
POLITECNICO DI TORINO

Master’s degree
in Communications And Computer Networks Engineering

Master’s Degree Thesis

Review and testing of plugins in Flutter for Android
and IOS

Supervisor Candidate
prof. Guido ALBERTENGO Yusi WANG

March 2022

Summary

With the advent of the 5G era, the development and design of mobile applications
have become an important development direction of widespread concern in vari-
ous fields of the Internet, and the demand for mobile application development has
also grown rapidly. Among the various development cross-platform frameworks
for mobile development, flutter is the best; it is currently the most popular and
easiest to use cross-platform development framework. In addition, selecting ap-
propriate plugins in developing mobile APP functions can effectively shorten the
development cycle. Therefore, in order to better develop and improve development
efficiency, the review and testing of plugins in Flutter for Android and iOS have
become particularly important.

To explore this process, The thesis uses the Flutter cross-platform framework
to develop and design a smart application. After understanding the background
of Flutter and analyzing and studying its related technical principles, according to
the most common and representative native functions of current mobile phones.
The functions of mobile phone photo taking, photo album, calling, sending a short
message, QR code scanning recognition, QR code picture recognition, and RFID
tag NFC recognition are respectively realized.

The application interface is simple, clear, and beautiful, and the operation is
simple and convenient. The overall UI framework uses Dart UI for layout. Through
to the selection of various functional plugins, the addition of plugin dependencies,
and the reference of plugins, the perfect combination of plugins and UI functional
interface is finally realized, the exploration of various native function application
plugins is realized, and a good display is obtained in the mobile phone test. The
effect perfectly meets the expected requirement.

I

Keywords

Flutter, plugin, cross-platform, mobile app.

II

Acknowledgements

Time flies, my studies at the Politecnico di Torino are coming to an end, and I
am entering the next phase of my life, starting work. Looking back on these two
years, the most important and correct decision I made was to choose Italy. In
such a historic and beautiful country. At Politecnico di Torino, I completed my
master’s degree in a friendly academic atmosphere. In addition, the time at the
Politecnico di Torino helped me a lot in my studies and life. This is the first time
I’ve faced and solved life’s problems by myself, living thousands of miles away in
another country. This experience has greatly exercised my ability and enriched
my learning style and thinking.

There is a Chinese proverb: It takes ten years to plant trees and one hun-
dred years to raise people. I want to thank my supervisor, Professor Albertengo.
Whenever I ask him for help with questions, he will reply quickly and help me
solve my confusion; Professor Albertengo’s serious and responsible work attitude
and rigorous academic style are the most worthy of my study. These excellent
qualities will become a valuable asset in my life. Secondly, I would like to thank
Professor Garello for recommending a professor to me based on my situation when
I didn’t know what topic to choose as a research topic. And help me set goals. I
would also like to thank the CCNE students, Ali, Chang Yushuo, Enrico Analolo,
Wang Keyu, Li Dawei are a group of lovely and hard-working people; they have
given me a lot of encouragement in study and study life. Help me move forward.
Finally, I would like to thank my family, who gave me strong backing and let me
move forward fearlessly!

III

Contents

List of Tables VI

List of Figures VII

1 Introduction 1
1.1 Research background of the subject 1
1.2 Research on flutter and related native plugins 2
1.3 The content and significance of the research topic 3
1.4 Thesis structure . 4

2 Flutter related theory technology and research 6
2.1 Flutter system . 6

2.1.1 Flutter Architecture . 7
2.2 Advantages of Flutter . 8
2.3 Flutter rendering principle . 8
2.4 Asynchronous and threading of Flutter 13
2.5 Communication between Flutter and native 15
2.6 Chapter Summary . 16

3 Discuss the overall design of the application based on the native
plugin of Flutter 17
3.1 Demand Analysis . 17

3.1.1 Business functional requirements 17
3.1.2 Non-functional requirements 18

3.2 Overall system design . 19
3.3 Project Directory Structure Design 21
3.4 Chapter Summary . 23

4 The key technology application implementation of Flutter-based
native plug-ins on the mobile terminal 24
4.1 Homepage Design and Implementation 25

IV

4.2 Design and implementation of taking picture and photo albums . . 34
4.3 Design and Implementation of Call and SMS 36
4.4 QR code design and implementation 38
4.5 NFC design and implementation . 41
4.6 Chapter Summary . 43

5 Plug-in-based research effect review and testing 44
5.1 Photographic test . 44
5.2 Album test . 46
5.3 Call and SMS test . 48
5.4 QR code test . 51
5.5 NFC test . 53
5.6 Chapter Summary . 57

6 Summary and Outlook 58
6.1 Summary of the paper . 58
6.2 Future Outlook . 59

Bibliography 60

V

List of Tables

2.1 Flutter vs. other cross-platform technology table 9
3.1 Flutter project directory structure description 23

VI

List of Figures

2.1 Flutter system architecture diagram 7
2.2 Flutter rendering flow chart . 10
2.3 Widget, Element, RenderObject Relationship Diagram 10
2.4 State Lifecycle Diagram . 11
2.5 Performance optimization (drawing) diagram 13
2.6 dart asynchronous loading flow chart 14
2.7 Flow chart of communication between Flutter and native 16
3.1 Layered architecture of Flutter native plug-in application 20
3.2 Schematic diagram of the Flutter project directory 22
4.1 Home Function Business Architecture Diagram 25
4.2 Lifecycle Flowchart . 27
4.3 StatelessWidget basic component diagram 29
4.4 Home page . 33
4.5 Camera and album Ui design figure 35
4.6 Photo album and camera plug-in function flow chart 36
4.7 Call phone and SMS Ui design figure 37
4.8 Call and SMS plug-in function flow chart 38
4.9 Scan QR Code Ui design figure . 39
4.10 QR code function basic flow chart 40
4.11 NFC Ui design figure . 41
4.12 NFC function basic flow chart . 43
5.1 Mobile phone camera interface . 45
5.2 Camera function Click the result picture 45
5.3 Mobile photo album system page 46
5.4 Album picture click result picture 47
5.5 Call function interface . 48
5.6 Phone’s dial system page . 48
5.7 SMS function interface . 49
5.8 The mobile phone’s SMS system page 50
5.9 Scan QR code fuction interface . 51
5.10 QR code scan result picture . 52

VII

5.11 The NFC function interface when the mobile phone NFC function
is turned off . 54

5.12 The NFC function interface when the mobile phone NFC function
is turned on . 55

5.13 NFC information reading page . 56

VIII

Chapter 1

Introduction

1.1 Research background of the subject

In today’s society, people’s demand for mobile Internet is increasing day by day
[1]. According to statistics, in China, each mobile phone user has downloaded
more than 60 apps on average, and the average usage time of apps is as high as
5 hours. There are as many as 3 million apps in the app store, covering all walks
of life and different types. Also, developers release new apps on the app store
every day. According to media reports, Apple’s app market value in China is close
to $260 billion. Therefore, more and more developers are devoting themselves to
developing and designing mobile applications. The first step in developing a new
application is to design the front-end interface. A beautiful and high-quality user
interface will increase users and play a key role in improving the user experience. In
addition, in the release of the app, since our existing mobile phone market has two
systems, namely iOS and Android, two sets of codes are often required to adapt to
different system environments in the development of the app, which undoubtedly
greatly improves the app development cycle—increased developer workload. In
addition, APP also needs to configure many functions for users to improve the
user experience. Therefore, developers will use different plugins to achieve the
above requirements, so how to choose a suitable plugin, whether the plugin is easy
to use, and whether the functions encapsulated in the plugin can be used normally.
All need to be reviewed and tested by us one by one.

Therefore, in order to solve these common problems and meet the needs of de-
velopers, Google’s technical team has developed a new technical framework called
flutter, which developers can easily and conveniently use to build high-quality and
beautiful user interfaces. A set of code can run on both iOS and Android systems,
which greatly improves the work efficiency of developers and reduces the main-
tenance cost of the code. On top of that, it also has a rich plugin marketplace.

1

Introduction

Open source projects related to developing flutter plugins on GitHub are very ac-
tive, which can help us choose and test plugins. In short, to develop an app, the
most popular and best technical framework is flutter, and developing various func-
tions for the mobile terminal in flutter is essentially the selection and application
of different plugins. Therefore, exploring review and testing of plugins in Flutter
for Android and IOS is selected and designed in the context of such a topic

1.2 Research on flutter and related native plug-
ins

Flutter provides an SDK to easily compile source code to code for Android or iOS
[2], and a library of widgets, functions, and packages to customize the graphical
interface [3].

Flutter is a cross-platform mobile application development framework launched
by the Google R&D team [4].Flutter provides an SDK to easily compile source code
to code for Android or iOS [2], and a library of widgets, functions, and packages
to customize the graphical interface [3].This way, developers can quickly build
high-quality native user interfaces on iOS and Android. And greatly reduce the
workload of developers for code maintenance [5]. Since the release of Flutter beta1
in February 2018, Flutter has been updated and iterated hundreds of versions in
just four years. The latest Flutter version is 2.10.2 released on February 19th [6],
which is enough to show that Google attaches great importance to this mobile
development framework.

At the same time, the development speed of Flutter on GitHub is also quite
amazing, with more than 127k stars [7]. At present, the popularity and attention
of Flutter have surpassed the well-known cross-platform framework React Native,
and it has become the most popular technical framework. In the industry, many
Internet companies choose to use Flutter as a development tool, such as eBay,
Google, ByteDance, Tencent, BWM [8]. And Flutter has many successful cases,
such as the Beike app, Xianyu app, Google Pay, Abbey Road Studios, and so on.
Therefore, more and more engineers use Flutter as a development tool, and the
income of Flutter technology practitioners is also very considerable. This mecha-
nism forms a good positive feedback mechanism between Flutter and practitioners.
That is to say, the more practitioners, the more perfect the technology, to optimize
the flutter framework and make Flutter easier to use and more powerful. Internet
companies have also increased the demand for talent from developers who master
Flutter technology. In order to win the talent competition, the company has once
again increased the income and treatment of Flutter developers. Also, the future
of Flutter is very bright. The technical teams of various Internet companies have
carried out experimental research on Web desktop and embedded platforms. In

2

Introduction

addition, Google also plans to apply Flutter technology in Fuchsia in the future.
Also, with the rapid development of flutter is the plugin market that relies

on flutter. Pub.dev provides developers with many plugins, including more than
20kpacket plugins; developers can find most of the functions you want to design
for the application and then use the functions packaged in the plugin to imple-
ment the application. For plugins, this A concept was first proposed by H.Simon
in the 1960s. He believes that plugin modules are special frameworks that are
dynamically balanced in the evolution of complex systems [9]. The plugin de-
velopment method is an architectural model rather than a conventional general
technical standard in an application development method. In the development
process of an application, "module" is just a logical concept. The entire applica-
tion is divided into independent host applications that are independent of each
other, and multiple functional modules outside the application are plugins [10].
The basic principle of plugin implementation is to identify itself by implementing
an extension contract (usually an interface) specified by the main program and re-
ceive event responses from the main program. This process of interacting with the
main program is realized by mobilizing the services provided by the main program.

1.3 The content and significance of the research
topic

This thesis mainly analyzes, researches, and tests how to implement mobile phone
functions on the mobile terminal of smartphones through plug-ins in applications
with Flutter as the main technical framework. The main feature of the applica-
tion is that it is easy to operate, and it can provide various basic functions such
as taking pictures, texting, calling, photo albums, etc., and can scan and identify
QR codes and RFID tags. It is a smartphone application that effectively provides
various functions to facilitate our lives. The application adopts the Flutter cross-
platform solution as the basic framework for using various plug-ins, solving user
needs, and implementing business application scenarios. Flutter has significant
advantages over other cross-platform frameworks. The Flutter framework is very
different from traditional native development. It can be implemented as a set
of code to run on Android and iOS devices and uses self-rendering to maximize
performance. In order to develop with Flutter better, you need to have a good
understanding of Flutter. Its rendering principle, asynchronous loading mecha-
nism, and communication principle with native are all essential in the application
implementation process.

The overall architecture of the application adopts layered architecture design
and module development. The function is divided into six modules with a hierar-
chical design. Realize projects at a glance, effectively discover and test problems,

3

Introduction

and speed up development. After the system infrastructure is completed, business
layer development is relatively easy. Low correlation and independence between
business layers. They are mainly done by flutter components and depend on the
underlying implementation. The implementation of each module of the business
layer will design the component structure according to its business scenario and
interface layout, minimize the layout level, and improve the smooth application
experience. In the application development process, the compatibility, stability,
and scalability of the system will be fully considered. In order to ensure perfor-
mance , the problems encountered in the development process will be continuously
adjusted and optimized, and the test will be carried out after completion to ensure
that its functions can be perfectly reproduced on the mobile phone.This thesis’s
main significance is to explore the principles of Flutter-related technologies, the
realization of Flutter framework application functions, and the entire process of
reviewing, testing, and implementing plug-in applications. To provide technical
support and theoretical understanding for developers who will browse the paper in
the future. It is hoped that developers can have a basic and clear understanding
of Flutter plug-in development and testing after browsing the thesis.

1.4 Thesis structure
This article is divided into six chapters, from the background of the topic selection,
the original intention of the development, the technical principle to the design
implementation, and the final test. It gradually introduces the whole process of
project completion. The chapter summaries are as follows:

Chapter 1, Introduction: This chapter mainly introduces the background of
the topic selection, analyzes the research status of flutter and flutter plug-ins, and
expounds the research content and significance of this topic.

Chapter 2, Flutter-related theory and technology research: This chapter focuses
on the Flutter architecture that implements the app, and focuses on the analysis
and introduction of several main basic knowledge points of the system architec-
ture. Including the architecture and advantages of Flutter, the rendering principle
of Flutter, the asynchronous and threading of Flutter, and the communication
principle of Flutter and Native.

Chapter 3, Flutter-based native plug-ins explore the overall design of the ap-
plication: This chapter mainly introduces the preparations before development,
including analysis of business and non-business requirements, overall system de-
sign, and project directory structure design

Chapter 4, the key technology application implementation of flutter-based na-
tive plug-ins in the mobile terminal: This chapter mainly introduces the imple-
mentation of each module of the flutter client and conducts an in-depth analysis

4

Introduction

of the technical difficulties.
Chapter 5, Plug-in-based review and testing of research effects: This chapter

mainly introduces how to conduct effective testing after development is completed
to ensure the stability of the application and the final online deployment.

Chapter 6, Summary and Outlook: This chapter mainly summarizes the projects
and articles and gives a good outlook on the follow-up research content and the
development of Flutter.

5

Chapter 2

Flutter related theory
technology and research

At present, the big front-end technology is constantly breaking through, and vari-
ous technologies also appear in our field of vision. Flutter is one of them. It can not
only quickly build beautiful application interfaces on Android and iOS systems but
also make Flutter closer to native applications in terms of performance by using
self-rendering methods. This chapter will mainly introduce the relevant theoreti-
cal technologies applied by Flutter in the mobile terminal and provide theoretical
support for subsequent project design and application difficulties.

2.1 Flutter system
Flutter is a mobile application SDK that can generate applications with superior
performance and support running on multiple platforms such as iOS and Android
[11]. Since the first beta version of Flutter was released at Mobile World Congress
in early 2018, its purpose has been to quickly build high-quality and beautiful
native user interfaces on iOS and Android while maintaining high frame rates
for continuous rendering. Flutter’s version updates are very fast. Through the
vigorous promotion of the framework by the Google R&D team, more and more
developers have begun to try to use Flutter as the basic development framework.
The Flutter community is also very active. GitHub-related projects developed
by Flutter are also getting more and more attention. Due to its obvious advan-
tages, development engineers from many large Chinese Internet companies such as
ByteDance, Alibaba, and Tencent are also actively researching and using Flutter.
BeikeApp, XianyuApp has also achieved good results, greatly saving the develop-
ment cycle and maintenance costs.

6

Flutter related theory technology and research

2.1.1 Flutter Architecture
Flutter is developed using Dart [12]as the main programming language. Its expe-
rience effect is close to native applications, but strictly speaking, it is not a real
native application framework. It has to be built in the native system. In fact,
cross-platform is to embed Flutter’s engine and superstructure into each platform
system. Flutter’s layered architecture consists of three layers. Each layer is inde-
pendent of the other and depends on the structure of the next layer. Each part of
the framework is optional, or replaceable [13]. The system architecture diagram is
shown in Figure 2.1.

Figure 2.1. Flutter system architecture diagram

The first is the Framework layer, the top layer in the Flutter architecture. It
is implemented by the Dart language and implements some basic components ,
such as UI, text, pictures, buttons and other components, rendering, animation,
gestures, etc.

The second is the Engine layer in the middle, which is the core of the Flutter.
It is mainly an SDK implemented in C++, which provides API calls for all UI
libraries in the framework layer above, mainly including a 2D graphics rendering
and text layout and Dart runtime engine, and is also a bridge system between the
framework and the application.

The bottom layer is the Emberred layer. Flutter mainly embeds itself into other
platforms to achieve cross-platform solutions through this layer. Other platforms
don’t need to be responsible for rendering. Just provide a canvas. The engine

7

Flutter related theory technology and research

provided by Flutter does the rendering logic. In addition, thread settings, Surface
settings, and plug-ins are also the main work that Flutter does in this layer.

2.2 Advantages of Flutter
By comparing other technical solutions, choosing Flutter as the technical frame-
work for mobile applications is mainly based on the following four aspects.

(1) Flutter can easily achieve cross-platform operation; only one set of code can
run on Android and iOS systems and will support running on the Web and PC in
the future. This can not only maintain the consistency of work, but also greatly
reduce development costs, save testing time, and improve work efficiency.

(2) The performance of Flutter is much better than other frameworks, mainly
in two aspects. First of all, because the coding uses the dart language, Flutter
will choose the JIT mode during the development phase, which can effectively
avoid recompilation for each change and the running speed is not slower than
JavaScript [14]. Secondly, in the release stage, Flutter can generate efficient ARM
code through AOT to ensure running performance [15], which is very helpful for
view data calculation at a high frame rate. Second, Flutter’s rendering work
is done by its own engine, so there is no need for native rendering through an
intermediate layer like React Native. Reduced performance loss, enabling high
frame rate rendering of UI, making Flutter performance and experience closer to
the native effect.

(3) Flutter is easier to learn, the layout components are displayed in a tree
structure, and Able to achieve complex gesture animation click effects with simple
principles. Developers can flexibly apply the components that come with Flutter
and quickly build beautiful user interfaces by combining them. In addition, the
Flutter topic of the technical forum is very active, and it is easy to find peers
to learn together. In addition, there are rich open-source projects and learning
documents to help developers refer to the learning process.

(4) Comparison between Futter and other cross-platform technologies as shown
in Table 2.1.

2.3 Flutter rendering principle
At present, the mobile phone market’s mainstream mobile phone refresh rate is
60Hz, which means that the mobile phone screen will be refreshed 60 times per
second. During refresh, the monitor sends a Vsync signal every time a frame
is drawn. Based on the aforementioned 60Hz calculation, the monitor will emit
a total of 60 Vsync signals. The data transmitted by these signals are sent to
the CPU for centralized integration processing, and display content is obtained

8

Flutter related theory technology and research

Table 2.1. Flutter vs. other cross-platform technology table

Type of technology React Native Weex Flutter
R & D company Facebook R&D Alibaba R&D Google R&D
Core language React Vue.js Dart
Features Developing overall

App
single page devel-
opment

Developing overall
App

difficulty Normal Easy Normal
Design Patterns React Design Pat-

terns
Vue Design Pat-
terns

Responsive Design
patterns

performance Normal Normal High
Development
efficiency High High Extremely high

performance
Engine JSCore JSV8 Engine Flutter Engine
Ui rendering method Native control ren-

dering
Native control ren-
dering

self-rendering

Support platform Android/iOS Android/iOS/Web Android/iOSWeb
Degree of framework Heavy Light Heavy

through calculation, and then this part of the content is transmitted from the
CPU to the GPU, which is then rendered by the GPU and then transmitted to
the display. Until we observe, Flutter’s rendering process is shown in Figure 2.2.

First, the GPU will send the Vsync signal to the UI thread in this process.
After the UI thread is synchronized to the signal, the dart language will process
the signal at the application layer to construct abstract view structure data. This
part of the data will then be sent to the GPU thread, where layer synthesis is
performed, and after synthesis, it is provided to skia for rendering to form GPU
identifiable data. Finally, the whole rendering process is completed by providing
it to the GPU through OpenGL or Vulkan.

The most important link in the rendering process is to construct the view struc-
ture data. In constructing the view structure data, three tree structure elements
play an indispensable role in it. They are the Widget tree, the Element tree, and
the RenderObject tree. The relationship between these three is shown in Figure
2.3.

9

Flutter related theory technology and research

Figure 2.2. Flutter rendering flow chart

Figure 2.3. Widget, Element, RenderObject Relationship Diagram

10

Flutter related theory technology and research

Widgets are the heart of Flutter. It stores a lot of view configuration informa-
tion, such as properties, layout, etc. It is a configuration file and does not directly
participate in the drawing, so when developers frequently conFigure or delete it,
it will not affect performance. There are two forms of Widget as a whole, one is
StatelessWidget, and the other is StatefullWidget. The difference between them
is that a stateful widget can refresh the state after calling the setstate function,
while a statelesswidget cannot. In fact, their essential characteristics are the same,
they are immutable components, and each frame change needs to be reset. Just
a statefulwidget can store variable state in it by using the state.setstate() func-
tion. Whenever the widget tree is refreshed and changed, it only needs to call the
function to achieve the new effect. The life cycle diagram of the state is shown in
Figure 2.4.

Figure 2.4. State Lifecycle Diagram

11

Flutter related theory technology and research

The element tree is generated by the widget tree [16], which acts as a bridge
connecting the widget tree and the RenderObject tree, and plays the role of man-
agement and scheduling. Because widgets are very unstable, they may rebuild
repeatedly. If you render directly, it will consume a lot of performance. So Flutter
creates an element for the widget. Each widget corresponds to an element, and
the element will have a unique key. When the widget needs to be updated, there is
no need to re-render the entire widget; just synchronize the corresponding part of
the element to the real RenderObject tree, which greatly reduces the modification
of the real rendering and improves the rendering efficiency.

RenderObject is responsible for rendering and layout in Flutter. Unlike the one-
to-one relationship between widget and element, only the widget that needs to be
rendered will have a corresponding RenderObject node. Whenever the widget is
modified or changed, the RenderObject will compare the difference between the
new widget and the element to see if the reserved type and key are the same as the
previous ones. The properties will be updated if they are the same, which greatly
saves rendering overhead.
Four important properties and methods in RenderObject:

• constraints: constraints passed from parent.

• parentData: This carries the data used by the parent when rendering the
child.

• performLayout(): This method is used to layout all children.

• paint(): This method is used to paint itself or child [17].

Next, will introduce the three sub-steps of Flutter Widget rendering: layout,
drawing, and synthesis. Flutter optimizes each step. In the layout process, by
setting layout boundaries for nodes, when the component is rearranged, it will not
affect the outside world. For the drawing process, the redrawn boundary is also
set. To better explain the principle, simply draw a schematic diagram 2.5 here.

As shown in the Figure, when the 2-node part needs to be redrawn and affects
the 6-node, the 6-node will be switched to a new red layer. Only the former will
be drawn to avoid redrawing affecting 6 -nodes and improve the Redraw efficiency.

For layer synthesis, Flutter adopts a dynamic texture scheme (a layer is au-
tomatically cached as a texture after being redrawn three times). Flutter thinks
that this layer is very likely if a layer is drawn three times. It will be drawn for the
fourth time or more. At this time, it will generate a texture for this layer. When
it is drawn again, it only needs to project the texture on the screen.

The whole rendering process is summarized below. Widgets are first written
to form a widget tree in the development process. Each widget will generate a
corresponding element, and the element also obtains a unique key. When we use a

12

Flutter related theory technology and research

Figure 2.5. Performance optimization (drawing) diagram

statefulwidget, A state() function will be generated, and it will also be passed to
the state in the element. Then the element that needs to be rendered will generate
a RenderObject. When the widget changes, the corresponding element structure
will also send changes. The node that changes will be marked as dirty, and the
node will trigger an update in the next cycle. At this time, the latest widget will
be associated with the corresponding RenderObject,Layout and drawing happen
here. Skia then takes over the rest and renders the image to the GPU for display.

2.4 Asynchronous and threading of Flutter
Asynchronous functions were developed to utilize better the power of computers,
which are very fast compared to human operations. It’s a lot of waste if the com-
puter is blocked, so async functions help your program do other work while waiting
for your instructions to do the next thing. Greatly improved work efficiency.

Dart is the main programming language in Flutter. Like JavaScripts, it doesn’t
have a multithreading model. It needs to use the concept of Coroutine to achieve
asynchrony. Unlike threads, the dart can use isolates to achieve multi-threaded
effects; each isolate has its own memory space event loop and event queue. And
isolates are independent of each other, do not share the memory, and only pass
information through ports. Since there is no need to concurrently request access
locks like threads, there is no deadlock phenomenon. Isolate provides a solution

13

Flutter related theory technology and research

for Dart applications to take better advantage of multi-core hardware.
Flutter’s asynchronous application is mainly accomplished by maintaining an

event loop and two event queues (microtask queue and event queue) in dart. The
specific flow chart is shown in Figure 2.6.

Figure 2.6. dart asynchronous loading flow chart

14

Flutter related theory technology and research

The order of execution is:

1. Execute the task in the main function.

2. Check if there is a task in the microtask queue. If there are tasks to be
executed first, this provides a solution for dart tasks to cut the queue. It
is worth noting that if there are too many micro-tasks, the event task will
be blocked, resulting in the app being unable to perform UI rendering click
events, etc.

3. When the microtask queue is idle, check the event queue, and if there is one,
execute it in sequence.

2.5 Communication between Flutter and native
Developers develop some system functions on the mobile APP, such as calls, text
messages, photos, Bluetooth, etc., which need to be obtained from native meth-
ods. Although there are many plug-ins in the plug-in market that encapsulate
these functions, App functions can be implemented by accessing plug-ins. But
in essence, the internal implementation principle of these plug-ins is completed
through the communication between Flutter and native, so learning the communi-
cation principle between Flutter and native is particularly important for developing
projects and optimizing performance.

Communication between Flutter and Native relies on platform channel. There
are three types of channels, as shown below:

• BasicMessageChannel: Mainly used to pass strings and semi-structured data.

• MethodChannel: It is more common to pass method calls.

• EventChannel: Used for data stream transmission, with monitoring function.
If there is a need to send data from the native back to the Flutter side, this
channel is the most suitable.

Specifically, Flutter uses channel and native to pass information through Method-
Channel. When we initialize a channel, a MessageHandler is generated. A unique
key identifying the corresponding channel string is stored on the HashMap, so each
MessageHandler corresponds to channels. When Flutter sends a message, the Bi-
naryMessenger will find the corresponding message channel, process it through
different Codecs, and send it to the MessageHandler. After the MessageHandler
has processed the data information, it will return in the same way to complete
the communication between messages. Two-way transmission. Its communication
flow is shown in Figure 2.7.

15

Flutter related theory technology and research

Figure 2.7. Flow chart of communication between Flutter and native

2.6 Chapter Summary
This chapter first introduces the Flutter system, followed by a technical analysis
of the Flutter framework, expounding the advantages of choosing it as a project
and focusing on the key technologies that will be applied in the project. In the
development of Flutter, it is essential to understand the rendering principle, which
will greatly improve the rendering effect. In addition, the asynchronous operation
mechanism and isolate of the single-threaded model of the dart language are also
very different from the general multi-threaded concurrency. In-depth research on
this part of the principle will effectively improve our development efficiency and
optimize the performance of our project. Of course, the review and testing of
plug-ins are also inseparable from the communication between Flutter and na-
tive. Understanding these contents will lay a solid foundation for the subsequent
development work.

16

Chapter 3

Discuss the overall design of
the application based on the
native plugin of Flutter

This chapter will start with Flutter’s native plug-ins, explore application require-
ments and overall conceptual design, sort out the functional and non-functional
requirements of each module, analyze the overall project structure and directory
structure in detail, and ensure that the application can efficiently complete various
functional requirements so that Flutter native plug-in application can successfully
pass the expected test.

3.1 Demand Analysis
Based on the cross-platform features of Flutter, Flutter and the corresponding
native plugins can be used more efficiently in the future development process. It
is necessary to be familiar with its essential principles and deeply explore the ap-
plication of native plugins. According to the functions often used in daily life, the
corresponding native plug-ins can be integrated and called to realize the corre-
sponding function design and complete the debugging and testing work. Design
the corresponding requirements.

3.1.1 Business functional requirements
In order to explore the application of Flutter native plug-ins, the following func-
tional requirements are proposed according to the typicality and universality of
the required plug-ins:

17

Discuss the overall design of the application based on the native plugin of Flutter

(1) Camera, photo album plug-in application: In the context of the rapid devel-
opment of the mobile Internet and the blessing of 5G networks, most smartphones
are equipped with high-definition cameras. Therefore, many APPs can upload
user avatars and store pictures. Users can call the camera to take beautiful photos
or open the album to select favorite images to upload. Cameras and photo albums
have almost become necessary skills for APP development.

(2) Calling, SMS plug-in application: Calling and texting are essential functions
in everyday life. It has important applications in multiple scenarios such as app
new user registration, member login, password retrieval, payment confirmation,
system notification, marketing campaign access dial-up, user authentication, and
member notification reminders. Therefore, we must explore and develop these two
functions.

(3) QR code scanning plug-in application:With the increasing number of mobile
Internet users, QR code, as brand-new information storage, transmission, and
identification technology, is used in many aspects such as information acquisition,
website redirection, advertisement push, anti-counterfeiting traceability, mobile
payment, account login, etc. Therefore, the exploration of Flutter QR code-related
function plug-ins is also representative.

(4) NFC plug-in application : NFC is a powerful builder of a digital and in-
telligent society. With the development of smart cities and smart transportation,
NFC technology devices can exchange data when they are close to each other.
Through point-to-point, card reader, analog card, and other modes, complete
mobile payment, electronic ticketing, access control, mobile identification, anti-
counterfeiting, and other applications. Therefore, it is necessary to explore the
NFC plug-in.[18, 19, 20].

3.1.2 Non-functional requirements
Flutter’s native plug-in application exploration mainly selects several typical re-
quirements and functions such as camera, photo album, phone call, SMS, QR
code, NFC, etc., for development and elaboration. The plugins developed by
Flutter based on native development are hosted in the plugin application market
pub.dev. Each developer can upload and host plugins that comply with the speci-
fication. Therefore, in the development process, non-functional requirements such
as convenience, efficiency, compatibility, security, scalability, and maintainability
of plug-ins will be involved.

(1) Convenient and efficient: Everyone has their way of thinking about prob-
lems. Different people may have different solutions to the same problem, resulting
in differences. In the vast plug-in market, a plug-in with a specific function may
also have plug-ins with different solutions, so the convenience and efficiency of
plug-ins also require our attention.

18

Discuss the overall design of the application based on the native plugin of Flutter

(2) Compatible security: Flutter is an efficient and popular language, and it
is also in the process of rapid development and iteration. Therefore, different
versions have different compatibility. Depending on the developer’s development
environment, different plug-in versions are required. If the version does not match,
it will directly cause the program to report an error and fail to run. Therefore,
the compatibility and security of plugins are more worthy of our attention.

(3) Scalable and maintainable: The development of a project needs to go
through long-term maintenance iterations, so it has high requirements for its sta-
bility. The stability of the software refers to the abnormal phenomenon that will
not be affected by user operations, network conditions, and the increase in the
number of users [21]. Therefore, it will involve the iteration of different functional
requirements versions. Good scalability and maintainability can produce efficient
work results in subsequent continuous iterations, and it is also convenient for us
to respond to different business needs quickly.

3.2 Overall system design
Based on the Flutter native, plug-in exploration application, the overall functional
layout is constructed with pure Flutter Widget widgets, involving the home page
function display, including the design of several functional areas such as photog-
raphy, photo album, dialing, SMS, QR code, and NFC.

The application mainly adopts a general hierarchical organization model, and
the whole consists of three layers, namely the business layer, the component layer,
and the basic system layer. Each layer is independent and mutually dependent.
Business Layer

It mainly includes visual UI functions that directly interact with users, mainly
implemented in the Futter programming language Dart, including the icons, ti-
tles, backgrounds, colors, shadows, rounded corners, gradient implementations of
each function button, and the jump pop-up window of each pop-up page window.
Interaction logic.
component layer

According to convenience, efficiency, compatibility, security, scalability, and
maintainability, select the exploration target plug-ins corresponding to dial-up text
messages, photo albums, QR codes, and NFC-related functions. This layer mainly
depends on the underlying native environment. The difference between platforms
is to achieve corresponding functional consistency through native communication
between Flutter and native. After encapsulating the reference, call the functional
business layer directly.

19

Discuss the overall design of the application based on the native plugin of Flutter

Base system layer
The basic system layer is the underlying architecture layer of Flutter, and it is

the basic support for the program to run across platforms. Mainly implemented
by native, relying on native system services. Through this layer of conversion,
the consistent conversion of compilation and running differences of different sys-
tem platform characteristics is realized. The Flutter native plug-in explores the
application layered architecture as shown in 3.1.

Figure 3.1. Layered architecture of Flutter native plug-in application

Flutter is divided into two parts, and C++ implements the underlying Engine.
Dart implements the upper framework.

Engine provides a complete operating environment for the Framework. Frame-
work is divided into four layers, from bottom to top, respectively.

1. Foundation,

2. Rendering,

3. Widgets,

4. Material.

The Foundation layer is implemented by dart:ui. dart:ui provides the most
basic functions that the Framework can run, such as the raw information of events
such as drawing, interface refresh, touch screen, and mouse.

The rendering layer consists of several submodules: animation, painting, ges-
tures. Flutter provides RenderObject to implement complete layout and drawing
functions at this layer.

20

Discuss the overall design of the application based on the native plugin of Flutter

The Widgets layer is the layer that developers touch the most. Widget is
the encapsulation of RenderObject. At the Widget layer, Flutter implements a
responsive development framework.

Material+Cupertino layer, in this layer, Flutter provides a series of Widgets, of
which Material Widget implements Material Design. Cupertino provides a set of
iOS-style controls [22, 23].

3.3 Project Directory Structure Design
As a cross-platform development language, Flutter’s project directory structure
also has specific cross-platform features. The project contains not only its own
dart language-related code but also native platform-related Android and iOS and
Web-related code. The directory structure of the Flutter program can help us
get started quickly, understand the cross-platform features of Flutter, and is also
conducive to daily development and debugging. The Flutter project directory is
shown in Figure 3.2.

The Flutter project directory structure description is shown in the following
Table 3.1.

The more important folders and files are Android, iOS, lib, test, pubspec.yaml:

• lib: The dart language code we develop daily is placed here; it can be said to
be our "core working folder".

• iOS: This contains the configuration and files related to the iOS project.
When our project needs to be packaged and launched, we need to open the
Runner.xcworkspace file in this file for compilation and packaging.

• android: The same as the iOS folder. When the android project needs to
be packaged and put on the shelves, the files in this folder need to be used.
Similarly, if we need native code support, native code is also placed here.

• test: Here, we store our test code in the process of project development. Good
testing habits are a necessary means to ensure code quality!

• pubspec.yaml: The core configuration file of the Flutter project, including
the project name, version number, project description, homepage, develop-
ment documentation, and most importantly, the project dependency plugin
configuration.

21

Discuss the overall design of the application based on the native plugin of Flutter

Figure 3.2. Schematic diagram of the Flutter project directory

22

Discuss the overall design of the application based on the native plugin of Flutter

Table 3.1. Flutter project directory structure description

file/directory role
dart_tool Dart tool development kit
.idea development environment configuration
android Android native project file
iOS iOS native project file
build Compile or run the product
lib contains project related files ending in .dart
test contains project test files ending in .dart
web web native project file
.gitignore git commit repository ignore files
.metadata A configuration record for the current workspace
.packages Absolute paths to files ending in lib
pubspec.lock file generated before project dependencies
pubspec.yaml dependency configuration
README.md readme project information (html tag)
External Libraries Android rack package and resource files, Dart SDK files,

project development dependency plug-in API
Scratches and Consoles List of temporary files and buffers created

3.4 Chapter Summary
This chapter starts by exploring the requirements of applications based on Flutter’s
native plug-ins, and introduces the functional requirements and non-functional
requirements of the system. Demand is the original intention of every APP. We
can better design products that meet the requirements by truly understanding the
demand. A robust program requires a good set of architectural patterns. This
application is also divided into the business, component, and base system layers
based on a general layered architecture pattern, which can be well extended and
decoupled. The key to mastering a language is to understand the project directory
structure. This chapter starts with the basic structure of the Flutter project and
succinctly sorts out the entire directory structure and description

23

Chapter 4

The key technology
application implementation
of Flutter-based native
plug-ins on the mobile
terminal

The application research of Flutter native plugins mainly focuses on the widely
used and representative native plugins, involving cameras, photo albums, dialing,
SMS, QR codes, NFC, etc. Starting from using Flutter basic components, build
the main application framework. According to the basic principles of convenience,
efficiency, compatibility, security, extensibility, and maintainability, the plugin is
selected and studied, the plugin’s reference is determined, and the combination of
the plugin components and the framework is realized. Complete the entire pro-
cess of using and exploring the plugin. This chapter mainly introduces the home
page,phone call, camera, QR code, NFC, photo album, SMS, and other modules
from multiple dimensions such as design selection, interaction logic, principle ex-
ploration, and code implementation.

24

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

4.1 Homepage Design and Implementation
As the main framework of the program entry, the home page is an indispensable
function carrier for any App. The home page provides an exploration entry for
various functional plug-ins in the flutter application. The UI design of the camera
function, photo album function, dial function, SMS function, QR code function,
and NFC function is displayed on the home page. Figure 4.1 is the functional
business architecture diagram of the home page.

Figure 4.1. Home Function Business Architecture Diagram

After the user clicks the Flutter application icon and starts the APP, he will
enter the home page directly. The overall framework of the home page is con-
structed by combining StatefulWidget and StatelessWidget. Everything in Flutter
is a Widget. Widget is the package for building visual effects and the carrier of
the UI interface. The build is the implementation method for the Flutter frame-
work to build the UI interface.In the build method, customizing the UI is usually
achieved by configuring the corresponding UI for the basic Widget or combining
various basic Widgets. StatefulWidget and StatelessWidget are two subclasses of
Widget.
StatefulWidget

When creating a new Flutter project, the system will generate a default sample
program, which is a StatefulWidget at this time. The system chooses StatefulWid-
get because in the sample code, we will click the button, and the data displayed

25

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

on the interface will change; at this time, we need a variable to record the current
state, and then display this variable on a Text Widget; and Every time the vari-
able changes, the content displayed on our corresponding Text also changes. And
StarefullWidget can do just that.

The data defined in the Widget is immutable and needs to be defined as final
because: at the beginning of the design, Flutter decided that once the data dis-
played in the Widget changes, the entire Widget needs to be rebuilt; so Flutter
needs to pass some mechanisms to qualify member variables defined in Widget as
final;

@immutable
ab s t r a c t c l a s s Widget extends Diagnos t i cab l eTree {
. . . omitt ing the code
}

Through the above Widget source code, Flutter realizes that the data defined
by the Widget during the development process is final.There is a very critical
part here, @immutable, which is an annotation involving Dart’s metaprogram-
ming.The official description of @immutable: the class or subclass marked by the
@immutable annotation must be immutable.[24].

But StatefulWidget needs stateful changes (which can be understood as vari-
ables), so to meet this requirement, flutter designs StatefulWidget into two classes,
that is to say, two classes must be created when creating StatefulWidget: one class
inherits from StatefulWidget, as Part of the Widget tree; a class that inherits from
State, is used to record the State that StatefulWidget will change, and build a new
Widget according to the change of State, thus realizing StatefulWidget to store
variable State.

Mutable state, in turn, introduces a new conceptual lifecycle. The program’s life
cycle refers to: in iOS development, you need to understand the whole process of
UIViewController from creation to destruction, while in Android development,In
Android development, you need to know the entire Activity process from creation
to destruction. so that different actions are done in different lifecycle methods;
Also in front-end development: Vue and React’s components also have their life
cycles, and developers can do different operations in different life cycles;

Flutter widgets also have a lifecycle. StatelessWidget can directly pass values
from the parent widget and call the build method. The whole process is very
simple; StatefulWidget needs to manage its data through State and also determines
whether to rebuild the entire Widget by monitoring the changes of State; The
lifecycle callback of StatefulWidget is shown in Figure 4-3 below. The content in
the gray part is operated internally by Flutter. We do not need to set it manually;
the white part represents methods that we can manually monitor or call; we know
that StatefulWidget itself consists of two classes: so StatefulWidget and State

26

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

need to be analyzed separately.

Figure 4.2. Lifecycle Flowchart

First, execute the relevant methods in StatefulWidget:

1. Execute the Constructor of StatefulWidget to create a StatefulWidget.

2. Execute the createState method of StatefulWidget to create a State object
that maintains StatefulWidget.

27

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

Secondly, Execute the relevant methods of the State class when calling
createState:

1. Execute the Constructor of the State class to create a State object.

2. performs initState, usually to perform some data initialization operations, or
possibly to send network requests.

3. executes the didChangeDependencies method. This method will be called in
the following two situations.
Case 1: It will be called by calling initState;
Case 2: When some data in a dependency changes

4. Flutter executes the build method to see which widgets need to be rendered
in our current code.

5. When the current Widget is no longer used, it will call dispose to destroy it.

6. Manually calling the setState method will re-call the build method to build
the corresponding Widget based on the latest state (data). The

7. didUpdateWidget method is executed when the parent Widget triggers a
rebuild, and the system calls the didUpdateWidget method.

StatelessWidget
The StatelessWidget in Flutter is a widget that does not need to change the

state; that is, the StatelessWidget has no internal state that needs to be managed
and is a stateless widget. The basic components of StatelessWidget are shown in
Figure 4.3 below.
Container

Widgets for drawing, positioning, and resizing. We can usually use it as a
container view and then carry out a specific layout through the internal subviews
We can control the view’s width and height, background color, shadow rounded
corners, etc., through it. If there are no child widgets, no width, height, and
constraints are set, and the parent widget has no unbounded constraints set, it
will adjust itself to be small enough. If there is no child widget, alignment, but
width, height or constraints are provided, then the Container will adjust itself to be
small enough according to its constraints and the parent node. If there are no child
widgets, width, height, constraints, and alignment, but the parent widget provides
bounded constraints, the Container will adjust itself to be large enough according
to the parent widget’s constraints. If there is alignment and the parent widget
provides unbounded constraints, the Container resizes to wrap the child widget; If
there is alignment and the parent Widget provides bounded restrictions, within the

28

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

Figure 4.3. StatelessWidget basic component diagram

scope of the parent Widget, the Container will adjust itself to be large enough, and
then adjust the position of the child widget according to the alignment; If there
is a child widget but no width, height, constraints, and alignment, the Container
will pass the constraints of the parent widget to the child widget and adjust itself
according to the child widget. The Container has the following properties:

• margin: padding, related to child widgets.

29

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

• padding: margins, related to the parent widget.

• child: child widget.

• color: background color, if foregroundDecoration is set, it may cover the color
effect.

• constraints: Boundary constraints [25].

Text
Text in a single format. Usually used for plain text display

Icon
Mainly used for some vector icons, it has the Size attribute is primarily used

to control the size, and the color attribute controls the displayed theme color [26].
TextDirection is the setting of the text direction.
Divider line

The dividing line is often used in actual projects, such as between list elements,
etc. The height parameter in Divider refers to the height of the container, not
the height of the line. If you want to change the height of the line, you can
only customize the component. thickness, the line width of the dividing line, the
dividing line is in the center of the Divider, the left spacing of the indent dividing
line, the right spacing of the endIndent dividing line, the color of the dividing line.
Card

Cards with rounded corners, shadows, borders, etc., are often used for functional
block layouts that require rounded shadows. You can pass the card background
color (color), shadow height (elevation), BorderShape, borderOnForeground, mar-
gin, clipBehavior, child controls Attributes such as control the display style.
AlertDialog

The pop-up box is a commonly used component and is often used for reminders.
We also use this component in many places in this project, such as displaying pic-
ture results, mobile phone number input, QR code scanning results, and other
functions. It mainly has attributes such as title, titlePadding, titleTextStyle, con-
tent, contentPadding, contentTextStyle, actions, backgroundColor, elevation, and
shape..

Based on the above basic principles and basic components, the overall functional
design of the home page from top to bottom is the navigation bar area, camera,
photo album, dial-up, SMS, QR code, NFC. The overall framework layout code of
the program is as follows, The StatelessWidget wraps the overall root view, sets
the program’s theme Colors.blue with ThemeData, and MyHomePage implements
our home page function specifically.

30

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

void main () {
runApp(MyApp()) ;
}
c l a s s MyApp extends State l e s sWidget {
@overr ide
Widget bu i ld (BuildContext context) {
re turn MaterialApp (
t i t l e : ’ F lu t t e r Demo Home Page ’ ,
theme : ThemeData(
primarySwatch : Colors . blue ,
) ,
debugShowCheckedModeBanner : f a l s e ,
home : MyHomePage(t i t l e : ’ F lu t t e r Demo Home Page ’) ,
) ;
}
}

The following is the specific implementation of the MyHomePage homepage
program framework. This widget is the home page of the application. It is the
stateful component page of StatefulWidget, and the main body includes two parts,
StatefulWidget and State. StatefulWidget is a UI layout component. The state
is part of state management. The title is a final attribute that can configure the
corresponding title for our homepage navigation bar. Widget build (BuildContext
context) is how the UI layout is rendered. Each call to setState triggers a rerun
of the method and refreshes the layout rendering. The advantage of the Flutter
framework is that the rerun build method is fast and efficient so that anything
that needs to be updated can be rebuilt instead of changing the Widget instance
individually.

• title: Widget - the main content in the Toolbar, usually displayed as the title
text of the current interface.

• PopupMenuButton to display as three dots, click to pop up a secondary menu.

• brightness : Brightness - the brightness of the Appbar, with white and black
themes, the default value is ThemeData.primaryColorBrightness.

• textTheme : TextTheme - Text style on the Appbar.

The navigation bar down is the main body of the home page, including photo
albums, dialing text messages, QR codes, and NFC function modules. The main
structure is based on the SingleChildScrollView view, which is better compatibility.
SingleChildScrollView is a sliding. The component is convenient to be compatible
with the area beyond the screen and swipe to browse.

31

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

• scrollDirection = Axis.vertical: scroll direction.

• reverse = false: whether to reverse the order.

• primary: Whether to support scrolling when the content is not enough to
scroll.

• physics: controls the interaction of the user’s scroll view.

• controller: sliding controller.
SingleChildScrollView subview is built with Center as the base component and

Column Center displays its child widgets in the Center of itself. Common proper-
ties are as follows.

• widthFactor: width factor.

• heightFactor: height factor.

• child: child view.

Column
A container for storing other Widgets, which can arrange its sub-components

in the vertical direction. Usually, the arrangement of sub-Widgets on the vertical
axis is controlled by mainAxisAlignment. The space occupied by Column is set to
be the largest by mainAxisSize, and the alignment of all sub-widgets is realized
by crossAxisAlignment. Only when the crossAxisAlignment is start and end, the
textDirection setting the left and right display orientation of the child widget will
work. Children load a group of child widgets and set the UI layout through these
properties.

In summary, the overall program architecture design of the home page is im-
plemented as follows.

MyHomePage is a stateful component page that inherits from StatefulWid-
get. It provides an external title parameter. You can configure the homepage
navigation bar through the title parameter when calling externally. _MyHome-
PageState part is a Widget that inherits from the State state. By overriding the
Widget build(BuildContext context) method, the layout rendering of the home
page is realized. The Widget build(BuildContext context) method internally re-
turns a Scaffold component. Scaffold defines a UI framework, including the header
navigation bar, body, floating button in the lower right corner, bottom navigation
bar, etc. Through the appBar property of the Scaffold component, we define an
AppBar component to set the navigation bar by setting Scaffold’s body to com-
bine SingleChildScrollView, Center, Column, Row, Icon, Text, GestureDetector,
Inwell, and other components to complete the layout settings of the home page.The
home page function page design function is finally realized, as shown in Figure 4-4
below.

32

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

Figure 4.4. Home page

33

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

4.2 Design and implementation of taking picture
and photo albums

According to the functional layout design of the home page, below the navigation
bar is the photo and photo album functions. So let’s start by exploring the plugins
related to camera and photo album. The UI layout is based on the principle of
minimalist design to provide a good visual experience while being convenient to
use.

As a whole, the horizontal layout component Row is used as the functional area
framework, the camera component layout implementation method setupTaking-
PicturesView(), and the camera component layout implementation method setu-
pAlbumView() are separately extracted. The camera and photo album function
buttons are wrapped by the Row component and displayed in equal divisions in
the horizontal direction.
ROW

Row is mainly used for horizontal layout, making a group of widgets arranged
horizontally. Generally, children pass in the list of children and then control the
alignment of the horizontal and vertical axes through mainAxisAlignment and
crossAxisAlignment, respectively.

The overall functional component layout of the camera and album is similar.
GestureDetector wraps the overall view to facilitate adding click events. The
camera view adds the _getCameraImage() method. When the camera view button
is clicked, this function method will be executed, and the corresponding plug-in
will be called. Album view Adding the _getAlbumImage() method will call the
system album. The functional area is laid out in a Container component with a
width of 150 and a height of 120. The whole is a functional block with a white
background. The entire area can be clicked, and a rounded border is added to
the functional area through the decoration property. The rounded corners are set
to 5, the shadow extension degree and the shadow blur degree are set to 5, and
the shadow color functional area is set through the blurRadius and spreadRadius
of BoxShadow, respectively. The photo is a purple gradient background shadow,
and the photo album is a red gradient shadow. The core of the overall function
block is composed of Column The component is wrapped, with an Icon and a title
Text component up and down, respectively. The whole is relatively beautiful and
generous, The effect is shown in Figure 4.5 below.

34

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

Figure 4.5. Camera and album Ui design figure

When clicking the camera function area or the album function area, the _get-
CameraImage() and _getAlbumImage()methods will be called respectively, and
the mobile phone camera will be called to take pictures or access the mobile phone
album. These two functions mainly depend on the basic hardware of the mobile
phone, which is the interactive process of entering the native plugin. Based on
the previous requirements and basic principles, the image_picker plugin is finally
determined as the object of exploration after the layer-by-layer screening.

First, need to add the image_picker: 0̂.6.7+22 plugin to the pubspec.yaml
plugin management file. After adding the plugin, you need to execute the flutter
pub get command to update the plugin dependencies to the project. After adding
the plugin, you need to import the plugin before using the plugin

import ’ package : image_picker / image_picker . dart ’ ;

When performing a photo or photo album task, call the await picker.getImage(source:
ImageSource.gallery) method of the image_picker plugin to view the album; and
the await picker.getImage(source: ImageSource.camera) method calls the camera
to take a photo, and when the plugin executes the picker.getImage(source: Image-
Source.camera), the plug-in will encapsulate and call the native method of calling
the camera to take pictures according to the different native platforms of android
and iOS.After the picture is taken, the photo results will be returned, and the
results will be displayed through the corresponding AlertDialog component.
async/await

They are keywords of the Dart language; they are the paradigm of asynchronous
programming in Flutter, which allows you to write asynchronous code in the form
of synchronous code. In daily usage scenarios, we usually use async and await to
asynchronously process time-consuming operations such as IO, network requests,

35

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

and Platform channels communication in Flutter.
The basic process of the camera and album plug-in function is shown in Figure

4.6 below.

Figure 4.6. Photo album and camera plug-in function flow chart

4.3 Design and Implementation of Call and SMS
Under the camera and photo album, the function module is the call and text func-
tion area. The overall functional component layout is also based on minimalism
and consistency. Wrap the overall view through InkWell to add click time, exe-
cute the showDialog() method to pop up the phone number input dialog box, and
the dialog box completes the layout of the function through the custom compo-
nent CallPhoneDialogContent, which provides a title parameter to configure the
title of the pop-up window, and a TextEditingController text input controller, and
provides okBtnTap confirmation button click event callback, cancelBtnTap cancel
button click event callback, when the OK button is clicked, the callback method
of the OK button will obtain the corresponding input text through TextEditing-
Controller, and then call the dial-in plug-in to complete the function call . The
functional area is laid out in a Container component with a width of 150 and a
height of 120. The entire area is a functional block with a white background.
The entire area is clickable. Add a rounded border to the functional area through
the decoration attribute. The overall rounded corner is 5, the degree of shadow

36

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

extension and shadow blur is set to 5, and the shadow color ribbon is set by the
blurRadius and spreadRadius of BoxShadow respectively. The call phone is an
orange-yellow gradient background shadow, and the SMS is a green gradient back-
ground shadow .ow. The core of the overall function block is composed of Column
The component is wrapped, with an Icon and a title Text component up and down,
respectively. The whole is relatively beautiful. The display result is shown in the
following figure 4.7.

Figure 4.7. Call phone and SMS Ui design figure

When the dial function area or SMS function area is clicked, the showDialog
component will be called. The pop-up window component will pop up the input
page component CallPhoneDialogContent. When the number input is completed
and click the dial or send SMS button, the entered mobile phone number will be
called back,At the same time, it will call the system’s mobile phone dialing and
sending SMS functions. Based on this, we chose the url_launcher plugin as the
object of exploration.

First, need to add the url_launcher: ˆ5.7.10 plugin to the pubspec.yaml plugin
management file. After adding the plugin, you need to execute the flutter pub
get command to update the plugin dependencies in the project. After adding the
plugin, need to import the plugin before using the plugin:

import ’ package : ur l_launcher / ur l_launcher . dart ’ ;

When the dialing task is executed, the following code will be called to dial. The
basic grammar rule of dialing is tel: + mobile phone number. First, it will judge
whether the current environment can dial, and if so, call the plug-in to dial.

var u r l = ’ t e l : ${_vc . t ex t } ’ ;
i f (await canLaunch (u r l)) {

37

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

await launch (u r l) ;
} e l s e {
throw ’ Could not launch $ur l ’ ;
}

When the SMS task is executed, the following code will be called to dial. The
basic grammar rule of dialing is sms: + mobile phone number. First, it will judge
whether the current environment can send SMS, and if so, call the plug-in to
execute SMS.
var u r l = ’ sms : ${_vc . t ex t } ’ ;
i f (await canLaunch (u r l)) {
await launch (u r l) ;
} e l s e {
throw ’ Could not launch $ur l ’ ;
}

The basic flow of the Call phone SMS plug-in function is shown in Figure 4.8
below.

Figure 4.8. Call and SMS plug-in function flow chart

4.4 QR code design and implementation
The QR code functional area wraps the overall view with gesture GestureDetector
to facilitate adding click events.The layout of the functional area is a Container
component with a width of 150 and a height of 120. The entire area is a functional

38

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

block with a white background. The entire area can be clicked. The decoration
attribute adds a rounded border to the functional area. The overall rounded corner
is set to 5. The shadow extension and shadow blur are set to 5. The blurRadius
and spreadRadius of BoxShadow set the shadow color function area. The whole
is a blue gradient background shadow . The core of the entire function block is
wrapped by the Column component, with an Icon and a title Text component.
The displayed result is shown in the Figure 4.9 below.

Figure 4.9. Scan QR Code Ui design figure

For the exploration of the QR code plugin, we chose the scan plugin as the
object of exploration. At the same time, it needs to be supplemented by the
permission_handler permission to obtain the plug-in:
pub . dev/ packages / permiss ion_handler

Add the scan: 1̂.5.0 plugin and the permission_handler: 5̂.1.0+2 plugin to the
pubspec.yaml plugin management file according to the process. After adding the
plugin, you need to execute the flutter pub get command to update the plugin
dependencies to the project. After adding the plugin, you need to import the
plugin before using the plugin:
import ’ package : permiss ion_handler / permiss ion_handler . dart ’ ;
import ’ package : scan / scan . dart ’ ;

When you click on the QR code function area, the following code will be exe-
cuted, and the camera permission will be obtained through Permission.camera.request.

39

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

If you have permission, it will jump to the custom packaged component scanning
page ScanPage.
var s t a tu s = await Permiss ion . camera . r eque s t () ;
i f (s t a tu s . i sGranted){
Navigator . push (context , new MaterialPageRoute
(bu i l d e r : (context) => ScanPage ())) ;
}

ScanPage inherits from StatelessWidget and is a stateless component page. The
page defines an IconData type attribute lightIcon to control the flash. ScanCon-
troller type attribute _controller controls the scan animation, wraps a Material-
Button button through StatefulBuilder, and add a The onPressed button updates
the flash status. The current page will turn on the camera. A top-down scanning
animation will appear directly. When the relevant QR code is recognized, the
result of the callback recognition will be parsed, and the recognition result will be
displayed through the AlertDialog.

There are two ways to realize QR code recognition: one is to use the scan
view that comes with the ScanView plugin to scan through the camera, and the
scan result will be returned in the onCapture method; the other is to execute
await ImagePicker().getImage(in combination with the album plugin. source:
ImageSource.gallery) method to obtain the QR code image, and then execute the
Scan. Parse (pickerImages.path) method through the QR code recognition plugin
Scan to parse the QR code image data to obtain the result and then display the
result in a pop-up window. The basic flow of the QR code function is shown in
Figure 4.10 below.

Figure 4.10. QR code function basic flow chart

40

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

4.5 NFC design and implementation
To facilitate adding click events, the NFC ribbon wraps the overall view with a
gesture GestureDetector. The layout of the functional area is a Container com-
ponent with a width of 150 and a height of 120. The entire area is a functional
block with a white background. The entire area can be clicked, and a rounded
border is added to the functional area through the decoration property. The over-
all rounded border is 5, the shadow expansion and shadow blur are both set to 5,
and the shadow color functional area is set by the blurRadius and spreadRadius
of BoxShadow, respectively. The whole is a green gradient shaded functional area,
and the Column component wraps the core of the entire functional block, which
is an Icon and a title Text component. The display results are as follows Figure
4.11.

Figure 4.11. NFC Ui design figure

For the exploration of NFC function plug-ins, we chose the NFC_manager
plug-in as the research object. Add the NFC_manager: ˆ3.1.0 plugin to the
pubspec.yaml plugin management file according to the process. After adding the
plugin, you need to execute the flutter pub get command to update the plugin
dependencies in the project. After adding the plug-in, you need to import the
plug-in before using the plug-in.
pub . dev/ packages /nfc_manager

41

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

When you click on the QR code function area, the following code will be exe-
cuted, jumping to the NFC page of the custom packaged component.
Navigator . push (context , new MaterialPageRoute
(bu i l d e r : (context) => NFCPage ())) ;

The NFC page mainly includes a result display area and three function buttons:
Tag Read, Ndef Write, and Ndef Write Lock. This module builds a Widget through
FutureBuilder. The asynchronous model in Flutter builds its widgets based on the
latest snapshot of interactions with Futures. FutureBuilder contains Future and
builder. Future acquires data through asynchronous operations, and the builder
passes in the context and asynchronous snapshot AsyncSnapshot. AsyncSnapshot
contains ConnectionState, data, etc. The builder returns different widgets de-
pending on the state of the snapshot. At the same time, the buttons are laid out
through the Jiugongge component GridView. GridView is encapsulated based on
ScrollView, which is a scrolling multi-column list. Its common properties are

• scrollDirection: scrolling direction, there are vertical and horizontal, the de-
fault is vertical direction (Axis.vertical).

• reverse: The default is to scroll from top or left to bottom or right, this
property controls whether to reverse, the default value is false, no reverse
scrolling.

• controller: controls the position of the child when scrolling.

• primary: Whether it is the primary scroll view associated with the parent’s
PrimaryScrollController.

When jumping to the current function page, the program will judge whether
the current device can meet the NFC execution environment through NfcMan-
ager.instance.isAvailable(). When the_tagRead button is clicked, the NfcMan-
ager.instance.startSession(onDiscovered: (NfcTag tag) method will be executed to
return the result and stop data scanning. Ndef is determined when the_ndefWrite
method is executed, and the NFC write will be locked when the_ndefWriteLock
method is executed. The basic process of NFC function is shown in Figure 4.12.

42

The key technology application implementation of Flutter-based native plug-ins on the mobile terminal

Figure 4.12. NFC function basic flow chart

4.6 Chapter Summary
This chapter mainly introduces the design and implementation of each functional
module of the Flutter-based native plug-in application, including the overall pro-
gram structure, theme color, navigation bar, photo album, call, SMS, QR code,
NFC specific design and implementation, and business call logic And the usage
process and principle of the corresponding plug-in. It focuses on the minimalist de-
sign concept of functional modules and the detailed explanation of the components
used in the implementation process to better understand the actual application
of Flutter and the essence of plug-in interaction.In addition, in realizing project
functions, factors such as compatibility, stability, and scalability also need to be
considered.

43

Chapter 5

Plug-in-based research
effect review and testing

Testing after application development is an essential step and an intuitive process
for checking the results of our research. Only rigorous testing can make our devel-
opment research more meaningful and reliable. Exploring applications based on
Flutter’s native plug-ins mainly explores representative plug-ins that are strongly
dependent on the native hardware system of mobile phones. Therefore, during the
test process, we need to coordinate the use of the real mobile phone environment,
run the program on the mobile phone, and conduct actual debugging tests.

5.1 Photographic test
The camera function is implemented according to the requirements and design
mentioned above, and the test process is as follows. First, click the camera button
on the homepage of the program, which will trigger await picker.getImage(source:
ImageSource.camera) method of the ImagePicker plugin, which will call up the
camera interface of the phone. In the actual test process, we followed these steps
and successfully called the camera function of the mobile phone, as shown in the
following figure 5.1.

After clicking the camera button, you can obtain the specific image file through
the imagePath = File(cameraImages.path);method, and then display the image
results we intercepted in the form of a showAlertDialog pop-up window, as shown
in the following figure 5.2.

44

Plug-in-based research effect review and testing

Figure 5.1. Mobile phone camera interface Figure 5.2. Camera function Click the
result picture

So far, the debugging process of our camera plug-in has been completed, and it
has indeed met our initial design requirements as expected. The functions of taking
pictures and obtaining pictures have been realized conveniently and efficiently.

45

Plug-in-based research effect review and testing

5.2 Album test
The photo album function is as follows according to the debugging test pro-
cess. When the album button is clicked on the homepage of the program, await
picker.getImage(source: ImageSource.gallery) of the ImagePicker plugin will be
triggered; At this time, the photo album system interface of the mobile phone
will be called . In the actual test process, we successfully called the mobile phone
photo album function according to this step, as shown in Figure 5.3.

Figure 5.3. Mobile photo album system page

After clicking and selecting any picture in the album, you can obtain the specific
picture file through imagePath = File(cameraImages.path);. Then display the
result of the image we took in the form of a showAlertDialog pop-up window as
shown in the following Figure 5.4.

46

Plug-in-based research effect review and testing

Figure 5.4. Album picture click result picture

In the actual process, according to the plug-in calling process, it has indeed
reached our expected design requirements, and the acquisition and successful dis-
play of album pictures can be conveniently and efficiently realized.

47

Plug-in-based research effect review and testing

5.3 Call and SMS test
The debugging and testing process of the dialing function is as follows. We can
click the dial button on the home page of the program, and showDialog will be
called at this time, and the mobile phone number input box will pop up, as shown
in the figure 5.5.

After entering the mobile phone number, click dial by tel: + mobile phone
number to trigger the launch method of the url_launcher plugin, and the mobile
phone dialing system interface will be called up. In the actual test process, we
follow this step to successfully call up the phone dialing system page, as shown in
the following figure 5.6.

Figure 5.5. Call function interface Figure 5.6. Phone’s dial system page

The short message function debugging test process is as follows. We can click
on the SMS button on the homepage of the program. At this time, showDialog
will be called, and the mobile phone number input box will pop up, as shown in

48

Plug-in-based research effect review and testing

the following figure5.7.

Figure 5.7. SMS function interface

After entering the mobile phone number, click to dial through sms: + mobile
phone number will trigger the launch method of the url_launcher plug-in, which

49

Plug-in-based research effect review and testing

will call up the SMS system interface of the mobile phone. During the actual test,
we followed this step and successfully called up the SMS system page of the mobile
phone, as shown in Figure 5.8.

Figure 5.8. The mobile phone’s SMS system page

In summary, we rely on the plugin url_launcher and reference to implement
the requirements debugging of dial-up and SMS-related functions successfully.

50

Plug-in-based research effect review and testing

5.4 QR code test

To debug the QR code function, we need to click the QR code function button on
the home page of the program, and at the same time, the Navigator.push(context,
new MaterialPageRoute(builder: (context) ⇒ ScanPage())); method will be trig-
gered to navigate the page to the Define Scans page. The page behavior is shown
in Figure 5.9 below.

Figure 5.9. Scan QR code fuction interface

51

Plug-in-based research effect review and testing

The entire page consists of an automatic scanning area, a flash button, and a
photo album picture reading button. When the QR code scan recognizes a corre-
sponding QR code image in the area, the onCapture:(data) callback of ScanView
will be triggered, and the recognition result of the QR code image will be passed
over. At this time, automatic scanning will be suspended, and the recognition
result will be passed. The showAlertDialog(data, context) method is displayed in
the form of a pop-up window. The display result is shown in the following figure
5.10.

Figure 5.10. QR code scan result picture

We have successfully identified and processed personal WeChat QR code infor-
mation and displayed it. Through this plug-in, we can easily use two methods:
automatically scan the QR code picture or click the album button to read the
information from the QR code picture saved in the album. Through testing, we
found that the application is indeed as expected, realizing the reading of QR code

52

Plug-in-based research effect review and testing

information and meeting the expected requirements.

5.5 NFC test

Finally, the debugging of the NFC function. When we click the NFC function
button on the homepage of the program, the Navigator.push(context, new Ma-
terialPageRoute(builder: (context) ⇒ NFCPage())); method will be triggered to
navigate the page to the custom NFC action page. The NFC page will judge
whether the current device environment is suitable for NFC-related operations
according to NFCManager.instance.isAvailable(), and display different pages ac-
cordingly. When it does not conform to the NFC operating environment, the
page is shown in Figure 5.11, and we will prompt that the current environment is
invalid, which is convenient for users to enable relevant function permissions.

53

Plug-in-based research effect review and testing

Figure 5.11. The NFC function interface when the mobile phone NFC
function is turned off

When the conditions meet the NFC-related operating environment, the NFC
will display the following page, mainly the result display area and three common
function operation buttons: Tag Read, Ndef Write, and Ndef Write Lock. The
page is shown in Figure 5.12.

54

Plug-in-based research effect review and testing

Figure 5.12. The NFC function interface when the mobile phone NFC
function is turned on

Move the mobile phone close to the NFC target device (such as a cell access
control card with an RFID tag) and click the Tag Read button to start NfcMan-
ager.instance.startSession(onDiscovered: (NfcTag tag) to read the relevant data.
In the actual formal test process, We read the community’s access control infor-
mation through the mobile phone’s NFC function and successfully obtained the

55

Plug-in-based research effect review and testing

relevant information. The result is shown in the following Figure 5.13.

Figure 5.13. NFC information reading page

In summary, we successfully read the RFID tag information through the NFC-
related plug-in. The access control information of the daily community was ob-
tained, which met our initial design needs.

56

Plug-in-based research effect review and testing

5.6 Chapter Summary
This chapter mainly explores and debugs the functional requirements of the orig-
inal design by running the Flutter native plug-in in the real environment of the
mobile phone and successfully realizes the functions of mobile phone photogra-
phy and mobile photo albums by calling the image_picker plug-in. By calling the
url_launcher native plug-in, the mobile phone dialing and SMS sending functions
are successfully implemented. By scanning the native QR code plug-in, the two
functions of custom scanning of QR code and recognition and reading of QR code
pictures in the album are realized. The access control information with RFID
tags is successfully read through the NFC plug-in NFC_manager. completing the
NFC function test, with the completion of the test process, we also successfully
completed the whole process of Flutter native plug-in exploration application from
design to implementation to completion of the test.

57

Chapter 6

Summary and Outlook

6.1 Summary of the paper

Based on the rapid development of mobile Internet, the growing demand for mobile
Internet in today’s society, and the desire for high performance, high user experi-
ence, and efficient cross-platform development language, this paper discusses the
basic principles of the most popular cross-platform development technology Flut-
ter. And the corresponding native plug-in application process. Combined with the
latest research and the most common and representative functional requirements of
current mobile phones, designed and implemented: camera function, photo album
function, mobile phone calls, SMS sending, QR code scanning recognition, NFC
identification function. The development of the entire project starts with a brief
understanding of the background and principles of Flutter and then an in-depth
study of various technical points of Flutter. After getting familiar with Flutter’s
overall framework principles and programming foundation, follow business and
non-business requirements. The main direction and main frame of the application
of the whole program are determined. The development process realizes various
business functions according to the requirements, reasonably grasps the perfor-
mance of multiple aspects, and finally realizes the intelligent mobile application
with good maintainability, high stability, and robust scalability.

The application interface is simple, clear, and beautiful, and the operation is
simple and convenient. The overall UI framework adopts the Dart UI layout. Com-
pleted the exploration of various native function application plug-ins. Flutter is
currently the hottest and most promising cross-platform development framework.
Its ecology is also in the process of rapid development and improvement. Good
technology also needs more practice accumulation and promotion. Exploring the
application implementation based on Flutter’s native plugin is a perfect practice of
Flutter technology. While familiar with the basic technical framework of Flutter,

58

Summary and Outlook

it has also explored the entire principle process of Flutter’s native plug-ins.

6.2 Future Outlook
With the development of the mobile Internet and the exponential value-added of
mobile terminal users, two problems of dynamism and growth cost are mainly faced
in daily pure native development. Some cross-platform dynamic frameworks have
been born in response to these two problems. At the same time, the industry has
been working hard to find a good solution. Today, there are many cross-platform
frameworks, which are mainly divided into three categories:

• H5 + native (Cordova, Ionic, WeChat applet).

• JavaScript development + native rendering (React Native, Weex).

• Self-drawn UI + native (Qt for mobile, Flutter).

It is precise because cross-platform technology does not fundamentally solve
application performance problems such as UI consistency; the rise and fall of cross-
platform technology continue. However, the emergence of Flutter technology has
allowed us to see the light of day. Flutter is a framework released by Google for
creating cross-platform, high-performance mobile applications. Unlike other cross-
platform technologies, Flutter does not use native controls. Instead, it implements
a self-drawing engine and uses its layout and drawing system. From an ecological
point of view: the Flutter ecosystem is developing rapidly, and the community
is very active. Both the number of developers and third-party components are
already very impressive. From the technical support point of view: Google is now
vigorously promoting Flutter. Many of Flutter’s authors are from the Chromium
team, and they are very active on Github. From another perspective, from the
birth of Flutter to the present, frequent version releases can also indicate that
Google has invested a lot of resources in Flutter. From development efficiency: a
set of code running on multiple terminals; during the development process, Flut-
ter’s hot reload can help developers test, build UI, add features, and fix bugs faster.
Hot reload in milliseconds on iOS and Android emulators or real devices without
losing state.From the Google I/O conference in 2017, from Google’s first release
of Flutter to late February 2022, the number of stars on Github is very high, ex-
ceeding 127K stars. After more than four years, the Flutter ecosystem has grown
rapidly. Many successful cases are based on Flutter at home and abroad, and
Internet companies have dedicated Flutter teams. Flutter has received extensive
attention and recognition in the industry and warmly welcomed developers. It has
become one of the most popular frameworks in mobile cross-end development.

59

Summary and Outlook

The Flutter-based native plug-in exploration application is also an active de-
velopment attempt of Flutter technology, which is quite good overall development
experience and efficiency. When choosing future development technology solu-
tions, I believe that Flutter will also become one of the indispensable solutions.
Developers will happily choose the Flutter framework to try out their newly de-
veloped applications to meet their needs. For existing Android applications and
iOS natively developed applications, you can also consider importing Flutter into
the project in the form of modules in a mixed form to improve development effi-
ciency. The development process can also be combined with a rich plug-in market
to quickly and efficiently implement our functions. No matter what technology is
used, it needs to serve the product. Choosing the most cost-effective and most
suitable solution is necessary according to the project’s actual situation. No mat-
ter which generation of development technology it is, only a few issues need to
be solved: performance, development efficiency, and hot updates. The first two
Flutter solved it almost perfectly. As for hot updates, I believe that there will
be more and more excellent solutions with the continuous update and iteration.
Believe that Flutter’s cross-platform development technology should be the future.
As for whether Flutter will be the ultimate winner, no one is sure there may be
better development frameworks in the future, but this kind of self-painting should
be the trend. After this review, design, implementation, and final testing based
on Flutter’s native plug-in application, I also have a new and comprehensive un-
derstanding of Flutter’s technology. I have added more interest and expectations
to Flutter’s technology. In the future, I will continue to explore and practice
in-depth, pay attention to the latest developments in Flutter and cross-platform
technologies, and strive to contribute to the technical community.

60

Bibliography

[1] Kinza Shafique, Bilal A Khawaja, Farah Sabir, Sameer Qazi, and Muhammad
Mustaqim. Internet of things (iot) for next-generation smart systems: A
review of current challenges, future trends and prospects for emerging 5g-iot
scenarios. Ieee Access, 8:23022–23040, 2020.

[2] Nikita Kuzmin, Konstantin Ignatiev, and Denis Grafov. Experience of devel-
oping a mobile application using flutter. In Information Science and Applica-
tions, pages 571–575. Springer, 2020.

[3] URL: https://docs.flutter.dev/resources/architectural-overview.

[4] Eric Windmill. Flutter in action. Simon and Schuster, 2020.

[5] Sebastian Faust. Using google s flutter framework for the development of a
large-scale reference application. 2020.

[6] URL: https://docs.flutter.dev/development/tools/sdk/releases?
tab=windows.

[7] URL: https://flutter.dev/community.

[8] URL: https://flutter.dev/showcase.

[9] Lars Rodseth. From bachelor threat to fraternal security: Male associations
and modular organization in human societies. International Journal of Pri-
matology, 33(5):1194–1214, 2012.

[10] Carliss Young Baldwin, Kim B Clark, Kim B Clark, et al. Design rules: The
power of modularity, volume 1. MIT press, 2000.

[11] Priyanka Tyagi. Pragmatic Flutter: Building Cross-Platform Mobile Apps for
Android, iOS, Web, & Desktop. CRC Press, 2021.

[12] Bruno Guigas. Specpad: device-independent nmr data visualization and pro-
cessing based on the novel dart programming language and html5 web tech-
nology. Magnetic Resonance in Chemistry, 55(9):821–827, 2017.

61

https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/development/tools/sdk/releases?tab=windows
https://docs.flutter.dev/development/tools/sdk/releases?tab=windows
https://flutter.dev/community
https://flutter.dev/showcase

BIBLIOGRAPHY

[13] URL: https://docs.flutter.dev/resources/architectural-overview.

[14] Bonnie Eisenman. Learning react native: Building native mobile apps with
JavaScript. " O’Reilly Media, Inc.", 2015.

[15] URL: https://dart.dev/platforms#optimized-production-code-dart-aot.

[16] URL: https://docs.flutter.dev/resources/architectural-overview#
build-from-widget-to-element.

[17] URL: https://api.flutter.dev/flutter/rendering/
RenderObject-class.html.

[18] Vedat Coskun, Busra Ozdenizci, and Kerem Ok. A survey on near field com-
munication (nfc) technology. Wireless personal communications, 71(3):2259–
2294, 2013.

[19] Vedat Coskun, Kerem Ok, and Busra Ozdenizci. Near field communication
(NFC): From theory to practice. John Wiley & Sons, 2011.

[20] Gerald Madlmayr, Josef Langer, Christian Kantner, and Josef Scharinger.
Nfc devices: Security and privacy. In 2008 Third International Conference on
Availability, Reliability and Security, pages 642–647. IEEE, 2008.

[21] Jawad Javed Akbar Baig, Sajjad Mahmood, Mohammad Alshayeb, and Mah-
mood Niazi. Package-level stability evaluation of object-oriented systems.
Information and Software Technology, 116:106172, 2019.

[22] Frank Zammetti. Practical Flutter. Springer, 2019.

[23] Prajyot Mainkar and Salvatore Giordano. Google Flutter Mobile Development
Quick Start Guide: Get Up and Running with IOS and Android Mobile App
Development. Packt Publishing Ltd, 2019.

[24] URL: https://api.flutter.dev/flutter/meta/immutable-constant.
html.

[25] URL: https://api.flutter.dev/flutter/widgets/Container-class.
html.

[26] URL: https://api.flutter.dev/flutter/widgets/Icon/Icon.html.

62

https://docs.flutter.dev/resources/architectural-overview
https://dart.dev/platforms#optimized-production-code-dart-aot
https://docs.flutter.dev/resources/architectural-overview#build-from-widget-to-element
https://docs.flutter.dev/resources/architectural-overview#build-from-widget-to-element
https://api.flutter.dev/flutter/rendering/RenderObject-class.html
https://api.flutter.dev/flutter/rendering/RenderObject-class.html
 https://api.flutter.dev/flutter/meta/immutable-constant.html
 https://api.flutter.dev/flutter/meta/immutable-constant.html
https://api.flutter.dev/flutter/widgets/Container-class.html
https://api.flutter.dev/flutter/widgets/Container-class.html
https://api.flutter.dev/flutter/widgets/Icon/Icon.html

	List of Tables
	List of Figures
	Introduction
	Research background of the subject
	Research on flutter and related native plugins
	The content and significance of the research topic
	Thesis structure

	Flutter related theory technology and research
	Flutter system
	Flutter Architecture

	Advantages of Flutter
	Flutter rendering principle
	Asynchronous and threading of Flutter
	Communication between Flutter and native
	Chapter Summary

	Discuss the overall design of the application based on the native plugin of Flutter
	Demand Analysis
	Business functional requirements
	Non-functional requirements

	Overall system design
	Project Directory Structure Design
	Chapter Summary

	 The key technology application implementation of Flutter-based native plug-ins on the mobile terminal
	Homepage Design and Implementation
	Design and implementation of taking picture and photo albums
	Design and Implementation of Call and SMS
	QR code design and implementation
	NFC design and implementation
	Chapter Summary

	Plug-in-based research effect review and testing
	Photographic test
	Album test
	Call and SMS test
	QR code test
	NFC test
	Chapter Summary

	Summary and Outlook
	Summary of the paper
	Future Outlook

	Bibliography

