Standard flow operations of NVBitFI

As indicated in the preceding command, it performs a fault injection test using the
framework’s included test application to ensure that everything works properly.

Now we’ll look at the bare minimum of usual flow operations required to use the
tool. Following that, we’ll examine the components that can be tweaked to increase
the framework’s flexibility when used with Python scripts.

To use the tool, we must follow the following procedure:

1. After the installation is complete, assuming it was performed in the root di-
rectory, we have the path /root/nvbit_release/tools/nvbitfi. From now
on, when we say the NVBitFI folder, we will refer to the folder that can
be found on this path. If we want to perform a fault injection in a spe-
cific application, we must copy the project folder with all the necessary files
in the nvbitfi/test-apps directory. For example, if you have the folder
your-project, you must copy it in the above directory in such a way that the
project is in this directory: nvbitfi/test-apps/your-project.

2. We must alter the file test.sh after transferring the project into the test-apps

folder. This bash program is designed to automate certain Linux tasks nec-
essary for doing fault injection in the test application. As a result, all major
lines of code can remain unchanged. We need to alter only line 73 and, if
necessary, line 49 of this bash file as follows:

• 73) cd test-apps/simple_add/ → cd test-apps/your-project/
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• 49) TOOL_VERBOSE=1 If set to 1, this will allow debugging mode and print
all the information during the fault injection.

3. The application needs the golden output of the application to make the com-
parison with the output of the corrupted application. To collect the data, it
is needed to add the following lines of code to the Makefile of your-project:

• golden:

./your_project >golden_stdout.txt 2>golden_stderr.txt

This enables the collection of the golden output in two distinct files, one hold-
ing the application’s normal output and the other containing the application’s
standard error (often empty).

4. The framework requires two more *.sh files: one called run.sh, which is
required to attach either the profiler or the injector library, and another called
sdc_check.sh, which allows for the creation of a report at the end of the
fault injection by comparing the golden output with the corrupted output. To
accomplish this, navigate to the folder nvbitfi/test-apps/simple_add/ and
copy the files run.sh and sdc_check.sh before pasting them into the folder
your_project.

5. Now that we have the files mentioned above in our project directory, we must
alter the file run.sh by replacing simple_add with your-project as seen
below:

• eval ${PRELOAD_FLAG} ${BIN_DIR}/simple_add>stdout.txt 2>stderr.txt

• eval ${PRELOAD_FLAG} ${BIN_DIR}/your_project>stdout.txt 2>stderr.txt

6. We can locate a folder called scripts within the nvbitfi folder. This folder
contains a collection of Python programs for fault injection. We must adjust
the script params.py to change the application’s name and the path to the
workload; specifically, we must modify the code below, replacing simple_add

with the name your-project. The following code is located on line 203:
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1 apps = {

2 ’simple_add ’: [

3 NVBITFI_HOME + ’/test -apps/ simple_add ’, # workload directory

4 ’simple_add ’, # binary name

5 NVBITFI_HOME + ’/test -apps/ simple_add /’, #path to the binary

file

6 1, # expected runtime

7 "" # additional parameters to the run.sh

8 ],

9 }

7. After analysing the application, the framework generates a preset number of
injection points. This value can be specified in the script params.py. The
application then generates an injection point list by selecting a given number
of fault injection sites from the previously generated list. This value can be
modified by altering the THRESHOLD JOBS variable in the file params.py line
73. We conducted 10,000 fault injections for each application in order to obtain
accurate statistics data. Bear in mind that each fault injection instruments
only one instruction code in a single thread.

8. As previously indicated, we discussed approximate and precise profiling. This
parameter can be modified by altering the corresponding flag in the Makefile
located in the profiler folder nvbitfi\profiler\Makefile. Uncomment the
following flag (line 24) to enable quick approximation profiling:

• FAST_APPROXIMATE_PROFILE = SKIP_PROFILED_KERNELS

9. After modifying all required files, we can execute the set fault injection cam-
paign by running the bash file test.sh located in the nvbitfi directory.
Once the fault injection campaign is complete (which may take considerable
time depending on the application), the log files are located in the directory
nvbitfi/logs/results/. The framework generates multiple *.tsv files con-
taining various outcomes. Later in this chapter, we will focus on the frame-
work’s outputs.
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After presenting a detailed approach for configuring the framework to perform
fault injection in several applications, we will now discuss the changes made to
make the process easier.

3.2.4 Modified flow operations of NVBitFI

As seen in the preceding chapter, there are several challenging sequences that must
be performed in order to successfully fault inject a program. Several of them can
be automated with the use of a simple script. To accomplish this, we updated only
the NVBitFI folder, leaving the NVBit framework folder untouched. To begin,
we developed the script fault injector.sh. It enables fault injection of any
application in any path without requiring knowledge of the preceding passages. To
utilize the script, we must first consider the following three parameters:

• PATH of the application.

• The executable’s name within the application’s PATH.

• The desired number of fault injections.

A common example of a standard use of the script is having an application in the
path /root/app/your-project with the executable name your-project-name and
intending to perform a 10000 fault injection. To accomplish this, use the following
command.

• ./fault_injector.sh /root/app/your-project your-project-name 10000

The script was developed using the previously stated test.sh script as a starting
point. To facilitate the process of automating the entire normal workflow, we
created a new folder named pattern and included the following four files:

1. Makefile. This file is used to build the executable and generate the golden out-
put during the workflow activity. If there is no makefile, the fault-injector.sh
script inserts this file in the application folder. If a makefile already exists, it
just adds the lines of code necessary to generate the golden result (see passage
3 of the previous part).

47



Background

2. params.py. This file, which is located within the script folder, must be up-
dated in accordance with the steps in passages 6 and 7 of the preceding part.
The script edits those sections and then replaces the altered file with one
already present in the script folder.

3. run.sh and sdc_check.sh. These two files must be copied into the program
folder and updated as described in the previous section’s passages three and
four.

Essentially, the fault_injector.sh script extends the existing test.sh script by
adding all the necessary code and files to automate all substantial passages from
the previous section, allowing us to do fault injection in a more flexible manner.

Apart from those additions, the injector folder’s file injectfunc.cu was al-
tered. This file provides all information regarding the currently injected fault. It
is launched prior to instrumenting the application. It is used to configure the fault
injection parameters.

Because those details are not always saved in the file nvbitfi-injection-log-temp.txt,
they are first temporarily saved in the std_out.txt file, and then some lines of code
are added to the script run_one_injection.py to cut and print those details in
the personal file that will be discussed later. Finally, a personal_parser.py script
was added to manage the newly created data. We’ll discuss it further later.

The following section will examine the framework’s output and provide a full
explanation.
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3.3 Classification of Outcome of NVBitFI

NVBitFI’s framework splits the results of the fault injection campaign in the same
way that the other tools we’ve looked at previously (GPU-Qin and SASSIFI).

However, before delving into the details of all the reports and files that comprise
the framework, it is necessary to grasp the group ID and the bit flip model that
contain the framework. In essence, the framework splits all SASS instructions into
distinct groups, each with a similar set of properties. The following is a quick
rundown of the various groupings that the framework employs:

• G_GPPR. All those instructions are written in general purpose registers and
predicate registers.

• G_NODEST. All instructions that do not have a register as a target register.

• G_PR. Unlike the group ID G_GPPR, the instruction of this group targets only
predicate registers.

• G_LD. Collect all of the instructions that are stored in memory in this group.

• G_FP64. This category includes all instructions that perform floating point
operations on a variable with a 64-bit dimension.

• G_FP32. The same as above, but with a 32-bit dimension.

• G_GP. This group ID is the one that is most frequently used in this thesis
and the experiments conducted. Unlike the G_GPPR, this group ID contains
all of the instructions that operate in the general purpose register. All of the
instruction opcodes that target the predicate registers are missing in this group
ID.

Bit-flip models (BFMs) supported by the framework include the following:

• Single bit-flip. During fault injection, the framework flips only one bit in a
register.
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• Double bit-flip. During the fault injection, the framework flips two adjacent
bits in a register.

• Random value. During the fault injection, the framework flips a random value.

• Zero value. During fault injection, the framework sets the bits of a register to
zero.

The group ID described above is referenced in the framework with a number be-
tween 1 and 7. The bit-flip model is instead referenced in the framework with a
number between 0 and 3. The framework parses all of the results received through-
out the fault injection campaign and puts them in the folder /nvbitfi/logs at the
end of the campaign. The NVBitFI creates a folder with the application’s name
and divides the results into two folders:

• Results. It includes three distinct .tsv files. These files contain the fault
injection campaign’s reports, the file’s name, and modifications for each fault
injection campaign based on the amount of fault injections conducted and the
type of fault injection, but they all terminate the same form, as follows:

– _stats.tsv. This file contains summary data regarding the fault injec-
tion campaign that was conducted. The group ID and BFM of the fault
injection, as well as the total number of fault injections completed. Ad-
ditionally, it contains the time required in seconds to complete the fault
injection campaign.

– _NVBitFI_details.tsv. This is the most relevant file; it contains all of
the fault injection’s results, separated into SDC, DUE, and Masked. The
framework subdivided the three categories and added a new one labelled
Uncategorised, resulting in a total of 19 categories. There are three sub-
categories that result in a masked outcome, twelve that result in a DUE,
and three that result in an SDC. During the studies conducted for this
thesis, we discovered that the framework makes use of only a few of the 19
categories. We observed that the framework results are always "masked
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for other reasons" for the masked outcomes among the three alternatives.
Although the most common DUE error is the number seven, referred to
as Pot DUE: SDC or Kernel Error, in a very rare scenario and only for
matrix multiplication, some DUE: Timeout happens, which is compara-
ble to the Hang of the other tool used for GPU fault injection. Rather
than that, the SDC, like the masked results, always produces the outcome
number sixteen, named SDC: Standard output is different. To summarize,
the most frequently occurring outcomes of the experiments conducted as
part of this thesis’s framework are:

1. SDC: Standard output is different.

2. Pot DUE: SDC but Kernel Error.

3. Masked: other reasons.

– _instruction-fractions.tsv. This file contains all of the information
about the application that was gathered during the profiling process. It
comprises the entire amount of SASS instructions as well as a list of all
possible OPCODE instructions. A percentage of instruction is provided
in the program for each instruction opcode in relation to the application’s
total instruction. Additionally, the file contained the number of SASS
instructions assigned to each group ID.

• your-project-name. This folder will include an equal number of folders as the
number of fault injections carried out throughout the fault injection campaign.
The name of each folder is made up of the application’s name plus the group ID
utilized, which is a number between one and seven, and the bit-flip model used
for the fault injection campaign, which is a number between zero and three.
Within such folders, several text files containing various pieces of information
can be found. We will describe the most significant ones in the following list:

– nvbitfi-injection-info.txt. This file provides all information regard-
ing the currently injected fault. The group ID, the bit-flip fault model
used, the name of the target kernel, the number of target kernels, the
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register selection (a floating point number range between zero and one
that the framework uses to determine the register selection), and the bit-
pattern selection (like register selection, a number range from zero to one
that is used for creating the mask used for choosing what bit in the register
value must flip in the specific fault injection)

– nvbitfi-injection-log-temp.txt. This file contains comprehensive in-
formation regarding all types of fault injection. Among the information
that is critical to get is the following: The CTAs represent the current
application’s block amount. The mask, as computed from the data in the
file above. The register’s value both before and after the mask is applied.
The register’s identification number. The instruction’s OPCODE. The
pcOffset ,that specifies the instruction number in the kernel’s SASS file
and the thread ID where the fault injection occurred.

– stdout.txt. The output of the corrupted application can be found in
this file.

– stdout_diff.log. This file contains the difference between the corrupted
and golden outputs.

– stderr.txt and stderr_diff.log. As with the previous two files, but
this time focusing just on standard errors.

– personal_info.txt. This file is not included in the official release, how-
ever it is a modification to the framework that was developed to include
a standard file that is required for the experiments. The changes was
necessary because when a DUE occurs in the application, the framework
overwrites all relevant information in the file nvbitfi-injection-log-temp.txt
with an error message from the kernel execution. This is because the fa-
tal error prevented the fault injection from being performed at all, most
likely due to a memory violation. In certain instances, prior to the kernel
being instrumented, all information regarding the present fault injection
is recorded in this personal file, which is critical for the experiments. The
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OPCODE is kept in this file as a reference number, and the ERROR type
is stored as a number (they will be translated into a comprehensible name
thanks to a dictionary during the parsing phase).

Apart from the folders mentioned previously, this folder entitled your-project-
name has two additional folders named sdcs and injection-list:

– sdcs. This folder contains the same number of compressed files as the
number of fault injections completed. They contain all of the information
provided in the preceding folders.

– injection-list. It consists of a single text file containing all of the infor-
mation necessary to conduct the fault injection campaign. It consists
essentially of a series of fault injection rows, each of which comprises the
kernel target name, kernel ID, target instruction count, register selection,
and bit pattern selection.

Figure 3.1. NVBitFI workflow [38]. In orange the added file.
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In the flowchart above, it is clear where the new file is generated and the main
passage has been used to conduct a fault injection campaign. Step 5 is carried
out with the involvement of a Python script that takes use of a dictionary and the
framework’s already-provided output.

All of the modifications detailed in this section, as well as the framework itself,
may be found in the branch built for this purpose on GitHub [31].

The following chapter will discuss the experiments conducted on a variety of
applications. We’ll examine the application’s critical elements and the most critical
instructions opcodes. After that, we’ll use a hardening technique to an application
to determine how to mitigate faults and so increase reliability.
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Experiments

Now that we have a solid grasp of the thesis framework and the adjustments neces-
sary to collect all of the desired data, we can show which applications were utilized
in the experiments, what they do, and finally the simulation results for those ap-
plications.

After evaluating the framework in a test application provided by the framework
(test-apps/simple add), we evaluated the fault injector in several applications
included with the NVDIA toolkit. We are aware that the framework has the ability
to inject errors into a subset of those applications. We recognize that the framework
may not always be capable of performing the fault injection. Occasionally, the
application needs be altered in order to accomplish it. The framework wasn’t
able to profile the application, which was the most prevalent issue. Occasionally,
this error was fixed by enabling the approximation profiling flag in the profiler’s
makefile. However, we recognize that there is no one-size-fits-all solution to this
problem, and that each application should be modified prior to starting the fault
injection campaign.

As a result, we developed a benchmark-test python script capable of testing the
framework in all of the programs included with the Nvidia CUDA toolkit with-
out modifying them. The CUDA toolkit organizes applications in subfolders that
share a common working field. For instance, we have the folders 1-Utilities,
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2-Graphics, and 6-Advanced, among others. After the testing were completed,
we discovered that the framework was frequently capable of performing fault injec-
tion for simple applications. The test conducted in the 0-simple folder involved 40
applications, and the framework was able to conduct the fault injection campaign
on 70% of them. However, for applications that required graphics libraries, such
as the one we observed in 2-Graphics, no fault injection was attempted. Further
research should be conducted to determine why the framework was unable to profile
the application and initiate the fault injection process in such apps.

Additionally, while the sdc-check.sh file is capable of discriminating between
SDC and masked, the tool is unable of doing so in the presence of a time-dependent
program, as the time performance changes with each execution. As a result, it is
critical to consider updating the application’s source code or, if that is not possible,
modifying the sdc-check.sh file to handle this type of situation.
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4.1 Benchmark applications

We’ve chosen to conduct fault injection experiments using the apps contained in
the subdirectory 0_Simple. This folder contains a variety of apps that are not
too memory intensive. We conduct a fault injection campaign for a total of 20
applications in this folder. To obtain a more accurate estimation of the result
created by an injected error in an application for a certain opcode, we ran a large
number of fault injections, precisely 10,000 per application. This was the intention,
however during the studies, it occurred on a rare occasion that some faults were
not injected at all for various reasons. To circumvent this issue, we ran 11,500 fault
injections each application and then collected only the top 10,000. We selected a
subset of those twenty apps, eight, under analysis in the following sections. A brief
description of each is shown below.

• cppIntegration. This example explains how to incorporate CUDA into an
existing C++ application, in which the CUDA entry point on the host side
is simply a function called from C++ code, and only the file containing this
function is compiled with nvcc. Additionally, it demonstrates how vector types
can be utilized from within C++ [29].

• cdpSimplePrint. This sample explains how to use CUDA Dynamic Paral-
lelism to perform a basic printf [29]. The application specifically launches two
blocks of two threads each. On the device, each thread prints its ID and then
launches two blocks and two threads. The GPU will repeat this process until
it reaches the maximum depth of two.

• cdpSimpleQuicksort. This sample explains how to use CUDA Dynamic
Parallelism to set up a simple basic quicksort algorithm [29]. Each thread
recursively creates new blocks for the following level, one for sorting the left
half and one for sorting the right part.

• fp16ScalarProduct. This simplest application computes the scalar product
of two vectors of FP16 numbers [29].
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• matrixMul. This sample demonstrates how to perform matrix multiplica-
tion. It was written for the sake of clarity and to demonstrate various CUDA
programming concepts, not to provide the fastest generic kernel for matrix
multiplication [29]. The matrix multiplication app operates with two matri-
ces, both of which are 352 x 352, with a block size of 32 x 32.

• simpleAtomicIntrinsic. A straightforward demonstration of atomic in-
structions in global memory [29]. The kernel is implemented in an external file
in this version. After the kernel is launched, it performs a sequence of atomic
functions successively as a test. Examples include atomicDec, atomicMin,
atomicAdd, and so on.

• simpleCallback. This sample supports multi-threaded heterogeneous com-
puting tasks using the CUDA 5.0-introduced CPU callbacks for CUDA streams
and events. Using the CUDA API’s thread safety, easily and efficiently create
heterogeneous workloads that float between CPU threads and GPUs. The
workloads in the sample are organized in the following order: CPU prepro-
cessing -> GPU processing -> CPU post-processing.GPU workloads are dis-
tributed all through the system’s available GPUs [29]. In the case of the Jetson
nano, a single GPU is provided.

• vectorAdd. This sample is a basic implementation of vector addition, element
by element [29]. The workload was divided into 196 blocks of 256 threads each
by the program. Each vector contains 50,000 integer elements. Additional
lines of code are included in this version for error checking.
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4.2 NVBitFI - Evaluation of the Benchmark ap-
plications

With a firm understanding of what the apps do, and prior to observing the outcome
of the framework’s fault injection campaign, we can gain some interesting results
from the profiling process of those applications.

4.2.1 Profiler Results

Figure 4.1. Group ID percentage for each application

As illustrated above, the framework labels the majority of the instruction code as
others, which is the most often used group-ID. vectorAdd and matrixMul are the
applications that contain the most SASS instructions in the group-ID fp32. This
is because of the massive amount of mathematical operations conducted there.
Finally, we can see that none of the applications listed above make use of the fp64
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instruction type group-ID. Finally, we did not show it in the chart, but the group-
ID utilized throughout the fault injection campaign was always GP, which stands
for general purpose register. It is the total of the group-IDs above, except for the
predicate registers.

4.2.2 NVBitFI - Standard Outcome

Following the completion of the profiling phase, as is highlighted above, the frame-
work begins injecting the fault into the application. The results are organized in
this section into two parts, each comprises four applications, to provide a clear
representation of the data.

The first four applications are depicted in the chart below. As can be observed,
the fault injection generated a large number of DUE errors in the cppIntegration.
This means that the application was frequently unable to complete without crash-
ing. Rather than that, the SDC faults are relatively equivalent in magnitude to the
instances when the application’s output was unaffected (masked outcome).

We observe a higher number of masked fault injections in the SimplePrint, simi-
lar to the simpleQuicksort, but the DUE errors are always more than the SDC. It’s
worth noting that several faults in the simpleQuicksort application were labelled
as Uncategorized. By analysing those types of fault, we discover that they were
caused by internal framework issues and that no fault injection was conducted at
all. As a result, we excluded those errors and analysed only the first 10,000 fault
injections that did not fall under the category of Uncategorized.

Finally, we can see that the fp16ScalarProduct application is the only one of the
apps that has more SDC than DUE.
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Figure 4.2. Fault injection results with standard outcome of NVBitFI

The following figure contains the outcomes of the past four applications, which
contain important data to analyze. Starting with the matrixMul application, we can
see that SDC fault injections account for a minor percentage of all fault injections.
This means that, for the most part, the application is unaffected by the error or
crashes (DUE). Additionally, this application is the only one among those utilized
for tests that includes a timeout as an outcome. The framework treats the outcome
of the timeout as a DUE. As a result, it is not mentioned specifically, but is totalled
up with the other DUE faults.

There are only a few SDCs for the simpleCallback application. The results are
quite similar to those for matrixMul, although as with simpleQuicksort, a sizeable
portion of the errors (967 of the total fault injection) were labelled Uncategorized.
Again, we explore reasoning, and by inspecting the std_err file’s contents, we
discover that the application does not complete owing to a segmentation fault. As
a result, the correct error in this instance may have been Pot DUE: Different Error
Message. As a result, those errors are grouped along with the already-labelled DUE
errors.

All exposed SDCs were labelled as Uncategorized for the vectorAdd application.
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We examine and discover that the application has an internal results checker in the
std_err file. As previously stated, this internal checker terminates the application
when it detects that some elements of the sum are incorrect. As a result, it can be
categorized as an SDC, because without the checker, the application will produce
different output from the golden ones. However, because this is the least reliable
application in the set picked, we will attempt to improve its reliability and compare
the results achieved later.

Figure 4.3. Fault injection results with standard outcome of NVBitFI

In this part, we examined the framework’s functionality against a set of bench-
mark apps. We observed the group ID differentiation following the profiling process
and, more crucially, we observed the framework’s output following the completion
of the fault injection campaign. Additionally, we recognize how critical it is to assess
the outcome acquired upon the completion of the fault injection, as the framework
is sometimes unable to determine the type of error generated by the fault injection
without applying modification to the application or checker.

The following section will examine not only the fault injection results as specified
by the framework, but also the most critical instruction opcodes that cause errors
in those applications.
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4.2.3 NVBitFI - Outcome differentiated by OPCODE

In Chapter 3, we saw how some modifications to the framework were made to enable
the creation of personal_info.txt file. This file contains all of the information
necessary for the fault injection. For the purposes of this thesis, just the OPCODE
and error numbers were considered. After the fault injection campaign was com-
pleted, the files were analysed and the outcomes were collected in the tables shown
below in an excel file using a personal Python script.

To compare the results obtained with those obtained in the previous experiments,
we chose the same subset of 8 of those applications. It’s critical to note that the
framework randomly selects the SASS instruction and thread to execute. This
means that some opcodes are statistically more targeted than others. As a result,
at the end of the 10,000 fault injections, we filtered the fault injections performed
in the instruction opcode where the total number of fault injections was less than
5% of the total (500), as data collected below this threshold has poor statistical
meaning.

The charts acquired for the eight applications are then provided, along with
some explanation of the obtained results (the charts and details are displayed one
by one on each page for readability).
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• cppIntegration.

The chart below refers to the application cppIntegration. As can be seen, the
MOV (move) instruction opcode is the most targeted, causing 70% of DUE
and 30% of masked. When the fault injection target is MOV, the application
never creates an SDC. Rather than that, with the MOV32I, it was the inverse,
with no DUE and 65% SDC. The SHR (Integer Shift Right [14]) opcode always
causes the system to crash. This outcome is consistent across all applications.
Even with the S2R (Move Special Register to Register) opcode, no injection
produces a masked result.

Figure 4.4. Fault injection results by opcode - cppIntegration

64



4.2 – NVBitFI - Evaluation of the Benchmark applications

• cdpSimplePrint.

The opcodes targeted by this application are significantly more than those
targeted by the cppIntegration application. We will only comment on the
most critical opcode instruction. The surprising conclusion is that the IADD
(Integer Addition) opcode has a large number of masked results, in contrast to
the outcome of the following applications. In comparison, the IADD32I leads
to a significant amount of DUEs (70%). The LOP instruction has a greater
number of masked outcome. Similarly to the preceding application, the most
targeted instruction was the MOV and MOV32I, with comparable results.
It’s worth noting that the fault injection executed on target S2R contains a
significant amount of masked data. Rather than that, the same instruction
opcode has a zero outcome labelled as masked in the cppIntegration.

Figure 4.5. Fault injection results by opcode - cdpSimplePrint
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• cdpSimpleQuicksort.

The results of the simpleQuicksort are displayed in the chart below. Notable
outcomes include the IADD and IADD32I, which behave similarly to cdpSim-
plePrint but with a higher number of DUE in the case of the IADD. The
instruction IMNMX (Integer Minimum/Maximum) produces several SDC or
masked results and never lead in a DUE error. This behaviour will be repli-
cated in subsequent applications. The MOV instruction is the most targeted,
and the LDG (Non-coherent Global Memory Load) instruction has the highest
masked result.

Figure 4.6. Fault injection results by opcode - cdpSimpleQuicksort
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• fp16ScalarProduct.

It’s worth noting that the SHR opcode always results in an SDC in this ap-
plication, in contrast to all other applications in this subset, which always
produce a DUE error when targeted. As shown before, the LDG instruction is
the most resilient opcode instruction, with 80% of masked results in this case.
On the contrary, the SHF (Funnel Shift) opcode is the worst because it always
results in a DUE. Even in this scenario, the IADD behaves identically to the
application described above.

Figure 4.7. Fault injection results by opcode - fp16ScalarProduct
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• matrixMul.

The matrixMul is frequently used as a benchmark. It’s worth noting that the
framework was unable to do the fault injection in this scenario without altering
the source code. Within the sample, we attempted to solve the problem by
varying the dimension parameters of both the A and B matrices. We conclude
that by altering the grid and block size, the framework was able to accomplish
the fault injection. When the block size is set to 32 x 32, the maximum matrix
dimension is 352 x 352. The maximum size of a 16 x 16 block is 272 × 272.

Figure 4.8. Fault injection results by opcode - matrixMul

Furthermore, while the fault injection in this matrixMul targeted 11 distinct
instruction opcodes, the most of these were targeted only a few times. Only the
three instruction opcodes highlighted above exceeded the 5% threshold. The
opcode LDS (Load inside Shared Memory Window) was the primary target,
accounting for 45% and 36% of FFMA respectively (FP32 Fused Multiply
and Add). Even in this instance, the IADD confirms previously observed
behaviour. The LDS opcode and the FFMA opcode are comparable.
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• simpleAtomicIntrinsic.

The instruction opcode XMAD (Integer Short Multiply Add) was targeted
the most in this program, accounting for 39% of total fault injections, and
we can observe that the most critical opcode is the MOV, which generates a
large amount of DUE errors. By comparison, the ATOM (Atomic Operation
on generic Memory) opcode did not contain any errors in any of the injected
faults. This demonstrated that atomic operations are the safest.

Figure 4.9. Fault injection results by opcode - simpleAtomicIntrinsic
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• simpleCallback.

This application’s fault injection was the most balanced in terms of targeted
instruction code. The XMAD instruction opcode was the most targeted, while
the LDG instruction opcode was the least addressed, with 34% targeting the
first and 6% targeting the last.

In this case, the IADD altered a lot of the previously observed behaviour with
only DUE errors. On the other hand, the IADD32I produces almost exclu-
sively masked output. With only DUE errors, the SHR instruction opcode
confirms his behaviour. The LDG, XMAD, and MOV all validate the preced-
ing application’s behaviour. Instead, the S2R opcode displays about 95% of
masked results, in contrast to previous applications that produced more SDC
outcomes.

Figure 4.10. Fault injection results by opcode - simpleCallback
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• vectorAdd.

Finally, we have some confirmation regarding the SHR and MOV opcodes in
the vectorAdd application. The primary distinction is in how the XMAD,
LDG, and S2R instruction opcodes behave. There are more SDCs in this
application than in the previous ones.

Figure 4.11. Fault injection results by opcode - vectorAdd

As can be observed from the results above, some opcodes are more prevalent
than others, which typically results in the framework constantly targeting the same
instruction opcode. Additionally, while the behaviour of some specific opcodes, such
as MOV and SHR, is fairly consistent across applications, the behaviour of others,
such as IADD, might vary significantly depending on the application. The next
section will attempt to combine the results of all benchmark apps and summarize
the outcomes acquired from the experiments conducted.
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Summarized results of the fault injection differentiated by opcode

As previously stated, fault injections were performed in a total of 20 applications
at a rate of 10,000 per application. We highlighted only eight of them in order to
demonstrate some of the variations in how the same opcode behaves across applica-
tions and to better understand what occurs when a fault is injected into a particular
opcode.

Figure 4.12. The most targeted
opcode

As a consequence, we compiled all the data
acquired for each application for a total of
200,000 fault injections into a table and then
filtered out the most targeted opcodes in or-
der to get more comparable statistics across
applications and to highlight the most rele-
vant opcodes. The selection was limited to
opcodes with a minimum of about 10,000
fault injections. This resulted in the iden-
tification of a subset of five opcodes. As
illustrated in the chart adjacent, the most
targeted opcodes are MOV (42.6%), XMAD
(11.2%), S2R (8.8%), IADD (8.45%), and
FFMA (4.52%), in decreasing order of percentage, while the sum of the remaining
opcodes is 24.4%.

The chart below summarizes the results of the fault injection differentiated by
opcode for each of the five opcodes discussed previously. As can be observed, the
MOV opcode behaves identically to the previously stated benchmark application,
generating a large number of DUE errors. The XMAD and S2R opcodes had some
weird behaviour in prior applications, with a few apps generating a large number
of SDC and others generating a large number of masked outcomes, occasionally
resulting in DUE errors. This behaviour is clearly apparent in the chart, and
it prevents us from establishing a definite pattern for those opcodes. In prior
applications, the IADD opcode frequently results in a crash, resulting in a DUE,
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and occasionally in some "masked" outcome and very rarely in SDCs. In terms
of DUE errors, this is the worst opcode. Finally, the FFMA opcode is the most
robust, accounting for 85% of masked outcomes.

Figure 4.13. Fault injection results in the most targeted opcode

Overall, the experiments indicate that some opcodes are more targeted than
others, and that the IADD opcode appears to have the lowest resilience. Application
hardening strategies can improve the system’s and application’s reliability. As a
result, after conducting all of the above trials, we chose an application and, after
implementing a hardening technique, repeated the above experiments to determine
the level of reliability enhancement possible.
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4.3 Fault injection Experiments in a fault resilient
application

Following the experiments described above, we wanted to improve an application’s
reliability via the implementation of hardening technique [3]. To accomplish this,
we chose to recreate the vectorAdd application seen in prior experiments from
scratch and then apply a software hardening approach known as TMR (Triple
Modular Redundancy). This technique involves redounding the execution of a
given algorithm three times in order to obtain the same results. After obtaining all
three findings, a second kernel handles the so-called voting process. It compares the
three possible outcomes and chooses the correct one. This is accomplished through
the use of a majority algorithm. If two of them are equal, one of them (whatever it
is) is judged correct, while the third is considered incorrect. If all three are correct,
the result is identical. Thus, even if one of the outcomes is incorrect, the algorithm
will still function properly.

Figure 4.14. TMR workflow

We develop a kernel for vectorAdd that is called three times and saves the final
vector in three distinct vectors. Following that, a second kernel named Voter selects
and prints the chosen one. The issue with this technique is that the fault injection
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could be directed towards the voter, which is the application’s weak point. As a
result, we conducted two distinct fault injection campaigns. One employing simply
the kernel and doing the sum of the two vectors, and another involving only the
voter as a target.

The chart below compares the fault injection performed in the standard vec-
torAdd program to the version that includes the TMR implementation. As can be
observed, when the kernel responsible for performing the sum of the two vectors
is targeted, the application works successfully in the majority of cases, with only
twenty SDC faults but a large number of DUE errors. This will be the subject of
the following debate.

Despite that, when the voter is the targeted kernel, the consequences are same
to, if not worse than, the conventional application. This issue can be rectified by
tripling the number of voters.

Figure 4.15. Fault injection comparison between vectorAdd and vec-
torAdd with TMR implementation

The figure above illustrates the expected outcome of NVBitFI and analyze the
results. Following that, in order to gain a better understanding of the instruction
opcodes that result in DUE and SDC errors, we employ the modified version seen
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before to collect data for both the Voter and vectorAdd kernels’ fault injection
campaigns.

Most of the SDC errors that happen in the voter’s kernel are caused by the SHL
(Integer Shift Left), XMAD, or S2R opcodes, which are shown in the two charts
below. Rather than that, DUE faults are primarily produced by the SHR, MOV,
and IADD opcodes in both kernels.

Those results are effectively comparable with the results obtained in the figure
4.13.

Figure 4.16. Results of fault injection differentiated by opcode - kernel: Voter

Figure 4.17. Results of fault injection differentiated by opcode - kernel: vectorAdd
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We examined all of the experiments conducted for this thesis in this chapter. We
observed the framework’s output in a variety of apps and subsequently changed the
framework to gather additional information on the fault injection. This enabled us
to do experiments on the same apps, but this time gathering data on fault injection
and classifying it according to opcode. Following that, we construct a fault-tolerant
application using a technique called TMR, and with this application, we use the tool
NVBitFI to compare the fault injection results, both standard and opcode-driven,
between the untouched and hardened one.
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Chapter 5

Conclusion

Various types of studies were conducted in this thesis using the tool NVBitFI and
the board Jetson nano. We began by reviewing not only what a GPGPU is, but also
the major testing techniques that have been developed in the past, ranging from
hardware fault injection (including all possible types such as radiation, laser, etc.)
to simulation and emulation fault injection, in order to gain a better understanding
of all the possibilities considered for testing purposes.

Following that, we concentrated on understanding the GPU’s microarchitecture
and architecture, and then presented the board used in this thesis, the NVIDIA
Jetson nano. After gaining a better understanding of the GPU architecture and
the various types of fault injection techniques, we focus our efforts on assessing the
currently available tools and methodologies for GPU fault injection. We discover
that software fault injection tools for GPUs are relatively new in comparison to
those developed for CPUs. Our focus was then on the framework employed in this
thesis, NVBitFI, which has undergone extensive analysis.

During an overview of the framework, we addressed in depth each of the steps
required to install and configure the platform in order to conduct a fault injection
campaign in a generic application. This flow was quite intricate, and as a result,
we created a fork on Github with some additional files to enable us to do fault
injection campaign on several applications without having to edit the files that
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Conclusion

must be modified in accordance with the original release. Finally, we discussed
how the tool partitioned the output, what kind of files were created, and which
ones were critical for our aim.

With the environment prepared, we discussed the framework’s criticality, begin-
ning with the premise that the framework is not always ready-to-use for every ap-
plication, and that it occasionally fails to function effectively without intervention.
Therefore, we selected a group of applications and conducted the fault injection
campaign on them in order to see their standard behaviour. After doing the fault
injection in a standard environment, we repeat the experiment using the same ap-
plication but with additional framework customizations. We were able to correlate
the type of faults with the opcode targeted during the fault injection as a result
of those improvements. Thus, we collect data from the fault injection campaign
and establish a correlation between the various applications of certain opcodes’
behaviour.

Finally, we develop a fault-tolerant application by hardening the vectoAdd appli-
cation using the TMR approach. Following that, we use the framework to conduct
a fault injection campaign, which results in the TMR functioning properly, allowing
the application to drastically reduce SDC errors while maintaining the same level
of DUE errors. To have a clear understanding of what caused those failures, we ran
a fault injection campaign, separating the result by opcode. Thus, we understand
that the opcodes causing the DUE errors are always the same as those recognized
in the previous benchmark programs, validating those results.
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5.1 – Future Work

5.1 Future Work

• While the framework NVBitFI appears to be quite useful for testing appli-
cations that use CUDA in a real hardware environment, it is not possible to
do fault injection without altering the source code for some apps. Further
research must be conducted to determine why the tool is unable to conduct
certain fault injection campaigns.

• Another issue with the tool was the introduction of bugs through matrix mul-
tiplication. While we identified a solution for this application by executing
the fault injection on a smaller matrix, it is vital to understand why this oc-
curs and to conduct fault injection campaigns on a range of different matrix
dimensions.

• The studies conducted by opcode were really useful, but because the framework
injects faults randomly, there was no way to target certain opcodes. Future
work may attempt to expand the framework’s capability to target specific
opcodes.

• As a result, the most frequently used opcodes are the primary targets. Deeper
analysis could focus on developing ways for hardening certain opcodes in order
to increase their reliability.

• Following our investigation of the opcode’s results, we observe that while the
behaviour of some opcodes is quite consistent across applications, the be-
haviour of others varies significantly. Further research will be conducted to
determine why this occurred.

• Finally, we examined the fault injection effects on the vectorAdd application
using a TMR implementation. The results demonstrated the voter kernel’s
vulnerability. As a result, future researcher may implement a triple TMR and
attempt to replicate this implementation on various applications.
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