y A, _AP v Politecnico

/
\ R] II||II e '
. IIIII lllllllll.fi. 1] .ii..ulllllll |||"”[d I To |"| n o
‘\ 1859 44
\\‘\Q‘ ““‘0

POLITECNICO DI TORINO

Master’s Degree in Engineering and Management

Master’s Degree Thesis

Agile Product Development outside

Software Development

Supervisors Candidate
Prof. Francesca MONTAGNA Stefano GALLO
Prof. Marco CANTAMESSA

April 2022

Abstract

During the recent years, hardware product development has changed. More and
more complex products arrived on the market, often including sensors and software,
collecting data and elaborating them. The customers have changed too, and the
demand for a constant release of new and customizable products has increased.
In this framework, the traditional product development methods may not be
adequate. One of the possible solutions could be represented by the adaptation
of agile software development methods to the hardware domain. The aim of
this thesis is to investigate such a possibility. After a first chapter focused on
the historical background of agile methods for software development, the second
chapter goes one step further and discusses agile’s state of the art outside their
original domain. This literature review permits to identify some recurring trends
in modern product development, such as the use of prototyping, the importance
of customer requirements, and other practices that get hardware development
closer to agile software development. These trends provide positive effects in
reducing documentation, allowing for later changes in requirements, and increasing
knowledge and transparency in multidisciplinary teams. Some limitations are
identified as well, such as the impossibility of a direct application of agile methods
to hardware development without a dedicated fine-tuning process. Finally, the
third chapter presents an analysis performed on a series of case studies, aimed
at validating the results obtained in the previous chapter. By examining real-life
applications of agile methods on larger scale projects, it was possible to confirm

their potentiality, even if some challenges are still present.

Table of Contents

List of Tables

List of Figures

Introduction

1 Historical background of agile
1.1 Beforeagile
1.2 The Agile Manifesto
1.3 Agilemethods

1.3.1 Scrum
1.3.2 Extreme Programming (XP)

1.3.3 The Crystal Methods
1.3.4 Feature Driven Development (FDD).
1.3.5 Lean Development (LD)
1.3.6 Dynamic Systems Development Method (DSSM)
1.3.7 Agile Modeling oL

2 Agile in the manufacturing industries
2.1 The new manufacturing

2.1.1 Theroleofdata
2.1.2 Cyber-physical systems

2.1.3 Embedded systemso
2.2 Agile applications in manufacturing
2.2.1 Agile Manufacturingo
2.2.2 Multidisciplinary teams and multidisciplinary projects. . . .
2.2.3 Hybrid agile methods

111

v

12

14
19

22
23
24
25
26

29
30

31
33

35
38
38
39

2.2.4 Agile Project Management 45

2.3 Agile trends and future applications L. 46
2.3.1 Descriptive approach o000 47
2.3.2 Normative approach 58
2.3.3 Final observations. oL 61
3 Case studies analysis 68
3.1 Introduction 68
3.2 Cases 1 & 2: Volvo Car Group — Agile Model-Driven Engineering in
Mechatronic Systems 70
3.2.1 The background situation 71
3.2.2 Research performed L. 72
3.2.3 Resultsobtained00 73
3.3 Case 3: Scaling Agile Development in Mechatronic Organizations . 78
3.3.1 Research performed 78
3.3.2 Resultsobtained o000 79
3.4 Case 4: Agile development of luxury bathtubs 84
3.4.1 The backgroundo 85
3.4.2 Agile practices introduction 86
3.4.3 Resultsobtained 87
3.5 Case 5: Product Development of Medical Devices 89
3.5.1 Research performed and results obtained 89
3.5.2 Practical suggestions 92
3.6 Case 6: Agile Development of a microtiter plate in an interdisci-
plinary project team Lo 93
3.6.1 Research performed 94
3.6.2 Resultsobtained 0L 95
Conclusions and discussion 98
Bibliography 105

11

List of Tables

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3

3.4
3.5

Agile values presented by the Agile Manifesto 6
Agile principles presented by the Agile Manifesto 7
Agile principles according to Meyer (2014) 8
Scrum roles and responsibilities 16
Characteristics of Stage-Gate vs. Agile 39

Apportionment of each agile activity’s cost in Vinodh et al. (2010) . 58
Apportionment of each agile criteria’s cost in Vinodh et al. (2010) . 58
Overall opinions about the use of CAD and RP in Vinodh et al. (2010) 59
Competitive bases and agile attributes 60

Differences in applying agile to SW development and HW design . . 63

Effects of agile on HW development 64
Descriptive approach papers 65
Normative approach papers 66
Mixed approach papers 67
Results from Eliasson et al. (2014) 75
Agile goals and practices particular to mechatronics development . 82
Comparison of challenges for large-scale agile in mechatronics domain

and pure software. 84
Advantages of Agile in the case studies analyzed 101
Limitations of Agile in the case studies analyzed 102

II1

List of Figures

1.1 Agile project path 14
1.2 The Scrum method 18
1.3 Burndown chart example 19
1.4 Scrumboard example Lo 19
2.1 Project success indicatorso 46
2.2 Exoskeleton development by means of modern techniques 53
2.3 Framework of the methodology proposed by Riesener et al. (2019) . 60
2.4 Example of the overall flow of development, for a hardware product

that contains a software component. 62
3.1 V-model implemented at Volvo Car Group 71
3.2 Effects of early decision making and risk associated with assumptions. 74
3.3 Delayed decision making and its effect on knowledge gaps. 76
3.4 Expected benefits when scaling agile beyond software development

teams. L e e 80
3.5 Foreseeable challenges when scaling agile beyond software develop-

ment teams. L. oL 81
3.6 The initial process mapping from Mazzanti (2012). 87
3.7 CAD model and 3d printed microtiter plate 90
3.8 Sprint impressions used by Gerber et al. (2019) 91
3.9 Recommendations of an agile process for physical product development 93
3.10 Agile model for physical and medical product development. 95

v

Introduction

The goal of this paper is to understand how agile methods, that were originally
designed for software development, can be adapted to other kind of development

processes, and how they can be implemented in other industries.

During the recent years, in fact, hardware product development has changed:
more and more complex products arrived on the market, often including sensors
and software, collecting data and elaborating them. The customers have changed
as well, and the demand for a constant release of new and customizable products
has increased. In this framework, the traditional product development methods
may not be adequate. One of the possible solutions could be represented by the

adaptation of agile software development methods to the hardware domain.

In the following chapters, agile will be presented starting from its origins. First,
an historical overview on how and why such a philosophy emerged is provided,
starting from the agile’s predecessors description, and continuing with the Agile
Manifesto’s analysis (Section 1.2). Following this line of thought, the main agile
software development methods originating from it are then described and discussed,
with a particular attention to the main two: Scrum (Section 1.3.1) and Extreme

Programming (Section 1.3.2).

The following step goes instead to the hearth of the question: can such methods
be beneficial to the hardware product development as well? Through a literature
review, some recurring trends in modern product development are identified and
compared to the possibilities of agile in these contexts. In this analysis, pros
and cons are listed and discussed, in order to identify the boundary for agile’s

application. In a similar way, some areas where agile could be better applied are

1

determined starting from Section 2.1.2. As a partial conclusion, the numerous
contributions will be subdivided according to their nature (descriptive, normative,
or mixed), to provide a synthetic and organized overview on their observations.
From page 65 onwards, in fact, a short recap in tabular form is provided to the

reader.

Finally, a deeper analysis of six mayor case studies will be presented. By
examining real-life applications of agile methods on larger scale projects, an attempt
to validate the previously obtained results was made. As we will see later, some
of the preliminary conclusions were confirmed by a number of case studies, while
others did not reach the same result. Additionally, new contributions emerged
from the direct observation and implementation of such theoretical concepts into

industrial and experimental projects.

Chapter 1

Historical background of

agile

In order to investigate agile methods’ future and their possible usages in the
hardware domain, a general introduction to such methodologies in their original

form is needed.

In the following section, an historical view on agile’s predecessors is provided,
it can be useful to understand how and why agile became so popular. After this
preamble, agile will be described by analyzing the original Agile Manifesto. Finally,
a description of its practical applications will be provided, together with a more

detailed view on a series of specific agile methods.

1.1 Before agile

Agile came out as a reaction to the traditional way of developing software
or, using the very words of the Agile Manifesto creators, as “an alternative to
documentation driven, heavyweight software development processes” (Beck et al.,
2001). With traditional methods, the development process used to start with

the research and documentation of a very detailed set of customer requirements,

1

Historical background of agile

followed by design, development, and inspection phases. Starting from the mid-
1990s, these first steps were identified to be frustrating and sometimes impossible
to follow (Cohen et al., 2004), and the reasons were many. First, documenting
customer requirements in such a detailed way could take months or even years,
delaying the real development process. Secondly, the industry was evolving at a
different pace, so requirements were always changing, in a much faster way than
what traditional methods could manage. Third, also customers — as a consequence
— became more demanding, asking to modify requirements more often; they became
unable to define requirements up front, in a definitive way, as these methods
demanded. Agile solved many of these issues, but it was not a disrupting invention:
most of its practices come from other basic principles and are held together by

sharing a series of principles and values, that will be analyzed later on.

One of the first traditional software development methods was the waterfall
method. 1t was built on a simple idea: dividing the software development process into
two phases for small projects — analysis and coding — and into seven consecutive
phases for larger projects (Royce, 1987). In the analysis phase, however, the
waterfall method involved the traditional research and documentation of customer
requirements that could last several months. The purpose was to document
everything, then provide the collected information to the designers and the engineers,
asking them to realize the customer needs. This kind of method worked really
well in certain cases, but struggled with changes. In real life, requirements kept
changing even after years of work, and also when the development phase was
already started. Due to its approach, any change in the waterfall method meant
that everyone involved in the development had to meet in a room, discuss the issue,
and document it, causing a further increase in documentation and time consumed.
The waterfall method tried to avoid changes in requirements by freezing them at
the beginning of the process, but this idea collided with the real world necessities
(Cohen et al., 2004). The main issue with the waterfall method is, in fact, its
tendency to focus on a big, long-term goal — the final product and its major features
— while requirements, especially in IT projects, are changing very rapidly (Cooper,
2016). B. Reagan (2012) describes this matter as follows: “it’s hard to alter course
when you're being swept down a large waterfall [...]. Too much up-front planning

means too much change management downstream”. In other words, focusing too

2

Historical background of agile

much on the final product gives origin to multiple unwanted outcomes like long
feedback loops, replanning, and the need of reaching compromises. This results into
longer and inefficient development cycles; products that do not completely satisfy
the stakeholders; higher costs caused by the additional time and effort needed to

implement changes and replanning.

For sake of completeness, it is worth mentioning how the waterfall method is
not the only traditional method with this kind of drawbacks. Slight modifications
to the waterfall model were brought by incremental and iterative techniques.
The incremental ones suggested breaking the project in smaller increments and
apply a traditional waterfall approach to every increment. This meant that the
customer requirements’ heavy research and documentation was kept in place, but
the requirements were then analyzed separately as stand-alone functionalities,
allowing different teams to work on them simultaneously. This allowed to reduce
the development times, thanks to concurrent multitasking. Similarly, iterative
techniques subdivided projects in “iterations of variable length, each producing a
complete deliverable and building on the code and documentation produced before
it” (Cohen et al., 2004). The big difference between the two techniques, however,
is that with the iterative ones, change is not a problem. Every iteration has its
own research phase and its own requirements to fulfil. It is not necessary to have
a complete set of customer needs at the beginning of the project, every iteration
can apply a smaller waterfall model to implement the desired features into the
deliverable. The following iterations will then do the same, adding features to
it, according to the new and updated customer needs. Starting from these ideas,
several methods were developed as extensions of the classical waterfall method.
Among them, the most popular ones were the V-cycle model and the Spiral Model,
which however still found difficulties in supporting both the collaboration between
different designers from different disciplines, and the integration between hardware
and software (Mabrouk et al., 2018).

Nevertheless, this way of developing software represented a great move towards
the agile methodology and away from the traditional waterfall method. Additional
contributions came by analyzing a variety of existing methods, approaches, and

techniques, both in their strengths and in their weaknesses. As an example, Ken

Historical background of agile

Schwaber (one of the seventeen agile manifesto’s signatories and co-developer of
Scrum, probably the most successful agile technique) focused his attention on the
Capability Maturity Model (CMM). This model suggested companies a series of
processes and goals useful to pass from the first level of maturity (chaotic) to the
fifth one (optimized). He studied the model, and he understood that although
CMM tried to turn software development into a series of repeatable, defined,
and predictable processes, it was still made of a set of largely unpredictable and
changing processes (Cohen et al., 2004). Schwaber realized how, to be truly agile,
a process needed to accept change as quickly as it arose, and that in a dynamic
environment “creativity, not voluminous written rules, is the only way to manage

complex software development problems” (Highsmith & Cockburn, 2001).

Another source of inspiration was found in the engineering and manufacturing
world. Mary Poppendieck and Bob Charette focused on Lean Manufacturing, an
incredible invention of the second post-war period by Toyoda Sakichi, that did
not gain popularity in the United States until the 1980s. Toyoda’s idea was to
keep the level of supplies and inventory as low as possible (the bare minimum
to run the plant for one day), only producing enough products to fill existing
orders. According to Poppendieck (2001), lean manufacturing is made of ten basic

principles:

Eliminate waste

Minimize inventory
Maximize flow

Pull from demand

Empower workers

Meet customer requirements
Do it right the first time

Abolish local optimization

© 0 NSOt W

Partner with suppliers

—_
e

Create a culture of continuous improvement

This whole framework was made of reciprocal influences between practitioners
and engineers all over the world. As an example, Toyoda also integrated into his
philosophy Dr. W. Edwards Deming’s Total Quality Management (TQM) principles

4

Historical background of agile

and, in turn, Toyoda’s work inspired Charette, that few years later presented the

so-called Lean Development method.

Similarly, two other agile manifesto’s signatories, Kent Beck and Ron Jeffries,
rediscovered these principles in the late 1990s and gave origin to Extreme Pro-
gramming (XP), another extremely successful agile method. These examples show
how, during those years, many researchers focused their attention around new
software development methods, often reaching similar conclusions and giving origin
to comparable results. As Scrum and XP were developed, in fact, also others were
doing the same, such as Alistair Cockburn developing the Crystal Method. 1t was
just a matter of time before they realized how a new philosophy was born and how
important this could have been for the software industry. With these premises, in
2001 “a Manifesto for Agile Software Development” (Beck et al., 2001), commonly
known as agile manifesto, was formed and it can still be found in the original
website http://agilemanifesto.org. The manifesto emphasizes small, co-located and
self-organizing development teams working close to each other, taking advantage of
frequent feedback gathered from close customer collaboration, and embraces change

(Larman, 2004). In the next section, a deeper view of the manifesto is provided.

1.2 The Agile Manifesto

As the authors themselves described their 2001 meeting, “[a] bigger gathering of
organizational anarchists would be hard to find.” Continuing to cite the manifesto’s

history webpage,

[...] what emerged was the Agile ‘Software Development’ Manifesto. Represen-
tatives from Extreme Programming (XP), SCRUM, DSDM, Adaptive Software
Development, Crystal, Feature-Driven Development, Pragmatic Programming,
and others sympathetic to the need for an alternative to documentation driven,
heavyweight software development processes convened. |...]| the Agile move-
ment is not anti-methodology, in fact, many of us want to restore credibility to
the word methodology. We want to restore a balance. We embrace modeling,
but not in order to file some diagram in a dusty corporate repository. We

embrace documentation, but not hundreds of pages of never-maintained and

5

http://agilemanifesto.org

Historical background of agile

rarely used tomes. We plan, but recognize the limits of planning in a turbulent

environment (Beck et al., 2001).

Apart from these high-sounding premises, the manifesto is presented in a very
simple and concise way, as one can verify by accessing its original website. On the
main web-page, in fact, it can be found a brief introduction followed by its four

main values, as shown in Table 1.1.

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Table 1.1: Agile values presented by the Agile Manifesto (Beck et al., 2001)

In his article, Glass (2001) provided a comparison between agile and traditional
methods, by analyzing each of these values in detail. It is interesting to look at how
this new paradigm was welcomed, but also criticized, by the other practitioners
at that time. About “individuals and interaction over processes and tools”, Glass
believes that the Agile community is right, because traditional software engineering
was gotten too caught up in its emphasis on process. However, he also states that
“most practitioners already know that people matter more than process” (Glass,
2001), as if agile was not adding anything particularly new to the industry. Going
on with the list, about “working software over comprehensive documentation”,
Glass agrees with the agile community, saying: “It is important to remember
that the ultimate result of building software is product. Documentation matters
[...] but over the years, the traditionalists made a fetish of documentation. It
became the prime goal of the document-driven lifecycle” (Glass, 2001). About
“customer collaboration over contract negotiation”, Glass instead agrees with the
agile manifesto on the importance of customer collaboration, but he also highlights
how contracting should not be underestimated: “I deeply believe in customer
collaboration, and [...] without it nothing is going to go well. I also believe in
contracts, and I would not undertake any significant collaborative effort without it”

(Glass, 2001). Finally, when commenting the last agile value, “responding to change

6

Historical background of agile

over following a plan”, he tells about two contradictory lessons learned in the past
years: “customers and users do not always know what they want at the outset of
a software project, and we must be open to change during project execution [...]
requirement change was one of the most common causes of software project failure”
(Glass, 2001). In this way, again, he expresses how in his opinion the agile values

are correct on the left side, but not necessarily on their right side.

Going on with the manifesto’s description, it is important to know how, starting
from the agile values, twelve “principles” were developed. In a second webpage,
in fact, a longer and more detailed list contains the manifesto’s twelve principles,

here reported in Table 1.2.

1. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity — the art of maximizing the amount of work not done — is essential.
11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

Table 1.2: Agile principles presented by the Agile Manifesto (Beck et al., 2001)

This list is of course of extreme importance for the agile movement, but as
agile evolved during the years some critical thoughts on it emerged as well. As an
example, I found Meyer’s comments very interesting and useful for people willing

to understand and apply agile in real life projects. In his book “Agile”; in fact,

7

Historical background of agile

Meyer points out how some of these principles are instead practices, platitudes,
assertions, and in general how this list is incomplete. To cite some examples, he
believes that principles number six and twelve can be defined as practice; number
five and nine are too obvious and don’t provide any extra help to the developers;
principle number 10 is, in his mind, completely wrong since “maximizing work
not done” and seeking simplicity are two important principles but are just not the

same thing; and the list continues further (Meyer, 2014).

To solve this issue, Meyer created a “new” list, with a teaching purpose and not
to replace the original one. This new list subdivides the principles in two categories
- organizational and technical - for a total of eight new principles, three of which

also have few sub-principles:

Organizational

1. Put the customer at the center.

2. Let the team self-organize.

3. Work at a sustainable pace.

4. Develop minimal software:
4.1 Produce minimal functionality.
4.2 Produce only the product requested.
4.3 Develop only code and tests.

5. Accept change.

Technical
6. Develop iteratively:
6.1 Produce frequent working iterations.
6.2 Freeze requirements during iterations.
7. Treat tests as a key resource:
7.1 Do not start any new development until all tests pass.
7.2 Test first. 8. Express requirements through scenarios.

Table 1.3: Agile principles according to Meyer (2014)

Although this is not the original set of principles published by the manifesto
authors, it is probably more useful to people approaching agile now. The agile
philosophy has changed a lot during the years, and it is more meaningful to deal
with such pragmatic points than with the original and very vague ones. The
outcome is the same, but the effort needed to understand and implement them is
surely lower. Some of these principles are the reinterpretation of the original one,

others are created by joining more than one principle, and others are brand new,

8

Historical background of agile

addressing issues that the agile philosophy values, but the original principles were

not able to show.

In his book, Meyer analyses these eight principles in detail, over almost thirty
pages. Of course, it would be excessive to do the same in this paper, however it
is interesting to focus on some excerpts. Starting from the first principle, Meyer
prefers to put the focus on how customers, in agile processes, should be at the
center of the whole development process. It is not enough to satisfy their will and
deliver frequently, customers must be welcomed at regular project meetings, they
should be able to interact with developers and try the new versions, in order to

give their feedback.

The second principle addresses the self-organizational nature of the agile teams,
in which the manager’s internal functions are usually split between the team
members. Agile indeed places great trust in the team’s ability to organize its own
work. This however does not mean that managers are completely absent, they
are usually needed because of the company structure, but have a sort of “subtle
control consistent with the self-organizing character of project teams” (Schwaber
& Sutherland, 2012). This usually means that the management decides what to
build and who will work on their project, but let the team self-organize, free from

influence and with the fewer possible constraints.

The third principle, according to Meyer’s view, refers to the working pace of the
agile teams. Programmers should be given working conditions that enable them to
deliver their full potential, avoiding pressure and welcoming a calm and respectful

working environment.

The fourth one is instead a bit more complex and is the first one being made
of three sub-principles. The author summarized multiple agile principles into a
very simple sentence made of three words: “develop minimal software”. This means
that developers should focus on minimal functionality elements, avoiding time
losses due to elements that are not needed, or needed by only a few users. These
non-essential features could cause delay in the releases, harm the team’s focus,
create a future maintenance burden, and constrain the future evolution of the
software. The minimal functionality requirement could be easily misunderstood

and confused with the need of producing “only the product requested”, thus Meyer

9

Historical background of agile

separates the two in a clear way. According to this second point, developers should
not aim at reusability and extendibility, as the traditional methods ask them to;
they should simply build something that works now and here, for this specific
customer and request. Although this tip looks a bit extreme, its real purpose is
to discourage developers in “working too much” i.e., in putting too many checks
and always try to handle the most generic case. Agile suggests, on the opposite, to
focus on the given tasks and develop the best possible software for that purpose,
but this does not mean that developers are encouraged to go against the software
development good practices, because such an approach would be detrimental, no
matter what. Finally, developers should only focus on coding and testing, according
to principle 4.3. This simply means that they should stay away from everything else
is rotating around the development process: feasibility studies, transcripts or videos
of requirements interviews and workshops, requirements documents, PowerPoint
presentations about the future system, emails, design documents, UML diagrams,
and so on (Meyer, 2014).

The fifth principle is again very simple in its formulation, but extremely complex
in reality, and it also represents the last organizational principle: “accept change”.
Meyer prefers to say that agile accepts change, rather than welcomes it: “it is one
thing to state that change is a normal phenomenon in software development, and
quite another to start hoping for more changes. After all, it always causes more
work” (Meyer, 2014). Apart from this linguistic discussion, the text focuses on
how, in reality, also traditional methods accept change, they simply address it in
different ways. According to the author, agile-enthusiastic texts tend to “caricature”
the traditional methods, but in real life they do not treat change in a completely
different manner. In other words, change acceptance remains a key concept in the
agile framework and every agile method addresses this issue in a different way, but

this does not mean that only agile methods give programmers the tools to do so.

Continuing to refer to Meyer’s work, it is now the turn of the first technical
principle: “develop iteratively”, that means to freeze requirements during the
iterations, and produce frequent working iterations. According to this view, every
iteration must yield a working system. That system may offer only a small subset

of the full requirements, but it must be a functioning system that provides an

10

Historical background of agile

end-to-end user experience. This allows the customer to try it and provide feedback.
All agile methods use iterations as the basis for their approach, and they all suggest
short durations. It is important to point out also the nature of these iterations:
their duration is fixed in advance. “If at the end of the allotted time some of the
expected functionality is not completed, the functionality gets pushed to the next
iteration, or dumped altogether, but the deadline does not change” (Meyer, 2014).
This principle is called “time-boxing”, it helps to get more realistic predictions,
and can also act as a booster for developers: even if they could simply dump a
given functionality, saying that it could not be fitted into the allocated time, they
usually perceive the time constraint as a challenge, and find a way to deliver on
time. Freezing requirements during the iterations, instead, is useful to manage
changes during the process. As already discussed, change is accepted, but it can not
be welcomed in every case, it should be properly handled. Usually this is done by
preventing changes during an iteration, in order to allow developers to work with
solid bases on the small iteration, and think about changes in the following one.
If changes were to be allowed anywhere during the project life, developers would
struggle in adapting too often to the new requests, and the whole development

would result into a messy process.

The seventh principle suggests treating tests as a key resource, and agile methods
indeed consider tests a central resource of any project. The suggested method
involves, firstly, to not start any new development until all tests pass. It is more
important to look at the integrity of what has been produced, than the addition
of new elements. Although it might seem obvious that it is better to wait until
all tests are passed, software developers often encounter small bugs that could
question this idea. According to agile, any small defect should pause the project
progress, allowing everyone to focus on it and solve the issue. On larger projects,
however, this approach could be softened by defining different levels of importance
for bugs, deciding that only over a certain importance they could cause the project
to stop. The second point is instead apparently simpler: test first, i.e., never write

code without first writing a test that exercises it. However, it is more than that:

Some functionality is not present yet, and you want to add it. Instead of

thinking about it in the classical style of defining requirements, write a test

11

Historical background of agile

for it, and — this is the surprising part — run that test (after adding it to
the regression suite). The test should fail, since the functionality is not yet

supported. Then fix the code until the test passes (Meyer, 2014).

This idea could seem to provoke unnecessary, time-consuming, extra steps.
According to its supporters, however, writing a test first forces the developer to
imagine a usage scenario for the desired feature. If this scenario is not found, then
the feature was not needed, and so is the code that was going to be developed. In

this way, test first is actually saving time.

Finally, the eighth principle asks to express requirements through scenarios.
Agile, as already stated, avoids big upfront requirements, but developers still need
requirements. These are usually pictured by means of user stories and use cases,
both describing typical interaction scenarios between the system and an imaginary
user. The difference is that a specification is usually general, while the use case/user
story needs to be very specific and tell the developer what should happen in a

given case.

1.3 Agile methods

After having analyzed values and principles that agile enthusiasts share, it is
worth taking a look at the most popular agile methods. According to Sommer
et al. (2015), at least nine different methods have been developed: Scrum, Crystal,
Extreme Programming, Adaptive Software Development, Agile Modeling, Dynamic
Systems Development Method, Feature Driven Development, Internet Speed De-
velopment, and Pragmatic Programming. Other authors also include in this list
different methods such as Lean Software, Lean Development, Dynamic Systems
Development Methodology, and others. Over the last twenty years, these methods
have had very different outcomes. While Scrum and XP are the most popular
ones, many other agile methods have suffered a much lower implementation rate in
the industry. Among the ones that at the beginning of the 2000s appeared to be
revolutionary and granted of future success, many had to face the reality and leave

room for the very few methods that are still in use nowadays.

12

Historical background of agile

Nevertheless, it is worth taking a look at a wide set of agile methods, to
understand how the agile philosophy has been interpreted by different practitioners.
All the agile methods have, in fact, their foundations on a set of recurring themes:
incremental development, close collaboration, frequent deliveries, accepting change,

and working in self-organized teams.

Working iteratively and in short cycles, agile teams are able to provide new
software releases in a quicker way, compared to the traditional approaches, adding
new features every time. In this way, it is always possible to introduce changes
in the projects, since there is not a pre-planned route to follow a priori. This is
one of the keys to agile’s success, as it enables developers to follow the always-
increasing demand expectations from customers, as well as the rapid evolution
of technology and its rising complexity. The descriptions of agile methods are
countless. In addition to the above ones, Cooper (2016) points out how agile
exploits adaptive planning and a time-boxed iterative approach. Mabrouk et al.
(2018) speak about its tendency to involve the various stakeholders, partners; and
customers, reducing the interfaces’ rigidity that characterizes traditional approaches.
They also highlight other key aspects: the lead time between two deliverables is
fixed and unchangeable; the high frequency of iterations allows a reduction in
“time to market” while improving the quality of the product delivered; the waste
minimization by iterative and incremental work allows the development teams
to reach significant productivity levels in a faster way. Boéhmer et al. (2017)
summarize their literature review expressing how agile’s goal is to have a functional
product at any time, starting from a simple version of the product, which roughly
describes the customer requirements and has minimal functionality, and advancing
its development step by step adding new features. In this sense, the product
increments need to be measurable and evaluated by the user, in order to improve
it further. Going on with this process, as the product becomes more concrete,
the project becomes more immobile, since the range of options available decreases
at every step: “the target area of the planned solution usually changes due to
gained knowledge; the obfuscation and fuzziness decreases as the project progresses”

(Bohmer et al., 2017). This concept is visually represented in Figure 1.1.

Finally, Kénnolé et al. (2016) summarize agile’s main advantages in terms of

13

Historical background of agile

Final solution at
project end

Measurable

intermediate
Actual project results
path

Project
start

Range of options jtgration

Uncertainty reduces
throughout the project

Figure 1.1: Agile project path (Oestereich & Weiss, 2008)

productivity and wellbeing as it follows:

Ability to manage changing priorities,

Increased team productivity,

Improved project visibility,

Improved team morale/motivation,

Improved team communication and coordination,
Enhanced ability to adapt to changes,

Increased productivity,

Capacity to deliver releases quicker.

NSO WD

As previously mentioned, in order to better understand agile methods, in the

following sections a set of agile methods will be investigated with more detail.

1.3.1 Scrum

Scrum is with all probabilities the most well-known agile method at the mo-
ment. It has been developed between 1995 and 1997 by Schwaber (1997) and Jeff
Sutherland, following Takeuchi and Nonaka (1986) study on six technology driven
multinationals that adopted a new, holistic approach in their product development
processes. So, it can be said that its origins are not in the software development
world, and as it will be described later on, also other agile methods share this

characteristic.

In order to understand Scrum, we could use one of the first definitions given by

Schwaber (1996) himself: a process that “accepts that the development process is
14

Historical background of agile

unpredictable”. In a certain way, he formalized the “do what it takes” mentality.
Following, instead, the analyses of other practitioners, Scrum can be defined as a
method with the purpose of “managing software development processes in volatile
environments”. In particular, the main concept behind Scrum is the frequent
contact between the developer and all the stakeholders involved in the project, with

features implemented in small sprints to foster communication (Cooke et al., 2012).

Going more into details, Scrum achieves this goal assigning only three roles in
every project: Product Owner, Scrum Master, and Development Team members.
In the following pages a description of the three roles will be provided, while a
summary of roles and responsibilities is present for faster consultation in Table
1.4. The Product Owner is responsible for the product, she has to determine the
features that need to be implemented and communicate them to the team, but also
to maintain them as the project goes on. This does not mean that the Product
Owner has to define individual tasks, she is responsible only for the product-level
units of functionality. She can also change these properties, but not while a sprint
is in progress. The team, instead, will then fulfill them by breaking them down in
simpler tasks. In this sense, the Product Owner has to deal with the project at the
start of every sprint, selecting user stories and explaining them, and at the end
of each iteration, evaluating its results (Meyer, 2014). More generally, she has to
facilitate decisions about that product, and has the final say over these decisions.
The main benefit of having a Product Owner in Scrum is to separate the job of
defining project objectives from the day-to-day management of the project, that is
assigned to the Scrum Master (Meyer, 2014). The Scrum Master, in fact, has to
monitor the team, ensuring that Scrum is understood and correctly applied by its
members; she can also have an intermediary position between the Product Owner
and the rest of the team, to ease communication. Originally, this role was created
to substitute a multitude of overlapping roles, such as coaches, mentors, gurus, and
method enforcers (Meyer, 2014). The Scrum Master should, as a coach, advise and
not prescribe. She should be involved in the project directly and do some of the
real work together with the developers, not simply act as a manager. Additionally,
the Scrum Master should remove impediments identified by team members in daily
meetings, both technical or organizational, that prevent the team from operating

at full productivity. The Scrum Master is also responsible for protecting the team

15

Historical background of agile

from distractions and undue interference from the rest of the organization (Meyer,
2014). On the other hand, she does not have the same power of a Product Owner:
a Scrum Master may not be able to say “You're fired”, but can say “I’ve decided

we’re going to try two-week sprints for the next month” (Cohn, 2010).

Scrum Roles Responsibilities

Product Owner o Clearly express product backlog items
e Order product backlog items to best achieve goals and missions
¢ Ensure the value of the work the development team performs
o Ensure that the product backlog is visible, transparent, and clear to all
e Ensure the development team understands items in the product backlog

Scrum Master e Clearly communicate vision, goals, and product backlog items
o Teach participants to create clear and concise product backlog items
o Facilitate Scrum events as requested or needed
e Coach in self-organization and cross-functionality
¢ Remove impediments to the Development Team’s progress
e Plan Scrum implementations within the organization
¢ Help employees and stakeholders understand and enact Scrum

Development Team e Self-organize - turning product backlog into product increments
e Cross-functional collaboration
e Share accountability in the Development Team as a whole
¢ Avoid sub-teams dedicated to particular domains

Table 1.4: Scrum roles and responsibilities (Sommer et al., 2015)

Not only the people, but also the structural elements of the software development
project are defined by the Scrum approach. In particular, it is worth mentioning

the following;:

e Product Backlog: the list of features that need to be implemented, as
defined by the Product Owner, following customer requirements in order of
priority. Also defined as the collection of user stories, meaning the set of
artifacts that agile practices use to define customer needs.

« Sprints: short iterations, lasting from one to four weeks (or six, according
to some authors), that the project will undergo, in each Sprint the team will
add new features. Although Scrum embraces change, during a given sprint
there is no room for changes in requirements, functionality can only be added
in the sprint planning phase. Once the sprint has actually started, no one
is permitted to add anything until the end of the sprint, managers included
(Meyer, 2014).

« Prototype: a partial marketable product, achieved at the end of each sprint,
it is then improved in the following ones changing requirements or adapting

16

Historical background of agile

to customer’s needs, updating the product backlog;

o Sprint Backlog: list of tasks addressing a subset of the requirements that
the development team must perform during a given sprint, it can also contain
information about previous sprints, to provide project knowledge to all the
team members. As the Product Backlog contains the user stories, the Sprint
Backlog includes the smaller and more specific tasks related with every user
story.

e Daily Scrum: a daily meeting in which the team members discuss the project
progress. As Meyer points out, most agile methods advocate frequent face-to-
face contact, but Scrum puts extra effort in this sense, demanding to organize
these meetings every morning. Their duration is usually set around fifteen
minutes, during which the team members answer three questions: “What
did I do in the previous working day?”, “What do I plan to do today?”, and
“What impediments am I facing?”. Anything else must occur outside of the
meeting (Meyer, 2014). In this way, a plan for the following twenty-four hours
is created. Each sprint is then developed looking at the sprint backlog and
monitored on a burn-down chart (Cooper, 2016).

o Review of the current Sprint. It usually starts with an assessment of the
work done during the day, performed by the development team and presented
to the Product Owner and outside stakeholders. At the end, new Sprints can
be created, reorganized, optimized, and updated. The review meeting should
only focus on results, not processes.

Different versions of Scrum also subdivide the sprints into a set of different
subsequent phases, such as Pre-Sprint planning, Sprint, Post-sprint meeting (Cohen
et al., 2004). This way of organizing the sprint may be useful but can cause
ambiguity in people used to the previous one. The Post Sprint meeting, as an
example, has the same function of the so-called Review. Similarly, the Product
Backlog is also called “Release Backlog” by some practitioners. Thus, when
applying Scrum into a project, it is worth taking the time to get used to the shared
nomenclature inside a team. The same holds for any other popular method, that

could have undergone similar modifications during the years.

Scrum also requires a set of physical facilities, such as a dedicated project room

where the team members meet during the project development process. These

17

Historical background of agile

1. PRODUCT BACKLOG

FEATURES
- Business and technical tasks.
- Team selects features for

a shippable product.

2. SPRINT
- Team works on
chosen features.
- Not interrupted
or adjusted.

3. Daily
Scru

reviewed
and
updated.

- Features implemented.
- Demonstrated to stakeholders.

4. DEMONSTRATION

Figure 1.2: The Scrum method’s (Schwaber, 2007)

rooms must be equipped with at least one large white board called the scrum
board (or scrumboard). This tool is used for visually displaying the sprint process,
meaning that all the elements of the sprint backlog must be listed here, sorted by
priority. In addition, one could also report here a burndown chart, and the product
backlog. All these elements together provide the team with a quick overview of
the sprint status (Mabrouk et al., 2018; Mulder et al., 2014). The burndown chart,
in particular, is a record of a project’s velocity and depicts how fast the project
“burns” the items in its task list. As shown in Figure 1.3, the velocity is the number
of tasks discharged and the green line represents the constant-velocity line, also
called the ideal burndown. If the chart (the dark blue line) is below the ideal
plot, the project is progressing faster than expected. If it is above the line, it is

progressing slowly than expected.

The above-mentioned roles and steps that Scrum users adopt daily were created
for software development projects only. However, they include generic project
management tools that could be re-applied in any industry and project, as discussed

later on.

18

Historical background of agile

Sample Burndown Chart
250 25

{
é;

100 10

50

mm Completed tasks
—+#—Remaining effort

Ideal burndown

emaining effort {hours;

—— Remaining tasks

Remaining and completed tasks

/

Day Day
0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 18 20 21

Figure 1.3: Burndown chart example from wikipedia.org

Figure 1.4: Scrumboard example from Meyer (2014)

1.3.2 Extreme Programming (XP)

Extreme Programming, often also named eXtreme Programming and usually
abbreviated in XP, was presented in 1998 by Beck and Jeffries that, as partially
mentioned before, re-discovered the principles at the basis of Lean Manufacturing
and tried to apply them in the software industry. In particular, they were hired by
Chrysler to unify three existing payroll systems, an apparently simple project that,
however, was declared a failure before they arrived and was creating several issues
to the company. Thanks to their approach, the task was quickly and successfully
completed. In doing so, XP was in a certain way invented and applied for the

first time. XP then gained popularity thanks to Beck’s Extreme Programming
19

wikipedia.org

Historical background of agile

Ezplained: Embrace Change (Beck, 2000) in year 2000.

Compared to Scrum, XP is less structured and consists of a list of principles
and best practices based on four main values: communication, simplicity, feedback,
and courage, and quality work (Highsmith & Cockburn, 2001). In addition to the
original XP’s authors contributions, the following list includes extra comments
from Cohen et al. (2004), Mulder et al. (2014), and Beck (2000):

1. The planning game: before each cycle, every task and feature is analyzed,
estimated and organized in priority. Customers, managers, and developers
meet to flesh out, estimate, and prioritize requirements for the next release.
The requirements are called “user stories” understandable by all parties.

2. Small releases: at each release, make the minimum useful changes, adding a
minimal amount of features. In this way, an initial version of the system is put
into production after the first few iterations. After that, new working versions
are put into production every few days or weeks, depending on the project.

3. Metaphor: to model the system, it is suggested to use metaphors explaining
the roles and relations inside the team, both for the business people and for
the technical people.

4. Simple design: developers are urged to keep design as simple as possible. A
simple design should pass all the tests, have no duplicate logic, state its
intention to the programmers and have the fewest possible classes and methods.

5. Testing: all codes should be unit tested to make sure they work properly.
Developers should write acceptance tests for their code before they write the
code itself. Additionally, customers write functional tests for each iteration
and at the end of each iteration, all tests should run.

6. Refractoring: reorganizing the code/design after its implementation, to see
if it can be done in a simpler way. In other words, the design should be evolved
while developers are still working, in order to keep it as simple as possible.

7. Pair programming: two people work on the code simultaneously: one
implements the code and the other one thinks strategically about what is the
best way to implement the features. They should use the same machine.

20

Historical background of agile

8. Collective ownership: changing partners and roles often, the whole team
understands different parts of the system, feeling more confident in changing
and improving them, instead of knowing only a limited portion of it. In this
way the code is owned by all developers.

9. Continuous integration: each piece of code is individually tested and then
added to the complete system. New code integrations are performed as often
as possible and all functional tests must still pass after the integration.

10. 40-hour work week: people working at the project should not work more
than that, overtime should be followed by free time to recover and the project
requirements should be selected accordingly.

11. On-site customer: the customer should always be involved in the design
process. He works with the development team to answer questions, perform
acceptance tests, and ensure that development is progressing as expected.

12. Coding standards: standards should be used, to allow everyone to adapt
and further develop the code. Other sources also insert.

13. Open workspace: developers work in a common workspace, with individual
workstations around the periphery of the workspace and common development
machines in the center.

Thanks to these practices, XP immediately became very popular, and was
even considered to be better than Scrum, at least until the first half of the 2000s.
Generally, practitioners of that time agreed in saying that XP’s strength came
from the simultaneous application of all the principles described before, meaning
that each of them alone was not giving XP any extra usefulness. Developers
had to commit and implement as many of them as possible in order to get some

competitive advantage out of this method.

As any other method, also XP has some drawbacks and critics. The teams’ size,
as an example, can not exceed the number of people that can be fit into a room,
so usually has to be lower than 10. However, thinking about this constraint in
modern terms, it could also bring to the conclusion that XP can not be applied
in case of remote working. Of course this is not the case, but it represents a very

simple example of how, even within the software development boundaries — for

21

Historical background of agile

which these methods have been created — all of them have evolved throughout the
past two decades. For this reason, and for the sake of brevity, the descriptions
present in this section tend to focus more on their original form, giving only brief
hints of how they evolved and transformed into different variants of the original
methods.

Finally, comparing XP to the other agile methods presented here, it can be
noted how it has the shortest recommended iteration length and, as many others,
it was not created to be applicable to a single use case; according to Cohen et al.
(2004), there is nothing in XP itself that should limit its applicability.

1.3.3 The Crystal Methods

The Crystal Methods were developed by Alistair Cockburn in the early 1990s.
Highsmith worked in a close relation with Cockburn and described Crystal as a
set of methods that “focuses on people, interaction, community, skills, talents, and
communication as first order effects on performance. Process remains important,
but secondary” (Highsmith & Cockburn, 2001). Cockburn himself, instead, gave a

more drastic definition:

To the extent that you can replace written documentation with face-to-face
interactions, you can reduce the reliance on written work products and improve
the likelihood of delivering the system. The more frequently you can deliver
running, tested slices of the system, the more you can reduce the reliance on
written ‘promissory’ notes and improve the likelihood of delivering the system”
(Highsmith et al., 2000).

His goal was to remove what he identified as the main obstacle to product
development: poor communication. As Meyer (2014) points out, however, Crystal
does not enforce a “communicate-at-all-costs policy”, on the contrary it forcefully
imposes to respect the programmers, to accept that people are different, and to

accommodate them.

Up to this point we did not put much attention of the origin of Scrum and XP’s

names, for Crystal however it is interesting to know how the name was accurately

22

Historical background of agile

chosen to represent a gemstone, where each facet stands for another version of
the process, all arranged around an identical core (Highsmith & Cockburn, 2001).
Moreover, the metaphor is also used to classify the different crystal methods: the
most agile version is Crystal Clear, followed by Crystal Yellow, Crystal Orange,
Crystal Red, and so on. The differences among all these variants depend on
the number of people involved, as this directly affects the degree of emphasis on
communication. As people are added to the project, the method becomes more
opaque. This in turn means that the project criticality increases, more constraints
are needed, and the method “hardens”, becoming less agile (Cohen et al., 2004).
Highsmith, however, stresses that even the more opaque ones are still agile, thanks
to the common mindset that they share with the more agile ones (Highsmith &
Cockburn, 2001).

Differently from the previously mentioned ones, the Crystal Methods do not
have a specific team size constraint. Their iterations length is usually set around
four months, much longer than Scrum and XP durations. Finally, Crystal supports

the use of distributed teams, something that XP does not consider at all.

1.3.4 Feature Driven Development (FDD)

Feature Driven Development was developed in circumstances similar to those of
XP. Its creators, Jeff DeLuca and Peter Coad, were hired to save a failing landing
system. Their predecessors had created 3500 pages of documentation without
succeeding and, more importantly, without implementing a single line of code. The
FDD approach was created by joining DeLuca and Coad’s previous experiences

and was proven to be successful, saving the project from a disastrous ending.

FDD’s core values are summarized as it follows by Highsmith and Cockburn
(2001):

A system for building systems is necessary in order to scale to larger projects.

A simple, well-defined process works best.

o Process steps should be logical and their worth immediately obvious to each
team member.

o “Process pride” can keep the real work from happening.

23

Historical background of agile

o Good processes move to the background so that the team members can focus
on results.

» Short, iterative, feature-driven life cycles are best.

Apart from these general values that practitioners need to apply, the method
also provides a series of practices to follow. The first step consists in “developing
an overall model”, i.e., creating a walkthrough version of the system thanks to the
collaboration between team members and experts. Secondly, a “feature list” is
needed, meaning that the team has to identify and collect a set of features that
will represent the system. In this sense, FDD features are somewhat similar to
XP’s story cards, they need to describe items useful in the eyes of the client, in a
language understandable by all parties. Another interesting remark about features
is that the creation of such a list should not take more than ten days, otherwise
features must be broken down into sub-features. The third step consists then in
the prioritization of such features into subsections called “design packages” The
design packages are then assigned to a chief programmer, who in turn assigns
class ownership and responsibility to the other developers and team members, this
is what the authors called “plan by feature”. Fourth, the team will undergo the
so-called “Design by feature & build by feature” phase, during which the iterative
approach, classic of agile methods, is applied. The chief programmer chooses a
subset of features that will take 1 to 2 weeks to implement. These features are
then planned in more detail, built, tested, and integrated (Cohen et al., 2004).

With FDD, there are no specifications about an ideal team size. A greater focus
is, instead, put on “premium people”. The authors believe that their presence is
of extreme importance inside any team. For what concerns the iterations’ length,
FDD is usually applied with two-weeks long sprints. Finally, FDD supports the

use of distributed teams, similarly to Crystal.

1.3.5 Lean Development (LD)

Lean Development was created by Bob Charette who, as already mentioned,
took great inspiration from the Lean Manufacturing methods, applied especially in

the automotive industry in the 1980s. This method is quite simple, and it will not

24

Historical background of agile

be investigated much further, however it is interesting especially because it provides
a very different approach with respect to the other methods already analyzed.
Instead of looking at the development process, in fact, LD is a tool to reach what
Charette believed to be the key to agile: “you need to change how companies work
from the top down” (Cohen et al., 2004).

LD is based on twelve management strategies (Highsmith & Cockburn, 2001):

Satisfying the customer is the highest priority.
Always provide the best value for the money.
Success depends on active customer participation.
Every LD project is a team effort.

Everything is changeable.

Domain, not point, solutions.

Complete, do not construct.

An 80 percent solution today instead of 100 percent solution tomorrow.

R S N T

Minimalism is essential.

—_
=

Needs determine technology.

—_
—_

. Product growth is feature growth, not size growth.

—_
N}

. Never push LD beyond its limits.

1.3.6 Dynamic Systems Development Method (DSSM)

Dynamic Systems Development Method is not really an agile method, but more
of a framework. It is made of six stages: Pre-project, Feasibility Study, Business
Study, Functional Model Iteration, Design and Build Iteration, Implementation,
and Post-project (Cohen et al., 2004).

During the six phases, the project is first analyzed to understand whether the
conditions to start working on it are present or not. In fact, the purpose of the
first three stages is to assess its feasibility under different perspectives. Funding is
considered, but also the very DSDM usage is discussed, to understand if the project
could benefit from it. The business study, additionally, makes use of workshops

attended by knowledgeable staff who can quickly pool their knowledge and gain
25

Historical background of agile

consensus as to the priorities of the development” Cohen et al. (2004). At this
point the project should get to the Business Area Definition, which identifies users,

markets, and business processes affected by the system.

The subsequent phase is the Functional model iteration, where a set of prototypes
are built, in order to satisfy the high-level requirements identified in the business
study. These prototypes will then evolve towards the complete system during
the Design and Build Iteration phase. Here, in fact, the prototypes are combined
and tested, delivering a working system to the users. During the implementation
phase, the system is finally transitioned into use. In this phase, it is important to
notice whether the system already fulfills every requirement and whether it needs

improvements. In the latter case, improvements are implemented.

1.3.7 Agile Modeling

The last method analyzed in this section is Agile Modeling, created by Scott
Ambler (Ambler, 2002a) and based on values, principles, and practices that focus
on two key aspects of software development: modeling and documentation. Ambler
describes AM’s goal as it follows (Ambler, 2002b):

1. To define and show how to put into practice a collection of values, principles,
and practices that lead to effective and lightweight modeling.

2. To address the issue on how to apply modeling techniques on Agile software
development processes.

3. To address how you can apply effective modeling techniques independently of
the software process in use.

Agile Modeling, however, is not exactly a software development method. Its
nature is, in fact, slightly different from the above-mentioned agile methods, AM
is more of a documentation and modeling method, that can be coupled with any
other agile technique. As an example, one could develop her project implementing
XP, while making use of Agile Modeling to document it. The two methods share a

lot of values and principles, and their mutual integration is extremely simple.

AM itself is quite simple and self-explanatory. It may be sufficient to read and

26

Historical background of agile

understand its lists of values and principles, in order to understand it and apply it.

AM’s values can be summarized as follows (Ambler, 2002a):

e T e T e T S S G S
I = O R N =

© 0N O W

Assume simplicity

Content is more important than representation

. Embrace change

Enabling your next effort is your secondary goal
Everyone can learn from everyone else
Incremental change

Know your models

Local adaptation

Maximize stakeholder investment

Model with a purpose

. Multiple models

. Open and honest communication
. Quality work

. Rapid feedback

. Software is your primary goal

. Travel light

Work with people’s instincts

In the following list, instead, AM’s principles can be found (Ambler, 2002a):

—_ = =
O = O

© N T W

Active stakeholder participation
Apply modeling standards
Apply the right artifact(s)
Collective ownership

Consider testability

Create several models in parallel
Create simple content

Depict models simply

Discard temporary models
Display models publicly

. Formalize contract models
. Iterate to another artifact

27

Historical background of agile

13. Model in small increments
14. Model to communicate

15. Model to understand

16. Model with others

17. Prove it with code

18. Reuse existing resources
19. Update only when it hurts
20. Use the simplest tools

Of course, not every item on the two previous lists can be really understood
by a simple definition. However, for sake of brevity and because this paper is not
focused on agile software development, they appear here in their shortest possible

definition. Any further analysis is left to the reader.

28

Chapter 2

Agile in the manufacturing

industries

Up to this point, agile has been solely described as a software development
tool. In the last few years, however, also other industries have approached these
methods. Agile, in fact, could be applied to a wide range of manufacturing
industries, potentially bringing them benefits similar to the ones provided to the

software world.

Additionally, apart from the simple intuition that if something works well in a
given environment, then it could work just as well in a different sector, there are
other solid reasons to believe in the application of agile to the manufacturing area.
In the last 30 years, in fact, the world changed: as noted by Cantamessa et al.
(2020), digital technology has brought changes and disruption to many industries
worldwide, and “digital” corporations have now climbed to the top of the league
tables. As a consequence, design and product development changed too, and
this affected manufacturing companies as well. The shift towards the so-called
Industry 3.0 and, more recently, Industry 4.0, are steps of a deeper and broader
transformation, which is still ongoing. This process brought hardware companies
to deal with an increasing level of digitalization, larger amount of data and, in

general, to a new paradigm.

29

Agile in the manufacturing industries

The aim of this chapter is indeed to describe this new paradigm and, later on,
to assess how agile methods could fit in this framework. At the same time, it will
be performed an attempt to understand how agile methods are already put in place
outside software development, and how they contributed to the creation of hybrid
methods and adapted version of agile in projects that involve hardware product
development. Finally, some conclusions about the new possibilities for the agile in

this sector will be discussed.

2.1 The new manufacturing

As we all know, in the First Industrial Revolution (mid-18th — mid-19th centuries)
the main driver for change was the use of steam engines to mechanize manufacturing
processes. As a result, factories sprang up, producing goods more quickly and
cheaply than could be done by hand. Similarly, in the Second Industrial Revolution
(early 20th century) the use of electricity sped up manufacturing even more, aided
by the assembly line, pioneered by Henry Ford. This increased productivity
and allowed automobiles and other complex items to be mass-produced for wide
distribution. The following step occurred with the Third Industrial Revolution
(late-20th century) and the invention of the Internet, which enabled goods and
services to be produced, marketed, and consumed globally. Finally, the Fourth
Industrial Revolution (early 21st century), now underway, connects people and
things with digital technologies which provide computers of visual perception,
speech recognition, decision making, and language translation abilities. But of
course this trend has not yet ended and the next, preannounced, step will be the
fifth revolution, in which humans and intelligent machines will work together (J.
Reagan & Singh, 2021).

As mentioned, the product development process has undergone — and it is still
undergoing — transformation processes that reflect the various paradigm shifts that
the whole industry has experienced. In particular, due to the purpose of this paper,
the focus will be on the last two revolutions, i.e., the third and fourth, also called

Industry 3.0 and Industry 4.0, with an eye on the future.

At the beginning of this journey, the product development process benefitted
30

Agile in the manufacturing industries

from IT and computer technology tools, such as computer-aided design (CAD),
Computerized Numerical Control (CNC) machines, robots, Programmable Logic
Controllers (PLC). As a result, the product design, traditionally relegated to
‘passive’ paper-based visualizations, migrated to digital models (Cantamessa et al.,
2020). As an example, drawings passed from something that could only be looked
at, to a tool that can automatically lead to calculations or simulations, but can also
interoperate with another drawing of another part. Digital models now incorporate
the structure and the history of the product and can support simulation under
multiple perspectives (Cantamessa et al., 2020). With Industry 4.0, then, the
digital side took even more space, thanks to sensors, Cloud Computing, Blockchain,
Artificial Intelligence, Business process Automation, and many others. For instance,
Cantamessa et al. (2020) observe that

The Internet of Things (IoT) led to continual connection and flow of data
between people and objects and between objects and other objects; Augmented
and virtual reality allow richer representations of objects and environments,
merging the real with the virtual, and vice-versa; powerful and cheap IT equip-
ment enable the virtualization of physical servers, leading to cloud computing
and the possibility of storing Big Data; Data mining can exploit the value
hidden in massive amounts of heterogeneous data [. . .|; Machine learning allows
the development of new forms of automation and decision-making, based on

the re-elaboration and ‘digestion’ of large amounts of data.

These technological innovations, however, do not only provide positive effects,
but also create new challenges to the businesses. They cause social shifts, modify
the existing business models, and affect the products and services development. In
turn, this has an effect on the consumers expectations, roles, and behavior, but
also on the suppliers activities. In the following sections, some of these trends are

analyzed with more detail.

2.1.1 The role of data

One of the first implications of some new technologies is surely the increase

in the amount of data that any company has to manage and analyze nowadays.

31

Agile in the manufacturing industries

Information come from different domains, such as design, manufacturing and after-
sales services, and need to be, somehow, integrated. Not only internally, but even
from different companies with different sources of information, and different methods
or software programs that are rarely integrated, causing additional confusion. Apart
from the sources of data, also the different systems are used and can cause troubles:
coherence and de-fragmentation of the data regardless of the source and the format,
and more importantly their usage may represent a significant operational problem
for designers (Cantamessa et al., 2020). For instance, the presence of a large
amount of data, which could be used to support decisions, is often useless for the
simple reason that companies may not even know what data are already available
in their database and what data they are producing (Altavilla et al., 2017). In
other cases, designers do not know how to make the best use of these data, or tend
to use modern technologies such as Al algorithms without having a clear overview
on their potentialities. In this regard, product development could benefit from such
algorithms thanks to design optimization and prototyping, but the uncertainties
around them can rise additional questions and doubts about the automation of
design: will they help the designers or substitute them? Agile could provide a
solution to such issues, given its tendency to limit documentation to the bare
minimum and to properly manage it in a useful and efficient way. Agile methods
could also provide a standard that would enable different entities in the product
value chain to cooperate consistently. Additionally, approaching such an amount of
data in a more “agile” way could help in dealing with the continuous bundling and

unbundling of data, required at each product lifecycle stage.

A slightly different organizational issue, instead, is represented by the trend
of design information and knowledge management shifting from people to capital.
Nowadays, in fact, CAD, simulations, modelling, and in general the digital tools
employed allow designers to do what was previously done by intuition and experience.
The transition towards design automation is reporting tacitly the knowledge that a
designer can afford the luxury of not having anymore, thus attributing to systems
an active role in design processes (Cantamessa et al., 2020). As a consequence,
individuals progressively yield their knowledge to the company, to the capital: as
the software learns from the users, the designer’s know-how is transferred to the

company, changing the organization equilibria (Cantamessa et al., 2020).

32

Agile in the manufacturing industries

2.1.2 Cyber-physical systems

One of the results of the application of such new technologies is that, instead
of simply automating tasks, companies nowadays are able to use Cyber Physical
Systems (CPS) such as smart machines, storage systems, and production facilities
that autonomously exchange information, triggering actions and controlling each
other. This trend caused (again) an inevitable increase in the amount of data that
any company nheeds to process, and, as a consequence, to the possibility that the
agile methods, originally developed to deal with digital products, could now be

adapted to fulfill the needs of the modern hardware development companies.

What is interesting to see, however, is that CPS can be exploited from companies
as a massive source of data supporting their operations, but they also need to be
developed and produced. And, due to their nature, agile could be applied starting
from such hybrid objects, with a lot of software content. CPS, in fact, can collect
information in the physical world through sensors, elaborate it in the cyber world,
and finally change the physical world through actuators (Mulder et al., 2014). For
this reason, hardware and software development are equally important in such
complex systems, and agile methodologies could help in that, if properly applied.
CPS development, in fact, does not work well if the classical subdivision between
hardware and software development is applied. There is need of simultaneous
actions. To go more into details, according to Horvath and Gerritsen (2012), in
every CPS development process there should be five different platforms developed
simultaneously: netware, hardware, software, firmware, and knowledgeware, not

only HW and SW.

On this regard, Mulder et al. (2014) focused on adapting Scrum methods to
the development of CPSs. They compared it to the four main methods usually
employed in the CPS design: V-model, Model-based development, Component-
based design, and Platform Based design. The idea was to exploit the selforganizing,
multidisciplinary and non-hierarchical structured aspects of Scrum teams, in order
to foster collaboration between different domains, essential for CPS’s design and
development. To do so, the team set up an experiment, trying to develop a sail
simulator system, for competitive sailing. The CPS characteristics in such a product

are found in its interactions with the user: the physical coordination of balance,

33

Agile in the manufacturing industries

spatial awareness and haptic forces that make it useful for training purposes. It
also includes a mechatronic system, a three-dimensional display, computational

simulation, and game mechanics to measure performance.

Due to its complexity, initial knowledge was gathered in an agile way, using a
number of prototypes, that in turn were possible only thanks to the short iterations
that Scrum enforces. During the development phases, instead, all the Scrum
elements were adopted by the team (one-week-long sprints, pre-sprint meetings,
usage of a scrumboard and a burndown chart, prototypes evaluation at the end of
each sprint, product backlog creation) and Mr. Mulder acted as the Scrum Master
himself. The rest of the team was made by students with no Scrum experience,
but they clearly indicated that the Scrum development process made the project
easier. In particular, those who had previous experience with the waterfall method
appreciated the fact that Scrum is a less documentation-heavy process and that
the agile approach made predicting future problems and requirements easier. They
also stated that it helped to get human-centered insights. The study suggests that
a key point in applying Scrum to CPS projects is to carefully choose an appropriate
team leader, a process defined “more important than expected: a good project
leader should keep track of the progress made and take responsibility when changes
in the planning had to be made”. (Mulder et al., 2014)

Regarding the specific process adopted, Rapid Prototyping was a key enabler for
the hardware components, that would have been impossible to build in a week-long
sprint with other technologies. From an organizational point of view, instead,
Scrum meetings were not found to be useful enough, mainly due to the poor
ethics of some team members that did not show on time or did not share enough
information. On the other hand, the review sessions were found extremely useful
and also included athletes (in the role of customers) that helped the team better
understand their requirements. The only tools employed were scrumboards, that
were found not practical enough, and the team suggested switching to an online

alternative.

Concluding, the authors listed the following recommendations and observations:

e Scrum philosophy and procedures have to be fully embraced by the team
members, as the team cohesion is only achieved when all members follow

34

Agile in the manufacturing industries

them.

o The lack of documentation can cause knowledge loss, thus the suggestion of
using a more detailed scrumboard and implementing a checklist to better
monitor which features are ready and which are not.

o After each review session a document which summarizes current and updated
product requirements should be used, sharing the requirements with the
reviewer, the product owner and the Scrum team.

o The length of the sprint should be selected based on the experience, available
knowledge and motivation of the Scrum team.

2.1.3 Embedded systems

Similarly, embedded systems are another field of application for agile methods
outside pure software development. They are defined as specialized computer
systems designed for specific tasks, that typically consist of software and hardware.
According to Kénnola et al. (2016), in developing embedded systems, usually only
the software part makes use of agile development methods, while the hardware
development is still exploiting traditional methods. The problem could lie in
the absence of guidelines on how to organize development work on a weekly
basis for such systems. The authors highlight how standards are present for
hardware development, software development (as discussed in Sections 1.3.1 and
1.3.2 analyzing Scrum and XP), but no standard is set for embedded systems.
Some principles could be borrowed from the SW methods, but most of them
should be reinterpreted in order to be usefully applied. As an example, the Agile
Manifesto states that working software should be the primary measure of progress;
in embedded systems this parameter must be substituted with the whole system
development and demonstrations of its working principle should become the measure
of progress (Kaisti et al., 2014).

According to literature (Konnola et al., 2016), the main opportunities for agile
methods in embedded systems’ development are :

o System-wide understanding: better communication would foster easier
agreements on the interdependencies between different sections of the system
and, as a consequence, better alignment during the development phases.

35

Agile in the manufacturing industries

o Acceptance of change: when new requirements are needed the teams
would be prepared for them and would have the necessary tools to face them
effectively.

e Fluent management of the interdependencies: more transparency would
reduce incomprehension in case of interdependencies, thus also the presence
of critical paths between different sections.

However, when trying to implement agile in embedded systems’ development, one
would also face some challenges (Konnola et al., 2016):

o Changes may affect the whole system: while agile welcomes change and
tries to postpone decisions as much as possible, in embedded systems any
change in the software could cause changes in the hardware specifications, and
vice versa. This kind of constraints should then be addressed early enough,
giving agile some space within these boundaries.

» Difficulty in delivering new versions quickly: unlike software develop-
ment, hardware products can not be updated too frequently, due to the
presence of systematic tasks that need to follow specific cycles (e.g., design,
prototype manufacturing, testing, and verification). This aspect has to be
taken into account when implementing agile.

o« Team members are highly specialized: in agile development, every team
member is welcomed to learn and know about every aspect of the code, instead
of limiting himself on specific tasks. In embedded systems, however, usually
every team member is highly specialized in one single discipline, due to their
complexity. It is very unlikely to have people working both at the hardware
components and at the software of the system. Nevertheless, agile could
still be applied to foster transparency and help everyone understand what
the others are dealing with, even if it will be impossible to reach complete
cross-functionality inside the team.

Starting from these premises, Kénnola et al. (2016) performed three different
case studies, applying agile methods to embedded systems design, getting feedback
from the teams. The companies considered were Ericsson, a multinational company,
leader in the field of communications technology; Nordic ID, a SME developing
and manufacturing RFID and barcode readers; and Nextfour, another SME which
develops embedded systems for medical, industrial, and safety-critical markets.

As a result of the case studies, various aspects emerged. From the first two

36

Agile in the manufacturing industries

companies, it was noted how the need for internal documentation diminished, while
the amount of teamwork, visibility, and understanding about the work of other team
members improved. On the negative side, team members faced some challenges
in changing the process during its development phases, in particular maintenance
tasks disturbed these changes. Also, the teams did not feel to be productive as
before. Both companies, however, decided to continue the utilization of the new
working methods, as the positive aspects overwhelmed the negative ones. The third
case, instead, was considered separately, due to the different nature of the project.
Here, practitioners found out that the team perceived the workload to be easier
than before, thanks to the absence of circulating tasks. However, the schedules and
deadlines were described as something that made the organization of work more
difficult and less clear than before. Similarly, they did not experience a positive
change in efficiency and productivity, but this might be due to the short length of

the project. Viability, instead, improved as in the previous cases.

In general, the teams perceived the new practices useful, and their usage was
considered potentially beneficial for future projects. They all appreciated the
improved communication inside the teams. The use of backlogs helped to increase
the visibility, but an effort had to be done to avoid that people focused too much
on the individual tasks, forgetting about the big picture. The authors also point
out how embedded systems projects have special characteristics, which need to be
taken into account when applying agile methods. They also list some suggestions

for this sort of “special tailoring”:

o Take into account the different cycle lengths for developing hardware and
software.

o Create team-driven agile practices inside the iterations.

o Accept the different knowledge between developers and build on it.

o Define the progress based on work, not schedules or documentation.

o Clarify the reasoning behind the utilized practices together in the team.
e Try more advanced agile techniques.

o Involve the whole organization.

37

Agile in the manufacturing industries

2.2 Agile applications in manufacturing

As discussed for Scrum in Section 1.3.1, agile methods have their roots in
manufacturing industries: some of them even originated from the observation of
lean manufacturing — a set of techniques that Japanese companies (Toyota in
particular) developed to improve the car industry efficiency in the 1950s — and
its direct application to software development (Cooke et al., 2012). So, it was
probably just a matter of time before agile was re-considered in the manufacturing
world. On the other hand, as said in the previous Section 2.1, the world changed
and the manufacturing changed accordingly. Becoming more and more digital and
connected, it was necessary to find new management solutions, and agile was one
of the available options. The fact that agile has a role in our society also outside
the I'T area was even confirmed by three of the seventeen manifesto’s authors in
an interview dated 2012 with Bowles Jackson (Jackson & Institute, 2012). In
particular, Hunt stated that “agile has little to do with software, since it is all
about recognizing and applying feedback” Van Bennekum added that agile is
“applicable everywhere in business or life”, while Highsmith underlined how it
should be “used everywhere we have uncertainty”. For these and other reasons,
agile entered the manufacturing world more and more frequently, giving birth to
the various trends that are analyzed and discussed in the following subsections.
Before that, in Table 2.1 a brief comparison of Stage-Gate traditional method
and agile is provided. Stage-Gate represents one of the most used methods in
traditional industries, such as the manufacturing one, and this simple comparison
already shows potential benefits that those industries could get by adapting agile

into their working routines.

2.2.1 Agile Manufacturing

One of the first applications of agile in the manufacturing world was, indeed,
the so-called Agile Manufacturing (AM). Its birth is traced in the 1990s, and it
is conventionally set with the constitution of the Agility Forum at the Iacocca
Institute at Lehigh University, USA (Véazquez-Bustelo & Avella, 2006). According
to Vinodh et al. (2010), AM enables the modern organizations to quickly react

38

Agile in the manufacturing industries

Stage-Gate Agile
Type Macroplanning Microplanning
Scope Idea to launch Development and testing, can be expanded

to pre-development

Organization Cross-functional team (R&D, marketing, Technical team (software developers, engi-
sales, operations) neers)

Decision model Investment model-go/kill decisions involve Tactical model—decisions about actions
a senior governance group for next sprint made largely by self-
managed team

Table 2.1: Characteristics of Stage-Gate vs. Agile (Cooper, 2016)

to the new dynamic demand of modern customers, without compromising quality,
productivity, cost, and time. In a more general way, AM is defined as the capability
to produce a variety of products within a short period of time also in a cost-
effective manner. As AM was being developed, further applications have been
studied, especially in the managerial and technological environments. In the
managerial field, this resulted in the rise of several methods, such as Total Quality
Management (TQM), Total Productive Maintenance (TPM), 5S, Kaizen, and so on.
On the technological side, instead, very important tools that can support the agile
philosophy are: Computer Aided Design (CAD), Computer Aided Manufacturing
(CAM), Computer Integrated Manufacturing (CIM), Rapid Prototyping (RP),
Rapid Tooling (RT), Reverse Engineering (RE), Computer Aided Process Planning
(CAPP), Concurrent Engineering (CE), and Virtual Enterprise (VE) (Vinodh et al.,
2010).

2.2.2 Multidisciplinary teams and multidisciplinary

projects

The previously mentioned technologies not only influenced the design and
manufacturing procedures, like agile manufacturing. They also had consequences on
the interactions that design teams have with the other functions and departments of
the firm (Cantamessa et al., 2020). As an example, a frequent trend is the integration
of IT, marketing and product development functions, due to the evidence that

marketers and designers need to cooperate closely, and that information technology

39

Agile in the manufacturing industries

should be integrated at various levels. The creation of multidisciplinary teams
allows them to better process the larger amount of data continuously gathered,
and creates the possibilities for new professional roles as the one of data analysts.
Enlarging the view to the whole company, functional integration among other
operational departments, such as production, maintenance, logistics, etc. would
allow companies to exploit equipped plants and operative processes with sensors and
devices that, apart from increasing efficiency, could also help design processes. This
new “setup”, however, needs full functional integration, cross-domain knowledge and
new competencies and skills (Cantamessa et al., 2020); it needs to be formalized and
defined in order to work properly and, once again, the agile philosophy could play an
important part in this. In absence of such a formalization, simple behavioral issues
(e.g., the employees not sharing enough information) could cause useless money
and time consumption to the process. Other more serious aspects should than
be considered, such as the need for non-technical specialists to acquire industrial
competencies and to develop digital skills, for industrial experts to learn how to
deal with data analysts, and for I'T specialists to learn engineering bases. This
multitude of “hybrid” experts, in between digital and technical competencies, would
also need to understand who is the person in charge, and agile’s roles could come

into play, defining responsibilities and ownership.

Agile could also be applied to the so-called multidisciplinary projects, i.e.,
projects in which hardware and software are both present and need to be developed
simultaneously, involving several experts. These projects face a series of challenges
due to the very different nature of the two sides. Firstly, in software development
every modification to the product (the code) is almost free, in terms of material
cost; while for physical products every new version may have very high costs. In
addition, a software prototype (e.g., a beta version) can easily transform into
the final product, while a physical prototype can not do that. Similar reasoning
can then be followed for raw materials, components, logistic expenses and so on.
Continuing, one could see many other obstacles to the application of agile methods
in multidisciplinary projects. As an example, the agile approach aims at satisfying
the customers’ needs through iterations, starting from a very blurred initial idea.
On the contrary, in many multidisciplinary projects the initial requirements are

already very clear, sometimes also defined by regulations or by physical limits. The

40

Agile in the manufacturing industries

same holds for deadlines and schedules. Instead of embracing change as a positive
thing, in this case every discrepancy with the original project should be predicted
and properly addressed (Cooke et al., 2012). These few lines already show how the
transition of such methods from one industry to another is not easy and represents
an interesting challenge. To properly implement it, agile must be adequately
adapted to the new system and every potential issue has to be considered. In
particular, for multidisciplinary projects, some new technologies can play a very
important role: computer aided design (CAD) and rapid-prototyping techniques
(RP) such as 3D printing made it possible to test physical products much easily.
It is also easier to apply changes on such prototypes, and thus iterations can be
exploited. This allows agile methods to be applied to a broader set of development

areas.

2.2.3 Hybrid agile methods

In this context, agile can take many different forms and can be adapted to
the hardware world in several ways. One of the most frequently seen is a hybrid
version of agile methods (especially Scrum), that are coupled with other existing
methods, traditionally belonging to the manufacturing area. The idea originated
in the multidisciplinary projects described above, since the R&D departments of
some manufacturing firms noticed that their colleagues from the IT section were
using agile methods, and thought that they could be adapted to their purposes as
well. In particular, the sprint approach has been enabled by the fact that in some
fields (such as electronics and electromechanical systems), hardware development
was becoming more like software development, with shorter, faster iterations in
the development stage, thanks to the new technologies mentioned in the previous
sections (Cooper, 2016). In other words, hardware development can look more like
software development, with quick iterations and quick prototypes. Directly imple-
menting agile practices, however, would lead to some challenges and management
resistance. For instance, the lack of scalability and the proliferation of meetings,
and in general the difference with respect to the traditional gating systems. For
this reason, it is much simpler, at least in the first applications, to blend agile

and Stage-Gate into a hybrid method, incorporating the positive features of both
41

Agile in the manufacturing industries

(see Table 2.1). In particular, Scrum — Stage-Gate hybrids appeared as the best
solution, since Scrum was the most popular Agile variant among the handful of

firms employing Agile for physical product development (Sommer et al., 2015).

With Scrum — Stage-Gate hybrids, Scrum is usually employed in the development
and testing phases, when the project has already been approved by a Stage-Gate
process, but the development is not yet planned in advance, in opposition to
what traditional methods suggest. The development is thus broken into small
increments/iterations (similar to sprints), that are then time-boxed into short
timeframes, spanning from one to four weeks. As in software development, each
iteration is preceded by a meeting in which the following three questions are asked
(Cooper, 2016):

« What does the customer value most (based on feedback from customers in
the previous sprint)?

e What can be delivered in the upcoming sprint?

o« What work is needed to achieve this deliverable?

Other similarities are found in the fact that the work plan for each sprint is
controlled almost only by the team, with self-management, and in the post-sprint
retrospective meetings focused on the review of the previous iteration, that often

include feedback from the customer.

Among the differences, instead, the main one is the definition of a done sprint.
In hardware development, in fact, it is almost impossible to get a working product
every two to four weeks, as it happens in software development, thus the outcome
of each iteration must be different. Other differences occur in the management of
such projects. With hybrid agile approaches, in fact, the project team must be
dedicated, i.e., its members should only focus on one project at a time, while in
Stage-Gate this does not happen. This also implies that they should be placed in
the same room although, as already mentioned for software development, this strict
rule might vary with the advent of modern trends like smart working and virtual
meetings. Similarly, they should be provided with a scrum board, a burndown
chart with which measuring their progress, and more importantly a Scrum Master

should be appointed.
42

Agile in the manufacturing industries

Sommer et al. (2015) and Cooper (2016) also studied the implementation of
Agile — Stage-Gate hybrid models in seven Danish, Swedish, and US companies, in
a range of industries from consumer products to B2B heavy equipment, reporting

the following results:

o Design flexibility (a faster response to change),

e Improved productivity, communication, and coordination among project team
members,

o Improved focus on the project leading to better prioritization,
o Higher morale among team members,

« Discipline, provided by the staged structure, and the go/kill decision-points
that cull out bad projects,

o Clear expectations (in the form of defined deliverables) for project teams,

o Built-in best practices.

Cooper (2016) goes further in describing five main advantages of these methods.
They help to get the product right, by requiring the teams to develop something
physical or visual, early and cheaply, and quickly get it in front of customers for
feedback. This allows to get the customers comments even before the development
stages begin, and is so adaptive that it permits modifications in case of changes
in the customer requirements. Additionally, building something physical early
and often means that solutions to technical issues can be worked through as early
as concept prototypes emerge. Hybrids methods also accommodate uncertainty,
since they do not require a heavy “homework phase” in which the team has
to perform market, technical, and business assessments. Instead, they allow
working on highly innovative projects, for which the voice-of-customer work or the
technical assessments can not get all the answers. The problems are then dealt
with only once they arise, by trial and error. Continuing, agile-traditional hybrids
accelerate development with time-boxed sprints that bring a sense of urgency to
the development project. Project teams commit to certain deliverables at the
beginning of each sprint, and this forces them to focus on the essentials and deliver
results. For similar reasons, hybrid methods help to focus teams, which means that
project teams are dedicated, thus they need adequate resources to get the work

done on the desired timeline. compressed sprint timeline. This makes them much

43

Agile in the manufacturing industries

more productive, and their use is essential for Scrum and agile success. Finally,
applying such methods improve within-team communication by means of — again —
dedicated teams and daily face-to-face discussions. This leads to more effective,

cross-functional teams with good internal cooperation and communication

Among the difficulties, instead, the following ones are listed by Cooper (2016),
Sommer et al. (2015), and Stelzmann (2011):

 Difficulty in finding dedicated team members,
« Difficulties in linking project teams to the rest of the organization,

o Mismatches between the requirements of Scrum and the company’s reward
system,

o Need of a redefinition of sprints, to include something physical like a protocept
(prototype/concept),

e A too bureaucratic system,

o Absence of a clear description on how to implement agile development that
ensures coping with the industry regulations.

Stelzmann (2011) adds few contributions in this sense, explaining how hardware
systems that have to be produced physically often are difficult to be developed in
small cyclic steps. In addition, he states that “only if prototyping, testing, and
implementing changes can be done quickly and cheaply, this principle is feasible”
and that “agile development methods need to be adapted for the type of product
or system which needs to be developed and cannot be implemented one to one”.
Additionally, he believes that companies should focus on fostering the usability and
user satisfaction both in physical and cognitive aspects; focus on maintenance for
lead time and sustainability aspects; make extensive use of prototypes and early
versions; keep an eye on aspects such as crowdfunding, codevelopment, and social

media to survive competition.

Cooper also points out how other companies are trying to apply hybrid agile
systems to more than two steps, broadening its application to predevelopment
stages, such as the concept identification and the feasibility assessment. He points
out how “in these early phases, open knowledge gaps become analogous to desired
software features on the burndown chart, and Scrum then works in the normal way,

with each sprint aimed at resolving a particular gap or set of gaps” (Cooper, 2016).

44

Agile in the manufacturing industries

2.2.4 Agile Project Management

In parallel with the agile implementation in the product development, other
practitioners also focused on the exploitation of agile principles in the management
field. They gave birth to Agile Project Management (APM), an approach that can
be used irrespectively on the product or service that needs to be delivered and

that, for this reason, is also part of the agile manufacturing world.

Applying APM, the project objectives are defined in less detail — at the beginning
of the project — together with a rough project execution schedule. The project
is then divided into small iterations. Every team focuses on the most important
functions to be delivered in each iteration, leaving the least important ones at the
end. In this way, the least important parts of the projects can be easily removed,
depending on the customer requests, that can vary during the project life. Other
aspects that can influence this decision are the conditions of the environment
surrounding the project, and the direct proposal of the team members. Going
on with this approach, every iteration can then be reviewed and scheduled with
more detail. In this phase it is necessary to decide how the desired results will
be achieved, considering every task, the hours of work needed, the personnel, and
every other technical aspect. Again, every decision needs to take into account the
customers’ needs and changes, the team ideas, and the results obtained in the
previous steps. Contrary to what happens in Scrum, the project team itself will be
responsible for the creation of this kind of execution plan in every iteration. This
function is not covered by a project manager. Empirical studies show that iterations
usually last from one to four weeks. This short duration allows intermediate results’
testing, that allows to detect issues earlier, as well as customers feedbacks (Stare,
2014).

A variation of APM is Extreme Project Management (EPM). The differences
between these two are in the level of familiarity with the solution at the beginning
of the project, the detail of planning, the role of risk management, and the
collaboration with the client (Wysocki, 2011). With EPM, in fact, the approach
is even more distant from the traditional one, with respect to APM. This means
that not only changes are awaited, but even the project objectives are extremely

unclear at the beginning. Everything is decided during the project, and for this
45

Agile in the manufacturing industries

reason, EPM is suitable almost only for R&D projects.
In his work, Stare (2014) observed the application of the APM method in 21

product development projects in five Slovenian enterprises. In doing so, he was able
to classify the main differences between this and the traditional approach in four
groups: requirements & specifications (the level of detail at the beginning of the
project), project scheduling (iterations and a rough schedule at the planning phase),
team work (self-organized teams, daily meetings), and the client collaboration (the
representative of the client is a regular team member). In general, his research
highlighted how certain practices were already in place in the observed companies,
and how the application of APM seems to have some potential in future applications.
In Figure 2.1, a summary of the projects’ success is provided, based on the team

members’ answers to Stare’s questionnaire.

|
— Less satisfactory

Satisfactory

Financial success

The success of the product on the market ® Rather satsfactory

m Exemplary
Client satisfaction

0% 20% 40% 60% 80% 100%

Figure 2.1: The projects’ success indicators (Stare, 2014)

One last interesting thing highlighted by Stare, is that in the above-mentioned
companies, client collaboration showed the lowest level of agile approach in projects.
Only 5% of the projects had customers participate on a daily bases, on 50% of
them the customer participated weekly, on 15% monthly, and on 30% even more
rarely. Thus, customer participation could be one of the key agile aspects on which

companies should put more effort, in order to implement it.

2.3 Agile trends and future applications

In the previous section, the description of the main applications of agile to the
manufacturing sector has been provided; the aim of this section, instead, is to

analyze the evolutions of such methods. In the following pages, the main papers

46

Agile in the manufacturing industries

analyzed for this work are summarized, in order to describe as much as possible
the future applications of agile in the manufacturing, as well as their current

experimental uses and real life observations.

Some of the papers will follow a descriptive approach, observing the situation
that surrounds them; others provide suggestions and best practices example, with a
normative approach. The papers considered also represent a wide set of industrial
applications. In fact, some of them report real life case studies from very different
industries: pump manufacturing, consumer electronic, biomedical, kitchen tools,
automotive, bathroom appliances, barcode readers, windows, power-lines, plastic
toys, and so on. Other authors, instead, preferred to use in-house simulations,
students’ group works, and fictional teams competitions. Some of them then focus
on SMEs, while others reported observations of bigger companies. Finally, most of
the papers come from European authors, but also American and Asian ones are

present, each describing (also) his/her local market situation.

2.3.1 Descriptive approach

The first descriptive contribution considered comes from Boéhmer et al. (2017),
who centered their work on the prototyping role in agile product development
environments. In their work, a detailed literature review on this topic was performed,
highlighting how prototyping can be seen as an insurance to minimize the risk
towards the end of the development project; and a tool for the discovery, evaluation
and development of new product ideas. It was also stated that prototypes have a
different role in agile and in traditional approaches, since with the former methods
their goal is to reduce uncertainty and produce knowledge iteratively, while in the
latter case they are simply used as initial versions of the final product. Finally,
an important distinction between horizontal and vertical prototyping was made:
“horizontal prototypes represent a specific feature of the system, e.g., the human-
computer interface, without fully implementing them. Vertical prototypes focus on
implementing a small set of features in a nearly-complete fashion” (Béhmer et al.,
2017).

With these premises, they tried to understand how prototypes could impact
47

Agile in the manufacturing industries

the development of mechatronics projects adopting agile strategies. The research
observed forty groups during a practical course at TUM (Technische Universitét
Miinchen), and each group was free to choose the preferred approach: most teams

applied agile principles, but not all of them.

Part of the ones that chose the agile approach struggled in capturing the big
picture while not getting lost within testing and incremental development, or
simply applied agile principles wrongly. The absence of documentation provoked
serious challenges for them. Thus, the authors suggest that a structured daily
documentation is crucial for agile, as it eases to focus on the most important aspects
and facilitates reviews. This does not mean that agile should make extensive use of
documentation as traditional approaches do, but could still benefit from a light use
of it, especially in prototypes creation, at the end of each testing phase. Agile, in
fact, was found to be extremely useful in case of big knowledge gaps and uncertainty,
but it had to be coupled with a clear object-driven goal, reached documenting each
step after testing, rather than improvising at each step.

Apart from these differences, the teams split up in two groups also in the ways

Y

they used to approach prototypes. Some teams used a “black box” approach,
building step by step upon the previous versions adding or removing features; the
rest of the teams, instead, prioritized modularization, focusing on the minimum
feature creating value, while putting non-critical features on the shelf. The two
drastically different approaches also give very different results: in the first case, a
high-fidelity prototype is created, with high level of structure and functionality,
but low level of complexity; in the second case, instead, only critical components
are manufactured in detail, while the rest of the product remains at a concept
stage, in this way the team is able to get much faster to very complex products and
functionalities, winning against its competitors. Prototypes were also found to make
the project status clearer and to make the internal communication easier, as they
were continuously representing the project status, improving the understanding of
each component and of its constraints. This allowed for an object-driven path, not

predefined and free to adapt to the changing requirements.

Speaking about the agile product development, the authors state that in such

an agile environment, it is necessary to combine both a “technology push” and

48

Agile in the manufacturing industries

“demand pull”, and that transforming customer needs into product requirements
asks for a joint understanding of the complete situation within the team. In the case
study described by the paper, this was achieved by means of a prototype roadmap,
that supported the visualization of the ideas: starting with an abstract vision,
the prototypes became more concrete with each iteration. With each iteration,
the team gained new insights, learned new lessons, and opened to new possible
features, increasing the range of options for the future steps, rather than reducing
it as it happens with traditional approaches. In other words, this allowed great
flexibility and permitted to welcome change in the form of suggestions and feedback
from the outside. The teams first “focused on building the right product [...]
before building it right” (Béhmer et al., 2017). After these first steps, however, the
need for traditional methods increased, and shifting to a well-documented process
represented a new challenge. Similarly, during this shift, teams also shifted from
horizontal prototypes to more vertical prototypes. But both approaches were still
needed up until the end, in order to explore the complete solution space and the best
results were achieved by the teams that frequently changed perspective, leading
to well-defined projects. Agile, in fact, supports vertical prototyping, whereas
traditional methods support the horizontal one, focusing on a single strategy the
teams remained stuck at the preliminary phases and were unable to continue the
project. Also, the teams that followed a smoother transition from agile to traditional
methods got the best results, compared to the ones that abruptly switched from

one to the other.

Other insights from this paper show that following a traditional approach, some
teams got consistent results, with the only drawback of being unable to adapt to
changes. The goal should then be to merge traditional and agile frameworks, in

order to benefit of these two approaches in the best way.

Following with this list, in Cooke et al. (2012) paper, a bicycle stability test bench
(i.e., appliance to make bikes more stable and safer) was created, in order to study
the application of agile methods to a mechatronic, multidisciplinary project. Even
though the dimension of the project is quite small, this case study was considered
a useful opportunity, since it shares many of the issues related to communication

and project management that bigger projects usually show. As an example, in

49

Agile in the manufacturing industries

an ideal situation the computer model at the basis of the test bench should have
been developed before the hardware components and, only after the test bench
was built, properly tested; however, in this situation the computer model and the
test bench had to be developed simultaneously, for a series of internal reasons,
and customer deadlines. In other words, the project needed a good management
strategy and development framework to ensure that the test bench was delivered
on time. Moreover, the developers were continuously getting inputs from different
sources at different times. To face these issues, the team created a system that not
only pushes work into the system by a schedule, but also demands it to be pulled
and makes sure the milestones are reached on time. Given this setup, the team
applied the project management benefits of Scrum and the best practices of XP to

determine if it can be used effectively in such a project.

Milestones for the project were created using systems engineering principles.
They were then used as demonstrations to stakeholders (like prototypes) to make
sure that they could see what was being developed. Usually CAD models, 3D
printed models, or simple printed sketches were used as demonstrations. Milestones
were then re-evaluated, applying changes according to the customer requirements.
In this process, the team also used just-in-time and continuous planning approaches.
In between the milestones, instead, Scrum was applied. Similarly to its original
form, this version of Scrum introduced fortnightly Scrums (similar to daily Scrums),
monthly demonstrations with important stakeholders, and milestone demonstra-
tions, with the presence of all stakeholders, every two or three months. For what
concerns XP, the following best practices were implemented during the Scrum cycle:
the ‘Planning game’, ‘Small Releases’, ‘Metaphor’ and ‘On-site customer’. The
‘Simple design’ was also directly applied to the project, supported by the usage
of modularize components. Industrial or academic standards were then applied
throughout the project, as well as the principle of not remaking the wheel, and
re-using software or hardware from diverse sources. Test driven design provided
strong, usable sub-systems, and unit tests were used within the software components.
Continuing in this list, collective code/product/system ownership was encouraged,

and the same holds for the ‘40-hour work week’, and the coding/working style.

Regarding the conclusions brought by the authors, it has been shown that agile

50

Agile in the manufacturing industries

methods can be applied to such multidisciplinary systems, as the differences between
hardware and software is diminishing thanks to CAD, RP, and other technologies.
Additionally, they provide a useful method to evaluate the effectiveness of such
a Srum-Milestone approach by checking that applying it to a given project is:
technically feasible, technical valuable, practically feasible, and practically valuable.
This means to check whether it works or not, and if it works, is it better than other
methods? But also, does it work for all stakeholders, and does it add any value to

the project?

The third descriptive contribution comes from Enkler and Sporleder (2019).
They tried to couple explorative and established Computer aided methods (denom-
inated CAz, in general) to what they called “virtual product development”, and in
particular during its early stages. Their research brought them to the conclusion
that successful projects tend to use more methods and apply them much earlier in
the product development process, especially in its early stages. Here, CAx methods
allow the designers to start from an abstract idea, develop it, and continuously in-
crease its perceptibility through shorter product cycles, as discussed in the previous
sections. An interesting thought added by the authors, however, is that those tools
do not necessarily lead to innovations by themselves. Innovation requires creativity,
that is often achieved with simple tools like a paper sketch, and without creativity
in design, there is no potential for innovation. On the other hand, instead, CAx
methods allow reducing costs and saving time, especially in the time span from the
product idea to prototype construction. This set of effects, according to the authors,
can be enhanced by coupling different methods, forming hybrid versions of them.
As an example, instead of applying computer-aided design (CAD), computer-aided
engineering (CAE), or computer-aided manufacturing (CAM) for specific purposes,
coupling them would allow a larger spectrum of applications. Enkler and Sporleder

(2019) went even further in that sense, coupling these techniques with other ones:

3D scan

Reverse engineering

Topology optimization

Hybrid CAD modeling, especially using NURBS (Non-Uniform Rational B-
Splines)

51

Agile in the manufacturing industries

o Additive manufacturing

In their work, three use cases have been analyzed. The first one regarded the
development of an exoskeleton, and also served as an example of mass customization
through agile and multiple CAx methods. This kind of products, in fact, require
extreme individualization levels, since they literally have to be designed to match
someone’s body for the sake of user-friendliness, usability, and ergonomics. Not only
that, they are often required to be rapidly developed, as the customers/patients
need them to perform essential activities. In this case, modern techniques were
used according to the diagram of Figure 2.2. For this object, design was the only

concern, while physical and mechanical properties were almost ignored.

For the second use case, instead, some students had to develop a bottle holder
under consideration of boundary conditions in terms of fastening and load cases,
and requirements for which the object had to be lightweight, robust and visually
attractive. In this case a CAD system was used in parallel with topology optimiza-
tion, and NURBS. This allowed students to simulate a lot of different conditions,
obtaining a wide set of design ideas from which they chose the final one. And

everything was done very quickly.

Finally, the third use case was an interior trim for a recreational vehicle manu-
facturer, that helped to investigate the possibilities of coupled CAx methods in
case of blurry product requirements, lacking of data, and uncertainty. The aim was
to generate an MVP (Minimum Viable Product) to gather initial information from
potential customers. The tools exploited were 3D scanning, reverse engineering,
hybrid modelling, and hybrid manufacturing. These methods helped the team
to implement design even with lacking input data, for example by scanning the

interior frame and getting precise measures.

According to the authors, in addition to the process-related incompatibilities,
designers and engineers also face difficulties due to the differences in their ways of
thinking and working. From the above-mentioned use cases, it has been noted how
they can improve this aspect: CAx methods help to close the gap between the two
categories of professionals. In particular, 3D scanning and reverse engineering help in

complex situations in which manual activities of the designers are associated with a

52

Agile in the manufacturing industries

Figure 2.2: Exoskeleton development by means of modern techniques (Enkler &
Sporleder, 2019)

digitization process. According to the authors, 3D scanning is also predisposed to an
agile way of working, especially if coupled with 3D printing. They provide significant
contributions to early product development stages and create added value. Similarly,
the early use of simulation software creates the basis for joint developments and
thus a basis for discussion, suggestions and new ideas. Hybrid CAD systems form
an optimal framework for creative and collaborative development processes, and
topology optimization supports professionals in form finding (Enkler & Sporleder,
2019). The authors are sure that in the future, this way of couplings methods will
become very popular in interdisciplinary development projects, especially in case of
lacking input data and, in general, during the early phases of development, when
critical decisions are made. They also provide a solution for quickly reacting to
changes in boundary conditions, and allow the creation of MVPs, an essential tool

for future processes.

On the pain points side, Enkler & Sporleder identify the complex interface be-
tween individual isolated solutions, and the absence of software standards and data
formats standards. Another suggestion provided is to always maintain simplicity,
in order to remain flexible. This would also allow good usability and plausibility

checks even by non-specialists.

The fourth descriptive paper analyzed comes from Ismail et al. (2007). The
53

Agile in the manufacturing industries

researchers’ team focused its work on Mass Customization (MC). This trend helps
companies that operate in markets where offering customers more choice is the only
remaining differentiator, but according to the author, small and medium enterprises
(SMEs) struggle in achieving such results, and agile could help them substantially.
The goal is to provide increased variety to customers, without increasing costs.
MC should provide competitive advantage, not just customized products that put
even more pressure on the company. The authors highlight how the customer
presence can be exploited in the early stages, to let customers adapt the products by
themselves; but even in a more embracing way customizing the product sale, design,
fabrication, assembly, and delivery. The paper also refers to another work from
Gilmore, Pine, et al. (1997), that in turn identify four customization levels mostly
based on empirical observation: collaborative, where designers working closely with
customers; adaptive, where standard products are changed by customers during use;
cosmetic, where packaging of standard products is unique for each customer; and
transparent, where products are modified to specific individual needs. In this way,
the customers provide the product customization, that is then coupled with the
process repetitiveness given by the modularity that every MC project should have.
Customers are, in fact, just one of the actors involved, together with suppliers,
distributors, retailers, manufacturers, retailers, and other value chain entities that

need to cooperate in such a complex network.

According to the authors, four main business practices are relating to the MC
concept: customer-driven design, agile manufacturing, supply chain management
and lean manufacturing. As a matter of fact, the whole MC trend can be perfectly
coupled with agile methods to respond effectively to market demands, as well as
being proactive enough to create new markets and opportunities. Agility, however,
depends on a wide range of capabilities, and many studies have approached it in
different ways. Ismail et al. (2007), instead, created a framework that integrates all
its main aspects under a single umbrella, and not treating them as individual entities:
this is done through examining existing product structures and platforms, assessing
how a degree of modularization and rationalization that could be introduced to
simplify manufacturing complexity while maintaining product flexibility. The
aim is to reduce the impact of the different customers’ demands on the company

operations (Ismail et al., 2007).

o4

Agile in the manufacturing industries

This framework is described with detail in the original paper, and a lot of
attention is placed on the concept of MC, how to properly achieve it, and how to
measure product similarity, a key concept for MC, but quite difficult to evaluate.
A similarity matrix approach is then suggested, making use of different coefficients
such as Product Structure Similarity Coefficient, Product Cost Similarity Coeffi-
cient, Product Volume Similarity Coefficient, and Product Contribution Similarity
Coefficient, they all converge into the Aggregate Product Similarity Coefficient,
according to a precise formula, invented by the authors. This approach was then
applied to two case studies, the first one focused on a company that designs and
manufactures shower enclosures and bath screens for the top end of the market; the
second one considered a toy manufacture that designs and manufactures swings,

slides and a variety of playground centers.

From these two studies, the authors described few effects that agile and MC
have on such processes. In the first study, the design of new products was guided
by the measure of similarity and flexibility of the existing products, coupled with
an assembly approach. This permitted the company to reduce the number of
unique extrusion profiles, since the same design could be used by more than one
product. In parallel, this method also helped them to introduce an ERP system.
This approach had consequences on the relation between the company and its
suppliers: relying on a single design, many more products were affected by a delayed
or missed shipment. For this reason, a closer relationship with the suppliers and
a robust stock management system were found to be essential to the success of
MC. Additionally, to properly apply MC, the company should integrate it as part
of the product design procedures, and not only at the product review stage: the
company has to move as a unitary entity, composed by manufacturing, design,
marketing, and accounting staff. Again, this similarity between MC needs and
agile best practices suggests a possible collaboration between the two. One last
observation pointed out how the MC product platform appeared to cost more than
the existing one, leading to the conclusion that some optimizations are needed in

order to make this approach sustainable for enterprises.

In the second case study, instead, MC highlighted the issue of unnecessarily

high number of raw material tubes used by the company observed. Ordering the

59

Agile in the manufacturing industries

tubes in precut lengths contributed to the problem. With MC, it was possible to
reduce the number of material grades, geometric sizes, thickness, lengths, and so
on. Of course, this impacted the final products as well, and the design team had to
work on these variations. In this case the team did not perform a cost analysis, but
the proposal of reducing both the number of components of each product, and the
components’ variability were taken into consideration by the procurement manager,

in order to overcome what was defined as a supplier constraint.

In conclusion, MC seemed to have possible positive effects on SMEs, even if
they do not have the same resources of bigger companies. Agile could play an
important role, since monitoring of the implementation process appeared to be
critical, especially for SMEs that do not have the capacity to achieve everything
on their own. Similarly, since MC is strongly affected and depends on the external
influence from customers and suppliers, the diffusion of the agile philosophy in such

companies would probably fit very well.

Concluding this list, the last descriptive work hereby considered comes from
Vinodh et al. (2010), who based their research around CAD methods and Rapid
Prototyping, applying them to an agile development process in which a pump was
being designed. The chosen company for this study was ‘Mayur Motor Industries’
(abbreviated as Mayur), a SME located in Coimbatore, India. The goal was to
demonstrate how these two tools could help traditional companies in their transition
towards agile. As many other practitioners, Vinodh et al. also considered RP
as a technology that could generate time compression, increased flexibility, and
cost reduction. CAD, on the other hand, is fundamental to use RP. Customer
requirements fulfillment also played an important part. Firstly, requirements
were collected in the form of product specifications, and then converted into
product specifications. Once finalized, the solid models of those products were
developed using CAD, validated using computer-aided analysis (CAA), and finally
the prototypes were produced by employing RP technology. During the first step,
indeed, CAD models were created with Pro/E and their relative flow analyses were
performed via specialized software packages like GAMBIT and FLUENT. During
RP, instead, the chosen method was FDM (i.e., fused deposition modelling). This

process utilizes fused thermoplastic filament as the base material, extruding it

56

Agile in the manufacturing industries

through a nozzle and then depositing it in a proper geometry, under the control of

a computer.

At the end of the development process, both the Managing Director and the
Design Engineer of Mayur, as well as the design engineers of another pump-
manufacturing company located in Coimbatore (Aquasub Engineering, abreviated
as Aquasub) were asked to fill in a series of systematically designed questionnaire
to measure their feelings about such an agile approach. Their answers indicated
that “integration of CAD and RP technology interfacing for achieving agility is a
practically feasible proposition” (Vinodh et al., 2010). A summary of their feedback
is provided in Table 2.4. The study suggests that such an approach could help
traditional industries (like the manufacturing one) to bring out different varieties
of products within a short period of time, like other industries are able to do (e.g.,
the smartphone industry). CAD and RP technologies could act as agility enablers
and bring the manufacturing closer to the modern market requirement, surviving

the competition and anticipating changes in demand.

Alongside the pure research around CAx and RP implementation, the team
also performed a cost analysis to estimate the financial impact that agile product
development had on the company used for their test. First, the contribution of
each agile activity was evaluated, as shown in Table 2.2. Furthermore, every agile
activity was examined to understand how each of the following agile criteria was
affected by it: Innovation, Quick Responsiveness, Mass Customization, Customer
Relationship Management, Competitive Advantage. As an example, the activity
“Understanding of customer requirements” has a total cost of 32,500 INR, that
can be attributed in different portions to the five agile criteria: 6,500 INR for
Innovation, 6,500 INR for Quick Responsiveness, 9,750 INR for Mass customization,
and so on. These numbers were assumed by the authors thanks to calculations
based on the number of hours dedicated to an activity, or the resources employed.

The results can be seen in Table 2.3.

57

Agile in the manufacturing industries

Agile Product Development Activities Cost (INR) Weight
Understanding of customer requirements 32,500 6.9%

Solid modeling 110,500 23.5%
Development of improved designs 74,500 15.9%
Design validation using CAA 100,500 21.4%
Prototype development 152,000 32.3%
Total 470,000 100%

Table 2.2: Apportionment of each agile activity’s cost (Vinodh et al., 2010)

Agile Criteria Cost (INR) Weight
Innovation 73,650 15.7%
Quick Responsiveness 70,050 14.9%
Mass customization 124,800 26.6%
Customer Relationship Management 67,000 14.3%
Competitive advantage 134,500 28.5%
Total 470,000 100%

Table 2.3: Apportionment of each agile criteria’s cost (Vinodh et al., 2010)

2.3.2 Normative approach

The first normative paper of this list comes from Mabrouk et al. (2018), who
proposed to couple and integrate agility and Model-Based Systems Engineering
methodology (MBSE), in particular for multidisciplinary systems design. The idea
behind this, is that multidisciplinary collaboration — suggested by agile — could
also be efficiently supported by the MBSE approach. However, “this approach does
not avoid system defects during or after the development process” (Mabrouk et al.,
2018). Their suggestion is to integrate agile — and in particular Scrum — into this
approach, to identify defects before the system components are fully integrated,

and to avoid expensive delays, both in terms of cost and time.

The “original” method is composed of two phases, namely the black box analysis,
and the white box analysis. The black one consists of determining the main purpose
and mission of the system, as well as its life cycle. Then, for each phase of this
cycle, the corresponding requirements are collected. The white box analysis, that
comes after the black one, has the purpose of building a physical architecture of
the system. The architecture is gradually identified by starting from the system
functions established before. Finally, alternative physical architectures can be

defined and, based on some performance simulations, the final architecture is

58

Agile in the manufacturing industries

Designation of the respondent What is your overall opinion about CAD and RP integrated
agility?

1 Managing Director — Mayur Number of trials and overall development time can be reduced
by implementing CAD/CAM driven agility

2 Senior Manager — Aquasub By using CAD, CAM and CAA, I feel we can reduce the overall
product development time by 50%

3 Senior Engineer — Aquasub Improvement and research on material of prototype will really
help the CAD/CAM driven agility

4 Testing In-Charge — Mayur Time involved in product design and development can be re-
duced

Table 2.4: Overall opinions about the use of CAD and RP (Vinodh et al., 2010)

chosen. The validation process is made at the end.

In the authors” method, instead, agile is introduced between the two analyses.
The set of requirements found at the end of the black box one, the product
backlog, typical of Scrum, is created. From here, the first sprint is defined, and
the whole white box analysis is performed as a series of Scrum iterations, followed
by multidisciplinary teams. Agile, however, needs the creation of prototypes at
the end of each cycle. For this reason, a new step is added: a partial system
prototype is created at the end of each sprint, and a preliminary validation process
is performed on them. This validation replaces what in Scrum is called “review”
and, at the same time, substitutes the final massive validation process needed in the
original method, allowing new architectures to be tested sooner, and the removal

of inappropriate solutions.

According to the authors, the agile method introduction provides a great flexi-
bility. The requirements can be modified according to some initially unforeseen
constraints, or to the customers’ changes. Apart from the money- and time-saving
effects, this provides better quality to the product. The iterative approach, cou-
pled with the frequent testing and validation steps, limits the integration issues
between the partial architectures and ensures the development continuity of the
final architecture (Mabrouk et al., 2018).

The second normative paper is signed by Riesener et al. (2019). It presents a
methodology for the design of product development networks, to increase orga-

nizational agility. This method makes use of three parameters: agile attributes

59

Agile in the manufacturing industries

(AA), that characterize the agile process; network features (NF), that describe
the network design; and strategy-specific competitive bases (CB), that companies
might develop when applying agile methods. AAs and CBs were derived from the
literature, and are reported in Table 2.5, while NFs should be defined according to
the project’s specific characteristics. These parameters are linked by two different
Houses of Quality (HOQ), the first one determines the importance of each AA
according to the company’s CBs; the second one relates these weighted AAs with

the NFs. The methodology is represented in Figure 2.3.

Competitive bases Agile attributes
Speed Cross functional teams
Profitability Decentralized decision making
Quality Short development cycle times
Flexibility Response to changing market requirements
Innovation Adaptive and learning organization

Making decisions frequently and act fast

Table 2.5: Competitive bases and agile attributes used by Riesener et al. (2019)

Correlation Correlation
matrix Cy matrix Cyr —‘
Agile attributes (AA) Network features (NF) -
Company-specific £ Generic

@ competitive priori- ::anl!nendfnio:s ftor
ties by comparison " e- 1esng-n otprr:\ ,“ck
of pairs evelopment networks

Degree of relation matrix
DRyr

Degree of relation matrix
DRyy

Competitive

strategiesas

predefined profiles

A

Agile attributes (AA)

Type of relation matrix

— Output
TRyr

Fl
8
2

]
2

z

H
[=]
5

]

Company-specific
recommendations for
the design of product

development networks

Figure 2.3: Framework of the proposed methodology (Riesener et al., 2019)

As a result, this method should help companies determine which NF could be
optimized to get an efficient prioritization in network management, also suggesting
the direction of optimization of such NF, according to the current network status.
The results are generic recommendations that give an indication of how the design

of the network should be adjusted to improve its agility.
60

Agile in the manufacturing industries

2.3.3 Final observations

In light of the previous sections’ content, some preliminary conclusions can be
drawn. As the literature suggests, agile practices seem to have potential applications
in quite different sectors. Projects that involve multidisciplinary teams, or that
need very different experts to cooperate, can highly benefit from implementing agile.
This also includes the design and development of any product that involves both
hardware and software, or any other technological element capable of receiving,
transmitting, and even elaborate data. However, these are not the only industrial
fields that agile could help. Scrum and the other agile techniques can be adapted
to project management purposes, system management, and in general any design

process, even in absence of software and technological elements.

One thing, however, joins all of them: the need to adapt agile to its new
purposes. Almost every author highlighted how the direct application of these
methods to new areas can not work. Every industry and every project should
take into account the differences between their needs and the original software
developers’ needs, before taking the agile way. This issue might be sorted out in the
future, if a standardization process will take place. Nevertheless, agile methods are
widely believed to be applicable in hardware products development by performing
a certain tailoring procedure, and focusing on important elements such as the

customer involvement, and the use of new technologies.

To begin with, the iteration lengths of hardware development should be taken
into account, creating longer sprints when needed. In the case of CPS and multi-
disciplinary products, the dual nature of HW and SW should also be considered:
as one SW sprint could last two to four weeks, and end up with a prototype in a
cheap manner, the HW part that needs to communicate with it could take much
more time and not lead to a completely new prototype every time, due to cost
reasons. In these cases, the two parallel design processes should be defined in such
a way that they fit each other and help the overall project to go on. Additionally,
for the HW part, a certain degree of pre-planning could be coupled with the agile
way of doing, in order to predict severe and costly issues due to regulations or

physical limits. Another solution could be to produce MVPs instead of complete
61

Agile in the manufacturing industries

prototypes, in this way the product’s main features could be tested without incur-
ring in excessively high costs. In Figure 2.4 an example of simultaneous hardware

and software development is provided.

RELEASE Major Epics ~ Rough Estimates
PLANNING L Some Stories High Level Design

HW Sprint Sprint SW
Design (z.v';::ks) HARDWARE SOFTWARE (2 VE:JI;ks) Design
. Embedded Software Sta
S2 Low Functionality Emulator Embedded Software S2a
Development $%b
S3 Medium Functionality = Embedded Software S3a
Emulator o Development S3b
m
=
S4 High Functionality Emulator = Embedded Software Sha
Limited Functionality Prototype % Development S4h
A
e Embedded Software S5a
85 Full Functionality Prototype S5b
. Embedded Soft S6a
NGl Full Functionality Prototype St
Hardening Sprint Hardening Sprint S7a
S7 Final Integration Testing . Final Integration Testing S7h

Figure 2.4: Example of the overall flow of development, for a hardware product that
contains a software component (Thompson, 2021)

Another key difference lays in the mindset and culture that have to be seeded
into the company to make agile profitable. Team members should have clear in
mind the agile philosophy before its practices, they should understand how the
managerial roles change in agile teams, and the whole company structure should be
adapted to form multidisciplinary teams, with technical and non-technical people
in them. The classical subdivision into departments needs to be taken down. For
this reason, employees should be formed about new areas of the business, rather
than being focused on a specific topic. The goal has then to shift towards the
idea of a product that is designed as the process goes on, rather than something
that is first thoroughly reasoned and then designed. The lightening of preliminary
studies could indeed represent a big challenge. Understanding that the upfront

planning can not be implemented anymore can take time, thus everyone should

62

Agile in the manufacturing industries

also get specific training about the time-boxed iterations approach, the acceptance

of change, the absence of documentation, and so on.

Customers also play an important role, since they need to be involved. Even
if this already happens in traditional industries, it could be difficult to strongly
apply this methodology with prototypes and partially working products. The
customer itself should be aware of the whole process in order to provide adequate

contributions.

Finally, shifting towards agile, manufacturing companies should also try to
embrace a new way of doing business. Exploiting these methods could open the
doors to Mass Customization and platform design. In this way, different products
could be developed by the same multidisciplinary team — thanks to the platform
approach, which would support a number of different products developed over
the same basic design — and customized to fit a multitude of different customers,

without impacting the economics of the design process.

In Table 2.6 it is reported a summary of the main differences between hardware
and software agile development. All these differences have implications at different

levels: operational, organizational, and strategical. Table 2.7 summarizes them.

Software Hardware

Beta versions Prototypes, Minimum Viable Products

Short, fixed length iterations Iterations of variable length according to product
architecture, complexity, and openness

Domain-oriented knowledge Multidisciplinary teams

No documentation Light documentation

Light negotiation with suppliers Tighter relation with suppliers is needed

Low cost of design changes High cost of design changes

Nearly absent sunk costs Important presence of sunk costs

Table 2.6: Differences in applying agile to SW development and HW design

In the previous sections, a number of literature contributions has been analyzed.
Their outcome is a wide set of normative suggestions and direct observations about
the applicability of agile methods in manufacturing processes. As a consequence, a
set of recurring trends were identified: the importance of customer requirements
and the customers’ involvement in the agile process; the use of prototyping and

RP technologies; the use of agile methods. For this reason, in the following pages

63

Agile in the manufacturing industries

Level Effects

e Mandatory shift towards some technologies: CAx, Rapid Proto-
typing, Virtual Prototyping, Additive Manufacturing, Reverse Engi-
neering, 3D Scanning

Operational o Diffused use of virtual prototypes, simulations, and digital versions
of products
e More frequent prototyping phase
e Need to understand how to deal with software and data elements
e Implement platform design to achieve economies of scale
e The short term goal is the creation of a prototype at the end of
each iteration
e The long term goal is the final product, but has to be achieved
through rolling wave product design

o Stronger relationship with suppliers, due to product platform needs
e Strong involvement of customers in the company organization to

Organizational get feedbacks
o Shift from functional departments/business units towards dedicated
multidisciplinary teams
e New roles have to be created (e.g. Scrum Master) and managerial
practices have to change

Strategical ¢ “Focus on building the right product, before building it right”

(Bohmer et al., 2017)
¢ Looking at business opportunities, new products can be created
thanks to MC and platform designs

Table 2.7: Effects of agile on HW development

a tabular framework of the previously mentioned literature researches has been
provided. The subdivision in descriptive and normative papers is maintained, but
a third, mixed, approach is added. In this last category, one could find those
researches with a dual nature. In addition to the researches mentioned in Sections
2.3.1 and 2.3.2, the main sources of information previously used in this chapter are

also included.

64

Agile in the manufacturing industries

stoded yoeordde oAndLoss(] :8°7 9[qelL

‘Surmjoejnuewr dwnJ

‘A[uo Jurnjoejnuewt oISy

“Apyurol pesn aq 01 spoyjew qQVY
spoau Inq ‘Is[qeus AI[ISe ur oq uwvd JY

*I99Je PIAJOAUI JOU ST I9UIOY
-sno oy} ‘qoofoad oyy jo Suruui8eq oyl
1e suorjeoyroads jonpoxd ojur paje[surIy
are sjuewaanber rewogsno raded sy uy

(0T0%) "T® 20 ypourp

‘s£oq 100pino ‘seouerdde
wooayjeq :s10309s oyroads Kioa
ur sesudiojue wWNIpAW [[RWS

*Sur
-Injoejnuew ues| ‘juswefeurur
ureyd Ajddns ‘Surinjoejnuewr
o[iSe ‘uSISOp UOALIP-ID2WIOISTD
ISOAJOAUT UOIJRZIWOISND SSBIN

r1oded a1} Ul poUOIjULW IDADN

‘ydpey oq ued Surjedrewt
A9iiSe pue Sunmjoejnuewr o[I8y ‘ssou
-oa13139da1 pue Ajurenpow Surdesy o[iym
uorjezimwo)sno opraoid o3 woyj) Smo[[e
uorjeziuwolsny) ssey -suorjerado aroy)
uo sy} jo joedwl oY) 0} UOIIUDIIR INO
-3}IM 9DI0YD 9I0W SISW0}SND IDPO SHINS

(L00Z) 'Te 3o Trews|

*S[00}
ULy ‘9AIjOWOINE ‘SOTPOUWOI]
ur sorpnys osed Q01y T,

qutad g ‘spo
-jowl Ny ‘Surreour8us osIoAdl
‘SHYNN ‘Suiepowt praqAy ‘uory
-ezrwrydo A8ojodoy ‘ueds g

*SI9UWI0}SNO WOIJ UOIJRUWLIOJUT [RUOIIIPP®
Iayjeld 0} pesn aq ued SJAJN ‘°o[i8e 10}
posodsipaid Afpeinjeu st jurid (g sjuswr
-uodiaus Jul[epow PrIqAY pue Spoiyjemt
Xy yYpm perdnoo oq ued 31 ‘seseyd
uorjeaouur ur [erjuesse st JurdLjolorg

'sponpoad pazipenpiarpur Aqsiyq
ur usAe ‘sysenbel srowojsnd yowvalr o [Nj
-djey oq ued spoyjewr aaljeiojdxe pue
paysiqesse Suridno)) -o8pajmous Juijst
-Xo 9onpoidal 03 YSNOUs J0U ST J1 ‘SISWO0Y
-sno AJsiyes 01 poposu ST AJIAI1eLI))

(6102)
hDﬁ@ahOQm ﬂviﬂ hwﬁvﬁ:m

+10309s quowudinbr Aaeoy]
‘Oruo1309[yq IawInsuoy)) sn

‘ssoooad aren)
-o8®)g oYj jo soSe)s 3uljse) pue
juowrdo(eaap oyj ur renorjred
ur pedordwe s1 o8y ‘seseyd
91en-o8e)g uIlyym jueswrdorea
-op I pue [eorsAyd yjoq I10j
swnios pue sjutads o[iSe yjim
yoeoirdde o[iSe payrpowr :pliq
-Ay wniog/ejen-o8elg ‘wWniog

‘sadKj0901d A[a1ee 10 ‘sjepouwr 3ur
-jIom ‘sjepowr apnid ‘sedAjojoid [enjiia
‘sSurmerp (g s1d900304, S[PpPOW pLIq
-Ay oi8e Suises ‘quowrdo[oAdp oIeMIJOS
01 19s0[d juowrdo[oAdp oIeMpIRY OYB'W
uorje[nuis I9indwod pue Sunutid Jg

03
puodsol ued Iawo)snd oy} Jer) [esrsAyd
Suryjowos gnq ‘sgonpoard Suryiom aq jou
AeuWl SIOUWIOJSND O} UMOYS SWI 9[qISue)
oY, 'sIawojsnd Juikjsijes pue Iemo[ST
o8ueyd JOo 150D uaym o8uryd sjuswaInb
-o1 9onpoad Surmore ‘309foxd oy ySnoayy
Aem oYy [[e 9[qiSue) SUIY}PUWIOS SISWOYG
-sno> smoys Pprqdy ody/eren-o8e)g

(910g) 10doop

‘Apnjs ased — Youaq 4893 9[24d1g

‘syyueaq jusweSeuewr 1o9foxd
wnig 29 seorpoerd 3saq JX

JRECL
pnoo siasn jeiyy sadLyogoad [eorsAyd 408
0} ‘peosn olem suolsioa peajurid-g os[e
mq ‘sppowr (Jy{) ®BIA 2UOp A[[eNSN d9I1oMm
SOLISAI[OP OU03SI[IW ‘APnNjs 9sed oY) U

orqpesy
Iosn o3 Suipiodde ‘se3uryd 03 pojdepe
pue pojen[eAo-ol U} OI® SOUOISO[IN
‘o[npayos ' Aq peaysnd jou pue joofoid
oy ojur pornd s1 iom :welsds odL)y
«1nd,, ® pejusweidwWl oq URD 31 SIDINOS
quareyrp wouajy sindur s193 jo0oload e I

(z102) "1 30 &300op

*(Burzeau
-18uy [eo11309[y pue 19gndwo))
‘sorgewrioju] ‘Surieeurdur] [eOl
-ueydLy) oSuUS[[eYd SIUSPNIS

‘SuIea) 91} 031 U2AIS sem
90107 901j ‘SPOYIOW SNOLIBA

‘A899e11s SurdAjoroad [ejuozrioy
oYy 11oddns sordrourad o8y syoofoad
pouyep-[[om 03 spea] Surd£jojoad jo sesn
JUOISYIP U2am3aq Surjperaip “yuowrdo
-[oA9p aIem)jos OIS 07 JIISO[O UL
-doresep orempiey sSutrq SurdLjojorg

‘syuswaanb
-1 s1owo0)snd ul sofurys o3 jdepe o3 [NJ
-osn oie sadAj0j01g WRO) oY UIYIIM
uorjengrs ojojdwod oy} jo Surpuejsiop
-un jurof ® I0J syse squowaiinbair jon
-poad ojur speeu Iawo)sNOd JurULIojsuRL],

(2107) "T® 30 ToWYQE

103098

Spoy3sIN

Surd£jojoag

mu:@&@&wﬂ—ﬁvwh Jawolsn)

Jtedeg

65

Agile in the manufacturing industries

stoded yoeoidde oaryeuLION :6°Z 9[qRL

‘sa[qed 1emod AIjUnod-ssoro
pue ‘smopurm ‘sieyrdwe oIS
-nw ‘s£op orgse[d ‘urnsur ‘sios
-uas pue soA[eA hwwﬂwﬂhﬂu PUIAA

‘Apnjs aseo o[dijnuu pesA[eur
Suraey 1o9je posodoid sr iom
-owrel,] WNIOG [RLIISNPU] MU
vV 9ren-98elg/wniog priqAH

‘adAy0301d [eOI 91} YIIM UO S903 juawr
-doteaap oYy ‘uorsioep aarjsod ' 0} speoy
sIy} J1 "Sopyoeq jonpoid ferur 9yj Sur
-doonsp 193je pajreard are sadLjojord-axd
aroym ‘Apngs Ajrjiqesesj oY) ur pasn sI
Burd£10901d ‘spromeumresy pesodoad oy uy

‘PoA[OAUT SISWIO]SND
Y3IM UOI}EDIUNWWOD J09IIp pue Spaou
I9WI0ISNO JO oFpo[mouy po[rejop SuIipia
-oxd ‘Iowo}snd 9Y} JO 9OI0A S® Ppojow
Io8vuURW SSOUISN(O J, °SS000NS jo3Ivid
pue juswdofeasp jonpoid jo se3ejs A[1es
Ul UOI}eIOQR[[OD I9WIOISND PIseaIdur 9]
‘s1opio oSueyo o8ejs-oje] pue sjure[d
-WI0D I9WI0)SND Pasealdap ssoooid praiqAH

(¢102) "B 30 TowImog

‘sour] romod A1junod
-SSOID ‘smopulm ‘SOIUOI}09[9
‘sfoq oryserd ‘sreoryneoceuwrieyJ

‘93en-28v)g/WNIdg

praqAH ‘90URUIDAOS WNIDG

1oded ey) url pauorjuLewW JON

‘SuoIIn[os pIremad
a[qeldepe pue o[qIXoy oIow o pINoOYs
a1y ‘syoefoad g ur o8uryd jo [0A9]
oY) pue woyshs oyl Jo A}IPISIL oYY Ym
PpojseIjuod soIpnjs osed oyj ur porjdde
wo)sAs [oY) PUR Swa)sAs pIemal oy,

(P102) ‘1B %0 Pwwog

‘pa309[es st A13snput oyroads oN

*381] SYVY @y3 ul juesaid are Jurd4jojord pue sjuswaiimbel rewoysno yjog ‘A393erss
aa1y199dwon s, Aurduwrod oY) yirm 90uURpPIOddE Ul (JN) SUOIOUN] JI0MIdoN pue (V) $9Inqri3ly oIy usamioq suorje[ar
Surnerd pue g4 Surjrojdxe ‘syromisu juowrdojossp jonpoid oiSe ulisep 01 ASojopoyjrewr ' sjueseid iaded oyf,

(610%) 'Te 30 1oussory

Sw)sAg OruoIg

-eyooy ‘SunmesurSuy welsAg

wniog {(SIN) Suriesu

-18uy swaysAg peseg-[opoN

*Sordeq j0oN
-poad a1} 03 poppe ¢ sjuouwrarinbai paonp
-ur,, mau oY) SUIUWLIO] ‘pUNOJ oIe SjULU
-odwod pue soInjoeqIydre moaN -jurids
yoes jo pus oy} je Arearep adAjojorg

‘Ayrrenb jonpoad 1aySiy
‘so8ueyd (Siowog)sno o3 uoijejdepe
‘syuomreanbax pasoirdw] - (£Sojopoyjewr
HSHIN wWoaj) sosA[eue Xoq 923I1ym pue
X0q oe[q oY) Ueamjaq spoyjrouwr o8y

(8102) ‘T® 90 noiqen

Spoy3sIN

Surd£jojoag

mu:@&@&wﬂ—ﬁvwh Jawolsn)

Jtedeg

66

Agile in the manufacturing industries

stoded yoeoidde poxIi|N :01°Z °[qeL

‘Payl
-oods jou axe serigsnpur ‘sestad
-19jUd UBIUSAO[S JUSISYIP T[T

‘suorduny renprarpur uo pasnd
-0J swea} pue SUOI}RIAIL }I0US
posn sweo) 99 Jo 3sOoJN "yoreoad
-de ori8e orjewo)sAs i1odoid e
jou ‘sroSeueuwr/swes) [RNPIATD
-ur oyj Aq poysiqesse useq
aaey jey) soyorordde [eijied

‘1aded o1} ul pauorjuLewW JON

‘spoofoad
9} JO SSOOONS [RIDURUY [[€ISAO 9] SSBIID
-ur 03 paaoid UOI}RIOQR[[0D JUSI[D ISYSIH

(P102) 21e1g

‘SI9qUIO U
weo) oY) uo pue ‘goafoad oyy
U0 ‘Speau SISWO0ISND 9Y) uo Jul
-puedep wIe9) [YOBS WO SUOLY}
-edYIpowr M ‘wnidg ATurey

‘SI9qUIaUI
wrea) oyl uo pue ‘309foxd o1y
uo ‘spesu sIowo0)snd oy3 uo 3ur
-puedep wee) [OBD WO SUOT}
-edyrpowr Yiam ‘wnidg AJurey

‘uorsion adAjojoird mau ' uayy
I97jel ‘suoljeijsuomwop atom ssoidoad 10}
sornseow Arewtid oY) :UOIJRIDIT AIDAD J®
jonpoad [eoisAyd e JulIeAl[op jou olom
parpnjs spooford oy} ‘pauorjuswr I9AdN

‘sIOMWO0Y
-Snd ay)} uo UD@E@Q@U pesn spoyjlewt a9y}
os[y “3[NOWIp sI uoljejuowa[duwil ‘smora
-91 JulINp JI9WOJSND 9y} JO ddoUdsqrR U]
‘[38ua] suoljeIo)l oYy SUI})OS UOYM JUNOD
-0® 0JUl UdNB) 9C ISNW OS ‘O9IemM)JOS URY)
juowtdo[eaep oalempiey J1oj swo[qoxd
aIowW 9)eAID URD sjuswaIrnbar SurSuey)

(9102) “1® 90 BQUUOM

‘Apngs osed 10jR[NWIS
[res ‘suwoysAg [eoIisAyd JI9qLD

‘100foad oy
jo soseyd A[1es oY} WOI] 150D
Mol 1e sor8ojouyoe) Surdiowe
Ardde sjuspnjs j3o] pue 309foxd
o) uo Iom 09} sjrodxe-uou
Pomo[[e ‘onjea o8pa[mouy Josn
9jerouald Apomnb ‘uoryejuewin
-oop Suronpar pad[ey 31 WNIog

‘SIUSWID[O SIeMPIeY 9}
10] ow) arow pairgjerd sjuspnils sowr
sso[oyrtonou SurdLjojoad 199se] pamoj[e
Surd£jojoad prdey JnoyjIp oIow oIe
sorepdn aIempIeY JI USAD ‘IDI[IBD 193 IRt
a9 uo Ind oq ySIrwt sjonpord mau :suoIs
-1oA Apres pue sodAjojord spiemoj Sur
“HIYS Sl sIoployedfe)s jo uoljuajlje oy,

‘sqpuawraambar auyep
AJ1e9[d 03 WNIdG Yjim weyj Jurjeidojur
‘uoryrjedurod aaraIns o3 o[qissod se yonur
se pojerodiodur oq pP[noYs eIpowW [eId
-0s pue juewdo[oAdp-0d ‘Surpunj pmor

(¥102) T8 30 IOpPIMN

Spoy3sIN

Surd£jojoag

mu:@&@&wﬂ—ﬁvwh Jawolsn)

Jtedeg

67

Chapter 3

Case studies analysis

In this final chapter, six different case studies are analyzed. The purpose of this
analysis is to investigate whether the preliminary conclusions drawn in Chapter
2 may find confirmation or not. Again, the main source of information for this
chapter comes from scientific literature, but the focus is placed on researches that
analyzed in detail the application of agile methods to the manufacturing world,

considering both HW and CPS design and development.

The selection of case studies aims at providing information coming from a
variety of situations, industries and timeframes. The following papers, in fact,
range from 2012 to 2019, they describe different industrial application of agile, and

as a consequence they reach different conclusions.

3.1 Introduction

The first two cases come from the automotive world, and follow two different
product development processes held at Volvo Car Group, in Sweden (Eliasson
et al., 2014). These first two contributions are perhaps the strongest ones, as they
present studies performed in a multinational company, among the biggest in the
automotive world, providing direct feedback from real life industrial applications.

This means that the projects and processes involved are quite complex, and the

68

Case studies analysis

stakeholders involved are many. As for the products, both these case studies deal

with CPS development, including HW and SW simultaneous development.

Continuing, the third case study hereby considered follows similar steps. The
authors indeed focused on the feasibility of applying agile into mechatronics products
development, formulating a set of goals and practices to support it in large-scale
applications. Again, both SW and HW are involved and taken into consideration.
Differently from the previous ones, this case does not focus on a single company,
instead the authors looked up six different international enterprises, some of which
already applying agile to some extent (Eklund & Berger, 2017). However, it will
not be treated as six individual case studies, as the authors’ approach — in which
conclusions and observations are drawn from the collective observation of the

projects — will be followed.

The next case study was instead included to provide a completely different view
and add contrasting elements to this chapter. Mazzanti (2012), in fact, focused
on a HW-only product, specifically luxury bathtubs, and applied agile product
development techniques to its developing process. It is the oldest of the six papers,
and describes the active role of its author, playing the role of the agile coach in an
Italian SME for the whole duration of the project. Differently to the rest of this
thesis, in this case study some lean manufacturing techniques are reported and
applied. Despite the clear differences that the two philosophies present, this paper
proved that they could be associated providing good results. Nevertheless, due to
the aim of this thesis, the agile part will get most of the attention in the following

chapter’s analysis.

Finally, the fifth and sixth case studies here presented deal with the application
of agile to medical devices development. Again, the products considered are purely
HW ones, but due to their industry of origin, they present many differences with
respect to the others. In these case studies, in fact, some important constraints were
present in the form of regulations of the medical sector, hindering the possibility
of having vague product requirements in the early project phases, and in general
creating some challenges. For this reason, they provide interesting insights on how
much HW product development, especially in specific sectors, can differ from SW

development. The two studies are performed by two different teams of researchers,

69

Case studies analysis

that however share a good number of team members, reason why they are here
presented together, while in the next pages they will have separated analyses.
Moreover, one can be seen as the continuation of the other. Gerber et al. (2019)
present a possible — generic — agile method for HW product development, with
specific applications in the medical sector, and it does so while working on a
microtiter plate development. Goevert et al. (2019), on the other hand, tried
to apply the previously mentioned method to the same microtiter plate project,

aiming at its validation and improvement.

3.2 Cases 1 & 2: Volvo Car Group

Agile Model-Driven Engineering in Mechatronic Systems

The automotive industry well represents the current transformation trend de-
scribed in the previous chapters, as it has undergone a rapid transformation from
a mainly mechanical industry into a computerized electromechanical one. Cars

nowadays are composed of several mechatronic system and cyber-physical systems:

A modern hybrid electric car has more than 100 electronic control units (ECU),
collaborating in a complex in-vehicle network and executing several gigabytes
of software [...] These systems include assistant systems like adaptive cruise
control, safety-critical systems like autonomous emergency braking, but also
mechatronic systems like electronically supported steering (Eliasson et al.,
2014).

The traditional development processes used in the automotive industry have
shown to be insufficient for handling such an exponential growth of software. For
this reason, some manufacturers started to implement agile principles and best

practices into their organizations.

Volvo Car Group (VCG) is one of them. Here, Model Driven Engineering (MDE)
has been coupled with agile. For this reason, Eliasson et al. (2014) conducted a
case study at Volvo’s Department of Electric Development in Sweden, to better

understand the challenges emerged from such an approach.

70

Case studies analysis

3.2.1 The background situation

Eliasson et al. (2014) performed their observations and interviews in an industrial
environment that is already using (to some extent) agile techniques on a daily
basis. The paper describes with detail the method adopted at VCG. Starting from
the V-model, a widely used method in the automotive industry, it also includes
concurrent development of hardware and software elements. In this process, also
Mode Driven Engineering (MDE) principles are applied, making large use of models
rather than documentation as a mean of knowledge transfer. In this case, models
are referred to as “plant models”. As indicated in Figure 3.1, the simultaneous
development of different components convey into a unique stream by points E1 to
E3, that represent the electronic integration points. Point P, instead, identifies the

point at which software development should be production ready.

»
>

High-level Vehicle

Requirements Tes

System

Sub system

Component

v

Figure 3.1: The V-model implemented at VCG for a car development project (Eliasson
et al., 2014).

To make things more complex, it has to be kept in mind that VCG usually pur-
chases all the mechanical systems, hardware, and software from external suppliers,
except for the engines. However, during the recent years the company stated the
desire of internalizing the software development process. This implies that the
in-house software development needs to be started before suppliers deliver their

components, in order to meet the project deadlines. As a consequence, developers

71

Case studies analysis

need to rely on their assumptions on the behavior of the components, since they
are not available yet. Such a challenge is faced thanks to a custom-made tool,
referred to as SysTool. SysTool allows the creation of models that include software
components, the requirements to realize, their deployment on ECUs within the car,

and the communication between them.

At this point, some agile aspects are integrated. The model is in fact frozen,
and no changes are allowed until the next iteration. Differently from agile software
methods, however, the iterations last 20 weeks. Moreover, each model is transformed
into Simulink model skeletons. Each of them represents an ECU with skeletons of
the deployed software components including ports and connections. These Simulink
models can be tested in a virtual, model-in-the-loop (MIL), environment. This
means that so-called plant models simulate the surroundings of the ECUs (including
software and mechanical components) and enable to virtually and reliably test

them, getting instant feedback.

Continuing with its description, the process also includes software code generated
from the suppliers, starting from in-house models. The resulting software is tested
in hardware-in-the-loop (HIL) test rigs, meaning that it uses real network buses
but the rest of the environment surrounding the ECU is simulated. This point
marks the first time that both, in-house and supplier developed software, can be
integrated and validated together. After that, the last testing step involves the
integration of software and hardware mechanical systems in a complete prototype

vehicle.

This complex development /testing process, however, strongly relies on assump-
tions, on which the authors focused most of their effort, as described in the following

Section.

3.2.2 Research performed

When software is developed in-house, mechatronic components produced by
suppliers are usually not available yet. For this reason, the software development
is based on “assumptions about the behavior and data to be expected from such

hardware and mechatronic components” (Eliasson et al., 2014). Also, the project

72

Case studies analysis

timing and deadlines always make impossible the delay of software development to

wait for the hardware components.

The goal of the study was to “investigate the challenges for MDE at an auto-
motive original equipment manufacturer (OEM), when depending on assumptions
during in-house software development” (Eliasson et al., 2014). To address this, the

researchers based their work on three research questions:

RQ-1: What are the causes that lead to assumptions in distributed mechatronic
development, and what are the consequences?

RQ-2: Does the combination of MDE and agile methods increase the knowledge in
earlier phases of the project compared to a plan driven process?

RQ-3: What impact does faulty assumptions within the test environment have on
the product and process?

The first one has been investigated through open-ended questions and interviews
with developers, requirement engineers, testers, and architects, analyzing the
challenges regarding software, hardware, and mechanical assumptions. The results
of this preliminary study have been used to identify the main challenges and defined
research questions RQ-2 and RQ-3. From here, two case studies have been designed

to monitor these topics.

3.2.3 Results obtained

Starting from the open-ended questions part, in which the authors tackled the
main issues related with the diffusion of assumptions and their consequences (RQ-1),
some interesting conclusions could be extracted. First, the presence of assumptions
in the early stages of the process was mainly attributed to the sequential nature of
the product development process used at VCG. The fact that some stage-gate steps
are still present, forces engineers to forge assumptions. In order to take decisions
without having complete knowledge about the process, they need to fill this gap
with them, as represented in Figure 3.2. As the authors point out, assumptions
might be faulty and appear later in the process, when the cost of change is very
high. The interviewees clearly stated that there is need for earlier and faster

feedback to the developers and designers of systems. In other words, a need for

73

Case studies analysis

agile methods that, making use of increments, could allow faster decision-making,
and building knowledge. This result shows how the implementation of agile methods
in hardware and CPS development is not only suggested by the scientific literature,
but also by engineers and practitioners of any kind, directly affected by the current

methodologies’ issues, implicitly asking for it.

Knowledge needed

Assumptions

knoweledge

>

Decision time Integration

Figure 3.2: “The earlier an engineer has to make a decision, the higher is the risk of
faulty assumptions that lead to unwanted side effects or defects, which need to be fixed
later. Furthermore, these assumptions can only be verified at the integration points |...],
any serious issues that are discovered at this time are obviously costly and
time-consuming to fix” (Eliasson et al., 2014).

Following this preliminary interview, the researchers set up two case studies,

involving respectively:

Case 1: The Electrical Propulsion Systems (EPS) unit, developing components for
electrical and hybrid vehicles;

Case 2: The Central Electronic Module (CEM), responsible for an ECU of key impor-
tance within the vehicle.

In particular, the first case study followed the development of the clutch that is
required in hybrid vehicles to safely engage the electric motor. The second case
study, instead, analyzed the development of a software managing the active high
beam headlight (AHBH), a modern tool that lets drivers use the high light beam of
their car’s headlight without blinding the other drivers by mechanically obstructing
the light and put other vehicles in shade. Finally, it is worth to point out how

the first case study made use of virtual testing environment, plant models, quick

74

Case studies analysis

iterations, CAx tools (especially CAE), and prototyping. All these aspects are
related to the agile manufacturing concept. The second one, instead, started from
a waterfall approach that was not giving the desired results, and was modified
by an MDE expert. In this case the team made use of software modeling, virtual

testing, and HIL testing on a real car.

From the two analyses, interesting observations concerning both RQ-2 and RQ-3

came out, as summarized in Table 3.1.

RQ-2

RQ-3

Case study 1

Strong development of plant models was ob-
served during the process (e.g. clutch going
from simple model to a realistic one).

During the final coupling of SW and HW the
clutch did not behave as expected (faulty as-
sumptions).

The workbench using plant models allowed
for continuous software modeling during de-
velopment.

The simulation environment allowed to go
on without management approval, helped to
start the project and communicate ideas.

The virtual environment allowed for an
otherwise-impossible flexible testing of early
software.

During development, in case of faulty as-
sumptions were discovered, both the code
and the plant model could easily be cor-
rected.

Case study 2

Quick demonstration tools allowed for a lot
of testing.

Due to assumptions, the early versions of
the software were over-engineered: actuators
and sensors were considered as ideal HW el-
ements, detached from reality. This resulted
in unnecessarily complex architecture.

The HW fixing process related to the faulty
assumption took one month.

Other faulty assumptions led to considering
light beams as a perfectly calculated image,
which turned out to be totally different once
tested in a real car.

The SW fixing process related to the faulty
assumption was quick, and the overall design
remained untouched.

Poor laboratory tests’ settings allowed for the
latter faulty assumption.

Table 3.1: Summarized results of the two case studies performed at VCG, in relation
with the two research questions identified by the authors (Eliasson et al., 2014).

The two cases present many differences in the use of plant models, and in the
implementation of more or less advanced simulation environments that led to
more or less accurate assumptions. Also, they both highlighted some difficulties
encountered by the teams. However, they both clarified how the use of virtual
test environments significantly improved the team members’ level of knowledge

in early stages of the projects. In the first case study, virtual testing allowed to

75

Case studies analysis

reliably test the created prototypes, and get important assumptions about the
externally-developed technology. In the second case, it was even defined essential,
without virtual testing, the team had little or no progress at all. Virtual and early
testing environments forced the developers to fill their knowledge gap, gaining

correct — or almost correct — knowledge where it was missing.

The authors visually describe this finding by drawing the graph reported in
Figure 3.3. Comparing it with Figure 3.1, where the traditional knowledge flow was
depicted, it can be seen how at the integration point the knowledge gap reduced
a lot. As mentioned, the results of the two studies were not always ideal, some
mistakes were discovered in the later phases of the projects, leading to delays and
money losses. In general, it has to be kept in mind that the risk of such occasions
happening will always be there. However, the ability to conduct simulations this
early significantly increases knowledge from the beginning of the development

process, and allows to speed up the process.

A Knowledge needed

Y
:) -~ Assumptions /

knoweledge

>

Decision time Integration

Figure 3.3: “By being able to integrate and execute tests more frequently using plant
models and virtual environments, the developers can build and validate knowledge also
early in the project” (Eliasson et al., 2014).

Among the negative outcomes of the two studies, the authors point out how
plant models suffered from small inconsistencies, incompleteness, and needed of
some simplifications due to the limited understanding of the mechanical principles
involved. The lack of knowledge was also evident within teams, since the plant
model’s developers worked separately from the function’s developers, lacking some

contextual background. In a certain way this could be seen as a confirmation that

76

Case studies analysis

also during the development of HW products and CPS, the agile principle according
to which team members should always work together in the same room still applies

and could avoid some mistakes.

As a conclusion, agile integration with MDE seemed to work efficiently, thanks
to the aid of a virtual testing environment. Without these implementations, it
would have been impossible to relax the dependency on mechanical parts during
the development. Short iterations were also made possible and, as discussed,
knowledge in the initial stages of the process drastically improved. It was also
noted how assumptions play a fundamental role and thus necessitate of great
attention. Faulty assumptions, or assumptions exceeding the capabilities of the
mechanical components could result in more complex and resource-demanding

implementations.

About plant models, the authors identified two possible solutions that could
decrease the amount of assumptions needed. First, suppliers could deliver plant
models of their mechanical systems, giving the OEM more accurate models to
base the development on. Alternatively, plant models could be built in-house, but
verified by the suppliers. Both these solutions appear to have some limits as well.
In the first case, the suppliers may not be willing to share their IP, thus the risk
that they supply black boxes components, useless to the purpose. In the second
case, the solution presents limits related to the time and money effort needed
to implement and, more importantly, maintain the plant models, as well as to

integrate them with the MIL environment.

Regarding the purpose of this thesis, Eliasson et al. (2014) proved that agile
can be implemented in an automotive production plant. In this specific case, the
software presence made the use of less traditional methods more obvious, but still
very innovative and successful, as anticipated in Section 2.1 when discussing CPS
and Multidisciplinary projects. Here, no agile SW development methodology was
directly applied to the HW domain, agile principles were instead adapted and
integrated in an MDE environment with success. For what concerns the tools
used, the main two were Virtual Prototyping and Rapid Prototyping, confirming
what has been found in the previous analyses and sustaining the hypothesis about

their potentiality to fostering agile implementations. For the future of this specific

7

Case studies analysis

application, it would be ideal to reach further automation of parts of the testing,
and reach continuous integration and deployment. Both in a model based virtual

test environment, and in HIL testing.

3.3 Case 3: Scaling Agile Development in

Mechatronic Organizations

The following case study focuses on the mechatronic sector. In particular, Eklund
and Berger (2017) identified “a set of goals and practices to support large-scale
agile development in companies that develop software-intense mechatronic systems”.
They collected empirical data from six companies in the Nordic region, over two

years of researches.

According to the authors, the issue with mechatronic systems has its origins in the
duality that they possess. On one hand, manufacturing and hardware development
have long lead-times (1-4 years), and during their development the attention is
given to predictability, and to the need of meeting the start of production with the
required mechanical quality. Usually this is done by implementing waterfall /stage-
gate processes. On the other hand, software development is all about increasing
speed and being more nimble while keeping quality. In this case, lead-times are

weeks- or at most months-long.

Therefore, some methods to overcome this intersection are needed, especially
for the development of mechatronics components. In fact, usually teams are able
to implement software features in 2-4 weeks cycles, while the overall R&D process
is still depending on a stage-gate or V-model structure, that takes up more time,

vanishing the agile SW development benefits.

3.3.1 Research performed

To tackle this issue, the authors compared experiences and practices from
six international companies, some of which were already implementing agile in
their SW development, but did not scale them to the HW domain yet. The

78

Case studies analysis

study included only companies falling within very specific requirements: large
mechatronics organizations dealing with a large and diverse product portfolio with
regular product upgrades, where timely manufacturing plays a large role, and with

strong demands on high quality and safety.

The authors’” main goals can be summarized by looking at the two research

questions driving the study:

RQ-1: What are expected benefits and challenges when scaling agile principles beyond
software development teams?

RQ-2: What key enabling practices are considered to scale agile in mechatronics
companies outreaching pure software teams?

To get the desired answers to the previous questions, the two researchers made use
of individual on-site workshops with each company; complementary online surveys;
joint workshops with all the company representative together; final individual

interviews.

3.3.2 Results obtained

As a result, Eliasson et al. (2014) extracted a total of 409 individual statements
and 108 goals. This large amount of contributions has been processed and cate-
gorized, getting to more punctual results. As an example, it is possible to note
how participants mentioned nearly three times as many benefits as challenges.
The complete lists of expected benefits and foreseeable challenges are reported in

Figures 3.4 and 3.5, answering RQ-1.

From the two infographics, it can be noted how the principal expected benefit
was higher quality, while the main challenge was lack of flexibility in testing facilities.
According to the authors, the benefits list highlights the expectation of quicker and

better feedback to developers, compared to the previously used methods.

As anticipated, Eklund and Berger (2017) also identified 108 goals and practices
from these investigating activities, trying to find valid answers for RQ-2. The
majority of them were, however, overlapping with well-known best practices already

established in agile and lean software development. On the contrary, 26 goals and

79

Case studies analysis

100¢
98%
98%
96%
96%
93%
93%
93%
93%
91%
91%
87%
87%
87%

Higher quality ;| 0%

Faster time—to—market ;| 2%

Shortening lead—times | 2%

Maximize output from existing dev. resources | 4%
Minimize risk to develop wrong things | 4%
Happier engineers | 7%

Better predictability | 7%

Faster validation & verification | 7%

Easier to change product content ;| 7%

Easier adapt to customer reqs ;| 9%

Easy change of requirement | 9%

Minimize resources for development 13%
Faster validation with external customers |13%
Easier to target market windows ;13%

More frequent SW releases to production [20% 80%
More frequent SW releases in products 22% 78%

100 50 0 50 100
Percentage

Not relevant Unimportant . Of little importance

. Moderately important . Important . Very important

Figure 3.4: Expected benefits when scaling agile beyond software development teams
(Eklund & Berger, 2017).

practices have been identified as unique to the mechatronics domain. From this
list, a further refining permitted the authors to identify the final 16 practices that
not only were recognized as uniquely correlated with the mechatronics domain, but
were also verified as key agility enablers via a control set. The six companies, in
fact, were subdivided in two groups: four were used as the main interview set, the
remaining two as a control set. This means that the final 16 goals and practices,
reported in Table 3.2 on page 82, were not only mentioned by at least one company
among the first four, but also confirmed by at least one of the two companies from

the control set.

In addition to the practices description, the table also reports the agile maturity
level corresponding to each entry in the second column. The maturity level

ranges from low to high: Collaborative, Evolutionary, Effective, Adaptive, and

80

Case studies analysis

96%
96%
93%
93%
91%
91%
91%
91%
89%
89%
89%
89%
89%
83%
83%
83%
80%
80%
78%

Flexibility in testing facilities | 4%

Efficiently structure the organization ; 4%
Understanding agile along the value chain | 7%
Frequent releases requires good planning | 7%
Adaptation to frequent releases | 9%
Inflexible development process | 9%

Mindset in the company | 9%

Plan large—scale projects ;| 9%

Poor predictability in SW development | 11%
Overcoming established ways of working | 11%
Missing specific expertise | 11%

Long feedback loops | 11%

Understanding large—scale architecture | 11%
Manual testing | 17%

Coordinate between different teams | 17%
Product—specific functionality | 17%

Focus on testing at the end | 20%

Difficulty to avoid big—bang testing | 20%
Production setup for volume | 22%

Specific product—requirements | 24% 76%

Sell more with agile capabilities | 24% 76%

100 50 0 50 100
Percentage

Not relevant . Unimportant . Oflittle importance
. Moderately Important . Important . Very Important

Figure 3.5: Foreseeable challenges when scaling agile beyond software development
teams (Eklund & Berger, 2017).

Encompassing'. The idea behind such a scale is to provide information on the
evolutionary path through the stages that can support an organization attempting
to scale agile development. In other words, a company should focus on the items
at the bottom of the table, and then aim at escalating towards the top, in order
to successfully implement agile across multiple domains. These four levels also

provide the rule for the subdivision of principles inside the table.

Finally, the third and last column sorts the 26 principles according to the Agile
Manifesto’s agile principle (Beck et al., 2001), already mentioned in Section 1.2.

'From Eklund and Berger (2017): “Collaboration is considered an essential agile value and is
therefore the 1st level. The 2nd level is to develop software through an evolutionary approach.
The 3rd level is to effectively and efficiently develop high quality software. The next level is
using multiple levels of feedback to respond to change. The final 5th level is to achieve an
all-encompassing environment to sustained agility”.

81

Case studies analysis

Description Maturity level Agile principle

Minimize the number of point of contacts between SW, 4 Adaptive Technical Excellence

HW and mechanics

Reduce variant complexity (component level) 4 Adaptive Technical Excellence

Allow for integrations of not the full product (e.g. Sim- 4 Adaptive Technical Excellence

ulations)

Not using the same planning/project gates for HW and 4 Adaptive Plan and Deliver Software

SW Frequently

Reduce variant complexity (product level) 4 Adaptive Plan and Deliver Software
Frequently

Do not isolate disciplines 3 Effective Human Centricity

Do not depend on manual deployment 3 Effective Technical Excellence

Integration is a continuous activity (every 4 weeks) 3 Effective Technical Excellence

Move towards platforms 3 Effective Technical Excellence

Move complexity from mechanics to software/moves 3 Effective Technical Excellence

lead-time

Minimize supplier lead-times 2 Evolutionary Human Centricity

Speedy deployment of test software to the (prototype) 2 Evolutionary Technical Excellence

product

Quick and dirty HW available to test SW functionality =~ 1 Collaborative Technical Excellence

SW available to use in tests of HW development 1 Collaborative Technical Excellence

Multidisciplinary teams 1 Collaborative Human Centricity

Having an agile process to adjust technical interfaces 1 Collaborative Human Centricity

Table 3.2: Agile goals and practices particular to mechatronics development for scaling
agile (Eklund & Berger, 2017).

Looking at the results gathered in Table 3.2, starting from the lowest agile
maturity level, some observations can be made. At the Collaborative level (1), it is
highlighted how the process must be as agile as the individual teams to achieve
agility at scale. Teams should consist of people from multiple different disciplines.
Not only they need to be cross-functional, meaning that they should come from
different SW and HW domains, but they should also be able to cope with different
tasks (e.g., both coding and testing). Moreover, it is important to have hardware
ready as soon as it becomes available, even if not in its final shape, to test software
functionality. Similarly, there must be relevant software available for the hardware

testing.

Going on with the Fvolutionary level (2), it is evident how, in case of outsourc-
ing, it needs to be coupled with actions that minimize the suppliers’ lead-times.
Parallelly, attention should be put on providing organizational structures that
do not isolate developers. Developers themselves should then focus on speedy

development of test software for the prototypes.

82

Case studies analysis

At level (3), Effective, the table suggests to speed up the integration in prototype
products (e.g., by means of automated software deployment at scale, instead of
manual procedures). Full integration of software, hardware, and mechanics at
least every four weeks should also be achieved. Unfortunately, this is one of the
most complex goals for a mechatronics company. In fact, while more frequent
integrations favor SW development, “it seems to have only marginal benefit for the
other disciplines” (Eklund & Berger, 2017), that may need of longer iteration times,
as suggested by the previously analyzed case studies in Section 3.2, where such a
duration was set to 20 weeks. Continuing with the effective-level practices, one last
suggestion is to move complexity from hardware to software if possible, by means
of careful system design. In this sense, the use of platforms to develop multiple

products would speed up the development and ease the addition of features.

The Adaptive level (4), presents the largest number of suggestions of the whole
analysis. Among them, it is suggested to reduce variant complexity. In this sense
Eklund and Berger (2017) suggest to pay attention to the number of variation
points, if they become too many they risk introducing technical complexity that
makes changes not agile at all. Another critical point is found during planning,
and in particular when introducing product variants to be “carried over” to other
projects: the risk is to reduce the flexibility in re-prioritization. Finally, variant
complexity should be kept under control when deriving variants of existing products:
if this process is not coupled with a parallel one, aiming at reducing the number of

variants that R&D should maintain, the amount of work quickly grows.

As mentioned, however, there also exists a level (5), namely Encompassing
maturity level. During the research, only one agile contribution emerged for this
level, but it was not confirmed by the control set and, as a consequence, not
included in 3.2.

Eklund and Berger (2017) also performed a comparison between the challenges
that their work identified for large-scale agile transformation and a systematic
literature review by Dikert et al. (2016). The results are reported in a schematic
way in Table 3.3. It can be noted how challenges in agile transformations in different

domains have more in common than what is different.

As a conclusion, Eklund and Berger (2017) work shown how a large portion of

83

Case studies analysis

Mechatronics challenges

Dikert et al. (2016)

Flexibility in testing facilities

Efficiently structure the organization
Understanding agile along the value chain
Frequent releases requires good planning
Adaptation to frequent releases
Inflexible development process

Mindset in the company

Plan large-scale projects

Poor predictability in SW development
Overcoming established ways of working
Missing specific expertise

Long feedback loops

Understanding large-scale architecture

No equivalent

Internal silos kept

Misunderstanding agile concepts

Challenges in adjusting to incremental delivery pace
Challenges in adjusting to incremental delivery pace
Using old and new approaches side by side

General resistance to change

Challenges in adjusting product launch activities
No equivalent

Skepticism towards the new way of working
Internal silos kept

Challenges in adjusting to incremental delivery pace
Achieving technical consistency

Table 3.3: Comparison of challenges for large-scale agile in mechatronics domain and
pure software (Eklund & Berger, 2017).

the scientific research about scaling agile can be considered valid regardless of the
application domain. On the one hand, this conclusion is encouraging for the agile
transition of large scale mechatronics companies. On the other hand, however, it
should also be kept in mind that “there is still no silver bullet in accomplishing
this” (Eklund & Berger, 2017). This process needs the tuning of a large number
of practices interacting one with the other, in order to declare the agile transition

successful.

3.4 Case 4: Agile development of luxury
bathtubs

One of the earliest case studies describing agile practices applied by real manufac-
turing companies in their routines comes from 2012 and analyzes Teuco-Guzzini, an
Italian company producing luxury hydromassage bathtubs and showers (Mazzanti,
2012).

84

Case studies analysis

3.4.1 The background

In this case, the issues that the company management wanted to tackle were

the too long time to market, and the too low quality level.

Before implementing agile principles, the author performed an assessment to
understand the state of the art at his arrival. The tools used are simple interviews
with both managers and engineers, Draw The Process? with engineers only, and
Premortem Restrospective® with managers only. The interviews’ results highlighted

the following aspects (Mazzanti, 2012):

o General lack of transparency and effective communication.

o Focus on local efficiency, with each department having its own independent
goals.

o Constantly changing requirements and priorities.
» Too long concept phase for new products, creating incomplete or vague output.
e Overburdened and somewhat demotivated engineers.

o Corporate process and procedures, considered too complex and cumbersome,
were often ignored or cheated.

» Engineers had no specific skills in managing projects and external partners.
« No interaction between engineers and customers.

The other two activities provided few new considerations and some confirmations
on what already emerged. Draw The Process indicated the most critical steps to be
the feasibility phase; the late product modifications, due to continuous specification
changes; and the product concept phase, perceived as too long and not providing
clear guidance. Premortem Retrospective, instead, identified some key information
such as the fact that overburden, multitasking, and continuous changes in priorities

were the norm; specifications changed too often and too late; concepts approval

?Draw The Process is “an activity in which groups of 6-8 people are asked to draw the
process that brings a product from concept to shipment and then identify the most critical and
problematic steps. [...] The goal of this activity is to check if there is a shared understanding of
the process and to get a first feeling of where the major issues are' (Mazzanti, 2012).

3The idea behind Premortem Retrospective is to “fast-forward ahead in time, typically 6-12
months, and presume that a project has miserably failed. Key events that ‘happened’ during
the project are positioned along a timeline. Events are then grouped and discussed, and finally
dot-voted to identify the most important ones” (Mazzanti, 2012).

85

Case studies analysis

took too long; optimistic planning lead people to stay late due to schedule slips;

and production costs were often higher than expected (Mazzanti, 2012).

Putting together the evidence just discussed, the author was able to identify the
major issues, as well as those issues that were perceived in a completely different
manner by managers and employees. As an example, overburden was one of the

firstly mentioned items from employees, but it was not even noted by managers.

3.4.2 Agile practices introduction

In this case study, the author also acted as an external agile coach. Differently
to the other papers analyzed in this chapter, however, the author implemented
both agile and lean manufacturing processes/practices. Even tough the focus of
this thesis is about agile, the early nature of this research paper made it interesting

to analyze a mixed approach like this as well.

Mazzanti (2012)’s first step was indeed a long learning activity, necessary to
teach both lean and agile to the engineers working at Teuco. Initially this caused
misunderstanding and annoyance among the employees, but the author considered
such an activity as essential to the following steps. Among other topics, great
attention was put on the importance of interactions, communication, and self-
organization. Agile methods were used a lot to handle interactions and conflicts.
During this step, it was difficult to drop some old habits, like the tendency to

multitasking in order to counteract the overload of work.

The following step was then to map the old development process, in order to
prove to the team why it was so important to learn new practices and revolutionize
their habits. Mazzanti (2012) mapped Teuco’s process by identifying three major
phases: concept, development/prototyping, and production. Each phase had three
sub-phases. In such a process, the product features, costs, and market shipment
date were set during the concept phase, where uncertainties were too high. This
exposed the company to expensive late changes in requirements. Moreover, the
average delay in completion time was measured to range from 2 months for small
projects to 6-9 months for larger projects, corresponding to a relative 33%-50%

delay in relation to the projects’ length. Other issues concerned the role of project

86

Case studies analysis

managers who had to manage too many projects at once, ignored deadlines, and
difficult to predict demand.

Despite the evidence, it was difficult for the author to make employees and
managers realize the real situation. For this purpose, a physical representation
over a board was created. Here, each column represented the process stages from
the late concept phase onwards, and each card represented a project. As visible in
Figure 3.6, most of the projects were stuck at the beginning of the process because
of delays, overloading, bureaucracy, and other reasons. The simple fact of exposing
the problems triggered the management to immediately act. This fact shows the

power of such a simple tool.

Figure 3.6: The initial process mapping from Mazzanti (2012), showing overcrowding
in the first columns

3.4.3 Results obtained

At this point, some typical agile practices were introduced: the author described
them as daily stand-ups in front of the board, and weekly retrospectives, resembling
very much the idea of daily Scrums and Scrum reviews. Again, engineers found
these activities useless and boring, so the approach changed, in order to focus only
on highlighted problems rather than providing a full overview to the management
about ongoing projects. After some adjustments, meetings became shorter and
more useful, identifying hidden and forgotten issues. They also provided practical

suggestions to remove time-consuming corporate procedures that were taking several

87

Case studies analysis

days for projects approval, and increased teams cohesion. The author, in facts,
described engineers as more individualistic people with respect to software engineers,
according to his experience. With the aid of Kanban, Portfolio Management, and
lean procedures, other issues were tackled jointly: visibility for overloading situations
increased, a new priority structure was suggested, and project ownership changes

were better exposed during the project life.

Concluding, after one year of agile implementation over the product development
process, the author noticed a significantly reduced overburden of engineers. These
results have been achieved thanks to demand management and capacity leveling.
In the words of the author, “assigning priorities based on due date and cost of
delay” and “adjusting activities and work to available capacity” (Mazzanti, 2012).
A consequential result was better predictability, both in terms of schedule and
quality. Additionally, cycle times have dropped consistently and according to the
projections made during the paper writing, time to market was reduced by 30% on
average, corresponding to 2-4 months earlier entrance. Finally, engineers seemed

more engaged and motivated.

Focusing on agile applications to product development, the author highlighted
how stand-ups reviews and retrospectives induced “engagement, commitment,
transparency, self organization, trust, and empowerment in the teams” (Mazzanti,
2012). Being an agile coach, the author stated that, at the beginning, the absence
of common SW practices caused him some troubles, and he felt a bit lost. His
suggestion in this sense is to “focus on the flow of activities and on how these
activities are producing value for the company’s customers”. He also identified
similarities between design reviews in SW development and in HW design. For
what concerns the people involved, he found engineers to be a group of individuals
rather than a team. However, engineers seemed to have a better understanding of
the whole product cycle, compared to SW developers. Other differences were that
engineers tended to wait for their coach’s solution, and did not show much interest
in the technical solutions possibly available and implementable. Nevertheless, it has
to be kept in mind that these considerations are strongly affected by the author’s
background, and the company’s status when he intervened. Additionally, the small

dimensions of the company, its geographical location, and the fact that this research

88

Case studies analysis

has been performed 10 years ago could also alter these conclusions, especially the

ones related to the human resources differences between HW and SW development.

Finally, it is interesting to note how, after noticing the positive impact of this
approach on product development processes, other departments at Teuco demanded
to try similar approaches as well. Despite the short timeframe, that did not give
enough time to the author to state them as successful, the adaptation of such an

approach over sales and marketing was providing surprisingly good results.

3.5 Case 5: Product Development of Medical

Devices

Gerber et al. (2019) focused their research on a particular sector of the manufac-
turing industry, namely the medical devices product development. In their study
it is firstly pointed out how this discipline could benefit from the introduction of
additive manufacturing processes, data analysis, and virtual reality, but would
still need to face important limitations and strict regulations on procedures and
documentation. This means that, as an example, fast prototyping would be allowed,

but a no-document process will never be possible in the medical devices area.

3.5.1 Research performed and results obtained

With these premises, the team tracked the development of a microtiter plate,
trying to adapt Scrum to the conditions of the product development of such a
device. The goal was to reach an agile, more specific, and better suitable method
for physical products. In this case study, as in the previous ones, two research

questions were elaborated:

RQ-1: How do agile methodologies influence the team climate in student research
projects?

RQ-2: Which adaptions and changes to agile methods like Scrum support effectiveness
and a comfortable working environment?

89

Case studies analysis

For this project, a team made of seven members, responsible for design, simu-
lation, requirements management, and agile procedures, worked six moths at the
product development. Thanks to the combination of classic and agile requirements’
management, and thanks to the adaptation of the manufacturing processes to
additive manufacturing, they were able to give birth to a final product, while
taking medical guidelines into account. As a result, a 3D-printed prototype was
created, as reported in Figure 3.7. During the process, a new geometry to enable
more cell-friendly microfluidics — required by the product’s specifications — was

implemented as well, after various simulation runs.

Figure 3.7: CAD model, on the left, and 3D printed microtiter plate, on the right
(Gerber et al., 2019).

Speaking of the process itself, Scrum was kept as the method at its basis,
but some modifications made are worth of mention. Daily scrums were initially
implemented via Slack™, an online communication tool, rather than in person.
Soon after the project started, however, they moved into video chats or on-site
meetings, that proved much more efficient. Retrospectives were held with a similar
structure to the original Scrum methodology ones, and provided suggestions for
future improvement potentials. Among the tools used, the authors listed: user story
mapping (see Figure 3.8a), Starfish retrospective (see Figure 3.8b), timeboxing,
feedback pitches, and joint visualization of the share emotional perception (see
Figure 3.8¢).

The results of the project were evaluated by making use of the team climate

inventory (TCI) (Anderson & West, 1998) — a structured self-report measure to
90

Case studies analysis

Figure 3.8: Sprint impressions (Gerber et al., 2019).

assess the climate for innovation within groups — and a feedback log. Firstly,
it was noted how the distribution of tasks at the beginning of the project was
not clear. Explicit rules turned out to be needed, in order to control the Scrum
process. Similarly, also the formulation and maintaining of user stories was found
to be difficult. In this case, the solution adopted was to adapt the user stories
to physical product development. Continuing, the team was skeptical about the
possibility to produce complex medical products within one sprint. This feeling
changed throughout the project, thanks to the periodic retrospectives that boosted
the team’s expectations for its own results. This trend was accompanied by an
increasing need of physical presence during working hours. This lead to the a first
answer for RQ-1, and provides an interesting observation on how agile product
development, also for HW products, benefits from a physical presence and suffers
the use of remote working. In the previous chapters, it was questioned how the
modern trends and technologies, as well as a the different dynamics involved in HW
development, could influence the original agile mantra according to which teams
should work together in a single room. This survey seems to provide a preliminary
answer to this kind of doubts. Going back to RQ-1, the authors got to the following

conclusion:

Agile methods accelerate the team development process at the beginning, but
the additional effort due to the new process rules is most profitable after about
3 sprints. Afterwards the well-rehearsed team can benefit from the known

scrum standards and developed practices (Gerber et al., 2019).

91

Case studies analysis

3.5.2 Practical suggestions

From these observations, Gerber et al. (2019) elaborated a list of suggestions
for future works, providing an answer to RQ-2. These thoughts have particular

importance in the agile development of medical technology:

» Shorter sprints and a division into pre-phase, iteration-phase, and final phase
are recommended.

e Research, interviews, and joint workshops on the topic would be urgently
needed before the actual development. This would allow consensus to be
built on the goals and vision of the project, technical knowledge, boundary
conditions of the product, a common picture of the end-user of the product,
and primarily an understanding of agile methods.

o The approaches of Design Thinking could be used to align the project goals
and vision.

 The iteration phase should have the structure of a sprint/Scrum. Innovative
solutions for partial problems can then be systematically developed.

o To select the documentation and technique level during a sprint, the sprint
missions should be used.

e In order to keep an eye on both technical requirements and user needs,
personas should be used. Their use allows evaluating the work results from
the preliminary phase.

o It would make sense to coordinate the final phase independently of the regu-
lations and sprints. This would make possible to adapt the documentation
to the requirements of a previously untreated risk and quality management
system, and thus meet the most important requirements of medical technology
product development.

e The length of the final phase should not exceed one to two sprint lengths.

The above suggestions refer to the process identified by the authors as a possible
solution for agile product development of physical products, reported in Figure 3.9.
The process is not analyzed in detail in this section, as its further evolution will be

discussed in Section 3.6.

The project results were overall satisfying. Prototypes were printed with additive
methods and simulation models. Sprints lasted four weeks, and enabled a sort of

product development process that very much resembles the one encountered in the

92

Case studies analysis

Classical Mission

Methology Doltimentatios

Raspetve
Retrospective Scrum
[]
28
il

Knowledge

Vision

e oy

Social Requirements
Prototyping Product Tests

and Persona

Figure 3.9: Recommendations of an agile process for physical product development
(Gerber et al., 2019).

SW domain, with frequent adaptations due to changing customer requirements.
The following section will analyze a second case study reporting further development

of this methodology.

3.6 Case 6: Agile Development of a microtiter

plate in an interdisciplinary project team

After formalizing the previously illustrated methodology, part of the research
team that contributed to the previous case study attempted to evaluate and improve
such a method, by means of a second real life application study. Kristin Goevert,
Sebastian Schweigert-Recksiek, and Udo Lindemann were in fact signatories of the
previous article. With the aid of Bidal Tariq and Lukas Krischer they were able to
perform the study analyzed in this section (Goevert et al., 2019).

93

Case studies analysis

3.6.1 Research performed

During the project, the five researchers cooperated for six months. On the
product side, the goal was to create a biocompatible additively manufactured
microtiter plate. On the process side, as a second goal parallelly pursued, the
researchers looked for a new agile medical product development process. During the
whole project, the collaboration of the team and other stakeholders was analyzed

as well, in order to suggest improvements to the efficiency of the cooperation itself.

The team made use of the same tools previously cited, such as scrum sprints,
for which a duration of three weeks was found ideal, user stories, daily meetings,
retrospectives, and weekly meetings. The external stakeholders, such as the project
partner that hereby plays the role of the customer, were also involved. Self-
organization and transparency were fostered in order to, respectively, motivate the
team members and speed up the decision process. With respect to Gerber et al.
(2019), some changes were applied. For example, the task board was digitalized, and
a chat for team members was implemented. Other product development methods
were used, such as benchmarking, risk matrix, kano-model, and weak-point-analysis.
The team also implemented a matrix to show dependencies between user stories
and requirements, as well as to show the status of fulfillment of the different user
stories. With respect to agile SW development, this method was adapted to permit
a better supplier’s management: “as certain user stories were highly dependent on
suppliers, risk management had to be integrated into the agile framework (Goevert
et al., 2019)”. As a consequence, the team focused and reassessed risk on a regular

basis, taking precautionary actions accordingly.

The first research question drafted by the authors is described as a consequence
of Gerber et al. (2019) as well. The second one, instead, comes from the first
challenge that the team had to face: changing the product development process

from injection molding to an additive manufacturing process.

RQ-1 : How does the agile process have to be built so that the tasks, goals, and
requirements of medical device product development can be integrated?

RQ-2 : How can a biocompatible microtiter plate with different geometries be built
with an additive manufacturing approach

94

Case studies analysis

3.6.2 Results obtained
Collaboration within the team

For the collaboration assessment, the team found out that many barriers were
present between the team members and the other parties, leading to a number of
unfinished tasks and user stories. Specific actions were taken for each user story,
in order to better monitor them. As a result, the progress of the project could be
planned more accurately during the scrum meetings, and the final product could

be delivered on time.

Process-related results

Speaking of the practical structure of the process, four phases were set up, as
illustrated in Figure 3.10. Black symbols represent the products, gray arrows the

events, blue arrows the processes, and blue figures the roles. As schematized, the

Requirements Manager

|
Phase I: Preliminary Phase “ Phase |I: Product Backlog ‘ Phase lll: Development “ Phase IV: Result
' = i
i ! |
ctiof i

! Team, Requirements !
od (e !] ! Management, Design, Simulation
agl

i
|
1
l ; =
©
|
H
Pmdud— |
vision :
X4 :
o BB |
e % =x
o8
Stakeholder |
I —
"

Product Owner

Figure 3.10: Agile model for physical and medical product development (Goevert
et al., 2019).

process is made of four phases. During the preliminary one, the vision of the
product and its project are defined with the stakeholders. This information is then

transferred by the product owner onto the second phase.

Here, the product owner is responsible for the product backlog and its refinement,

including the pre-definition of user stories, with the support of the other team

95

Case studies analysis

members. In this case, the team opted for a subdivision of user stories in two fields:
simulation, and design. In this way, experts of each field could collaborate. Finally,
during the product backlog phase, a continuous product requirement integration
was present at all levels. In this specific case, product requirements played an
important role due to limitations and guidelines that rule the medical products
development, but in general any physical product development could benefit from
this addition. To successfully meet product requirements, it was necessary to
have constant feedback from a requirements’ manager, as well as getting proper
combination of user stories and requirements, by means of the previously mentioned

matrix.

Going on, the third phase begins with the sprint planning event. During the
development phase, the elements of the sprint backlog are created within the three
weeks sprint. A sort of daily scrum is held at least every three days, if not more
often, and the requirements’ manager supervises the whole process. At the end of
each sprint, the results are discussed with the relevant stakeholders, and everything
is brought back to the product backlog, with the creation of new user stories.
During the final stages of this phase, the risk manager establishes the transition
towards the final phase, protecting the team by external influences, and avoiding

that such influences interrupt the development of some user stories.

Finally, in the last phase prototypes are created, providing added value for the
customer, so that he/she can provide early feedback. Additionally, the presence of

prototypes allows for early testing.

Concluding, for what concerns the development process just described, this
case study proved to be successful and provided interesting insights. The authors
however noted how during the first weeks of the project, the team was fulfilling
more user stories with respect to the end, where planning was milder. In this
sense, teams should keep in mind that the plan is only a rough estimation, and the
higher importance should be given to the product: “a product is more important
than following a plan” (Goevert et al., 2019). In other words, also during physical

product development, teams should switch towards a more agile mindset.

96

Case studies analysis

Product-related results

For what concerns the project in analysis, the team was able to transform the
injection molding design into a design for 3D printing via additive manufacturing
processes. This affected the product geometry in particular, giving birth to a new
patented shape with rectangular chambers instead of the classical round ones. As
a consequence, new tests and examinations were needed, to verify the fulfillment
of the product requirements. Here, CFD simulation models were used, allowing

iterative modifications to the various prototypes, until the final one.

Among the authors conclusions, it is worth to mention that “the produced
prototypes in combination with the simulation present a value for the product
owners and project partner”, and “the integration of product development methods
supports the team, as well as in structuring the agile process” (Goevert et al.,
2019).

Going back to the two research questions, they were both answered by the study.
The first answer comes from the proposed agile methodology described above, and

the second one by the production of the final prototype.

97

Conclusions and discussion

This research started with a literature review on both agile software development
methods, and their possible application in the hardware world. After having
discussed the origins of agile, the purpose for which the agile manifesto has been
published, and the first practical applications of agile methods, the analyses moved
towards the possibilities that such methods could have in the development of
Cyber-Physical Systems, in managing multidisciplinary teams, or in revolutionizing

the HW development processes.

In a certain way, all these fields of applications have been touched by the case
studies analyzed. Case studies number 1 and 2 (Eliasson et al., 2014) have been
useful to understand how agile product development already is a mature technology,
being applied in an important corporation like Volvo Car Group. Moreover, the fact
that VCG implements agile methods on new and experimental projects confirms
their capability of managing uncertainty and highly innovative projects. This paper
also attested how the automotive industry can be one of the ideal field of application
for agile methods, given the always increasing amount of electronics involved in car
manufacturing. Finally, modern technologies proved once again to be great agility
enablers. In this case the researchers made use of Virtual Prototyping, Rapid
Prototyping, virtual testing, and plant models, applying Model Based Engineering

principles in parallel with the agile ones.

Case study number 3 provided, instead, a different kind of contributions to
this document. While the previous two studies described with detail how an
important corporation applies such innovative methods inside its organization,
Eklund and Berger (2017) elaborated a set of suggestions that should help the

98

Conclusions and discussion

application of agile methods in any mechatronic project. The results can be hardly
summarized, and should be considered in their entirety, as reported in Table 3.2.
This table suggests a total of 16 best practices to follow, in a hierarchical order over
5 different maturity levels. Ideally, any company operating in mechatronics product
development could benefit from the application of such practices starting from the
basis and reaching the top. As an example, one could find useful the implementation
of multidisciplinary teams (level 1) at the beginning of its transition, while more
mature companies could examine with more detail the implications that a high

product variety has on their operations.

Case 4 brought again a completely different point of view, being the first to
analyze an HW-only product being developed by means of agile methods. The
main contributions of this document regard the methods applied. Apart from
the presence of some lean manufacturing techniques, the paper demonstrated how
Scrum might be the best solution for physical products development, among the
existing agile methods described in Section 1.3. As already suggested in Chapter
2, Scrum also proved to need a lot of tailoring and its direct application on HW

projects was found impossible once again.

Finally, cases 5 and 6 acted as a conclusion, providing a mix of different results.
They represent another example of how agile can be useful also in case of HW-only
products, as for case number 4. At the same time, they made larger use of modern
technological tools such as additive manufacturing, CFD simulations and their
consequential testing. While case number 3 focused more on the organizational side
and the implications of Scrum, Gerber et al. (2019) and Goevert et al. (2019) also
experimented the efficiency of such technologies as agility enablers. Continuing,
these two case studies suggested how agile methods are ideal for innovative solutions
in highly restricted field of operations, such as the medical devices one. In addition
to these observations, the two case studies also suggested a complex and complete
agile product development method, tailored to the medical devices development

needs.

To provide a more complete overview of the previous chapter results, in the

following Tables 3.4 and 3.5 a set of advantages and limitations of agile in the

99

Conclusions and discussion

development of non software products is present. Both pro’s and con’s are sub-
divided by paper and by field: technical/operational, organizational, and project

management.

100

1scussion

Conclusions and d

pozAeur

SOIPNIS 9seD dY[) Ul 9[I3Y JO SoSrjueADY :F°¢ 9[qe],

‘A3omb adA£j070ad Surmor[oj ayjp 03 198 01 nJ
-osn ‘Surysa) 199sey 10J smore Surdo[osap 199se]

‘squowraainb
-o1 pue s$91103s Iosn jo uoljeurquoo todoad
908 pue ‘sjuswerinboar jonpoid jo jusw[Y[ng
a3} aansus 03 [njasn st 309(oad ayy 3noysnoiy
1eSeuewr sjuawaimber e jo eoussard oy,

‘syuswedinbal jonpoad a1y jeewr 0} [RIONIO
‘IOWO0YSND 2} WOIJ peqpasj Ares sjrwrod
sIop[oyaye)s [[e Jo odousserd jueISUOD YT,

91
yrm a[qryeduwods aq o3 jonpoid ayj jo uoljey
-depe oyj jo edouenbesuoo ® se ‘suornjos ulis
-op mau A[o3e[durod 03} pes| Os[e UrD pur ‘juowt
-dojessp 193se] 10] mofe SurdLjojord pue ‘s[o
-pow uonRMUWIS (J,40 ‘Sulinjoejnuent sANIPPY

ore[d 109130101

‘spaau
Iosn pue sjuewaInbal [esruyoe) yjoq oery
01 mo[[e seuosiod ‘spoyjouwr o[i8e Jurdjddy

‘uoryejuomwa[dur a[18e ‘edousanbasuod
e se ‘pue SurdA£jojord oseo spoyjlow SAINIPPY

‘squrads
¢ Inoqe I03je poydwal si xead Afiqerygoxrd
oYy nq ‘Suruui8eq oyj je ssedoird juswdo
-[9ASD WED) OY) 9jeIS[9IDR® spoyjouwl I[ISY

‘Kem oYy
Suore suorjeoyrpow jonpoid pue juewdoessp
I99se] 10] mo[[e suorpenurs pue Surdfjojorg

“juep
-guod eJowl sioquiow Jupjew ‘uorjejdedxe
S, wrea) 9y} 4S00q ued $9A1309ds01)91 OTPOIIDJ

‘spoyjew 9[18e Jo Suipurisiopun
ue pue ‘esn-pus o) jo 2injoid uowWwWod ®©
‘suorrpuoo Arepunoq ‘oSpa[mouy [edIuyd9]
‘g00foad oyj jo uorsia pu® s[ROS 9} UO SNs
-uasuod pling juswdo[oAdp 9Y) 9I0Jaq ploY
sdoyssyiom juiol pue ‘SmalAalejul ‘YdIeasoy]

sjuowaarnbar 1owogysno Surt
-3ueyo jo oseo ul suorjejdepe juenboiy 10j Jur
-mo[[e ‘s)oem Inoj jo sjurads yim sjoofoad juewr
-doteasep jonpoad A\ ul porjdde oq ued wniog

ogerd I93130IDTIN

‘guewrdo[esep
sjonpoxd A\H Ul sowr} 9[0AD IoMO[URD WNIDG

‘swres) oYy ul jusuwrromod
-we pue ‘gsniy ‘uorjeziuedio jpes ‘Aousred
-sueI] ‘quomjluwod ‘quoweSesus eonpul
ued soAIdadsollor pue smorasr dn-pueig

K31
-oedeos ul[eAs] pue 19119q purwep Surdeueuw
Aq ULOPINQISAO SIPOUISUS 9ONPAI UBD WNIDG

‘jooford MH ur osfe £31[1qe3dIp
-o1d onpeyos pue Kjenb 191799 smofe wniog

sqnijyreq Linxnr

‘o[18® Jo suoljejlwl] pue sjyousq Suisodxs uUsYj I9Yjel SUOI}so33ns

reorjoead Suipraoird uo pesnooj Apnjs osed aYJ,

SW9)SAS SOTUOIJRYIDIN

‘suorpdunsse
A3j[nej jo esed Ul 9pod MG pue sepouwr jue[d
MH @43 yjoq jo uorjeydepe prder pue s3sa}
S[qIXaY I0J SMO[[® JUSWUOIIAUS SUI}SD) [BNIIIA

‘sadA3o030ad
se pesn aq ued sepow jue[d :A[[njssedons
yoroxdde N © Ym pajdnoo oq ued 918y

‘Surysey Jo requnu
I08I1e] ® I0] MO[[e S[00} UOI}eI}SUOWLP OIN)

yySipesy

weaq YSIy 9AOY

*S9SSO]
Aouowr pue oury Juisned A[erguejod ‘seuo
A3[ney Jo SII 99 oseardep suoljdwnsse 1oma]

‘swreo) 9y} ulyjrm uorjedrunuaruaod
oseo pue ‘dejs A10ad je [eaordde [erredeurur
Surpeau Jnoyiim uo Suro8 Mmoj[[e suolje[nuWIg

*3urgsoq Jjo asn a3 pue uoljejuswerdwr o[1Se
a2y} 03 syueyj) paxe[ar aq ued juswdo[aAdp
a3 Suranp sjaed [eorueydew uo Aouspuada(g

*s9ss0] Aouowr pue
o) Suisned A[erpusjod ‘suorpdwnsse ALjnej
JO SII 9} $9SBOIOAP SIY], ‘[9A9] SUOIIROIYIL
-0ods jonpoiad je pepesu suorpduinsse Jo Iaq
-wnu oy} Surysrurwip £q saydeordde [euoryip
-e1) ur quesoid de3 oSpeimouy oY) Suronpeal
‘qutod uworyeI8elUI O} JB OARY [[IM SIUOUWID[D
MS Pue MH ?Peq)} Inotaeysq oY) aje[nurs ol
mo[re Surysey pue SurdLjojoig prdey/renyaip

sour8ua ,S9[OIYdA OLI}
-09[e 10 Yoo ALj9jes

T

JuoweSeuR]y 199[01g

reuoryezruesiQ

[euorjyeradQ/[eoruyoay,

jonpoidg

ose)

101

1scussion

Conclusions and d

pozATeue SaIp)s 9sed 91} UI 9ISy JO SUOIIRITWIT :G°¢ O[eL

*309[qo reorsAyd
® jo ssoooid juowrdoleAdp 91} UO palo[ie) aq
03 paau Koy :quswrdo(essp jonpord AAH I10J
urejurewW 03 JNOYYIP o8¢ AW S9I0}S I9s()

93e[d 10313001

9% G

‘s1ewogsno s, Auedwod ayy 103 anfea 3uronp
-oxd aI® SSI}IAI}OR 9S9YJ MOY UO PUR SII}IAT}
-D® JO MO[9Y} UO SNDOJ 09 [NJOsn SI 31 SISeD
9soy) u] -oSud[[eyd ® o9q ued sjodloid swos
ur MS Jo eouasqe oy} ‘saydeod ofiSe I0g

‘[eo8
paleys ® MO[[0] Wee} oY} Jupjew ‘jespurur
uo1)eI12do0d B 92I0JUS PINOYS SI9)SBUW WNIDG
:o118e Suid[dde ueym woiqoid aYyj 9AJ0s 01
SOYDROD II97[} I0J }Iem 07 PUd) AeW SI9UISUH

sqniyreq Linxnr

‘o[18® jo suoljejrwil] pue sjyygouoq Sursodxe uoy) Iayrel suolysa33ns [eorjoerd Surpraoid uo pasnooj Apnjs ased oy,

SWI9)SAS SOTUOIJRYIDIN

‘suorInjos
xo[dwod A[rressodouun Suijyeard ‘AI[ear woy
SISUDIBISaI [OBIOP UED JI0lARYSaq sjusuod
-wod 9y} uo suorjdwnsse pue Surysay [eNIII A

‘udsep
jonpoad oy} j09ye OS[®R URD puUR ‘SOUO A\GS 0%}
100dso1 YIIM XIJ O} 9WI} SIOUW UYONW PodU AUl
swolqoxd A\H ‘suorpdunsse Aj[nej jo 9sed uj

ySipesy

weaq USIy 9A10Y

‘suorpdwinsse Ajnej jo ysu
o1 JuowSne sSury)es 8199 A1ojeroqe] 100

*SOIOUDYSIS
-uoour pue suorjedoyriduwis o} speaj op sI19Yjo
oY} jeym JOo oSpo[mouy o131 SurARYy :WIOY}
usamioq del o3poamous] oY) 0} pajre[ol sansst
asned ued s1yj} Ing ‘Arojeredss iom og siaodo
-[2A9P MS PU® A\H Smo[[e SuI3se [BNIIIA

‘uorstoald Yjrm auwodjno
arqissod A1oad 99s010] 03 a[qIssodwir ST 9] ‘OSIIe
sfemie ued suorpduwnsse Ajnej awos ‘Suiysey
I10J SHUSWUOIIAUS [BNJIIA JO osn oy} o3rdso(]

souIdue SO[OIYeA O1I)
-09[e 10 Yoo ALj9jes

JuoweSeuR]y 199[01g

reuoryezruesiQ

[euorjyeradQ/[eoruyoay,

jonpoidg

ose)

102

Conclusions and discussion

Comparing these results with what has been achieved in Chapter 2 — and
summarized in Tables 2.8, 2.9, and 2.10 — some points have been confirmed, while
others did not find much evidence. In general, prototyping (as well as testing
and simulations) was proved to be a key element in the agile transition. In both
chapters, the need for faster and more frequent product improvements has been
often mentioned. As a consequence, also the use of simulation softwares, CAx tools,
Rapid prototyping, and Virtual prototyping technologies has been confirmed as
part of the agile product development methodology.

Similarly, in the case studies analyzed in Chapter 3, the centrality of the
customers requirements was confirmed. However, some differences in this sense are
present as well. For physical products, in fact, it is essential to get the product right,
according to specifications and demands, but often the customer is harder to engage,
and sometimes completely absent. In this sense, the concept of “customer” could be
enlarged to include any stakeholder that can affect the product requirements. For
medical devices, as an example, regulations and certifications play a very similar
role. Concerning its engagement, instead, this very much depends on the possibility
to include him/her in the company processes. For big corporations, this might
still be a challenge. Parallelly, a second obstacle is represented by the ability of
developers to release prototypes and new versions often. In the analyzed papers
this varied a lot, depending on the approach chosen by the team, but also on the
product. In this sense, it should be kept in mind how physical products entail
bigger differences among them, and a standard agile practice for all of them is

hardly possible to implement.

For what concerns methods, the literature analysis performed in Chapter 2 was
open to a variety of possibilities, including, as an example, Agile — Stage/Gate
hybrids. Such possibilities were not verified by any case study, since almost everyone
made use of Scrum or versions of it. Scrum in fact appears to be the best possible
solution in case of HW products, provided that a fine-tuning and tailoring process
is applied to it, using the product characteristics and customer expectations as the

drivers for its adaptation.

Concluding, agile product development outside software development was proved

to be successful by several applications, both at academic and industrial level.

103

Conclusions and discussion

Modern technologies are essential to support the diffusion of such an approach,
making HW development closer and closer to SW development. Differently from
the software domain, however, it is difficult to set up standard procedures and
methods. Since physical products differ a lot, standardization is possible only
within very tight borders: as an example, it is possible to suggest an agile method
for the production of medical devices, but this will not necessarily be applicable in

the automotive industry.

104

Bibliography

Altavilla, S., Montagna, F., Newnes, L., et al. (2017). Interdisciplinary life cycle data analysis
within a knowledge-based system for product cost estimation. DS 87-5 Proceedings of the
21st International Conference on Engineering Design (ICED 17) Vol 5: Design for X,
Design to X, Vancouver, Canada, 21-25.08. 2017, 375—-384.

Ambler, S. (2002a). Agile modeling: effective practices for extreme programming and the unified
process. John Wiley & Sons.

Ambler, S. (2002b). Introduction to agile modeling (AM). 2002b.

Anderson, N. R., & West, M. A. (1998). Measuring climate for work group innovation: development
and validation of the team climate inventory. Journal of Organizational Behavior: The
International Journal of Industrial, Occupational and Organizational Psychology and
Behavior, 19(3), 235-258.

Beck, K. (2000). extreme programming eXplained: embrace change. Addison-Wesley.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning,
J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor,
S., Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto for Agile Software
Development. http://www.agilemanifesto.org/

Bohmer, A. 1., Hostettler, R., Richter, C., Lindemann, U., Conradt, J., Knoll, A., et al. (2017).
Towards agile product development-the role of prototyping. Proceedings of the 21st
International Conference on Engineering Design (ICED 17) Vol 4.

Cantamessa, M., Montagna, F., Altavilla, S., & Casagrande-Seretti, A. (2020). Data-driven design:
the new challenges of digitalization on product design and development. Design Science,
6, e27.

Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to agile methods. Advances in
Computer, 62(03), 1-66.

Cohn, M. (2010). Succeeding with agile: software development using scrum.

Cooke, A., Bonnema, G., & Poelman, W. (2012). Agile development for a multi-disciplinary bicycle
stability test bench. In R. Scheidl & B. Jakoby (Eds.), Proceedings 13th Mechatronics
Forum International Conference, MECHATRONICS 2012 (pp. 812-819). Trauner Verlag.

Cooper, R. G. (2016). Agile-Stage-Gate Hybrids. Research-Technology Management, 59(1), 21-29.

105

http://www.agilemanifesto.org/

BIBLIOGRAPHY

Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for large-scale
agile transformations: A systematic literature review. Journal of Systems and Software,
119, 87-108.

Eklund, U., & Berger, C. (2017). Scaling agile development in mechatronic organizations-a
comparative case study. 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP), 173-182.

Eliasson, U., Heldal, R., Lantz, J., & Berger, C. (2014). Agile model-driven engineering in
mechatronic systems-an industrial case study. International Conference on Model Driven
Engineering Languages and Systems, 433-449.

Enkler, H.-G., & Sporleder, L. (2019). Agile Product Development—coupling explorative and
established CAx methods in Early Stages of Virtual Product Development [29th CIRP
Design Conference 2019, 08-10 May 2019, Pévoa de Varzim, Portgal]. Procedia CIRP, 8/,
848-853.

Gerber, C., Goevert, K., Schweigert-Recksiek, S., & Lindemann, U. (2019). Agile development of
physical products—A case study of medical device product development. Research into
Design for a Connected World (pp. 823-834). Springer.

Gilmore, J. H., Pine, B. J. et al. (1997). The four faces of mass customization. Harvard business
review, 75(1), 91-102.

Glass, R. L. (2001). Agile versus traditional: Make love, not war! Cutter IT Journal, 14(12),
12-18.

Goevert, K., Schweigert-Recksiek, S., Tariq, B., Krischer, L., & Lindemann, U. (2019). Agile
Development of a Microtiter Plate in an Interdisciplinary Project Team. Proceedings of
the Design Society: International Conference on Engineering Design, 1(1), 2139-2148.

Highsmith, J., & Cockburn, A. (2001). Agile Software Development: The Business of Innovation.
Computer, 84, 120-122.

Highsmith, J., Orr, K., & Cockburn, A. (2000). Extreme Programming. e-Business Application
Delivery.

Horvath, I., & Gerritsen, B. (2012). Cyber-Physical Systems: concepts, technologies and imple-
mentation principles.

Ismail, H., Reid, I., Mooney, J., Poolton, J., & Arokiam, I. (2007). How Small and Medium
Enterprises Effectively Participate in the Mass Customization Game. IEEE Transactions
on Engineering Management, 54 (1), 86-97.

Jackson, M. B., & Institute, P. M. (2012). Agile : A Decade In. 26(4), 58-62.

Kaisti, M., Mujunen, T., Makild, T., Rantala, V., & Lehtonen, T. (2014). Agile principles in the
embedded system development. International Conference on Agile Software Development,
16-31.

Konnola, K., Suomi, S., Mékild, T., Jokela, T., Rantala, V., & Lehtonen, T. (2016). Agile methods
in embedded system development: Multiple-case study of three industrial cases. Journal
of Systems and Software, 118, 134-150.

106

BIBLIOGRAPHY

Larman, C. (2004). Agile and iterative development: a manager’s guide. Addison-Wesley Profes-
sional.

Mabrouk, A., Penas, O., Plateaux, R., Barkallah, M., Choley, J.-Y., & Akrout, A. (2018).
Integration of agility in a MBSE methodology for multidisciplinary systems design. 2018
IEEF International Systems Engineering Symposium (ISSE), 1-5.

Mazzanti, G. (2012). Agile in the bathtub: Developing and producing bathtubs the agile way.
2012 Agile Conference, 197-203.

Meyer, B. (2014). Agile. The good, the hype and the ugly, 1.

Mulder, F., Verlinden, J., & Maruyama, T. (2014). Adapting scrum development method for the
development of cyber-physical systems.

Oestereich, B., & Weiss, C. (2008). Agiles Projektmanagement: erfolgreiches timeboxing fiir
IT-Projekte. Aufi., Dpunkt-Verl.

Poppendieck, M. (2001). Lean Programming. http://www.leanessays.com /2010/11 /lean-
programming.html

Reagan, B. (2012). Going Agile with Ca Clarity PPM & Agile Vision. Going Agile with Ca Clarity
PPM & Agile Vision. https://www.slideshare.net/DCsteve/going-agile-with-ca-clarity-
ppm-agile-vision

Reagan, J., & Singh, M. (2021). Management 4.0: Cases and Methods for the 4th Industrial
Revolution. Springer Singapore. https://books.google.it /books?id=szyQzgEACAAJ

Riesener, M., Rebentisch, E., Doelle, C., Kuhn, M., & Brockmann, S. (2019). Methodology for
the Design of Agile Product Development Networks [29th CIRP Design Conference 2019,
08-10 May 2019, Pévoa de Varzim, Portgal]. Procedia CIRP, 84, 1029-1034.

Royce, W. W. (1987). Managing the development of large software systems: concepts and
techniques. Proceedings of the 9th international conference on Software Engineering,
328-338.

Schwaber, K. (1996). Controlled chaos: Living on the edge. American Programmer, 9, 10-16.

Schwaber, K. (2007). The enterprise and Scrum. Microsoft press.

Schwaber, K. (1997). SCRUM Development Process. In J. Sutherland, C. Casanave, J. Miller, P.
Patel, & G. Hollowell (Eds.), Business Object Design and Implementation (pp. 117-134).

Schwaber, K., & Sutherland, J. (2012). Software in 30 days: how agile managers beat the odds,
delight their customers, and leave competitors in the dust. John Wiley & Sons.

Sommer, A. F., Dukovska-Popovska, I., & Steger-Jensen, K. (2014). Agile product development
governance—on governing the emerging scrum/stage-gate hybrids. IFIP International
Conference on Advances in Production Management Systems, 184—191.

Sommer, A. F., Hedegaard, C., Dukovska-Popovska, I., & Steger-Jensen, K. (2015). Improved Prod-
uct Development Performance through Agile/Stage-Gate Hybrids: The Next-Generation
Stage-Gate Process? Research-Technology Management, 58(1), 34-45.

Stare, A. (2014). Agile Project Management in Product Development Projects. Procedia - Social
and Behavioral Sciences, 119, 295-304.

107

http://www.leanessays.com/2010/11/lean-programming.html
http://www.leanessays.com/2010/11/lean-programming.html
https://www.slideshare.net/DCsteve/going-agile-with-ca-clarity-ppm-agile-vision
https://www.slideshare.net/DCsteve/going-agile-with-ca-clarity-ppm-agile-vision
https://books.google.it/books?id=szyQzgEACAAJ

BIBLIOGRAPHY

Stelzmann, E. (2011). Contextualizing Agile Systems Engineering. Aerospace and Electronic
Systems Magazine, IEEE, 27.

Takeuchi, H., & Nonaka, I. (1986). The new new product development game. Journal of Product
Innovation Management, 3(3), 205-206.

Thompson, K. (2021). What is agile for hardware development? https://www.cprime.com/
resources/blog/what-is-agile-hardware-development /

Véazquez-Bustelo, D., & Avella, L. (2006). Agile manufacturing: Industrial case studies in Spain.
Technovation, 26(10), 1147-1161.

Vinodh, S., Devadasan, S. R., Maheshkumar, S., Aravindakshan, M., Arumugam, M., & Bal-
akrishnan, K. (2010). Agile product development through CAD and rapid prototyping
technologies: an examination in a traditional pump-manufacturing company. The Inter-
national Journal of Advanced Manufacturing Technology, 46, 663—679.

Wysocki, R. K. (2011). Effective project management: traditional, agile, extreme. John Wiley &

Sons.

108

https://www.cprime.com/resources/blog/what-is-agile-hardware-development/
https://www.cprime.com/resources/blog/what-is-agile-hardware-development/

	List of Tables
	List of Figures
	Introduction
	Historical background of agile
	Before agile
	The Agile Manifesto
	Agile methods
	Scrum
	Extreme Programming (XP)
	The Crystal Methods
	Feature Driven Development (FDD)
	Lean Development (LD)
	Dynamic Systems Development Method (DSSM)
	Agile Modeling

	Agile in the manufacturing industries
	The new manufacturing
	The role of data
	Cyber-physical systems
	Embedded systems

	Agile applications in manufacturing
	Agile Manufacturing
	Multidisciplinary teams and multidisciplinary projects
	Hybrid agile methods
	Agile Project Management

	Agile trends and future applications
	Descriptive approach
	Normative approach
	Final observations

	Case studies analysis
	Introduction
	Cases 1 & 2: Volvo Car Group – Agile Model-Driven Engineering in Mechatronic Systems
	The background situation
	Research performed
	Results obtained

	Case 3: Scaling Agile Development in Mechatronic Organizations
	Research performed
	Results obtained

	Case 4: Agile development of luxury bathtubs
	The background
	Agile practices introduction
	Results obtained

	Case 5: Product Development of Medical Devices
	Research performed and results obtained
	Practical suggestions

	Case 6: Agile Development of a microtiter plate in an interdisciplinary project team
	Research performed
	Results obtained

	Conclusions and discussion
	Bibliography

