
Politecnico di Torino

Master’s Degree in ICT for Smart Societies
a.a. 2021/2022

Heuristic Optimization Approaches for
the Smart Home Appliance Scheduling

Problem

Supervisors

Prof. Emilio LEONARDI

Prof. Edoardo FADDA

Candidate

Andrea MINARDI





Abstract

With the emerging of smart grids as an answer to the need of sustainability, it
grows in relevance the ability to manage the energy at our disposal. This is of
utmost importance in residential settings where the demand is dependant on the
family behaviors and the possibility of having other distributed energy sources (i.e.
Solar Panels, Plug-In Electric Vehicles). Reliable energy Management Systems
help in this task by scheduling the appliances in order to optimize a specific aspect
of the energy demand. This thesis studies the effect of different optimization
approaches for the power scheduling problem in residential settings. We start from
a Mixed-Integer Linear Program as a base and build an heuristic approach based on
the Tabu Search algorithm, improved with an diversification techniques. Moreover,
a Markov Decision Process formulation of the problem is developed. The different
approaches are then compared and analyzed with different pricing schemes and
different Renewable Energy Sources settings.





Summary

This thesis presents a study in the Smart Grid field aimed at understanding the
effects of different optimization methodologies on the Smart Home Appliance
Scheduling Problem. The problems goal is to find the best possible starting times
for each of the appliances within the residential environment, in order to optimize
a predefined objective function. It is a complex problem since it tries to outline the
best possible actions to take in order to minimize the overall impact of electricity
cost on the household without impacting family behavior. This is a challenging task
due to various reasons: nowadays the number of devices that draw power in the
household grows continuously and each of them has its own usage patterns, power
rating and time needed to complete its task. A possible help comes from the usage
of distributed energy resources (DER) such as renewable energy sources (RES) like
photovoltaic panels and wind turbine or plug-in electric vehicles (PHEV), which
behave as batteries once plugged in. These DER help the customer to amortize the
electricity consumption and do not incur in power outages. Nevertheless, the main
issue is their stochasticity, which is inherent in their generation methodologies: for
example, RES such as Solar Panels are highly dependent on weather conditions, or
PHEV depends on consumers’ driving patterns. Due to the large scope of possible
cases, in this thesis we consider only scheduling of shiftable appliances without
preemption and an array of Solar Panels in support of the power drawn from the
grid that generates power ideally, with no losses. To address the aforementioned
scheduling problem, there are many possible methodologies that can be used. The
aim of this thesis is to study the state of the art methodologies to solve the Smart
Home Appliance Scheduling Problem, with deeper attention to heuristic approaches
such as MetaHeuristic, namely Tabu Search, and Reinforcement Learning.

Metaheuristic approaches gained a lot of traction in the optimization field since,
for this kind of problems, speed of computation is more important than getting
an exact solution. This is especially true if the pricing scheme used by the utility
company is not day-ahead but in real time (i.e. if the price changes on an hourly
basis). As a result, an enhanced Tabu Search has been developed to solve this
issue: whenever the method finds itself in a local minima, diversification is used to
help exploration, restarting the algorithm from a random solution in the search
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space. Several analyses are then performed to understand the behavior of the
metaheuristic algorithm with respect to the more common off the shelf MILP
optimization technique.

A reinforcement learning approach is also proposed. RL is well suited for
problems described in discrete time, where there is a well defined cost function that
can be used as a reward signal for the agent to learn an optimal policy. Eventually,
due to the high dimensionality of the problem under exam, a Markov Decision
Process formulation for the smart home environment was non trivial to be achieved
and the results are still suboptimal: in order to find the best policy for a particular
set of working appliances, a lot of samples are needed and the inherent stochasticity
of the problem makes this solution problematic.
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Chapter 1

Introduction

This thesis focuses on possible application of reinforcement learning methods in a
smart grid framework.

1.1 Motivation

As the world tries to move on from carbon fuels, electricity and “green” fuels
generation and utilization become of paramount importance in how fast this
sustainable transition has to be. in this, the energy consumption from residential
buildings accounts for a large portion of the global energy consumption. This
means that understanding how the energy is used in our homes is the key to a
smarter distribution of electricity within the grid.

The bidirectional data flow between each endpoint in the Smart Grid, allows the
utility companies to optimize each consumer’s electricity usage, in light of the fact
that the addition of Renewable Energy Sources is now more and more common
and each customer takes the role of a energy produces. This relives some of the
pressure off of the Utility Companies that now can use smart planning to deliver
the right amount of electricity when it’s needed to each building, based on the
customers behaviour. It is well known that, by varying the prices, it’s possible
to shift the demand, reduce the risk of power outages, reduce the emissions and
minimize the cost of production of electricity.

A way to tackle this problem is the usage of automated scheduling systems which
aims at minimizing the electricity consumption within a household by scheduling the
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Introduction

appliance usage during off-peak hours, while keeping track of operation constraints
and consumer preferences.

1.2 Structure of the Thesis

This section defines the structures of the thesis:

Chapter 1 - Introduction

Current Chapter with the motivation behind the work here presented and

Chapter 2 - Thesis Framework

This chapter focuses on giving a detailed description of the main concepts behind
the presented research. It’s aim is to make this work as self-contained This chapter
explains the methodologies that can be used to

as possible giving the information needed to a reader to understand why the
problem is of such importance and why the field of research is so thriving. The
chapter consists of two main parts:

• a section where the overall concept of Smart Grid is explained, focusing on why
is important, its characteristics, the differences between with the traditional
paradigm and the main techniques that electricity utilises use to adapt to
different demand and supply.

• a detailed explanation of what a Smart Home is, its characteristics and how
intelligent management systems can help organize all the resources and the
characteristics of the elements that compose a Smart Home Environment.

Chapter 3 - Optimization Strategies for Smart Home Appli-
ance Scheduling Problem

This chapter explains the methodologies that can be used to solve the Smart Home
Appliance Scheduling Problem. Here is given an overview of the major optimization
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techniques for resolving the problem, such as Mixed-Integer Linear Programming,
heuristics and meta-heuristics and Markov Decision Process based approaches.
The chapter is divided in four sections: at first the problem is presented with a
description of the variables involved. The second subsection describes the Mixed-
Integer Linear Programming of the SHASP, along with the formulation of the cost
function to be minimized and the constraints the problem is subject to. Then the
Local Search heuristics are introduced and is given a brief explanation of how they
work and some of the notable algorithm are introduced. Given that the choice of
algorithm fell on Tabu Search, an explanation is given of its workings, how it was
adapted to the problem and what improvements were made to the basic algorithm
in order to achieve a satisfactory result. Eventually also reinforcement learning
has been studied as a possible approach to the problem. An introduction to the
Markov Decision Process and reinforcement learning is detailed and a tentative
design of a MDP referred to the SHASP is formulated.

Chapter 4 - Results

Second contribution of this thesis is the comparison between the MILP and the
novel TS-based algorithm developed. In this chapter the results are presented by
comparing the two models in two different settings, one where the Smart Home has
auxiliary power generation, supported by solar power generation and one where no
RES is attached to the house power system.

Chapter 5 - Conclusions

This chapter provides a summary of the research carried out. Moreover, the thesis
is concluded with some insights on how future research can be done using this work
as a foundation.
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Chapter 2

Thesis Framework

2.1 Smart Grid

Smart Grids are a prevalent framework for the distribution of electricity in smart
cities. The grid refers to the electric grid, the network of transmission lines that
delivers electricity from a power plant to a consumer to be used for various purposes,
be it industrial, residential or commercial. At the moment, begin smart grids still a
new technology, there is not a definitive standard for their development and every
nation is pushing to impose its own reference model as international standard

The National Institute of Standard and technology (NIST) [1] defines a Smart
Grid as:

a modernization of the electricity delivery system so it monitors, protects
and automatically optimizes the operation of its interconnected elements
– from the central and distributed generator through the high-voltage
network and distribution system, to industrial users and building automa-
tion systems, to energy storage installations and to end-use consumers
and their thermostats, electric vehicles, appliances and other household
devices.
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2.1.1 Characteristics

The smart grid is the modern way of building the electric infrastructure of the
cities. Equipping ICT devices, enables the grid to smoothly include renewable
energy source (RES) allows to sense with high accuracy, monitor and manage the
stability of the power system. The usage of ICTs and intelligent controllers enable
the automation of the power network [2]. This is crucial since the addition of
distributed energy generation with the use of RES leads to a more reliable, safer
and manageable energy generation network [3].

The usage of a distributed energy generation system allows for a more wide-
spread usage of greener electricity. The residential sector, even more than the
industrial one, is the one that contributes more to the load on the smart grid: each
consumer has little awareness of how much their action impact both the stability
of the grid and the overall cost of the electricity. It becomes important how to
manage the appliances in order to effectively reduce the gap between the demand
asked by the end-users and the supply generated by the elements in the grid. [4].
The management of the appliances within each home connected to the grid is done
through a smart scheduling based on the power supplied by the utility.

2.1.2 Traditional vs Emerging Paradigm

A comparison between the traditional grid and the smart grid scan be shown
in table 2.1 where the two paradigms are compared in different aspects such as
technology, metering infrastructure, generation of electricity, monitoring, fault
sensing and management.

The main elements can make a traditional grid “smart” are:

Distributed Energy Resources (DER) the usage of small-scale power genera-
tors (between 3 kW and 10 MW) that add power to the public distribution
grid and help balancing the load;

Advanced Metering Infrastructures (AMI) smart meters, data management
systems, communication networks help provide the bidirectional communica-
tion between the consumer and the provider to ensure a better distribution of
electricity.

Phasor Measurement Units (PMU) devices that measure the electrical waves
on an electricity grid, enhancing the measurements on the power lines to detect
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Table 2.1: Comparison between smart grid and traditional grid

Characteristics Traditional Grid Smart Grid

Power Generation Centralized at the power plants Distributed, with RES,
PHEV and the plants

Information flow One way: from utility to consumer Two way: utility and consumer effectively
communicate both power and information

Monitoring Manual Self-monitoring using digital technology
Topology Radial Network

Fault management Failures break the network,
power is cut off

The power network is rerouted in order to
avoid the failure and ensure power distribution

e Recovery The failure is restored manually Self-healing techniques are used to recover
from failures without human intervention

Sensor There is little equipment
on the power lines

Multiple sensors used over the power lines
to sense possible failures and prevent them

Metering
Infrastructure Meter Readings done manually

Smart Meters make advances readings
both for the user and the utility

(Advanced Metering Infrastructure)

Traditional Grid

Smart Grid

Generation
(centralized)

Generation
(distributed)

DistributionTransmission

Transmission Distribution Customer
(prosumer)

Customer
Power Power Power

Power

Data

Power

Data

Power

Data

Figure 2.1: Comparison between Traditional and Smart Grid Flow of information
and power

failures. the measurement done by this devices are then sent to a Wide Area
Monitoring System (WAMS) in order to be evaluated;

demand Response (DR) Incentives the customers initiate a change in their con-
sumption behaviour by modifying cost patterns, giving ecological information
or simply favouring a different way of consuming electricity. Demand Response
belongs to a wide variety of policies called Demand Side Management (DSM);
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2.1.3 Demand Side Management

Demand Side Managemnet (DSM) consist in a series of initiatives that the elec-
tricity utilities implement to lead customers in taking smarter practices that are
advantageous for both parties. These practices aim at changing the load shapes
by influencing the behaviour of the user. A drawback of these mechanisms is the
rapid increase in complexity of the power system since the presence of a capillar
sensing networks is of paramount importance in the choice of the correct policies
and techniques to implement. Monitoring and then controlling the whole grid at
different levels becomes now a more challenging task than ever. The evolution of
the grid helps the implementation of these mechanisms since the bi–directional flow
of data and the increase in information shared helps in choosing the correct plans
for each consumer.

In figure 2.2 are represented six different DSM techniques in which the load
curves of the residential demand are altered between on-peak and off-peak duration
[5].

Figure 2.2: Demand Side Management Techniques, image elaborated from Shewale
et al. [5]

a Peak Clipping: Direct Load technique that aims at reducing the peak in
the demand curve.

b Valley Filling Opposed to the peak clipping technique, valley filling focuses
on increasing energy consumption during off-hours.
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c Load Shifting: Trade-off between Valley Filling and Peak Clipping, main aim
is to shift the load from peak to off-peak periods. This is done by introducing
tariffs that encourage using appliances in specific time frames. Most common
DSM technique.

d Load Reduction Also called Strategic Conservation, the desired effect is
for the demand curve to be reduced. This is done though the use of efficient
appliances or less use of electricity overall.

e Load Growth Also called Load Building, the idea is that the user is encour-
aged into consuming more energy within a certain limit. This is done in order
to maintain power system capacities and a smoother operation of the power
system.

f Flexible Load Shape: The consumers are incentivised, through specific
contracts and tariffs, in redistribute the loads to various time slots.

A main issue with the growing population is that the demand is difficult to be
satisfied, while also taking into account the stress on the grid during peak hours
and the global warming and green house emissions. The usage of more RES in
residential settings, electric vehicles and demand response program, the demands
is well balances by the supply.

The multiple DSM techniques listed above can be divided in energy efficiency
programs and demand response programs [6].

Energy Efficiency The aim is to minimize the electricity usage through the
usage of energy efficient house-appliances and building envelopes. This type
of approach can decrease the demand during any time of the day, not only
in peak hours. In this category also belong maintenance of commonly used
electrical equipment so as to reduce waste of energy due to malfunctions

Demand Response it is the usage of particular pricing policies that shape the
behaviour of the users, influencing them into consuming electricity in off-peak
periods. DR can be defined as “the changes in electric usage by end-use
consumers from their normal consumption patterns in response to changes in
the price of electricity over time, or to incentive payments designed to induce
lower electricity use at times of high wholesale prices or when system reliability
is jeopardized” [7]. Demand Response are the most common DSM techniques
do to their ability to affect the load directly.
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Demand Side

Management

Energy

E�iciency

Programs

Demand

Response

Programs

Incentive

based DR

Pricing

based DR

Figure 2.3: Demand Side Management (DSM) techniques classification

Demand Response

Demand Response programs are classified into Incentive-based DR and Price-
Based DR [8].

In Incentive-based DR, the utility is the one in control of the loads and the
consumer allows it in return of incentives from the provider. Among these can be
seen:

Direct Load Control The utility directly interrupts or reduces the users power
supply during peak demand times. The consumer is still notified before it
happens and in return it receives a compensation

Interruptible Load usually seen in industrial and commercial settings, the provider
can turn off for a short period of time their load. The consumer can either
follow through with the interruption and it is compensated or it’s penalized if
it decides to not shut down it’s load.

Emergency Reduction During system contingencies the user is asked to reduce
it’s demand in order to alleviate the pressure on the grid. There is no penalty
here if the costumer does not follow through with the request.

Price-Based DR instead use time-varying tariffs to incentives the user to follow
virtuous energy consumption plans. The responsibility is all on the user. The
pricing schemes for a price-based DR program include:

Time-Of-Use Pricing (ToUP) The day is divided in time blocks (example eight-
hour block). Typically the blocks are either two or three, dividing the day
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in peak, off-peak and optionally mid-peak. The price differs from one period
to the other with higher price in the peak period and a lower price in the
off-peak period. The consumer will aim at minimizing the energy cost and
will minimize its energy usage in peak hours, shifting it into lower rate hours

Critical Peak pricing (CPP) This type of plan is specific for high demand
homes (more than 20 kW). Periods where the electricity consumption exceeds
that thresholds are called critical. Such periods are forecasted the day before
and during said periods the price is increased, much like in Time-Of-Use. In
this way, the consumer should shift the load outside of the critical period.

Real-Time Pricing (RT) More complex than the previous ones. Here the tariff
can vary daily or even hourly. There are two types of RTP schemes: day-ahead
pricing and hourly pricing. In day-ahead the price details are disclosed the
day before for the day after, whereas in the hourly pricing scheme the price is
revealed the hour before.

Shiftable
Non Interruptible

Shiftable
Interruptible

Non Shiftable

Smart Home 

Appliances
Grid

RES

Scheduler

Smart
Meter

Power Information

Smart Home

Figure 2.4: Home Energy Management System

2.1.4 Home Energy Management System (HEMS)

The electricity consumed in the residential sector is increasing due to today’s
lifestyle where more an more devices are used to have a better Quality of Life.
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This is at the expanse of the electricity costs on the consumers and the burden
that houses have on the overall grid load. In fact more than 30% of the electricity
consumption is due to residential activities [9, 10]. Demand side management
of smart homes becomes one of the main ways in which it is possible to meet
the demand without increasing the supply where it is no more manageable. DR
programs are used to manage the energy in the home settings. This is done
through advanced metering infrastructure that helps both the user and the utility
provider to understand the consumption patterns of the users and meet their
demand through tailored plans. A Home Energy Management System uses the
data provided by the AMI to help consumers schedule their appliances in order
to minimize electricity consumption and maximize their comfort. a HEMS work
consist of sending signals to the smart home controllers so that appliances starting
times are shifted and power outages are avoided. Advanced programs also minimize
the cost consumption, scheduling the appliances in off peak periods, maximizing
the usage of Renewable Energy Sources or efficiently introducing more complex
elements in the environment such as the recharge of electric vehicles or the control
of air conditioning systems. Figure 2.4 depicts how the HEMS functions and their
main components. In that model we considered the utility grid, a renewable energy
source in the photo voltaic panel, a smart meter, a scheduler and three classes
of smart home appliances (a detailed explanation on the subdivision is given in
section 2.1.4). Being the System “smart”, all the elements in it exchange both
power and information. Through the smart meter, all the information that comes
from the utility grid is met by the information coming from the distributed energy
resources and the running smart appliances. By analyzing the data that comes
from all the different points, the scheduler communicates with the smart appliances,
shifting their power over the time horizon to accommodate for the behaviour of
the user and the needs of the utility provider.

Appliance Characteristics

The household appliances and various devices that make up the smart home system
can be modeled based on their consumption characteristics and time of use. There
are multiple ways in which appliances can be classified. In Wang and Zheng [11] the
appliances are divides in three categories based on heir main power consumption
unit and working styles. A subdivision can also be done based on device operation
characteristic like in Kim and Poor [12] where devices are divided into interruptible
and non-interruptible appliances. A further distinction of appliances can be done
following the works of Chen et al. [13] or Shewale et al. [5] where appliances are
divided in three categories based on their ability to be shifted in time and/or
interrupted during their task completion. In this work, the latter classification is
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followed and the appliances are classified as non-shiftable, shiftable non-interruptible
and shiftable interruptible. How each appliance is classified is based on the consumer
usage of said device and the "smartness" of it: a dishwasher, based on the year of
production, can be interrupted during its task without impacting the overall job or
not.

Non Shiftable Appliances that cannot be shifted to other time slots other than
the prefixed ones. In this category belong both the appliances that have to
stay ON no matter what (i.e. the refrigerator) and the appliances whose job
cannot be either programmer or stopped by the Smart management System
(i.e. the Television, the Fan, the Oven).

Shiftable and Non Interruptible These are the appliances whose starting time
can be moved within the available time slots but once it starts, it cannot be
stopped. Such appliances are the washing machine or the water heater

Shiftable and Interruptible Flexible in their usage and can be both shifted in
the available time horizon and interrupted during their work and resumed
anytime. Dishwashers, vacuum cleaners are part of these category. If batteries
or plug-in electric vehicles are connected to the smart home energy management
system, those devices fit in these category since their charging/discharging
cycles can be started and interrupted anytime as long as there is enough power
available when the car is needed, for example.

12



Chapter 3

Optimization Strategies for
Smart Home Appliance
Scheduling Problem

The main goal of a scheduling algorithm is to find the best possible starting times
of a series of jobs so as to maximize profit or minimize losses. There are various
types of scheduling problems such as job scheduling [14], flow shop scheduling [15]
and power scheduling problems [16].

A sizable increase in electricity demand can be seen in the emerging smart
grid setting, due to the addition of more and more devices in our daily life. To
reduce the gap between demand and supply in the residential sector that are many
approaches but the most effective is to be more efficient with the utilization of
energy sources.

The bilateral flow of information in a smart grid helps both users and utility
provider in understanding when to reduce the power demand during peak periods
of time, reducing the cost of the power generation. This is useful for both parties,
the consumer, that can lower the costs on the electricity bill and the provider
that can soften the energy production, minimizing the resource usage for the same
result.

Home Energy Management Systems faces the difficult task of managing multiple
appliances and their task, allowing them to be completed, minimizing the overall
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cost, without compromising user comfort. This is the aforementioned power schedul-
ing. The appliances, as mentioned in Section 2.1.4, have different characteristics,
which adds a layer of complexity to the problem: some appliances can be scheduled
while others are subject to user demand or have to be always on, which leaves them
outside of the HEMS control.

The Smart Home Appliance scheduling Problem (SHASP) formulation can aim
at minimizing/maximizing different objective function. Most notably:

• Minimize electricity cost (EC)

• Minimize peak-to-average ratio (PAR)

• Maximize user satisfaction (US)

It can solve one or more of these at the same time. The thesis here presented
revolves around the minimization of the electricity costs by shifting the controllable
appliances to off-peak hours, while also considering the amount of outages that the
user might experience

3.1 Description of the problem

The SHASP (or Smart Home Appliances Scheduling Problem), can be described as
follows:

Let A be a set of n independent appliances to be scheduled. The time horizon
chosen for the study is 24 hours and it is divided into time slots. The resulting
time horizon H is defined as H = 1, . . . , T with T being the deadline for all the
appliances in set A, that varies depending on the chosen sampling of the day’s time
slots.

Each appliance ai ∈ A has a processing time di. Preemption is not allowed,
meaning that once it is switched on, the job must be completed before the day
ends, without interruption. Each appliance consumes power based on the power
rating pi assigned my the manufacturer, measured in kWh.

Assuming that the home is connected to the power grid and has stipulated a
contract with the utility provider, a maximum energy consumption P is allowed
for each time slot of the time horizon. This is used as a threshold for the energy
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consumption of the appliances, over which, power outages happen. The latter is an
undesirable occurrence that lowers the user satisfaction.

The utility provider, with the aforementioned agreement, defines a unit energy
cost for the day, denoted by ct, which specifies the cost of the electricity in each
time slot. There can be different tariffs, based on the contract and it usually follows
a Time-Of-Use Pricing scheme, where the cost per kWh increases during the peak
hours so has to incentivize the consumer to shift their consumption behaviours to
off-peak hours.

Additionally, for each time slot t ∈ H, an amount St of solar energy is produced
and can be used as an aid to the need of energy during peak hours. The addition
of solar energy increases the allowed peak energy consumption at each time slot
from P to P + St.

The SHASP is solved once all the appliances requested are scheduled within the
selected time horizon, minimizing the overall cost and minimizing the number of
power outages.

3.2 Mixed-Integer Linear Programming

A possible mathematical programming formulation of the problem is presented
by Della Croce et al. [17]. The main decision variable is xi,t, for each ai ∈ A and
t ∈ H, such that:

xi,t =

1 if the appliance ai starts at time t
0 otherwise

(3.1)

In it’s paper, Della Croce et al. [17] pre–calculates the overall cost for each
appliance starting in every possible time–slot of the time horizon. This results in
a cumulative coefficient Ci,t which represents the total cost of time t the i − th
appliance, considering the unit cost ct and the consumption of each appliance given
by pi,τ with τ ∈ {1, . . . , di}.

Ci,t =
di∑
τ=1

pi,τ (3.2)

The complete Mixed Integer Linear Programming formulation is as follows:
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min f(xit , zt) =
∑
ai∈A

∑
t∈H

Ci,t · xi,t −
∑
t∈H

ct · zt (3.3)

s.t.
∑

t∈H|t≤T−di+1
xi,t = 1 ∀ai ∈ A (3.4)

∑
ai∈A

di∑
τ=1

pi · xi,t−τ+1 − P − St ≤ 0 ∀t ∈ H (3.5)

zt ≤ St ∀t ∈ H (3.6)

zt ≤
∑
ai∈A

di∑
τ=1

pi · xi,t−τ+1 ∀t ∈ H (3.7)

xi,t ∈ {0, 1} ∀ai ∈ A ∀t ∈ H (3.8)
zt ≥ 0 ∀t ∈ H (3.9)

(3.10)

The objective function is defined in 3.3 and it aims at the minimization of the
overall cost of scheduling all the appliances, also taking into account the solar panel
generation.

Constraints 3.4 limits to one the possible starting times of each appliance,
meaning that same appliance cannot be run multiple times. Constraint 3.5 refers to
the energy availability of the smart home. The power consumed by the scheduled
appliances at each time slot must be lower than the power drawn from the grid,
with the help of the power generated by the solar panel. Constraint 3.6 limits the
solar panel energy usage to the actual generation and 3.7 limits it to the power
consumed in the home, so as to not waste any more energy than the needed one.
Lastly, constraints 3.8 and 3.9 define the domain of the decision variables.

3.3 Local Search Heuristics

A local search algorithm can be seen as a iterative search procedure that improves
a initial solution via a series of little modifications until it reaches a local optimum.
At each iteration, all the possible modifications (or “moves”) to the current solution
are looked at and the one that improves more the current objective function is
taken as the new solution.

An important issue with the local search method is that, the solution obtained
is the best with respect to its neighborhood: this means that said solution is not
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necessarily the global optimum of the problem and in most of the cases it is a
mediocre solution at best. How good the solution ends up being is a matter of the
richness of the move set considered at each iteration of the method. Of course, the
greater the number of solutions considered in the neighborhood, the higher the
accuracy of the solution but also higher the computing times.

Local Search heuristics, called also Meta-heuristics (coined by Glover in 1986),
come in many shapes and forms. A first example of this is Simulated Annealing
(SA), described for the first time in 1983 by Kirkpatrick et al. [18]. SA is based
on an analogy with metallurgy science methodologies where annealing part is
interpreted as a slow decrease in the probability of accepting solutions that are
worse as the search dives into the search space. This allows for a more extensive
exploration. From there, other approaches where formulated starting from natural
phenomena, such as Tabu Search, Ant Systems or even Bee Colonies behaviour.
The preferred meta-heuristic for this thesis is the Tabu Search. The following
section details an introduction to its workings and how TS has been adapted to
solve the SHASP.

3.3.1 Tabu Search

Tabu Search is a Meta-Heuristic developed by Glover [19] and Glover [20]. This
algorithm tries to overcome the problem of local optima of traditional Local Search
methods by allowing non–improving moves whenever a local optimum is found.
It memorizes solutions that have been already found by the algorithm in a list
(so called tabu list) for a short period of time (tenure). Whenever no improving
solutions can be found, the algorithm will cycle back to a previously visited solution
using the aforementioned memory and continue to another path so as to find a
better solution.

Search Space and Neighborhood Structure

Of critical importance in this type of meta heuristic are both the search space and
the neighborhood structure.

Adapting the Tabu Search to the Appliance Scheduling problem can be chal-
lenging due to the size of the search space. The search space is defined as the space
of solutions that can be visited by the Meta-heuristic. For instance, let us take in
consideration a slightly different formulation of the SHASP problem. The decision
variables xi ∈ [0, T ) where T is the time horizon that the problem focuses on, for
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Figure 3.1: Tabu search memory components. Glover [19]

every ai ∈ A with A being the set of shiftable and non interruptible appliances.
This leaves us with a solution set x = [x, x1, . . . , xn] with n number of appliances
in set A. The resulting search space would be of size T n.
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The feasible search space is a subset of the search space where all the feasible
solution are. A solution is feasible if it abides to some strict conditions i.e. the
appliances must start in an interval between 0 and T − di where di is the duration
of time slots that the i− th appliance takes to complete its job.

The way in which the algorithm looks for the solution is by comparing its current
solution, denoted S, to its neighbors. In order to do that, a neighborhood structure
must be defined. The neighborhood, denoted N(S) (neighborhood of S), is defined
as a subset of the search space which contains the solutions obtained by applying a
single local transformation to S.

Usually, the neighborhood structure is problem specific so there is not a “one
fits all” definition. The type of structure the neighborhood gets depends on the
computational time constraints that the modeller might have, to the search space
size or shape.

For the problem under exam different types of neighborhood structures have
been considered. Assuming as a local move a shift of one slot ahead or behind of
one appliance or more appliances (2n possible combinations), the research of the
best solution in the neighborhood becomes exponentially difficult, and it defeats
the purpose of the heuristic of being faster then the MILP.

Another approach was then to consider only a fraction of the whole neighborhood
of solutions, namely, a random sample of

√
N(S). This allowed the algorithm to

search the neighborhood while still having diversification. This is at the expanse of
a more thorough research. This was the preferred approach since it could keep the
computational times of the heuristic lower than its exact counterpart while still
finding optimal solutions (results of this analysis are shown in 4).

Tabus

What separates a Tabu Search from any other Local Search is the possibility of
making solutions "taboo". Their main aim is to prevent the method to cycle back to
a local optima when exploring the search space, looking for a different solution that
do not necessarily improve the objective functions value. When this phenomenon
occurs, something must tell the algorithm to avoid going back to recently visited
solutions and instead, explore different solutions that might not be the best right
away but lead to better solutions globally. This is the key idea behind this method:
recently visited solutions are declared tabu (prohibited or restricted). An example
might be, for 3 appliances in our Smart Home, if solution S0 = [10, 1200, 100] has

19



Optimization Strategies for Smart Home Appliance Scheduling Problem

been visited, the next step when a solution S1 is chosen to be the most improving
solution, if S0 is present in the full neighborhood of solution S1, that is not taken
into consideration as one of the possible solutions, since going back to S0 has
become tabu.

For how long a solution cannot be taken in consideration is given by a hyper
parameter called tabu tenure. The impact of the tenure value on the proposed
method has been analyzed through a grid search over different instances of the
problem with different settings. It is shown that the tabu length itself doesn’t
impact that much the computational time of the solution.

Tabu solutions are stored in what is called a short-term memory or, usually,
the tabu list. Different information can be stored in the list in order to keep the
memory expanse light. In our case, what is stored in the memory is the complete
solutions that have been considered beforehand.

Cost Function

An important aspect of how the search is conducted is based on the choice of
the Objective Function and the resulting values that each solution has. Being
the minimization of costs the main objective of the formulated problem, it seems
reasonable to use as fitness value of the candidate solutions, the actual cost that
would be paid if said solutions were to be used in a real setting.

C =
∑
ai∈A

∑
t∈T

U(xi, t) ∗ pi ∗ ct (3.11)

where: ct is the electricity consumption at time t given by the utility provider,
measured in €, pi is the power rating of the i− th appliance in the appliance set
and U(xi, t) is given by:

U(xi, t) =

1, if t ∈ [xi, xi + di]
0, otherwise

(3.12)

To this cost is then added a penalty term, in order to take into account of
power outages. An outage occurs when the power needed to run the appliances
in a specific time slot t is higher then the energy availability of the house. The
energy availability is given by the power given by the utility provider plus the
power generated by additional renewable energy sources. For every outage that
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occurs, a penalty is added to the cost so as to take into account it and reduce it as
much as possible.

The resulting Objective Function that the tabu search uses to find the solution
is:

Objective Function = C + nbo

where nbo is the number of outages that happened in the whole time horizon and
C is the electricity cost consumption calculated in equation 3.3.1

Finally, a general basic approach to the tabu search algorithm is given in
Figure 3.1

Termination Criteria

Being the Tabu Search a iterative process, the search itself could go on for as long
as we like, even forever. It is important to define some stopping condition ourselves
in order to avoid an infinite loop. The most commonly used stopping conditions
are:

• a maximum number of iterations (or maximum time) is reached

• objective value reached a fixed threshold, usually a percentage of the exact
solution

• if after a number of iteration there is no improvement in the value of objective
function

Diversification

As explained before, one of the main issues of the Tabu Search, along with the
Local Search methods, is the myopic evaluation of the search space. Most of the
time, if not tweaked correctly, the method will be stuck in a small portion of the
entire search space. This is an issue when the dimentionality of the problem (the
number of appliances considered within the residential setting) becomes very high.
In order to avoid missing on better solutions, diversification is employed. It is an
algorithmic mechanism that forces the search in unexplored areas of the search
space.
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In our specific case, the diversification technique used is called restart diversifi-
cation where, when the algorithm gets stuck for a fixed amount of iteration on a
solution, it will move to a randomly generated solution within the search space.
This is also used as a stopping criteria: when 10 restarts have been done, the
algorithm stops as it has looked enough around the search space to find a solution
that should satisfy the criteria.

How many steps the methods stays on a solution before restarting and how
many restarts to do before terminating the search have been found empirically.

3.4 Reinforcement Learning

Another approach that can be taken to solve this particular scheduling problem
is knows as reinforcement learning. In this kind of approach, the method learns
how to behave by interacting with external stimulus and it can be very powerful in
solving scheduling problems.

Reinforcement learning (RL) is one of the three main machine learning paradigms
alongside supervised learning and unsupervised learning. It approaches the learning
problem by looking at how people or animals learn and evolve: we seek a goal and
make choices to reach it while the world around changes based on our choices and
more.

Much like in nature, an agent, main actor in the RL algorithm, will discover
its best behaviour though a series of trial and error, tuning its policy so that it
will reach its final goal. How does the agent know which is the best actions to take
depends on the reward signal that the environment around it will generate at each
step in its learning process. This is done by keeping in mind that most of the time,
the action that will yield the maximum reward in the long run, isn’t always the
one that is best right now: eating vegetables might be worse than eating sweets in
the moment, but your health will improve day by day.

We’ll explore the theoretical elements of the methodology and how it can be
applied to the problem at hand. The next section is heavily based on the works
of Silver [21] and Sutton and Barto [22].
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3.4.1 Theoretical Background

As anticipated, the main goal of an RL algorithm is to learn how to maximize the
delayed reward by balancing how the the agent interacts with the environment.

Agent and Environment

The agent is the element that is capable of making decision and is the one that
interacts with the environment. It observes the state of its surroundings and acts
differently based on it. The decisions that an agent makes are defined as actions (at).
An important distinction is that the agent itself has no control on the environment
but through its actions it can influence it in different ways based on the type of
problem. What actions an agent can make during its journey are based on a set of
actions called actions space. The action space depends on the type of agent and
how the modeller want the agent to behave with respect to the environment. It
can be discrete, where only a finite number of moves are possible (e.g. A = {0,1}
as the motor of a car can be either on or off) or continuous where the actions take
on real values (e.g. A = [0,130] as in the speed in km/h of a car). While this seems
like a trivial concept, in reality it is fundamental as different algorithms fit different
types of actions spaces and there is not a one-fits-all approach.

The environment interface represents what the agents interacts with. Whenever
the agents does something, the environment will react to it, changing its state and
emitting a reward and an observation that the agent will then analyse and base its
next action on.

State and Observations

The observation is a representation of the environment state (St). The observation
helps the agent understand how its previous action affected the environment and
what should be its next action in order to achieve its goal. The observation, which
is what the agent sees, might not always be the same as the environment state. In
fact an environment can be either partially observable or fully observable. If the
environment is partially observable, only a fraction of the information is at the
agent disposal whereas if the environment is fully observable, the information that
the environment state carries is for complete use by the agent. Going forward, we’ll
focus on fully observable environments as they are the most commonly studies in
literature and well suited for the problem under study.
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Rewards

Whenever an action is done, the environment will respond with a reward signal
or simply, reward rt. It is a scalar feedback that allows the agent to understand
the value of being in a particular state is. It is critical to the learning process as it
allows the agent to distinguish between actions that are to encourage and actions
that are to ignore. This feedback is given at each time step t, which makes it local.
The agent’s goal is to maximize the total reward obtained during its “life”. This
means that what is crucial is not the immediate reward but the cumulative reward
in the long run. This idea is formalized by Sutton and Barto [22] as the reward
hypothesis:

All of what we mean by goals and purposes can be well though of as the
maximization of the expected value of the cumulative sum of a received
scalar signal (called reward)

An important result of this type of learning is that the agent will learn to act
in order to maximize the reward. So it is important to create a reward function
that represents what the agent has to accomplish. The reward signal is a way of
communicating to the agent what we want to achieve and not how we want it to
be achieved.

What ends up happening is that the agent does an action, waits for a response by
the environment and then takes another action based on the previous information
obtained. This is repeated cyclically, building a trajectory, a sequence of states,
rewards and actions:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.13)

Delayed Return

Given the reward definition, the expected cumulative return is defined as the sum
of the rewards. We define as Gt the sum of the rewards starting from time–step t:

Gt = rt+1 + rt+2 + rt+3 + · · ·+ rT (3.14)

with T being the final time step. This formulation makes sense if there exist a
terminal state for each of the trials done by the algorithm. In this case, these
“trials” are called episodes. There exist also cases where the agent-environment
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cycle can never be stopped and can go on forever. We call these continuing tasks.
In these cases, the return cannot be computed directly as it would be infinite, but
each time–step needs to be discounted.

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1 γ ∈ [0,1) (3.15)

where γ is a parameter called the discount rate. Of course, the value of γ influences
how much the agent values rewards further away from its time–step:

• y = 0: the agent is "myopic", meaning that it is only interested in maximizing
the immediate rewards (Rt+1);

• y −→ 1, the agent becomes more farsighted and weight the future rewards
more;

Markov Decision Process

In order to make use of Reinforcement Learning techniques, a problem must
be formalized as a Markov decision Process (MDP), a classical formalization of
sequential decision making. A decision process is defined as an MDP if the agent, to
make a decision at time t only needs the information carried by the state St. This
means that the states have the memoryless property, meaning that the information
that they carry is always sufficient to understand the environment history and
there is not need to look at the states before:

P[st+1|st] = P[st+1|s1, . . . , st] (3.16)

A visual representation of how a Markov Decision Process behaves can be seen
in 3.2. The MDP is defined as a tuple of four elements:

< S,A,P ,R >

where:

S is the state space;

A is the action space;
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P is the transition probability matrix where each element is:

P (s′|s, a) = P(st+1 = s′|st = s, at = a) (3.17)

it being the probability of going from state s at time t to state s′ at time t+ 1
after having taken action a;

R is the reward function, defined, for a state s and an action a, as:

R(s, a) = E[rt+1|st = s, at = a] (3.18)

Figure 3.2: Agent-Environment Interaction. The reward and the observation of
the environment, triggered by the action done by the agent, are then fed beck to
the agent in order to take another action at the following iteration. Sutton and
Barto [22]

Polices and Value Functions

All RL algorithms involve the estimation of a value function which is a function
of the state (or pairs of state and actions) that allows the algorithm to know the
“goodness” of a specific state (or the goodness of performing a specific action while
being in a specific state). This “goodness” is referred to the return that is expected
in the future, starting form that specific state. The way that the agent behaves
when presented with a state is called policy, denoted by π which is a mapping
from states to probabilities of selecting an action from a set of feasible choices
(π(at|st) = P[at|st]).

The main goal of Reinforcement Learning is to learn the optimal policy π∗.
The optimal policy is defined as a policy that leads the agent into taking action
that will yield the maximum return in the long run. To learn the best policy, RL
algorithms use the aforementioned value functions:
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• A State Value Function vπ(s) of a state s under a policy π is the expected
return starting from s while following π:

vπ(s) = Eπ[Gt|St = s] = Eπ
[ ∞∑
k=0

γkrt+k+1|St = s
]
∀s ∈ S (3.19)

• Similarly, the Action-Value Function qπ(s, a) of a state s and action a under a
policy π is the expected return after taking action a, starting from s while
following π:

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ
[ ∞∑
k=0

γkrt+k+1|St = s, At = a
]
∀s ∈ S

(3.20)

Both equations 3.4.1 and 3.4.1 satisfy recursive relationship between the value at
a given state and it’s successor states. In fact, they can be rewritten, respectively
as:

vπ(s) = Eπ[Gt|St = s]
= Eπ[rt+1 + γGt+1|St = s]
=
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

P (s′, r|s, a)
[
r + γEπ[Gt+1|St+1 = s′]

]
=
∑
a∈A

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s′)

]
, ∀s ∈ S

(3.21)

The result is what is called in literature Bellman Equations [23]. The value
function vπ is the unique solution to its Bellman equation.

The same problem can be approached with different policies that will yield
different value functions. The best policy π+ among all of the possible choices
is the one that is better than or equal to any other policy π′ meaning that its
expected return is greater than or equal to that of the other π′ policies for all states.
That is defined as the optimal policy. The resulting optimal state-value function,
denoted by v∗ is the value function that follows the optimal policy:

v ∗ (s) = max
π

vπ(s) (3.22)

Same for the optimal action-value function denoted q∗, defined as:

q ∗ (s, a) = max
π

qπ(s, a) (3.23)
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The Bellman equation for v∗, also called Bellman optimally equation expresses
that the value of a state under an optimal policy must equal the expected return
for the best action from that state

v ∗ (s) = max
a

∑
s′∈S,r∈R

P (s′, r|s, a)[r + γv ∗ (s′)] (3.24)

and
q ∗ (s, a) =

∑
s′∈S,r∈R

P (s′, r|s, a)[r + γmax
a′

q ∗ (s′, a′)] (3.25)

3.4.2 Adapting Reinforcement learning to SHASP

Since the Smart Home Appliance Scheduling Problem can be formulated into a
decision making problem under uncertainty , Reinforcement Learning becomes a
suitable solution for the problem. RL does not require explicit probabilistic models
for either the Renewable Energy Sources or the controllable loads. It can learn
from real data being sampled from actual PV panels in a home.

From the MILP formulation described in section 3.2 it is possible to derive a
Reinforcement Learning formulation of the problem by adjusting its elements to fit
the Markov Decision Process framework.

Markov Decision Process Formalization

Following the definition of a Markov Decision Process given in section 3.4.1, we
investigated on how to transpose the original mathematical problem into the
reinforcement learning formulation. This is not a trivial as adapting the constraints
to RL turned out to be quite a challenge. In the following paragraphs, we’ll go in a
deeper look at the design process of the MDP, how the decisions made come out to
be and the problem faced in the modelling.

State Space

The state space is the set of all the observations that the reinforcement learning
agent sees during its interaction with the environment. Looking at the original
formulation of the problem, the main state that the agent should be concerned
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about is the actual energy consumption, meaning the energy consumed at each time
step, taking into account both the power drawn from the grid and the renewable
energy source. The energy availability at disposal of the agent alone is not enough
to describe the Smart Home Environment. This is because, in order to turn on or
off an appliance, the agents needs to know which tasks are currently running, which
have been already completed and which still need to be started. The first approach
to the issue was to make he state a four-tuple of values The state at time step t
was described as St = {At, Et, Tt, D̄t}, in which At is the active set of appliance
jobs that are running at time step t, Et is the energy availability which is given by
the sum of the electricity consumption done by each of the active appliances during
a time slot minus the maximum energy availability at disposal of the system at
time t (Ψ).

Et = Ψ−
∑
ai∈A

ati ∗ ei (3.26)

Tt is the completed set of jobs. D̄t is the vector of activity down counter of the
active appliances: Initialized at Dt where the di element is the running time of the
i− th appliance, once an appliance is activated, the respective element in vector
D̄t is decremented by one until it reaches 0. At that point the task is completed
and Tt is updated.

While this kind of approach seems reasonable, it quickly became clear that a
detailed description of all the elements is unfeasible due to the curse of dimension-
ality: Et is continuous whereas Et, Tt and D̄t possible values grow exponentially
with the increase of the number of appliances (2N with N the number of appliances
considered).

This posed the problem of favouring a computationally heavy approach with
respect to a more “relaxed” one, with less elements in the state space. The latter
option would come at the cost of losing the Markov properties of the decision
process, since there are, in literature, studies centered around making Reinforcement
Learning work even in non Markovian environments, showing that it is possible to
work around this kind of issues [24, 25, 26]. The latter option was the preferred
one since one of the main performance indicators for the goodness of a method
instead of another is the speed of execution.

We ended up using only the energy availability Et as state. This choice still
carries the issues of having to work with a continuous state space, but with reduced
complexity, due to the absence of the other three elements
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Action Space

The action space is the set of all the actions that our HEMS can do. In this case
the choice was straightforward and directly derived from the MILP formulation of
the SHASP problem. Let ut(St) denote the set of activities modelled as an array
of N binary values such that the i-th element of said array is 1 if the appliance has
to be be switched on.

ut = [u1, u2, . . . , un] (3.27)

This means that at each time step, the system looks at all the possible actions (2N
possible actions) and removes from them the schedulable appliances. The i− th
appliance has to be removed from the set of possible choices if:

• is already active (ai = 1)

• is not active but, if activated, would bring Et < 0

• has already finished its job (t̄i = 1)

Reward

The reward function is a crucial part of the formalization of the MDP as it describes
what the agent should achieve. In our case, the main goal is the cost minimization
of the energy consumption while still being in the energy boundaries set by the
plan agreed with the utility provider. The first main component of the reward
function is the actual cost of the electricity used during the day. This can be
directly transposed from the MILP Objective Function with the expectation that,
being RL all about maximizing the expected return of the episodes, the reward
function has to be made negative.

Rt = −Ct (3.28)

where Ct is sum of the costs (ci) related to the energy consumption (ei) of each
active appliance (ai) at time t.

Ct =
∑

ati ∗ ei ∗ ci (3.29)

Since this is now a maximization problem but with a negative cost function,
if no penalty is added to the reward, the natural course of action that the agent
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would take is to keep all the appliances turned off for the entirety of the time
horizon. This of course minimizes the energy cost but defeats the purpose of the
scheduling problem: no jobs are scheduled, ever.

Many penalty have been tried in order to help the agent learn the best possible
policy.

• Positive reward for completing a task (+100)

• Negative reward for failing a task due to power outage (-1e6)

• Negative reward if, at the and of the day, some tasks were not completed at
all (-1e6)

The main issue with this kind of approach is that the reward function becomes
non-Markov: the reward at time t, i.e. when the task of appliance i is completed,
depends on an action done di time steps before and all the states in between. As
stated before, even if there are in literature some works that tackle the problem of
sparse reward in non-Markov environments, the results obtained with this kind of
design choices where not satisfactory. For this reason, we decided to set aside the
Reinforcement Learning methodology but, since there is potential in this kind of
approach to the problem under exam, further studies could be done to design an
adequate MDP.
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Chapter 4

Results

4.1 Case Study

In this section, we are going to look at the numerical simulation done to test
the proposed Tabu Search heuristic. Table 4.1 summarizes all the parameters
and the characteristics of the appliances that can be controlled through a home
management system in a smart household. The simulation where done for a 24
hour time horizon with a 1 minute scheduling resolution. One major assumption
done for the computation was on the predicted PV generation energy shown in
picture 4.1. Since the generation of solar energy is difficult to model and forecast
due to the high variability of the energy source, in this thesis we considered it
ideal, peaking at 1kW at mid day, where the solar irradiance is strongest. Figure
4.1 shows how the data in question is shaped.

Utility providers usually allow the consumers to choose a different plan for their
consumption so as to adapt their consumption patterns in order to reduce their
costs. The electric rate schedule can change depending on the Demand Response
method used. In this thesis we analyse an household that makes use of Time-of-
Use (TOU) Pricings. The type of tariff changes based on day of the week and
consumption patterns but there can be different tiers:

One Tier Price (1TP) only one price is applied to the entire days’ consumption;

Two Tier Price (2TP) two prices are applied to the day, a higher cost for on-
peak periods, where load is usually heavier on the grid, and a lower cost during
off-peak periods;
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Table 4.1: Power ratings of different appliances of a single user with a length of
operational time

Appliances Duration Power Rating [kWh]

Washing Machine 2 h 2
Dish Washer 2 h 1.2
Vacuum Cleaner 1 h 1.2
Cloth Dryer 1 h 1.8
Water Heater 2 h 3.5
Hair Dryer 1 h 2
Fan 4 h 1
Iron 2 h 0.25
Humidifier 4 h 0.15
Oven 45 min 2
Rice Cooker 45 min 0.8
Air Conditioning 2 h 3.5
Electric Car 4 h 3.5
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Figure 4.1: Ideal Power Generation of Solar Panel with 1 kWh at peak energy
production

Three Tier Price (3TP) three price tiers are used. The day is divided into
on-peak, mid-peak and off-peak periods.

Figures 4.2a, 4.2b and 4.2c, show different Time-Of-Use Pricing Schemes over the
whole time horizon:
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Figure 4.2: Time-of-Use pricing scheme with one (4.2a), two (4.2b) and three
(4.2c) tier price

4.2 Scenarios

Here we present the scenarios that were considered for the simulation and compari-
son of the two methodologies. The first one considers the Home Energy Management
System with only the power grid that supports the power demand. The grid is
assumed to inject 3kWh at all times to the house, without interruption due to
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failure of the power grid.

Second Scenario instead supposes the usage of Renewable Energy Sources in the
form of a PV panel with ideal generation of power: weather conditions are ideal,
with maximum possible solar irradiance and clear sky.

4.2.1 Scenario 1: HEMS with Only Grid

Table 4.2 compares the results between the solutions obtained by solving the Integer
Linear Program of the SHASP and by the proposed Tabu Search heuristic. As
for the Price Tiers considered, we look to the tier 2 and 3, mostly because we are
interested in understanding how well the proposed heuristic shifts the different
appliances in order to reduce the costs. A graphical representation of the data
obtained can be seen in figure 4.3 that shows how the costs and the computational
time varies with respect to the number of appliances that are considered in the
environment. For the sake of simplicity, the appliances where took as in the order
shown in table 4.1.

The costs between TS and ILP are consistent with each other but diverge when
the appliances become more than three due to the presence of the Water Heater
that has a power rating of 3.5 kWh. The presence of this appliance alone makes the
ILP Problem infeasible since there is a fixed constraint on how much power can be
drawn from the grid (3kWh) alone. As in a heuristic there are no hard constraints,
but those are relaxed to a penalty term in the objective function, the higher cost
for the TS algorithm is due to the actual increase in costs. It still finds a solution
but said solution is heavily penalized: it cannot be scheduled in a meaningful way
to reduce the costs.

As far as the computational costs go, the two algorithms are close for the first
computations (1 and 3 appliances) but then the heuristic becomes slower. This
is due to the more iteration that the TS does while looking for a better solution,
whereas the solver stops before, after computing that there is no good solution
based on the constraints applied.

A visual representation on how the appliances are scheduled with the two
different methods can be seen in figure 4.4.

In both cases (3PT and 2PT) the appliances are scheduled in the off peak
periods, avoiding any additional costs in the on-peak periods of the day. The ILP
gets more “risky” by starting an appliance while another one is already running
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Figure 4.3: Numerical solutions for the Smart Home Appliance Scheduling
Problem. Points marked with a red "x" are instances where outages occurred

(appliance 2 is scheduled at time 21:35 while appliance 3 was still running), whereas
the Tabu Seach spreads them evenly. A non trivial result of our algorithm can be
found in figure 4.5. Here is described the scheduling of 5 appliances with respect
to a Tier 2 Tariff. Of course, being the instance infeasible for the ILP formulation
given, no solution can be considered valid and no scheduling is performed. What
the proposed heuristic does instead is to schedule the appliances at the end of the
day, where the costs are lower without considering the burden on the power grid
generated by accumulating all the power consumption in one time slot. This might
be due to the design of the penalty term: the additional cost is the same whether
the outages are spread along the time horizon or stacked in one.
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Table 4.2: Result table of the computation between MILP method and Tabu
Search without Panel Generation. If an ILP solution yielded a -1 Cost, that means
the instance considered made the problem infeasible and no solution was found

N. Appliances Price Tier Algorithm Cost Comp. Time

1
2 ILP 0.54 0.17854

Tabu Search 0.54 1.26293

3 ILP 0.4 0.13583
Tabu Search 0.4 1.06445

3
2 ILP 1.03 1.36222

Tabu Search 1.03 0.44957

3 ILP 0.76 1.38187
Tabu Search 0.8 0.40936

5
2 ILP -1.0 0.27043

Tabu Search 123.17 0.75092

3 ILP -1.0 0.26852
Tabu Search 122.45 0.67452

7
2 ILP -1.0 0.37462

Tabu Search 124.0 0.78831

3 ILP -1.0 0.4376
Tabu Search 123.22 0.95903

9
2 ILP -1.0 0.44527

Tabu Search 124.28 1.30686

3 ILP -1.0 0.38552
Tabu Search 123.31 1.29334

11
2 ILP -1.0 0.54762

Tabu Search 125.33 2.13101

3 ILP -1.0 0.54078
Tabu Search 124.23 2.181

4.2.2 Scenario 2: HEMS with PV Panel

Table 4.5 shows instead the same appliances scheduled with the usage renewable
energy sources, in our case a solar panel with 1 kW of peak power generation. Now
the ILP method always finds a feasible solution for the selected appliances since
the energy produces by the solar panel is enough to satisfy the required power
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Table 4.3: Numerical results of both algorithm for 3 appliances in a 2 Tier and 3
Tier Price policy without auxiliary solar panel generation

Price Tier Algorithm Cost Comp. Time Solution

2 ILP 1.03 1.36222 [ 60, 1295, 1265]
2 Tabu Search 1.03 0.44957 [165, 1294, 1158]
3 ILP 0.76 1.38187 [51, 177, 127]
3 Tabu Search 0.8 0.40936 [331, 172, 154]

Table 4.4: Numerical results of both algorithm for 5 appliances in a 2 Tier and 3
Tier Price policy without auxiliary solar panel generation

Price Tier Algorithm Cost Comp. Time Solution

2 ILP -1.0 0.27043 [0, 0, 0, 0, 0]
2 Tabu Search 123.17 0.75092 [1238, 1200, 87, 1209, 1188]
3 ILP -1.0 0.26852 [0, 0, 0, 0, 0]
3 Tabu Search 122.45 0.67452 [21, 269, 321, 837, 90]

demand. The Tabu search behaves in a similar way, by finding the a reasonably
good solution with respect to the ILP one in fewer time. There can be outliers that
diverge from the desired solution, this might be due to the inherit problem of the
local search algorithm of starting from a randomized solution and getting stuck in
a local minima.

Figure 4.6 compares the two algorithms in terms of costs and computational
times. The Tabu Search shows to be incredibly powerful as far as Computational
Times go, keeping them as low as 1.5 seconds, compared to the 71.3 seconds needed
for the ILP to find the same solution.

This is important since, by considering a scheduling resolution of 1 minute,
keeping the computational times lower than that allows the user to add as many
appliances within that period of time and the algorithm will find a way to schedule
them before each time frame ends. This makes our Tabu Search-based heuristic
powerful enough to be considered in a on-line setting, where the scheduling happens
on the fly at each time slot.

As far as the actual scheduling of the appliances goes, we frame in figure 4.7 how
the scheduling of three appliances is with the usage of a solar panel. Immediately
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Figure 4.4: Power curve during the day while using three appliances scheduled
by solving the Integer Linear Program (blue) and using the Tabu Search Heuristic
algorithm (orange). The dashed lines mark the starting times for each appliance
while using the ILP scheduler (purple dash line) or TS (red dash line). Scheduling
done using a 2 Tier Price without the power generated by the photo voltaic panel

we see the difference between this schedule and the 4.4. The addition of a solar
energy generation source (Figure 4.1) that is free to use, incentives the home energy
management system to use said energy as much as possible to reduce costs and
load off the grid. In fact, both methods (ILP and TS) look to use as much solar
energy as possible shifting the energy to the mid-day period where the solar power
is at it’s maximum. This is particularly useful also in cases where appliances that
are more power intensive are employed in the Smart Home environment. As shown
in figure 4.8
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Figure 4.5: Power curve during the day while using five appliances scheduled by
solving the Integer Linear Program (blue) and using the Tabu Search Heuristic
algorithm (orange). ILP doesn’t find a solution while TS-heuristic does
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Table 4.5: Result table of the computation between MILP method and Tabu
Search with PV panel generation

N. Appliances Price Tier Algorithm Cost Comp. Time

1
2 ILP 0.31 1.60427

Tabu Search 0.31 0.99951

3 ILP 0.33 0.74768
Tabu Search 0.33 1.26947

3
2 ILP 0.54 2.20071

Tabu Search 0.6 0.37956

3 ILP 0.53 2.24028
Tabu Search 0.54 0.58131

5
2 ILP 2.71 4.16266

Tabu Search 2.79 0.46357

3 ILP 2.61 4.20845
Tabu Search 2.82 0.47825

7
2 ILP 3.47 8.31111

Tabu Search 3.56 0.59414

3 ILP 3.21 8.20338
Tabu Search 3.54 0.61466

9
2 ILP 3.75 7.67445

Tabu Search 3.92 0.96933

3 ILP 3.4 9.42887
Tabu Search 3.93 0.91321

11
2 ILP -1.0 7.03815

Tabu Search 49.46 2.07148

3 ILP -1.0 7.02396
Tabu Search 37.25 2.17482

Table 4.6: Numerical results of both algorithm for 3 appliance in a 2 Tier Price
and a 3 Tier Price setting with auxiliary solar panel generation

Price Tier Algo Comp. Time Cost Solution

2 ILP 2.20071 0.54 [840, 720, 900]
2 Tabu Search 0.37956 0.6 [701, 556, 805]
3 ILP 2.24028 0.53 [300, 840, 720]
3 Tabu Search 0.58131 0.54 [230, 711, 643]
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Figure 4.6: Numerical solutions for the Smart Home Appliance Scheduling
Problem.

Table 4.7: Numerical results of both algorithm for 5 appliance in a 2 Tier Price
and a 3 Tier Price setting with auxiliary solar panel generation

Price Tier Algo Comp. Time Cost Solution

2 ILP 4.16266 2.71 [1140. 630. 990. 930. 870.]
2 Tabu Search 0.46357 2.79 [497 917 895 22 637]
3 ILP 4.20845 2.61 [ 0. 300. 658. 360. 898.]
3 Tabu Search 0.47825 2.82 [ 188 1156 392 1211 638]
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Figure 4.7: Power curve during the day while using three appliances scheduled
by solving the Integer Linear Program (blue) and using the Tabu Search Heuristic
algorithm (orange). The dashed lines mark the starting times for each appliance
while using the ILP scheduler (purple dash line) or TS (red dash line). Scheduling
done using a 2 Tier Price with the power generated by the photo voltaic panel
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Chapter 5

Conclusions

The growing interest in how we manage the energy is the main motivation behind
this research. How we use the limited resource at our disposal is of critical
importance in today’s world. The research in this field is rich and thriving and
many techniques have been proposed in order to intelligently adjust our consumption
behaviour so as to fit the needs of our planet without losing comfort and personal
satisfaction in our life. The aim of this thesis was to study, implement and
apply novel approaches to the solution of the Smart Home Appliance Scheduling
Problem (SHASP), comparing them to an already formulated Mixed-Integer Liner
Programming formulation of the problem in terms of speed of resolution and
accuracy.

Two main algorithms that were considered: Reinforcement Learning and Local
Search Heuristics. Reinforcement Learning addresses the decision-making problem
in a brand new way, achieving incredible results in simulated environments of
zero-sum games (Chess, Go, StartCraft 2, etc.). In order to adapt the Appliance
Scheduling Problem to a Markov Decision Process, different design choices have
been tried and simulated using OpenAI Gym to project the environments. Although
the present literature that shows the possibility of appling RL methodologies to
Scheduling Problem, the dimentionality of the problem under exam and the timing
requirements for reaching a solution make it infeasible for our case: being heavily
reliant on the number of simulations needed to reach an optimal policy might not
be the best choice when speed at which a feasible solution is found is the key
performance indicator for the comparison between the proposed methods. Relaxing
the Markov property of the SHASP might also be another solution but that would
help the implementation of this kind of methodology but at that point, choosing
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another heuristic method might be better.

For this reason, a Local Search heuristic based on the Tabu Search has been
developed. The designed heuristic improved the classic Tabu Search so as to avoid
getting stuck into a local minima by adding diversification with random start.

The chosen case study for this research focused on a Smart Home, connected
to the Power Grid and using photovoltaic power generation as renewable energy
source. The appliances considered within the smart home where schedulable and
non interruptible.

The results suggests that in the presence of auxiliary power generation the
proposed heuristic improves significantly the computational times needed to solve
the SHASP without loss in accuracy of the solution, that is very close to the one
given by the MILP.

5.1 Future Works

Much can still be done with the research presented in this thesis. Regarding the
Reinforcement Learning approach to the problem, while the results obtained were
unsatisfactory, other iterations of the MDP can be tried in order to reach a design
that can be handled better by off-the-shelf RL agents. This approach becomes
prominent and deserving of a more thorough study when multiple agents are
involved such as in energy communities (Multiple Smart Homes, multiple renewable
energy sources, battery systems and electric vehicles stations). Further analysis has
to be done on the impact of different appliances characteristics such as possibility
to be scheduled or not and the addition of preemption. Moreover, the usage of
real data might also of careful interest, both regarding the RES generation and
consumption patters of the user.
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Additional Figures

A.1 Results
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Figure A.1: Performance evaluation of ILP vs the proposed heuristic on both
Cost of each instance and computational time to reach the solution, without using
any photovoltaic power generation
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Figure A.2: Performance evaluation of ILP vs the proposed heuristic on both Cost
of each instance and Computational Time to reach the solution, using photovoltaic
power generation
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Figure A.3: scheduling of 3 appliances without a photovoltaic panel
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Figure A.4: scheduling of 3 appliances with a photovoltaic panel
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Figure A.5: Scheduling of 5 appliances without photovoltaic panel

52



Additional Figures

0.10

0.12

0.14

0.16

C
os

t [
]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [hour]

0

1

2

3

4

E
ne

rg
y 

us
ed

 [k
W

h]

03:08 19:1606:32 20:1110:38

Start Times
ILP method ILP Start Times

Tabu Search method Tabu Search

Scheduling of 5 running appliances using a Tier Three Tariff
with ILP and Tabu Search method

Figure A.6: Scheduling of 5 appliances with photovoltaic panel
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