
POLITECNICO DI TORINO
Master Degree Course in Computer Engineering

Master Degree Thesis

Security assessment and threat response
through SCAP

Supervisors
prof. Antonio Lioy
prof. Andrea Atzeni

Massimiliano Torchio

Academic year 2021-2022

Summary

Managing the security of IT systems is becoming increasingly complex. As the number and variety
of devices and their functionalities grows, so does the opportunities for attackers to successfully
exploit vulnerabilities and infiltrate a system. Thus the need for the introduction of automatic
processes and tools that can help security administrators in evaluating and maintaining the desired
level of security.

One option that can be used as guidance in this integration of automation and security is the
Security Content Automation Protocol (SCAP). SCAP is a framework that provides a standard
for the format and nomenclature of security-related information, and its components and reference
data can be used to ensure consistency and interoperability between security automation tools.

As first subject of this thesis, the current state of SCAP is analysed and discussed from a
theoretical viewpoint. Each specification included in SCAP is described by referencing the official
documentation, illustrating their relationships and their use in an automation context.

Next, the real world implementation of an open source security scanner, called OpenSCAP,
is presented. This tool allows for the automatic evaluation of the security of a system, using the
techniques and standards provided by SCAP. Starting from this base scanner, several tools and
utilities have been developed to add new functionalities, such as scanning remote machines and
evaluating container images.

Further analysis is dedicated to virtualized environments. In particular, it’s discussed how
OpenSCAP can be used to evaluate the components of a network functions virtualization infras-
tructure (NFVi), which is typically comprised of virtual machines or containers.

The current gaps and limitations are then discussed, pointing out which aspects of SCAP can
be improved and where the biggest implementation flaws can be found. Of these, three areas in
particular were selected for improvement, proposing and developing new alternative solutions.

The first proposed solution concerns the integration of the concepts of software weakness and
common attack pattern in SCAP. These new components, which are represented by Common
Weakness Enumeration (CWE) and Common Attack Pattern Enumeration and Classification
(CAPEC) respectively, are not currently part of SCAP. Their inclusion can be useful in the
process of vulnerability assessment, as they can provide additional information on how the specific
vulnerabilities that are present on a system can be exploited, which in turn provides guidance on
how to apply effective countermeasures.

In order to achieve this, a tool has been developed that can receive as input the result of
a vulnerability assessment performed with OpenSCAP and then relate each found vulnerability
to the corresponding weaknesses and attack patterns. This information can be easily accessed
through a report that is generated by the tool that also contains the links to the reference pages
of those weaknesses and attack patterns.

3

The second solution consists of a tool that allows the automatic remediation of container
images, which is not part of the OpenSCAP features. The term “remediation” is used to refer
to the modification of the image so that it results in a state of compliance to a desired security
policy. It has been developed a software that is compatible with multiple container images and
utilizes Podman and OpenSCAP in conjunction to create secured versions of those images.

Lastly, the third solution is a continuous monitoring tool. Continuous monitoring is the process
of constantly assessing the security of a system by automated means. It has been developed a
tool that can detect potentially dangerous changes in a system and automatically re-evaluate it
and apply remediations. This solution can also be employed in a more complex use case, where
a single main host acts as orchestrator and monitors multiple remote systems at the same time.

Each one of these solutions has been thoroughly tested, and solves at least partially the
shortcomings that were targeted for improvement.

4

Contents

1 Introduction 8

1.1 Background . 8

1.2 Security automation . 8

2 The SCAP framework 10

2.1 Overview . 10

2.2 SCAP terminology . 10

2.3 SCAP use cases . 11

2.3.1 Security Checklist Verification . 11

2.3.2 Software and Hardware Identification . 11

2.3.3 Providing Evidence of Conformance . 12

2.3.4 Continuous Monitoring and Remediation 12

2.4 SCAP Specifications . 12

2.4.1 XCCDF . 13

2.4.2 OVAL . 14

2.4.3 OCIL . 14

2.4.4 ARF . 15

2.4.5 Asset Identification . 15

2.4.6 CPE . 15

2.4.7 SWID . 16

2.4.8 CCE . 16

2.4.9 CVE . 17

2.4.10 CVSS . 17

2.4.11 CCSS . 17

2.4.12 TMSAD . 17

3 The OpenSCAP tools 19

3.1 The OpenSCAP ecosystem . 19

3.2 OpenSCAP Base . 19

3.2.1 Introduction . 19

3.2.2 Installation . 20

5

3.2.3 Command modules . 20

3.3 OpenSCAP Utilities . 24

3.3.1 Tailoring . 24

3.3.2 Scanning remote machines . 24

3.3.3 Scanning Linux containers and images . 24

3.3.4 Scanning Docker containers and images . 25

3.3.5 Scanning virtual machines . 25

3.3.6 Scanning arbitrary file systems . 26

3.4 OpenSCAP Daemon . 26

3.4.1 Installation . 26

3.4.2 Task management . 26

3.5 Practical examples . 27

3.5.1 Security compliance on Fedora . 27

3.5.2 Vulnerability scanning on Ubuntu . 32

4 Security automation in virtualized environments 33

4.1 Network Functions Virtualization . 33

4.1.1 NFV structure . 33

4.1.2 NFV security considerations . 33

4.2 Open Platform for NFV . 34

4.2.1 OPNFV Security Scanning . 34

4.3 Container remediation . 36

4.3.1 The Atomic scan tool . 37

4.3.2 Scanning and remediating containers with Atomic 38

4.3.3 Container scanning integration in a CI/CD process 38

5 Limitations and areas of improvement 40

5.1 CPE and SWID tags . 40

5.1.1 CPE limitations for open-source software 41

5.2 Continuous monitoring . 42

5.3 Container scanning and remediation . 43

5.4 Incorporating CWE and CAPEC . 43

5.4.1 CWE List . 44

5.4.2 CWE in relation to SCAP . 45

5.4.3 Scoring weaknesses with CWSS . 46

5.4.4 CAPEC . 46

5.5 OpenSCAP limitations . 47

5.5.1 Additional SCAP components . 47

5.5.2 Unsupported SCAP components . 47

6

6 Proposed solutions 49

6.1 Extending vulnerability assessment to CWE and CAPEC 49

6.1.1 Objectives . 50

6.1.2 Functionalities . 51

6.1.3 Structure . 53

6.2 Container image remediation . 55

6.2.1 Objectives . 56

6.2.2 Functionalities . 56

6.2.3 Structure . 57

6.3 Continuous Monitoring . 58

6.3.1 Objectives . 58

6.3.2 Functionalities . 59

6.3.3 Structure . 59

6.3.4 Remote monitoring . 61

7 Testing 64

7.1 CVEtoCWE and CAPEC . 64

7.2 ContainerRem . 66

7.3 SCAPmonitor . 67

7.3.1 Remote monitoring . 69

8 Conclusions 73

8.1 Final considerations . 73

8.1.1 CVEtoCWE . 73

8.1.2 Container Remediation . 74

8.1.3 Continuous monitoring . 74

8.2 Suggestions on future works . 75

A User manual 76

A.1 CVEtoCWE . 76

A.2 ContainerRem . 77

A.3 SCAPmonitor . 78

B Developer manual 80

B.1 CVEtoCWE . 80

B.2 ContainerRem . 81

B.3 SCAPmonitor . 82

Bibliography 84

7

Chapter 1

Introduction

1.1 Background

The use of IT technologies has seen an unprecedented growth in the last decades. Virtually
any aspect related to human activity has some sort of connection to the digital world. The
new capabilities provided by computing devices and software applications are of extreme value,
especially when they are deployed in a business context.

This trend of digital transformation has been further accelerated during the years of pan-
demic: a study from July 2020 conducted on almost a thousand company executives reported
that the digitalization of customer interactions accelerated by three to four years, and the share
of digitalized products or services was seven years ahead of the pre-pandemic rate of adoption [1].

The advent of these IT tools has brought with it new potential threats and security risks. The
amount of valuable or confidential information that is digitally processed or stored is creating new
targets for malicious agents. As institutions and companies proceed further in the digitalization
process, more and more aggressors emerge that can spend more time and resources in trying to
attack their IT systems.

As a consequence, new vulnerabilities and software flaws are discovered every day. New pow-
erful exploits are also created to infiltrate systems and cause damage or steal data. The available
attack surface increases and systems can be targeted by a considerable amount of diverse types
of attacks.

Therefore, managing the security of IT systems is becoming an increasingly complex task.
Each system requires specific configurations and security measures that can vary depending on
its environment. In order to raise the confidence in the security of a system, and help maintaining
that level of security throughout time, it is necessary to include some degree of automation in the
security process.

1.2 Security automation

The use of automatic tools and techniques in the security process is becoming crucial and their
prevalence is rising. The human activity is still the foundation and key factor in the context of
security, but more and more aspects can be treated with automatic processes that allow a faster
and more reliable analysis.

A survey conducted among several qualified IT security stakeholders indicates that the vast
majority (over 90%) of companies is using some degree of automation in their security processes,
and the ones with a higher level of automation can address more easily a vast number of security
alerts and promptly act on them [2].

There are many areas that are related to security that are well suited for automation. Pri-
marily, anything related to the collection of data regarding a system such as characteristics or

8

Introduction

log files. Automatic tools can gather information in a much shorter period of time, allowing the
security administrators to dedicate their time to more valuable subjects (e.g. the analysis of the
collected data).

One of the first steps of the security process is to define the desired level of security, and from
that specify the rules and characteristics that the system must adhere to. The following step is
to verify the actual state of the system, i.e. perform a security assessment, that can be carried
out with the help of automatic tools.

Automation can also be used to maintain the level of security of a system over time. This can
be achieved both with tools that can detect ongoing attacks, behaving like Intrusion Detection
Systems (IDS), or possibly even respond to such events, in this case as Intrusion Prevention
Systems (IPS).

These techniques can be used to quickly respond to threats, allowing for a much safer envi-
ronment, by taking advantage of the functionalities provided by such automatic tools.

The main objective of SCAP is to act as standard reference for these contexts of security
automation. The SCAP framework provides a set of specifications and rules that, if properly
followed, can ensure the interoperability among tools and the consistency of security-related data
retrieved from different sources.

9

Chapter 2

The SCAP framework

2.1 Overview

The Security Content Automation Protocol (SCAP) is defined by NIST as “A suite of spec-
ifications that standardize the format and nomenclature by which software flaw and security
configuration information is communicated, both to machines and humans.” Its objective is to
provide a standard for companies and individuals managing various aspects related to cyber-
security, specifying how to express, store, and organize security-related information. SCAP is
comprised of many standards and can be applied in numerous use-cases such as verifying the
absence of known vulnerabilities, checking system security configurations, performing inventory
scanning, and automatically manage patches [3].

SCAP was created to assist companies in maintaining the security of their systems. Assessing
and monitoring system security is a challenging task for multiple reasons:

• The sheer number and variety of systems to be secured poses great difficulty. First, a com-
pany may have hundreds if not thousands of different devices (desktop computers, servers,
routers and switches, etc.) running on different operating systems. Then, each device has its
own set of applications, and the same software may require different security configurations
on different hosts.

• New vulnerabilities are discovered every day, and maintaining the security of a system
requires constant threat mitigation via patches or software reconfiguration. Companies
need to be quick in reacting to risk in order to minimize the window of exposure, preventing
their system from being vulnerable for an extended period of time.

• A wide variety of security tools are available on the market, and many of them use propri-
etary content and terminology that are incompatible to one another. This lack of interop-
erability can slow the process of security assessment and even generate inconsistencies, to
which the remediation can consume even more time and resources.

2.2 SCAP terminology

SCAP standardizes a set of specifications, described as SCAP component specifications. A product
that utilizes SCAP employs a combination of these specifications for specific functions, called the
SCAP use cases. SCAP content takes the form of an XML content named SCAP data stream.
SCAP data streams come in two forms as SCAP source data stream for input content and SCAP
result data stream for output content. The most relevant elements of a data stream are called
stream components.

If a product or a source content wants to claim conformance to a SCAP use case, it must follow
the relative specifications of NIST SP 800-126, and it’s then referred to as SCAP conformant.

10

The SCAP framework

SCAP conformant products can be of two types: content producers, able to generate appropriate
SCAP source data stream content, and content consumers, that can process existing SCAP source
data stream content and output SCAP result data streams.

2.3 SCAP use cases

The following is a list of common uses of SCAP and their relative recommendations. This list is
to be intended as a general, non-comprehensive guide, with the objective of providing a high-level
description of some of the SCAP capabilities. Any organization actually employing SCAP should
check if specific additional requirements are needed based on their system.

2.3.1 Security Checklist Verification

A company that wants to assess the security of its system should follow a security guidance. Many
organizations produce security guidance for various devices and platforms, that should be both
human and machine-readable to allow security verification in an automatic environment. SCAP
provides this functionality by using SCAP-expressed security checklists that can be processed by
SCAP-validated content consumers. These checklists are a collection of specific configurations
to which a system should conform, that can be compared to the actual status of the system to
confirm compliance or point out differences from the requirements of the guidance. Checklists
can contain multiple profiles to support the same products in different environments and can be
modified by companies with unique security requirements.

General SCAP checklists, that include many aspects of a system (for example, an operating
system security checklist) can be very useful and are often paired with more specialized checklists.
Specialized SCAP checklists can verify a particular characteristic of a system, such as the presence
of a specific patch, to highlight potential security issues. Often vendors make SCAP conformant
data publicly available to perform patch checking of their product. SCAP checklists are valuable
also for testing, as a tool to check that new applications do not alter the security configuration
required by the company.

Usually, a company should acquire security checklists from the National Checklist Program
(NCP), maintained by NIST, and only trust digitally signed SCAP checklists. After selecting the
appropriate checklists that refer to the products and needs of the company, the next step is to
modify them according to the specific security requirements of the company, in a process called
tailoring. For example, a specific check could be omitted because the company has other means to
secure that particular aspect, or a rule could be restricted even more for a higher level of security.

2.3.2 Software and Hardware Identification

Being able to identify which software or hardware is present on a system is highly valuable for
companies. Even when that software or hardware is uninstalled, it leaves behind some traces of its
past existence: executables, code libraries, specific configurations, and drivers are some examples
of what is called an artifact. SCAP checklists can retrieve those artifacts and link them to the
actual software or hardware that produced them.

SCAP checklists enable companies to perform inventory operations, identifying which software
is installed on a system. With the ability to link artifacts to its original generator, the company
can also identify software that was installed and then removed. This process can be very useful
to detect possible security threats, such as violations of the policies of the company (for example
in the case of a blacklist or whitelist) or finding evidence of a particular malware attack. The real
benefit of SCAP is that incident response team and software vendors can quickly make public
SCAP-expressed checklists that address the security issue, and companies can use their SCAP-
validated tools to verify the checklist. The use of SCAP allows for a reduction of the window of
exposure, avoiding extra steps from the tool vendors in developing their version of the checklists,
as the time consumed in testing and deploying the checklist can be significant.

11

The SCAP framework

2.3.3 Providing Evidence of Conformance

Many organizations need to demonstrate that they conform with legal mandates and regulations,
depending on which country and in which field they operate in. Some examples are the Federal
Information Security Management Act (FISMA) for the U.S. government IT systems, the Health
Insurance Portability and Accountability Act (HIPAA) for healthcare, and the General Data
Privacy Regulation (GDPR) for privacy in the EU.

It’s usually very challenging for the companies to demonstrate that they implemented the se-
curity requirements needed. The linking of the high-level abstract requirements of the regulations
to the low-level actual configurations of the system is often complicated, ambiguous, and error
prone. To provide assistance, SCAP content can characterize these links. Some organizations al-
ready provide SCAP checklists that officially provide evidence that the regulations are respected.
One example of this is NIST that provides SCAP-expressed checklists that provide compliance
evidence for FISMA on many systems.

2.3.4 Continuous Monitoring and Remediation

SCAP can be used to automatically monitor changes in the system, if not truly continuously,
at least periodically. With the integration of SCAP-expressed checklists and SCAP-validated
scanners, any deviation from the requirements that could negatively affect security can be quickly
identified and remediated. Almost all systems need some sort of continuous monitoring: either
some new software or hardware are added to the system, or a new patch is available, or a user
changes some configurations (with or without malicious intent). Some of these events require
new security checklists and/or modifications to existing ones, others can be detected by simply
performing again the security checklist verification.

Since SCAP poses great attention and detail in the standardization and interoperability of its
contents, the results of an SCAP analysis can easily be used as input for other tools. The field of
Data analytics studies how to find patterns of suspicious activity after retrieving a large amount
of data, and SCAP results are immensely useful for the retrieving part. SCAP checklists results,
and possibly their subsequent elaboration, both help immensely when implementing remediations.
Although automatic remediation is not directly provided by SCAP, it certainly constitutes the
bases for a clear communication between tools and between humans and machines, that enables
fast and effective automatic remediation of security problems.

2.4 SCAP Specifications

There are twelve individual specifications adopted by SCAP, known as the SCAP component
specifications, grouped in five categories:

• Languages. The SCAP languages provide standard vocabularies and conventions for ex-
pressing security policy, technical check mechanisms, and assessment results. These speci-
fications are Extensible Configuration Checklist Description Format (XCCDF), Open Vul-
nerability and Assessment Language (OVAL), and Open Checklist Interactive Language
(OCIL).

• Reporting formats. The SCAP reporting formats provide the necessary constructs to
express collected information in standardized formats. The SCAP reporting format specifi-
cations are Asset Reporting Format (ARF) and Asset Identification.

• Identification schemes. The SCAP identification schemes provide a means to identify
key concepts such as software products, vulnerabilities, and configuration items using stan-
dardized identifier formats. They also provide a means to associate individual identifiers
with additional data pertaining to the subject of the identifier. The SCAP identification
scheme specifications are Common Platform Enumeration (CPE), Software Identification
(SWID) Tags, Common Configuration Enumeration (CCE), and Common Vulnerabilities
and Exposures (CVE).

12

The SCAP framework

• Measurement and scoring systems. The SCAP measurement and scoring system spec-
ifications are Common Vulnerability Scoring System (CVSS) and Common Configuration
Scoring System (CCSS). These specifications are used to measure specific characteristics of
a security weakness and generate a severity score for that weakness.

• Integrity. An SCAP integrity specification helps to preserve the integrity of SCAP content
and results. Trust Model for Security Automation Data (TMSAD) is the SCAP integrity
specification.

Regarding software flaws and security configurations, SCAP uses as standard reference data
those provided by the National Vulnerability Database (NVD), managed by NIST.

These component specifications are used together to create an SCAP-conformant security
guidance. For example, a security guidance can describe the desired security configurations and
installed patches. Such requirements would be expressed as a checklist using XCCDF, specifying
which checks need to be performed automatically (with OVAL) or manually (with OCIL). The
security configurations would be enumerated with CCE, the software flaws with CVE, and the
target platforms with CPE and SWID tags. The resulting checklist would be an SCAP-expressed
checklist that can be utilized by SCAP-validated tools.

The next sections describe the functionalities of the SCAP component specifications one by
one.

2.4.1 XCCDF

Extensible Configuration Checklist Description Format is an XML based language capable of
describing security checklists in a standardized way. It allows for an easier and more uniform
creation of automated security checklists. In the context or SCAP, XCCDF can be described
as the general descriptive language that contains the other specifications, organizing the various
components and how they relate to each other.

Here are some of the most relevant capabilities provided by XCCDF:

• A more consistent and accurate exchange of security related information, between vendors
and companies, and between security experts or auditors of the same company.

• A faster and uniform generation of security checklists that include rules, technical proce-
dures, advisories and measures for remediations.

• Allows the combination and/or modification of different security checks from different sources.

• Ensures compliance to multiple policies and facilitates the scoring and reporting of compli-
ance results.

The core components of a security checklist are called rules: a single rule describes a specific
state or condition that the target system must be in. An example of rule can be how stringent the
password requirements should be, or assessing the presence of a specific vulnerable configuration
in the system.

The key functionality of XCCDF is tailoring: checklists users can merge and customize different
checklists to better suit their organizational or situational needs. Tailoring is highly valuable in
many different cases. A specific company may want to further restrict the password policies
or set them differently for different parts of the system. Another example is if some particular
configurations are in conflict with other applications, the security team of the company can disable
some of the rules.

Tailoring provides three customization options:

• Selectability: Single or multiple rules together can be selected or de-selected to respectively
include or exclude them from the check

13

The SCAP framework

• Value Modification: XCCDF can contain variables that are then referenced in the document
itself. The values of these variables can be substituted with locally significant values, such
as specific addresses of parts of the system or the required length of passwords.

• Property Modification: This option includes all the possible customizations that are not
selectability or value modification. One example could be altering the weight value of some
rules. Any modification must still conform to the specifications, in order to guarantee
interoperability with SCAP-conformant tools.

XCCDF supports and facilitates tailoring. Checklists authors are encouraged to include de-
scriptive text, associated with each rule, that should contain useful information that can guide
users in tailoring choices. It’s also possible to create tailoring documents which define different
tailoring profiles. Some combination of rules could be in conflict or mutually exclusive, and profiles
can help avoiding these inconsistencies.

Lastly, XCCDF defines a standardized reporting format for test results. The objective is
storing rule checking results with a defined set of useful information, allowing different security
tools to operate consistently on these results. The XCCDF results shall include data such as the
start and end time of the test, the target system, the check results, and which tailoring choices
were made [4].

2.4.2 OVAL

Open Vulnerability and Assessment Language is a community-developed language that standard-
ize the assessment and report of a system security state. OVAL is maintained by the Center for
Internet Security (CIS), and its repository is currently hosted by MITRE. OVAL is one of the two
checking systems supported by SCAP (the other being OCIL). It allows automatic checks and can
retrieve a wide variety of information from the system: it should be used whenever is possible,
and the use of OCIL should be restricted only to checks that cannot be performed automatically.

The OVAL language is comprised of three parts that corresponds to three key steps of system
assessment:

• OVAL Definitions. The first part of the language is designed to describe the specific state
of a system.

• OVAL System Characteristics. This second part defines a standard for representing system
configuration information.

• OVAL Results. The last part specifies how to format and store the evaluation results.

The OVAL Definitions are grouped in four classes, based on what the objective of the check
is. Vulnerability Definitions describe the conditions that must be present on a system to assess
the existence of a vulnerability. Patch Definitions state which patches are appropriate for a
system. Inventory Definitions describe the conditions that determine whether a specific software
is installed on a system. Compliance Definitions define the conditions of a system to be considered
compliant to a specific policy.

The main feature of OVAL is its ability to perform checks: the definitions specify which tests
need to be passed, and the tests are considered passed when specific objects are in the required
states (objects and states are referred to with other components, such as CPE or CCE). This
process allows the checks of an SCAP checklist to be performed automatically.

2.4.3 OCIL

The Open Checklist Interactive Language defines a framework for representing non-automatable
questions. It aims at retrieving information either directly from a person or from previous data

14

The SCAP framework

collections. OVAL and OCIL are both part of SCAP because they complement each other. The
use of OCIL questionnaires must be limited only to checks that cannot be performed by OVAL.

OCIL is used to express manual security checks. There are multiple instances in which these
manual checks are needed:

• A software product might not be compatible with OVAL, for example by not having the
correct APIs.

• Some kind of physical information could be of use, such as a serial number affixed to a
device.

• The user’s own information might be needed, for example asking whether he or she took
part in a security training session in the last six months.

OCIL checks can be included in SCAP checklists but usually have some throwbacks: the
automation component of SCAP becomes somewhat reduced, requiring data that cannot be au-
tomatically retrieved by security tools.

2.4.4 ARF

The Asset Reporting Format defines a standardized data model for the transport of information
about assets, and the relation between assets and reports. It aims at facilitating the interoperabil-
ity of security related information between organizations, vendors, and tools. ARF is specifically
designed to merge and consolidate multiple result files, coming from different specifications (for
example, XCCDF and OVAL results).

Different products may produce reports that relate to the same asset but that use different
representations of it. By combining reports, report requests, and asset correlations (defined later
in Asset Identification), different reports can be correlated and fused, enabling the spread of a
common structure for ARF reports.

2.4.5 Asset Identification

Asset Identification is a framework that describes attributes and methods to uniquely identify
an asset. The term “asset” is used here to indicate anything that has value for an organization,
ranging from people and devices to networks and software. The Asset Identification specification
allows companies to quickly correlate various information from different sources, identifying assets
by merging these data.

In the context of SCAP, Asset Identification is used within an ARF report to identify the
target asset that was under assessment. It can also contain additional identification information
to further facilitate interoperability for future identifications.

2.4.6 CPE

Common Platform Enumeration is, as defined by NIST, a standardized method of describing and
identifying classes of applications, operating systems, and hardware devices present among an
enterprise’s computing assets. Its objective is to identify classes of products with specific names,
allowing tools to collect information from actual assets and matching them to CPE names [5].

CPE is a complex and evolving specification, currently composed by four individual specifica-
tions that form the CPE stack:

• Naming. Defines standardized methods for assigning names to IT product classes. It
defines the well-formed names (WFN), logical constructs that include many parameters
such as the name of the product, the version, and the language.

15

The SCAP framework

• Name Matching. Defines the procedures for comparing WFNs to each other, checking
whether they refer to the same class of products. The name comparison results are expressed
as set relations, determining if one name is more general and contains the other, or if they
represent two completely different classes of products.

• Dictionary. Defines the concept of a CPE dictionary as a collection of CPE names asso-
ciated with some kind of meta data. It specifies how to create and maintain a dictionary
repository, as well as how to search for specific CPE names or a related class of products.

• Applicability Language. Defines a structure for forming complex logical expressions
combining WFNs. These expressions are used to tag security checklists with specific infor-
mation about the products that they refer to. One example is combining the CPE name of
an Operating System and the one of a specific application, ensuring that both products are
installed at the same time.

The official CPE dictionary is located at the National Vulnerability Database (NVD), managed
by NIST, and should be referred to when using CPEs in SCAP content. Additional third-party
dictionaries can be included, if they follow the official specifications. CPE is used in SCAP to
uniquely identify the classes of products, including the target system where the security check is
going to be performed.

2.4.7 SWID

Software Identification is a standard that provides the format and the structure for describing
a software product. SWID tags are a collection of metadata that contains information about
a specific software, that are added to the system at the moment of installation of the software
and deleted during the uninstall process. When the SWID standard is correctly employed, the
presence of a SWID tag guarantees the presence of the related software on the system.

SWID tags are complementary to CPE and can be mapped to specific CPE names. Their use
can be incorporated to facilitate the assessment of the presence of a specific software product.
This procedure is especially useful for inventory purposes.

From a security standpoint, maintaining accurate software inventories is crucial for multiple
reasons:

• Ensures that all installed software adhere to the desired version, reducing the presence of
variable software and thus reducing the surface of attack.

• Enables the verification that all software patches are up-to-date and no known vulnerabilities
affect the system.

NIST is currently working on incorporating SWID tags data in the NVD, so that vulnerable
software affected by a specific CVE can be more easily identified.

2.4.8 CCE

Common Configuration Enumeration assigns a unique identifier to a particular software configu-
ration that presents a security issue. The official CCE list, maintained by NIST, is a repository
of CCE identifiers1. Each entry has a unique CCE identifier number, together with a human-
readable description of the configuration issue and the technical parameters that characterize
the configuration. In this sense, CCE provides a connection between the natural language, the
security configuration policies and the machine-readable technical implementations.

1The entire list can be found at: https://ncp.nist.gov/cce/index

16

The SCAP framework

CCE must be used in SCAP when assessing the security of the system software configuration.
CCE does not include other kinds of possible configurations, such as hardware or physical, and
operates only for software-based configurations. The use of the CCE list allows for a standardized
exchange of information about configuration issues, enhancing the interoperability of security
tools and the consistency across multiple sources.

2.4.9 CVE

Common Vulnerabilities and Exposures is, similarly to CCE, a reference dictionary of known soft-
ware flaws and vulnerabilities. It provides a unique identifier for each vulnerability, accompanied
by a human-readable description of the issue, the date of the discovery, and links to other related
resources. The CVE standard is maintained by MITRE and the CVE repository of reference is
the National Vulnerability Database (NVD) by NIST2.

CVE is the standard for communicating software vulnerabilities information between organi-
zations, vendors, and security tools. Unlike CCE, CVE is not restricted only to software vulner-
abilities but can identify a broader range of vulnerabilities, including hardware-related ones.

CVE identifiers are assigned to each publicly known vulnerability and are considered as the
base references for vulnerability assessment in the context of SCAP.

2.4.10 CVSS

The Common Vulnerability Scoring System is a metric to evaluate the severity of software vulner-
abilities. A CVSS score can be represented as a string vector containing the values used to derive
the final score. Higher scores correspond to higher severities, which means that the vulnerability
can be easily exploited or could have devastating consequences. CVSS scores can help compa-
nies in prioritizing which vulnerabilities need to be remediated quickly. CVSS refers to CVEs to
identify vulnerabilities.

There are two additional metrics that are part of CVSS: temporal and environmental scores.
While the base score is calculated once and stored alongside CVEs in the NVD, the other two can
be used to modify the base score for specific situations. Temporal scores take into consideration
parameters that can change over time due to external events, environmental scores are customized
scores that reflect how impactful a vulnerability can be on a specific company. SCAP allows the
use of all the above metrics to better suit the needs of the different organizations.

2.4.11 CCSS

The Common Configuration Scoring System is a framework for measuring the severity of software
security configuration issues, assigning a score to each particular issue. CCSS is derived from
CVSS and operates in analogous ways, but they are not used exactly in the same way.

While CVSS scores provide a direct measure of the vulnerability severity and can be informa-
tive by themselves, CCSS scores can be useful to companies, but need to be considered together
with the security policies of the company and in the broader context of the system.

2.4.12 TMSAD

The Trust Model for Security Automation Data defines a trust model that can be applied to
SCAP to establish its security, including integrity of data and authentication. TMSAD focuses
on securing XML files, as it’s the common format for SCAP files. The model is composed of rec-
ommendations on how to effectively use digital signatures, cryptographic algorithms, and identity
information.

2NVD vulnerability page: https://nvd.nist.gov/vuln

17

The SCAP framework

A company that acquires SCAP content should always verify the validity of the digital signa-
ture applied to it, and reject any content that either fails the validity check or doesn’t include a
signature at all. After any process of tailoring, a company should sign again the modified docu-
ment with a new signature, to ensure that later modifications cannot be applied with malicious
intent.

18

Chapter 3

The OpenSCAP tools

3.1 The OpenSCAP ecosystem

The OpenSCAP project, initially sponsored by Red Hat, started in late 2008 with the objective
of creating useful open source tools to interact with the SCAP standard, and in particular the
development of a security scanner that can deal with SCAP content [6]. This scanner is called
OpenSCAP Base.

Their ecosystem is now comprised of several tools, built on top of the base scanner, that
address a wide range of real world scenarios. The next sections describe the most relevant aspects
of the tools.

The other fundamental aspect of the ecosystem is the security content, which is as important
as the scanner itself. For this reason the SCAP Security Guide (SSG) project was created. It
consists of an open source collection of security policies written in SCAP form.

SSG contains security checklists with well described rules that often include remediation
scripts. It also implements the security requirements of many authorities, such as PCI DSS,
STIG, and USGCB. Each document contains multiple profiles so that a user can select the ap-
propriate one for its use case.

3.2 OpenSCAP Base

3.2.1 Introduction

OpenSCAP is, at its core, a set of open-source libraries that allow the manipulation of the various
standards of SCAP. OpenSCAP also represents a command line tool, called oscap, that can
evaluate SCAP components, scan target systems and generate documents with the proper format.

OpenSCAP has been validated by NIST as conformant to SCAP version 1.2 on February 2017
[7].

The following are the certified SCAP components that are supported by OpenSCAP with their
relative version:

• AI (1.1);

• ARF (1.1);

• CCE (5);

• CCSS (1.0);

• CPE (2.3);

19

The OpenSCAP tools

• CVE;

• CVSS (2.0);

• OVAL (5.10.1);

• TMSAD (1.0);

• XCCDF (1.2);

Since the date of the certification, OpenSCAP has been updated and now supports SCAP 1.3.
In particular, OVAL was updated to support version 5.11.1.

3.2.2 Installation

OpenSCAP can be installed on many Linux distributions using their relative package manager
command:

• Fedora: dnf install openscap-scanner

• Red Hat Enterprise Linux (RHEL) 5: yum install openscap-utils

• RHEL 6, RHEL 7, CentOS 6, CentOS 7: yum install openscap-scanner

• Debian, Ubuntu: apt-get install libopenscap8

• Scientific Linux 6, Scientific Linux 7: yum install openscap-scanner

• openSUSE Leap, openSUSE Tumbleweed: zypper install openscap-utils

• SUSE Linux Enterprise Server 12 and 15: zypper install openscap-utils

On Windows systems, the OpenSCAP installer can be downloaded from:

https://www.open-scap.org/tools/openscap-base/#download

Some Windows systems may need an additional installation of Visual C++ Runtime libraries:

https://aka.ms/vs/15/release/VC_redist.x86.exe

Alternatively, OpenSCAP can be directly built from the source code that is available on
GitHub. The precise instructions are located at:

https://github.com/OpenSCAP/openscap/blob/maint-1.3/docs/developer/developer.adoc

The first step is to get the source code either from a release tarball or from the git repository.
Then the build dependencies need to be installed; note that these dependencies are different
between operating systems. Once the installation is done, the OpenSCAP library can be built.
The library contains self-checks that can be used to test the correctness of the build. Finally,
OpenSCAP can be installed.

3.2.3 Command modules

The OpenSCAP command line tool takes the following general form:

oscap [general-options] module operation [operation-options-and-arguments]

There are only two general options:

• -V, –version: prints the version of oscap and a list of supported specifications, shows
inbuilt CPE names and supported OVAL objects;

• -h, –help: shows the help screen.

20

https://www.open-scap.org/tools/openscap-base/#download
https://aka.ms/vs/15/release/VC_redist.x86.exe
https://github.com/OpenSCAP/openscap/blob/maint-1.3/docs/developer/developer.adoc

The OpenSCAP tools

The capabilities that oscap provides are divided in modules that represent the different SCAP
specifications:

info determines type and print information about a file;

xccdf evaluates XCCDF checklists;

oval evaluates OVAL Definitions;

ds manipulates SCAP data streams as a whole;

cpe validates and searches CPE names;

cvss calculates CVSS scores;

cve validates and searches for CVE Identifiers;

The following descriptions of operations are based on oscap 1.3.5. All the examples were
executed on a Fedora 32 machine, using files that are part of the SCAP security guide (SSG)
project. SSG can be installed with a single command (dnf install scap-security-guide on Fedora).

Info Module

This module takes as input an xml file and prints information about the SCAP content in it.
It determines the file type and additional information such as date of creation and specification
version. In the case of xccdf or source data stream files, the info module retrieves the IDs of
incorporated profiles, components, and data streams.

Using as example the ssg-fedora-xccdf.xml file, the following is the result of the info inspection:

Document type: XCCDF Checklist

Checklist version: 1.1

Imported: 2021-03-19T15:18:22

Status: draft

Generated: 2021-03-19

Resolved: true

Profiles:

Title: OSPP - Protection Profile for General Purpose Operating Systems

Id: ospp

Title: PCI-DSS v3.2.1 Control Baseline for Fedora

Id: pci-dss

Title: Standard System Security Profile for Fedora

Id: standard

Referenced check files:

ssg-fedora-oval.xml

system: http://oval.mitre.org/XMLSchema/oval-definitions-5

ssg-fedora-ocil.xml

system: http://scap.nist.gov/schema/ocil/2

The –profile option can be specified, using the Id of a profile contained in the checklist, to
print more information about that specific profile. For example, when using the standard Id, the
output description is:

This profile contains rules to ensure standard security baseline of a Fedora system.
Regardless of your system workload all of these checks should pass.

Using pci-dss, the output instead is:

Ensures PCI-DSS v3.2.1 related security configuration settings are applied.

Oscap info can also be used on result type files, such as ARF, in which case it reports useful
information such as date and time of evaluation and source benchmark and profile.

21

The OpenSCAP tools

XCCDF Module

The supported version of XCCDF is 1.2. There are six main operations concerning this module.

The first one is eval. It performs the evaluation of an xccdf file given as input. It prints the
result of each rule contained in the checklist. The evaluation can be performed also if the input
file is a source data stream file, in which case oscap evaluates the first xccdf checklists present in
the data stream. If multiple xccdf checklists are present, the option –xccdf-id allows to select a
specific component.

It can be specified which particular profile is to be used, and it can even be specified a particular
rule to be evaluated. If a tailoring file or tailoring component is available, it can be included by
specifying its Ref-Id.

Oscap has some inbuilt CPE names, but the –cpe option allows the use of CPE dictionaries
or languages for applicability checks.

There are many options for generating different types of result files and reports, namely XC-
CDF, OVAL and ARF result files and HTML reports.

XCCDF checklists can contain remediation scripts for some of the checks. If a given rule is
failed, the execution of these scripts should correct the system and bring it to a state of compliance
with that rule. The –remediate option executes the remediation fixes for failed rules immediately
after the scan. Since this option automatically executes some potentially dangerous scripts, it
should be used only for trusted XCCDF content.

The second operation is remediate, that provides post-scan remediation. It takes as input
an XCCDF Results file (that can be generated, for instance, with the oscap xccdf eval command),
then for every failed rule it checks if a fix script is available and executes it. Again, this procedure
can be dangerous from a security point of view, therefore it should be used only for trusted
content. Reports and result files can be generated in a way similar to the eval operation.

Another operation is resolve, that takes as input an XCCDF file and resolves it as described
in the NISTIR 7275 specification [4]. Available XCCDF checklists are typically already resolved,
such as the content of SSG.

The validate operation validates an XCCDF file against an XML schema and shows every
found error. Starting from XCCDF version 1.2 the validation is based on a Schematron, which
renders the validation process much faster.

The fifth operation is export-oval-variables. Given an XCCDF file, this operation collects
all the XCCDF values that would be used by OVAL during an evaluation, then it creates an OVAL
external-variables document containing such values. Single profiles or checklists included in a data
stream can be selected with the corresponding options –profile and –xccdf-id.This procedure is
needed prior to the scan of OVAL definitions in some particular cases, described in the next
section (OVAL Module).

Lastly, the generate operation, starting from an XCCDF file or a result file, creates another
document such as a security guide or a report. There are many submodules that can generate
different files: HTML security guides from a benchmark, HTML reports on evaluation results, fix
scripts that can apply remediation to the system, or custom output files given an XSLT file.

OVAL Module

OpenSCAP supports oval 5.11.1. The tool can probe the system and evaluate all definitions
contained in an OVAL Definitions file. To start an evaluation, the input file can either be an
OVAL Definitions file or a SCAP source data stream.

In the case of SCAP content that is distributed along multiple XML files, such as an OVAL
Definitions file and a separate XCCDF file, some of the OVAL definitions may depend on variables
that are assigned during the XCCDF evaluation. This means that a separate evaluation of those
OVAL definitions may produce inconclusive results.

22

The OpenSCAP tools

The XCCDF –export-oval-variables operation creates a dedicated file that can be used in a
subsequent OVAL scan with the –variables option referencing to that file. This allows for a correct
evaluation of OVAL definitions.

The OpenSCAP tool can also perform data collection regarding OVAL not by scanning a
system, but by analyzing a file that contains system characteristics. This input file may have
been generated on a separate system. This analyse operation produces an OVAL Results file as
output.

The validate and generate options are similar to the ones described in the XCCDF section.

Additionally, the collect operation allows oscap to gather system characteristics for all objects
in an OVAL Definitions file, showing if those objects are present on the system or not.

Data Stream Module

The ds module can manipulate SCAP data streams. In particular, it can create a source data
stream file starting from an XCCDF file: the tool can automatically detect dependencies present
in XCCDF benchmarks, like OVAL files, and create a single data stream that contains those files.

Once the source data stream file is created, new components can be added. New components
can either be OVAL, XCCDF or CPE Dictionary files.

The opposite operation can also be performed: starting from a bundled source data stream file,
oscap can split it into multiple files (XCCDF, OVAL definitions, etc) allowing further inspection
of the single components.

Additionally, this module manages result data streams. Given a source data stream and
XCCDF result file, possibly followed by additional OVAL results, OpenSCAP can generate a
result data stream in ARF format.

Both source and result data streams can be validated against an XML schema to check for
errors.

CPE Module

CPE operations are quite simple: given a CPE name, oscap can check whether the name is in a
correct CPE format, and if also given a CPE dictionary it can find an exact match of the name
in that dictionary. It can also validate the dictionary against an XML schema.

CPE 2.3 is the supported version.

CVSS Module

The OpenSCAP tool can take as input a CVSS vector and calculate base, temporal and envi-
ronmental scores. It can also describe the individual components of a CVSS vector in a human
readable format and show the partial scores of the components.

OpenSCAP supports CVSS 2.3.

CVE Module

This module can validate a given CVE data feed. With the find operation, taking as input a
CVE identifier and a data feed, the tool checks if the given CVE is present in the data feed and
reports base score, vector string and vulnerable software list.

OpenSCAP supports CVE Version 2.0.

23

The OpenSCAP tools

3.3 OpenSCAP Utilities

Several additional tools are built on top of the OpenSCAP library, with each of them providing
additional capabilities. The core functioning is the same of the oscap base command line tool,
but these utilities allow the user to perform advanced tasks with a single command.

All the following tools can be installed with the installation of a single package, openscap-utils.

3.3.1 Tailoring

The command line tool autotailor enables the creation of a tailoring file that can be used along-
side an existing SCAP source data stream, adding a new customized profile that extends an
existing one. There are three tailoring operations: adding a new rule with the –select option,
removing a rule with the –unselect option, or modify the value of an XCCDF variable with –var-
value. All these options can be used multiple times in the same command. Adding or removing
a rule requires the user to specify the rule ID.

Autotailor is a basic tool that doesn’t provide any validation of the tailoring. This means that
it allows the extension of non-existing profiles, selection or de-selection of non-existing rules, and
modification of non-existing variables. The resulting tailoring file would be meaningless and any
evaluation using it will result in an error.

There are better solutions for creating tailoring files. For example, SCAP Workbench is an
application with a user-friendly graphical interface that provides the same functionalities and
much more control on the correctness of the changes.

3.3.2 Scanning remote machines

OpenSCAP can be used to perform evaluation of remote machines using an SSH connection with
oscap-ssh. This tool copies the input SCAP content to the remote machine, runs the evaluation
on the target system and downloads the results back to the local machine. After the evaluation,
no content or temporary file remains on the remote system. Note that only the target system
needs the oscap tool installed on its end, which is not needed on the local machine.

After the SSH connection, the usage of the tool is equivalent to the regular oscap. The
evaluation of XCCDF content cannot be done by passing as input a standalone XCCDF file but
requires a source data stream. Evaluation of OVAL content and collection of system characteristics
can be performed using OVAL files as input.

Oscap-ssh checks a particular environmental variable on the local machine, named sshaddi-
tionaloptions, and copies its contents on the SSH command line in the proper position where
those options are expected. These contents may be needed to establish and manage the SSH
connection.

There are some security concerns regarding this tool. Usually, OpenSCAP needs to gain
privileged access on the system in order to function properly.

One possibility is to enable the “PermitRootLogin” directive in etc/ssh/sshdconfig on the
remote machine, but this operation is a security issue by itself and should be avoided.

A much better option is to enable a non-privileged user to run only the oscap commands as
root, with the sudo option, by properly configuring the remote machine.

3.3.3 Scanning Linux containers and images

The oscap-podman tool allows the scanning of containers and container images by simply spec-
ifying the ID of the container or image. The tool functionalities are analogous to the base oscap
tool, but it can only run under root privileges.

24

The OpenSCAP tools

This tool utilizes a technique called offline scanning : the file system of the container is mounted
to a directory of the host in read-only mode. This means that the container is not changed in any
way by OpenSCAP, which acts from the host system. Hence, remediation of the container cannot
be performed by oscap-podman in an autonomous way but requires manual configuration.

The following is an example of evaluation of a RHEL 8 container. First of all, the ID of a
container or a container image present on the system can be retrieved by the command podman
images:

$ podman images

REPOSITORY TAG IMAGE ID CREATED SIZE

registry.access.redhat.com/ubi8 latest 3269c37eae33 1 week ago 208 MB

Once the desired image ID is chosen the evaluation can be performed, using the contents of
SCAP Security Guide, with the following command:

$ oscap-podman 3269c37eae33 xccdf eval --report report.html --profile ospp \

/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

3.3.4 Scanning Docker containers and images

The oscap-docker tool can assess vulnerabilities and check compliance to security policies of
running Docker containers or Docker images, using the offline scanning technique.

The tool can perform compliance scanning as the base oscap tool, specifying which container
or image is the target of the command. As an example, scanning a RHEL 7 image with a given
XCCDF checklist file and generating an HTML report can be done with the following command:

$ oscap-docker image rhel7 xccdf eval --report report.html xccdf.xml

In the case of a running container, it’s sufficient to change the word “image” to “container”.

Another interesting functionality is the ability to perform a vulnerability assessment of a
container or image, testing them against a CVE stream. A CVE stream is a collection of vulnera-
bilities that are applicable to the target container or image, written in SCAP format, downloaded
directly from the product vendor.

Using again as example a RHEL 7 image, the command takes the following form:

$ oscap-docker image-cve rhel7 --report report.html

The command will attach the desired docker image, determine the operating system vari-
ant/version, download the applicable CVE stream from Red Hat, and then evaluate the target
image for vulnerabilities.

In this case the additional OpenSCAP options can only be for the creation of HTML reports
or OVAL Result files.

For the evaluation of a container, the correct command needs “container-cve” instead of
“image-cve”.

3.3.5 Scanning virtual machines

The oscap-vm tool can perform SCAP evaluation of virtual machine domains or virtual machine
images. Again, it uses the offline scanning technique: the evaluation happens from the host so that
the virtual machine is not changed or damaged in any way, and doesn’t require the installation
of any additional software, including OpenSCAP.

The usage requires first to specify the type of target, either domain or image, and then identify
it by the domain name or the image path. After that, the rest of the options are passed to the
base oscap, that can perform evaluation of XCCDF or OVAL content, and collect OVAL System
characteristics. The same restrictions of the previous offline scanning tools apply to this tool,
notably that it cannot perform automatic remediation.

25

The OpenSCAP tools

3.3.6 Scanning arbitrary file systems

The oscap-chroot tool can perform offline SCAP evaluations of file systems mounted at an
arbitrary path. It can be used when evaluating custom objects that aren’t covered by previous
tools, for example containers of different formats. The modes of operation and options mimic the
oscap ones.

3.4 OpenSCAP Daemon

The OpenSCAP Base tool and its utilities are very adequate to perform solicited single evaluations,
but lack the possibility of planned scanning or continuous monitoring. Thus the OpenSCAP
Daemon project was created to assist the users in scheduling SCAP evaluations.

The project is comprised of two main components: the daemon itself, running in sleep state in
the background until a task has to be processed, and a command-line interface tool for managing
tasks.

3.4.1 Installation

OpenSCAP Daemon can be installed on Fedora systems with the following command:

$ dnf install openscap-daemon

On other Linux distribution, first download the latest release from GitHub1, then the tool can
be installed either as a python2 or as a python3 application:

cd openscap-daemon

as a python2 application

sudo python2 setup.py install

as a python3 application

sudo python3 setup.py install

In order to allow further task operations and executions, the daemon needs to be started with
the proper command by a privileged user:

$ oscapd

After that the command line tool is ready to be executed by opening a different terminal
window.

3.4.2 Task management

The entire functioning of the tool is centred around tasks. The first operation is the creation of
a task, using the command:

$ oscapd-cli task-create -i

After that, a simple interactive window is presented to the user that can set the desired options
for the task. The target of the evaluation can be specified to be either local or remote, using an
SSH connection. After that the user can select the proper SCAP content, optionally followed by
a tailoring file, and a suitable profile.

Lastly, the schedule is created by specifying two values: “not before”, indicating the starting
time of the evaluation, and “repeat after”, that can be set to a specific amount of hours or with
the predefined intervals (daily, weekly, monthly).

The following is an example of the creation of a task that evaluates a local machine with a
Ubuntu 20.04 data stream, using the standard profile, and is set to be repeated daily:

1https://github.com/OpenSCAP/openscap-daemon/releases/tag/0.1.10

26

The OpenSCAP tools

$ oscapd-cli task-create -i

Creating new task in interactive mode

Title: Daily Example

Target (empty for localhost):

Found the following SCAP Security Guide content:

1: /usr/share/xml/scap/ssg/content/ssg-centos7-ds.xml

2: /usr/share/xml/scap/ssg/content/ssg-centos8-ds.xml

...

26: /usr/share/xml/scap/ssg/content/ssg-ubuntu2004-ds.xml

27: /usr/share/xml/scap/ssg/content/ssg-vsel-ds.xml

28: /usr/share/xml/scap/ssg/content/ssg-wrlinux1019-ds.xml

29: /usr/share/xml/scap/ssg/content/ssg-wrlinux8-ds.xml

Choose SSG content by number (empty for custom content): 26

Tailoring file (absolute path, empty for no tailoring):

Found the following possible profiles:

1: Standard System Security Profile for Ubuntu 20.04

(id=’xccdf_org.ssgproject.content_profile_standard’)

2: (default)

(id=’’)

Choose profile by number (empty for (default) profile): 1

Online remediation (1, y or Y for yes, else no):

Schedule:

- not before (YYYY-MM-DD HH:MM in UTC, empty for NOW):

- repeat after (hours or @daily, @weekly, @monthly, empty or 0 for no

repeat): @daily

Task created with ID ’1’. It is currently set as disabled. You can enable it

with oscapd-cli task 1 enable.

Tasks are disabled by default when created, and need to be enabled with the suggested com-
mand. After every evaluation, the results are saved with an ascending Id and can be viewed either
as ARF files or HTML reports.

3.5 Practical examples

The following two sections describe two common use-cases of OpenSCAP, providing step by step
the instructions for reproducing the tests.

The first section analyses the content of SCAP Security Guide and then checks the system’s
compliance to the chosen security policy.

The second section shows a vulnerability scanning using a CVE stream, which is a collection
of OVAL definitions that check for the presence of specific vulnerabilities, directly retrieved by
the system’s vendor.

3.5.1 Security compliance on Fedora

Every test described below was executed on a freshly installed Fedora 32, which can be downloaded
from:

https://dl.fedoraproject.org/pub/fedora/linux/releases/32/Workstation/x86_64/iso/

Two components are needed in order to test the system: the OpenSCAP Base scanner and the
security content of SCAP Security Guide. The former, which gives access to the oscap command
line tool, can be installed with:

$ dnf install openscap-scanner

The latter is installed with:

27

https://dl.fedoraproject.org/pub/fedora/linux/releases/32/Workstation/x86_64/iso/

The OpenSCAP tools

$ dnf install scap-security-guide

The SCAP Security Guide contains many security policies written in SCAP form that are
installed at /usr/share/xml/scap/ssg/content/. Inside this folder there are seven files that target
a fedora machine, and all their names start with ssg-fedora.

After the installation of oscap it’s possible to check the installed version, along with some
other useful information, by using the command “oscap -V”. Since the output is quite long, some
superfluous parts were omitted and replaced by three dots:

$ oscap -V

OpenSCAP command line tool (oscap) 1.3.5

Copyright 2009--2021 Red Hat Inc., Durham, North Carolina.

==== Supported specifications ====

SCAP Version: 1.3

XCCDF Version: 1.2

OVAL Version: 5.11.1

CPE Version: 2.3

CVSS Version: 2.0

CVE Version: 2.0

Asset Identification Version: 1.1

Asset Reporting Format Version: 1.1

CVRF Version: 1.1

==== Capabilities added by auto-loaded plugins ====

No plugins have been auto-loaded...

==== Paths ====

Schema files: /usr/share/openscap/schemas

Default CPE files: /usr/share/openscap/cpe

==== Inbuilt CPE names ====

Red Hat Enterprise Linux - cpe:/o:redhat:enterprise_linux:-

Red Hat Enterprise Linux 5 - cpe:/o:redhat:enterprise_linux:5

...

Fedora 32 - cpe:/o:fedoraproject:fedora:32

Fedora 33 - cpe:/o:fedoraproject:fedora:33

Fedora 34 - cpe:/o:fedoraproject:fedora:34

Fedora 35 - cpe:/o:fedoraproject:fedora:35

==== Supported OVAL objects and associated OpenSCAP probes ====

...

SCAP Content info

One useful operation that is allowed by oscap is the retrieval of information using the info module.
Given an input file, this command generates a description of the file and of its contents. The
amount of information displayed can vary greatly depending on the input file type. The command
syntax is:

$ oscap info filepath

In this context, the files located in /usr/share/xml/scap/ssg/content/ that have “ssg-fedora”
in their names will be the subject of the test:

• ssg-fedora-cpe-dictionary.xml:

28

The OpenSCAP tools

Document type: CPE Dictionary

Imported: 2021-03-19T15:17:53

• ssg-fedora-cpe-oval.xml:

Document type: OVAL Definitions

OVAL version: 5.11

Generated: 2021-03-19T00:00:00

Imported: 2021-03-19T15:17:53

• ssg-fedora-ocil.xml:

Document type: OCIL Definitions file

• ssg-fedora-oval.xml:

Document type: OVAL Definitions

OVAL version: 5.11

Generated: 2021-03-19T00:00:00

Imported: 2021-03-19T15:18:22

In these previous cases, only the document type and little additional information is displayed.

• ssg-fedora-ds.xml:

Document type: Source Data Stream

Imported: 2021-03-19T15:19:01

Stream: scap_org.open-scap_datastream_from_xccdf_ssg-fedora-xccdf-1.2.xml

Generated: (null)

Version: 1.3

Checklists:

Ref-Id: scap_org.open-scap_cref_ssg-fedora-xccdf-1.2.xml

Status: draft

Generated: 2021-03-19

Resolved: true

Profiles:

Title: OSPP - Protection Profile for General Purpose

Operating Systems

Id: xccdf_org.ssgproject.content_profile_ospp

Title: PCI-DSS v3.2.1 Control Baseline for Fedora

Id: xccdf_org.ssgproject.content_profile_pci-dss

Title: Standard System Security Profile for Fedora

Id: xccdf_org.ssgproject.content_profile_standard

Referenced check files:

ssg-fedora-oval.xml

system:

http://oval.mitre.org/XMLSchema/oval-definitions-5

ssg-fedora-ocil.xml

system: http://scap.nist.gov/schema/ocil/2

Checks:

Ref-Id: scap_org.open-scap_cref_ssg-fedora-oval.xml

Ref-Id: scap_org.open-scap_cref_ssg-fedora-ocil.xml

Ref-Id: scap_org.open-scap_cref_ssg-fedora-cpe-oval.xml

Dictionaries:

Ref-Id: scap_org.open-scap_cref_ssg-fedora-cpe-dictionary.xml

29

The OpenSCAP tools

First note that the output for the file ssg-fedora-ds-1.2.xml would be the same with the only
exception being “Version: 1.2” instead of “Version: 1.3”.

The document is composed of one stream that contains one XCCDF checklist. This checklist
has three different profiles, and references two files that were previously analysed: ssg-fedora-
oval.xml and ssg-fedora-ocil.xml. Lastly it shows the reference-Id for checks and dictionaries.

• ssg-fedora-xccdf.xml:

Document type: XCCDF Checklist

Checklist version: 1.1

Imported: 2021-03-19T15:18:22

Status: draft

Generated: 2021-03-19

Resolved: true

Profiles:

Title: OSPP - Protection Profile for General Purpose Operating

Systems

Id: ospp

Title: PCI-DSS v3.2.1 Control Baseline for Fedora

Id: pci-dss

Title: Standard System Security Profile for Fedora

Id: standard

Referenced check files:

ssg-fedora-oval.xml

system: http://oval.mitre.org/XMLSchema/oval-definitions-5

ssg-fedora-ocil.xml

system: http://scap.nist.gov/schema/ocil/2

This document is an XCCDF checklist that is the same checklist contained in the data stream.
The only notable differences are the profile Ids, where only the final part of the names is written,
omitting the domain and organization part. This abbreviated version of the profile Ids can be
used in the OpenSCAP tools, avoiding the typing of long and complex identifiers.

Scanning the system

The scan of the system can be executed with the following command:

$ oscap xccdf eval --profile standard --results ssg-fedora-results.xml \

/usr/share/xml/scap/ssg/content/ssg-fedora-ds.xml

In this case OpenSCAP utilizes the xccdf module to evaluate the checklist contained in the
source data stream ssg-fedora-ds.xml.

The profile option allows the user to define which profile is going to be used, in this case the
Standard System Security Profile for Fedora. The results of the scan are stored in the ssg-fedora-
results.xml file, as specified by the results option.

This checklist can take a considerable amount of time (10 to 15 minutes), especially in assessing
the first rule. When the scan is complete, the results can be easily converted to an HTML report,
rendering the results much easier to be examined by a human, with the following command:

$ oscap xccdf generate report ssg-fedora-results.xml > ssg-fedora-report.html

Alternatively, the execution of the scan and the generation of the report can be issued with
one single command, by adding the report option.

The report shows that the tested system satisfied 27 rules, failed 46, and 5 resulted in an error.

30

The OpenSCAP tools

Tailoring

Before proceeding further, it can be useful to deselect some specific rules to greatly reduce the
time consumed by the scan. The quickest way for tailoring an existing checklist is to create a
tailoring file using the SCAP Workbench tool. The tool can be installed with:

$ dnf install scap-workbench

After opening SCAP Workbench the ssg-fedora-ds.xml file can be selected, specifying which
profile is the target of the tailoring, and then the specific checks can be selected or deselected. In
the context of this example, the ssg-fedora-ds-tailoring1.xml is a tailoring file created by deselect-
ing six specific rules from the standard profile:

• Verify File Hashes with RPM;

• Verify and Correct File Permissions with RPM;

• Ensure auditd Collects Information on the Use of Privileged Commands;

• Verify that Shared Library Files Have Restrictive Permissions;

• Disable Kernel Support for USB via Bootloader Configuration;

• Set Default firewalld Zone for Incoming Packets.

The first four rules were deselected to reduce the time spent during the scan, while the last two
were removed to avoid possible problems that could arise if remediated: one disables all devices
connected via USB, the other could deny access to the system if not properly handled.

Remediation

It’s now possible to quickly scan the system with the provided tailoring file:

$ oscap xccdf eval --profile standard_custom_1 \

--tailoring-file ssg-fedora-ds-tailoring1.xml \

--results tailoring-1-results.xml --report tailoring-1-report.html \

/usr/share/xml/scap/ssg/content/ssg-fedora-ds.xml

The new report shows 25 passed rules, 42 failed and 5 errors.

OpenSCAP allows automatic remediation of checks if the relative XCCDF file contains in-
structions on how to fix the problem. The checklists provided by SCAP Security Guide have
such fix elements for certain rules. The remediation procedure is performed by simply adding the
remediate option (note: the remediation scripts require root privileges to be executed):

$ oscap xccdf eval --remediate --profile standard_custom_1 \

--tailoring-file ssg-fedora-ds-tailoring1.xml \

--results tailoring-1-remediation-results.xml \

--report tailoring-1-remediation-report.html \

/usr/share/xml/scap/ssg/content/ssg-fedora-ds.xml

Oscap performs a normal evaluation of the system, searching for the fixes of the failed rules.
Then it executes the remediation scripts and re-evaluate the rules, to check if the fixes were
successfully applied. After this operation, the new results are that 64 rules passed, 5 failed and 3
reported an error.

After further inspection of the report, it is clear that the 5 failed rules had no suitable fix, as
the XCCDF file did not contain a remediation shell script for them. On the other hand, the 3
rules that resulted in an error all have a remediation script, but that script can be applied only
on certain systems that have a specific package installed. Since the test system does not present
that package, the remediation script simply ended with “Remediation is not applicable, nothing
was done”.

31

The OpenSCAP tools

3.5.2 Vulnerability scanning on Ubuntu

The target system of this example is a Ubuntu 20.04 (Focal) machine in which OpenSCAP Base
was installed with the following command:

$ apt-get install libopenscap8

The available version for this distribution is 1.2.16

The Ubuntu foundation, and in particular the security team of Canonical Ltd, provides OVAL
data for all the supported Ubuntu releases. These data are SCAP conformant and can be utilized
by any third-party SCAP tools.

Ubuntu’s OVAL data are a collection of OVAL definitions that can check whether the system
is affected by known vulnerabilities and can determine if the appropriate security patches are
available for the system.

The instructions can be found at:

https://ubuntu.com/security/oval

First, the following command is needed in order to download the correct OVAL data for the
target system:

$ wget https://security-metadata.canonical.com/oval/com.ubuntu.$(lsb_release
-cs).usn.oval.xml.bz2

In this example, the downloaded file becomes com.ubuntu.focal.usn.oval.xml after decompress-
ing.

After that the CVE assessment can be performed with OpenSCAP:

$ oscap oval eval --results oval-vuln-results.xml --report \

oval-vuln-report.html com.ubuntu.focal.usn.oval.xml

The report inspection shows that the total number of OVAL definitions is 520, of which 519 are
patch definitions. The only non-patch definition is an inventory definition that checks if Ubuntu
20.04 is installed.

Of the 519 patch definitions 473 resulted as false, meaning that the system is not affected by
those vulnerabilities, and 46 are true.

The report presents these 46 vulnerable states alongside useful links that instruct on how to
remediate the system. Often a security patch is already released and can be installed to prevent
any possible exploitation of those vulnerabilities.

The presence of a considerable amount of vulnerabilities was expected on the target system,
as at the time of evaluation it hadn’t been updated for approximately six months. After the
installation of all the most recent patches available, a new assessment was made with the same
OVAL data and this time no vulnerability was reported. By this example alone it clearly emerges
how important patch management is in preventing malicious attacks, as by simply updating the
system all of the 46 previously found vulnerabilities were eliminated.

32

https://ubuntu.com/security/oval

Chapter 4

Security automation in virtualized
environments

4.1 Network Functions Virtualization

Network Functions Virtualization (NFV) is a network architecture concept that consists in the
virtualization of some common network services. These kind of services include routers, firewalls,
intrusion detection systems (IDS), load balancers, and many other that traditionally require a
dedicated hardware device.

NFV allows the creation of multiple virtual machines or containers on a single hardware device,
each of them providing a dedicated network functionality via software. This eliminates the need
of additional hardware components that are often proprietary, reducing the economic cost of a
network and facilitating interoperability.

Another major benefit of NFV is a greatly improved scalability and agility, as new services
can be added or updated without the need of new components, thus allowing service providers to
change their offers based on the customer’s need.

4.1.1 NFV structure

The reference for NFV architecture is developed by the European Telecommunications Standards
Institute (ETSI), that defines standards that can reach the high level of reliability and performance
required by network services, and promotes better stability and interoperability [8].

The NFV structure is comprised of three main components:

• Virtualized network functions (VNFs) are the actual software implementation of network
functions;

• Network functions virtualization infrastructure (NFVi) includes all the hardware and soft-
ware components that are needed to build and run the NFV. Local machines, the network
itself, and the virtualized network functions are all part of the NFVi;

• Management, automation and network orchestration (MANO) provides the framework for
managing NFV infrastructure, including the deployment of new virtualized network func-
tions.

4.1.2 NFV security considerations

The advent of NFV and its growing use poses some security issues, as new software flaws can
generate new vulnerabilities. The ability of NFV to automate the creation and management of

33

Security automation in virtualized environments

new network functions brings additional potential exploits in network configuration, orchestrator
management, and malicious misconfiguration.

NFV also provides some security benefits, in particular it can help in mitigating distributed
denial of service (DDoS) attacks: an NFV orchestrator can automatically instantiate new VNFs
to handle the surge in incoming traffic, greatly reducing the incident response time [9].

The security flaws of NFV emerge when the security threats associated to physical networking
intersect the security issues of virtualization (i.e. virtual machines or containers). It follows that
checking the security of virtual machines and containers that deploy the network functions is of
vital importance, and it’s precisely the objective of the security group of Open Platform for NFV
(OPNFV), discussed in the following section.

Numerous kinds of attacks can be performed against an NFV environment, and security best
practices are already available in the form of security guidances. The effective implementation of
these security guidelines can, at least in principle, be automatically checked by assessment tools
such as OpenSCAP.

4.2 Open Platform for NFV

Open Platform for NFV (OPNFV) is a collaborative project supported by the Linux Foundation.
It’s an open-source effort that aims at facilitating the deployment and integration of NFV. The
OPNFV community follows the standard references for NFV and promotes the use of open-source
conformant tools. It is also actively engaged in developing, testing and deploying tools for an
NFV infrastructure, with particular emphasis on conformance and performance [10].

One group in particular, the OPNFV Security Group, is dedicated to improve the security of
many aspects related to OPNFV. It follows multiple projects such as OPNFV Security Vulner-
ability Management, provides secure coding guidelines, and automated security scanning. This
last project makes use of OpenSCAP and it’s discussed in the following section.

4.2.1 OPNFV Security Scanning

The Security Scanning project aims at providing compliance checking and vulnerability assessment
of a NFV infrastructure. Being a child project of OPNFV, it follows a standardized framework
and utilizes an open-source tool: in this case SCAP was chosen, alongside OpenSCAP.

The project is designed to be included in an automated process. Given an NFVi, it retrieves
all the nodes and performs a security scan on each of them utilizing SCAP content. The security
evaluation is performed by the OpenSCAP tool and can consume standard SCAP content.

Depending on the given input content, the security scan can guarantee compliance to the
desired security policy and checking the presence of known vulnerabilities.

The project has three main areas of development, each of them with different scopes: the
deployment of security scan in a CI/CD process, the creation and support of SCAP content, and
a standalone application development of Security Scanning [11].

Integration in a CI/CD process

The OPNFV project has developed a Continuous Integration / Continuous Delivery process,
and uses the open-source software Jenkins as automation server. The OPNFV security group
incorporated the code for automatic scanning in the Jenkins build platform.

The following list sums up the steps needed to perform the security evaluation of a NFV
infrastructure:

1. The OPNFV Jenkins build is initiated.

34

Security automation in virtualized environments

2. A dedicated security script is executed, and it’s given a configuration file.

3. The IP address of each node of the NFVi is gathered.

4. The appropriate scanning profile is selected according to the node type.

5. OpenSCAP is remotely installed on each node.

6. The security scan is performed on each node.

7. Security reports are downloaded back to the local system.

The configuration file mentioned in step 2 contains the information needed to differentiate the
scan between different kinds of NFVi nodes. It can easily be modified to include new host types
or modify the evaluations.

This is an example of configuration file:

[controller]

user = heat-admin

scantype = xccdf

secpolicy = /usr/share/xml/scap/ssg/content/ssg-rhel7-xccdf.xml

cpe = /usr/share/xml/scap/ssg/content/ssg-rhel7-cpe-dictionary.xml

profile = stig-rhel7-server-upstream

report = report.hmtl

results = results.xml

reports_dir=/home/opnfv/functest/results/security_scan/

clean = True

Additional host types can be specified inside additional square brackets. As the secpolicy
and cpe fields show, the contents of SCAP Security Guide are installed on the machines alongside
OpenSCAP. This allows the selection of the appropriate benchmarks and profiles for a wide variety
of use-cases.

The last value of the configuration file indicates whether the installed packages and the gen-
erated reports should be eliminated from the nodes or not. If the value is set to “True” all of the
scan traces are removed, ensuring an unobtrusive evaluation.

Regarding the third step, the IP address gathering can be performed in a number of ways. Cur-
rently it utilizes the OpenStack project “nova”, that contains the appropriate APIs for virtualized
servers.

SCAP content authoring

The OPNFV security group is also involved in the creation of SCAP content that can reflect the
wide variety of operating systems and applications that are part of a NFVi.

Due to the intrinsic nature of a NFV environment, which can include countless different
software versions and various nodes, a considerable amount of diverse SCAP content is needed.
The production of useful SCAP content is non-trivial and requires a good amount of technical
knowledge.

The ultimate goal of OPNFV security group is to incorporate new SCAP content directly in
the SCAP Security Guide project, so that all kinds of users can easily access the already developed
SCAP content. There is already a wide variety of operating systems and applications that have
dedicated benchmarks in SSG, but the production of new content is always needed in order to
extend the support to an even wider selection of use-cases.

35

Security automation in virtualized environments

Standalone application

A standalone Security Scanning application has been proposed, which should provide the se-
curity functionalities outside the strict context of OPNFV projects. It should be possible to
autonomously deploy the Security Scanning application with its own installation scripts.

Unfortunately this project is still not deployed, and the security scanning functionalities reside
only as part of the OPNFV Functional Testing (“Functest”) project.

OPNFV Functional Testing

The Functest project provides a framework for testing the OPNFV platform for NFVi. It includes
testing methodologies, test suites and test cases that can verify the functionalities of a OPNFV-
deployed NFVi.

The project page is located at:

https://wiki.opnfv.org/display/functest/Opnfv+Functional+Testing

Amongst the many functionalities provided by Functest there is the security scanning of NFVi
nodes. This framework serves as the CI/CD context previously discussed.

Functest is available as a Docker image on the public dockerhub registry1. After the image is
pulled and the container is properly deployed, all the functionalities can be exploited from within
the container.

Functest contains many test suites; one of them, “Features”, implements the Security Scanning
steps previously mentioned. Although some simple scans can in fact be performed, the project
has not been fully developed and expanded.

The most critical limitation is the support for package installers: different nodes of an NFVi
may require different connection methods by which the installers can connect. The package
installers are fundamental in the process as they are needed to install OpenSCAP and the relative
content to each node. The only installer currently supported is the Oracle Apex environment.

4.3 Container remediation

A number of OpenSCAP utilities were presented in section 3.3. Two of them in particular, oscap-
podman and oscap-docker, can scan images or running containers checking for compliance to a
security policy and/or perform a vulnerability assessment.

Both these utilities mount the image’s file system in read-only mode, adhering to the so-called
offline scanning technique. This guarantees that the scanning operation doesn’t harm or modify
in any way the image, that can be a useful feature in some cases but also a great limitation in
others.

Let’s take in consideration a possible scenario in which applying container remediation could
be useful. The OpenSCAP scanner, by itself, already provides multiple remediation possibilities.
All of these possible actions cannot be performed by the two oscap utilities, as they cannot modify
the original image or container.

Oscap-podman and oscap-docker can potentially generate fix scripts and save them to a file,
using the review mode for remediation. The first step is to perform the desired scan specifying
the result file:

$ oscap-podman IMAGE-ID xccdf eval --results results.xml \

/usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml

1https://hub.docker.com/r/opnfv/functest/

36

https://wiki.opnfv.org/display/functest/Opnfv+Functional+Testing

Security automation in virtualized environments

Then the specific results ID can be retrieved with the info command:

$ oscap-podman IMAGE-ID info results.xml

And finally with the obtained ID the appropriate fix document can be generated:

$ oscap-podman IMAGE-ID generate fix --fix-type bash --output fix-script.sh \

--result-id RESULT-ID results.xml

Now the remediation script can be downloaded back to the original system and can be manually
reviewed by a security expert, which will then apply the desired remediations by executing the
scripts on the running container.

The biggest issue with this approach is that it eliminates the automation in the process.
The aforementioned procedure is time consuming and impractical, especially in highly virtual-
ized environments where there can be hundreds of running containers that each require different
remediations.

The next section presents one possible solution to this issue, a tool that allows for automatic
remediation of images or containers.

4.3.1 The Atomic scan tool

Atomic scan is a scanning tool developed by Red Hat developers that aims in particular at
detecting, and possibly remediating, container vulnerabilities [12].

The development process followed some strict requirements:

• The tool shouldn’t be installed on the main host, and also shouldn’t run on very high
privileged containers. This approach eliminates by design multiple potential security issues.

• Multiple container frameworks should be included as possible targets, i.e. the scan capabil-
ities should not to be limited to a single framework such as Docker.

• The tool should score high in performance, with times of execution short enough to be
scalable to a high number of containers.

The Atomic tool is able to download and run containers that include scanning tools. In order
to avoid security-related issues, the scanning tools themselves aren’t privileged. Atomic can mount
read-only root file systems from the host machine, then pass these file systems to the scanning
container.

The Atomic scan tool is already installed in every atomic image but can still be installed on
other systems, such as Fedora or CentOS, with the proper installer command:

$ yum install atomic

The structure of the tool is shown with the use of the help option, that prints the following
output:

atomic scan [-h] [--scanner {available_scanners}]

[--scan_type SCAN_TYPE] [--list]

[--all | --images | --containers]

[scan_targets [scan_targets ...]]

Atomic utilizes by default the OpenSCAP scanner, which is bundled together in the same
package, but can also utilize different scanners if they are properly configured. The scanner
option lets the user specify which scanner to use. The scan type option is used to specify the scan
operation that the scanner needs to perform.

The last options allow the user to specify if the target of the scan: it can either be all the
images, all the containers, or both. Alternatively, the ID of single images or containers to be
scanned can be listed.

Atomic scan is quite a flexible tool, in the sense that any scanner can be plugged-in to satisfy
a wide variety of users and to support multiple use-cases. The scan types can be configured to
perform compliance checking or vulnerability scanning for different images.

37

Security automation in virtualized environments

4.3.2 Scanning and remediating containers with Atomic

The following steps describe how to scan and remediate an image that is based on a Red Hat
product, in this case Red Hat Enterprise Linux 7 (RHEL 7) [13]. This target was chosen because
Red Hat-based products are the ones best supported by Atomic, OpenSCAP and SCAP Security
Guide (SSG).

First, the OpenSCAP container image has to be downloaded from the Red Hat Container
Catalogue (RHCC)2, as it already contains the SCAP content of SSG. This enables the evaluations
using all the profiles and options contained in SSG. The image can be downloaded with the
command:

$ atomic install rhel7/openscap

A standard compliance scanning will be performed first. With the Atomic list command, the
list of available scan types is shown. The configuration compliance scan gives access to some
common compliance checking benchmarks. It is now possible to scan a target image by running
the following command:

$ atomic scan --scan_type configuration_compliance IMAGE_ID

An interesting feature of Atomic is that the specified target image can also be a Red Hat image
that is not present on the host system, in which case Atomic will automatically pull the image
directly from the registry. This process occurs when the image ID is replaced with the image name
in the format registry.access.redhat.com, followed by the intended version (e.g. “rhel7:latest” or
“rhel7/rhel-tools”).

The Atomic tool generates a subdirectory for storing the scanning results. The directory is
located at /var/lib/atomic/ and takes the name of the utilized scanner, which in this case is
openscap, plus a time stamp of when the evaluation was performed. This new directory can be
accessed to retrieve the ARF results file and optionally the scan reports in HTML format, if the
report option is specified.

After this example of standard scanning, now the remediation process will be analysed. From
the viewpoint of a user, there isn’t much difference in the process. By simply adding the remediate
option in the previous command, Atomic will apply the remediations:

$ atomic scan --remediate --scan_type configuration_compliance IMAGE_ID

It’s important to note that the remediation process results in the creation of a new container
image with an altered configuration, which is built on top of the original image as a new layer. The
original image is not altered per se, but the new layer contains all the configuration improvements.

Due to the intrinsic structure of images, that are made of layers that are always added on top
of each other, the result of the Atomic remediation effectively solves the “container remediation”
problem.

One last additional consideration is needed: as the structure of the image changes, meaning
that the resulting image is different from the original one, any digital signature that was originally
posed on it will no longer be valid. There are certain scenarios in which this issue has to be
addressed. A company should for example apply a new signature to the new image with the
company’s own signatures.

4.3.3 Container scanning integration in a CI/CD process

As the prevalence of container-based environments is growing, especially in large and complex
systems, the need of having a reliable and well-functioning security process grows accordingly.

2https://catalog.redhat.com/software/containers/search?q=OpenSCAP

38

Security automation in virtualized environments

One of the ways in which this can be accomplished is by introducing automated scanning and
remediation of containers in a CI/CD pipeline [14].

Especially in the context of companies, having a robust and secure catalogue of hardened
containers is vital, as it ensures that the tools that interact in the CI/CD process can reliably
pull images. Thus the need of constantly updating an image repository by pushing the security-
remediated images.

The CI/CD integration also offers continuous enforcement and provides uniformity of security
policies.

The first component of this process is an automation server such as Jenkins3, that enables the
creation of pipeline steps to scan, remediate and push back secured images to a repository.

The pipeline can be built in numerous ways, but in this example is comprised of three steps:

1. Pull an image from a repository;

2. run the Atomic tool to scan and remediate the image;

3. assign a new image tag and push back the secured image into the repository.

The repository of step one, from which to pull the image, depends on the single organization
that manages it. It can be a public Docker repository, or more likely a private repository of the
company, allowing a much stricter control over the source of images and their security.

Regarding the second step, the Jenkins dashboard allows parameters to be passed to the
Atomic tool. These parameters can specify the name of the target image, and one possible
configuration of these variables can be:

${REPOSITORY}
${IMAGE-NAME}
${VERSION}

That represent respectively the name of the repository, the image name and the image version.
These three parameters allow for a simple identification of the scan target. The command needed
for this step takes this form:

$ sudo atomic scan --remediate --scan_type configuration_compliance \

${REGISTRY}/${SRC_IMAGE}:${VERSION}

Additional options can be included to generate human-readable reports and possibly pushing
them to a dedicated section in Jenkins, allowing further inspections by security experts. The
Jenkins ecosystem is quite wide and many additional plugins are available that provide this
feature. One example could be HTML Publisher4 that can push the reports directly in the
Jenkins dashboard.

3https://www.jenkins.io/

4https://plugins.jenkins.io/htmlpublisher/

39

Chapter 5

Limitations and areas of
improvement

Despite being well supported and used by many stakeholders, the SCAP framework and its derived
tools still present some limitations, especially when responding to the rapidly growing need of
protection from vulnerabilities.

This chapter describes some of the limitations of SCAP at various levels of abstraction. This
includes both the issues that are ascribed in particular to the OpenSCAP tools, as well as the lim-
itations of the SCAP components themselves. SCAP as a whole is also considered and suggestions
on the possible incorporation of new components are provided.

Some of the issues that are addressed in the following sections are considered critical and are
currently being addressed by the SCAP team of NIST. The resolution of these issues is the main
goal of the next significant update to SCAP version 2.

5.1 CPE and SWID tags

Regarding the use of SCAP for inventory purposes, the current approach relies heavily on CPE
as a base for software and hardware identification. CPE was never intended to be a software
inventory standard, but rather a software identifier, and has very poor scalability.

There has been a rapid growth of CVE assignments in recent years: in the years 2005 to 2016,
the number of new CVE-assigned vulnerabilities ranged between 4 to 7 thousand. Then in 2017
the number jumped to 14,645 and never stopped growing, reaching its maximum in 2021 with
just over 20 thousand new vulnerabilities discovered. Figure 5.1 shows the number of new CVE
added in the NVD each year, with colours representing the CVSS severity distribution. Data for
2022 are updated as of March 16.

The NVD analyses all the new vulnerabilities and produces CPE names in order to identify the
affected assets, which in turn means that for an effective vulnerability scanning the CPE mapping
should be predictable and unique. This is definitely not the case, as it will be shown later below.

SWID tags appear to be the next replacement for CPE, as they solve some of the CPE’s key
problems.

First, SWID tags can be produced by the software vendors and are managed directly on
an endpoint by software means, which is much more scalable and supports a larger portion of
inventory use cases. Second, SWID tags allow for a much clearer characterization of software and
identification of patches.

The SCAP community is actively encouraging the adoption of SWID tags as standard for
software inventory, facilitating the integration of SWID tags in the software release process. One
of the goals of SCAP version 2 is the transition to the use of SWID instead of CPE, which will
be deprecated [15].

40

Limitations and areas of improvement

Figure 5.1. Number of new CVE by year. Colours represent CVSS severity. (source: NVD).

5.1.1 CPE limitations for open-source software

One critical area in which CPE shows its limitations is the identification of open-source software
and libraries. Open-source libraries come from a wide variety of sources and lacks a centralized
control on their naming. Additionally, the pace at which new libraries are created or updated
hinges on the CPE scalability issue.

The CPE mapping procedure between open-source libraries and CPE entries is not well defined,
leading to a relationship that isn’t one-to-one, but rather multiple libraries can be mapped to a
single CPE name.

Open-source libraries often come with very generic and inconclusive names and authors. De-
velopers often use many of these libraries in their projects: both the developers and the final
users of the projects would strongly appreciate a vulnerable-free software, at least with respect
to publicly known vulnerabilities. The problem here arises because there is no definitive way of
mapping the names and authors of the libraries to CPE names, thus it’s impossible to reliably
search for vulnerabilities that affect the specific libraries used in the software [16].

Let’s take as example a very common Node.js library, unzipper1, which has over five million
monthly downloads. Starting from the package information it should be possible to create a
meaningful CPE name that can then be used to identify which CVEs, if any, affect a specific
version of the library.

The first attribute of the CPE name, part, surely cannot be the one for operating systems or
hardware devices, so it will be “a” for application. The second attribute should be the person or
organization that created the product. There is no clear information directly in the NPM page,
so a closer inspection of the GitHub repository of the project is needed.

The repository is located at:

https://github.com/ZJONSSON/node-unzipper

Some useful information can be retrieved from the package.json file partially reported here:

{

"name": "unzipper",

"version": "0.10.12",

"description": "Unzip cross-platform streaming API ",

"author": "Evan Oxfeld <eoxfeld@gmail.com>",

1https://www.npmjs.com/package/unzipper

41

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://github.com/ZJONSSON/node-unzipper

Limitations and areas of improvement

"contributors": [

{

"name": "Ziggy Jonsson",

"email": "ziggy.jonsson.nyc@gmail.com"

},

{

"name": "Evan Oxfeld",

"email": "eoxfeld@gmail.com"

},

...

"repository": {

"type": "git",

"url": "https://github.com/ZJONSSON/node-unzipper.git"

},

...

}

Since no organization is ever mentioned, it is safe to assume that the vendor attribute should
be some form of the author’s name or, less likely, the name of one of the contributors.

Lastly the product name should simply be “unzipper”. It is now possible to search for matching
CPE names directly in the NVD, which then provides the list of CVEs that affect the products
identified with that CPE name.

The NVD search engine for CPE names is located at:

https://nvd.nist.gov/products/cpe/search

The results are always empty for any combination of names. The problem lies in the vendor
attribute, that cannot be found from the available information. Only if the vendor field is omitted,
then the search gives some meaningful results.

In particular, there are 61 matching records if the input query is “cpe:2.3:a:*:unzipper”. All
these results are different versions of products named “unzipper” from two different vendors: “r-
company” and “unzipper-project”. The first one targets android devices, while the second targets
Node.js and so it refers to the intended library.

This example shows the arbitrary assignment of CPE names to software products and the
not so easy process of CPE mapping that should be far more precise and reliable: the “unzipper
project” is never mentioned in any resource related to the unzipper library, and there is no clear
reason that the vendor attribute in the CPE name should be as it is.

The complexity of this process could potentially lead to the unconscious use of a vulnerable
product: this is the case of unzipper for versions before 0.8.13 that do have a vulnerability (CVE-
2018-10022032) that can easily be missed if using only CPE names as a source for vulnerability
assessment.

5.2 Continuous monitoring

At the current state of development, most tools that implement SCAP use a periodic scanning
approach for collecting system’s data and evaluating security: this is the case for OpenSCAP
Daemon that can, as previously stated, generate tasks for scheduled evaluations.

Periodic scanning isn’t an ideal solution, mainly for two reasons:

• There is the need for a trade-off between the level of confidence that in any given moment
the system actually adheres to the desired state, and the workload that’s put on the scanning
machine itself. The first aspect leads to a higher scanning frequency, while the second poses
a ceiling to that frequency.

2https://nvd.nist.gov/vuln/detail/CVE-2018-1002203

42

https://nvd.nist.gov/products/cpe/search

Limitations and areas of improvement

• A fixed-interval pre-scheduled scanning can leave the system vulnerable for lengthy amounts
of times, ranging from several hours to even days.

Another even worse limit of periodic scanning is that clever enough attackers can erase their
presence or effects on the system between subsequent scanning, possibly preventing the detection
of critical security events.

The proposed solution for these problems is event driven reporting: the SCAP version 2
architecture will include new standards that allow the automatic sending of notification when a
security related event occurs.

This change of structure will allow future tools to respond in real-time to system modifications
that can generate security issues. When the event is detected a new evaluation can be performed
and, when possible, remediations can be applied automatically.

In case no automatic remediations are possible, the system will still signal the issue so that
the security administrators can promptly intervene [15].

5.3 Container scanning and remediation

Checking for compliance and scanning for vulnerabilities in an image or a container can be done
effectively by some of the OpenSCAP utilities, but they cannot remediate those images.

When it comes to image scanning and remediation, chapter 4 presented a solution using in
particular the Atomic scan tool. Unfortunately, this tool has been recently discontinued, so no
further development is in progress. There is no guarantee that the Atomic tool will be supported
in the future. The functionalities and scope of the Atomic project has been replaced by Podman
[17].

An exact replacement of the container remediation functionality of Atomic is still not available
in Podman. An open issue in the Podman GitHub repository addresses this missing feature:

https://github.com/containers/podman/issues/8305

The implementation of a Podman “scan” command is technically in progress, although there
has been very little activity on this issue in the last few months.

There is a workaround that can mimic the steps of the Atomic scan command, which is to
create an image with an installed scanner, such as OpenSCAP, and then run the image to scan
the other target images. It’s still not a complete solution as it lacks the automation and the
flexibility of Atomic scan, meaning that it requires a manual configuration that can be different
case by case.

5.4 Incorporating CWE and CAPEC

The SCAP standard is continuously expanding to new components and refining the already in-
cluded ones. The addition of Common Weakness Enumeration and Common Attack Pattern
Enumerations and Classifications in the SCAP work flow and their integration with existing tools
can enhance the capabilities of SCAP.

Common Weakness Enumeration (CWE) is a structured catalogue of software and hardware
weaknesses that can have security repercussions. The term “weakness” is used in a general sense
and indicates security flaws at different levels such as:

• Hardware architecture design;

• faults in software code;

• bugs in software or hardware implementation.

43

https://github.com/containers/podman/issues/8305

Limitations and areas of improvement

The community-developed CWE list is maintained by MITRE and it enumerates, classifies and
describes the weaknesses in a hierarchical structure. It serves as a language for communicating
weakness-related information in a consistent manner between vendors, consumers, and security
experts [18].

CWE primarily aims at preventing the development of flawed products from the very early
stages of design, providing a guide for developers and security practitioners. The use of CWE
also provides these additional benefits:

• Allows an effective description and discussion of software and hardware weaknesses in a
common language.

• Facilitates the check for weaknesses in existing software and hardware products.

• Evaluation of tools that target these weaknesses.

• Provides a common baseline standard for weakness identification, mitigation, and prevention
efforts.

• Prevent software and hardware vulnerabilities prior to deployment.

5.4.1 CWE List

The CWE list is the dictionary of all the CWEs and can be found at:

https://cwe.mitre.org/data/index.html

First developed in 2006, it initially included software weaknesses only. Since 2020 the support
for hardware weaknesses has been added due to the increasing concern about hardware related
issues, as seen in recent years with the discovery of vulnerabilities like Meltdown, Spectre, or
Rowhammer.

The list is continually refined and updated with each new release. It is also fully searchable
and downloadable, but an interesting aspect is the possibility of navigating the CWE list on
selected “views”. The views organize the CWE structure in a specific manner so that it can best
serve the specific needs of a user. These unique viewpoints are divided in standard views, external
mappings, and additional helpful views.

Standard views

The first standard view is “Research Concepts”, that focuses on weakness behaviour. This view
is expected to include every CWE and can be used to identify theoretical gaps within CWE. It’s
mainly intended for researchers and analysts that work with a high level of abstraction and are
interested in conceptual dependencies between weaknesses. This view follows a deep hierarchical
structure with more levels than any other view.

The second is “Software Development”. This view organizes weaknesses around concepts that
are frequently used or encountered in software development, therefore it’s primarily aimed at
developers or educators. It provides a variety of categories that include all aspects of the software
development life cycle including architecture, design, and implementation.

The third view is “Hardware Design”, that organizes weaknesses around concepts that are fre-
quently used or encountered in hardware design. This view can align closely with the perspectives
of hardware designers, manufacturers and educators.

External Mappings

This family of views typically represent a subset of weaknesses that are related by some external
factors.

44

https://cwe.mitre.org/data/index.html

Limitations and areas of improvement

Some views are a “Top N” list of weaknesses: the CWE Top 25 is an annual list of the 25
most dangerous software weaknesses that is created by analysing the number and severity of new
vulnerabilities that appear in the NVD. The OWASP Top 10 instead provides the most important
issues for web application developers.

Other external mappings view include:

• Most Important Hardware Weaknesses List;

• Seven Pernicious Kingdoms;

• SEI CERT Oracle Coding Standard for Java;

• SEI CERT C Coding Standard;

• CISQ Quality Measures.

Helpful Views

These are additional views that were created in order to match some commonly encountered use
cases. Some of them focus on a particular moment of the software life cycle, other views are
specifically targeting a programming language and its most common associated weaknesses:

• Introduced During Design;

• Introduced During Implementation;

• Quality Weaknesses with Indirect Security Impacts;

• Software Written in C;

• Software Written in C++;

• Software Written in Java;

• Software Written in PHP;

• Weaknesses in Mobile Applications.

Lastly, some views were created to show only selected CWEs such as CWE Composites, CWE
Named chains, CWE Cross-section, and CWE Simplified Mapping.

5.4.2 CWE in relation to SCAP

Although CWE is not included amongst the SCAP components, it still plays a role in the scoring
of vulnerabilities. The NVD utilizes a subset of the CWE list (a “CWE Slice”) that allows to
differentiate between vulnerability types and helps the NVD analysts in assigning a score to the
CVEs [19].

The CWE structure is composed of several levels that become increasingly specific: from
a single CWE that generally indicates a type of weakness can follow many different specific
weaknesses, that can often be themselves the parents of even more specific weaknesses.

For example, from CWE-74 “Improper Neutralization of Special Elements in Output Used by
a Downstream Component (’Injection’)” can be further specified the CWE-79 “Improper Neu-
tralization of Input During Web Page Generation (’Cross-site Scripting’)”. Different variants of
cross-site scripting are classified with different CWE identifiers, for example CWE-83 “Improper
Neutralization of Script in Attributes in a Web Page”.

This hierarchical structure allows the NVD analysts to evaluate and score vulnerabilities at
different levels of granularity, which is a needed feature as CVEs can vary greatly in specificity.

45

Limitations and areas of improvement

In turn, the NVD also influences some CWE views. As previously mentioned, the CWE Top
25 is calculated each year from the NVD data. The ranking is calculated by counting how many
CVE entries map to a specific CWE with respect to the total number of CVEs (i.e. the frequency
that the CWE is the root cause of a vulnerability), multiplied by the average CVSS score of those
vulnerabilities.

This scoring procedure orders the weaknesses by how prevalent they are and how dangerous
can an exploitation be on average.

5.4.3 Scoring weaknesses with CWSS

The Common Weakness Scoring System (CWSS) is a mechanism for prioritizing software weak-
nesses that was developed by MITRE alongside CWE. It’s the result of a community-based effort
to provide an open, consistent and robust scoring system [20].

The three main capabilities provided by CWSS are:

• A quantitative measure of the severity of unfixed weaknesses present in a software;

• a common framework that allows the coordination between different people and interoper-
ability between tools;

• a customized prioritization of weaknesses according to the specific needs and environment
of a company.

CWSS scoring is mainly used by security analysts, both directly and by using dedicated code
analysis tools: typically an initial score is automatically calculated by a tool, then the analyst
incorporates and refines the score metrics to produce a final score.

The other important use of CWSS lies in the making of ranking lists such as CWE Top 25
or OWASP Top 10, where CWSS scores are used in conjunction with multiple other metrics to
prioritize weaknesses.

CVSS vs CWSS

CVSS is perhaps the most similar scoring system to CWSS from a conceptual viewpoint (both
are comprised of several metrics that can be compared and in some way overlap), but the two
differ in usage scenarios.

CVSS is a reactive measurement that is calculated after a vulnerability is discovered, analysed
and verified. CWSS can be used much earlier in the process, identifying weaknesses before they
are fully examined to determine if they will result in vulnerabilities. In this sense CWSS is a
proactive scoring system.

CVSS doesn’t allow for incomplete information: a score can be calculated only if every metric
has a value assigned. The NVD approach in the case of vulnerabilities with incomplete information
is to assign the maximum possible score in order to get a conservative score. This approach leads
to inflating scores and can be viable only when the missing information is very limited.

In the case of weaknesses the scarcity of information is very common and CWSS addresses this
scenario by explicitly supporting missing metrics, allowing CWSS to still provide a meaningful
score for these weaknesses.

5.4.4 CAPEC

As CWE functions as a detailed catalogue of weaknesses, Common Attack Pattern Enumeration
and Classification (CAPEC) categorizes attack patterns that are commonly used by adversaries in
exploiting those weaknesses. The term “attack pattern” is used to describe the actual mechanism
and techniques by which an attacker can successfully breach a system [21].

46

Limitations and areas of improvement

The structure of CAPEC is similar to CWE, but the two can be considered complementary to
each other: CWE focuses on the intrinsic attributes and characteristics of weaknesses and their
structural relations, while CAPEC approaches weaknesses from the viewpoint of an attacker,
describing the actual implementations of techniques used to exploit weaknesses. In this case the
relation between attack patterns follows the practical approach of attackers, highlighting possible
chains of actions that can lead to a successful exploitation of weaknesses.

CAPEC can provide additional information regarding a weakness, and it’s especially helpful
in detecting possible attacks to a system: even if a company knows which weaknesses affect their
system, information retrieved by CWE alone may not be sufficient to actually check whether
those weaknesses are being exploited or not. On the other hand, CAPEC specifically describes
the mechanism by which an exploitation is carried out, which allows the security analysts to look
for specific patterns in their system and compare them to the typical attack patterns.

CAPEC integration with SCAP can be difficult as there isn’t any SCAP component which
is directly linked to it. Nevertheless, once CWE is incorporated the subsequent integration of
CAPEC is much more feasible.

The utility of its integration can be found especially in the context of vulnerability assessment
and in the monitoring of the system, enabling an easier and possibly faster threat detection by
checking for the traces of the specific patterns used by attackers.

5.5 OpenSCAP limitations

The OpenSCAP organization maintains multiple repositories on their GitHub page:

https://github.com/OpenSCAP

The community of developers and contributors is still very much active in many projects related
to OpenSCAP Base and other aspects of SCAP. Many aspects described below are currently
tracked in one or more open GitHub issues.

5.5.1 Additional SCAP components

There are two component specifications that are part of SCAP that do not have a dedicated
module in OpenSCAP, but can still be handled by the tool correctly. These components are
SWID tags and Asset Identification.

The presence of SWID tags on a system can be assessed, using OpenSCAP, by using OVAL
inventory class definitions. These definitions can be part of a SCAP source data stream or a
standalone OVAL Definition file. To the user, there is no difference between the procedure of
identifying SWID tags or a standard evaluation of SCAP content. Both the commands xccdf eval
in the case of source data streams, and oval eval in the case of OVAL Definition files, perform
SWID tags detection if the input files contain a reference to an OVAL inventory class definition
that searches for the presence of a matching SWID tag.

The Asset Identification (AI) specification, in the context of the SCAP standard, is limited to
the identification of the target asset, which is the system that is put under evaluation by a source
data stream. OpenSCAP correctly handles AI, incorporating its use in ARF reports. In particular,
XCCDF and OVAL results files contain the information of the target asset of evaluation, that is
then represented in the dedicated AI part of the ARF report. Typically the AI fields that are used
to identify the target asset are its connection addresses (MAC, IPv4 and IPv6), the hostname,
and the fully qualified domain name.

5.5.2 Unsupported SCAP components

The SCAP Validation Program by NIST certified OpenSCAP as SCAP conformant, specifying two
product capabilities: “Authenticated Configuration Scanner” and “Common Vulnerabilities and

47

https://github.com/OpenSCAP

Limitations and areas of improvement

Exposures (CVE)”. In total, the SCAP Validation Program can verify three product capabilities:
the one that is missing is “Open Checklist Interactive Language (OCIL)” [7].

OCIL functionalities are not implemented in OpenSCAP. Nevertheless, the tool can detect
and identify OCIL checklists: the info module, when given an OCIL file as input, simply outputs
“Document type: OCIL Definitions file”.

If the input file is a source data stream containing OCIL checks, those checks are identified
with their relative reference Id and listed as referenced check files. When unpacking bundled
source data stream, using the sds-split command, if an OCIL check file happens to be among the
extracted files it will be shown in the list of files. In any case, OCIL checks cannot be performed
using OpenSCAP.

Lastly, the SCAP specification states that the scoring system for software vulnerabilities should
be CVSS version 3, while OpenSCAP only uses the 2.3 version. The differences between the two
versions are not critical, but several changes occurred.

For example, in the Base metric group two new metrics were added (User Interaction and
Privileges Required), and a new value (Physical) was incorporated in the Attack Vector metric.
Another change example is in the Environmental group, with the introduction of Modified Base
Scores. Even the number of severities were increased from three (Low, Medium, and High) to five
(adding None and Critical).

48

Chapter 6

Proposed solutions

Of the limitations presented in the previous chapter three areas in particular were selected to be
addressed, with the objective of reducing some of those limitations and developing new solutions
that can be applied in many use-cases, widening the range of meaningful utilization of SCAP in
the process of IT security.

The three areas subject of improvement are:

• Incorporating CWE and CAPEC;

• container image scanning and remediation;

• continuous monitoring.

The first area aims at incorporating weaknesses and attack patterns in the vulnerability as-
sessment process. As with OpenSCAP is possible to perform vulnerability scanning to highlight
which particular CVEs affect a system, so the proposed solution links vulnerabilities to their
correspondent weakness, identified by a CWE number, and finally to the CAPEC attack patterns
that can exploit those weaknesses.

The second subject is to create an automatic process that can scan and remediate a given
Podman image. This solution does not use the offline scanning technique, thus enabling the
modification of the input image so that it’s compliant to a security policy, and finally commits
the new remediated image.

Lastly, the proposed solutions on the subject of continuous monitoring are both a standalone
script that can be executed on a machine, waiting for specific events to occur and then automati-
cally applying remediations, and a broader process that incorporates the script in a more complex
structure, where an orchestrator can remotely monitor multiple machines.

The user and developer manuals can be found in Appendix A and Appendix B respectively.

6.1 Extending vulnerability assessment to CWE and CAPEC

This section presents and analyses the first-hand developed tool “CVEtoCWE”, which can be
found on the following public GitHub repository:

https://github.com/maxwhy/CVEtoCWE

The first section covers the objectives and the motivations that led to the creation of this tool
and, additionally, it describes on a theoretical level its core functionalities.

The second section describes in particular the actual structure of the tool, from the chosen
programming language to the organization of the code, and analyses the main functions contained
within the tool.

49

https://github.com/maxwhy/CVEtoCWE

Proposed solutions

6.1.1 Objectives

Common Weakness Enumeration (CWE) is not currently included amongst the SCAP compo-
nents, although there are good reasons for its integration in the security automation process.

Section 5.4.2 presented the relation between CWE and SCAP at its current state: for every new
vulnerability that receives a CVE identifier and appears in the NVD, the correspondent weakness
that made possible the vulnerability in the first place is analysed. The type of weakness, among
many other factors, determine the severity of the CVE and consequently its assigned score.

CWE is by far the most widely adopted standard reference for software weaknesses and it’s used
to convey weakness information between security professionals, vendors, and consumer companies.
The NVD also utilizes CWE when determining the weakness type that stands at the base of a
CVE.

This first step of the integration of CWE already indicates the close relation between CWE
and CVE, i.e. weakness and vulnerability. The lack of support for CWE in SCAP and its tools
leaves a significant gap in the security process, especially regarding vulnerability assessment.

In fact, the final objective of vulnerability assessment is to eliminate all the known vulner-
abilities from a system, but it also serves the purpose of prioritizing the vulnerabilities. In an
ideal world every vulnerability should be avoided and fixed immediately, but in the actual state
of things there is a need for prioritizing which issues to fix first, both in terms of time spent and
economic resources that can be allocated.

This prioritization is typically carried out with the use of CVSS scores, which are certainly
useful but are not the be-all and end-all solution. Different users may have different needs that
can change the actual mitigation priority for them and their particular use-cases.

In this scenario the usefulness of CWE can emerge as additional information for a correct
and well-suited prioritization. A particular type of weakness can be of much more interest for a
particular company, or have lower or greater impact on different systems within the company IT
assets.

Having the knowledge of the actual weakness that causes a vulnerability can direct the reme-
diation efforts towards one particular vulnerability, as that weakness can be more damaging for
that particular system.

Let’s take as example two particularly prevalent CWEs, which are respectively number one
and three in the 2021 CWE Top 25 list:

• CWE-787: Out-of-bounds Write1;

• CWE-125: Out-of-bounds Read2.

These are both very dangerous weaknesses but their effects are different: CWE-787 typically
leads to the corruption of data in the system, while CWE-125 typically can allow attackers to
read sensitive information.

This difference in effects can shift the attention from one weakness to the other: a company,
or a particular system within that company, that contains highly confidential or sensitive data
should concentrate the efforts in fixing the Out-of-bounds Read weakness first. Another company
or system that relies heavily on data consistency should concentrate on the Out-of-bounds Write
weakness instead.

This prioritization cannot be performed effectively by the CVSS scores alone. Consider for
example two vulnerabilities, CVE-2021-420083 and CVE-2021-381154, which have a CVSS score

1https://cwe.mitre.org/data/definitions/787.html

2https://cwe.mitre.org/data/definitions/125.html

3https://nvd.nist.gov/vuln/detail/CVE-2021-42008

4https://nvd.nist.gov/vuln/detail/CVE-2021-38115

50

Proposed solutions

of 7.8 (High) and 6.5 (Medium) respectively. By these scores alone, the natural prioritization is
to first mitigate the first vulnerability, then the second one.

After further inspecting these vulnerabilities, it emerges that the first one has the CWE-
787 (Out-of-bounds Write) assigned to it and the second has the CWE-125 (Out-of-bounds Read)
instead. So, in the case of a system that treats highly sensitive data the actual order of remediation
should be inverted, disregarding the severity scores of Medium and High.

For these reasons the inclusion of CWE in the process of security, and in particular vulnerability
assessment, is desirable and meaningful. The CWE data that is linked to a CVE cannot be
retrieved from any of the OpenSCAP family of tools, and it appears that no other tool exists with
this scope.

The fulfilling of this gap is precisely the objective of the “CVEtoCWE” tool, which aims at
providing a feature that would otherwise require a manual inspection that would be both time
consuming and tedious.

Additionally, attack patterns can now also be included. Starting from the list of CWE it is
possible to link the common attack patterns, identified with CAPEC, that are used to exploit
those weaknesses. Utilizing CAPEC can provide insights on which aspects of the security of a
system must be hardened and monitored to detect and possibly prevent threats.

The tool was developed with additional requirements in mind:

• It should cover the widest possible range of use-cases;

• It should work with standards and references that are supported by SCAP;

• It should be a command line tool with a simple interface, similarly to OpenSCAP.

6.1.2 Functionalities

The main concept of the CVEtoCWE tool is to take as input the results of previous vulnerability
assessment evaluations, and then match every vulnerability that is present on the evaluated sys-
tem to the corresponding weakness. Additionally, the tool can also retrieve the common attack
patterns that are linked to those weaknesses.

This tool is supposed to work in the context of automatic vulnerability assessment, which
can be performed with the OpenSCAP tools, and can be integrated in the process allowing its
functionalities to extend the amount of information that is acquired during an evaluation.

Vulnerability assessment in the SCAP work flow is typically performed using OVAL Vulnerabil-
ity definitions for the specific vulnerabilities that apply to the target system, bundled together in
an OVAL Definitions file. The tool that performs the scan evaluates each definition and generates
an OVAL Results file containing the collected results of each definition.

An interesting aspect to keep in mind is that as long as the scanning tool is SCAP conformant,
it will generate a conformant OVAL Results file. This means that both OpenSCAP Base and its
utilities, when used for vulnerability assessment, generate OVAL Results files that can be utilized
by the CVEtoCWE tool regardless of the target of evaluation.

Thus there are many use cases that can be satisfied by the tool, as it can process OVAL Results
file generated by:

• OpenSCAP Base scanning of the local system;

• oscap-ssh evaluation of remote machines;

• oscap-podman and oscap-docker scanning of images and containers;

• oscap-vm scanning virtual machines.

51

Proposed solutions

This consideration also applies to scanning tools that are not part of OpenSCAP, such as
Atomic: if a container vulnerability assessment is made with the proper options to generate an
OVAL Results file, that file too can be given to the CVEtoCWE tool.

After the OVAL Results file is given as input to the tool, it then searches for all the failed
vulnerability definitions (i.e. the vulnerabilities that are actually present on the system). Then,
for each found vulnerability it retrieves the corresponding assigned CWE. The mapping between
CVE and CWE is for the vast majority of cases one-to-one, but there may be some marginal
cases where multiple weaknesses are related to a single vulnerability: as an estimate, this portion
accounts for less than 2% of the total number of CVEs. To avoid filling the tool results with too
much information, only the first listed weakness is considered.

This retrieval step relies on the NVD as the source of data. The NVD was the natural
choice because it’s listed as the source of standard reference data for vulnerabilities in the SCAP
standard. The tool utilizes the official APIs provided by the NVD itself. These APIs can provide,
starting from a CVE Identifier, a variety of information related to that vulnerability, including
the associated CWE.

After that, the correspondent CAPEC entries are presented and referenced. The correlation
is performed using a custom list that matches weaknesses with the related attack patterns. This
list has been generated from the official CAPEC list found on the MITRE site.5 In this case, it’s
quite common that multiple attack patterns are mapped to a single weakness, and the tool can
correctly handle such cases.

The two main functionalities of the CVEtoCWE tool consist in:

• Showing the mapping of CVE identifiers to the correspondent weaknesses;

• generating a report that contains the CVE to CWE mapping, the related attack patterns,
and the references for those CWE and CAPEC entries.

In the first case, the command line tool simply outputs on the terminal the list of CVEs
alongside the CWE that is attributed to them.

In the second case the tool also includes the CAPEC entries that are related to those weak-
nesses and saves this list on a HTML report. The report contains the reference link to the MITRE
page of each weakness and attack pattern, as MITRE is the organization that maintains the CWE
and CAPEC list. These convenient links serve the purpose of facilitating further analysis of weak-
nesses and attack patterns, as the official page of a CWE or a CAPEC contains useful additional
information.

As already mentioned in section 5.4.2, the NVD actually uses a subset of all the available
CWEs, i.e. a CWE slice, which is comprehensively described on this page:

https://nvd.nist.gov/vuln/categories

There are two “special” CWE entries in this list that do not identify a weakness, reported
here with their description:

• NVD-CWE-Other (“Other”): NVD is only using a subset of CWE for mapping instead of
the entire CWE, and the weakness type is not covered by that subset.

• NVD-CWE-noinfo (“Insufficient Information”): There is insufficient information about the
issue to classify it; details are unknown or unspecified.

The first one is applied when no weakness of the NVD CWE slice matches the actual weakness
of the vulnerability. Given that the NVD slice is considered quite complete, the occurrence of this
particular situation should be rare and typically means that the underlying weakness is relatively

5https://capec.mitre.org/data/downloads.html

52

https://nvd.nist.gov/vuln/categories

Proposed solutions

uncommon (for example, every CWE contained in the 2021 Top 25 is also included in the NVD
slice).

The exact criteria for which CWEs are included or not in the NVD slice is unknown, but
presumably enough weaknesses are part of the slice to allow the NVD analysts to effectively
categorize vulnerabilities.

The second one is used when there is not enough information available to determine which
weakness is causing the vulnerability. It’s sometimes used in the initial stages of the CVE dis-
covery, when the analysts haven’t yet fully studied and inspected the vulnerability, and then it’s
usually substituted by a normal CWE entry.

Whenever the tool encounters vulnerabilities that fall into the aforementioned categories, it
reports the correspondent name but cannot provide the MITRE reference link, as such link doesn’t
exist.

There are some OVAL Vulnerability definitions that include references to CVEs that are not
present on the NVD, typically because those vulnerabilities are marked as “RESERVED”. This
vulnerability status is applied when a CVE Numbering Authority (CNA) assigned the CVE but
hasn’t been able to recover enough information about the vulnerability to populate the CVE
entry.

In this case the tool shows a warning that the vulnerability hasn’t been found on the NVD,
and then it does not include it in the report, as there is no meaningful information about that
vulnerability.

The mapping between weaknesses and attack patterns is not one to one: some weaknesses don’t
have any CAPEC entry directly associated with them, while other more general and comprehensive
CWEs present multiple attack patterns. The report can correctly handle both these situations,
showing all of the related CAPEC numbers, or leaving an empty space if no attack patterns are
related to a particular weakness.

Figure 6.1 shows a sample report generated by the CVEtoCWE tool that contains some of
the aforementioned situations. Notice how the first vulnerability is related to two attack patterns
while the second doesn’t have any correlation.

Figure 6.1. Sample report generated by the CVEtoCWE tool.

6.1.3 Structure

The CVEtoCWE tool takes the form of a command-line interface (CLI) tool, as it’s the most
effective and simple way of interacting with OVAL files and setting the options for the different
use-cases. Additionally, the target users of this tool are usually very familiar with CLI tools, as
CVEtoCWE is meant to be included in the work flow of other OpenSCAP tools that are almost
exclusively command-line based.

The tool also resembles the usage of OpenSCAP Base, as the various commands generally take
the form of the name of the tool followed by the operation to be performed, then the additional
options and finally the input file.

Code organization

The programming language chosen for the development of this tool is JavaScript. The primary
reason for its use is that the NVD APIs, on which the functioning of the tool is based, are

53

Proposed solutions

constructed using REST services and JSON format for data.

Both these standards are very well supported by JavaScript: JSON stands for “JavaScript
Object Notation” and is natively included in JavaScript, and REST APIs are widely used for
web-based communication between applications, for which JavaScript is the most adopted pro-
gramming language.

JavaScript is also a flexible and relatively secure language by itself, it’s very well maintained
and is used by many developers.

CVEtoCWE utilizes the Node.js6 runtime environment for JavaScript. Node.js is open source,
platform independent, and allows the execution of JavaScript code for CLI tools. Its architecture
allows for asynchronous input/output operations and thus possesses very high scalability.

Node.js is widely used and there are many libraries already available that provide a high
variety of functionalities. Node.js comes with a pre-installed package manager, called npm, that
allows the developer to easily access the available libraries and packages via the npm registry.

The general structure of the code is as follows:

• index.js: the starting file that defines the functioning of the tool;

• commands: the folder that stores the files that contain the actual commands code;

• save.js: contains the code for the “save” command;

• show.js: contains the code for the “show” command.

The tool takes the following general form for its functioning:

cvetocwe command [options] input-file

Code functioning

Both the available commands of the tool require an OVAL Results file as input. The input file
is opened and parsed as JSON, allowing the file contents to be easily accessed by JavaScript.
CVEtoCWE then searches for any failed vulnerability definition.

For every failed definition the tool searches for the relative references that are found on the
OVAL definition itself. These references can be of many types but in this process, staying in
line with the scope of the tool, only the CVEs are retrieved. It’s quite common that a single
OVAL definition references multiple CVEs, and in that case all the referenced CVE are correctly
retrieved.

Then for each found CVE the relative NVD API is called. The complete instructions for these
APIs can be found on the NVD site7. For each CVE a particular URL needs to be constructed
in the following way:

url = "https://services.nvd.nist.gov/rest/json/cve/1.0/" + CVE_ID

Then an asynchronous request is sent to that particular URL with an HTTP GET method.
The use of asynchronous requests is crucial for scalability: the code can continue its execution
without waiting for each single response, that depending on the network status can take a con-
siderable amount of time to return.

Being able to send multiple requests in succession is especially needed for moderately vulner-
able systems, as some failed OVAL definitions can result in dozens of different CVE requests. In
those cases, waiting for a response that can take up to a few seconds to arrive would have a great
impact on the tool performance in terms of speed.

6https://nodejs.org/en/

7https://nvd.nist.gov/developers/vulnerabilities

54

Proposed solutions

Once the response returns, it’s again parsed as JSON and the CWE values are finally retrieved
for each corresponding CVE. If the response contains any kind of error, such as “404: Not Found”,
the terminal will show a warning message stating that a particular CVE returned that error. The
message is shown as a warning, and not an error, because these responses typically mean that the
CVE is marked as reserved.

If the original issued command is show, then the tool writes on the terminal the entries
composed as “CVE : CWE”.

If instead the command was save, an HTML file is constructed so that it contains a table with
one column containing the CVE identifiers, a second one containing the correspondent CWE, and
a third column containing the related CAPEC entries. Any CVE that returned as an error is not
included in the HTML file, but it’s still shown as warning in the terminal. Each shown CWE and
CAPEC in the report is also a link to the MITRE page of that weakness or attack pattern.

The location and name of this HTML report can be specified by adding the reportname option
in the command, otherwise it’s saved on the current directory as “report.html”. One example of
a report generated by the tool in a typical use case is shown in figure 6.2. Notice the reported
weakness “NVD-CWE-noinfo” and the variable amount of related attack patterns.

Figure 6.2. Example of report generated by the CVEtoCWE tool.

6.2 Container image remediation

This section discusses the issue of container image remediation, and in particular analyses the
proposed solution “ContainerRem”, which can be publicly found at:

https://github.com/maxwhy/ContainerRem

The following paragraphs present the motivations and objectives that led to this solution, and
then go more in detail regarding the actual code functionalities, organization, and structure.

55

https://github.com/maxwhy/ContainerRem

Proposed solutions

6.2.1 Objectives

The OpenSCAP organization developed some utilities that can automatically perform security
scanning of images. These utilities, oscap-podman and oscap-docker, can be of great help
in determining whether an image is compliant to a security policy, checking the image system
and generating reports. Both tools perform evaluation in the so-called offline scanning technique,
which mounts the images in read-only mode so that the scan cannot damage or modify the images
in any way.

The choice of utilizing this technique limits the possibilities of OpenSCAP, as at the present
state it cannot remediate those images. The only current available work flow for remediating
images is to first scan the images with the previously mentioned utilities, then manually inspect
the reports to determine which rules aren’t satisfied; after the appropriate fixes are selected, the
interested security manager has to manually modify the images that can then be re-evaluated
with OpenSCAP; finally, the newly generated reports can be inspected again to check if the
remediations actually worked.

This process is clearly not scalable to a very high number of images, and requires a considerable
amount of time and work. The solution to this problem is a tool that can automatically perform
as much of the described steps as possible, leaving only marginal work on the actual human
operator.

Another important aspect is that the tool should support a wide variety of image types, as
images and containers are by their very nature suitable for highly diverse environment, where
different types of systems are required. On this aspect the real limitation isn’t posed by the
images themselves, as the tool could theoretically function on almost all the common images,
but by the SCAP content itself. The source data streams that are needed to perform SCAP
evaluations must be designed at least for a specific operating system, if not for specific versions
of it.

Additionally, there is also a performance consideration to be made. The image remediation
work flow may not have hard requirements on time consumed, as it’s a process that it’s typically
performed on fixed schedules and/or on regular intervals, but should still take the minimum
amount of time possible. This is even more true in context with many images and containers that
are running simultaneously. A similar consideration can be done regarding the size of images,
that should not greatly increase as images are sometimes used in specialized environments with
strict space requirements.

6.2.2 Functionalities

From the user perspective, the ContainerRem tool consists in a bash script that is executed giving
one parameter as input. This input is the name of the image to be remediated. The tool identifies
the image and behaves differently based on the image type. At the moment, three types of image
are supported:

• Fedora;

• Ubuntu 18.04;

• Ubuntu 20.04.

Starting from the desired input image, the tool builds a new image by using a dedicated
Dockerfile. Note that the name of this file could also have been “Containerfile” but given that
the former name is adopted as standard by the vast majority of developers, the choice was to use
it even if Podman is used instead of Docker.

ContainerRem copies the appropriate source data stream to the image. This content is taken
from the SCAP Security Guide project, but in order to reduce time and occupied disk space not
all the SSG contents are installed. Thus the image will only have the file that is necessary for the
scanning and remediation.

56

Proposed solutions

Then the tool installs OpenSCAP onto the images by using the appropriate package manager.
This is perhaps the longest part of all the process, as OpenSCAP isn’t a very small package to
install. Depending on the internet connection speed, it can take up to several minutes to install.
This inconvenient occurs only on the first installation, as thanks to the layer caching mechanism
of Podman, any subsequent use of the ContainerRem tool on the same image will no longer need
the long installation process.

After the installation is completed, the tool can perform the desired evaluation of the image
by running it as container, scanning and remediating the container with OpenSCAP and the
source data stream. Once the remediation is completed, the generated report is copied back to
the original host.

Finally a new image is committed based on the newly remediated container. In order to keep
the work space clean, the container is then removed from the list of stopped containers.

The SSG content that refers to the operating system of the containers presents multiple rules
that were made with a physical system as target, or at the very least a virtual machine. Containers
present some differences to “real” systems, meaning that a non negligible amount of rules are not
applicable to containers.

This aspect is reflected in the fix scripts that are contained in those rules. The remediation
procedure of OpenSCAP actually searches for these fix scripts and tries to execute them. When
rules are marked as “not applicable”, the remediation script begins takes this general form:

Remediation is applicable only in certain platforms

if [! -f /.dockerenv] && [! -f /run/.containerenv]; then

...

Remediation script here

...

else

>&2 echo ’Remediation is not applicable, nothing was done’

fi

In these cases, neither evaluation or remediation for those specific rules can be performed
on a container image. Nevertheless, the rest of the rules can still be correctly evaluated and
remediated.

6.2.3 Structure

The code structure is organized with the objective of keeping the files that refers to different images
separated. The main script that manages the various images is the bash script “ContainerRem.sh”.
The rest of the files are stored in three different folders, one for each type of image that is supported
(Fedora, Ubuntu 18.04 and Ubuntu 20.04)

Each folder contains the relative source data stream from the SSG content: ssg-fedora-ds.xml,
ssg-ubuntu1804-ds.xml, and ssg-ubuntu2004-ds.xml. These files are already present amongst the
tool code so that those files can be directly copied inside the images when they are built.

Each folder also includes the Dockerfile that is invoked during the image building. Each
Dockerfile is similar but unique for the different images, as it is responsible for the installation of
OpenSCAP and the copy of the source data streams.

The Podman run command is then used to run the image to be remediated as a container
and executing an OpenSCAP evaluation, and subsequent remediation, on the running container.
After the remediation is done, the report can be copied from the now remediated container to
the host system with a Podman cp command. The reports are located inside the correspondent
folder of the image.

A new remediated image is created by committing the remediated container. As the new
image is created, the container is no longer needed and can be removed.

57

Proposed solutions

6.3 Continuous Monitoring

This section discusses the proposed solutions on the subject of continuous monitoring. There are
two main aspects that are analysed below: the first is the development of a continuous monitoring
tool that can be installed on a machine and can respond to potentially dangerous security-related
events in real-time. The second is the implementation of the same principles applied in a more
complex use-case, where an orchestrator manages multiple remote machines that are monitored,
and each one of them sends their reports to an external resource.

These next sections describe the objectives, functionalities, code organization and structure of
the “SCAPmonitor” tools, which can be found at the following GitHub repository:

https://github.com/maxwhy/SCAPmonitor

6.3.1 Objectives

The concept of continuous monitoring can be highly valuable in many scenarios, especially when
security and policy compliance are priorities for a given system. Unfortunately, SCAP as a
framework never contemplated continuous monitoring, at least until version 2 will be released.
OpenSCAP tried to fill this gap by providing scheduling and planned scanning with OpenSCAP
Daemon.

Nevertheless, the gap is still present as pre-scheduled scans do not and cannot provide the
same level of security confidence that can be achieved with continuous monitoring, for a variety
of reasons already presented in section 5.2. The main objective of SCAPmonitor is in fact to
eliminate this gap and provide not only continuous monitoring, but also active remediation.

Due to the intrinsic differences of both operating systems and security policies, it is very
unlikely that a single tool could be employed in many different scenarios. A more conservative
approach of concentrating on more specific use-cases is needed to develop a functioning tool, of
which core ideas and functionalities can then be extended to a growing number of additional cases.

The SCAPmonitor development process started with the objective of monitoring the specific
events that can put a system in a non-compliant state with respect to a specific security policy.
The work flow can be summarized in these steps:

1. A specific operating system is selected (e.g. Ubuntu 20.04).

2. A matching SCAP content is retrieved (e.g. the SSG source data stream for Ubuntu 20.04).

3. Each rule within the content is analysed and a list of events that could change the result of
the rule evaluation is created.

4. It’s implemented a new piece of code that can detect when those events occur in the system.

5. When a new event is detected, an OpenSCAP evaluation and remediation is issued.

This procedure leads to a tool that is sensible to specific events in the system that refers to
that particular security policy. As different security policies check different aspects of a system,
so the pool of events to be monitored are different.

It’s important to note that while the previous statements are true, so is the fact that many se-
curity policies are similar to one another and that similar systems require similar event detections.
This means that, for example, any version of Ubuntu 20.04 requires the same kind of monitoring
regardless of it being 20.04.1, 20.04.2, or 20.04.3. Also newer or older versions of Ubuntu may
need a monitoring tool with only small adjustments to properly work.

The SCAPmonitor tools were designed with the goal of providing a script that can be simply
started by a user and then can be left running in the background. The user shouldn’t note any
considerable difference in the behaviour of the system while SCAPmonitor is running. In order to
avoid system overhead, the act of monitoring and waiting for events should pose minimum effort
on the machine.

58

https://github.com/maxwhy/SCAPmonitor

Proposed solutions

Another objective of the tools is to behave as Intrusion Prevention Systems (IPS), not being
limited to simply detect changes, but also automatically act on them and possibly restore the
system to a compliant state. This can be achieved by running an OpenSCAP remediation in an
autonomous way on every event detected.

6.3.2 Functionalities

The SCAPmonitor tool consists in a script that can be started from the command line with a
single command, passing as argument the path where the correspondent source data stream is
located. The execution starts and the tool begins waiting for the specific events that refer to the
current system and policy.

The tool doesn’t show any activity until an event is detected. When a detection occurs a
message is shown on the terminal window indicating the type and location of the event, and then
OpenSCAP is used to evaluate the system and apply remediation if it appears to be in a state of
non-compliance to the security content provided.

SCAPmonitor doesn’t end its execution until the user actually stops it, so that any succession
of events can be detected automatically and without pause. The functioning of the tool is built
in such a way that even in the presence of simultaneous events those events can all be detected.
Different events that occur in various locations of the system or present different behaviours are
all separately detected and a new remediation is issued for each one of them.

On the other hand, if the same kind of events happen in rapid succession or during a single
OpenSCAP evaluation, the events that are immediately after the first one will not issue a new
evaluation. This execution flow assures that no infinite evaluation loop can occur but it still
covers all those events: the remediation of the system, which is performed as the final step of an
OpenSCAP evaluation, forces the targets of those events back to a compliant state.

After every remediation a new report is created by OpenSCAP, showing which rules are passed
or not and, additionally, describing what remediations were applied and if they have been effective.

Two similar scripts has been developed for two specific targets:

• SCAPmonitor: monitors a Ubuntu 20.04 system with respect to the SSG content ssg-
ubuntu2004-ds.xml

• SCAPmonitor18: monitors a Ubuntu 18.04 system with respect to the SSG content ssg-
ubuntu1804-ds.xml

There are only minor differences between the two but nonetheless the proper one must be
applied in the appropriate context in order to correctly function.

6.3.3 Structure

The code structure is now analysed by referring to the SCAPmonitor for Ubuntu 20.04 script.
After this analysis only the most noticeable differences with respect to the Ubuntu 18.04 version
are presented.

SCAPmonitor is constructed with numerous sub-processes each monitoring different aspects
of the system and listening for different events. In theory, each rule contained in the source
content should have its own sub-process checking the validity of that particular rule. Practically
implementing a tool with such granularity is both time consuming for the developer and, most
importantly, requires too much effort for the system.

It is a much better solution to group similar rules that are compatible to each other, allowing
a single sub-process to check and wait for multiple events. This reduces the overall amount of
processing time and greatly enhances the performance of the tool.

59

Proposed solutions

From a security perspective it has been followed a conservative approach, meaning that in
order to reduce the number and complexity of rule checking, the tool actually detects a broader
range of events than the theoretical minimum amount that would be necessary.

This choice can result in a little decrease in performance, as some evaluations can be issued
even if the detected event did not effectively pose a security threat to the system. This increase
of false positive detections is typically not noticeable and doesn’t dramatically affect the overall
performance of the tool.

There are two main kinds of sub-processes that are utilized by SCAPmonitor:

• An inotifywait command wrapped in a cycle;

• A while cycle that repeats every fixed amount of seconds.

The first approach requires the installation of the “inotify-tools” package. Among those tools,
inotifywait is a function that uses the Linux inotify APIs to efficiently wait for specific changes to
files. inotify creates watches that can monitor individual files or entire directories, signaling when
specific types of events occur that affect those files or directories. An event can be the creation
or removal of files within a directory, the opening and closing of files (either with or without a
modification), and the change of metadata such as permissions or extended attributes associated
with a file or directory.

The use of inotifywait consists in specifying which files or directories need to be monitored
and which type of events should be listened to. Once the script reaches an inotifywait command,
it blocks the execution of the program and waits for the event occurrence. When that happens
the compliance scanning and remediation with OpenSCAP is then executed.

Each instance of inotifywait is enclosed in an infinite cycle, so that after the event detection
and subsequent remediation a new inotifywait command is executed and starts listening again for
its events. All the different cycles are executed in parallel by SCAPmonitor, so that any desired
file and directory can be concurrently monitored.

The second approach is used when the condition of certain rules cannot be monitored by
changes in files or directories, as they refer to the presence or absence of specific packages or
whether a service is running on the system.

In those cases the chosen mechanism for detecting changes is polling, i.e an infinite while cycle
that waits a set amount of time between each execution. The exact amount of time between each
execution can be set depending on the needs of each different use-case. A high frequency cycle
can raise the confidence in the actual security of the system and can more rapidly respond to
threats, at the cost of a higher execution load on the system.

In any case the execution cost of the entire cycle, both in terms of time consumed and com-
putational power required, it’s quite low and not that impactful. As a consequence the delay
between each cycle can be relatively short, in the order of a dozen seconds, ensuring a good level
of security for most use-cases.

Rule checking implementation

The following paragraphs generally describe how each rule contained within the ssg-ubuntu2004-
ds.xml file is checked.

First, five rules were counted as exceptions as they aren’t monitored by the tool. These rules
all refer to specific directories being mounted on separated partitions on the disk. As stated in
the SSG content guide itself, to modify and create separate logical volumes at run time is possible
but non-trivial. Hence delegating these operations to an autonomous script that is continuously
running in the background could easily damage the system if not handled with extreme care.
Following this consideration the aforementioned rules are considered to be outside the scope of
SCAPmonitor.

60

Proposed solutions

There are multiple rules that refer to a specific service being installed and running on the
system. These rules are checked by verifying that the list of active processes contains the desired
service, meaning that the service is both active and, by consequence, installed.

On the other hand, other rules check that a package is not installed on the system. The process
for these rules is similar to the previous ones but it consists in checking from the list of packages
the status of the undesired packages. Both this group of rules and the previous one are checked
using the second approach of polling.

A large number of rules refer to ownership and permissions of files, and can be monitored
with inotifywait by waiting for an “attrib” type of event, which is issued when metadata like
ownerships and permissions change.

Inotifywait is also used to monitor modifications to files that can potentially be dangerous for
the system. Multiple rules consist in verifying that a particular line of a file is present or not.
Unfortunately inotifywait cannot distinguish between modifications on one line or another of the
file, as any type of modification issues the same event.

This is perhaps where the most false positive detections arise, but it can also be considered as
an additional security measure, given that any change to these monitored files, either intentional
or not, is always related in some way with the security of the system. These files include for
example /etc/ssh and /etc/passwd, which are both tightly related to the system’s security.

All of the previous considerations can be applied to SCAPmonitor18, which is the tool that can
monitor a Ubuntu 18.04 system. The main functionalities are identical, and only minor differences
can be highlighted. All these differences derive from the different rules that are either contained
or not in the two SCAP source content. These rules typically refer to the presence of absence of
specific services that can only be found in one Ubuntu version rather than the other.

6.3.4 Remote monitoring

Continuous monitoring of a single system is already valuable in itself, but extending this func-
tionality to control remote systems can cover a much wider range of use-cases. Suppose a context
in which a single main host acts as orchestrator and controls multiple nodes. Ensuring that all
the child nodes are compliant to a policy and continuously hardened from a security perspective
is a challenging task, in terms of coordination and management effort.

The introduction of as much possible automation in the process can greatly reduce the time
consumed by a system administrator in maintaining the security requirements of the system. Some
degree of manual intervention is always needed, at least in the setting up of the IT structure and
services, but it will be shown how it is possible to activate and maintain an automatic process for
continuous monitoring of multiple sub-systems, all coordinated by a single orchestrator.

The real world deployment of such a structure can be of great utility in a variety of use cases,
including:

• A simple company setting where multiple machines assigned to different employees can be
continuously checked for security by a security administrator.

• Large or complex network infrastructures that utilize multiple devices.

• Highly virtualized environments where a considerable amount of virtual machines and con-
tainers are active simultaneously.

• Monitoring of an NFV infrastructure.

As a first step, a main host can connect to the remote nodes using a secure mechanism, for
example an SSH connection, from which it can remotely download and run the desired SCAP-
monitor script. All the functionalities described in the previous sections can be applied to the
nodes, meaning that any notable event will issue a security scan and subsequent remediation.

61

Proposed solutions

A possible issue can emerge here, as the results of SCAPmonitor can be retrieved only by
inspecting the reports that are generated after a scan. These reports are created within the
machine that is actively being monitored, and without further action remain on that remote
system.

The administrator that controls the orchestrator needs access to these reports, if not often
at the very least occasionally, to check the actual status of the system. Hence a mechanism is
necessary to transfer the reports outside the machine that originally created it.

Bringing the reports outside the context of the node is additionally useful to prevent their
malicious modification or removal. If the monitored node is under an attack, it could be easy for
an attacker to remove the reports and thus hiding the traces of its presence.

There may be some instances where a copy of the report can simply be transferred back to
the main host without further complications. For example, copying files from running containers
is relatively easy and can be done with a single command (e.g. by using “podman cp”).

Other scenarios can be of more difficult implementation, or can represent a possible security
issue that should be avoided. For example transferring files back to the host directly from the
nodes, even if executed with secure mechanism, still creates a possible opening to the main host:
the node, which is generally less secure than the orchestrator, creates a connection that can be
potentially used to transfer malicious files.

Transferring reports to an external resource

The proposed solution to the aforementioned problems is to incorporate a third entity in the pro-
cess, exploiting an external resource. This additional component should be separately accessible
both by the main host and by the nodes, and should serve as a remote database containing the
reports. All the different nodes could upload their reports as soon as they are generated, and
then the system manager could access all of those reports at a later stage.

This solution solves many problems as the validity of the reports is no longer reliant on the
actual security of the nodes, but it’s guaranteed by the level of security of the external resource
that can be, in principle, much higher than the one of the single nodes. Additionally, the nodes
have no direct connection to the host, meaning that even in the worst case scenario the attacked
system would be the external database. The actual damage that can be inflicted would be limited
to the data integrity and availability of the reports, but no direct harm can be done on the
principal host.

There are multiple candidates that can fulfil the role of external resource, and each company
should select the most appropriate one for its particular needs. One proposed preferred solution
is to utilize a git repository. Although not originally intended to be used in such context, git
repositories present all of the needed characteristics and provide additional functionalities and
security.

Some of the key aspects of a git repository are:

• It is relatively easy to create and configure;

• it can be accessed by multiple systems simultaneously;

• each node can have its own dedicated branch;

• every change is recorded and the history cannot be manipulated;

• it’s a fast and efficient system.

Any company can utilize a git repository either by relying on already available services (e.g.
GitHub, Gitlab) or by creating a custom repository. There are many settings that can be config-
ured to create a personalized experience for every different need. This includes security measures
such as choosing which users are allowed to commit or view the repository, and which connection
types are enabled.

62

Proposed solutions

Every single node that needs to be monitored can push its reports to a dedicated branch
of the repository, allowing a clear separation between reports that can greatly help the system
administrator in navigating and identifying the reports.

Another interesting aspect is the actual functioning of the git version control system: each
event that modifies the contents of the repository, being the insertion of new files, their modifica-
tion or even their removal, is recorded and stored by using a Merkle tree, meaning that each new
modification is labelled with the cryptographic hash of the previous contents.

This procedure insures that any past modification cannot be unnoticed, as the generated
hashes would not match the current one. Therefore, even if a malicious attacker succeeds in
removing or modifying the reports, these changes cannot be hidden and remain tracked in the
history of the repository.

The “SCAPmonitor18git” tool is the implementation of the SCAPmonitor script for Ubuntu
18.04 with the additional capability of automatically pushing the reports to a remote git repository.
This functionality is provided only if both the repository and the machine which is running the
script are properly configured.

63

Chapter 7

Testing

This chapter presents some real world applications of the proposed solutions. Each tool and new
functionality is tested in order to verify its actual capabilities and check whether the execution
progresses as intended. Additionally, specific tests are reported that provide details on the per-
formance of the tools, focusing on the specific aspects that are critical in the typical context of
application of each tool.

The first section discusses the CVEtoCWE tool and its extensions to CAPEC, analysing in
particular how the time consumed by the execution increases with respect to the number of
vulnerabilities that affect a system.

The second section focuses on the ContainerRem tool both in term of its performance and
compatibility. On the topic of performance the subject of the tests are time spent for installation,
evaluation and remediation as well as occupied disk space and image size increase. Further
limitations are highlighted in terms of the availability of SCAP content specifically created for
container images.

The third section aims at testing the execution time of SCAPmonitor and its impact on
CPU utilization on various systems and under different work conditions. It is also presented a
practical implementation of remote monitoring that employs an external server storing reports on
a dedicated repository.

7.1 CVEtoCWE and CAPEC

The functionalities of the CVEtoCWE tool has been tested with multiple OVAL Result files.
These files were generated with a OpenSCAP vulnerability evaluation, taking as input a OVAL
Definitions file that checks for the presence of specific vulnerabilities for the desired operating
system.

There are some requisites that need verification to ensure consistency of results and to check
the correct implementation of the various functionalities. The following numbered list of required
cases is used as reference for the rest of the section:

1. A vulnerability was checked and resulted as not present on the system.

2. A vulnerability is not referenced as CVE but uses another standard (e.g. USN, Ubuntu
Security Notices).

3. A vulnerability is referenced as a CVE that is not present on the NVD (i.e. it’s in the
reserved state).

4. A vulnerability relates to one of the two special cases: “NVD-CWE-Other” or “NVD-CWE-
noinfo”.

5. A weakness is not related to any CAPEC entry.

64

Testing

6. A weakness is related to multiple CAPEC entries.

Regarding the specific input for the tests the following three files were used, which primarily
differ by number of vulnerabilities and size: a small sample OVAL Result file, a medium size file
containing 10 different CVEs, and lastly a bigger file of 20 vulnerabilities.

The smallest file was specifically created from a regular OVAL Results file, removing many of
the vulnerability definitions, leaving only a small sample. The following is a fragment of this file:

1 <definition id="oval:com.ubuntu.focal:def:51551000000" version="1"

class="patch">

2 <metadata>

3 <title>5155-1 -- BlueZ vulnerabilities</title>

4 <reference source="USN" ref_id="USN-5155-1"

ref_url="https://ubuntu.com/security/notices/USN-5155-1"/>

5 <reference source="CVE" ref_id="CVE-2021-3658"

ref_url="https://ubuntu.com/security/CVE-2021-3658"/>

6 <reference source="CVE" ref_id="CVE-2021-41229"

ref_url="https://ubuntu.com/security/CVE-2021-41229"/>

7 ...

8 <definition id="oval:com.ubuntu.focal:def:46401000000" version="1"

class="patch">

9 <metadata>

10 <title>4640-1 -- PulseAudio vulnerability</title>

11 <reference source="USN" ref_id="USN-4640-1"

ref_url="https://ubuntu.com/security/notices/USN-4640-1"/>

12 <reference source="CVE" ref_id="CVE-2020-16123"

ref_url="https://ubuntu.com/security/CVE-2020-16123"/>

13 ...

14 <definition definition_id="oval:com.ubuntu.focal:def:51551000000"

result="true" version="1">

15 ...

16 <definition definition_id="oval:com.ubuntu.focal:def:46401000000"

result="false" version="1">

This sample is able to represent a variety of use cases. First, the definition located at line
11 resulted to be false, as it can be seen at line 22. This means that the vulnerabilities that are
referenced inside that definition should not be considered (requirement 1). The other definition,
which resulted as true, contains one vulnerability at line 7 that isn’t referred to as CVE but
instead as USN (requirement 2). The CVE of line 8 is related to a weakness that is not linked to
any attack pattern (requirement 5) while the vulnerability of line 9 has a related weakness that
leads to two attack patterns (requirement 6).

Figure 7.1 shows the report generated when given the sample file as input. As can be seen
from the image, the four aforementioned requirements are satisfied.

Figure 7.1. Report generated by the CVEtoCWE tool from the sample input.

The other two files are the result of two evaluations performed on the same machine at different
times. The medium size file was generated on a machine that had not received security updates
for approximately one month. The largest file was generated after an additional three months of
not updating. In both cases, the target was a Ubuntu 20.04 system.

65

Testing

These larger input files contain instances of the two requirements left, such as CVE-2020-
145621 that links to the “Insufficient Information” special case (requirement 4) and CVE-2022-
263872 that is, at the time of testing, in a reserved state (requirement 3).

Table 7.1 shows some performance statistics of the CVEtoCWE tool upon receiving the three
testing files as input. These times were acquired on a 2015 personal computer equipped with a
2.7 GHz Intel Core i5 CPU and 8 GB of memory.

Each test was repeated 30 times in order to have values weakly influenced by statistical vari-
ations. The average execution time grows as the total number of vulnerabilities increases, but
thanks to the asynchronous process by which multiple requests are sent concurrently the relation
is not linear. This trend is shown in figure 7.2.

Number of CVEs Average time Standard deviation Max value
2 1.103 s 0.16 s 1.921 s
10 1.648 s 0.21 s 2.268 s
20 1.932 s 0.33 s 3.022 s

Table 7.1. CVEtoCWE tool performance statistics.

Figure 7.2. Average execution time of the CVEtoCWE tool.

The intrinsic nature of internet connections, which exhibit high volatility in response times,
produces relatively high standard deviation values, ranging from 12.74% to 17.08% of the mean
value. All things considered, the test that required the highest execution time took a little over
three seconds to complete, meaning that the tool is always relatively fast, at least under standard
internet conditions

7.2 ContainerRem

The ContainerRem tool can be tested on any operating system that supports Podman. The
testing and results shown in this section were performed with a MacOS machine. Podman can
only run Linux containers, which means that in order to function on MacOS it must utilize a Linux
virtual machine. Podman already includes the necessary commands to automatically manage such
environment.

The Podman client for MacOS can be installed via the Homebrew package manager:

1https://nvd.nist.gov/vuln/detail/CVE-2020-14562

2https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26387

66

Testing

$ brew install podman

After the installation is completed, the Podman-managed virtual machine can be initialized
and started. These operations need to be performed only once:

$ podman machine init

$ podman machine start

The following table 7.2 reports the total execution time spent by the ContainerRem tool for
the various types of container image. Notice the great difference between first and subsequent
executions, in which time is significantly reduced thanks to the layer caching mechanism of Pod-
man.

These times were acquired on a 2015 personal computer equipped with a 2.7 GHz Intel Core i5
CPU and 8 GB of memory. The third column shows the average execution time calculated after
repeating 20 times each test. These results show that the tool is quite consistent in the amount
of time utilized, as the standard deviation constitutes less than 5% of the average value.

Image type First execution Following executions (AVG) Standard deviation
Fedora 3 m 2.180 s 23.871 s 0.979 s
Ubuntu 18.04 41.819 s 8.332 s 0.482 s
Ubuntu 20.04 43.104 s 10.629 s 0.231 s

Table 7.2. Execution time of the ContainerRem tool.

Both the Ubuntu versions spend a large portion of their execution time in updating the package
list with apt update, a process that is needed to insure the installation of the latest version of the
OpenSCAP package.

On the other hand, the Fedora image requires much more time for a variety of reasons. The
biggest impact on speed is the installation of updates and packages that are related to Fedora.
These packages alone require more than 100 MB of download, which is quite a significant amount
compared to the total OpenSCAP download size of 3.8 MB.

Another slowing factor that is also reflected on the subsequent executions time is the actual
OpenSCAP evaluation: some rules that are part of the source SCAP content utilized by Contain-
erRem consume several seconds to be checked, which leads to an evaluation time that is more
than double the amount of the Ubuntu evaluations.

The size changes of the images are instead reported in table 7.3. The tool already limits as
much as possible the increase in size, managing directly the copy of the source SCAP content
in the images, instead of installing the whole SCAP Security Guide package. Nevertheless, the
increase is still very much noticeable.

Image type Size before execution Size after execution
Fedora 159 MB 508 MB
Ubuntu 18.04 65.5 MB 227 MB
Ubuntu 20.04 75.2 MB 245 MB

Table 7.3. Image size before and after the ContainerRem tool execution.

A considerable amount of space is occupied by the installation of OpenSCAP and its depen-
dencies: approximately 70 MB, with small variations between different operating systems.

7.3 SCAPmonitor

As the SCAPmonitor tool is intended to be constantly running in the background, its performance
in terms of CPU utilization has been carefully tested. The aspect of processor time consumed on

67

Testing

average by the tool is of even more importance when considering many real world scenarios, such
as highly virtualized environments, that present limited computing power.

The testing has been conducted focusing in particular on the rules that require monitoring
via a polling mechanism. The rest of the rules, which are in fact the majority, can be monitored
in a highly efficient way by waiting for specific signals, with very minimal impact on the CPU
workload.

All of the rules tests that require polling are enclosed in an infinite cycle that repeats itself
after a fix amount of seconds. This sleep time can be adjusted to match the specific needs of the
various use-cases. The only relevant computing power utilized by the SCAPmonitor tool actually
derives from the specific tests that are executed during each cycle (excluding the actual evaluation
and remediation performed by the OpenSCAP scanner, which will be discussed later).

For the purpose of testing, a standalone version of this cycle has been produced. This shell
script contains all the checks that are performed during a single cycle, thus its execution time is
analogous to that required by the original tool on every iteration. Here is a snippet of the code:

#!bin/bash

FLAG=0

Rule: Ensure the audit Subsystem is Installed

Rule: Enable auditd Service

ps -e | grep -w auditd >/dev/null

if [$? != 0];

then

FLAG=1

echo "Service auditd not found"

fi

...

Rule: Uninstall the ntpdate package

dpkg -s ntpdate &>/dev/null

if [$? = 0];

then

FLAG=1

echo "Package ntpdate found"

fi

...

if [$FLAG = 1];

then

echo "Flag is 1"

fi

As shown, the typical operations include the listing of active processes or checking the absence
of packages, that are both operations that require a very low processing power. The tests were
performed on different machines and with different loads on the processor. Each test has been
repeated five times in order to get a more accurate average time.

In particular, table 7.4 reports the tests executed on a physical device (from now on referred
to as “PC”), while table 7.5 refers to the tests executed on a virtual machine (“VM”). Each device
has been tested both on standard conditions, that is without any specific task performed by the
system, and during a high stress situation. Time is always reported in milliseconds.

CPU load Test 1 Test 2 Test 3 Test 4 Test 5 Average
Low 201 210 225 208 206 210
High 314 312 326 328 334 323

Table 7.4. Time of execution (in ms) of one SCAPmonitor cycle on PC.

The PC is equipped with a 2.5 GHz Intel Core i5 and 6 GB of RAM, running Ubuntu 20.04
as operating system. The VM is a Ubuntu 18.04 virtual machine with a single processor and 3
GB of memory, running with VirtualBox.

68

Testing

CPU load Test 1 Test 2 Test 3 Test 4 Test 5 Average
Low 218 205 189 194 193 200
High 524 480 477 465 500 489

Table 7.5. Time of execution (in ms) of one SCAPmonitor cycle on VM.

The stress tests were performed using the “stress” package, which can be downloaded on
various Ubuntu distribution with the following command:

$ sudo apt install stress

After the installation, it is possible to customize the type and level of stress with the proper
options. It is recommended to use these tools with caution and under root privileges, as it is
possible to cause harm to the system. For these tests, the issued command took the form shown
below. It puts the system under a relatively high load both in term of processing power and
memory operations.

$ sudo stress --cpu 8 --io 8 --vm 8

As shown in the tables, the average time on standard conditions is similar for both machines
and hovers around 200 milliseconds. A clearer gap can be seen during the stress tests, when the
PC value increased by approximately 50%, as opposed to the VM times that became almost 2.5
times higher. All things considered, the execution time rarely surpassed the half a second mark,
making the tool quite efficient and suited for many use-cases.

Another aspect that is needed to get a better perspective is the average time required by an
OpenSCAP evaluation. As the SCAPmonitor tool provides continuous monitoring to the system,
the frequency of scanning can be very high. Table 7.6 and table 7.7 show the test results executed
on the PC and VM respectively. The high load scenario has been achieved with the same stress
commands shown before.

CPU load Test 1 Test 2 Test 3 Test 4 Test 5 Average
Low 2215 2155 2255 2286 2202 2223
High 3487 3470 3518 3488 3208 3434

Table 7.6. Time of execution (in ms) of one OpenSCAP evaluation on PC.

It is possible to notice the somewhat unexpected standard condition times, where the less
powerful VM actually completes an OpenSCAP evaluation faster than the PC. It is possible that
this discrepancy is due to the fact that the idle state between the two systems is not the same: the
PC may have more processes and applications running in the background, as it’s a more complete
and refined system compared to the basic VM configuration.

Once again the biggest difference lies in the high stress scenario, where the VM times increase
by more than 2.5 times and can take up to five seconds for a single evaluation. It is important
to note that these times are not related to SCAPmonitor and depend only on the OpenSCAP
scanner. Additionally, while the previous times of a single cycle are repeated every fixed amount of
time and can be quite frequent, the OpenSCAP evaluations only occur when some specific events
are detected. Typically these events do not occur frequently enough to overload the system.

7.3.1 Remote monitoring

A whole sample structure for remote monitoring with report transfer to an external resource has
been deployed for testing. This structure is composed of three main actors:

• A main host, also referred to as “orchestrator”;

69

Testing

CPU load Test 1 Test 2 Test 3 Test 4 Test 5 Average
Low 1661 1719 1730 1647 1669 1685
High 3780 3814 3893 4013 4815 4063

Table 7.7. Time of execution (in ms) of one OpenSCAP evaluation on VM.

• a child node, which in this case is a virtual machine;

• an external resource that acts as the repository server.

The host is the system from which every other node is monitored. The child node represents
one of these monitored systems that can be physical devices, virtual machines, or containers. This
structure can support multiple nodes simultaneously. The external server is in this case a second
physical machine that hosts the git repository.

Setting up the server

The following steps were executed to set up the git repository on the second machine, which is
running Ubuntu 20.04. First, the git package shall be installed on the system:

$ sudo apt update

$ sudo apt install git

Then, a dedicated user (named “git”) is created and the required SSH file is created:

$ sudo useradd -r -m -U -d /home/git -s /bin/bash git

$ sudo su - git

$ mkdir -p git/.ssh && chmod 0700 git/.ssh

$ touch git/.ssh/authorized_keys && chmod 0600 git/.ssh/authorized_keys

SSH keys are needed to enable the automatic commit and push of reports from the monitored
nodes. Finally, the git repository can be initialized:

$ git init --bare git/reportserver.git

Now the “reportserver” repository is ready and will be stored in this server. From a security
perspective, the git user can also be restricted to be able to execute with privileges only git related
commands, which guarantees an additional level of security if the server becomes compromised.

Setting up the node

The following steps were executed on the virtual machine that represents the child node, in this
case a Ubuntu 18.04 running with VirtualBox. These manual operations are needed to set up
properly the machine and take advantage of the external repository. First of all, the node needs
a pair of SSH keys, which can be created with the ssh-keygen utility, to be stored in the proper
hidden directory:

$ mkdir -p $HOME/.ssh
$ chmod 0700 $HOME/.ssh
$ ssh-keygen

The public key shall now be copied to the server. In order to do that, the IP address of the
server is needed. Let’s assume the IP address of the server to be 192.168.1.10:

$ ssh-copy-id git@192.168.1.10

A message might be shown that states that the authenticity of the host cannot be established,
but it is possible to simply type “yes” and continue; then insert the required password. The public
SSH key should now be stored on the remote server. To check if this is the case, simply try to
connect to the server, that shouldn’t ask for a password again:

70

Testing

$ ssh git@192.168.1.10

Then, after closing the SSH connection, it’s required the installation of the git packages:

$ sudo apt update

$ sudo apt install git

The local repository shall be configured in a dedicated folder, specifying a reference name and
email (these fields can be totally arbitrary or random but are required). The remote origin refers
to the actual location of the repository on the server:

$ mkdir Reports

$ cd Reports

$ git init .

$ git remote add origin git@192.168.1.10:/reportserver.git

$ git config --global user.email "node1@example.com"

$ git config --global user.name "node1"

Then a specific branch for the node can be created with an appropriate name and pushed to
the repository:

$ git checkout -b node1branch

$ git push origin node1branch

$ git commit -m "First commit"

$ git push -u origin node1branch

Connecting host and node

The preferred way of connecting the main host to the node is to use an SSH connection. In
this case the node acts as the SSH server, which means that it needs the correspondent package
installed and the service running:

$ sudo apt install openssh-server

$ service ssh status

(if the service is not active, use the following)

$ service ssh start

In the context of this testing, the node is a virtual machine running on the main host with
VirtualBox. In order to be able to connect via SSH, open VirtualBox and select the desired virtual
machine. Then go on Settings -> Network -> Advanced -> Port Forwarding and add a new
rule specifying the fields as follows:

• Protocol: TCP;

• host IP: 127.0.0.1;

• host port: 2222;

• guest IP: the IP address of the virtual machine, typically 10.0.2.15;

• guest port: 22.

After starting the virtual machine, the host can connect to tit by opening a terminal and
typing:

$ ssh -p 2222 user@127.0.0.1

Where “user” should be replaced with the actual name of the user of the virtual machine. The
user can also be root, but it must be the same user that generated the SSH key pair in the set
up process, so that it can automatically commit and push to the remote repository without the
need of a password.

Now the terminal controls the child node. If the node doesn’t have it already, it needs the
installation of the OpenSCAP scanner:

71

Testing

$ sudo apt install libopenscap8

Then the SCAPmonitor18git tool and the SCAP content can be downloaded directly from
GitHub (note that the files names need to be changed):

$ wget

https://github.com/maxwhy/SCAPmonitor/blob/main/SCAPmonitor18git.sh?raw=true

$ wget

https://github.com/maxwhy/SCAPmonitor/blob/main/ssg-ubuntu1804-ds.xml?raw=true

$ mv SCAPmonitor18git.sh?raw=true SCAPmonitor18git.sh

$ mv ssg-ubuntu1804-ds.xml?raw=true ssg-ubuntu1804-ds.xml

Now the continuous monitoring process can be started by specifying also the folder where the
local repository is located and the dedicated branch of this node:

$ sudo bash SCAPmonitor18git.sh ssg-ubuntu1804-ds.xml Reports/ node1branch

Each generated report is pushed to the external repository. The contents of the repository
can be accessed from the git server directly, but can also be obtained by setting up another local
repository on a different system, adding as remote origin the reportserver git, and then pulling
the desired branch:

$ git pull origin node1branch

72

Chapter 8

Conclusions

8.1 Final considerations

The objectives of the thesis were to analyse the state of the art of the SCAP framework and its
implementations, pointing out their issues and limitations, and then propose some solutions that
can reduce those points of weakness.

Each one of the proposed solutions successfully addresses one of the three selected areas of
improvement, solving at least partially some of the intended issues. This chapter provides general
considerations on the developed tools and also indicates where further improvement can be done.

8.1.1 CVEtoCWE

The reports generated by the CVEtoCWE tool do provide the intended objective of extending
the available information regarding the security of a system. Although simple in structure, these
HTML reports allow for a rapid and direct visualization of the connections between vulnerabilities,
weaknesses and attack patterns.

All of the aforementioned information is already publicly available in some form, but the re-
trieval and grouping process can be non-trivial and time consuming, as numerous resources already
discussed focusing specifically on CWE and CAPEC [22], or including more general concepts of
security [23].

In the particular instance of the CVEtoCWE tool, the information regarding weaknesses can
be easily accessed through the NVD, as the page that describes a vulnerability contains the
reference to the correspondent weakness.

The same statement cannot be made regarding the inclusion of attack patterns, which requires
a more elaborated process. At the actual state of things, only the CAPEC definitions contain the
list of related weaknesses, and not vice versa. The work flow of this tool starts from vulnerabilities,
links them to CWEs, and only then can be related to attack patterns: this final step required the
internal creation of a list that maps each weakness to the related CAPEC entries.

Moving on to the topic of performance, the biggest bottleneck lies in the waiting time of the
API responses. These responses arrive through the internet and their travel times can vary greatly
based on the connection speed or the current network traffic. The tool allows for asynchronous
requests, meaning that it can wait for multiple responses concurrently, drastically reducing the
total time spent.

Any performance problem can arise only when evaluating highly vulnerable systems, where
hundreds of different CVE needs to be retrieved. In these cases, it is also possible that the NVD
server responds to some requests with a “403: Forbidden” code. This behaviour likely consists
in some sort of prevention against DoS attacks, when a high number of requests from the same
source are generated.

73

Conclusions

If this issue occurs, simply waiting some time before trying again should fix the problem. Notice
that in a typical real world scenario it’s difficult to find such a high number of vulnerabilities on
a single system. The definitive resolution to this problem lies in the use of a NVD API key,
which can be requested at the NVD site1. Using this key extends the limits on the number and
frequency of API requests that can be sent, and should be requested when dealing with highly
vulnerable systems.

8.1.2 Container Remediation

The ContainerRem tool by itself provides the desired functionality of evaluating and remediating
container images without generating any issue. The only real limitations and critiques that can
be pointed out can be traced to external sources, in particular the OpenSCAP scanner and the
source content.

As shown in the testing chapter, both time consumed and disk occupation depend heavily on
the download and installation of the OpenSCAP scanner. Given the high variety of functionalities
that are provided by the tool, it comes as no surprise that its installation size is quite significant.
It seems that only two approaches are suitable to solve the problem: either modify the scanner
itself, creating a smaller custom tool or using another scanner entirely, or somehow manage to
exploit the tool installed on the host machine that is running the container.

Both these solutions are non-trivial and may require a considerable amount of development
and testing in order to match the functionalities and stability of the standard OpenSCAP scanner.

The other limitation concerns the actual input content that is used to evaluate the container
images. SCAP-expressed checklists are still not thoroughly adopted as standard in many use
cases, especially when it comes to relatively recent concepts of virtualization like, for instance,
containers.

It follows that many security checklists that are available, including the ones that are part
of the SCAP Security Guide collection, are designed having as a target physical machines and
their typical context of application. When using these checklists as base for evaluation of an
image, many of the rules contained within the checklist cannot be checked and thus result as
“Not Applicable”.

This limits the confidence and the scope of the security aspects that are tested during an
evaluation. The real solution must come from the SCAP content generators, which should focus
on creating security checklists that are well-suited for container images.

As new content becomes available, the ContainerRem tool will be capable of further extending
the number of supported images. The structure of the tool allows for a seamless and simple
integration of additional image types and the use of diverse security policies.

8.1.3 Continuous monitoring

The various SCAPmonitor tools have demonstrated to be quite fast and efficient in their execu-
tion. Section 7.3 analysed the tool performance on different machines and under different stress
conditions, and the execution time and processor load were always quite low and manageable.

Nevertheless, the exact work load imposed on the monitored system can further be adjusted by
appropriately setting the frequency of polling for those checks that utilize that technique. There
may be some scenarios where security is not the top priority, in which case the waiting time can
be in the order of minutes. Other much more rigorous scenarios might want to lower that time to
really increase the level of security confidence: numbers as low as three to four seconds are still a
feasible option.

1https://nvd.nist.gov/developers/request-an-api-key

74

Conclusions

The main consideration that needs to be done regarding the SCAPmonitor tools is that their
development is strictly tied to the actual contents of the security policies. Different checklists are
used to audit different aspects of a system, and consequently require different modes of monitoring.

Hence, the extension to new use cases can take a considerable amount of work, as every
rule contained in the checklist needs a specific implementation that allows the detection of the
particular events that may bring the system in a non-compliant state.

8.2 Suggestions on future works

Regarding the incorporation of new specifications in SCAP, the next step for the process of
vulnerability assessment after CWE and CAPEC would be MITRE ATT&CK. This standard is
a collection of adversary techniques and tactics that can be used to develop threat models and
subsequently create appropriate defence mechanisms [24].

The concepts that are categorized and described by CAPEC and ATT&CK, namely attack
patterns and adversary tactics, cannot be directly mapped one to one, but it’s rather a more
complex relation [23]. Typically, attack patterns are used by malicious agents through the specific
techniques described by ATT&CK.

These techniques provide additional information regarding the operational phases of the at-
tackers, including pre and post-exploitation. This acquired knowledge is valuable in the deploy-
ment of an effective defence, but it can be difficult to include it in the context of automated
security, as the specific characteristics and environment of a system heavily influence the actual
deployment of countermeasures.

Another area with opportunities for improvement lies in the remote continuous monitoring
using an external entity for storing reports. As of now, the SCAPmonitor tool implements this
functionality only if using a git repository previously configured in a specific way.

From a theoretical perspective, the external server can be deployed with a variety of technolo-
gies as long as it acts as a database that can be accessed automatically. A more complete solution
for the tool should be compatible with multiple technologies.

The automation aspect is also important. Some degree of manual intervention in setting up
the system and the database may be always required, but there is still room for improvement to
reduce this manual operation as much as possible.

75

Appendix A

User manual

This manual is intended to be a guide for users that want to utilize these tools for the most common
use-cases for which they were designed. The manual is split into three sections that reflect the
three main tools of the proposed solutions: CVEtoCWE, ContainerRem, and SCAPmonitor.

For each one of these sections, the link to the respective GitHub repository that contains
the code is provided. Then follow the instructions for installation and utilization of the tools,
alongside examples for some common use-cases.

A.1 CVEtoCWE

The contents of the CVEtoCWE tool can be found and downloaded from:

https://github.com/maxwhy/CVEtoCWE

The tool is a Node.js application, therefore it is required that the host system installs the
Node.js package, which is available for the vast majority of systems.1 The installation of the
Node.js source code already includes the default package manager npm. The CVEtoCWE tool
can be installed globally on the machine with the following command:

$ npm install -g

Now the tool is ready to be used. First, it is possible to see the help page:

$ cvetocwe --help

Usage: cvetocwe [options] [command]

Options:

-h, --help display help for command

Commands:

show <OVALpath> Prints to terminal the list of CVE identifiers and their

relative CWEs

save [options] <OVALpath> Saves into an HTML file the list of CVE

identifiers and their relative CWEs

help [command] display help for command

In order to see the available options for the save command, the following command can be
inserted:

$ cvetocwe save --help

Usage: cvetocwe save [options] <OVALpath>

Saves into an HTML file the list of CVE identifiers and their relative CWEs

1https://nodejs.org/it/download/

76

https://github.com/maxwhy/CVEtoCWE

User manual

Options:

--reportname <reportname> The name of the file where the list is saved.

If omitted, the default name is report.html

CVEtoCWE provides two main functionalities when given as input an OVAL Result file. The
first (“show”) is to print on the screen the list of all the vulnerabilities that affect the system
alongside the corresponding CWE identifiers. The second (“save”) is to generate an HTML
report that contains the list of CVEs, the related CWEs, and finally the correspondent CAPEC
identifiers.

When using the save command, it is possible to specify the desired name and location of
the generated report with the “reportname” option. The report contains the link to the official
MITRE page of each included CWE and CAPEC entry.

It is possible that some OVAL Result files contain references to CVEs that are not present on
the NVD, or that the API of some vulnerabilities cannot be retrieved as expected. In these cases,
the tool will show a warning message on the terminal, reporting on which CVE identifier caused
the issue and showing the problem type.

Some other CVEs do not have a specific weakness assigned to them, as the NVD uses only a
slice of all the possible CWEs. In these cases, the output shows the corresponding value of either
“NVD-CWE-noinfo” or “NVD-CWE-Other”.

A.2 ContainerRem

The contents of the ContainerRem tool can be found and downloaded from:

https://github.com/maxwhy/ContainerRem

In order to run the tool, the host system needs the Podman container engine installed. The
instructions for its installation vary for different operating systems, and can be found at the official
Podman project page.

Once downloaded, the tool presents itself as a shell script file ContainerRem.sh and three
folders named “fedora”, “ubuntu1804” and “ubuntu2004”.

To start utilizing the tool and get the first informations, simply open a terminal and run the
shell script without any additional parameter:

$ bash ContainerRem.sh

Usage: bash ContainerRem.sh imagename

Where imagename can be ’fedora’, ’ubuntu1804’, or ’ubuntu2004’.

As the output suggests, the user must specify the type of container image that needs to be
remediated. At the moment, three types of images are supported:

• Fedora 33 or later, using “fedora”;

• any version of Ubuntu Bionic (18.04.x), using “ubuntu1804”;

• any version of Ubuntu Focal (20.04.x), using “ubuntu2004”;

The tool detects if the referenced image is already present on the system, otherwise it pulls
it from the official image registry. Then it shows in the terminal window the various steps of
building the image, running the container remediation with OpenSCAP, and finally committing
the remediated image.

Note that the first time that the image is built the installation of some packages may take up
to three or four minutes, depending on the internet connection speed, in particular when building
the Fedora image. Any subsequent use of the ContainerRem tool for that type of image will have
a much shorter execution time, typically around a dozen seconds.

77

https://github.com/maxwhy/ContainerRem
https://podman.io/getting-started/installation

User manual

At the end of the execution, the user will find two new images and an HTML report. As an
example, here is the list of images after the tool has been executed for the remediation of all three
versions:

$ podman images

REPOSITORY TAG

localhost/focal_remediated_image latest

localhost/bionic_remediated_image latest

localhost/fedora_remediated_image latest

localhost/focal_non_remediated latest

localhost/bionic_non_remediated latest

localhost/fedora_non_remediated latest

Where the non-remediated version represents the state of the image just before the start of
the OpenSCAP evaluation. On the other hand, the remediated version is the final output of the
tool, a version of the image with the applied fixes found on the SCAP content.

Lastly, by navigating to the previously mentioned folders, the user can find the HTML reports
that were generated by OpenSCAP during the remediations. Each image type has its own folder
so that the reports are already differentiated and can be easily accessed. The reports show which
rules were evaluated and their status (passed, failed, or not applicable), alongside the results of
the applied remediations.

A.3 SCAPmonitor

The contents of the various SCAPmonitor tools can be found and downloaded from:

https://github.com/maxwhy/SCAPmonitor

This repository includes five files: SCAPmonitor.sh and SCAPmonitor18.sh that are the shell
scripts used to monitor a Ubuntu 20.04 and a Ubuntu 18.04 system respectively, two SCAP source
data content for those operating systems (ssg-ubuntu2004-ds.xml and ssg-ubuntu1804-ds.xml re-
trieved from the SCAP Security Guide collection), and lastly a modified version for Ubuntu 18.04
systems, SCAPmonitor18git.sh, that allows the copy of reports on a remote repository.

In order for these tools to function properly, the target system of monitoring must have the
Linux inotify utilities installed. They are available by downloading the corresponding package
with the following command:

$ sudo apt install inotify-tools

In the case of the SCAPmonitor18git tool, the git package is also required:

$ sudo apt install git

The functioning of the tools for the two Ubuntu versions is analogous. First, simply running
the scripts with no parameters prints the instructions for the correct usage:

$ bash SCAPmonitor.sh

Usage: bash SCAPmonitor.sh filepath

Where filepath refers to the ssg-ubuntu2004-ds.xml of SSG

As stated above, the tool can be started by providing the path to the correspondent source
file. Assuming that the SCAP content is in the same location as the script, the command takes
the following form:

$ bash SCAPmonitor.sh ssg-ubuntu2004-ds.xml

SCAPmonitor is starting...

SCAPmonitor is running.

78

https://github.com/maxwhy/SCAPmonitor

User manual

Starting from this moment, the tool is continuously monitoring the system for specific events
that can be potentially dangerous. When an event is detected, the tool prints on the terminal
window the type and location of the event. Then, an OpenSCAP evaluation and remediation is
issued.

For example, this is the expected output if SCAPmonitor detects a change in the permissions
of the file passwd, located in the etc directory:

New event detected:

Directory: /etc events: ATTRIB file: /etc/passwd

Starting remediation...

...

Remediation completed.

Instead of the three dots, any warning or error generated during the security scanning and
remediation is shown.Every OpenSCAP evaluation generates an HTML report that contains the
rules results and shows if the remediations succeeded.

The tool keeps running until stopped with the abort signal generated by pressing “CTRL+C”.

As far as SCAPmonitor18git is concerned, its functioning is partially different and can directly
be seen when running the script with no parameters:

$ bash SCAPmonitor18git.sh

Usage: bash SCAPmonitor18git.sh filepath repoPath nodeBranch

Where filepath refers to the ssg-ubuntu1804-ds.xml of SSG, repoPath is the

git repository, nodeBranch is the local branch.

The two new parameters, “repoPath” and “nodeBranch”, refer to the folder where the remote
git repository has been locally imported and the name of the dedicated repository branch created
for the specific node that is being monitored. Please refer to the developer manual for a detailed
description on how to set up the repository and utilize this functionality.

This git version of SCAPmonitor behaves as the previously discussed tools, but stores the
reports generated by OpenSCAP during each evaluation in a remote repository.

79

Appendix B

Developer manual

This manual is intended for developers searching for the implementation details of the tools. The
manual is split into three sections that reflect the three main tools of the proposed solutions:
CVEtoCWE, ContainerRem, and SCAPmonitor.

This guide extends the contents of the standard user manual by including technical considera-
tions and in-depth analysis of the actual implementation of the tools. In particular, the following
sections highlight the software requirements for the installation of the tools and carefully describe
the programming choices and the main internal functions.

B.1 CVEtoCWE

The contents of the CVEtoCWE tool can be found and downloaded from:

https://github.com/maxwhy/CVEtoCWE

The tool is a CLI Node.js application that needs the relative package installed on the system
to be able to run. The following commands also installs the default package manager npm:

$ apt install nodejs

$ apt install npm

After the installation is completed the tool can be downloaded and installed by opening a
terminal and typing:

$ npm i -g

Internally, this command also installs the various packages that are required by the tool:

• commander 8.3.0;

• conf 10.1.1;

• fs 0.0.1-security;

• xhr2 0.2.1;

• xml2json 0.12.0.

The index.js file is the starting point of the tool, which accepts the input parameters and calls
one of the two scripts contained in the commands folder.

The show.js script takes as input the OVAL Results file and converts it to JSON, so that its
contents can be easily accessed. Then the tool searches for every OVAL Definition that checks for
the presence of vulnerabilities (which are the definitions of the “patch” class) that are marked as
“true”, which means that those vulnerabilities are present on the system.

80

https://github.com/maxwhy/CVEtoCWE

Developer manual

Only the vulnerabilities that refer to a CVE are considered, as some OVAL patch definitions
utilize non-SCAP formats such as Ubuntu Security Notice (USN) or other proprietary vulnera-
bility collections. For every found CVE, a REST API is called with the following url:

url = "https://services.nvd.nist.gov/rest/json/cve/1.0/" + CVE_ID;

The CVEtoCWE tool sends an asynchronous HTTP GET request for each CVE. When the
response returns, in JSON format, the CWE field is retrieved and the output is shown in the
terminal in the form of “CVE : CWE”. If the response generates an error such as “404 Not Found”
or doesn’t return at all, the tool prints a warning message specifying which CVE generated the
error.

On the other hand, the save.js script initially follows the same steps but then elaborates more
the API responses. Notably, each CVE and the correspondent retrieved CWEs are stored in two
dedicated arrays, called CVE list and CWE list. Once every API request is completed, excluding
the ones that returned as errors, the report can be generated starting from those two arrays.

As last step before the actual creation of the report, CAPEC is also considered. Within the
tool files, the one named “1000.json” contains a list of all the CAPEC entries that are associated
with one or more CWEs. This file was created starting from the CAPEC-1000 view (“Mechanisms
of Attack”), which contains all of the other CAPEC entities, that is available for download as
CSV file1

The tool takes the file in JSON format and creates an internal array with the list of attack
patterns that relate to a specific CWE. Finaly the report can be generated by creating a table
that contains the list of all CVEs, their correspondent CWEs, and the related CAPEC entries.
The link to each CWE and CAPEC reference MITRE page is provided.

B.2 ContainerRem

The contents of the ContainerRem tool can be found and downloaded from:

https://github.com/maxwhy/ContainerRem

In order to run the tool, the host system needs the Podman container engine installed. The
instructions for its installation vary for different operating systems, and can be found at the official
Podman project page.

Once downloaded, the tool presents itself as a shell script file ContainerRem.sh and three
folders named “fedora”, “ubuntu1804” and “ubuntu2004”.

The main execution steps of the ContainerRem tool are as follows:

1. The shell script receives the image type as argument and sets the value of some specific
variables.

2. The current directory is changed to the folder that corresponds to the image type.

3. The image is built using the dedicated Dockerfile.

4. The OpenSCAP evaluation and remediation is executed on a container.

5. The generated report is copied back to the host.

6. The new remediated container is committed as a new image.

1https://capec.mitre.org/data/definitions/1000.html

81

https://github.com/maxwhy/ContainerRem
https://podman.io/getting-started/installation

Developer manual

The variables that are set on step 1 identify the name of the various images and containers
that are used during the execution, as well as the name of the SCAP content that is used to
evaluate the image.

Each folder contains the relative SCAP content from the SCAP Security Guide project and a
Dockerfile. Each Dockerfile contains different commands that are needed to copy the right SCAP
content in the image and to install the relative OpenSCAP package.

Once the final remediated image is committed, the container that generated it can be removed
to clean the environment. The report remains on the host system inside the relative image type
folder.

B.3 SCAPmonitor

The contents of the various SCAPmonitor tools can be found and downloaded from:

https://github.com/maxwhy/SCAPmonitor

It is required the installation of the inotify-tools package, which can be installed on systems
that support the “Inotify” Linux kernel feature. Inotify is compatible with machines that have a
kernel version 2.6.13 or later. To check the version of the kernel, type the following command:

$ uname -a

Linux nodename 5.3.0-28-generic ...

Among the Intofy utilities, the inotifywait command is used extensively in the SCAPmonitor
tools, as it allows to efficiently wait for specific events using the Inotify interface.

Each rule (or group of similar rules) contained in the source SCAP content has a correspondent
section in the SCAPmonitor code which monitors the events that can potentially change the
output of that rule. The monitoring of many rules present the following form:

while :

do

inotifywait -q -e EVENT PATH |

while read -r dir events filename; do

echo "New event detected:"

echo "Directory: $dir events: $events file: $filename"
echo "Starting remediation..."

oscap xccdf eval --remediate --report compliance-report-new.html \

--profile standard $FILEPATH &>/dev/null

echo "Remediation completed."

echo ""

done

done &

The entire section is contained within an infinite while cycle, and the “&” at the end allows for
the concurrent execution of all the sections. The inotifywait command blocks the cycle execution
until a specific event occurs at the specified location. PATH can be replaced with the reference
to a single file or to an entire directory, while EVENT is used to describe the event type. Two
event types are used in SCAPmonitor:

• modify: when the monitored file (or a file within the monitored directory) has been modified;

• attrib: when the metadata of the monitored file (or a file within the monitored directory)
has changed, for example changes to permissions.

As soon as the target event is detected, the tool outputs the type of event on the terminal
and issues an OpenSCAP evaluation. The remediate option allows OpenSCAP to actively reme-
diate the system. Once the remediation is completed, the cycle continues and a new inotifywait
command is called, which monitors again the same rules.

82

https://github.com/maxwhy/SCAPmonitor

Developer manual

Other rules cannot be checked by monitoring file changes alone. These rules typically check
for the presence (or absence) of specific services and packages. In this case, the monitoring is
performed with a polling mechanism, repeating the rule verification every fixed amount of time.
A dedicated variable, “SLEEPTIME”, can be set to the desired value of seconds. The default is
ten seconds.

Remote monitoring with external repository

The SCAPmonitor18git script is a modified version of the SCAPmonitor tool for Ubuntu 18.04,
which allows the upload of the reports generated with each evaluation on a remote git repository.
There are some particular steps that must be performed manually before using the tool.

The remote server which stores the repository should have a dedicated user and directory
for these git operations. The server shall have both the SSH service active and the git package
installed. The repository can be initialized with the following command:

$ git init --bare repositoryName.git

After that, the system that needs to be monitored requires some passages too. An SSH key
pair is required, and the public key should be copied on the server as authorized key. This step
can also be performed with the ssh-copy-id utility, and guarantees that all the git operations can
be performed automatically.

The git package must be installed on the system, and a dedicated directory for the repository
shall be created. The location of this directory is the second parameter that is required by the
SCAPmonitor git tool. The local git repository can be initialized with the following commands:

$ git init .

$ fit remote add origin user@serverIP:/repositoryName.git

$ git config --global user.email "example@example.com"

$ git config --global user.name "example"

Where “user” and “serverIP” shall be the aforementioned dedicated git user and the IP address
of the server. The monitored system should also have a dedicated branch on the repository, as
the typical use case involves several nodes being monitored at the same time:

$ git checkout -b exampleBranch

$ git push origin exampleBranch

$ git commit -m "First commit"

$ git push -u origin exampleBranch

The tool can now be executed on the target system. The correct syntax is as follows (supposing
that the local repository path is “NewDirectory”):

$ bash SCAPmonitor18git.sh ssg-ubuntu1804-ds.xml NewDirectory exampleBranch

The tool will start monitoring the system until explicitly stopped. The functionalities are the
same of the standard SCAPmonitor tool, with the addition of the automatic commit and push of
reports to the remote repository.

83

Bibliography

[1] L.LaBerge, C.O’Toole, J.Schneider, K.Smaje, “How COVID-19 has pushed companies
over the technology tipping point and transformed business forever”. McKinsey & Com-
pany, October 2020. https://www.mckinsey.com/business-functions/strategy-and-

corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-

technology-tipping-point-and-transformed-business-forever

[2] “2020 State of SecOps and Automation”, A Survey of IT Security Professionals. Dimen-
sional Research, sponsored by Sumo Logic, June 2020. https://www.sumologic.com/brief/
state-of-secops/

[3] D.Waltermire, S.Quinn, H.Booth, K.Scarfone, D.Prisaca, “The Technical Specification for
the Security Content Automation Protocol (SCAP)”. National Institute of Standards and
Technology, Special Publication 800-126, Rev. 3, February 2018. DOI 10.6028/NIST.SP.800-
126r3

[4] D.Waltermire, C.Schmidt, K.Scarfone, N.Ziring, “Specification for the Extensible Configura-
tion Checklist Description Format (XCCDF)”. National Institute of Standards and Technol-
ogy, Interagency Report 7275, Rev. 4, March 2012. https://csrc.nist.gov/publications/
detail/nistir/7275/rev-4/final

[5] B.A.Cheikes, D.Waltermire, K.Scarfone, “Common Platform Enumeration: Naming Specifi-
cation”. National Institute of Standards and Technology, Interagency Report 7695, Version
2.3, August 2011. DOI 10.6028/NIST.IR.7695

[6] The OpenSCAP project, https://www.open-scap.org/
[7] Security Content Automation Protocol Validation Program, NIST, July 2021, 142 Red

Hat SCAP 1.2 Product Validation Record, https://csrc.nist.gov/projects/scap-

validation-program/validated-products-and-modules/142-red-hat-scap-1-2-

product-validation-record

[8] The NFV project, European Telecommunications Standards Institute (ETSI), https://www.
etsi.org/technologies/nfv

[9] S.Lal, T.Taleb, A.Dutta, “NFV: Security Threats and Best Practices”. IEEE Communica-
tions Magazine, 2017. DOI 10.1109/MCOM.2017.1600899

[10] The OPNFV project, https://www.opnfv.org/
[11] L.Hinds, November 2016. Security Scanning, wiki.opnfv.org. https://wiki.opnfv.org/

pages/viewpage.action?pageId=6826205

[12] B.Baude, May 2016. Introducing atomic scan - Container vulnerability detection, devel-
opers.redhat. https://developers.redhat.com/blog/2016/05/02/introducing-atomic-
scan-container-vulnerability-detection

[13] M.Jahoda, J.Fiala. Red Hat Enterprise Linux 7 - Security Guide, Chapter 8, ac-
cess.redhat. https://access.redhat.com/documentation/en-us/red_hat_enterprise_

linux/7/html/security_guide/index

[14] P.Klinker, June 2020. Securing Container Images Using OpenSCAP and Atomic,
pklinker.medium https://pklinker.medium.com/securing-container-images-using-

openscap-and-atomic-7e3d94322cae

[15] Security Content Automation Protocol Version 2 (SCAP v2), National Institute
of Standards and Technology, https://csrc.nist.gov/Projects/security-content-

automation-protocol-v2

[16] S.Kinzer, October 2015. Using CPEs for Open-Source vulnerabilities? Think Again, ve-
racode. https://www.veracode.com/blog/managing-appsec/using-cpes-open-source-

vulnerabilities-think-again

84

https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever
https://www.sumologic.com/brief/state-of-secops/
https://www.sumologic.com/brief/state-of-secops/
https://doi.org/10.6028/NIST.SP.800-126r3
https://doi.org/10.6028/NIST.SP.800-126r3
https://csrc.nist.gov/publications/detail/nistir/7275/rev-4/final
https://csrc.nist.gov/publications/detail/nistir/7275/rev-4/final
https://doi.org/10.6028/NIST.IR.7695
https://www.open-scap.org/
https://csrc.nist.gov/projects/scap-validation-program/validated-products-and-modules/142-red-hat-scap-1-2-product-validation-record
https://csrc.nist.gov/projects/scap-validation-program/validated-products-and-modules/142-red-hat-scap-1-2-product-validation-record
https://csrc.nist.gov/projects/scap-validation-program/validated-products-and-modules/142-red-hat-scap-1-2-product-validation-record
https://www.etsi.org/technologies/nfv
https://www.etsi.org/technologies/nfv
https://doi.org/10.1109/MCOM.2017.1600899
https://www.opnfv.org/
https://wiki.opnfv.org/pages/viewpage.action?pageId=6826205
https://wiki.opnfv.org/pages/viewpage.action?pageId=6826205
https://developers.redhat.com/blog/2016/05/02/introducing-atomic-scan-container-vulnerability-detection
https://developers.redhat.com/blog/2016/05/02/introducing-atomic-scan-container-vulnerability-detection
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/index
https://pklinker.medium.com/securing-container-images-using-openscap-and-atomic-7e3d94322cae
https://pklinker.medium.com/securing-container-images-using-openscap-and-atomic-7e3d94322cae
https://csrc.nist.gov/Projects/security-content-automation-protocol-v2
https://csrc.nist.gov/Projects/security-content-automation-protocol-v2
https://www.veracode.com/blog/managing-appsec/using-cpes-open-source-vulnerabilities-think-again
https://www.veracode.com/blog/managing-appsec/using-cpes-open-source-vulnerabilities-think-again

Bibliography

[17] The Podman project, https://podman.io/
[18] The Common Weakness Enumeration project, https://cwe.mitre.org/
[19] NVD CWE slice, National Institute of Standards and Technology, https://nvd.nist.gov/

vuln/categories

[20] Common Weakness Scoring System, cwe.mitre. https://cwe.mitre.org/cwss/cwss_v1.0.
1.html

[21] The Common Attack Pattern Enumerations and Classifications project, https://capec.

mitre.org/

[22] A.Brazhuk, “Semantic model of attacks and vulnerabilities based on CAPEC and CWE
dictionaries”, International Journal of Open Information Technologies. ISSN: 2307-8162 vol.
7, no. 3, 2019

[23] E.Hemberg, J.Kelly, M.Shlapentokh-Rothman, B.Reinstadler, K.Xu, N.Rutar, U.O’Reilly
“Linking Threat Tactics, Techniques, and Patterns with Defensive Weaknesses, Vulnera-
bilities and Affected Platform Configurations for Cyber Hunting”. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA. DOI 10.1145/ nnnnnnn.nnnnnnn

[24] The MITRE ATT&CK project, https://attack.mitre.org/

85

https://podman.io/
https://cwe.mitre.org/
https://nvd.nist.gov/vuln/categories
https://nvd.nist.gov/vuln/categories
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://capec.mitre.org/
https://capec.mitre.org/
https://doi.org/10.1145/ nnnnnnn.nnnnnnn
https://attack.mitre.org/

	Introduction
	Background
	Security automation

	The SCAP framework
	Overview
	SCAP terminology
	SCAP use cases
	Security Checklist Verification
	Software and Hardware Identification
	Providing Evidence of Conformance
	Continuous Monitoring and Remediation

	SCAP Specifications
	XCCDF
	OVAL
	OCIL
	ARF
	Asset Identification
	CPE
	SWID
	CCE
	CVE
	CVSS
	CCSS
	TMSAD

	The OpenSCAP tools
	The OpenSCAP ecosystem
	OpenSCAP Base
	Introduction
	Installation
	Command modules

	OpenSCAP Utilities
	Tailoring
	Scanning remote machines
	Scanning Linux containers and images
	Scanning Docker containers and images
	Scanning virtual machines
	Scanning arbitrary file systems

	OpenSCAP Daemon
	Installation
	Task management

	Practical examples
	Security compliance on Fedora
	Vulnerability scanning on Ubuntu

	Security automation in virtualized environments
	Network Functions Virtualization
	NFV structure
	NFV security considerations

	Open Platform for NFV
	OPNFV Security Scanning

	Container remediation
	The Atomic scan tool
	Scanning and remediating containers with Atomic
	Container scanning integration in a CI/CD process

	Limitations and areas of improvement
	CPE and SWID tags
	CPE limitations for open-source software

	Continuous monitoring
	Container scanning and remediation
	Incorporating CWE and CAPEC
	CWE List
	CWE in relation to SCAP
	Scoring weaknesses with CWSS
	CAPEC

	OpenSCAP limitations
	Additional SCAP components
	Unsupported SCAP components

	Proposed solutions
	Extending vulnerability assessment to CWE and CAPEC
	Objectives
	Functionalities
	Structure

	Container image remediation
	Objectives
	Functionalities
	Structure

	Continuous Monitoring
	Objectives
	Functionalities
	Structure
	Remote monitoring

	Testing
	CVEtoCWE and CAPEC
	ContainerRem
	SCAPmonitor
	Remote monitoring

	Conclusions
	Final considerations
	CVEtoCWE
	Container Remediation
	Continuous monitoring

	Suggestions on future works

	User manual
	CVEtoCWE
	ContainerRem
	SCAPmonitor

	Developer manual
	CVEtoCWE
	ContainerRem
	SCAPmonitor

	Bibliography

