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Glossary
Terminology

Battery Electric Vehicle: An electrically driven vehicle with a battery as the primary en-
ergy source.

Linear Programming: A mathematical optimisation model to either maximise or min-
imise a set of linearly related variables, under a set of linear constraints.

On-board Power Converter: A component of an electric vehicle, used in the drive-train
and charging systems, that is responsible for the conversion between alternating and
direct current, as well as the conversion from one voltage level to another.

Plug-in Hybrid Electric Vehicle: A type of electric vehicle containing both an internal
combustion engine and an electric motor, with a battery that can be recharged from
an external power source.
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Abstract

Abstract
Of the many factors hindering the mass adoption of electric vehicles (EVs), the dilemma
of charging infrastructure is one of the most difficult to solve. The number of consumers
willing to buy an EV are still relatively low. Most consumers are hesitant partially be-
cause of the lack in charging infrastructure, yet infrastructure suppliers are wary of
large scale investments due to the low number of EV customers. This causality problem
is one that is the main focus of this thesis. To begin with, an overview of the problem
environment of EV adoption as a whole will be given. This will be followed up by the
proposal of a linear programming model aimed at optimising the location of new EV
charging infrastructure in the city of Turin (Italy), designed to minimise the total cost
of infrastructure upgrades while fulfilling targeted area coverage requirements. The
mechanisms contained within the program, as well as inputs, outputs, alterations and
different prioritisations are discussed an analysed. The thesis concludes with a set of
infrastructure upgrades that could increase the area coverage of the EV charging net-
work in the city of Turin from 62% coverage to 90% coverage at an investment cost of
e28,224, with future upgrades to the charging network being required as the number of
EVs increases.

Key words: Electric vehicle, Linear programming, EV charging station, Facility location
problem, Optimisation, Partial coverage

VIII



1 Introduction

1 Introduction
One of the major causality problems hindering the adoption of electric vehicles (EVs)
has been the chicken-and-egg problem of EV charging infrastructure. Consumers are
hesitant to commit to buying an EV partially due to the lack of infrastructure and the
providers of charging infrastructure are hesitant to invest into building more infrastruc-
ture due to the relatively low consumer adoption of EVs (Xiang et al., 2017). Beyond this,
a significant number environmental, technical, economic and social problems stand in
the way of EVs replacing traditional internal combustion engine (ICE) vehicles (Kurani,
Caperello, and Tyree-Hageman, 2016).

This thesis aims to first, analyse the problem of EV charging infrastructure and over-
all factors currently hindering a more widespread EV adoption by consumers. This is
done in chapter 2 by considering factors holding back the adoption of EV technologies
amongst consumers and manufacturers, analysing the environmental impact of EVs,
and by specifically addressing how the charging infrastructure affects the EV market.
In chapter 3, an overview of the possible solutions to the charging infrastructure prob-
lem will be given, as well as a discussion of the methodology that was chosen to be
implemented for this thesis. More specifically, an optimisation model aiming to reduce
overall cost of a more extensive EV charging network will introduced in chapter 4. This
linear programming model takes the city of Turin as an example to analyse existing
EV charging infrastructure and uses a model similar to the one used by (Huang, Ka-
naroglou, and X. Zhang, 2016). Chapter 6 will focus on the output of the model, which
is a set of possible EV charging locations that fulfil a certain coverage goal while min-
imising the investment cost required to build them, to help alleviate the aforementioned
causality problem. Furthermore, possible changes and future extensions of the model
are discussed in sections 5 and 7.2.
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2 Problem Analysis

2 Problem Analysis

2.1 The Consumer Adoption Problem
The purchase of an electric vehicle is a difficult decision for many consumers, that so
far few people have made, as can be seen by the case of Italy where the market share of
EVs was at only 0.5% of all vehicle registrations in 2020 (Danielis et al., 2020). This sec-
tion will analyse how consumers view EVs, and which objective and perceptive issues
limit the widespread adoption of these vehicles. The most common concern amongst
consumers is the range of electric vehicles when compared to traditional ICE vehicles
(Kurani, Caperello, and Tyree-Hageman, 2016). Commonly referred to as "range anx-
iety", many consumers are hesitant to buy an EV, since the limited driving range of a
single battery charge combined with the long charging time (compared to the refueling
time of ICEs) would significantly lengthen the travel time for long distance journeys
(Bonges and Lusk, 2016). This problem is also related to the limited amount of charging
points available to EV owners (Hardman et al., 2018), however the issue of charging
infrastructure will be discussed more thoroughly in section 2.3.

In addition to the limitation of the maximum range, a number of other factors also dis-
suade many consumers from purchasing an EV. In fact, while consumers rate the range
as the most common reason for them to not purchase an EV (Kurani, Caperello, and
Tyree-Hageman, 2016), a quintupling of the battery size would only lead to a five per-
cent increase in consumer adoption (Adepetu and Keshav, 2017). As such, multiple
factors impacting the buying decision of consumers need to be improved for electric ve-
hicles to be adopted, including the range and the purchasing cost (Adepetu and Keshav,
2017). The pricing of EVs was also an issue for many consumers (Kurani, Caperello, and
Tyree-Hageman, 2016). The average purchase price of a fully electric vehicle was 42.6%
higher than an average ICE vehicle (Coren, 2019). This high price means that consumers
were also significantly less likely to purchase an EV (Rezvani, Jansson, and Bodin, 2015),
without the addition of subsidisation to reduce the overall purchase price, as well as
other government incentives it is likely that the adoption of EVs will be strongly im-
pacted (Xiang et al., 2017). This is despite the fact that consumers tend to save costs in
the long run when owning EVs, a fact that a majority of consumers were not aware of
(Rezvani, Jansson, and Bodin, 2015), meaning that the high purchase cost still impacts
the purchasing decision more than the long term running costs. Once this early stage
of EV adoption has been overcome, where the purchase price no longer has a domi-
nant impact on the purchasing decision, different factors such as the state of technology
and infrastructure will become the dominant factors affecting the evolution of the EV
market (Xiang et al., 2017).
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2 Problem Analysis

Hesitation from automotive manufacturers to commit to the development of EVs has
also been a point of concern amongst consumers, with automotive manufacturers po-
tentially being wary of the high development costs associated with a radically different
technology such as EVs (Xiang et al., 2017). As such, while the ICE clearly remains the
dominant design within the automotive sector, battery electric vehicles (BEVs) haven’t
even been established fully as the dominant design within the "environmentally sus-
tainable" automotive segment. The case of Toyota is a clear example of this uncertainty
in the BEV technology, and the effect it can have on the manufacturers. Toyota was an
early innovator in hybrid-electric vehicles, with a strong and lasting interest in manu-
facturing cars with a lower environmental impact than ICE vehicles (Hawkins, 2021).
With the Toyota Prius being the first mass-produced hybrid-electric car in 1997, Toy-
ota found a great degree of success in the small but growing non-ICE segment (Toyota,
n.d.). Currently 80% of Toyota’s vehicle lineup is being offered with the option of a
hybrid-electric powertrain (Lyon, 2021), however Toyota is still hesitant to fully commit
to the BEV technology as opposed to hybrid and hydrogen powered fuel cell electric
vehicles (FCEVs) (Toyota, 2021). Toyota has committed to a vehicle lineup consisting of
ICE, full hybrid EVs, Plug-in hybrid EVs (PHEVs), full BEVs and FCEVs (Toyota Mag-
azine, 2021), from which it can be inferred that at the current point in time Toyota is not
confident that full BEVs will establish themselves as the dominant technology in the
long run. As such, Toyota is hedging their research and development investments be-
tween different ICE alternative technologies until it is clear what form of propulsion will
become the dominant design in the long run for personal vehicles (Davis and Inajima,
2021). The case of caution due to uncertainty in the technology is not exclusive to Toy-
ota, where currently PHEVs are considered as a bridge technology until BEVs become
established as the dominant design within the industry (Xiang et al., 2017). However,
increased rivalry in the market and greater dispersion of the technology will further
BEV development from manufacturers in the long run (Wesseling, Faber, and Hekkert,
2014).

2.2 The Environmental Problem
From a societal point of view, the end-goal of electric vehicles is to have a lower en-
vironmental impact with lower greenhouse gas emissions than conventional ICE ve-
hicles. While some consumers picture an environmentally benign and emission free
vehicle, the reality of the environmental impact of EVs is slightly more complicated.
When quantifying the environmental impact of a product, it is common practice to con-
sider the impact of the production, the use phase and the disposal of a product using a
variety of different performance indicators such as energy consumption of greenhouse
gas emissions (ISO, 2006). A large variety of studies have been performed on the im-
pact of EVs over the life cycle compared to ICE cars, from early adopter stages of EVs
and more modern ones (Wang, Tang, and Pan, 2017; Faria, Marques, et al., 2013; Notter
et al., 2010; Leuenberger and Frischknecht, 2010; Faria, Moura, et al., 2012), from which
a number of conclusions can be made. For the case of both ICE and EV cars, the ma-
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jority of greenhouse gas emissions result from the use phase of the car (Faria, Marques,
et al., 2013), as such the emission of the vehicle during operations has the largest impact
on the environmental "friendliness" of a vehicle. In the case of EVs, the source of the
electricity generation has a great impact on the life cycle emissions of the vehicle. In
countries where a majority of electricity is generated from fossil fuels, the total green-
house gas emissions associated with the use of an EV is substantially higher than in a
country where more renewable energy sources are used to generate electricity (Faria,
Moura, et al., 2012). In Poland for example, the Smart Electric Drive has a higher CO2

emission per km than its diesel-powered counterpart since the Polish electricity mix is
heavily focused on fossil fuels. In France however, where more electricity is generated
from non-fossil fuel sources, the Electric Drive Smart car has a lower CO2 emission per
km than a diesel powered Smart (Faria, Marques, et al., 2013). As such, it can be con-
cluded that EVs alone are only an effective tool in reducing environmental impact of
greenhouse gas emissions, if the widespread adoption of EVs coincides with a shift in
energy policy toward renewable energy sources. In China for example, a country where
EV adoption is relatively high (Wang, Tang, and Pan, 2017), the lifetime greenhouse gas
emissions are actually higher than the emissions of a typical ICE vehicle. Therefore a
higher EV adoption rate in China has a negative impact on the environment given the
current electricity mix (Ajanovic and Haas, 2018).

Beyond the usage of the vehicle, the manufacturing process has the second highest en-
vironmental impact (Faria, Marques, et al., 2013), with the EV manufacturing being
significantly more impact than an ICE vehicle mainly to the battery. For EVs, the green-
house gas emissions resulting from the battery production are typically comparable to
the emissions resulting from the production of all other vehicle components combined
(Faria, Marques, et al., 2013). The production of both the raw materials and the battery
itself are very energy and resource intense processes (Meshram, Mishra, Sahu, et al.,
2020). Lithium ion batteries, which is the most common battery type used for electric
vehicles, require a large amount of effort to be recycled effectively. Much research is be-
ing conducted to make these recycling processes more effective and efficient (Meshram,
Mishra, Sahu, et al., 2020). As a result of these recycling challenges, only 5% of lithium
ion batteries are recycled in the EU (Ajanovic and Haas, 2018), despite the fact that the
lifetime greenhouse gas emissions associated with a lithium ion battery are reduced by
up to 50% when using recycled raw materials (Dunn et al., 2012). Additionally, the ex-
traction of virgin raw materials used in lithium ion batteries has a severe environmental
impact beyond just the energy consumption and greenhouse gas production. Specifi-
cally, the extraction of lithium requires large amounts of water, while simultaneously
polluting the remaining water supply to the point where it has become harmful to hu-
mans and is having long-term adverse health effect on the local population (Concha et
al., 2010).
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To summarise, electric vehicles currently are not a solution to reducing the environmen-
tal impact on society. In fact, an increase in EV usage can have a more severe impact on
nature as well as bringing in new environmental problems. It is therefore crucial that
advances are made in electricity production, battery design, production processes and
recycling efforts. Only when these are improved can the widespread adoption of EVs
reduce the environmental impact of the general public.

2.3 The Charging Problem
As already mentioned in section 2.1, the current charging infrastructure is significantly
slowing down the rate of adoption of EVs. It is already established that consumer adop-
tion of EVs is still low in Italy (Danielis et al., 2020), which results in the few companies
that provide public EV chargers to have a low revenue from these chargers as they are
being used by only a small amount of consumers. These companies are then hesitant to
invest any further into new EV chargers since they yield a low return on investment. As
such only a low number of public EV chargers are available to the public, which in turn
dissuades potential EV buyers thus exacerbating the EV charger problem. With this
chicken-and-egg problem affecting infrastructure providers and consumers, govern-
ments have attempted to address this problem with targeted investments on both ends
of the supply and demand curve (Hardman et al., 2018). This strategy has resulted in a
large variety of subsidies and tax incentives being given to both infrastructure providers
and EV buyers, in order to accelerate the adoption of the technology (Lorentzen et al.,
2017). This problem and its alleviation will be the main focus of this thesis. By pre-
senting a cost effective way to make public chargers available to consumers, the charger
availability problem can be partially mitigated. Despite this, consumers also need to
be made aware of the availability of public chargers available to them. This lack of
readily available information on charging point locations, as well as confusion amongst
consumers on where to find public chargers exacerbates the problem further (Kurani,
Caperello, and Tyree-Hageman, 2016).

The confusion amongst consumers goes beyond the location of chargers. Many of their
worries can be attributed to a lack of standardisation within the industry. In addition
to the problem of locating a charger, consumers are also faced with incompatibility in
charging ports for their EVs. The traditional alternating current (AC) charging has seen
some form of geographical standardisation, with SAE J1772 type 2 charging ports be-
coming standard in the North American market and Japan and EU regulations requir-
ing a type 2 charging port as the standard (Hall and Lutsey, 2017). However, in regions
where the charging plug type is not regulated however, companies are able to use pro-
prietary connectors, like in the case of Tesla who uses a proprietary connector for both
AC and direct current (DC) charging in North America. This is because they wish to
differentiate their cars by providing access to a network of DC fast chargers (DCFCs)
branded as "Superchargers", that is not available to non-Tesla cars (Tesla, n.d.(a)). This
exclusivity of charging stations if enforced by the proprietary connector in this case.
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However, regulations can free up this type of proprietary use to provide additional util-
ity to all consumers (Lorentzen et al., 2017). This approach of regulating a standardised
port has proven effective, with Tesla relinquishing exclusivity of their "Superchargers"
due to the type 2/ CCS port requirement in the European market (Tesla, n.d.(b)). An-
other key attribute lacking standardisation is the payment system, with a common sys-
tem being radio frequency identification (RFID) payment cards exclusive to the provider
of the public charge point, leading to customer confusion about the compatibility of
their payment options (Kurani, Caperello, and Tyree-Hageman, 2016). However, efforts
have also been made to overcome this issue with Norway introducing a standardised
RFID tag payment as well as payment over SMS or mobile apps (Lorentzen et al., 2017),
and with the US state of California mandating credit and debit card payment options
on all public EV chargers (Hardman et al., 2018).

The problem currently referred to as "range anxiety", also has its roots in a lack of
charger availability, more specifically due to the lack of DCFCs on long range travel
routes (Kurani, Caperello, and Tyree-Hageman, 2016). The concern that consumers
have, of not being able to reach a far away destination due to the limited capacity of an
EV battery, can be alleviated by making fast charging points available along long dis-
tance routes. However, one must differentiate between the usage of "stop-and-go" and
"destination charging", the latter of which is the more common use case (Globisch et
al., 2019). Long distance travel often utilises "stop-and-go" charging, where EV owners
stop en route to their final destination to recharge their battery before continuing their
journey (Morrissey, Weldon, and O’Mahony, 2016). Consumers often feel that charg-
ing time is an issue, especially in this use-case (Kurani, Caperello, and Tyree-Hageman,
2016), and as such the utilisation of DCFCs for these locations of "stop-and-go" charging
such as along highways provides extra benefit, as it mitigates the effective range anxiety
(B. Zhang et al., 2021). The more common use-case however is "destination charging",
where consumers charge their EV at their travel destination for a longer period of time;
usually at home or at work (Globisch et al., 2019). Here, AC charging is still clearly more
beneficial once charging time is not a point of concern, as charging points are cheaper
and the strain on the battery is lower for AC charging. In more urban environments,
where consumers do not have the space to park vehicles on their privately owned prop-
erty and have to park on public roads (Cao and Menendez, 2015), public AC chargers
are still a critically lacking infrastructure as they are the only available type of "desti-
nation charger" (Porru et al., 2020). These two points can be summarised as follows: in
cities with shorter travel distance and longer parking times, AC "destination chargers"
are required to cover the most common uses cases. On the other hand, long range travel,
usually outside of cities, requires "stop-and-go" charging points to minimise charging
time thus making DC charging points far more appealing to consumers.
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Lastly, some smaller technical factors also contribute towards the charging problem.
The first issue being the limitations of on-board power converters in EVs. In a tradi-
tional AC charging system, the AC power outputted by the charging point, is converted
to a DC current used to charge the vehicle’s battery. The amount of power that can be
converted from AC to DC is limited by the size of the electrical converter, with high
power fast charging (at roughly 8kW) the AC to DC converters size is inhibitively large
to be an on-board component of the vehicle and as such the AC to DC conversion pro-
cess for fast charging must occur outside of the vehicle (Chakraborty et al., 2019). This
inability to use the on-board converter for high power fast charging in EVs is one of
the factors that increases the installation cost of DCFCs (Hardman et al., 2018), since the
charging point needs to enclose a high power AC to DC converter to convert the mains
AC power to a DC current that charges the vehicle battery. This technical limitation,
beyond just the added costs associated with higher power equipment is why the costs
of DCFCs are far higher than their AC counterparts and are less frequently used for
public charging stations (Nelder and Rogers, 2019; Hardman et al., 2018). Beyond the
charging hardware, the battery also indirectly has an effect on the usage of charging, es-
pecially in relation to DC fast charging. The first concerns most potential EV buyers cite
is the "range anxiety" (Kurani, Caperello, and Tyree-Hageman, 2016), due to the battery
capacity not being large enough for a long distance trip without recharging. Therefore,
the capacity of battery, and the range of EVs inherently determine the design parame-
ters for a fast charging network, with more frequent DCFC locations being required in
order to compensate for low battery capacity vehicles. However, excessive usage of fast
charging systems also leads to a higher amount of capacity degradation in EV batteries,
which becomes an issue for consumers who wish to not unnecessarily strain their EV’s
battery (Björnsson and Karlsson, 2015). Ultimately, the only solution is to improve all
systems involved; improving battery capacity to decrease range anxiety, increasing the
DC charging network to mitigate the effects of range anxiety and increase the AC charg-
ing network so that consumers can charge their EV without putting excessive strain on
their batteries.
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3 Design Goal and Scope

3.1 Research Questions
Having identified the problem of an insufficient charging infrastructure, as well as the
effect this has on EV market share, the goal and scope of this thesis need to be clearly
defined to determine the research question, as well as the methodology used to answer
the stated problem. To begin with, the scope of this research will be focused on a model
of central Turin’s EV charging network. Furthermore, the scope of the research will con-
sider the effects of areas with partial access to an EV charger, however due to the low
travel distance of the urban area being considered only AC chargers will be taken into
consideration with DC chargers being excluded. With this scope defined, the goal of
this thesis is to find an optimised improvement to the EV charging network of the deter-
mined area. In this case, the optimal improvement was formulated by a model defining
the most cost effective upgrades to the charging infrastructure network, by minimising
cost and while still increasing area that has access to an EV charger, ultimately maximis-
ing the cost efficiency of the future upgrades to the EV charging network. As such, a
series of questions that this thesis aims to answer are found below.

In this thesis the following research question will be examined:

How can an extension to the current EV charging network of Turin be designed to max-
imise the cost effectiveness while providing additional utilities to consumers?

There are four sub questions being derived from the main research question that this
thesis aims to answer:

1. What are common ways to improve EV charging networks and how are can they
be modeled?

2. How are models adapted specifically to cities as opposed to other geographical
areas?

3. How can the city of Turin’s EV charging network be modeled to optimise the cost
effectiveness of new infrastructure?

4. How can the optimisation model for the city of Turin be altered for future expan-
sion scenarios?

8
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3.2 Methodology Selection

3.2.1 Solutions to the Charging Problem

The cyclical problem involving EV charging infrastructure is not an easy one to over-
come. Ultimately, the only solution to break the cycle of limited EV adoption by con-
sumers is a significant amount of investments into EV charging infrastructure. A case
study can be made from the country of Norway, where government started incentivis-
ing EV adoption since 1990. Investments in an infrastructure of 1800 chargers began
in 2009 and 2010 (Lorentzen et al., 2017). Since then, Norway has greatly expanded
investments in home charging, public AC and public DC fast charging, with Norway
nationalising the public charging infrastructure built (Lorentzen et al., 2017). In addi-
tion to this, a public national central database of all EV charging points and a publicly
available application programming interface (API) was established (Bøe, 2012). This al-
lows businesses to easily create applications and interfaces for users to locate one of the
over 19.5 thousand charging points available in the country (NOBIL, 2021), providing
greater transparency and ease of use to consumers. In addition to this, the government
subsidises the running cost of these charging stations to decrease the cost to consumers
(Lorentzen et al., 2017). Beyond these policies solving the charging infrastructure prob-
lem, Norway has many other incentives in place for EV owners, such as exemption of a
variety of vehicle related taxes on EV vehicles, access to bus lanes as well as free access
to toll roads, municipal parking and ferries (Lorentzen et al., 2017). The main caveat
in the case of Norway being that this aggressive strategy to push EV adoption is not
replaceable by many countries, as it relies on a large disposable state income, not avail-
able on a similar scale in most countries. In the case of Norway, these large investments
are financed through Norway’s large state-owned petroleum and natural gas resources
(Hall and Lutsey, 2017).

Most countries however, are not able or willing to fund EV charging infrastructure to the
same degree as Norway. As such, more targeted strategies have emerged to selectively
place a limited number of EV charging points that would see a high degree of utilisa-
tion. The Netherlands for example introduced a system where curbside EV chargers
were installed in places of high usage, with additional infrastructure positioning be-
ing dependent on the usage of the existing infrastructure. Areas with high charging
demands receive additional charging points (Helmus et al., 2018). Furthermore, busi-
nesses are heavily incentivised to build EV charging points on their property, under the
condition that they have an employee owning an electric car that utilises the charging
point (Hall and Lutsey, 2017). Beyond these systems, a number of proposals have been
made by the scientific community on how to optimise the placement of EV charging
points (see section 3.2.2). Often these proposals come in form of a linear programming
(LP) model. These have been utilised to optimise the placement of EV charging points to
minimise the impact on the energy grid (Yi and Bauer, 2016). However, these LP models
are most commonly designed to either maximise the utility from public charging points
or to minimise the cost of infrastructure upgrades.

9



3 Design Goal and Scope

3.2.2 Overview of Optimisation Methods

Optimisation models have proven a useful mathematical tool that can be used to model
scheduling or allocation decision making processes (Gilmore and Gomory, 1961). As
such, these types of LP models can and have already been applied to a variety of EV
charging infrastructure problems. However, the models used in the past are varied in
methodology and objective with a number of different goals set in form of the models
objective function. Optimisation models for EV charging networks can be designed to
maximise traffic flow captured (Capar et al., 2013), minimise travel time (Chen et al.,
2014), maximise area coverage of charging stations (Frade et al., 2011), maximise usage
of chargers (Xi, Sioshansi, and Marano, 2013), minimise the number of charging stations
(J. Liu, 2012) and to minimise the network cost of an EV charger network (Lam, Leung,
and Chu, 2014). For the case of this thesis, the objective was to design the most cost
effective network upgrade. This was done by modelling the objective function to min-
imise the network upgrade cost at a variety of area coverage levels of charging stations,
discussed further in the upcoming sections (4.3 and 4.4). In addition to the objective
of the model, several other smaller decisions must be made. The first is the decision
to model the locations as a set of area polygons or as a series of vector locations along
the streets being considered. Both of these options have advantages and disadvantages,
with the vector based model allowing for more accurate modeling of traffic flow (there-
fore allowing for prioritisation of new chargers along main roads that see more traffic
flow) as well as allowing for modelling of accessibility and unidirectional flow. The
polygon based approach is a simpler model allowing for a more uniform formulation
of charging locations and area definition, with this approach being adopted in this thesis
as traffic flow is not considered. This simpler approach was taken to serve as a baseline
scenario, which can more easily be applied to future scenarios of Turin, or applied to
different cities altogether, with this approach overall being easier to replicate.

10



3 Design Goal and Scope

After the objective of the model and the set of locations has been defined, the model
must be formulated to either only consider direct coverage or to also take partial cov-
erage into account. Here, areas considered partially covered are ones with limited ac-
cess to a charging station which is less beneficial to consumers than direct access but
more beneficial than no access altogether. As such, the partial coverage consideration
can be introduced to evaluate more "low cost" options where the outcome is clear to
not contain a charging station in every location vector or polygon. Moreover, a model
considering partial coverage is a more accurate formulation of a real-world scenario,
where consumers might gain utility from charging stations accessible to them but not
in their direct vicinity. Additionally, a model must be designed to either consider AC
charging, DC fast charging or both, as this requires some changes in the objective and
constraint functions. As a more generalised rule, urban environments should primarily
focus on AC charging infrastructure, whereas less urban areas associated with long dis-
tance travel should focus on DCFC infrastructure (see section 2.3). For the sake of this
thesis, since the objective is to find the most cost effective solution in an urban area, a
model considering AC charging exclusively while taking the partial coverage problem
into consideration was determined to be the best fit.

11



4 Linear Programming Model

4 Linear Programming Model
As a starting point for determining the an optimisation for the positioning of new EV
charging stations, an LP optimisation model focused on the city of Turin was created
using a similar model to those discussed by Huang et. al. in "The design of electric
vehicle charging network" (Huang, Kanaroglou, and X. Zhang, 2016), with adjustments
being made to the location set i, the partial coverage designation, the cost function and
the tuning of the model to more accurately represent Turin. The first stage of building
this model was gathering input data. Here, existing EV charging infrastructure loca-
tions were compiled using a geographic information system (GIS) and divided into a
grid of polygons on a map as shown in figure 1. Along with other variable input pa-
rameters such as the price of building a new charging station, a target area coverage
and the budget available to build new infrastructure, the model was defined. To begin
with, partial coverage of specific polygons was determined by analysing an excess in
charging infrastructure in adjacent polygons. Finally, the model determines if a feasible
solution space is possible for the targeted coverage and determines the number and lo-
cations of EV charging stations resulting in the minimal total cost of the network, given
a predetermined coverage goal.

Figure 1: Existing EV charging infrastructure in Turin on a 1km2 grid.
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4.1 Installation Cost Analysis
In order to determine the total price of an improved EV charging network in the city
of Turin, and to aid in overall decision making, an estimation of the price of an EV
charging station must be made. Overall, the cost of a charging station depends on a
number of factors. Namely, the type of charger (direct or alternating current for exam-
ple), the power output that the charger is capable of and the local power network are the
three factors that have the largest impact on the price (Nelder and Rogers, 2019). The
model will consider an AC mode 3 charger, as this is by far the most common charging
method for publicly accessible charging stations due to its cost effectiveness and mod-
erate power consumption. According to a study performed by Nelder and Rogers, the
installation cost of this type of charger ranges from $2,500 to $4,900 with power out-
puts ranging from 7.7 to 16.8 kW (Nelder and Rogers, 2019). A cost overview made by
Nelder and Rogers, 2019 for the installation costs of AC chargers, DC fast chargers and
distribution transformers can be found in figures 2, 3 and 4.

Figure 2: An overview of the range of costs associated with installing a traditional AC
charger (Nelder and Rogers, 2019).

Figure 3: An overview of the range of costs associated with installing a direct current
fast charger (Nelder and Rogers, 2019).
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To simplify calculations, the mean values for the installation cost will be assumed to be
the per-unit cost, as the total cost of an entire EV charging network can be assumed to
average out when consisting of a variety of charger types and capacities. With an ex-
change rate of 1.18 Euro to USD (as of August 2021), a typical commercial AC powered
EV charger can be assumed to be e3136. It is very important to note that this figure
does not include the additional cost of upgrading existing power infrastructure. This
is a large additional cost that can arise when multiple AC or a single DC fast charger
(DCFC) are being installed (Nelder and Rogers, 2019). However, in most cases existing
power infrastructure is sufficient to accommodate most AC and even low power DC
charging infrastructure without modification (Nelder and Rogers, 2019). Higher pow-
ered DC chargers or a larger number of individual chargers could require an upgrade
in the distribution transformers, resulting in additional costs ranging from e29,600 to
e44,900 for smaller 150-300 kW transformers, to up to e55,900 to e146,600for top end
1000+ kW distribution (Nelder and Rogers, 2019). Due to the fact that these costs are
avoided by using AC chargers, the cost of infrastructure upgrades will not be included
in the model.

Figure 4: An overview of the range of costs associated with upgrades to distribution
transformers, should these be required for new EV charging infrastructure (Nelder and

Rogers, 2019).

4.2 Input Data Procurement
The most critical input for the model is the set of existing EV charging infrastructure.
This data is used to determine the geographical location of the areas that are either par-
tially or fully covered by an EV charger and therefore, which locations with low or no
coverage require new charging infrastructure to be built. The most convenient source
for this data is often in form of GIS data. Certain places for example the municipality
Toronto, Canada, or the highway system of Korea, have a well maintained and widely
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available set of GIS data regarding EV charging infrastructure. As a result of this, mod-
els centred around these locations are relatively easy to create since the input data is
easily accessible (Huang, Kanaroglou, and X. Zhang, 2016; Chung and Kwon, 2015). In
the case of Turin however, GIS data on EV charging infrastructure is not readily avail-
able or incomplete. And as such the GIS data was put together by hand from location
data from Google maps and the limited amount of location data from the municipality
of Turin. For future reference, a complete GIS model put together by the author of this
thesis, of existing EV charging infrastructure as of June 2021 can be found online (Lin-
demann, 2021). From this GIS data, the map was rasterised into one by one km and 0.5
by 0.5 km squares. The number of existing EV chargers was counted for each square to
create a matrix of charging locations on the map of Turin (referred to as N in Appendix
B). This data array was then reformatted to determine the area fully and partial covered
by an EV charger at the current point in time, which could then be used as inputs to the
model. A visual representation of this data can be found in figures 1 and 5.

Figure 5: Existing EV charging infrastructure in Turin on a 0.25km2 grid.
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4.3 Coverage Model
Having determined location data of existing EV chargers, a number of different deci-
sion making models can be used in order to determine the optimum location of new
charging stations to maximise the area covered by charging stations. Some models are
highlighted by Huang, Kanaroglou, and X. Zhang, 2016, which were used as a basis for
the model used in this thesis. The focus here was to create a point based decision model
to minimise the number of charging stations to fulfil a coverage target using partial
coverage. The model used represents the EV chargers as individual points on a map,
instead of modelling them as a network of roads with charging access. Additionally
it utilised the partial coverage theorem, by which areas without a charging station can
be considered to have "partial access" to an EV charger if adjacent areas have sufficient
EV charging infrastructure (Huang, Kanaroglou, and X. Zhang, 2016). Combined these
principals were formulated into a linear programming model and then solved using
Matlab (code found in Appendix B) to determine the optimal locations for new charg-
ing infrastructure. The mathematical formulation of this LP model is as follows:

Minimise:P
cxi

Subject to:

yi − xi <= 0

θvi − xi <= 0

yi + vi <= 0

− ωyi − βωvi <= −αω

With:

i being a set of squares dividing the city of Turin, representing the location
being considered.
xi being a set of charging stations located at quadrant i.
yi being a set of binary decision variables determining if location i is fully
covered by charging stations.
vi being a set of binary decision variables determining if location i is partially
covered by charging stations.
c being the assumed constant cost to build a new charging station.
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θ being the lowest coverage to be considered full coverage.
ω being the lowest coverage to be considered partial coverage.
β being the penalty coefficient used to penalise partial coverage.
α being the lowest acceptable target coverage as a percentage of area covered
by a charging station.

4.4 Tuning the Model
The tuning process of selecting the correct values for specific variables has a significant
effect on the output of the model, while simultaneously being quite context driven. As
a result, this type of model is required to be re-tuned based on the location and use-case.
For example, adjusting these variables can promote certain priorities in the output. The
output could be prioritised to strongly punish partial coverage of each section, with a
lower total coverage of the full area, or it could also prioritise a high total area coverage
regardless of if that coverage is only partial. Ultimately, these priorities must be deter-
mined by the party building the EV charging infrastructure, and therefore must be con-
sidered before tuning the model. This section will highlight the three most important
variables to tune, what there functions are within the algorithm, and how sensitive the
final output is to the tuning of these variables. As a baseline scenario, the variables will
be set as follows: α = 90%, β = 0.9, ω = 1, θ = 2 and i will be composed of a grid of 1 km2

sections. This variable selection resulted in a network upgrade cost ofe28,224 with nine
new charging stations being added. However the implication of this figure will further
be discussed in chapter 6. A visual representation of this improved EV charging net-
work can be found in figure 6, with new charging locations being highlighted in green
over the existing charging infrastructure from figure 1.

In order to adequately understand the model and the tuning process behind it, the
main variables and outputs must briefly be explained. The primary goal of the model
is to select a set of points xi that represent the optimal EV charger locations, from
which the number and location of new chargers and therefore the network upgrade
cost can easily be derived. This output is visualised in figure 6, representing the exist-
ing chargers (model input) as red dots, and the location areas for new chargers (output
of xi − existing chargers) as green squares. For the tuning process specifically, the out-
puts of the model can be compared in tables 1, 2 and 3. This was done for the sake
of simplicity to make an easier comparison between the proposed charging networks.
However all of the networks highlighted by sections 4.4 and 6 can be found in appendix
A, with the full location data for all new charging infrastructure being found there.
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Figure 6: A preliminary selection for possible locations of new EV charging
infrastructure in Turin on a 1km2 grid based on the baseline tuning parameters.

Having introduced the output, two brief introduction must be made before the selec-
tion of the tuning variables. The first is the selection of a percentage coverage target
(α value). This will essentially be the main point of consideration once a network is
tuned and will be the main factor for stakeholders to consider when deciding how to
upgrade the EV charging network of a given city. The effect of the alpha variable as
well as a number of possible networks will be discussed in the results section (6), How-
ever as previously mentioned for the sake of tuning the model, the alpha value will be
considered a controlled variable in all cases and set to 90%.

The second, and slightly more convoluted decision is the grid size, and therefore the
size of the set i. Two grid sizes can be seen throughout this thesis with figure 1 showing
a grind of Turin (i) composed of 1 km2 quadrants and figure 5 composed of quadrants
with half the length and width 0.25 km2. When selecting an adequate polygon size for
the i set (in this case quadrants, but other divisions can be used too), it is important to
select the right size of polygon. A set of i divided into too large sections, will result in
imprecise location data of the final output, as well as resulting in a large cluster of new
charging locations (i.e. the model will determine that roughly 5 new charging stations
need to be built in a large area which is imprecise and has limited use). Furthermore, if
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the length or width of a point within i exceeds the maximum walking distance an EV
owner is willing to travel between a charger and their true destination, then the model
output does not solve the true use case problem. This is because more charging stations
will be available in a given area, but EV users often do not gain any utility from the
new chargers if their destination is too far from one of these chargers. From here, it
can be concluded that at minimum, the size of a polygon point within i should be such
that this minimum walking distance covers the extent of that polygon. For the sake of
this thesis a walking speed of 4.8 km/h (Aspelin, 2005) will be considered with max-
imum walking time between EV charger and destination of 20 minutes, resulting in a
maximum walking distance of 1.6 km, thus even the larger 1 km2 quadrants diagonal
distance (1.41 km) is covered by this maximum. Despite this, a smaller polygon (and
therefore larger set of i at a higher resolution) is not universally favourable either. A
very detailed set of i might determine charging stations in a too precise location, which
could create problems if the model determines a new location where a new EV charger
cannot be built due to existing infrastructure for example. As a result, the resolution
must be sufficiently lowered to minimise the risk of compatibility issues occurring from
the models proposal of infeasible locations. Additionally, a larger set of i with more val-
ues can lead to excessive run time of the program which can prove problematic as well
if analysing more complex data sets. In the case of this thesis, the lower resolution 1
km2 quadrants were found to fulfil the minimum walking distance requirements, while
the higher resolution 0.25 km2 quadrants created run time errors in certain tuning con-
figurations. As such the tuning process and and final results were all based on a set of i
of 1 km2 quadrants as shown in figure 1.

The final part of this section will be dedicated to explaining the significance of the three
tuning variables (omega, theta and beta), as well as elaborating on their impact on the
model output. The first tuning variable omega (ω) represents the minimum number of
charging stations accessible by point i, for this point to be considered "partially covered"
by EV chargers. Depending on the construction of the model, this can mean that point
i must contain at least ω chargers to be considered partially covered, or in the case of
this model it means that point i and points adjacent and accessible to i contain at least
ω EV chargers for i to be considered partially covered. Table 1 shows the effect that
omega has on the output of the model, with omega ranging from 1 (only one charger
required for partial coverage) to 5 (five accessible chargers required for partial coverage
condition). These results show, that a stricter partial coverage can lead to a shift in the
model towards full coverage conditions and therefore a less effective output with lower
coverage and fewer chargers added. It is recommended to select a low omega value
(of 1 or 2) to effectively utilise the network efficiency advantage that partial coverage
offers, however if the polygon size of i is larger, then a larger omega value should be
selected. Additionally, the partial coverage condition (ω) must strictly be lower that the
full coverage condition (θ), otherwise the model will not utilise partial coverage and
only prioritise full coverage (since this condition is easier met) which is a similar reason
why a change in the partial coverage penalty factor (β) directly affects how sensitive the
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output is to the omega value.

Omega Value Network Upgrade Cost (e) Chargers Added

1 28,224.00 9
2 21,952.00 7
3 18,123.00 6
4 12,544.00 4
5 6,272.00 2

Table 1: Effect of a tuned omega value on the output of the model.

Beyond the partial coverage condition, a value for the full coverage condition variable
theta (θ) must be determined. Similar to omega, the variable theta represents the mini-
mum number of charging stations accessible by point i, for this point to be considered
"fully covered" by EV chargers. Similar to other tuning variables, the theta value must
be chosen while also giving consideration to other variables such as the grid size of i,
and the value set for omega. In a model considering only full coverage (i.e. β = 0 or
θ < ω), the tuning of theta will be proportional to the target coverage percentage (alpha)
where increasing theta by a factor of x will have a similar effect to an increase in alpha
by a factor of x. However, since this model does take partial coverage into considera-
tion, this one-to-one relationship between alpha and theta cannot be found (see tables 2
and 4). From table 2 the effect that theta has on the output of the model can be observed.
As can be expected, with the model designed to punish partial coverage to incentivise
full coverage, the impact that the full coverage condition (theta) has is greater than the
impact of the partial coverage condition (omega). The degree to which theta is more
impactful than omega is determined by the penalisation factor (beta).

Theta Value Network Upgrade Cost (e) Chargers Added

1 12,544.00 4
2 28,224.00 9
3 56,448.00 18
4 72,128.00 23
5 116,032.00 37

Table 2: Effect of a tuned theta value on the output of the model.

The final tuning variable beta (β) is, in effect used to "penalise" the model for only par-
tially covering areas with charging stations, as opposed to fully covering the area with
charging stations. With the Beta value ranging between zero and one, with one mean-
ing "no penalisation" as in that partial coverage is treated equally to full coverage, and
with zero effectively meaning "full penalisation" as in the model attributes zero benefit
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to partially covered sections. Table 3 shows the sensitivity that the final output has to
an adjusted beta value. It can be recommended to select a beta value close to, but below
one in order to penalise partial coverage while simultaneously utilising partial coverage
as a method of reducing overall cost of the network upgrade. Ultimately, the choice of
a beta value is the most impactful on the outcome of the model of the tuning variables.
Not only does beta in isolation affect the output, it also determines the sensitivity the
output has to both theta and omega. A small decrease in beta will therefore cause a
relatively large shift in the output by more strongly prioritising full coverage over par-
tial coverage thus increasing the number of chargers. It is usually not necessary to set
beta to a value below 0.5, since this already sets most covered points to full coverage
with little partial coverage (see appendix A.4). Therefore, if one wants to achieve an
even stronger bias towards full coverage a simpler model without a partial coverage
condition should be used, not requiring beta or omega tuning.

Beta Value Network Upgrade Cost (e) Chargers Added

1 21,952.00 7
0.9 28,224.00 9
0.8 65,856.00 21
0.7 90,944.00 29
0.6 97,216.00 31
0.5 103,488.00 33

Table 3: Effect of a tuned beta value on the output of the model.
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5 Demand and Supply Side Extensions of the Model
After reviewing the results obtained by the model, it is important to highlight the strengths
and drawbacks of it. As discussed in chapter 4, the model used was a linear program-
ming model to solve the partial coverage problem and is therefore based on the area
coverage of EV charging stations and the density of charging stations. However, when
selecting the location for future charging stations, more factors need to be considered.
This chapter will therefore highlight the factors not included in the model that are rele-
vant to this decision making process in more long-term scenarios, and how these factors
can be used to supplement the model to provide a clearer overall picture. This will be
done by discussing the simplifications and assumptions made in the model and the ef-
fects these have. Additionally, potential alterations and extentions to the model will be
highlighted and evaluated, that ultimately were not included in this thesis but should
be include in future iterations of the model, as the number of EVs increase and the EV
charging network is expanded further.

5.1 Supply Side Extension of the Model
The model can be split into two sections, namely an analysis of the supply of EV charg-
ing infrastructure and the demand for this infrastructure with the model attempting to
find a network with an adequate supply to match consumer demand. On the supply
side of this model, certain simplifications were made that could be expanded upon in
future iterations which will be discussed in this section. To begin with, the model only
considers AC charging infrastructure and not "fast charging" DC infrastructure. This
was a deliberate choice as the main use for AC chargers are covered by the two com-
mon use cases in cities of charging an EV while at home and charging an EV while
at work, both of which are associated with longer wait times meaning charge time be-
comes less of an issue (Globisch et al., 2019). Additionally, of course the AC chargers are
far more cost effective than DC chargers, as such when a consumer is indifferent to the
type of charger a supplier should focus on AC charging to reduce the infrastructure cost.
Furthermore, the alpha, omega and theta values were tuned to a degree where power
infrastructure investments on top of the charger installation cost was not necessary to
take into account, since the upgrades necessary to the current charging infrastructure
do not require additional distribution transformers (as discussed in section 4.1). Due to
this, the model used could consider the cost of charging infrastructure to be constant
(Nelder and Rogers, 2019). However, if either DC chargers or a higher area density of
AC chargers is considered (both of which would be the case in future scenarios), then
the model would have to shift from a static to a dynamic cost variable. Once this dy-
namic cost variable is established, the model is designed in a way such that only the
objective function would have to be altered to minimise

P
cixi, with c becoming the

dynamic cost of installing a charging station at location i, similar to Ge, Feng, and H.
Liu, 2011.
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For the case of Turin, this cost variable would have to be determined in collaboration
with a 3rd party. This is due to the fact that the back end power infrastructure is not
of public record, and therefore the requirement of additional distribution transformer
placement cannot be determined (required for multiple AC or a single DC charger).
This information would have to be obtained either from the power companies directly
or through a local government organisation such as the Osservatorio Energia of the City
of Turin (Cittametropolitana di Torino, n.d.) or the regulatory authority for the energy
network and environment ARERA (ARERA, n.d.). Ultimately, the main issue in finding
this data is the small scale required for the model to work on, however estimations
could also be made for larger areas (i.e. the installation cost in district x is cx and the
cost in district y is cy). This coarse cost estimation could be used if a permutation of the
model is created that requires a dynamic cost variable. Additionally, the cost variable
could be altered to only consider the number of stations created and not the geographic
cost difference. Here the cost of one AC charger would be considered as e3136 (found
in section 4.1), and the cost of a high number of AC chargers (n) would be e3136*n +
the cost to the distribution transformer (with a similar cost calculation for DC chargers).

5.2 Demand Side Extension of the Model
In addition to the supply side of these EV chargers, the demand side and the use pat-
tern of the charging network can be further analysed as well. Consumers state that the
two most frequent places they would charge an EV is at home and at work (Hardman
et al., 2018). This means that potential charging stations in an area of high residential
population density and a high working population density are of greater importance.
Similarly to the previous section (5.1), location data on such a small scale is difficult
to obtain without additional primary research. Again, the exact location data could be
substituted with data from individual city districts (with the assumption of even popu-
lation distribution over that district), which is more readily available from the local city
authority which in the case of Turin would be the statistics office of the local commune
(Comune di Torino, n.d.). A similar approach could be taken to obtain the quantita-
tive data on the work location of consumers. Another method used by infrastructure
providers is to monitor demand along existing charging points to extrapolate demand
to future charging point locations.
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Once obtained, this data could be used to prioritise infrastructure spendings to favour
high population (and therefore high demand) areas. This could be done to sort the
model output variable (xi into areas of high demand (categorised by subsections of i)
and areas of lower demand. If this approach is chosen, it can be recommended to cate-
gorise these subsections of i by both number of residents and number of people working
within these locations in i, since often areas of cities can be categorised as mainly res-
idential or mainly industrial/commercial areas. Only if both of these categories are
included can the main two use cases be considered covered in the prioritisation model.
However, if additional actions are taken, such as subsidising private businesses to in-
stall their own EV chargers for employees, then one of the two categorisations can be
ignored assuming the use case is covered elsewhere, through non-public infrastructure
for example.
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6 Results
One of the major problems in the EV market has been the lack of charging infrastruc-
ture and the lowered consumer interest that results from this. It is therefore crucial to
alleviate this causality problem by carefully analysing the output that the linear pro-
gramming model provides. Having tuned set up this model specifically for the city
of Turin, and with the variable tuning process completed one must consider how new
EV chargers can be added to the existing infrastructure in the most cost effective man-
ner. For this cost to performance consideration, both the area percentage covered by EV
charging infrastructure (alpha), as well as the network upgrade cost (the sum of instal-
lation cost of all newly proposed charging infrastructure) were considered. With regard
to the city of Turin, these cost to performance indicators can be found in table 4. It can
be seen that a number of upgrades can be made to the charging infrastructure. At the
time of writing, the existing charging infrastructure (found in figure 1) covers only 62%
of the area of central Turin. With the proposals made, the most cost effective upgrade
in terms of coverage percentage increase per Euro would be to add 7 EV chargers to the
network at a cost of e21,952 (85% area coverage). This would result in a cost efficiency
of 954.43 Euros per percent increase in coverage, with a close second of 1,008.00 euro
per percentage resulting from the scenario of increasing area coverage to 90%.

Figure 7: A map of the new EV charging locations for the both scenarios of 85% area
coverage (left) and 90% area coverage (right)
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Percentage coverage α Network Upgrade Cost (e) Chargers Added

80% 18,816.00 6
85% 21,952.00 7
90% 28,224.00 9
95% 65,856.00 21
99% 116,032.00 37

99.9% 128,576.00 41

Table 4: The installation cost of an upgraded EV charging network in the city of Turin
for a number of different coverage targets (alpha)

Considering these results, two network upgrades can be proposed to stakeholders re-
sponsible for infrastructure upgrades: firstly, a frugal upgrade to 85% coverage costing
a total of roughly e22 thousand, or a slightly more performance oriented upgrade to
90% coverage costing roughly e28 thousand as can be seen in figure 7. For the sake of
this thesis, it is recommended to opt for the 90% coverage option if possible, as this is
a coverage target found to be effective by other scientific papers (Huang, Kanaroglou,
and X. Zhang, 2016) and in the case of Turin it is the second most cost effective coverage
target in terms of percentage coverage gain per euro spent. Considering this upgrade
cost is within the range of a low-end 50 kW DC fast charger (Nelder and Rogers, 2019),
it can also be concluded that a network upgrade for a city centre costing as much as a
single fast charging station not including transformer upgrade costs is both feasible for
stakeholders to invest in and within their interest.
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7.1 Conclusion
Overall, the desired outcome of proposing a cheap and cost-effective upgrade plan for
the EV charging network in Turin was achieved. The network achieving 90% target
coverage described in section 6 is clearly an effective upgrade to the network at a rel-
atively low cost of e28,224. Comparatively, estimated EV charging network upgrade
costs for other Italian cities on the island of Sardinia are estimated to be in the hundreds
of thousands euro range (Porru et al., 2020), however these two figures are not quite
comparable since future additions to the charging network in Turin would of course
add additional costs beyond the e28,224. From here, it is reasonable to strongly rec-
ommend to the municipality of Turin to invest into these new charging stations, as it
is far more cost effective than plans for other cities while simultaneously making EV
ownership more attractive for Turin residents, a strategy that has proven successful for
places such as Norway (as discussed in section 3.2.1). Should public institutions not be
interested in pursuing this investment strategy, private institutions could be convinced
to invest the e28,224 to gain a strong foothold in the EV charging market of Turin. Since
the investment is relatively small, and early adoption of EV owners of one public EV
charging supplier over another could prove to be very lucrative in gaining long-term
market share, this infrastructure investment could be also be seen as worthwhile for
private sector firms too.

It is at this point critical to state that this e28,224 investment into public charging in-
frastructure should be considered a first step into building EV charging infrastructure.
For widespread adoption of EV far more chargers must be built and made accessible to
the public, along with strong additional benefits to EV owners in the city (Bonges and
Lusk, 2016). This could be done by giving EV owners increased and/or cheaper access
to public parking within the city of Turin, as well as additional benefits such as greater
access to the restricted traffic area in the centre of Turin (ZTL) for EV drivers that are not
available to privately owned ICE vehicles. In addition to this AC charging infrastruc-
ture, DCFC infrastructure needs to be added in the long run to allow Turin residents
better access to surrounding areas that would otherwise be more limited for EV owners
to access.

Considering that additional EV charging infrastructure planning will be required in the
future, the key alterations to be model will again be highlighted here, should stakehold-
ers decide to utilise another coverage based model. It is unfortunate that a "one size
fits all" model, even for a specific city is not feasible and therefore a new and adjusted
model would be required. For the city of Turin itself, since most travel is likely to be
achievable on one EV battery charge, a scaled model with the higher demand require-
ments of a larger population of EV owners could be achieved by a simple re-tune of
both the partial and full coverage requirement parameter (omega and theta). Beyond
planning for the future demand increase, one could also tighten the usage requirements
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in conjunction with the previous re-tuning changes by decreasing the walking distance
of EV owners to and from chargers. This could be achieved by increasing the resolution
of the area covered by the set i (as seen in figure 5) and/or increasing the coverage target
(alpha). As previously mentioned however, one must not select a too high resolution
of i as a precise location that the model determines to be optimal for a new charging
station is more likely to not be feasible, due to existing building infrastructure.

Further in the future, once the coverage of charging infrastructure is deemed sufficient
for current or near-future demand, the implementation of DC fast chargers infrastruc-
ture in additional to AC chargers, as well as areas outside of the city, such as connections
to other regional destinations or highway connections to other cities must be considered
as well. In order for models to account for DCFCs, an additional decision variable sim-
ilar to xi must be introduced to define the existence of a DCFC at location i. This new
variable would require an adjustment to both the objective function and the set of con-
straint inequalities if the model requires both DCFCs and AC chargers to be considered
in the same area. When only considering a non-urban area such as the highway con-
nection between multiple cities, it would be possible to only consider DCFCs and forgo
including AC charging all together, greatly simplifying the model. Furthermore, the set
of i would have to be reworked to include the new areas being considered. Further con-
siderations, such as changing i from a point to a vector format (as described in section
3.2.2), or building the model without the consideration of partial coverage, should be
reconsidered at this point as well, as these decisions both have benefits and drawbacks
that should be evaluated on a case-by-case basis.

7.2 Evaluation
Although this form of LP model can be used to accurately model potential upgrades to
Turin’s EV charging network in the short term, it is not without flaws. As previously
mentioned, it is impossible to have a "one size fits all" style optimisation model. As
such the model and the resulting proposed upgrades are an accurate estimation of cur-
rent conditions and demand for the city of Turin, with more long-term planning and
re-tuning of the LP model being required as EV ownership increases. The main cause
of this is the variability within the tuning process, with small changes in the tuning
variables having a significant effect on the output of the model. Therefore, requiring
LP models analysing different geographical locations to be fully re-tuned or even use a
different model all together. With the selection of these tuning variables being highly
context driven, even requiring re-tuning over time, the model can only be used to anal-
yse and optimise a static point in time, rather than analysing the charging network
dynamically as new infrastructure is built bit by bit. Furthermore, a model considering
both AC and DCFC would have to be considered in the long run which would again
require a significant reworking of the model (see section 7.1).
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Beyond these inflexibilities in using the model for different locations or points in time,
some static variables could prove problematic in the future (as mentioned in sections
5.1 and 5.2). With future iterations of the model that consider DCFCs or an area dense
placement of AC chargers, the power infrastructure can prove to be a limiting factor
(Nelder and Rogers, 2019). For this scenario to be accurately reflected in the model, a
dynamic installation cost function would have to be defined, as installation cost could
be area dependant with specific locations requiring upgrades to the distribution trans-
formers. Additionally, as the area of the model increases there inherently will be a larger
discrepancy in the demand for EV chagrers. While the assumption of equal demand
distribution is not uncommon (Huang, Kanaroglou, and X. Zhang, 2016), a larger area
containing both urban and more rural districts, the distribution of housing and places
of work becomes less homogeneous than in a city centre. As such, areas with a high
residential population and areas with a high amount of work places will see a higher
demand for EV charging than other areas, thus requiring a dynamic approach to mod-
elling the demand for EV chargers. In both of these cases (dynamic demand model and
dynamic cost model) the LP model would require re-tuning and alterations to the objec-
tive function at minimum, beyond the additional data gathering required to accurately
model the new demand and installation cost functions.
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A Appendix A: Raw Output Data
Please note that the following data is a square representation of the output variable x
minus the input variable N. This shows the location of new charging infrastructure,
with 0 representing no new infrastructure at location i, and 1 representing the location
for new charging infrastructure at location i.

Variable Baseline Value
Coverage Percentage Alpha 90%

Grid Size 1km2 (n100 variable)
Beta Value 0.9

Omega Value 1
Theta Value 2

Table 5: Appendix table showing the baseline values for the tuning variables of the
model.

A.1 Model Outputs From Final Results

Alpha = 80% Alpha = 85%
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Alpha = 90% Alpha = 95%
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
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Alpha = 99% Alpha = 99.9%
0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1
1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1
1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1
0 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0
1 1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0
0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0
1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0

A.2 Model Outputs From Tuning Omega

Omega = 1 Omega = 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Omega = 3 Omega = 4
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Omega = 5
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

A.3 Model Outputs From Tuning Theta

Theta = 1 Theta = 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Theta = 3 Theta = 4
0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0
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Theta = 5
0 0 1 1 0 0 0 0 0 1
1 1 1 0 1 1 0 1 0 0
0 0 0 0 1 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1
0 1 1 0 0 0 0 1 1 1
0 1 0 1 1 0 0 1 0 0
1 1 0 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0 0 0
1 0 0 1 1 1 1 0 0 0

A.4 Model Outputs From Tuning Beta

Beta = 1 Beta = 0.9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Beta = 0.8 Beta = 0.7
0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0
1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0
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Beta = 0.6 Beta = 0.5
0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1
0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1
0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0

B Appendix B: Matlab Code

B.1 Variable Setup Script

1 c l c
2 c l e a r a l l
3

4 %S e t t i n g parameters
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 %c i s the constant c o s t of bui lding a charging s t a t i o n
7 c = 3136 ;
8

9 %B i s the budget a l l o c a t e d to i n s t a l l EV charging s t a t i o n s
10 B = 1000000 ; %r e l a t i v e l y a r b i t r a r y value in t h i s contex t but

can be a l t e r e d when budget i s a l i m i t i n g f a c t o r
11

12 %alpha i s the lowest a cc e p ta b le coverage percentage
13 alpha = 0 . 9 0 ;
14

15 %beta i s the penalty c o e f f i c i e n t f o r demand p a r t i a l l y covered
by at l e a s t h number of charging s t a t i o n s and not f u l l y
covered

16 %beta i s between zero and one
17 beta = 0 . 9 ;
18

19 %omega i s the lowest l e v e l of coverage t h a t w i l l be considered
in complementary p a r t i a l coverage

20 omega = 1 ;
21
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22 %t h e t a the lowest number of p a r t i a l coverage needed to be
t r e a t e d as f u l l coverage

23 t h e t a = 2 ;
24

25 %N( i ) i s the s e t of e x i s t i n g charging l o c a t i o n s
26

27 %n10 i s a grid of 1km^2 squares
28 n100 = [ 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 0 ;
29 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 2 , 0 ;
30 0 , 1 , 2 , 4 , 0 , 3 , 5 , 2 , 2 , 0 ;
31 0 , 0 , 0 , 2 , 1 , 2 , 3 , 4 , 2 , 1 ;
32 0 , 0 , 0 , 0 , 2 , 2 , 3 , 1 , 1 , 0 ;
33 0 , 0 , 0 , 2 , 3 , 1 , 1 , 0 , 0 , 0 ;
34 0 , 0 , 2 , 0 , 0 , 2 , 3 , 0 , 0 , 0 ;
35 0 , 0 , 1 , 0 , 1 , 1 , 2 , 0 , 0 , 0 ;
36 1 , 0 , 0 , 3 , 1 , 1 , 0 , 0 , 0 , 0 ;
37 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ;
38 %n25 i s a grid of 0 . 2 5 km^2 squares
39 n25 = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
40 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 ;
41 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 0 ;
42 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
43 0 , 0 , 0 , 1 , 1 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 2 , 0 , 0 ;
44 0 , 0 , 0 , 0 , 1 , 0 , 2 , 0 , 0 , 0 , 0 , 3 , 2 , 1 , 0 , 1 , 0 , 0 , 0 , 0 ;
45 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 , 1 , 0 , 0 , 0 , 0 ;
46 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 0 , 2 , 0 , 1 , 2 , 0 , 0 , 1 ;
47 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ;
48 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 2 , 1 , 0 , 0 , 1 , 0 , 0 , 0 ;
49 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
50 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
51 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
52 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
53 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
54 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
55 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
56 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
57 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
58 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ;
59

60 %def in ing n as n100 or n25 . This can be changed
61 N = n100 ;
62 L = length (N) ;
63
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64 %W( i ) i s the s e t of charging l o c a t i o n s t h a t can p a r t i a l l y cover
polygon i

65 W = zeros ( 1 , L ) ;
66

67 %i i s the s e t up poligons dividing Turin ( e i t h e r 100 or 400)
68 i = [ 1 : L ^ 2 ] ; % i = j

B.2 Partial Coverage Script

1 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 %Determining M − the s e t of pol igons FULLY covered by a
charging s t a t i o n

3 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4

5 %Determining f u l l coverage of a l l c e n t r a l points
6 f o r x = 2 : L−1
7 f o r y = 2 : L−1
8 i f N( x , y ) ~= 0 %check to see i f the poligon conta ins a

charging s t a t i o n
9 M( x , y ) = 1 ;

10 e l s e i f (N( x −1 ,y ) +N( x +1 ,y ) +N( x , y−1)+N( x , y+1)+N( x −1 ,y−1)+
N( x −1 ,y+1)+N( x +1 ,y−1)+N( x +1 ,y+1) ) >= t h e t a

11 % above e l s e i f checks i f ad jacent pol igons conta in
enough charging

12 % s t a t i o n s to s a t i s f y f u l l coverage
13 M( x , y ) = 1 ;
14 end
15 end
16 end
17

18 %Determining f u l l coverage f o r the 4 corner points
19 %corner point 1 ,1
20 i f N( 1 , 1 ) ~= 0
21 M( 1 , 1 ) = 1 ;
22 e l s e i f (N( 1 , 2 ) +N( 2 , 1 ) +N( 2 , 2 ) ) >= t h e t a
23 M( 1 , 1 ) = 1 ;
24 end
25 %corner point 1 ,L
26 i f N( 1 , L ) ~= 0
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27 M( 1 , L ) = 1 ;
28 e l s e i f (N( 1 , L−1)+N( 2 , L ) +N( 2 , L−1) ) >= t h e t a
29 M( 1 , L ) = 1 ;
30 end
31 %corner point L , 1
32 i f N( L , 1 ) ~= 0
33 M( L , 1 ) = 1 ;
34 e l s e i f (N( L , 2 ) +N( L−1 ,1)+N( L−1 ,2) ) >= t h e t a
35 M( L , 1 ) = 1 ;
36 end
37 %corner point L , L
38 i f N( L , L ) ~= 0
39 M( L , L ) = 1 ;
40 e l s e i f (N( L−1 ,L ) +N( L , L−1)+N( L−1 ,L−1) ) >= t h e t a
41 M( L , L ) = 1 ;
42 end
43

44

45

46 %Determining f u l l coverage f o r the f i r s t and l a s t column/rows
47 %rows 1 and L
48 f o r x = 2 : L−1
49 %row 1
50 i f N( x , 1 ) ~= 0
51 M( x , 1 ) = 1 ;
52 e l s e i f (N( x −1 ,1)+N( x −1 ,2)+N( x , 2 ) +N( x +1 ,2)+N( x +1 ,1) ) >=

t h e t a
53 M( x , 1 ) = 1 ;
54 end
55

56 %row L
57 i f N( x , L ) ~= 0
58 M( x , L ) = 1 ;
59 e l s e i f (N( x −1 ,L ) +N( x −1 ,L−1)+N( x , L−1)+N( x +1 ,L−1)+N( x +1 ,L ) )

>= t h e t a
60 M( x , L ) = 1 ;
61 end
62 end
63

64 %columns 1 and L
65 f o r y = 2 : L−1
66 %colunn 1
67 i f N( 1 , y ) ~= 0
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68 M( 1 , y ) = 1 ;
69 e l s e i f (N( 1 , y−1)+N( 2 , y−1)+N( 2 , y ) +N( 2 , y+1)+N( 1 , y+1) ) >= t h e t a
70 M( 1 , y ) = 1 ;
71 end
72

73 %colunn L
74 i f N( L , y ) ~= 0
75 M( L , y ) = 1 ;
76 e l s e i f (N( L , y−1)+N( L−1 ,y−1)+N( L−1 ,y ) +N( L−1 ,y+1)+N( L−1 ,y+1) )

>= t h e t a
77 M( L , y ) = 1 ;
78 end
79 end
80

81 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

82 %Determining W − the s e t of pol igons PARTIALLY covered by a
charging s t a t i o n

83 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

84

85 %Determining p a r t i a l coverage of a l l c e n t r a l points
86 f o r x = 2 : L−1
87 f o r y = 2 : L−1
88 i f N( x , y ) ~= 0 %check to see i f the poligon conta ins a

charging s t a t i o n
89 W( x , y ) = 0 ;
90 e l s e i f (N( x −1 ,y ) +N( x +1 ,y ) +N( x , y−1)+N( x , y+1)+N( x −1 ,y−1)+

N( x −1 ,y+1)+N( x +1 ,y−1)+N( x +1 ,y+1) ) >= omega
91 % above e l s e i f checks i f ad jacent pol igons conta in

enough charging
92 % s t a t i o n s to s a t i s f y p a r t i a l coverage
93 W( x , y ) = 1 ;
94 end
95 end
96 end
97

98 %Determining p a r t i a l coverage f o r the 4 corner points
99 %corner point 1 ,1

100 i f N( 1 , 1 ) ~= 0
101 W( 1 , 1 ) = 0 ;

43



102 e l s e i f (N( 1 , 2 ) +N( 2 , 1 ) +N( 2 , 2 ) ) >= omega
103 W( 1 , 1 ) = 1 ;
104 end
105 %corner point 1 ,L
106 i f N( 1 , L ) ~= 0
107 W( 1 , L ) = 0 ;
108 e l s e i f (N( 1 , L−1)+N( 2 , L ) +N( 2 , L−1) ) >= omega
109 W( 1 , L ) = 1 ;
110 end
111 %corner point L , 1
112 i f N( L , 1 ) ~= 0
113 W( L , 1 ) = 0 ;
114 e l s e i f (N( L , 2 ) +N( L−1 ,1)+N( L−1 ,2) ) >= omega
115 W( L , 1 ) = 1 ;
116 end
117 %corner point L , L
118 i f N( L , L ) ~= 0
119 W( L , L ) = 0 ;
120 e l s e i f (N( L−1 ,L ) +N( L , L−1)+N( L−1 ,L−1) ) >= omega
121 W( L , L ) = 1 ;
122 end
123

124 %Determining p a r t i a l coverage f o r the f i r s t and l a s t column/
rows

125 %rows 1 and L
126 f o r x = 2 : L−1
127 %row 1
128 i f N( x , 1 ) ~= 0
129 W( x , 1 ) = 0 ;
130 e l s e i f (N( x −1 ,1)+N( x −1 ,2)+N( x , 2 ) +N( x +1 ,2)+N( x +1 ,1) ) >=

omega
131 W( x , 1 ) = 1 ;
132 end
133

134 %row L
135 i f N( x , L ) ~= 0
136 W( x , L ) = 0 ;
137 e l s e i f (N( x −1 ,L ) +N( x −1 ,L−1)+N( x , L−1)+N( x +1 ,L−1)+N( x +1 ,L ) )

>= omega
138 W( x , L ) = 1 ;
139 end
140 end
141
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142 %columns 1 and L
143 f o r y = 2 : L−1
144 %colunn 1
145 i f N( 1 , y ) ~= 0
146 W( 1 , y ) = 0 ;
147 e l s e i f (N( 1 , y−1)+N( 2 , y−1)+N( 2 , y ) +N( 2 , y+1)+N( 1 , y+1) ) >= omega
148 W( 1 , y ) = 1 ;
149 end
150

151 %colunn L
152 i f N( L , y ) ~= 0
153 W( L , y ) = 0 ;
154 e l s e i f (N( L , y−1)+N( L−1 ,y−1)+N( L−1 ,y ) +N( L−1 ,y+1)+N( L−1 ,y+1) )

>= omega
155 W( L , y ) = 1 ;
156 end
157 end

B.3 Linear Program Script

1 %Linear programming s o l v e r to determine the optimal number of
EV chargin

2 %s t a t i o n s
3

4 run setup .m %setup and def in ing v a r i a b l e s
5 run p a r t i a l _ c o v e r a g e .m %determines f u l l and p a r t i a l l y covered

poligons
6

7 %Setup f o r d ec i s i on v a r i a b l e s
8 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 %x j binary d ec i s i on v a r i a b l e i f a charging s t a t i o n i s loc a t ed

in l o c a t i o n j
10 %yi binary d ec i s i on v a r i a b l e i f poligon i i s covered by at

l e a s t one charging s t a t i o n
11 %vi binary d ec i s i on v a r i a b l e i f poligon i i s p a r t i a l l y covered

by at l e a s t one charging s t a t i o n
12 l i = length ( i ) ;
13 l i 2 = 2* l i ;
14 l i 3 = 3* l i ;
15 l i 4 = 4* l i ;
16 ymin = reshape (M, [ l i , 1 ] ) ;
17 vmin = reshape (W, [ l i , 1 ] ) ;
18 binN = 0 . 9 * (N>0) ;
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19 xmin = reshape ( binN , [ l i , 1 ] ) ;
20 x = xmin ’ ;
21 y = zeros ( 1 , l i ) ;
22 v = zeros ( 1 , l i ) ;
23

24 %Objec t ive funct ion f
25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 %minimise sum of c * x ( j )
27 f1 = zeros ( 1 , l i ) ; %yi and vi p a r t s of f
28 f2 = c * ones ( 1 , l i ) ; %x j par t of f
29 f = [ f1 f1 f2 ] ; %f = [ y ; v ; x ]
30

31

32 %S u b j e c t to
33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 %A are the c o e f f i c i e n t s of the <= c o n s t r a i n t s
35 %b are the r i g h t hand s ide c o n s t r a i n t s of the c o e f f i c i e n t s of A
36

37 Ai = eye ( l i ) ; %i d e n t i t y matrix
38 A0 = zeros ( l i ) ;
39 nearA = ones ( l i ) − t r i l ( ones ( l i ) , −2)− t r i u ( ones ( l i ) , 2 ) −Ai ; %

h o r i z o n t a l l y ad jacent points
40 nearA = nearA+ t r i l ( ones ( l i ) , −L ) − t r i l ( ones ( l i ) , −(L+1) ) + t r i u ( ones

( l i ) ,L ) − t r i u ( ones ( l i ) , ( L+1) ) ; %v e r t i c a l l y ad jacent points
41 w = reshape (W, [ l i , 1 ] ) ;
42

43 A4 = [ −w’ beta *−w’ zeros ( 1 , l i ) ] ;
44

45 %Defining A − l e f t hand s ide condi t ions
46 A = [ Ai A0 −Ai ; A0 ( t h e t a * Ai ) −nearA ; Ai Ai A0 ; A4 ] ;
47

48 %Defining B − r i g h t hand s ide condi t ions
49 b1 = zeros ( 1 , l i ) ; %x j par t of f
50 b3 = ones ( 1 , l i ) ; %yi and vi pa r t s of f
51 b = [ b1 b1 b3 −alpha *sum(w) ] ; %f = [ x ; y , v ] old −− b = [ b1 b1 b3

−alpha *sum(w) ] ;
52 b = reshape ( b , [ ( l i 3 +1) , 1 ] ) ;
53 b = reshape ( b , [ 1 , l i 3 + 1] ) ;
54

55

56 %Defining the upper and lower bound condi t ions f o r v a r i a b l e s
57 lb = zeros ( 1 , l i 3 ) ;
58 lb ( ( 2 * l i ) + 1 :3 * l i ) = xmin ;
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59 ub = ones ( 1 , l i 3 ) ;
60

61 %Aeq are c o e f f i c i e n t s of e q u a l i t y c o n s t r a i n t s
62 %bea are r i g h t hand s ide of the q u a l i t y c o n s t r a i n t s
63 Aeq = [ ] ;
64 beq = [ ] ;
65

66 %output X i s the s t a t e of the d e c i s i on v a r i a b l e s
67 %output z i s o b j e c t i v e funct ion
68 in tcon = 1 : l i 3 ;
69

70 %def ines the opt ions as an i n t e g e r problem s i n c e the d e c i s i o n
v a r i a b l e s are

71 %binary , and s e t s macimum run time and display parameters
72 options = optimoptions ( ’ i n t l i n p r o g ’ , ’MaxTime ’ , 6 0 , ’ H e u r i s t i c s ’ , ’

b a s i c ’ , ’ Display ’ , ’ f i n a l ’ ) ;
73 [X , Z] = i n t l i n p r o g ( f , intcon ,A, b , Aeq , beq , lb , ub , opt ions ) ;
74

75

76 map = reshape (X ( ( l i 2 ) +1: end ) , [ L , L ] ) ; %binary map of a l l
charging l o c a t i o n s

77 d e l t a = map − (N>0) ; %binary map of new charging l o c a t i o n s
78 networkcost = c * sum(sum( d e l t a ) ) ;
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